Appunti per un corso di Python

Appunti per un corso di Python
Marcello Galli, Agosto-2014

In rete si trovano moltissime introduzioni al linguaggio Python, e questa e' ancora una ennesima introduzione al
linguaggio, prodotto secondario di un corso tenuto all' ENEA di Bologna nel 2014. Vengono qui descritte un po'
tutte le proprieta' del linguaggio, corredate da alcuni esempi, presupponendo, nel lettore, solo una conoscenza
delle basi della programmazione e di un'infarinatura di un qualche linguaggio di programmazione. Non si entra in
modo approfondito in argomenti specializzati, come: introspezione , metaprogrammazione, certi dettagli
sull'ereditarieta’, sulle eccezioni, l'integrazione con altri linguaggi, o la descrizione di tutte le possibilita' dei
moduli della libreria standard. Python ha una base semplice, ma un contorno di software ed applicazioni
veramente vasto.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 1
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/marcello/galli.html
http://www.bologna.enea.it
http://www.helldragon.eu/

Appunti per un corso di Python

Contenuto

Appunti per un corso di Python
Introduzione
Il Linguaggio Python

Caratteristiche del linguaggio

Interpretato, ma con produzione di "bytecode".
Sintassi semplice.

Orientato agli oggetti.

Strutture complesse gia' implementate.

Facile integrazione con altri linguaggi.
Funzionalita' gia' pronte.

Caratteristiche peculiari.

Uso

Interfaccia grafica: idle

Sintassi

Variabili

Riferimenti ed oggetti
Keywords

Tipi

Docstring:

Operatori

Operatori aritmetici

Operatori bit a bit

Operatori di assegnazione
Operatori logici

Operatori logici per i confronti.
Operatori logici per l'appartenenza
Separatori

Conversioni fra tipi

Operazioni per sequenze
Operazioni per sequenze mutabili
Operatore di formattazione per le stringhe: %
Precedenza degli operatori

Funzioni per help

Istruzioni

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 2
Downloaded from http://www.helldragon.eu/

© © 00 0 0 W 0 W 0 0 o U Bk

N NN PR R R R R R R R R R R R R R B B B B
B O ©O © © W 0 ~N ~N ~N o 0 o 0 00 ™M N P B B BB

http://www.helldragon.eu/

Appunti per un corso di Python

Istruzione print
Assegnazione
Blocchi logici
Esecuzione condizionale
Istruzione with
Istruzioni cicliche
Iterabili ed iteratori
List comprehensions
Funzioni per iterabili
Funzioni exec ed eval
Le Stringhe
Sottostringhe
Operazioni su stringhe
Funzioni per le stringhe
Liste
Operazioni sulle liste
List comprehension
Tuple
Sets e Frozensets
Dizionari
Funzioni
Argomenti
Valori restituiti
Campo di validita' della funzione (scope della funzione)
Campo di validita' delle variabili (scope delle variabili)
Funzioni lambda
Docstring
Attributi delle funzioni
Decorators
| files
Input/Output da terminale
Uso di files
Eccezioni
Eccezioni in Python
Classi di eccezioni generate da Python

Istruzione assert

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 3
Downloaded from http://www.helldragon.eu/

21
21
21
21
22
23
23
24
25
26
27
28
29
30
33
33
36
37
37
39
42
42
44
45
45
45
46
46
47
48
48
48
51
51
53
54

http://www.helldragon.eu/

Appunti per un corso di Python

Programmazione ad oggetti

Programmazione ad oggetti in Python

Creazioni di classi ed istanze
Attributi

Docstring

Metodi

Inizializzazione delle istanze
Ereditarieta’, dettagli

Uso attributi in una classe derivata
Funzioni di classi ereditate
Override attributi

Inizializzazione ed ereditarieta’
Overloading operatori e funzioni speciali
Decoratori di classi

Metaclassi

Moduli

Libreria standard

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 4
Downloaded from http://www.helldragon.eu/

55
56
56
57
58
58
60
60
61
62
62
63
63
64
65
66
68

http://www.helldragon.eu/

Introduzione

Introduzione

In Python sono implementate, direttamente nel linguaggio, strutture complesse, di uso comune in
programmazione, come: liste, dizionari, tuple, stringhe. Queste sono trattate come tipi di dati e ci sono gia'
funzioni per agire su di esse, come funzioni di ordinamento, di ricerca etc. Per questo motivo Python €'
particolarmente adatto per applicazioni in cui si devono trattare insiemi di dati eterogenei, con un misto di valori
numerici e stringhe; gran parte del lavoro che andrebbe fatto scrivendo apposite software o includendo diverse
librerie e' gia' fatto, ed integrato naturalmente nel linguaggio. E' meno adatto ad applicazioni numeriche, specie
che facciano uso di algoritmi iterativi, essendo un linguaggio interpretato. Python e' multi-piattaforma e corre, in
pratica, su qualunque architettura. Python e' open source , gratuito e liberamente disponibile.

Il sito ufficiale di Python e': https://www.python.org/ dove si trova software, documentazione, e tutto il resto. Nel
Python Package Index (PyPl): pypi.python.org si trova una quantita’ spropositata di software scritto in Python,
per fare quasi qualunque cosa.

In ltalia c'e' una robusta comunita’ di appassionati al linguaggio; il sito della comunita' italiana €'
http://www.python.it/ , ove si trovano informazioni e tutorials in italiano. Altro sito italiano e"
http://www.python-it.org .

Sono stati pubblicati moltissimi libri su Python, di molti testi inglesi ci sono traduzioni in italiano, ma non sempre
sono aggiornate. Siccome Python e' abbastanza cambiato, nel 2008, con la versione 3, conviene sempre
cercare testi abbastanza recenti, che coprano la versione 3 del linguaggio.

Fra i tanti libri segnalo:

* Python in a Nutshell, di Alex Martelli, O'Reilly, 2003.
E' un testo di riferimento completo, purtroppo €' datato e non tratta la nuova versione 3 del linguaggio.

e Learning Python, 5th Edition, di Mark Lutz, O'Reilly, 2013.

Un libro completo, ma forse un po' troppo prolisso, copre tutti gli aspetti del Python; quest'ultima
versione tratta anche la versione 3 di Python.

* Python Pocket Reference, 5th Edition, di Mark Lutz, O'Reilly, 2014.
Un sommario breve di tutto Python, versione 3 compresa; ne esiste una (pessima) traduzione italiana.

e Programming Python, 4th Edition, di Mark Lutz, O'Reilly, 2010.
Questo libro copre argomenti specifici, come creare applicazioni di rete, produzione interfacce
grafiche, applicazioni web, interfacce a database, integrazione con linguaggio C etc.

» Python Cookbook, di Alex Martelli e David Ascher, O'Reilly, 2002.
Questo libro affronta molti problemi specifici, indicando trucchi e metodi particolari, purtroppo anche
guesto libro e' un po' vecchio e non copre la versione 3 di Python. C'e' anche un Python Cookbook di
David Beazley e Brian K. Jones, O'Reilly 2013, dello stesso taglio, ma piu’ recente.

* Programmare con Python. Guida completa, di Marco Buttu, LSWR 2014.
E' un libro recente, in italiano, ben fatto.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 5
Downloaded from http://www.helldragon.eu/

https://www.python.org/
https://pypi.python.org/pypi
http://www.python.it/
http://www.python-it.org
http://www.helldragon.eu/

Il Linguaggio Python

Il Linguaggio Python

Python e' un linguaggio di programmazione sviluppato da Guido Van Rossum negli anni 90. Si propone come un
linguaggio open source, moderno, semplice da imparare e comprensibile, ma contemporaneamente potente,
inteso a ridurre i tempi di sviluppo del software.

Il linguaggio Python e' attualmente gestito dalla Python Software Foundation, fondata nel 2001, che e' una
associazione indipendente, che annovera fra i suoi sponsor Sun, Canonical, O'Reilly, Microsoft, Zope. Guido
Van Russum presiede la fondazione e tuttora coordina lo sviluppo del linguaggio.

Van Rossum inizio' a lavorare su Python nel 1989, le prime release sono del 1991, mentre la versione 1 e' del
1994; il nome Python deriva da uno show comico trasmesso dalla BBC: "Monty Python's Flying Circus”, di cui
Van Rossum era appassionato. Van Rossum ha sempre cercato di mantenere una retrocompatibilita’ nel corso
dello sviluppo di Python. Questa retrocompatibilita’ €' stata abbandonata con la versione 3 del linguaggio, nel
2008. La versione 3 introduce, fra l'altro, un completo supporto alle stringhe in codifica Unicode, introduce i tipi:
byte e bytearray per dati binari, e cambia alcune funzioni di uso molto comune, come il comando print, che
diventa una funzione. Data I'enorme quantita’ di software scritta con Python 2, e le differenze con Python 3, la
transizione a Python 3 e' stata molto lenta, ed ha comportato un vero e proprio fork; e nel 2014 c'e' ancora
software importante che non funziona con Python 3. La versione che viene attualmente sviluppata e' la versione
3, mentre la versione 2 e' ferma alla versione 2.7, del 2010, ove sono state riportate alcune funzionalita' della
versione 3.

Versioni di Python e date di rilascio
Python 1.0 Gennaio 1994
Python 1.5 31 Dicembre, 1997
Python 1.6 5 Settembre, 2000
Python 2.0 16 Ottobre, 2000
Python 2.1 17 Aprile, 2001
Python 2.2 21 Dicembre, 2001
Python 2.3 29 Luglio, 2003
Python 2.4 30 Novembre, 2004
Python 2.5 19 Settembre,2006
Python 2.7 3 Luglio, 2010
Python 2.6 1 Ottobre , 2008
Python 2.7 3 Luglio, 2010
Python 3.0 3 Dicembre, 2008
Python 3.1 27 Giugno, 2009
Python 3.2 20 Febbraio, 2011
Python 3.3 29 Settembre, 2012
Python 3.4 16 Marzo, 2014

Il linguaggio ha avuto grande successo, ed ha attratto una vasta schiera di sviluppatori, in particolare e' utilizzato
e sponsorizzato dalla "Zope corporation” (vedi http://www.zope.com e http://www.zope.it) che utilizza Python

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 6
Downloaded from http://www.helldragon.eu/

https://www.python.org/psf/
http://www.zope.com
http://www.zope.it
http://www.helldragon.eu/

Il Linguaggio Python

per il suo prodotto "Zope", del 1998; uno dei primi applicativo web "open source" per editoria e commercio
elettronico. Per la diffusione di Python e' stato anche importante "Plone", del 2001; un applicativo di grande
successo per costruire siti web (un "Content Management System” o CMS). Per Plone vedi:
http://www.plone.org , http://www.plone.net o http://www.plone.it .

Python e' utilizzato da grandi imprese attive nel web fra cui YouTube, Yahoo, Dropbox e Google, ove ha
lavorato anche van Rossum, fra il 2005 ed il 2012, prima di trasferirsi alla Dropbox; ma oltre alle grandi ci sono
anche centinaia di medie e piccole ditte che utilizzano Python per i loro progetti, specialmente per siti ed
applicativi web.

Python sta prendendo piede anche in campo scientifico, specialmente per analisi dati e grafica. Prodotti, scritti in
Python, specifici per calcoli vettoriali e trattamento di dati scientifici, sono: numpy e scipy. Matplotlib €' un
software per la grafica, Mayavi €' un software per la rappresentazione tridimensionale di dati.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 7
Downloaded from http://www.helldragon.eu/

http://www.plone.org
http://www.plone.net
http://www.plone.it
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
http://docs.enthought.com/mayavi/mayavi/
http://www.helldragon.eu/

Caratteristiche del linguaggio

Caratteristiche del linguaggio

Interpretato, ma con produzione di "bytecode".

Il linguaggio €' interpretato, ovvero tradotto in linguaggio macchina una istruzione per volta, tipo la shell di Unix,
€' quindi un linguaggio che puo' essere usato in modo interattivo, ma inefficiente dal punto di vista del calcolo.
Un programma Python puo' anche essere messo in un file, ed eseguito, come un'unica procedura; durante la
traduzione viene prodotto un "bytecode", ovvero una versione del programma semi compilata, posta in un file
con estensione "pyc". Se il programma viene eseguito una seconda volta, senza modifiche, si utilizza
direttamente il byptecode, con un vantaggio in termini di prestazioni.

Sintassi semplice.

La sintassi e' semplice, ci sono pochi construtti e non c'e' bisogno di dichiarare il tipo delle variabili. Non ci sono
puntatori, anche se tutte le variabili sono implementate con puntatori. Il Python si occupa di individuare il tipo di
ogni variabile quando viene definita, e fa conversioni automatiche quando occorre.

Orientato agli oggetti.

Il Python ha un modo semplice ma efficace di definire e trattare classi, e praticamente tutti i tipi di dati sono
oggetti. C'e' anche la possibilita’ di definire "moduli": insieme di funzioni Python predefinite, conservate in un file,
che possono essere riutilizzate, inserendole in programmi diversi, senza che ci sia confusione fra le variabili del
programma e quelle dei moduli stessi.

Strutture complesse gia' implementate.

Il Python comprende una implementazione di strutture complesse, di uso comune in programmazione, come:
liste, dizionari, tuple, stringhe. In Python queste sono trattate come tipi di dati e ci sono gia' funzioni per agire su
di esse, come funzioni di ordinamento, di ricerca etc.

Facile integrazione con altri linguaggi.

C'e' la possibilita' di usare Python per legare insieme componenti sviluppate con altri linguaggi, tipo Java, C o
C++. C'e' anche Jython, un compilatore che traduce un programma Python in un bytecode java.

Funzionalita' gia' pronte.

Python contiene una grande libreria di funzioni, inoltre si trovano in libera distribuzione moduli Python per fare
moltissime cose: interfaccia con database, grafica , networking etc.

Caratteristiche peculiari.

Python ha diverse caratteristiche peculiari, proprie dei linguaggi moderni; come un sistema di "garbage
collection”, per liberare memoria inutilizzata, ed il "dynamic typing", cioe' il fatto che il tipo degli oggetti e' definito
durante l'esecuzione del programma e non durante la compilazione. Questo permette di scrivere parti di
programma in modo indipendente dal tipo di dato che in esso verra' utilizzato (polimorfismo). Inoltre puo'
accedere alle strutture interne dei suoi oggetti; questa proprieta e' chiamata introspezione o reflection. Un
programma Python puo' anche modificare se stesso a run-time (metaprogramming).

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 8
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Uso

Uso

Python €' disponibile praticamente per tutte le architetture, ed incluso in tutte le distribuzioni di Linux. Si puo'
usare in modo interattivo o mettere istruzioni pyhton in file ed eseguirlo. Ci sono anche tool grafici per creare
programmi Python, come idle , oppure spyder

Esempio di Uso interattivo in Linux (dalla shell):

$ Pyt hon

>>> 342

5

>>> a=16

>>> a

16

>>> Cntrl /D per finire

Un file con un programma Python: file.py si esegue con:

$ Python file.py
$ Python3 file.py # per usare una versione specifica di Python

In Unix un file eseguibile con, nella prima linea: #!/usr/bin/python Puo' essere eseguito direttamente come un
comando.

Interfaccia grafica: idle

idle e' un'interfaccia grafica che rende disponibile una shell per eseguire programmi o singoli comandi, ed un
editor per scrivere file con programmi Python. Integra anche un debugger.

I
S Python Shell

File Edit Shell Debug Options Windows Help

Python 3.2.3 l(default, Feb 20 2013, 14:44:2T7)
[GCC 4.7.2] on linux?

Type "copyright", "credits" or
==x a=1.0

b . Provapy py -

x> o File Edit Format BRun Options Windows

"license ()" for more informe

ype (c) EI.=:-_,-2,-_":~,5]:

Woalm LAl B3O W WM W

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 9
Downloaded from http://www.helldragon.eu/

http://code.google.com/p/spyderlib/
https://wiki.Python.org/moin/IDLE
http://www.helldragon.eu/

Uso

Esistono anche altre interfacce dedicate a Python;

« "Ipython" e' una shell Python con diverse estensioni per l'interazione con il sistema operativo;

« "Ipython notebook" attiva un web server locale e permette di utilizzare l'interfacia del browser come shell
grafica per I'ambiente Python;

« "spyder" e' un'interfaccia grafica per analisi dati scientifici, con uso di moduli come munpy, matplotlib o
scipy.
La figura mostra l'uso di Spyder per un semplice grafico.

3 Spydar Editor

5This tesporary script file is located here:
g.-hnne.-‘-qallu apyder2/. teap. py

Gfron pump ;lr E"t *
5 fron matplotlib impart *
ﬁ!fr\ul satplotlib.pyplet import *

1ia=l

13 pu2

14 cagth

15print "C= "

16 wearray([l. 2,3 JI}

17 yearray ([10, 20, 550800
16 plotis.y)

15 show()

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 10
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Sintassi

Sintassi

Variabili

Python e' case sensitive

I nomi delle variabili iniziano con un carattere alfabetico e contengono caratteri, numeri o underscore: . Nomi

che iniziano con "_" hanno significati speciali, ed alcuni sono definiti dall'interprete.

Una linea che termina con il carattere: "\" continua nella successiva; espressioni fra parentesi possono occupare
piu' righe e linee vuote vengono ignorate. Piu' istruzioni possono stare sulla stessa riga, se separate da punto e

virgola ";

| commenti sono identificati dal carattere: "#", ed il commento va dal carattere a fine linea. Nell'ambiente Unix, se
si crea un file eseguibile e si mette: #!/usr/bin/python all'inizio del file, si segnala al sistema che il file va
eseguito come programma python.

