

FONDAMENTI DI PROGRAMMAZIONE IN
PYTHON

FABIO PELLACINI

VERSIONE 1.0.0

Copyright © 2016 Fabio Pellacini

Tutti i diritti riservati. Nessuna parte di questo libro può essere riprodotta,
memorizzata o trasmessa senza l’esplicito consenso dell’autore. Il codice è
rilasciato come open source sul sito github.com/xelatihy/fondamentibook.

Il contenuto di questo libro è distribuito senza garanzie di alcun tipo,
esplicite o implicite, come ad esempio le garanzie di commerciabilità,
idoneità ad un fine particolare o di non violazione dei diritti di altri. In nessun
caso l’autore potrà essere ritenuto responsabile per qualsiasi reclamo,
danno, o altro tipo di responsabilità, derivante o in connessione con il
contenuto di questo libro, il suo utilizzo o altre attività relative allo stesso.

Nomi e marchi citati nel testo sono generalmente depositati o registrati dalle
rispettive aziende. Alcune immagini contenute in questo libro sono in Public
Domain e reperite sul sito di Wikipedia. Questo ebook è riprodotto con l’uso
delle fonts open source Open Sans e Hack.

http://github.com/xelatihy/fondamentibook

PREFAZIONE

Questo libro introduce i principianti alle principali idee della
programmazione utilizzando il linguaggio Python. Il mio scopo non è quello
di presentare un trattamento completo di tutti i principi di programmazione
né di coprire tutti gli aspetti del linguaggio stesso. Voglio invece mostrare, in
modo succinto, come si possono affrontare problemi di programmazione
reali.

Dopo una breve introduzione ai basilari concetti di programmazione, ogni
capitolo considera un problema, ne discute come modellarlo al calcolatore, e
introduce nuovi concetti di programmazione utili alla sua risoluzione. Ho
scelto problemi da campi applicativi diversi per mostrare diversi stili di
programmazione. Le soluzioni presentate sono succinte ma funzionali,
implementate facendo un uso esteso della libreria standard di Python e di
librerie esterne.

Questo libro è stato scritto in literate programming, uno stile di scrittura in cui
il testo è un commento al codice di ogni capitolo. Ogni capitolo è infatti un
programma Python eseguibile che, quando appropriato, calcola valori su dati
scaricati da Internet. Questa è forse la differenza maggiore tra questo testo e
la moltitudine di libri già presenti. Il codice per ogni capitolo è rilasciato sul
sito github.com/xelatihy/fondamentibook.

Il materiale da cui questo libro deriva è stato usato come supporto
all’insegnamento del corso di Fondamenti di Programmazione offerto dal
Dipartimento di Informatica dell’Università di Roma La Sapienza. Ringrazio
Riccardo Silvestri per l’aiuto nel redigere il materiale originale, e i colleghi
Chierichetti, De Marsico, Melatti, e Wollan per avere supportato il corso.

https://github.com/xelatihy/fondamentibook

Dopo avere testato questo metodo di insegnamento per vari anni in classe,
ho deciso di pubblicarlo in forma di libro nella speranza che aiuti una nuova
generazione di principianti nell’apprendimento della programmazione.

Happy hacking! Buona programmazione!

Settembre 2016

Fabio Pellacini

a Camilla

INDICE

1. I Computer e la Programmazione

L’Architettura degli Elaboratori. La Memoria e I Dati. La CPU e i
Programmi. Linguaggi a Basso Livello. Linguaggi ad Alto Livello. Storia
dei Linguaggi di Programmazione. Sviluppo Software. Programmazione
Moderna.

2. Primi Passi in Python

Installazione di Python. Esecuzione di Programmi in Python.
Programmazione Interattiva. Errori di Programmazione. Risorse per
Programmare in Python.

3. Python come Calcolatrice

Espressioni Aritmetiche. Commenti. Stampa di Valori. Stringhe. Tipi e
Conversioni. Variabili e Assegnamenti. Incrementi.

4. Riutilizzo di Istruzioni

Funzioni. Funzioni predefinite. Funzioni che Ritornano Più Valori.
Parametri Opzionali. Moduli e File. Documentazione Interattiva.

5. Prendere Decisioni

Valori Booleani. Operatori Relazionali. Operatore di appartenenza.
Istruzioni Condizionali. Moduli e Programmi.

6. Sequenze di Dati

Liste. Tuple. Operazioni su Sequenze. Operatori Relazionali e di
Appartenenza. Elementi di Sequenze. Unpacking di Valori.
Sottosequenze o Slices.

7. Iterazione su Sequenze

Iterazione su Sequenze. Iterazione su Sequenze di Interi. Iterazione con
Condizionali. Controllo dell’Iterazione. Iterazione su Condizione.
Iterazione e Unpacking. Comprehensions.

8. Oggetti e Metodi

Oggetti, Tipi e Identità. Oggetti Funzione. Assegnamento di Oggetti.
Metodi. Metodi delle Liste.

9. Tabelle di Dati

Dizionari. Insiemi. Tabelle di Dati. Estrazione di Dati. Ricerca di Dati.
Ordinamento di Dati.

10. Accesso ai Dati

File e Percorsi. Apertura di File. Codifica dei File di Testo. Lettura di File.
Scrittura di File. Input e Output di Dati. Accedere a Documenti sul Web.

11. Elaborazione di Testo

Metodi delle Stringhe. Elaborazione del Testo. Ricerca di Documenti.