Caratteri bianchi all'inizio di una riga sono utilizzati per definire blocchi logici del programma (vedremo poi
come).

Riferimenti ed oggetti

Python e' orientato alla programmazione ad oggetti, nel senso che tutti i tipi di variabili e tutte le entita’ su cui
Python opera sono,o si comportano, come oggetti.

I nomi delle variabili sono in realta’ riferimenti (reference) ad oggetti, cioe' sono implementati internamente come
indirizzi degli oggetti. Ridefinire una variabile significa assegnare il riferimento ad un nuovo oggetto, e lasciare il
vecchio oggetto con un riferimento in meno.

Gli oggetti ereditano tutti I'oggetto base "object", che ha , fra i suoi attributi, un tipo ed un "reference count": il
numero di riferimenti che puntano ad esso. Quando il "reference count” diventa zero, un sistema di garbage
collection automaticamente elimina l'oggetto. In caso di ereditarieta’ complicate puo' essere che un oggetto ,
nella gerarchia, abbia un riferimento a se stesso. Per questi casi ci sono algoritmi particolari per vedere quando
l'oggetto puo' essere eliminato.

Oggetti base in Python (fra cui numeri e caratteri), sono immutabili, nel senso che una volta creati non si
possono cambiare; le variabili sono riferimenti a questi oggetti, e maneggiare le variabili non tocca gli oggetti cui
si riferiscono. Salvo che quando un oggetto non ha piu’ riferimenti viene eliminato.

Oggetti mutabili sono oggetti composti, costruiti internamente con insiemi di riferimenti ad oggetti immutabili.
Questi si possono modificare a run-time.

Keywords

Python ha pochi comandi (keywords), che in Python 3 sono:

Fal se None True and as assert
br eak cl ass conti nue def del elif

el se except finally f or from gl obal

i f i mport in is | anbda nonl ocal
not or pass raise return try

whi | e with yield

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 11
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Tipi

Tipi

In Python ci sono alcuni tipi base, come interi, float, caratteri etc., ma ogni oggetto definisce implicitamente un
tipo di variabili. Alle variabili non e' assegnato un tipo a priori ed il tipo delle variabili non va dichiarato, come in
FORTRAN, C o Pascal, ma quando ad una variabile viene assegnato un oggetto viene definito anche il tipo
della variabile. Questo viene chiamato "run-time binding", "late binding" o "dynamic binding", e permette al
programma di essere scritto in modo indipendente dai tipi di variabili (polimorfismo). Ovviamente non si riescono
a fare operazioni che non sono ammesse per il tipo che la variabile rappresenta, ed il Python in questi casi da

errori, che possono essere rilevati sono all'esecuzione del programma, visto non c'e' una compilazione e
l'interprete ignora i tipi delle variabili e non fa controlli.

Python, se puo', effettua automaticamente la conversione fra tipi nelle operazioni numeriche.

Python ha anche tipi che sono sequenze; le sequenze sono insiemi di elementi ordinati, cui ci si puo' riferire
tramite indici interi. Gli indici partono da zero, analogamente a quanto accade in C, non da uno, come in
FORTRAN. Indici negativi partono dal fondo della sequenza. Gli indici sono rappresentati come numeri, o
variabili, fra parentesi quadre. Ad esempio: se la variabile 'a' rappresenta una sequenza, il suo primo elemento
sara': a[0], il suo secondo elemento a[1] e cosi' via.

| tipi di bayet SR con segno , (immutabili), possono avere un numero illimitato di cifre.

« se preceduti da 00 oppure 0o sono in notazione ottale
« se preceduti da Ox oppure 0X sono in notazione esadecimale
« se preceduti da Ob oppure 0B sono binari

Esempi:

7 ; 2147483647 ; 00177
79228162514264337593543950336

oct(x) visualizza il numero x in ottale,

; 0b100110111 ; Oxdeadbeef

hex(x) in esadecimale
bin(x) in binario
« float : numeri reali, in doppia precisione, (immutabili),
I'esponente e' preceduto dalla lettera E on e e segue la parte frazionaria.
Esempi:
3.14;10.;.001 ; 1e100 ; 3.14e-10 ; OeO
e complessi : sono somma di reale e di immaginario (immutabili),
la parte immaginaria e' seguito da j oppure J
Esempi:
1+3.14j; 10.j ; 1.e2+10j ; 0+.001j ; 1e100j ; 3+3.14e-10j
» decimali e frazionari :

sono tipi numerici supportati dalla libreria standard, ove sono create le classi relative. | decimali
hanno un numero fisso di cifre decimali, i frazionari sono frazioni, usati per rappresentare senza
approssimazione i numeri razionali.

* bool : booleani,

possono essere veri 0 falsi; assumono uno dei 2 valori: True, False. Il numero 0 e' considerato
falso, altri numeri sono considerati veri, una stringa definita e' vera, un oggetto vuoto e’ falso,

* None : €' una variabile speciale che indica I'assenza di un valore.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 12
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Tipi
E' usata specialmente per stringhe ed €' il tipo: "NoneType"; la variabile None e' considerata falsa.

« str : stringhe

sono sequenze di di caratteri (immutabili). Sono in codifica unicode in Python3, in codifica ascii in
Python 2. Le stringhe, intese come sequenze di caratteri, permettono di accedere a singoli
caratteri tramite un indice intero. Le stringhe sono rappresentate con caratteri fra apici doppi o
semplici.

Esempi:
"abcd" ; '123AAQH"
* bytes : sequenze di interi, nel range 0-255, (immutabili).

Esistono solo in Python3, ma non in Python2. Siccome le stringhe in Python3 sono in codifica
Unicode non sono piu' uno strumento adatto a trattare piccoli interi, per questo €' stato introdotto
questo tipo di dati.

 byte array : e' un tipo analogo al tipo byte, ma mutabile
« list : sono sequenze di oggetti eterogenei (mutabili).

Sono rappresentate come elementi separati da virgole, racchiusi fra parentesi quadre. Le liste
possono contenere ogni tipo di oggetto, liste comprese.

Esempi:
[0,1,2,3,4] ; [1,2,'abc/,12.5E3] ; [0,1,2,['a",'b",'c],32.4]
« tuple : sono sequenze di oggetti eterogenei immutabili.

Sono analoghe alle liste, ma sono rappresentate con valori racchiusi fra parentesi tonde. Le tuple
possono contenere liste, che sono mutabili, la lista nella tupla puo' mutare, ma non essere tolta
dalla tupla, che e' immutabile.

Esempi:
(0,1,2,3,4) ; (1,2,'abc/,12.5E3) ; (0,1,2,('a','b','c"),32.4)
« dict : dizionari, od array associativi.

Sono insiemi i cui elementi non hanno come indice un numero, ma sono individuati da un oggetto,
detto chiave (key). Gli elementi di un dizionario non hanno un ordine definito, come le sequenze.
Anche i dizionari contengono oggetti eterogenei, ma le chiavi devono essere oggetti immutabili;
siccome internamente i dizionari sono rappresentati come "hash tables" le chiavi devono essere
oggetti "hashable", cioe' adatti ad essere trasformati in indirizzi dagli algoritmi interni di Python.

| dizionari sono rappresentati come coppie "chiave:valore", con elementi separati da virgole e fra
parentesi graffe. Un elemento del dizionario €' individuato dalla chiave, messa fra parentesi
quadre dopo la variabile che si riferisce al dizionario

Esempio:
D={'keyl"3,'key2".6,1:'abc"}
qui D['key1'] si riferisce al numero 3, D[1] alla stringa 'abc’
* set : insiemi.

Sono gli insiemi della matematica insiemistica. Sono composti di oggetti non sono ordinati che
non sono recuperabili con un indice; su di loro si possono fare operazioni come: unione,
intersezione, differenza etc. etc.

Sono oggetti mutabili, ma che contengono oggetti immutabili ed in un unica copia. Sono
rappresentati da elementi fra parentesi graffe, separati da virgole.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 13
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Docstring:

Esempio:
a={1,2,3,'cc',1,2}
a contiene: {'cc', 1, 2, 3} : non ci sono oggetti multipli
« frozenset : sono come i set, ma immutabili.
Si possono creare da una lista, tupla o dizionario, con la funzione frozenset.
Esempio:
a=frozenset([1,2,3])
* range : sono sequenze di interi.

Sono create con la funzione range, che ha come argomenti il primo, 'ultimo valore (escluso) ed il
passo della sequenza.

Esempio:
range(2) e' la sequenza: 0,1
range(2,4) e' la sequenza 2,4

range(1,5,2) e' la sequenza 1,3

Stringhe, liste, tuple, range, sono sequenze. Le sequenze, ma anche i dizionari e gli insiemi sono detti iterable ,
sono cioe' oggetti i cui elementi si possono estrarre uno per volta, scorrendo sulle componenti dell'oggetto.
Questo perche' sono oggetti che implementano tutte le funzioni per fare questo. Questo modo di classificare gl
oggetti in base alla loro interfaccia e' chiamato "duck typing": qui e' il comportamento di un oggetto definisce il
suo tipo. E' un concetto che si ritrova nei moderni linguaggi interpretati; una specie di polimorfismo, ma questa e’
un'idea ancora piu’ generale e l'interfaccia stessa diventa la definizione del tipo di dato.

In python 2 c'era il tipo long per interi a molte cifre ed int era limitato ad interi a 32 bit. Un numero che finiva con
un "L" era long anche se era definito con poche cifre. Con python3 gli interi possono sempre avere molte cifre
ed il tipo 'long’ €' scomparso.

La funzione type(oggetto) dice di che tipo e' I'oggetto, la funzione isistance e' un test sul tipo:
Esempio:
type([]) produce: <class 'list'>

isinstance([], list) produce: True

Docstring:

All'inizio del file, o di una funzione o classe, e' buona pratica mettere una stringa descrittiva, anche su piu' linee.
Questa finisce nella variabile __doc__ dell'oggetto o della funzione e serve da documentazione, E' mostrata
dalla funzione help con I'oggetto come argomento. Questa stringa descrittiva si chiama "docstring".

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 14
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Operatori

Operatori

In Python ci sono tutti gli operatori cui linguaggi come il C o Java ci hanno abituati, come in C, indici fra
parentesi quadre si usano per accedere a singoli elementi di sequenze. Si possono pero' usare gli indici anche
per estrarre sezioni delle sequenze (slicing). Le parentesi quadre sono a tutti gli effetti operatori, e, quando si
creano classi,se ne puo' fare l'override. Alcuni operatori usati per i numeri sono ridefiniti per le sequenze, in
modo da fare, su queste, operazioni particolari. Le stringhe hanno un operatore di formattazione, che si
comporta in modo analogo alla funzione printf del C.

Operatori aritmetici

In Python 3 la divisione fra 2 interi fornisce un numero float. In Python 2 invece forniva un intero, troncando il
risultato; in Python 3, per avere un risultato troncato, si usa l'operatore di divisione intera: '//' , sia su interi che
float.

Operazioni fra interi danno interi, se uno dei 2 operandi e' un float viene prodotto un float; Python in questi casi
fa conversioni automatiche.

Funzione

Operatore

Esempi

*%k

Elevamento a potenza

a**3 ; anche funzione pow(x,y)

* Moltiplicazione a*b;3*2=>6

/ Divisione a/lb;5/2=>25

1 Divisione intera al/lb; 5/2.0=>1.0
% Resto a%b ;5/2.=>1.0
+ Addizione atb;2+5=>7

- Sottrazione a-b;2-5=>-3

Operatori bit a bit

Questi operatori agiscono sui numeri seguendo una logica binaria e cambiano i singoli bit delle variabili. Questi
operatori sono definiti per interi con segno o booleani. Per come sono rappresentati i numeri negativi
(complemento a 2) l'operatore '~' cambia segno agli interi e sottrae 1. Il complemento a 2 ha infatti i humeri
negativi con il primo bit a sinistra che vale 1, ed ottiene numeri negativi invertendo i bit e sommando 1.

Operatore Funzione Esempi
<< shift a sinistra a<<1 ; 8<<1 fornisce 16
>> shift a destra a>>1; 8>>1 fornisce 4
& or sui bit a&b ; 2&1 fornisce 0
| and sui bit alb ; 2|1 fornisce 3
A or esclusivo a’b ; 273 fornisce 1
~ inverte i bit ~a ; ~0 fornisce -1

Operatori di assegnazione

In Python ci sono diversi operatori di assegnazione; ogni operazione numerica puo' essere combinata con una
assegnazione, per modificare una variabile e riassegnarla a se stessa.

Operatore

Funzione

Esempi

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 15
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Operatori logici

= assegna riferimento a=3

= moltiplica ed assegna a=3 ; equivale ad a=a*3

/= divide ed assegna a/=3 ; equivale ad a=a/3

+= somma ed assegna a+=3 ; equivale ad a=a+3
-= sottrae ed assegna a-=3 ; equivale ad a=a-3

/= divisione intera ed assegna a/l=3 ; equivale ad a=a//3
%= resto ed assegna a%=3 ; equivale ad a=a%3
*x= potenza e assegna a**=3;equivale ad a=a**3
&= or bitwise ed assegna a&=1; equivale ad a=a&1
|= and bitwise ed assegna al=1; equivale ad a=a|l

A= not bitwise ed assegna a’=3; equivale ad a="a
>>= bit right shift ed assegna a>>=3 ; equivale ad a=a>>3
<<= bit left shift ed assegna a<<=3; equivale ad a=a<<3

L'assegnazione si comporta in modo diverso per oggetti mutabili e non mutabili; a=3 crea un oggetto immutabile
"3" ed una reference "a", che punta ad esso; se riassegno la reference: a=3 ; b=a ; a=4 , Python, dopo aver
creato una nuova reference "b" a "3", crea l'oggetto "4" e riassegna la reference "a" all'oggetto "4". Il valore di "b"
continua a valere 3. Se invece ho un oggetto mutabile, come una lista, nell'istruzione: a=[3] ; b=a ; a=[4] , la
riassegnazione: b=a crea una reference "b", che punta anche lei a [3]. La lista €' unica, se la modifico tramite il
riferimento a (a=[4]) vedo maodificato anche b.

In Python si possono fare assegnazioni multiple, ma il numero di oggetti a sinistra e destra deve essere lo
stesso:

Operazione Commento
ab=Dba scambio dei valoridia e b
a,b,c=1,2,3 assegna i numeri, in sequenza alle 3 variabili
a=1,2,3 a diventa una tupla di 3 oggetti
c,d,e=a funziona se a e' una tupla o lista di 3 oggetti
a,b=1 provoca errore
a=b=3 sia a che b sono riferimenti all'oggetto '3'

In python 3 si possono fare assegnazioni multiple, di parti di un oggetto mettendo il resto in una lista:

a,*b=1,2,3,4 #1in b finisce la lista [2, 3, 4]

a,*b, ¢ =1,2,3,4 #1in b finisce lalista[2,3] , 4vainc
Operatori logici
Restituiscono uno degli argomenti.
Operatore Significato Esempio
or or logico X ory
and and logico x andy

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 16

Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Operatori logici per i confronti.

not negazione not x

L'operatore "not" restituisce True o False a seconda di x .

Gli operatori "not" ed "or" restituiscono uno degli argomenti non, semplicemente, False o True.

X or vy Vale x se x e True, altrinmenti valuta y e restituiscey
x and y Vale x se x e False, altrinmenti valuta y e restituisce y
X or yor z restituisce il prinb vero (o |'ultinp)
x and y and z restituisce il prinp falso (o |"'ultinp)

Operatori logici per i confronti.

Restituiscono : True o False

Operatore Funzione Esempi
> maggiore a>b
< minore a<b
<= minore od eguale a<=b
>= maggiore od eguale a>=b
== eguale a==
I= diverso b!l=b

Si puo' controllare se una variabile €' in un intervallo con la sintassi compatta del tipo: 1 <a < 3

In Python 2 c'era anche I'operatore "<>" con lo stesso significato di "I="

Operatori logici per I'appartenenza

L'operatore "in" restituisce True o False a seconda che un oggetto faccia parte di una sequenza, dizionario o
set, I'operatore "is" controlla se due riferimenti puntano allo stesso oggetto.

Operatore Funzione Esempi
in Vero se x compare in s xins
not in vero se x hon compare in s xnotins
is vero se x ed y sono lo stesso oggetto Xisy
is not Vero se non sono lo stesso oggetto X is noty
Separatori

Questi separatori li abbiamo gia' visti nella descrizione della sintassi di Python. Alcuni si comportano come veri e
propri operatori, ad esempio '[]' per gli indici delle sequenze oppure '()' per le chiamate a funzioni.

separatore Funzione
() racchiudono elementi di una tupla, chiama funzione
[1 racchiudono elementi di una lista, indici di sequenze
{1} racchiudono elementi di un dizionario o set

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 17
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Conversioni fra tipi

; separano istruzioni sulla stessa linea

trasformano una variabile in una stringa (solo Python 2)

racchiudono stringhe (anche contenenti apici singoli)

racchiudono stringhe (anche contenenti apici doppi)

Conversioni fra tipi

Queste funzioni effettuano conversioni fra diversi tipi di variabili, o effettuano operazioni particolari, non sono
proprio operatori, ma le elenco qui per completezza.

Operatore Funzione Esempi
abs(x) Valore assoluto abs(-3) produce: 3
divmod(x,y) divisione e resto divmod(5,2) produce: (2, 1)
int(x) muta in intero int('3"), int(3.2) producono : 3
float(x) muta in float a='3'; float(a) produce: 3.0
complex(r,i) crea numero complesso complex(3,2) produce: (3+2j)
c.conjugate() complesso coniugato (3+2j).conjugate() da: (3-2j)
round(x,n) arrotonda, a n decimali round(3.12345,2) da: 3.12
bin(x) rappresentazione binaria bin(2) da: '0b10’
oct(x) rappresentazione ottale oct(8) da: '0010
hex(x) rappresentazione esadecimale hex(16) da: '0x10'
str(x) muta in stringa str(2.345) da: 2.345
repr(x) rappresenta oggetto come stringa in python 2 anche: “oggetto

Molte altre funzioni che operano sui numeri sono nel pacchetto "math", dedicato alle funzioni matematiche, ad
esempio:

mat h.trunc(x) : tronca ad interi
mat h. fl oor(x) : approssinma all'intero piu' piccolo
math.ceil (x) : approssima all'intero piu grande

Operazioni per sequenze

Sono sequenze, e quindi con elementi identificati da indice intero fra parentesi quadre, le liste, le tuple, i byte, i
bytearray. Alle sequenze si applicano gli operatori della tabella seguente. Alcuni operatori, come +, assumono
significato particolare se applicati a sequenze (si dice che per le classi delle sequenze si fa I'overloading
dell'operatore).

Le operazioni che ottengono sottoinsiemi di sequenze sono dette di 'slicing’, in italiano €' si trova l'orribile
traduzione ‘'affettamento’ ; ma 'sottosequenza’ o 'sezione della sequenza' sarebbe una traduzione piu' decente.
Indici negativi partono dal fondo della sequenza. Vedremo meglio le sequenze quando si tratteranno le stringhe
e le liste.

Operatore Funzione Esempi
in Vero se x compare in s Xins
not in Vero se X hon compare in s Xxnotins

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 18
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Operazioni per sequenze mutabili

S+t concatena sequenze [1,2]+[4,5] da:[1,2,4,5]
s*n ripete la sequenza [1,2]*3 da: [1,2,1,2,1,2]
s[i] elemento numero i

s[i:j] elementi daiaj, j escluso

s[i;j:K] daiajcon passok

len(s) numero elementi nella sequenza

min(s) minimo elemento nella sequenza

max(s) massimo elemento nella sequenza

s.count(x) conta quante volte x e' nella sequenza

s.index(x,i,) posizione di x nella sequenza, cercando fra posizionii e |

map(f,s) applica la funzione f alla sequenza producendo una lista

Operazioni per sequenze mutabili

Le liste ed i bytearray, come sequenze mutabili hanno anche tutte le operazioni per fare modifiche alla sequenza

Operazione Effetto
s[i] = x modifica elemento i della sequenza
s[iz] =t modifica elementi da i a j (j escluso)
del s[i:j:k] elimina elementi, gli indici dei restanti elementi cambiano
s.append(x) aggiunge elemento in fondo, come: s[len(s):len(s)] =t
s.clear() come del s[:] , svuota la sequenza
ss=s.copy() fa una copia della sequenza s
s.insert(i, x) come sJi:i]=[x], gli elementi seguenti cambiano di indice
s.pop(i) estrae l'elemento i e lo elimina, pop() estrae 'ultimo

s.remove(x)

elimina il primo elemento di valore x che trova

s.reverse()

ribalta la sequenza

s.sort()

ordina la sequenza, modificandola

Operatore di formattazione per le stringhe: %

Python3 ha anche la funzione ‘format’, che lavora in modo analogo, ma ha sintassi un po' diversa.

La sintassi dell'operatore e":

"stringa di

La stringa di formattazione contiene dei "placeholder”, simboli che vengono sostituiti dai valori della tupla,
nell'ordine. Questi "placeholder" iniziano con il carattere: % ed indicano il formato con cui il valore viene

rappresentato

formattazi one’ % (tupla di valori)

Nella tabella alcuni esempi di questi "placeholders”

Rappresentazione valore

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 19

Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Precedenza degli operatori

%s come stringa (usa funzione str())

%r come stringa (usa funzione repr()

%10s stringa, occupa minimo 10 spazi

%-10s 10 spazi, ma allineato a sinistra

%cC singolo carattere

%5.1f float in 5 spazi, una cifra decimale

%5d decimale, in 5 spazi

%i intero

%08i intero, in 8 spazi, ma spazi iniziali con degli zeri
Esempi:

a="% Y% % 2f' % (42,'stringa',1l/3.0) produce: '42 stringa 0.33'
a='2%d0d % 10s' % 12. 3,"' AAA') produce: 12 AAA '

In Python 3 c'e' anche la funzione "format", e si voleva eliminare I'operatore "%" . Qui gli identificatori per la
formattazione sono fra graffe, il primo numero €' il numero dellargomento della funzione, il secondo specifica il
formato. Ecco alcuni esempi di uso della funzione format:

"{0:.2f}" .format (1. 3333)) produce: '1.33
format (1.3333, '.2f") produce: '1.33
‘{page}: {book}'.format(page=2, book='PR5E) produce: '2: PR5E

"{0:10} = {1:10}' .format (' spam, 123.4567) produce: 'spam 123. 4567

Precedenza degli operatori

La precedenza degli operatori €' nella lista seguente: da quelli con precedenza maggiore a quelli con
precedenza minore:

creazione dizionari: { }

creazione liste []

creazione tuple() ,

funzioni , slicing, indic
riferimenti ad attributi di oggett
esponente: **

operatori "unary" : +X, -X , ~X
operatori nunerici: [/]l %* - +
operatori sui bit: << >> & " |
operatori logici: == = <> < <= > >=
Qperatori di appartenenza: is in

operatori logici: not and or
gener azi one funzioni |anbda (che vedrenp dopo)

Funzioni per help

Nell'uso interattivo possono essere utili le funzioni dir ed help. La funzione dir: dir(oggetto) mostra gli operatori
ed i membri dell'oggetto. La funzione help: help(oggetto.funzione) mostra cosa fa una funzione, in pratica
stampa il suo docstring. La funzione vars(oggetto) mostra il dizionario delle variabili definite in un oggetto.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 20
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Istruzioni

Istruzioni

Istruzione print

L'istruzione print non esiste in Python 3. In Python 2 print era un'istruzione, con Python3 diventa la funzione
print().

La funzione print accetta un numero variabile di argomenti di tipo diverso e li stampa, usando, per la
rappresentazione testuale degli oggetti, la funzione str() degli oggetti stessi.

Print ha anche argomenti opzionali con valori di default, che specificano il file su cui si stampa, il separatore fra
gli oggetti stampati, ed il carattere da mettere alla fine della stampa. Di default usa uno spazio per separare gli
argomenti, 'n' (il carattere di fine linea) a fine stampa e come file si usa l'output standard del sistema. La sintassi
completa per stampare 3 oggetti a,b,c sarebbe quindi:

print(a,b,c,sep="",end="n',file=sys.stdout)

La sintassi degli argomenti per le chiamate a funzioni verra' ad ogni modo spiegata in modo dettagliato piu’
avanti.

Assegnazione

Abbiamo gia' visto l'istruzione di assegnazione, che crea un oggetto e gli assegna una variabile, che e' un
riferimento all'oggetto.

Esempi:

Blocchi logici

Python segue i principi della programmazione strutturata, quindi istruzioni cicliche ed istruzioni condizionali
eseguono blocchi logici ben individuati ed un'istruzione "goto" di salto incondizionato non esiste.

I blocchi logico in Python sono identificati con indentazione (rientro): tutte le istruzioni del blocco hanno davanti
lo stesso numero di spazi, ed il blocco finisce quando l'indentazione del blocco cessa.

I blocchi dentro altri blocchi (nested o annidati) hanno ulteriore indentazione rispetto al blocco che li contiene. Si
consiglia di usare spazi bianchi e non tabulazione, visto che gli spazi rappresentati dal tasto di tabulazione
possono essere diversi a seconda dei computer e dei programmi usati.

Esecuzione condizionale

Il costrutto: "if.. then .. else" che ritroviamo in tutti i linguaggi: se la prima condizione e' vera (quella che segue
I'if) allora e' eseguito il primo blocco, altrimenti si prosegue alla condizione successiva; se nessuna e' vera viene
eseguita la condizione che segue l'istruzione "else". Le clausole "elif" ed "else" sono opzionali

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 21
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Istruzione with

| blocchi sono delimitati dall'indentazione ed iniziano con due punti ":"

if a==b:
c=d
e=f

elif a>b:
c=f
e=d

el se:
c=0
e=0

Nell'esempio successivo abbiamo un caso di clausole if annidate (nested if). In Python bisogna sempre fare
molta attenzione ai rientri. Altri linguaggi usano le parentesi, che sono una scelta piu' comune e meno soggetta
ad errori.

i f a==b:
c=d
if e==f:
k=0
el se:
k=1
elif a>b:
c=f
e=d
el se:
c=0
e=0

Se c'e' una sola istruzione la si puo' mettere nella stessa linea della condizione:

if a==b: k=0

Istruzione with

L'istruzione with €' inserita con Python 3, ma esiste anche in Python 2.6; e' un modo di definire un oggetto locale
ad un blocco e di gestire eccezioni relative all'oggetto. La sintassi e':

with espressione as variabile:

L'espressione produce un oggetto, che deve implementare il "context manager protocol"; ovvero ha funzioni:
" enter__(self)" ed " _exit_ (self,type,valuetraceback)" ,che sono chiamate alla creazione e distruzione
dell'oggetto. Servono per gestire un blocco che €' il contesto in cui I'oggetto e' valido ed eventualmente errori

(eccezioni) nel blocco che segue listruzione "with".
La variabile e' un riferimento all'oggetto; il riferimento e' valido nel blocco che segue, dopo viene eliminato,
assieme all'oggetto. Un esempio classico €' la chiusura automatica di un file:

with open("x.txt") as f:
data = f.read()

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 22
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Istruzioni cicliche

L'open restituisce un riferimento ad un oggetto file: "f" creato dalla funzione: "open" . Questo, all'apertura del file,
esegue una sua funzione " __enter__ " . A fine blocco f non e' piu' definito ed il garbage collector di python
interviene. L'oggetto file, al momento della sua eliminazione, chiude il file, con __exit__.

Se in apertura del file, ci sono errori "__exit__" li gestisce ed in questo caso "f" non e’ assegnato ed il blocco non
e' eseqguito. "__exit__ " e' chiamata anche per errori nel blocco che segue l'istruzione "with".

Oltre che per files questo sistema e' usato anche per gestire threads, locks etc. Dal python 3.1 ci sono anche i
context manager multipli, con una istruzione with tipo:

with A() as a, B() as b:
...Statenents...

Che €' poi equivalente a:

with A() as a:
with B() as b:
...statenents. ..

Istruzioni cicliche

L'istruzione ciclica di Python €' il ciclo "while", che esegue un blocco finche' la condizione e' vera. La condizione
e' testata all'inizio del blocco. Alla fine del blocco, in ogni caso, viene eseguito il blocco alla istruzione "else".
Anche le istruzioni "while" possono essere annidate:

whi l e x:
i +=1
x-=1

el se:
y=i

guesta incrementa i e cala x di uno, fino a che x e' zero (falso) quando questo accade il ciclo termina e viene
eseguita l'istruzione all'else

Entro un ciclo ci sono istruzioni particolari che alterano la sequenza:

br eak interronpe il ciclo
conti nue passa al giro successivo
pass non fa nulla , ad esenpio:

while 1l:pass # e wun loop infinito
Se, nel blocco del while, viene eseguita una istruzione break si esce dal ciclo senza eseguire il blocco all'else

Iterabili ed iteratori
Anche qui abbiamo istruzioni cicliche, ma con una logica diversa.

Liste, dizionari, tuple, sets hanno la caratteristica di essere "iterabili" (iterable). Un insieme di oggetti e' iterabile
se, su di esso, si puo' definire un oggetto che, in sequenza, assume un diverso valore fra quelli dell'insieme.
Questo oggetto che "itera" sulla sequenza €' detto "iteratore".

Un iteratore funziona anche su oggetti complessi ed eterogenei, a differenza di un indice intero, o di un indirizzo,
che puo' essere usato in un ciclo solo per descrivere una sequenza di oggetti tutti delle stesse dimensioni.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 23
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

List comprehensions

L'istruzione che crea un iteratore e cicla su tutti gli elementi di un insieme €' l'istruzione "for".

for i in[1,2,3,4]:
k+=i

el se:
print('fine")

Il riferimento "i" assume, in sequenza, i valori della lista, e per ogni valore che "i* assume si esegue il blocco che
segue listruzione "if". A fine blocco viene eseguito il blocco della istruzione "else”, a meno che un'istruzione
break non interrompa il ciclo.

Un ciclo for su un dizionario restituisce le chiavi, nell'esempio che segue viene stampato 'a’, poi 'b', infine 'c’
D={'a':0,"'b':1,"'c':3}
for i in D
print(i)

Per iterare su una coppia (chiave, valore) di un dizionario bisogna utilizzare una tupla:

for (key, value) in D.itens():
print(key, '=>'", value)

Nel caso seguente iteriamo su una tupla ed usiamo una tupla come iteratore:

T=10[(1, 2), (3, 4), (5 6)]
for (a, b) inT:
print(a, b)

Per avere un ciclo su numeri interi, come in FORTRAN o C, si utilizza la funzione "range”, oppure la funzione
"enumerate":

for i in range(3): # produce | a sequenza: 0,1,2
print(i)

for i,ain enunerate(['a','b' ,'c']):
k[i]=a

"enumerate” restituisce una tupla (numero crescente, elemento dell'enumerable) nello specifico si assegnano

valori sia ad "i" che ad "a" ; ai diversi giri abbiamo per la tupla con "i" ed "a":
(1a); (2,0 ; (3,'c)

List comprehensions

Sono cicli che assegnano una serie di valori ad una lista, opzionalmente i valori possono essere filtrati da una
condizione "if"

[x for x in range(5) if X % 2 == 0]
produce una lista con i numeri pari fino a 5: [0, 2, 4]
Si possono avere cicli annidati:

[x +y for x in range(3) for y in [10, 20, 30]]

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 24
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Funzioni per iterabili

QuixvadaOa 3, e, perognix,yvada 10 a 30 ed abbiamo la lista;
[10, 20, 30, 11, 21, 31, 12, 22, 32]

Questo sistema puo' anche essere usato per creare dizionari, usando la funzione zip, che unisce a 2 a 2, in
tuple, gli elementi di due sequenze:

Esempi:

D={k: v for (k, v) inzip(['a, 'b", 'c'], [1, 2, 3])}

pr oduce: {"b': 2, 'c: 3 'a: 1}

D={x: x** 2for xin[1l 2, 3, 4]}

pr oduce: {1: 1, 2: 4, 3: 9, 4. 16}

D={c: ¢c* 4 for cin'SPAM}

produce: {'S: 'SSSS, 'P: 'PPPP, 'A: 'AAAA', 'M: ' MVW }
Si possono anche inserire operazioni in una comprehension:

D = {c.lower(): c + "' for ¢ in [SPAM', 'EGGS', 'HAM']}
produce: {'eggs": 'EGGS!', 'spam': 'SPAM!', 'ham'. 'HAM!"}

Funzioni per iterabili

Ci sono diverse funzioni, che fanno parte del linguaggio Python (funzioni builtin), utili per lavorare con iterabili.
La funzione list crea un lista, a partire da una serie di valori, 0 da un iterabile.

La funzione dict produce un dizionario, a partire da una sequenza di tuple di 2 elementi: (chiave,valore).

La funzione range genera una sequenza di interi, il primo argomento e' il primo valore, il secondo l'ultimo
(escluso), il terzo €' il passo.

La funzione map applica una funzione ad un iterabile

La funzione zip unisce a 2 a 2 due iterabili:
Z = zip((1, 2, 3), (10, 20, 30))

list(z) vale: [(1, 10), (2, 20), (3, 30)]
dict(2) vale: {1. 10, 2: 20, 3: 30}
tuple(z) vale: ((1, 10), (2, 20), (3, 30))

La funzione filter applica ad un iterabile una funzione logica elemento per elemento e tiene solo gli elementi per
cui la funzione €' True:

list(filter((lambda x: x>0),[1,2,3,-1])) produce [1, 2, 3]

"lambda" e' un modo di definire una funzione in un unica istruzione, come vedremo dopo.
La funzione iter crea un iteratore per un iterable:

R=[1, 2, 3]
I=iter(R)

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 25
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Funzioni exec ed eval

next (1)

"next" alle chiamate successive produce: 1,2, 3 se lo si chiama ancora, dopo che e' arrivato a 3, da errore

Negli esempi della tabella che segue 's' indica un iterabile.

Funzione Effetto
all(s) True se tutti gli elementi sono veri
any(s) True se qualche elemento e' vero
list(1,2,3) produce la lista [1,2,3]
list(range(3)) produce la lista [0,1,2]
list(range(2,10,2)) produce: [2, 4, 6, 8]
list(map(abs,[-1,0,2])) produce: [1, 0, 2]
tuple(map(abs,[-1,0,2])) produce: (1, 0, 2)

Funzioni exec ed eval

La funzione "exec" permette di eseguire una stringa come istruzione Python:
exec('e=3") # e , che non era definito, diventa 3

La funzione "eval" valuta un'espessione Python, quelle che possono stare a destra di una assegnazione, e ne
ritorna il risultato:

eval ('abs(-3)+2') # produce il valore 5

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 26
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Le Stringhe

Le Stringhe

In Python le stringhe sono sequenze di caratteri, in codifica Unicode UTF-8, che , una volta definite, non
possono essere modificate. Tutto quello che abbiamo visto per le sequenze si applica anche alle stringhe; in
guesta parte riassumiamo e completiamo le informazioni sulle stringhe.

Nel codice Python le stringhe sono rappresentate come una sequenza di caratteri fra apici. Possono essere
utilizzati indifferentemente apici singoli, oppure il doppio apice. Se una stringa e' delimitata da apici singoli puo'
contenere doppi apici e viceversa, ad esempio sono stringhe valide:

' 12345" 6789
"12345' 6789"

Una stringa puo' essere vuota; una stringa vuota e' definita da:
a='"

Una stringa puo' essere composta da piu’ linee, se delimitata da tre apici o tre doppi apici, esempio:

guesta stringa
continua in questa riga

altra stringa nultilinea
anche questa linea fa parte della stringa

Stringhe una dietro I'altra sono concatenate, anche se sono separate da spazi:

a='abcd' 'efg'
a== "abcdef g"

Entro le stringhe hanno significato particolare alcune sequenze precedute da backslash : "\" Alcune di queste
sono un residuo delle codifiche che venivano utilizzate il controllo del carrello per le stampanti a modulo
continuo, altre sono usate per inserire valori in diverse codifiche.

La decodifica di questi caratteri speciali non avviene nelle stringhe "raw", che sono indicate dalla lettera r prima
della stringa, ad esempio:

a=r"12n4g"
Alcuni di queste sequenze speciali sono:
\\: e' il carattere "\" (Backslash)
\' : apice singolo
\" : doppio apice "
\a : €' un suono di allarme (ASCII Bell (BEL))
\b : indica indietro un carattere (ASCII Backspace (BS))
\f : indica che si va a capo (ASCIlI Formfeed (FF))

\n : indica che si va a capo (ASCII Linefeed (LF))
\r : indica che si va a capo (ASCII Carriage Return (CR))

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 27
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Sottostringhe

\t : tabulazione orizzontale (ASCII Horizontal Tab (TAB))

\v : tabulazione verticale (ASCII Vertical Tab (VT))

\xhh : carattere in notazione esadecimale (hh sono le cifre esadecimali)
\ooo : carattere in notazione ottale (ooo sono le cifre ottali)

\O : carattere nullo

Per specificare la codifica unicode si possono usare le notazioni:
\UXXXX : ove xxxx sono cifre esadecimali

\UXXXXXXXX : OVe XXXXXXXX Sono cifre esadecimali

\N{name} : nome unicode del carattere

In Python 2 i caratteri fra apici rappresentavano stringhe in codifica ASCII, e per usare codifica Unicode si
doveva usare la lettera u od U avanti alla stringa: a=u"asd!" . Questo non €' piu' necessario in Python 3 perche’
di default la codifica e' UTF-8.

Una notazione simile a quella usata per le stringhe puo' essere usata per definire sequenze di byte. Per farlo,
davanti alla stringa si mette il carattere "b" ; ad esempio per creare sequenza di bytes ed assegnarle il
riferimento "a"

a=b' abcd'

Ci sono diversi caratteri che indicano che si va a capo, quello che si usa in Unix (e Linux) e': \n, il DOS non usa
gli stessi caratteri di Unix per indicare la fine di una linea. \r \f \t \v sono comandi che servivano a controllare il
carrello nelle stampanti a modulo continuo.

Sottostringhe

Ai singoli caratteri di una stringa od a sottostringhe si puo' accedere facilmente, utilizzando un indice, fra
parentesi quadre. Il primo carattere di una stringa ha l'indice 0. Indici negativi indicano che si inizia a contare da
fine linea: -1 e' I'ultimo elemento. Sottostringhe sono individuate da coppie di indici separate da :, il primo valore
della coppia €' l'indice del primo carattere che si estrae, vengono estratti caratteri fino al secondo indice
(escluso), quindi ad esempio 0:3 indica caratteri nelle posizioni: 0,1,2, il carattere in posizione 3 non viene
estratto. Se manca il primo indice si inizia dal primo carattere, se manca il secondo si arriva a fine stringa. Un
terzo valore, opzionale, indica il passo con cui si estraggono i caratteri; ad esempio un passo 2 estrae un
carattere si ed uno no. Se il terzo valore manca si intende sia 1 e vengono estratti tutti gli elementi fra gli indici
indicati. Passi negativi vanno all'indietro, nella sequenza dei caratteri, questo modo di estrarre elementi (slicing),
vale per tutte le sequenze, non solo per le stringhe.

Esempi:
a=' 0123456'
a[0] vale 'O
al 1] vale "1
al - 1] vale '6'
al - 2] vale '5’

a[:] a[0:] sono tutta la stringa

al: 0] e' |la stringa vuota
al: 3] val e ' 012’
al 3:] val e ' 3456’

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 28
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Operazioni su stringhe

al 0: 2] vale: '01'
al 1: 3] vale: '12'
al:-1] val e: '012345'

al-3:-1] val e: '45'
al-1:-3] vale '' (la stringa vuota)

al::-1] val e '6543210' (ribalta la stringa)
al 0: 5: 2] val e ' 024' (da 0 a 5, passo 2)

a[1::2] vale: "135" |, si va dall'elenmento 1 alla fine della stringa
prendendo un el enmento si ed uno no.

a[1::3] vale: '14' si prende un el enento ogni 3.

a[-1:-5:-2] vale '64' : passo negativo va all'indietro.

a[-1:-3:1] vale '' :la stringa vuota: il passo e' +1 e' in avanti.
e' cone: a[-1:-3]

Una stringa puo' facilmente essere separata in caratteri, con una assegnazione del tipo:
f1,f2,f3="abc'

f1,f2 ed f3 assunpno i valori dei caratteri 'a', 'b', 'c'

Operazioni su stringhe

L'operatore "+" concatena le stringhe; I'operatore "*" ripete una stringa un certo numero di volte:

Esempi:
a=' 0123456'
b=' abcdef g¢'

atb e' la stringa: '0123456abcdefg'
b*2 e' la stringa: 'abcdefgabcdefg'

L'operatore "in" da risultato: True se una sottostringa €' compresa in una stringa:
Esempi:
0" in a val e: True

'01' in a val e: True
'09'" in a val e: Fal se

In una istruzione for su una stringa la variabile assume i valori dei caratteri della stringa. Ad esempio,
I'espressione nell'esempio seguenteproduce, nei cicli del loop, un valore di "i" che assume, in ordine, tutti i valori
dei caratteri della stringa

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 29
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Funzioni per le stringhe

Funzioni per le stringhe

Ci sono molte funzioni per trattare le stringhe; se: a= '0123456' ; b="abcedfqg' :
len(a) e' 7: il numero di caratteri della stringa
min(a) e' '0' il carattere piu' piccolo (nella sequenza dei caratteri ASCII)
max(a) e''6'
max(b) vale: 'g'

Alcune funzioni sono attributi dell'oggetto stringa, per cui la sintassi e' diversa:
b.index('c') e": 2 : I'indice del carattere 'c' nella stringa
b.capitalize() €' la stringa: 'Abcdefg’ (primo carattere maiuscola)
b.upper() e' la stringa: 'ABCDEFG' (muta i caratteri in maiuscolo)
b.lower() muta i caratteri in minuscolo
b.replace('a’,'X") e' la stringa: 'Xbcdefg' , cambia il carattere a in X

b.replace('a’,'X',3) effettua la sostituzione per le prime 3 sottostringhe che trova (di default fa la sostituzione
per tutte)

split : la funzione split, dato in argomento un separatore, crea una lista con le parti della stringa.
L'argomento di default di split €' uno spazio bianco, bianchi ripetuti sono compattati; la funzione e' un
attributo dell'oggetto stringa.

Esempi:
b='1,2,3 ; s=b.split(',") # produce ['1', "2', '"3']
a b '.split() produce: ['a', 'b']
join : la funzione unisce piu’ stringhe in una sola, separandole con una stringa data.
-t join(s) # produce: '1-2-3'
Esempi di Conversioni di numeri in stringhe e viceversa (qui a='123456'):
int(a) e il nunero 123456, anal oganmente str(450) e' la stringa '450'
float(a) muta una stringa in un nunero in virgola nobile.
str(1.6E3) e' la stringa '1600.0
ord('A') da 65, codice ascii del carattere
chr(65) fornisce 'A
bi n(2) produce: '0bl0’
hex(16) produce: '0x10'

oct (8) produce: '0010

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 30
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Funzioni per le stringhe

Ci sono molte altre funzioni per le stringhe: funzioni che riconoscono se una stringa €' minuscola o maiuscola od
un numero, per trovare sottostringhe, per contare quante volte una sottostringa e' contenuta in una stringa, per
trasformare tabulazioni in spazi bianchi, per trovare in che punto di una stringa si trova una sottostringa, per
vedere se una sottostringa termina od inizia con certi caratteri, per creare una stringa che ne contenga un‘altra
piu’ piccola al centro etc. Alcune di queste funzioni sono nella tabella che segue:

stringa.rstrip() :elimna \n alla fine

stringa.isal pha() . True se contiene solo caratteri alfabetici
stringa.isnuneric() : True se e un nunero

stringa.i sl ower() : True se caratteri mnuscol

stringa.isupper () : True se caratteri maiuscol

st ri nga. expandt abs(4) . mette 4 spazi al posto dei tab
stringa.ljust(width,fillchar) : allinea |la stringa a sinistra
stringa.rjust(width,fillchar) : allinea |la stringa a destra

stringa.startswith(stringa2) : True se inizia con |la stringa2
stringa.endsswith(stringa2) : True se finisce con |la stringa2

Abbiamo gia' visto l'operatore "%" , che permette di trasformare numeri e stringhe in un'unica stringa
"formattando” i dati in modo simile a come viene effettuato dalle funzioni di stampa del linguaggio C, ad
esempio:

a=3

b=7. 9E3

c='" XXX % yyy % zzz % '% (' 000", a,b)
c==" xxx 000 yyy 3 zzz 7900. 000000 *

L'istruzione fa si che nella stringa: ' xxx %s yyy %i zzz %f ' vengono sostituiti i valori della tupla: ('000',a,b), intesi
rispettivamente come una stringa, un intero, un decimale. %s %i %f sono qui indicatori di formato,
rispettivamente per stringhe, interi, valori float.

Esistono parecchi specificatori di formato, ad esempio: %5.3f e' un numero float in un campo di 5 spazi, con 3
cifre per i decimali.

Come nel linguaggio C, sono possibili sostituzioni piu' complesse, in modo da creare stringhe che siano adatte a
stampe di tabelle etc.

Esempi:
x=3
"oRd 9%3d %d" % (X, X*X, X*X*X)

produce: 3 9 27
%2d i ndi ca deci mal e con spazio per 2 cifre, %3d, con 3 cifre.

Si puo' anche usare un dizionario per le variabili da formattare:

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 31
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Funzioni per le stringhe

tenplate = "% notto)s, % pork)s and % food)s'
tenpl ate % dict (notto="spam, pork='ham , food='eggs')

produce: 'spam ham and eggs'
In python3 c'e' anche la funzione "format" per fare questo, e Rossun diceva che I'operatore "%" sarebbe stato
eliminato prima o poi. L'uso della funzione format e":
{0} {1}, {2:.0f} you'.format(1, 'spam’, 4.0)

format ha come argomenti le variabili da formattare, ed e' un attributo delle stringhe. La stringa di
formattazione ha i place-holders per gli argomenti rappresentati con numeri, fra parentesi graffe, seguiti da
":" e la specifica di formato.

Si puo' anche usare la sintassi seguente (keyword arguments) per specificare i place-holders

‘{motto}, {0} and {food}'.format (42, notto=3.14, food=[1, 2])

Produce: '3.14, 42 and [1, 2]'

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 32
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Liste

Liste

Le liste sono sequenze ordinate di oggetti enterogenei, accessibili tramite un indice numerico, che inizia da 0 ,
sono mutabili. Uno dei punti di forza del Python e' facilita' con cui si possono utilizzare le liste, e come si
possono costruire strutture di dati complesse combinando liste e dizionari. Rispetto ai vettori, che troviamo in
altri linguaggi, le liste hanno la caratteristica di contenere oggetti eterogenei, non tutti della stessa lunghezza; si
possono fare anche liste di liste, o di dizionari o liste di funzioni. Le liste sono implementate internamente con
referenze ad oggetti.

Una lista puo’ crescere in modo dinamico, cioe' non si deve decidere all'inizio quanto sara' grande.

Operazioni sulle liste

Le liste, come sequenze, hanno tutte le caratteristiche e gran parte degli operatori che abbiamo gia' visto per le
stringhe; agli elementi di una lista si accede con un indice intero, racchiuso fra parentesi quadre, e per gli indici e
le slice (sezioni delle liste) vale quanto gia' visto per le stringhe. Il caso di liste di sequenze, si accede agli
elementi "interni" con 2 indici, ognuno fra parentesi quadre, esempio: A[2][6]; il secondo indice €' relativo alla

posizione dell'elemento della sequenze piu' "interna”. A[2] e' tutta la sequenza interna.

L'operatore '+' concatena 2 liste, I'operatore *' ripete un certo numero di volte una lista, abbiamo gli operatori
"in" e "not in", che danno vero o falso a seconda che un oggetto faccia parte o no della lista. A differenza delle
stringhe, le liste sono oggetti mutabili, quindi ci sono anche operatori e funzioni per modificare liste od elementi
delle liste.

Le liste si indicano con una serie di valori, separati da virgole e racchiusi fra parentesi quadre, ad esempio, per
definire una lista A , composta dai numeri da 0 a 9:

A=[0,1,2,3,4,5,6,7,8,9]

Per copiare una lista si deve usare una sintassi del tipo: B=A[:] , ovvero si devono copiare gli elementi; B=A non
copia la lista, crea un nuovo riferimento B alla lista A. Se modifico A mi trovo le modifiche in B. Questo
contrariamente a quello che succede con elementi non mutabili: a=3 ; b=a ; a=4 : crea un oggetto "4" ed un
riferimento che punta a "4", I'oggetto "3" ed il suo riferimento "b" non sono alterati

Esempi:
A=[0,1,2,['a","b","'c']," ' fgk',3.4E10]] : definizione lista conplessa ove

un elemento e' a sua volta una |lista
A[3]::[lal,lbl,lcl]

Al 3][1]=="b'
A=[] : crea una lista vuota ed un riferimento "A alla lista.
A=['asdfg'] : lista di un solo elenmento (una stringa)

Qui A[O0][O] e il carattere 'a'

A=list((1,2,3)) : crea lista da una sequenza, qui la tupla: (1,2,3)
A[0] : prino elenmento

A[-1] : ultino elemento (nuneri negativi iniziano a contare dalla fine)
A[-2] : penultino el enento

A[:] A[0:] : sono tutta la lista

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 33
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Liste

Al : 0] : e lalista vuota

Al : 3] . elenenti dal prinp al terzo (quarto, con indice 3, escluso)
Al 3:] . elenenti dal quarto in po

Al 1: 5] . dal secondo al quinto elenento

A[1:5:2] : dal secondo al quinto con passo 2
A[-1:-5:-2] : dall'ultinmo al quint'ultino, con passo 2
A[0]=1.3 : sostituisce il prinpo elenento con un valore dato (qui 1.3)

A[0:3]="x" :sostituisce i prim 3 valori della lista con un unico el enento
(qui x), lalista ora ha 2 elenenti in neno.

del Al 3:5] : elimna gli elenenti dal 3 (conpreso) al 5 (escluso)
del A[3:5:2] : cone sopra, ma con passo 2: uho Si, UunhO no

A[0:3]=[] : elimnai prim 3 elenenti (da 0 a 2)

del Al 3] : elimna |l'elenento nunero 3 (il quarto)

A[0:3]=["a","b","'c'] : sostituisce i prim 3 elenenti della lista
con elementi di una seconda lista

Il en(A) : lunghezza lista A

max(A), mn(A) : nmassino e minino valore, se gli elenmenti non
sono confrontabili nunericanmente si ha un errore

A.sort() : ordina gli elenenti della |lista

A.reverse() : mette gli elenmenti in ordine inverso

A. append('v') : aggiunge un elenento 'v' in fondo alla lista

A.extend([2,3,4]) : estende con altra sequenza, aggi ungendola in fondo

A.count('v') : da il nunmero di volte che |'elenento 'v' e' nella lista
Ainsert(3,'v') : inserisce |'elemento v nella posizione 3, gli altri

el ementi vengono spostati.
A.index('v') . restituisce |I'indice del prino elenenti 'v' che trova

A.pop() : restituisce |'ultino elenento e lo elinmna dalla |ista.

A.pop(i) : restituisce |'elenmento al posto i e lo elinmna dalla |ista.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 34
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Liste

B=[1,2,3]+[4,5,6] : unione di liste: B==[1,2, 3, 4,5, 6]
B=['ab']*3 : ripetizione di liste: B=['ab','ab',6'ab',]
Gli elementi di una lista si possono assegnare a variabili, estraendo gli elementi, il numero di variabili deve

essere eguale al numero di elementi della lista, in Python3 e' possibile non avere numero di variabili eguali agli
elementi, ma assegnare parte degli elementi ad una nuova lista

a=[1, 2, 3, 4, 5]
gl, 92, g3, g4, g5=a

b, c, *d=a
Qui: b==1; c==2 ; d==[3, 4, 5]
b, c, *d, e=a
Qui: b==1; c==2 ; d==[3,4] ; e==5
Si possono unire a 2 a 2 gli elementi di una lista con la funzione zip:

a=[1, 2 3]
b=[" ,'c']
c=zi p(a b)
In python 2 "c" contiene: [(1, 'a"), (2, 'bY), (3, '¢c")]

In python 3 "c" €' uno zip object, con dentro la sequenza: (1, 'a") (2, 'b") (3, 'c") si deve fare: cc=list(c) per avere la
lista

Si puo' applicare una funzione ad una lista con la funzione map:
C=mip(absv [- 11 - 21 - 3])

In python2 map produce una lista.

In python3 un oggetto map da trasformare in una lista con la funzione "list". list(c) contiene: [1, 2, 3]

Nei loop sulle liste e' utile la funzione "range", ad esempio list(range(4)) restituisce una lista contenente [0, 1, 2,
3]. Per scorrere una lista senza sapere a priori quanto e' lunga possiamo usare:

for i in range(len(A))

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 35
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

List comprehension

List comprehension

La list comprehension €' una espressione ciclica fra parentesi quadre che genera una lista:
b=[x*x for x in range(3)] : genera [0,1, 2]
b=[x for x in range(6) if x%] : genera [1, 3, 5]

b=[y for x in range(2) for y in [5,6]] : genera [5, 6, 5, 6]

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 36
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Tuple

Tuple

Le tuple sono sequenze simili alle liste, ma, a differenza delle liste, sono sequenze immutabili e non possono
essere cambiate nel corso del programma. Contengono oggetti eterogenei, identificati da un indice numerico. Le
tuple sono immutabili, ma i loro elementi, se sono mutabili, possono essere cambiati, per cui se un elemento di
una tupla e' una lista questa puo' essere alterata e svuotata, ma non puo'essere tolta dalla tupla. Tuple che
contengono solo oggetti immutabili possono essere usate come chiavi in un dizionario.

Le tuple sono rappresentate come insiemi di valori separati da virgole e racchiusi fra parentesi tonde; per il resto
abbiamo operatori e notazioni analoghe a quelle delle liste, dei dizionari e delle stringhe:

Esempi:
T=(1,3.5,'c") . definisce una tupla di 3 elenenti
TT=() . e una tupla vuota
T[0] =33 . da errore, la tupla non e nutabile
T[1] . il secondo elenento (nel nostro 3.5)
I en(T) : nunero el ementi
T.index(3.5) . indice dell'elenento 3.5 (e al posto 1)

L'operatore di somma: '+' concatena tuple in una nuova tupla, l'operatore: *' ripete una tupla un certo numero di
volte:

Esempio:
T3=(2, 3)
T4=(5, 5)

T5=T3+T4
T5 e latupla: (2, 3, 5 5)

T6=T3*2
T6 e latupla: (2, 3, 2, 3)

Tuple possono essere mutate in liste e viceversa:
L=list(T6) : nuta la tupla inunalista: [2, 3, 2, 3]
TT=tuple(L) : fa il contrario, nmuta una tupla in una |lista.

C'e' un modulo aggiuntivo di Python (modulo "collections”, introdotto nella versione 2.6) che introduce le "Named
tuple”: tuple indicizzabili per nome, tipo dizionari, oltre che per numero.

Sets e Frozensets

| sets sono stati introdotti con Python 2.4, e sono insiemi non ordinati, mutabili, di oggetti immutabili (numeri,
caratteri, tuple , NON liste e dizionari). Gli oggetti sono unici nel set (non ce ne sono 2 uguali). | set sono gli
insiemi della matematica insiemistica e su di essi si possono fare operazioni di unione, intersezione, differenze
etc.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 37
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Tuple

In Python 3, ma non in Python 2, i set possono essere rappresentati da valori fra parentesi graffe, separati da
virgole.

| frozensets sono analoghi ai sets ,ma immutabili.

Esempi:
a=set () . definisce set vuoto
b={1, 2, 3} . definisce un set in Python 3
k={"h","a," 'n} . definisce un set in Python 3
c=set (' fgh') : crea il set: {"h,"'g,"f'}
c=set (' fghhh') . senpre {"h","g",'f'"} elementi non sono ripetuti
b=set(['a',"'b',"'c']) : set possono essere costruiti da liste
d=b| c : set unione : set(['a, 'c', 'b'", "'f'])
e=d&b set intersezione set(['a", 'c', '"b'])
d-b : set differenza set(['f'])

La funzione add modifica un set aggiungendogli elementi, ma non si possono aggiungere liste al set, solo solo
oggetti hashable (immutabili).

b. add(' abc') : aggiunge i caratteri come el enmenti
k.add((10, 20, 30)) : aggi unge una tupla

Esistono operatori: > < >= <= per individuare subset o superset; danno True o false

Esempio.:

a<b: verose b contiene tutti gli elementi di a

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 38
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Dizionari

Dizionari

| dizionari sono vettori associativi, quello che in altri linguaggi di programmazione viene anche indicato con
"hash" o "mappings”. Somigliano a liste, ma gli indici (keys o chiavi) sono stringhe, od altri oggetti Python
immutabili, ad esempio tuple.

Internamente sono implementati con l'uso di 'hash tables', per cui le chiavi devono essere oggetti "hashables”,
cioe' Python deve poterli trasformare internamente in indirizzi; tutti gli oggetti immutabili hanno queste
caratteristiche, ed anche oggetti istanze di classi create dall'utente soddisfano questo criterio.

Si chiamano dizionari perche' I'uso di stringhe per ritrovare elementi di un insieme €' analogo a quello che si fa
guando si cerca una parola in un dizionario. Si usano per trattare insiemi di elementi contraddistinti da un nome,
piuttosto che da un indice numerico, come per le liste.

| dizionari sono oggetti mutabili ed un dizionario puo' contenere oggetti eterogenei: numeri, stringhe, liste,
dizionari. Si possono costruire strutture complesse con dizionari e liste annidate.

Gli elementi di un dizionario non hanno un ordine definito, e per individuare gli elementi si utilizza, al solito, una
coppia di parentesi quadre, che contengono la chiave dell'elemento.

| dizionari non implementano gli operatori "=" e "*" come le liste. Per aggiungere un elemento basta definirne la
chiave ed il valore.

Un dizionario e' rappresentato da coppie di chiavi e valori, separati da virgole, e racchiusi fra parentesi graffe.

Esempio:

D={'chiave':3,"altrachi ave': 6, 1. ' abcd'}

O ' chi ave'] . vale 3

Df"altrachiave'] : vale 6

O 1] . val e '"abcd'

D. get (' chi ave') vale 3, ma se la chiave 3 non si trova da il val ore None

i nvece di dare errore, come: D 'chiave']

Come per le liste abbiamo che:

D={} : crea un dizionario vuoto

D'a'1=799.0 : aggi unge elenento, se |la chiave esiste gia" |o nodifica

D 232] =' s'

D'b']=996 . crea elenento o lo nodifica se c'e'

D'b']=99 . canbia il valore dell'elenento con chiave 'b'

del DO'b'] : elimnal'elemento con chiave 'b'

| en(D) : di mensi one del dizionario: vale 3 se D ha 3 el enenti

D. pop('c") : estrae dal dizionario il valore con chiave 'c' e lo elimna.

D.update ({ 1: 10, 2: 20, 3:30 }) : unisce dizionari
D. clear () . svuota il dizionario

D. pop(key) : data la chiave, estrae |'elenento e lo elinina dal dizionario

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 39
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Dizionari

Se abbiamo dizionari di dizionari possiamo reperire gli elementi del dizionario interno con la sintassi seguente:
D3={"cibo' :{'carne':1, frutta':2}} : dizionario che contiene un dizionario
D3['cibo]['frutta'] e |'elemento di valore 2

La funzione "in" e' riferita alle chiavi, ad esempio

D4={"a':0,"'b":1,'c':3}
‘a' in D4 e True
0OinD4 : e False, 0 non e una chiave di ricerca.

Un ciclo for sul dizionario restituisce le chiavi, ma si possono estrarre anche i valori o le coppie (chiave,valore) in
una tupla:

restituisce 'a', al secondo ciclo 'b', poi 'c
D4. keys() : restituisce un oggetto, che contiene le chiavi: ['a", 'c', "b']
D4.values() : restituisce un oggetto, che contiene i valori: [0, 3, 1]
D4.itens() : restituisce un oggetto, che contiene |le tuple: chiave, valore:

[(ta', 0), ('c', 3), ("b', 1)]
sorted(D4) : solo in python 3, produce una lista ordinata di chiavi

In python 2 keys(), values() ed items() producevano liste, in Python3 oggetti su cui iterare e se se ne vuole fare
una lista occorre convertirli con la funzione list: L=list(D4.keys())

La sintassi delle liste permette di implementare in modo compatto I'analogo dell'istruzione switch (o case) che
hanno certi linguaggi di programmazione:

{"a":0,'b" :1,'c":3}['b"] Questo vale 1
f={1:f1,2:f2,3:f3}[s] questo vale f1 se s==0, f2 se s==1, f3 se s==2.

f() se f1,f2,f3 sono funzioni, posso eseguire cose
di verse a seconda del valore di s.

La funzione "dict" crea un dizionario a partire da liste di tuple, le chiavi si possono specificare in argomento o
fornire in argomento una sequenza di tuple di 2 elementi: (chiave,valore):

D=di ct (a: 10, b="abc') : crea {'a :10,'b':'abc'}
D=dict([('a,10), (' b, abc')])

D=dict((('a,10),('b","abc'))

D=dict({'a: 10, 'b': 'abc'})

La funzione "zip" permette di creare un dizionario a partire da 2 sequenze:

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 40
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Dizionari

Li=['a',"'b",'c'] ; L2=[0,1, 2]
LX=zi p(L1, L2)
LY=di ct (zi p(L1,L2))

In Python3 "zip" produce, a partire da due sequenze, un iterabile (in Python 2 una lista), con tuple di 2 elementi:
(a,0), (b, 1), (c"2)
La funzione "dict" trasforma l'iterabile in un dizionario:

{a"0,'c:2,'b": 1}
In Python 3 (e Python 2.7) esiste una "dictionary comprehensions" ,analoga alla "list comprehension", che si
puo' usare per definire gli elementi di un dizionario:

D={ x :x*x for x in[1,2,3] } : genera: {1: 1, 2: 4, 3: 9}
D={k: v for (k, v) inzip(['a", '"b", 'c'], [1, 2, 3])}

genera: {'b': 2, 'c¢': 3, '"a': 1}

D={k: v for (k, v) inzip(['a, "b", 'c'], [1, 2, 3]) if vi& == 0}

genera: {'b': 2} : ho tenuto solo nuneri pari

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 41
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Funzioni

Funzioni

In Python le funzioni sono oggetti di base ("first-class objects") : listruzione def le crea ed assegna loro un
nome, che e’ un riferimento. Al solito si usano i due punti ed il rientro (indentation) per delimitare il corpo della
funzione. Gli argomenti, fra parentesi tonde, seguono il nome della funzione; alla chiamata la funzione viene
eseguita, producendo un oggetto, che e' il risultato della funzione e che viene restituito con un'istruzione "return”
. In caso l'istruzione "return" non compaia nella funzione, viene restituito I'oggetto vuoto: "None".

La sintassi per la definizione di una funzione e' del tipo:

def nonefunzi one(a, b, c):
"' docstring:
descri zi one funzi one
d=a
e=b+c
return d+e

Per chiamare la funzione si utilizza una sintassi del tipo:

nonef unzi one(r, s, t)
g=nonef unzi one(r, s, t) :qui il risultato della funzione e' assegnato a 'g'

Il nome della funzione e' semplicemente un riferimento alla funzione, si distingue dalla chiamata alla funzione,
ove devono apparire le parentesi tonde dopo il nome. Il nhome puo' stare in una lista, essere passato in
argomento a funzioni, e le funzioni possono anche essere chiavi di dizionari; solo le parentesi tonde dopo il
nome indicano che la funzione va eseguita.

Per vedere se un nome e' un riferimento ad una funzione si puo' usare la funzione "callable(nome)", che
restituisce True se l'oggetto cui ci si riferisce ha l'attributo *__call__", ovvero se €' una funzione.

Qui sotto vediamo, come esempio, una funzione che crea funzioni (function factory):

def maker (N): # funzione "factory"
def action(X): # qui definisce una funzione
return X ** N
return action

fa=maker (2) # creo una funzione fa che fa il quadrato
f b=rmaker (3) # creo una funzione fa che fb il cubo
a(10) # produce 10*10 => 100

b(10) # produce 10*10*10 => 1000

Argomenti

Gli argomenti sono passati per assegnazione: in Python le variabili sono riferimenti ad oggetti; nel passaggio
degli argomenti, alla variabile nella funzione viene e' assegnato lo stesso oggetto della variabile corrispondente
nella chiamata,; cioe' viene fatta una copia dei riferimenti agli oggetti.

| tipi delle variabili vengono definiti solo alllassegnazione dei riferimenti, per cui una funzione, a priori, non sa
quali sono i tipi degli argomenti ed eventuali inconsistenze producono errori solo quando la funzione viene
eseguita. In questo modo Python implementa naturalmente il polimorfismo, cioe' una stessa funzione puo'
essere usata per dati di tipo diverso. Ad esempio la funzione:

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 42
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Funzioni

def somma(a, b):
return a+b

se chiamata con: somma(3,2) produrra' 5, se chiamata con stringhe come argomenti: somma(‘aa’,'bb") restituira’
la stringa 'aabb'. Se chiamata come: somma(‘a’,1) produrra’ un errore.

Riassegnare le variabili in argomento entro la funzione non ha effetti sul chiamante, ma gli oggetti mutabili
possono essere cambiati nelle funzioni, operando sui loro riferimenti.

Le funzioni possono avere valori di default per gli argomenti. Ad esempio una funzione definita con:
def func(a='uno’):

puo' essere chiamata semplicemente con:
func()

ed il suo argomento a sara' il default: la stringa 'uno' ; oppure con
func('due’)

ed il suo argomento a sara' la stringa 'due’

Una funzione puo' anche essere chiamata dando valori ai parametri per nome (keyword arguments), con una
sintassi tipo:

func(a='sei")
in questo caso alla variabile "a" entro la funzione, viene assegnata la stringa "sei".

Una funzione puo' essere definita in modo che i suoi argomenti siano visti, entro la funzione, come una tupla o
come un dizionario; le definizioni della funzione avranno in questi casi rispettivamente la sintassi:

def func(*nome):
def func(**nome):
Nel caso del dizionario gli argomenti sono passati per nome ed i nomi diventano le chiavi del dizionario.

Questi modo di passare gli argomenti possono essere combinati, in questo caso, nelle chiamate e nella
funzione, vanno prima gli argomenti posizionali, poi quelli che finiscono in una tupla, ed infine, con passaggio
per nome, quelli che finiscono nel dizionario:

def func(a,b,c): # esenpio di funzione

print(a)
print (b)
print(c)
func(1l, 2, 3) # chiamata con argonenti passati per posizi one
func(b=2, a=1, c=3) # argonenti passati per nome
func(1, c=3, b=2) # argonenti passati per posizione, quello che resta per none

def func(*a):
print(a)
Qui in a finisce una tupla di argonenti,
| a chiamata puo' avere nunmero variabile di argonenti
func(1l,2,3) stanpa la tupla: (1,2, 3)

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 43
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Valori restituiti

def func(**d):
print(d)
Qui gli argonenti finiscono in un dizionario
gli argonmenti sono passati per none
ed i nom delle variabili sono | e chiavi
func(a=1, b=2, c=3) st anpa: {*a': 1, 'c¢c': 3, 'b': 2}

def func(a,*b, **d):

print(a)

print (b)

print(d)

Vanno prima gli argonenti posizionali,

poi quelli per la tupla, infine quelli per il dizionario.
Chiamata cone : func(l1, 2,3,4, s=10,0=20)

stanpa: a=1 ; b=[2,3,4] ; d={s:10, q: 20}

In Python3 abbiamo anche funzioni con argomenti passati per nome dopo quelli che finiscono in una lista:

def func(a, *b,c):

Qui l"ultinm argonento che puo' essere data sol o per nome"
con chi amat a: func(1,2, 3, c=40) ,
ed avrenmo a==1 ; b==[2,3] ; c==40

Anche le chiamate possono contenere liste o dizionari:

func(*a) : spacchetta |'iterabile a in nodo inplicito
func(**d) : spacchetta il dizionario in: keyl=val 1, key2=val 2 .
Se il dizionario e : {'keyl' :1,' key2':2,'key3' :3}
|l a chiamata equivale a: func(keyl=1, key2=2, key3=3)
Ove keyl, key2, key3 sono | e variabili nella funzione.

Valori restituiti

La funzione restituisce un valore specificato nell'istruzione return. Se non viene eseguita l'istruzione return il
valore restituito dalla funzione e’ I'oggetto speciale di nome: "None" che €' per definizione un oggetto vuoto. Una

funzione puo’ restituire una tupla, con la sintassi tipo:

return a,b,c

Analoga a "return" e' la funzione "yeld", che ritorna un valore al chiamante; ma la volta successiva che la
funzione viene chiamata I'esecuzione parte da dopo listruzione yeld. In questo modo si possono implementare

iteratori. La sintassi e":

yeld a

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 44
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Campo di validita' della funzione (scope della funzione)

Campo di validita' della funzione (scope della funzione)

Una funzione e' valida dal punto del programma in cui si incontra in poi; quando la funzione viene incontrata
viene "eseguita", nel senso che il suo nome (che in realta' e' un riferimento) diviene valido ed ad esso sono
associate le operazioni contenute nel corpo della funzione. In questo modo e' possibile definire una funzione in
modo diverso a seconda del flusso del programma: ad esempio:

i f a>b:
def func(a,b):
return a-b
el se:
def func(a,b):
return b-a

Queste istruzioni definiscono la funzione "func" come la differenza fra il piu' grande dei due valori in a e b. A
seconda dei casi la funzione e' definita in modo diverso.

Una funzione puo' essere definita entro una funzione, ed allora €' vista solo li'.

Campo di validita' delle variabili (scope delle variabili)

Una variabile definita in una funzione non e' vista da fuori della funzione. Puo' avere stesso nome di una
variabile esterna senza confusione.

Una variabile definita nel blocco in cui la funzione e' chiamata e' vista entro la funzione, ma non puo'
essere modificata entro la funzione, a meno che non sia definita "global" entro la funzione.

Se, entro una funzione, una variabile e' definita come global sara’ vista anche nel blocco in cui la funzione €'
chiamata. Ma in ogni caso una variabile e' locale al file in cui si trova.

La dichiarazione di global e' del tipo:
global a,b,c

Questa regola di scope e' chiamata LEGB: Local, Enclosing, Global, Build-in ed e' il modo di cercare i nomi di
Python

In Python3 una variabile dichiarata "nonlocal" in una funzione:

nonlocal a,b

e' definita nell'ambito del blocco superiore, ma deve gia' esistere nel blocco superiore. Nelle funzioni questo
permette di mantenere valori nelle diverse chiamate.

Funzioni lambda

Sono funzioni di una sola istruzione, senza nome, con sintassi:

lambda argomentol,argomentol,argomento3: espressione

Esempio:
f=lanmbda x,y : x+y
f(2,3) pr oduce 5

Le Lambda sono usate in contesti particolari, ove €' comodo mettere una piccola funzione in una sola riga, ad
esempio per costruire una lista od un dizionario di funzioni:

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 45
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Docstring

L=[(lanmbda x: x+x) , (lanbda x: x*x)]

for f inL :
print f(3) # Produce : 6 , 9

Esempio: dizionario di funzioni:
op={'somma’ : | anbda *a: sum(a) , 'massinp':l|anbda *a: max(a)}
op[' somma'] (10, 20, 30) # produce: 60

op[' massinp'](10,20,30) # produce: 30

Docstring

All'inizio di una funzione puo' esserci una stringa multilinea che descrive la funzione Questa viene
conservata nella variabile __doc___

def square(x):

Questa funzi one el eva
un nunero al quadrato

return X*x

Attributi delle funzioni

Le funzioni, come oggetti, hanno attributi, cui ci si puo' riferire con
nomefunzione.attributo

Alcuni attributi delle funzioni sono:

__doc__ : stringa descrittiva

__name___: nome della funzione

dir(f) : mostra dizionario degli attributi della funzione f

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 46
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Decorators

Decorators

Sono funzioni che prendono in argomento una funzione, ci fanno modifiche, aggiunte, o fanno cose
accessorie, poi restituiscono la funzione modificata:

def decnane(funcnane, a, b, c):
operazioni varie con |la funzione funcnane
return funcname

C'e' una sintassi abbreviata quando si vuole applicare un decoratore ad una funzione:

@ onedecor at or e
def f()

Questo e' equivalente a definire la funzione f e poi applicargli il decoratore con:

f=nomedecoratore(f)

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 47
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

| files

| files

In python3 i files sono tipi, I'apertura di un file crea un oggetto ‘file' e gli assegna un riferimento. Ci sono diverse
funzioni per trattare i files, soprattutto rivolte a files di testo. Per i files di testo la codifica e decodifica UTF-8 dei
caratteri e' effettuata dal Python in modo trasparente all'utente. Di default i files sono intesi come files di testo.

Input/Output da terminale

Ad un programma Python, anche nell'esecuzione interattiva, sono associati uno "standard" output ed uno
"standard" input, da cui il programma legge e scrive di default.

Per scrivere sullo standard output si usa la funzione "print". In Python 2 "print" invece di una funzione era un
comando. Questo ha creato innumerevoli problemi, dovendo, in tutti i vecchi programmi, inserire le parentesi in
un sacco di posti, modificando comandi tipo: "print a" in "print(a)".

La funzione print ha un numero arbitrario argomenti e li stampa , trasformati in stringhe con la funzione str,
separati da uno spazio. Ogni comando print stampa una sola linea, a meno che le stringhe stampate non
abbiano dentro il carattere: "\n" , che viene interpretato come un fine linea. Assieme a "print" viene in genere
usato l'operatore di formattazione, per scrivere stringhe entro cui si inseriscono numeri e caratteri definiti a
run-time.

La lettura da terminale si puo' fare, in Python 3, con la funzione "input”, che legge una linea e la mette in una
stringa. La funzione input puo' avere come argomento un "prompt" che viene stampato prima della lettura. In
Python 2 la funzione analoga €' "raw_input", mentre "input" esegue la funzione eval su una stringa che legge.

Esempi:
print(a, b) : scrive 2 variabili separate da uno spazio
print("% xxxx %" % (a,b)) : scrive a e b separati da xxxx

a=i nput ("=>") : legge una linea e la nmette nella stringa "a"
prima di |eggere stanpa: "=>"

La funzione "print" di Python3 ha diversi argomenti opzionali e la sua sintassi completa e

print([object, ...][, sep=" "][, end="\n"][, file=sys.stdout])
sep . stringa di separazione fra le variabili stanpate

end . carattere di fine linea a fine stanpa

file :riferinento al file su cui si stanpa

Esempio, che stampa un valore per riga e dopo l'ultimo scrive: "====

print("a","b","c", sep="\n", end="====\n")
a
b
C::::
Uso di files

Per accedere ad un file si usa la funzione "open", che crea un oggetto file e ritorna un riferimento ad esso.
L'oggetto file ha funzioni per accedere al contenuto del file. Ci sono anche funzioni per leggere il file tutto in una
volta e metterne il contenuto in una stringa, e funzioni per farne una lista di stringhe con le singole linee.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 48
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

| files

L'output e' befferizzato, cioe' non scritto subito sul file, ma posto un un'area di memoria apposita (buffer) e
scaricato sul file, tutto insieme, in un secondo momento, per ottimizzare i tempi di calcolo. La funzione "flush”
scarica il buffer.

Il file ha un puntatore che ricorda dove si e' arrivati nella lettura, che, a diversi comandi di lettura, si sposta in
avanti nel file. La funzione seek sposta il puntatore, permettendo di saltare parti del file o di rileggere contenuti
gia' letti.

Il file viene chiuso con la funzione "close”, che elimina il riferimento al file.

La sintassi completa della funzione open e":

open(nome_file, node="r', buffering=-1, encodi ng=None,
errors=None, new i ne=None, cl osefd=True)

mode e' il nmobdo do accesso:
‘r per lettura di testo

"W : per scrivere testo

. aggiunge testo a fine file
sia lettura che scrittura
file con dati binari,
ove NON si interpretano i caratteri
cone codifiche UTF-8

a
+
b

| caratteri possono essere conbinati, ad esenpio
"wb' ed 'rb' per scrivere o | eggere dati binari.

di altri paranetri sono raramete usati:

buffering : da indicazioni sull'uso e dinmensione del buffer

new i ne : indicazioni sul carattere di fine linea
errors : su cone gestire errori di codifica
cl osefd . gestisce chiusura del file
encoding: il tipo di codifica per i caratteri: Python
prevede parecchie codifiche oltre UTF_8: ascii, latin-1,

cyrillic, greek, UTF_16, UTF_32. In genere
assune |la codifica di default del computer che si
sta usando.

Esempi e funzioni per i files:

f= open('filetest',"wW) : apre un file di none filetest per scriverci.
e crea un oggetto f, di tipo "file"

fl=open('filetest2','r') : apre un file di none filetest per |eggerlo
f2=open('filetest3' ,'r+'): per |leggere e scrivere
f3=open('filetest4',"a'") : per aggiungere in fondo al file

f,f1 etc. sono riferinenti ai files, che sono oggetti.
filetest, filetest2 etc. sono i nom dei files.

stringal=f1.readline() : |l egge una linea dal file f1 e la nette in stringal
stringa2=f1.read() : nmette in stringa2 tutto il file f1

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 49
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

| files

stringa2=f1.read(10) : mette in stringa2 10 byte del file f1

stringhe=f1l.readlines() : |legge tutto il file e ne fa una lista
ogni elemento della lista e wuna linea del file

f.writelines(stringhe) . scrive, di sequito, le stringhe della
lista. Per essere scritte su diverse linee le
stringhe devono finire con: "\n"

f.wite('stringa') . scrive sul file una stringa
f.wite('stringa\n') : scrive sul file una linea

(\n e il carattere di fine linea)
f.flush() : svuota il buffer, scrivendolo tutto sul file
f.seek(5) : si posiziona al sesto byte del file

(i bytes si contano a partire da 0)

f.tell () . dice a che byte e' posizionato il file

f.truncate(m : tronca il file dopo m bytes

f.close() : chiude il file. L' oggetto 'f' viene distrutto

f. name : contiene il none del file

f . node . stringa che specifica il npdo di accesso: 'r','w etc.
data = open('data.bin', '"rb').read() : lettura file binario,

messo in 'data' cone insiene di bytes
ad esenpi o: b' bbbbcccc\ ndddd\ n'

Ci sono sistemi per iterare sulle linee del file, in modo da elaborarne una riga per volta; ed i files possono essere
usati in list comprehension per creare liste:

Esempi:
for line in open('data.txt'): print(line)
lines = [line.rstrip() for line in open('script2.py')]

lines= [line.split() for line in open('script2.py')]

In quest'ultinp esenpio si fa una lista di liste ove s
separano | e parole di ogni |inea, che vengono a costituire una
lista.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 50
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Eccezioni

Eccezioni

Sistemi software ove parti del programma reagiscono ad eventi o si scambiano messaggi sono molto comuni,
fra questi abbiamo:

« le interfacce grafiche (agiscono in funzione di messaggi da tastiera e mouse)
« gli applicativi di rete (dalla rete arrivano richieste di connessione)

« i desktop utilizzano messaggi per far parlare le varie componenti (D-bus, usato in Linux da kde4 e
gnome)

« il sistema operativo utilizza messaggi per far comunicare diverse parti o comunicare con programmi
utente.

Un patrticolare utilizzo di questa tecnica puo' essere considerato il sistema che gestisce, in molti linguaggi, il
verificarsi di errori: una routine, in cui si verifica un errore, lancia un™eccezione", che €' un messaggio che puo’
essere gestito dal programma stesso o puo' causare l'arresto del programma. Questo sistema puo' anche
essere usato come sistema generale di comunicazione fra le diverse parti del programma.

Eccezioni in Python

In Python implementano la gestione delle eccezioni le seguenti istruzioni:

raise : per generare un'eccezione
assert: genera un'eccezione, di tipo "AssertionError", in base a condi zi oni

try : intercetta eccezioni verificatesi in una parte del codice
ed esegue azioni in base a queste

except: definisce un blocco da eseguire
in caso si verifichi una data eccezione

Le eccezioni devono essere classi da in Python 3, ed ereditare la classe Exception; in versioni di Python
precedenti alla 2.6 potevano anche essere semplici stringhe.

Sintassi dell'istruzione "raise":

rai se nonei stanza

rai se nonecl asse

rai se

rai se nonecl asse from al tracl asse

"raise” lancia un‘eccezione, che puo' essere:

* l'istanza di una classe;

* una classe, ed in questo caso raise la istanzia automaticamente,

* un'eccezione precedente, che viene rilanciata. Rilanciare un'eccezione puo' servire in strutture
try-except annidate, per passare I'eccezione ad un blocco superiore nella gerarchia.

L'istruzione "try" identifica il blocco entro cui verificare se sono state lanciate eccezioni; a questo blocco seguono
uno o piu’ blocchi individuati da istruzioni "except" , che sono eseguiti se si verificano eccezioni di un certo tipo.
La sintassi €' la seguente:

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 51
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Eccezioni

try:
bl occo entro cui puo' verificarsi |'eccezione
Es.: if a<0: raise eccl
exéébt eccl as var
bl occo eseguito per |'eccezione: eccl
exéébt (ecc2, ecc3d) as var
bl occo eseguito per | e eccezioni: ecc2 od ecc3

except

bl occo per tutte le altre eccezioni
el se:

bl occo eseguito se NON ci sono eccezi oni
finally:

bl occo eseguito in ogni caso

"try" identifica il blocco in cui puo' essere generata un'eccezione; i blocchi che seguono le istruzioni "except"
vengono eseguiti se I'eccezione corrisponde al nome della classe che segue except (qui: eccl,ecc2,ecc3). Il
nome che conclude la linea con "except" (qui: var) e' un riferimento che punta all'eccezione, che puo' essere
usato nel blocco except.

Il blocco else e' eseguito se non e' sollevata un'eccezione.

Il blocco finally viene eseguito in ogni caso, sia se ci sono eccezioni sia se I'esecuzione del blocco try non ne
genera. In blocco "finally", e' opzionale e serve ad assicurarsi che certe operazioni siano eseguite in ogni caso,
anche se si verificano errori

Esempio:

cl ass Ecc(Exception): # definizione di una eccezione
none="eccezi one Ecc"

cl ass Eccl(Exception): # definizione di un'altra eccezione
none="eccezi one Eccl"

def eccezsub(a):
if a<2 : raise Ecc # | anci a eccezioni se a<=2
if a==2 : raise Eccl
print "OK, valore grande:",a

for i in[1,2,3]
print "provo il numero:",i
try:

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 52
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Classi di eccezioni generate da Python

eccezsub(i) # blocco try, da testare
print "OK niente eccezi one"

except Ecc as X : # cattura eccezione : Ecc
print "val oretroppo piccolo:", X. none

except Eccl as X : # cattura eccezione : Eccl
print "valore ma quasi OK: ", X. none

el se:
print " niente eccezione, valore K"

finally:
print "valore verificato:",i
print "fine delle prove"

Se viene lanciata un'eccezione che non corrisponde ad un except questa non viene catturata dal try, ma dal
Python, che interrompe il programma. Il blocco finally viene eseguito prima dell'interruzione.

In Python 3 raise puo' avere anche una sintassi del tipo:
except eccezione as E

rai se nuova_eccezi one fromE

L'eccezione: "E" finisce nell'attributo " __cause__ " della nuova eccezione lanciata. In questo modo si puo' avere
una gerarchia di eccezioni, che sono elencate nel messaggio di errore.

In python 2, in quest'ultimo caso, l'istruzione "except" ha la forma:

except noneclasse, none # c'e'una virgola invece che "as".

Classi di eccezioni generate da Python

In caso di errori durante I'esecuzione del programma, Python genera eccezioni, alcune di queste sono elencate
nella tabella seguente:

Zer oDi vi si onError : divisione per zero; Es.: 3/0
Overfl owError . valore troppo grande Es.: 10.0**1000
| ndexEr r or : indice sbagliato Es.: a=[1,2,3] ; a[8]
| OError : errore di input/output
| nport Error : non si trova il file da inportare
KeyErr or : chiavi di dizionario inesistente
Es.: d={'a':1} ; d['Db"]
TypeError . operazione non pernmessa su certi dati

(Es.: elevazione a potenza con stringhe)

Esempio di come si possano utilizzare le istruzioni try ed except in modo da evitare che un certo errore provochi
l'interruzione del programma:

a=2.0
for i in [1,0]
print "divido per:",i
try:
b=a/i
except ZeroDi vi si onError

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 53
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Istruzione assert

print "sto dividendo per zero, netto -1"
b=-1
finally:
print "valore di b:",b
print "fine delle prove"

Istruzione assert

L'istruzione "assert" verifica una condizione e, se non €' vera, lancia I'eccezione "AssertionError". Viene usata
nella fase di test dei programmi. Se Python viene chiamato con l'opzione di ottimizzazione '-O' , la variabile
interna __debug__ e' False e l'istruzione assert non ha effetto.

Esempio:
assert 5 > 2 : questa NON | anci a un' eccezi one
assert 2 > 5, "nmessaggio" : la condizione e falsa,
vi ene | anci ata un' eccezi one
che contiene il messaggi o (opzi onal e)

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 54
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Programmazione ad oggetti

Programmazione ad oggetti

La programmazione ad oggetti nasce per superare difficolta’ intrinseche in linguaggi come il C, che si incontrano
quando si utilizzano questi linguaggi per scrivere programmi molto grandi (centinaia di migliaia di istruzioni). |
concetti alla base della programmazione ad oggetti risalgono agli anni 60-70, ma la programmazione ad oggetti
ha iniziato a prendere piede solo negli anni 90, col C++, ed e' stata molto usata per scrivere interfacce grafiche.
E' poi diventata di moda, e tutti i linguaggi moderni come Java, Python, Ruby, sono ad oggetti; la
programmazione ad oggetti e' stata inserita perfino in vecchi linguaggi come il FORTRAN od il COBOL.

La programmazione ad oggetti utilizza strutture di dati chiamate “"classi"; le classi sono insiemi di dati
eterogenei, e contengono anche le funzioni (dette anche "metodi") che operano sui dati della classe. Dati e
funzioni della classe sono anche detti "membri” della classe. | dati sono detti "attributi" della classe.

Bisogna distinguere la definizione di classe dalla sua istanza. La definizione della classe ne descrive la struttura,
ma di per se non riserva spazio di memoria per la classe e non crea nulla, viene trattata a tutti gli effetti come un
nuovo tipo di dato.

L'istanza (oggetto) e' una realizzazione della classe, individuata da un nome. L'istanza ha il suo spazio in
memoria, i suoi dati, le sue funzioni etc.

La classe viene definita una volta e poi se ne possono fare tante istanze, ognuna col suo nome ed i suoi dati. Ci
sono dati propri delle singole istanze e dati "della classe”, comuni a tutte le istanze.

Una classe ha dei membri privati, che sono visibili solo dall'interno della classe, e membri pubblici, che sono
visibili dall'esterno. Si interagisce con la classe utilizzando i suoi membri pubblici, di preferenza chiamando le
sue funzioni pubbliche.

L'insieme delle funzioni e dati con cui si interagisce con la classe sono chiamati "interfaccia” della classe. La
classe viene utilizzata come una scatola nera, di cui €' noto I'uso, ma non il contenuto.

Quindi una volta definita l'interfaccia di una classe, si sa come usarla nel resto del programma e se ne puo’
ignorare la struttura interna. In grossi progetti si inizia a strutturare il software definendo le interfacce delle classi.
Una volta fatto questo, parti diverse del progetto possono essere assegnate a gruppi di sviluppatori diversi.

Una classe puo' essere costruita aggiungendo parti ad una classe pre-esistente. In questo caso si parla di
"ereditarieta’™; la nuova classe ("classe derivata") "eredita” membri dalla classe pre-esistente, detta "classe
base" o classe padre. La classe derivata puo' anche sostituire membri della classe base con membri definiti al
suo interno, in questo caso si dice che fa I"ovverride" di membri della classe base.

In certi linguaggi (C++) si parla di "classi astratte" per indicare classi che servono solo a specificare delle
interfacce, che saranno poi implementate in classi derivate. In questo modo le classi finiscono per definire solo
dei comportamenti, e non dicono nulla di come questi comportamenti saranno implementati. Questo approccio
permette di applicare allo sviluppo del software un modello di top-down; ove prima si disegna lo schema
generale del software e poi si definiscono i dettagli implementativi.

Una classe puo' essere costruita in modo da potere essere utilizzata con diversi tipi di dati (interi, float, caratteri
od altro). In questo caso, in cui si utilizza la stessa interfaccia per dati diversi, si parla di "polimorfismo”, o di
"programmazione generica". Questo permette di ridurre i tempi di sviluppo, non bisogna scrivere classi diverse a
seconda del tipo di dati che devono trattare.

Il polimorfismo puo' essere implementato in diversi modi: con i "template” del C++ si scrivono classi per tipi di
dati generici, ed al momento della compilazione il compilatore crea la classe relativa al tipo di dato per cui €'
richiesta. Un altro approccio e' quello in cui non si sa quale tipo di dato si utilizzera' fino all'esecuzione del
programma. E solo in esecuzione viene definito il tipo di dato che verra' utilizzato. Questo di chiama "late
binding" o "run time binding". In C++ questo viene implementato utilizzando puntatori ad una classe base, che
ha diverse classi derivate a seconda dei tipi. Quando e' il momento viene utilizzata la classe derivata del tipo
giusto. In Python i tipi delle variabili sono definiti solo all'assegnazione della variabili, e le funzioni non sono che
procedure generiche da applicare alle variabili e non dipendono in principio dai tipi delle variabili. Il Python
implementa in modo naturale il polimorfismo.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 55
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Programmazione ad oggetti in Python

In certi linguaggi e' possibile definire come operano gli operatori tipo somma, moltiplicazione etc., sulle istanze di
una classe. Gli operatori algebrici diventano speciali funzioni della classe, e si puo' dar senso ad operazioni
algebriche fra oggetti complessi, non solo fra numeri. Questo si chiama override degli operatori.

Programmazione ad oggetti in Python

Creazioni di classi ed istanze

L'implementazione delle classi in Python e' semplice. Si riduce ad un modo di isolare ed individuare nomi di
oggetti. Definire una classe significa dare ai nomi di variabili e funzioni una struttura gerarchica, che riflette la
gerarchia di classi base e classi derivate. In Python le classi sono semplicemente contenitori di nomi.

| programatori Python hanno l'abitudine di usare per i nomi delle classi nomi "capitalized", ovvero identificativi
composti da parole con la prima lettera maiuscola. Questa convenzione non €' obbligatoria, ma e' sempre
raccomandata.

Una classe e' definita con l'istruzione class:

class C3:
""" bl occo che definisce |la classe
a=[1, 2, 3]
b="abc'

Questa istruzione definisce la classe di nome C3; variabili, e funzioni della classe sono definite dopo listruzione
class, il blocco della definizione della classe, al solito, €' identificato da un rientro. Le variabili definite entro una
classe sono locali alla classe (private), sono accessibili alla classe ed alle sue derivate. Per accedere ad esse
fuori della classe bisogna che siano identificate in modo esplicito come membiri della classe.

cl ass Cl(object):
kk=3

class C3(C1, C2):
""" classe C3 che eredita dalle
classi Cl e C2""
a=66

Questa sintassi indica che la classe C3 eredita i membri delle classi C1 e C2. | membri di C1 e C2 sono
riconosciuti come membri di C3. La classe C1 eredita da object, la classe 'padre’ di tutte le classi in Python. In
Python 3 tutte le classi, anche se non lo si specifica, ereditano da object. In Python 2 occorre specificarlo,
oppure si creano di classi di vecchio tipo, che mancano di alcune caratteristiche ed hanno diverso modo di
cercare i nomi degli attributi nella gerarchia definita dall'ereditarieta’.

Per creare istanze della classe C3 si scrivono istruzioni del tipo:

oggett 01=C3()
oggett 02=C3()

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 56
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Attributi

ora oggetto 1 ed oggetto2 si riferiscono a 2 diverse istanze della classe C3; sono in pratica riferimenti a due
diverse copie di C3. Occorre fare attenzione a non dimenticare le parentesi tonde: oggetto1=C3 non crea un
istanza, ma un nuovo riferimento per la classe C3.

Per distruggere un'istanza si assegna al nome dell'istanza la stringa vuota:

a=Nonmed asse()
b=NormeC asse()

pb="" # L'istanza 'b" non ha piu riferinenti e viene elimnata.

Attributi

Le variabili di una classe sono chiamate attributi, le sue funzioni metodi. Insieme, attributi € metodi sono i
membri della classe. Nel programma Python, una volta istanziata la classe, gli attributi dell'istanza si indicano
con: nomeistanza.nomeattributo

Esempio:

cl ass NoneCl asse(object):
kk=3

a=Noned asse()
b=Normed asse()

a.kk vale 3
b. kk vale 3

Esistono attributi della classe (validi per tutte le istanze) ed attributi della singola istanza. Nell'esempio sopra kk
e' un attributo della classe, tutte le istanze lo hanno eguale quando sono create, ma poi si puo' cambiare. Se lo
si cambia riferendosi all'istanza si comporta come appartenente all'istanza e viene ridefinito come una variabile
dell'istanza, se invece si cambia riferendosi alla classe cambia per tutte le istanze che non lo hanno ridefinito.

Ad esempio, se ridefinizione di kk per la sola istanza 'a":
a.kk=10

b.kk vale ancora 3, NomeClasse.kk vale 3, ma se ridefinisco kk per la classe:
NomeClasse.kk=100

a.kk resta 10, dato che e' stato cambiato nell'istanza, ma ora b.kk e' cambiato, e se creo una nuova istanza
guesta avra' il nuovo valore di kk.

Un attributo della classe puo' anche essere definito da ‘fuori' della classe:
nomeclasse.jj=77
a.xyz=63

Ora sia b.jj che a.jj valgono 77, se invece definisco un attributo solo per un'istanza quello vale solo per l'istanza
ove lo ho definito:

a.xyz=63
L'istanza 'a' ha un nuovo attributo xyz, ma b.xyz , NomeClasse.xyz non esistono

Gli attributi della classe sono conservati internamente in un dizionario della classe, chiamato: _ dict__ I
dizionario puo' essere stampato con:

print(NomeClasse.__dict__)

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 57
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Docstring

Anche listanza ha il dizionario __dict __ ove sono solo gli attributi propri dell'istanza e non della classe, per
vederlo:

print(a.__dict_)

Gli attributi che iniziano con un doppio underscore: "__" sono locali alla classe e non sono visti da fuori. In realta’
sono solo nascosti ed hanno nome: "_nomeclasse__nomeattr" , per cui per un'istanza della classe si trovano
come: "nomeistanza._nomeclasse__nomeattr" , per la classe come: "nomeclasse._nomeclasse__nomeattr"

Anche gli attributi che iniziano con un singolo underscore:
locali, ma questi non sono neanche nascosti.

sono, per abitudine dei programmatori, attributi

Docstring

Come per le funzioni, anche nelle classi €' buona norma inserire una descrizione della classe all'inizio, in una
stringa che viene conservata nella variabile *__doc__ " della classe che puo' essere stampata con la funzione
"print" ed e' mostrata anche dalla funzione "help". Sia print che help possono essere chiamate con la classe
come argomento o con un'istanza come argomento:

cl ass NonmeC asse(object):
''' classe di prova
per fare prove "'
kk=3

a=Noned asse()

hel p(Noned asse)
print (Noned asse. __doc__)

ma anche hel p(a)
ma anche print(a.__doc_)

Metodi

Le funzioni definite entro le classi, chiamate metodi della classe, devono avere come primo argomento la parola
self che identifica l'istanza su cui opera la funzione. Le classi in Python non sono che sequenze di operazioni
effettuate su variabili individuate da nomi ed occorre distinguere su che istanza si sta operando. Entro una
funzione "self" si usa per indicare che una variabile od una funzione appartiene all'istanza della classe e non alla
classe in genere. In Python3 esistono istruzioni speciali, come il decoratore @classmethod, che permettono
eccezioni a questa regola, ma in genere abbiamo:

cl ass ProvaUno(object):
kk=3
def somma(self, a)
return (a+sel f.kk, atProvaUno. kk)

Entro le funzioni, le variabili di classe o di istanza, e non locali alla funzione, vanno precedute dal nome della
classe, con il punto, oppure da self, che punta all'istanza. Altrimenti sono solo interne alla funzione e non sono
viste da fuori.

La funzione viene chiamata sull'istanza, con:

d=Pr ovaUno()
d. somma(10) # eritorna la tupla: (13,13)

d. kk=10
d. somma(3) # ritorna (13,6) , kk e

canbi ata sol o per |'istanza

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 58
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Docstring

Notare come nella chiamata self non ci sia; siccome la chiamata e' qualificata con il nome dell'istanza davanti,
Python sa gia' quale e' listanza, e nella chiamata listanza e' sottintesa. L'interprete Python la mette lui
automaticamente.

Si puo' anche chiamare una funzione sulla classe, ma in questo caso si deve dare listanza come primo
argomento:

ProvaUno. somma(d, 100) # restituisce (1010, 1003)

In Python3, se la funzione non utilizza variabili dell'istanza, questa si puo' non mettere in argomento.

Altro esempio:

cl ass C3:

" stringa di docunentazi one della classe C3"
a=6
def printa(self):

print(C3.a)
def f(self):

print("f di C3, istanza:",self)
def somma(self,c,d):

sel f. b=7

return c+d+C3. atself.b

| 1=C3()
| 2=C3()

11.f()

Qui chiam la funzione f sull'istanza |1,

| "istanza e' passata alla funzione in nodo

aut omati co, nell'argonmento self.

f stanpera' la stringa:

"f di C3, istanza: <__nmain__.C3 object at 0x1b84ad0>"

| 1.somma(1l,2) # ottengo il valore: 16
a e' una variabile della classe e non dell'istanza.
C3. a=100 # canbi o una variabile della cl asse

a questo punto:

|2.somma(1l,2) # Oa ottengo 110
1. somma(1l,2) # anche qui, 110
forni sce 110, cone anche |1.somm(1, 2)

class C4:
" stringa di docunentazi one della classe C4"
a=6

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 59
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Inizializzazione delle istanze

def printa(self):
print(C4.a)
def f(self):
print (" f di C4, istanza: ", self)
def somma(self,c,d):
sel f. b=7
return c+d+C4. atself.b
def somma2(self,c,d):
sel f. b=7
return c+d+sel f.a+self.b

1 4=C4()

I 4. somma(1,2) ed |4.sormma2(1,2) m danno il val ore 16.

Nel l a funzi one sonma2 a contiene infatti il nunmero 6, sia cone
val ore della classe che cone val ore dell'istanza.

Se canbi o solo conme variabile di istanza:

1 4. a=1000

ho che 14.somm(1,2) m da senpre 16, nentre |14,somm2(1,2) nm da 1010.

Inizializzazione delle istanze

La funzione __init__, se presente, viene chiamata automaticamente quando si crea un'istanza: Gli argomenti
della __init__ sono gli argomenti dell'istruzione che crea l'istanza:

cl ass ProvaDue(object):
"docstring di prova

kk=3
def __init__ (self,a,b):
sel f. ka=a
sel f. kb=b
def printargs(self):
print "args:",self.ka,",",self.kb
i nst an=Pr ovaDue(10, 20) # istanza , con argonent
i nstan. printargs() # stanpa le variabili di istanza

Prima di __init__ viene chiamata __new__ ; funzione usata per cose particolari, come generare classi diverse in
funzione di certi parametri (class factory) e vari trucchetti. Questo non avviene per le classi di vecchio tipo del
Python 2.

La funzione __del__ viene chiamata prima che liistanza venga distrutta, anche se la distruzione avviene ad
opera del sistema automatico di garbage collection di Python.

Ereditarieta’, dettagli

Abbiamo visto che nell'ereditarieta’ la classe figlia ha , oltre ai suoi, anche gli attributi della classe padre:

cl ass A(object):
k=3

class B(A): # eredita A

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 60
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Uso attributi in una classe derivata

j=5

B.k vale 3, la classe B ha k B.j vale 5, ma A.j hon esiste

Per vedere le relazioni fra classi si possono usare le funzioni:

i ssubcl ass(derivata, parent) : che da true se e una sottocl asse
i sinstance(i stanza,classe) : che da true se e' una istanza

In Python esiste I'ereditarieta’ multipla ed una classe puo' ereditarne diverse:

cl ass AA(object):
aa=222

cl ass BB(object):
bb=444

cl ass CC(AA BB):
pass

Qui la classe CC non contiene nulla di suo (ha solo l'istruzione "pass"), ma ha sia l'attributo aa, che l'attributo bb.

Quando la struttura dell'ereditarieta’ €' complicata puo' essere che un attributo con lo stesso nome compaia in
diverse parti della gerarchia (il modo di cercare nella gerarchia e' chiamato: MRO: Method Resolution Order). In
Python 3 la ricerca degli attributi avviene salendo di un livello e cercando, da sinistra a destra, in tutte le classi
del livello superiore, poi salendo ancora di un livello e cosi' via. Le vecchie classi del Python 2 invece risalivano
tutta la gerarchia relativa al primo "parent” da sinistra, poi tutta la gerarchia relativa al secondo e cosi' via.

Uso attributi in una classe derivata

Contrariamente a quanto ci si aspetterebbe, in una classe derivata, od entro funzioni di una classe derivata, non
si possono usare, senza qualificarli, attributi della classe padre, non si puo’ quindi mettere:

cl ass A(object):
k=3

class B(A):
j=5
jj=)t+k # Questo, con k nella classe parent, non funziona

B.jj=B.j+B. k # Questo e' corretto

In questo caso Python cerca k nello scope globale e non lo trova, o, se trova un reference di nome k, usa quello.
Questo perche’ in Python gli statements dentro la classe sono valutati prima che la classe venga effettivamente
creata e si definiscano le regole di ricerca di attributi nello spazio dei nomi. In Python la gerarchia delle classi €'
infatti solo un criterio di ricerca nello spazio dei nomi.

Invece tutto va bene se jj=j+k viene definito dopo la definizione della classe, ad esempio, se fuori della classe si
ha:

B.jj=B.j+B.k

Qui infatti k €' riconosciuto come membro di B, in quanto ereditato da A (Vedi:
http://stackoverflow.com/questions/9760595/accessing-parent-class-attribute-from-sub-class-body ed anche:

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 61
Downloaded from http://www.helldragon.eu/

http://stackoverflow.com/questions/9760595/accessing-parent-class-attribute-from-sub-class-body
http://www.helldragon.eu/

Funzioni di classi ereditate

http://bugs.python.org/issue11339

Problemi analoghi si incontrano se, entro una classe, si usano metodi della classe senza qualificarli con il nome
della classe o con self. Infatti nell'eseguire gli statements dentro la classe Python semplicemente gli mette
davanti un qualificatore, e se, nell'uso, il qualificatore manca, il programma da errore. Per cui la classe seguente
da errore, quando si chiama la funzione addtwice:

cl ass Bag:
def __init__ (self):
self.data = []
def add(self, x):
sel f. dat a. append(x)
def addtwi ce(self, Xx):
add(x)
add(x)

Funziona se si mette (vedi "The Python Tutorial" , di Van Rossum):

cl ass Bag:
def __init_ (self):
self.data = []
def add(self, x):
sel f. dat a. append(x)
def addtwi ce(self, x):
sel f. add(x)
sel f. add(x)

Funzioni di classi ereditate

In una classe, se si devono chiamare le funzioni di una classe ereditata o di un'altra classe, si deve fornire
l'argomento "self", e chiamare la funzione sulla classe:

cl ass AA(object):
def print3(self):
print("3 in AA")
cl ass BB(AA):
def print33(self):
AA. print3(self) # chiamo print3 della classe AA, dandogli |'istanza
print("33 in BB")

b=BB()
b. print33() # stanpa : "3 in AA" e, nella riga seguente: "33 in BB"

Override attributi

La classe figlia puo' ridefinire attributi della classe padre:

cl ass A(object):
k=3

class B(A): # eredita A
j=5

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 62
Downloaded from http://www.helldragon.eu/

http://bugs.python.org/issue11339
http://www.helldragon.eu/

Inizializzazione ed ereditarieta’

class C(B): # eredita B
k=33 # ridefinisce K, delle classe A

Qui C eredita B che eredita A, ma C ridefinisce k, per cui A.k e B.k restano 3, ma C.k vale 33

Inizializzazione ed ereditarieta’

L'inizializzazione di una istanza e' effettuata dalla funzione __init__. Occorre pero' tener presente che una classe
non chiama in modo automatico la __init__ della classe padre. Questa operazione, se necessaria, deve essere
fatta in modo esplicito nella classe __init__ della figlia, con istruzione del tipo:

super. __init_ (self,..)

Overloading operatori e funzioni speciali

Gli operatori algebrici possono essere ridefiniti per una classe, facendoli corrispondere a funzioni speciali della
classe; In questo modo e' possibile definire operazioni fra oggetti complessi con la sintassi delle normali
operazioni algebriche.

Questo viene fatto definendo le funzioni speciali; queste sono le funzioni vengono chiamate da Python quando
incontra operazioni fra istanze della classe.

Ad esempio, una classe che descrive vettori puo' definire una somma ed un prodotto vettoriale con:

cl ass Vector(object):
def __init_ (self,a, b):
sel f.a=a
sel f. b=b

def _ add__ (self,other):
return (self.a+other. a, sel f.b+other.b)

def __mul __ (self,other):

return sel f.a*other.a+sel f.b*other.b

x=Vector (1, 2)
y=Vect or (10, 20)

print x+y # fornisce la tupla (11, 22)
print x*y # fornisce il nunero 50

Ci sono di queste funzioni per i confronti, gli operatori logici etc.:

_add__(self,other) , _sub_(self,other) , div__ (self,other)
_ It (self,other), __le (self,other)

_eq__(self,other) , __ ne_(self,other)

_ gt (self,other) , _ ge_(self,other)

Ci sono tutti gli operatori, perfino un operatore "__call__" : usato nel caso la classe sia chiamata come fosse una

funzione, con una coppia di parentesi ed argomenti.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 63
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Decoratori di classi

Sono importanti alcune funzioni chiamate quando si cerca, o non si trova, un attributo. Queste permettono di
definire I'attributo a run-time:

__getattr__(self, none) . viene chiamata quando non si trova
un attributo, di dato none.
Questa funzione ritorna |"attributo,
def i nendol o.

__getattribute_(self,none) : viene chiamata quando ci si riferisce
ad un attributo che esiste,
ma NON se e' definita __getattr_
Pernmette di nodificare un attributo a run-tine

__getitem _ (self,index) . viene chiamata quando si incontra,
per la classe, |'indice fra quadre X[i] ,
ove X e' |'istanza di una cl asse.

Questo fa apparire la classe conme una |ista.

Quando una classe sinmula una lista sono utili anche, per
operazioni sugli elenenti della sequenza che |a classe simnula:
__setitem , _delitem___len__ _ contains__ __index___

C sono anche operatori per creare iteratori sulla sequenza:
iter , __hext

Altri membri speciali:

__hew__ : viene chiamato prima di __init__, per usi particolari
__del : chiamato prinma della distruzione della classe
_str__ . Vviene chiamato per convertire |'oggetto in una

stringa per |e stanpe dell' oggetto.

_repr__ Vi ene chi amat o per una rappresentazi one testual e
del | ' oggetto, ad esenpio nell'uso interattivo

_call__ : usato caso nai l|la classe sia chiamata cone fosse
una funzi one

__hame__ __class__ : sono il none della classe ed un

puntatore alla classe stessa

__bases_ : tupla di classi base (classi da cui si eredita)
La classe base di tutte e': object.

_dict__ : dizionario di attributi della classe

Decoratori di classi

In Python > 2.6 ci sono i decoratori anche per le classi. sono funzioni che prendono in argomento una classe, ci
fanno modifiche, aggiunte, o fanno cose accessorie, poi restituiscono la classe modificata.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 64
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Metaclassi

Esempio:

def decnane(cl assnane, a, b, c):
operazi oni varie con classnane
return cl assnamne

C'e' una sintassi abbreviata quando si vuole applicare il decoratore ad una classe:

@ecnane
cl ass cl assnane(object):

Alcuni decoratori predefiniti sono:

» @staticmethod :
e' un decoratore che rende una funzione statica, ovvero che viene chiamata senza riferirsi ad
un'istanza, ma €' una funzione della classe, unica per tutta la classe. (vale per python > 2.2)

* @classmethod :
e' come @staticmethod, ma in automatico ha come primo argomento il nome della classe.(python
>2.2)

* @abstractmethod :

in Python3, crea funzione astratta (virtuale) in una classe padre. Questa funzione deve essere
ridefinita nelle classi figlie. Ed una classe con metodi astratti non puo' essere istanziata
direttamente, ma solo ereditata.

Metaclassi

Internamente Python crea le classi (le definizioni delle classi) istanziando la classe: "type", che, €' una
"metaclasse”, cioe' una classe le cui istanze sono delle classi.

E' possibile estendere la classe "type" e creare una propria metaclasse, ove si ridefiniscono le funzioni __init__
e la _new__ in modo da modificare il comportamento di base dela classi. Per utilizzare la propria metaclasse
invece della metaclesse type si usa una sintassi del tipo:

class nomeclassse(metaclass=nomemetaclasse):

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 65
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Moduli

Moduli

Programmi python possono essere organizzati in files, contenuti in una gerarchia di directory.

Un file costituisce un "modulo”, un insieme di istruzioni e dati auto-consistente. Il nome del file €' il nome del
modulo, senza il suffisso, che per files con istruzioni Python e’ ".py" . Ma i moduli possono essere in un formato
compresso (con zip), ed in questo caso hanno suffisso ".egg" (da Python 2.6), oppure possono essere files
compilati, scritti con un altro linguaggio, ed in questo caso hanno suffisso ".so" .

I nomi dei files contenenti i moduli sono soggetti alle stesse regole dei nomi di variabili, infatti Python usa il nome
del file, senza suffisso, come riferimento al modulo. Per cui nomi con spazi o caratteri speciali non sono
accettati.

| file dei moduli possono iniziare con una stringa che descrive il modulo e viene conservata nell'attributo
__doc__ del modulo stesso. Un dizionario con tutti gli oggetti, le variabili e le funzioni del modulo €' messo da
Python nell'attributo __dict__ del modulo.

Diversi moduli sono organizzati in "packages"”, che occupano una directory. Il nome del package e' il nome della
directory. Per essere considerata un package una directory deve contenere un file di nome __init__.py , che
puo' anche essere vuoto, ma in genere contiene istruzioni che che inizializzano il package.

Un package puo' contenere subpackages, in sottodirectory.

I moduli hanno due funzioni principali:

« costituiscono software riutilizzabile

« identificano ed isolano un insieme di nomi di oggetti: un modulo definisce infatti uno spazio dei nomi
(namespace), in cui python cerca i nomi di variabili, oggetti, funzioni.

Per riferirsi ai nomi del modulo occorre usare il nome del modulo come prefisso. Ad esempio il dizionario
__dict__ del modulo sys sara' accessibile con la sintassi: sys. _dict__ .

Python cerca i files con i moduli nella directory corrente, poi nelle directory specificate nella variabile di
ambiente: di nome PYTHONPATH , nelle directory delle librerie standard, oppure in directory indicate in un file
con estensione .pth , nella directory principale del python (variabile di ambiente PYTHNHOME), infine nelle
directory specifica del computer per pacchetti ausiliari (site-packages o dist-packages).

Per vedere i percorsi utilizzati per cercare i moduli si deve esaminare la variabile path del modulo di sistema sys,
che contiene la lista delle directory ove si cercano i moduli. Ad esempio, in Linux Debian 7, per Python3, senza
aver assegnato PYTHONPATH, si ha:

["", "lusr/lib/python3.2',
"fusr/libl/python3. 2/plat-1inux2',
"fusr/libl/python3. 2/1ib-dynl oad',
"fusr/local/lib/python3. 2/dist-packages',
"fusr/lib/python3/dist-packages’

Per utilizzare un modulo in un programma bisogna "importarlo”. In modo che Python possa eseguire il codice del
modulo, costruire le classi in esso contenute ed organizzare i nomi degli oggetti. La byte-compilation di un
modulo viene effettuata quando il modulo viene caricato.

Il comando per importare un modulo in un file A.py e":
import A

a questo punto oggetti definiti nel file A.py possono essere utilizzati riferendosi ad essi con un nome tipo:
A.nomeoggetto

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 66
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Moduli

L'istruzione import importa moduli una volta sola nel programma, ulteriori istruzioni import per lo stesso modulo
non vengono eseguite.

Per riferirsi agli attributi del modulo usando un prefisso a scelta, invece del nome del modulo si usa la sintassi:
import A as newname
Qui ci si riferisce ad un attributo con: newname.attributo , invece che A.attributo , che non vale piu'.

L'istruzione from permette di importare solo alcuni oggetti da un modulo, ed i nomi vengono inseriti nel
namespace corrente, per cui hon occorre piu’ il nome del modulo come prefisso. La sintassi e':

from nomefile import nome,altronome
Per usare un nome diverso per un oggetto importato:

from nomemodulo import nomeoggetto as altronome, nomeoggetto2 as altronome?2
Per importare tutti i nomi del modulo nel namespace corrente:

from nomefile import *

Se il file con il modulo viene modificato occorre reimportare il file e rieseguire l'istruzione from. In Python 2, per
ricaricare un modulo c'e' lo statement reload. in Python 3 c'e' una funzione, che fa parte del modulo imp:

import imp
imp.reload(nomemodulo)

Se i moduli sono in una gerarchia di packages (e di directory) si importano con istruzioni tipo:
import nomepackagel.nomepackade2.modulo

Se si vuole importare un package si usa import con il nome della directory del package e Python esegue il file
__init__.py che trova in questa directory. Spesso questo file importa i singoli file del package.:

import nomedir
Se si importa un sub-package con un'istruzione tipo:
import nomedir.nomesubdir.nomesubdir
Vengono eseguiti nell'ordine, i files __init__.py che Python trova nelle diverse directory.

Siccome le directory in cui si cercano i moduli sono nella lista path del modulo sys, si possono aggiungere
directory a run time con istruzioni tipo:

i nport sys
sys. pat h. append(' /dir/subdir/")

Come esempio poniamo di avere un modulo costituito da un file : Esempio_modulo.py , contenente:

Esempi o di nodul o, che contiene al cuni
attributi e classi
a=1
cl ass A(object):
Al NA=32
cl ass B(object):
def __init_ (self,u,v):
sel f. x=u
sel f.y=v

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 67
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Libreria standard

def printargs(self):
print("args:",self.x,",",self.y)

Si possono importare gli oggetti del modulo ed eseguire le funzioni con

i nport Esenpi o_nodul o as Es

print(Es._ doc__) # stanpa | a docstring del nodul o
print(Es.a) # stanpa attributo 'a' del nodul o
print(Es.A AinA) # stanpa attributi della classe 'A

i st=Es.B(1, 2) # istanzio la classe 'B
ist.printargs() # esegui funzione della classe

Per importare i nomi nel namespace corrente:

from Esenpi o_nodul o i nport *
A. Ai nA # 'A e senza prefisso

Libreria standard

Python viene distribuito assieme ad un'ampia collezione di moduli, che costituiscono la libreria standard.

Il modulo "sys" contiene funzioni per interfaccia con i comandi che fanno partire il Python, fra queste:

i nport sys
Sys. argv : argonenti del progranmma principal e
sys.exit() : esce dal programa
sys. nodul es : noduli caricati
sys. path : search path dei noduli
SyS. psl sys. ps2 : pronpt del python
sys. stdin, sys.stderr, sys.stdout : input/output di default

Il modulo "os" ha funzioni di interfaccia con il sistema operativo, ha funzioni per gestire i files etc. etc. puo' fare
guasi tutto quello che si fa da una shell di Unix:

i nport os
0s. systen(' pwd') . esegue conmando di shel
0S. environ : variabili di anbiente
0s. put ev(nome, val ore) . aggi unge variabile di anbiente
0s. unane() : nel sistema in Unix

Il modulo "re" serve per le espressioni regolari, ad esempio:

i mport re

pobj = re.conpile('hello[\t]*(.*)") : crea espressione regol are

mobj = pobj.match(' hello world!") . fail match, da True o Fal se

nmobj . group(1) . sottostringhe espressione regol are

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 68
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Libreria standard

Per le funzioni trigonometriche e varie funzioni matematiche c'e' il modulo "math" , per date ed ora i moduli
"time" e "datetime" "pickle" e "json" sono moduli per la serializzazione (trasformare strutture complesse in
stringhe), "tkinter" serve per l'interfaccia al linguaggio "tk" per fare interfacce grafiche, Ci sono poi moduli per
accesso a database, per leggere e scrivere files in formato csv, per costruire applicazioni di rete ed altri.

Moduli ausiliari si trovano in rete, in http://pypi.python.org/ c'e' un vasto indice di moduli. Ci sono programmi
appositi (easy_install, pip), per recuperare ed installare packages da questo archivio.

Fra questi moduli ausiliari possono essere utili numpy che contiene classi per trattare vettori e matrici; matplotlib
per fare grafici, scipy per analisi dati scientifici.

Appunti per un corso di Python, Version: 03-10-2014 23:21, by Marcello Galli. Pag. 69
Downloaded from http://www.helldragon.eu/

http://pypi.python.org/
http://www.helldragon.eu/

	Appunti per un corso di Python
	Introduzione
	Il Linguaggio Python
	Caratteristiche del linguaggio
	Interpretato, ma con produzione di "bytecode".
	Sintassi semplice.
	Orientato agli oggetti.
	Strutture complesse gia' implementate.
	Facile integrazione con altri linguaggi.
	Funzionalita' gia' pronte.
	Caratteristiche peculiari.
	Uso
	Interfaccia grafica: idle

	Sintassi
	Variabili
	Riferimenti ed oggetti
	Keywords
	Tipi
	Docstring:

	Operatori
	Operatori aritmetici
	Operatori bit a bit
	Operatori di assegnazione
	Operatori logici
	Operatori logici per i confronti.
	Operatori logici per l'appartenenza
	Separatori
	Conversioni fra tipi
	Operazioni per sequenze
	Operazioni per sequenze mutabili
	Operatore di formattazione per le stringhe: %
	Precedenza degli operatori
	Funzioni per help

	Istruzioni
	Istruzione print
	Assegnazione
	Blocchi logici
	Esecuzione condizionale
	Istruzione with
	Istruzioni cicliche
	Iterabili ed iteratori
	List comprehensions
	Funzioni per iterabili
	Funzioni exec ed eval

	Le Stringhe
	Sottostringhe
	Operazioni su stringhe
	Funzioni per le stringhe

	Liste
	Operazioni sulle liste
	List comprehension

	Tuple
	Sets e Frozensets
	Dizionari
	Funzioni
	Argomenti
	Valori restituiti
	Campo di validita' della funzione (scope della funzione)
	Campo di validita' delle variabili (scope delle variabili)
	Funzioni lambda
	Docstring
	Attributi delle funzioni
	Decorators

	I files
	Input/Output da terminale
	Uso di files

	Eccezioni
	Eccezioni in Python
	Classi di eccezioni generate da Python
	Istruzione assert

	Programmazione ad oggetti
	Programmazione ad oggetti in Python
	Creazioni di classi ed istanze
	Attributi
	Docstring
	Metodi
	Inizializzazione delle istanze
	Ereditarieta', dettagli
	Uso attributi in una classe derivata
	Funzioni di classi ereditate
	Override attributi
	Inizializzazione ed ereditarieta'
	Overloading operatori e funzioni speciali
	Decoratori di classi
	Metaclassi

	Moduli
	Libreria standard