12. Elaborazione di Immagini

Rappresentazione dei Colori. Rappresentazione di Immagini.
Salvataggio di Immagini. Creazione di Immagini. Accesso ai Pixel.
Operazioni sui Colori. Caricamento di Immagini. Copie e Cornici.
Rotazioni. Modifica dei Colori. Mosaici. Spostamento di Pixels.

13. Tipi Definiti dall’Utente

Classi. Costruttore. Oggetti. Metodi. Metodi speciali. Incapsulamento.

14. Esplorare il File System

Esplorare il File System. Ricorsione. Alberi. Alberi di Oggetti.

15. Documenti Strutturati

HTML. Rappresentazione di Documenti HTML. Parsing di Documenti
HTML. Operazioni sui Documenti.

16. Interfacce Utente

Programmi Interattivi. Librerie per Interfacce Utente. Applicazioni Qt.
Metodi Statici. Widgets, Eventi e Callbacks. Layouts. Esempio:
TextEditor. Esempio: WebBrowser.

17. Grafica Interattiva

Scheletro dell’Applicazione. Disegno di Forme. Pulizia dell’Immagine.
Interazione. Variabili Globali. Trasformazioni.

18. Giochi

Stato del Gioco. Grafica. Aggiornamento del Gioco. Interazione.

19. Simulazione Interattiva

Simulazione di Particelle. Vettori. Modello per le Particelle. Struttura del
Programma. Simulazione del Moto. Parametri di Simulazione.
Creazione di Particelle. Forze. Interazione. Generazione Continua.
Collisioni.

20. Applicazioni Web e CLI

Struttura dell’Applicazione. Funzionalità Logiche dell’Applicazione.
Decoratori. Interfaccia a Riga di Comando. Interfaccia Web.

21. Navigare Labirinti

Grafi. Rappresentazione di Grafi. Visualizzazione di Grafi. Labirinti.
Visita di Grafi. Visita in Ampiezza. Visualizzazione della Visita. Sottografi.

Componenti Connesse. Distanze. Albero di visita. Generazione di
Labirinti. Mappe come Grafi di Pixels. Visita di Grafi di Pixel.

22. Web Crawling

Gestione degli Errori. Web Crawling. Scaricare una Pagina. Elenco dei
Links.

1 I COMPUTER E LA PROGRAMMAZIONE

L’uso dei computer è ubiquo nel mondo moderno. I computer esistono in
varie forme fisiche, come ad esempio desktops, laptops, tablets e
smartphones. I computer sono macchine polivalenti in grado di eseguire
applicazioni molte diverse. Possono ad esempio essere usati per scrivere
testo, navigare il web, scrivere ed leggere emails o vedere filmati. Questo è
possibile perché i computer sono programmabili. Per eseguire
un’applicazione il computer esegue una serie di istruzioni contenute in un
programma. La programmazione è l’attività di scrivere programmi per il
computer.

Prima di iniziare a parlare concretamente di programmazione facciamo una
breve panoramica sull’organizzazione dell’hardware, la rappresentazione
delle informazioni in un computer e una brevissima storia dei linguaggi di
programmazione.

1.1 L’ARCHITETTURA DEGLI ELABORATORI

L’hardware è la realizzazione fisica di una computer, cioè i circuiti integrati
che lo definiscono. L’organizzazione di un computer, da un punto di vista
logico-funzionale, non è cambiata molto da quando è stata proposta con
sorprendete chiarezza da John von Neumann nel 1945 e che è conosciuta
con il nome appunto di “architettura di von Neumann” e mostrata
schematicamente qui a seguito.

Un computer è costituito dal processore centrale, o Central Processing Unit
(CPU), dalla memoria centrale, o Random Access Memory (RAM), e da una
serie di dispositivi di I/O, collegati da uno o più linee di comunicazione, o bus.
La CPU esegue i programmi e tramite essi governa e controlla l’hardware
dell’intero computer. I programmi e i dati che i programmi necessitano per
l’elaborazione sono mantenuti nella memoria RAM. La CPU legge e scrive
direttamente la memoria centrale. RAM è il nome generico di un tipo di
tecnologia per le memorie. La memoria centrale comprende in realtà una
gerarchia di memorie che oltre alla RAM vera e propria include memorie più
piccole e veloci dette memorie cache. La CPU e la RAM sono connesse
tramite una linea di comunicazione ad altissima velocità denominata bus di
sistema.

La RAM è una memoria volatile, cioè mantiene il suo contenuto solamente
mentre il computer è in funzione. Il disco o le memorie Flash sono memorie

permanenti, dette memorie secondarie, che mantengono invece il loro
contenuto anche quando il computer è spento. I contenuti della RAM
possono all’occorrenza essere scritti su disco e viceversa i contenuti del
disco possono essere caricati in RAM.

Per interagire con l’esterno il computer usa una serie disparata di dispositivi
di Input e Output (I/O), come tastiere, mouse, schermi e touch screens. Dal
punto di vista architetturale, le memorie secondarie vengono considerate
dispositivi di I/O. I dispositivi di I/O funzionano attraverso controllori
hardware appositi che convertono eventi del mondo reale in informazioni
per la CPU. In questo modo la CPU può essere avvertita di quando, ad
esempio, il mouse è mosso o un tasto delle tastiera è stato premuto.
Viceversa, la CPU può inviare comandi ai dispositivi di output, come ad
esempio definire il colore dei punti dello schermo. I dispositivi di I/O sono
connessi al bus di sistema tramite un altro tipo di bus detto bus di I/O.

1.2 LA MEMORIA E I DATI

L’hardware è in grado di interpretare un solo tipo di dato elementare che è il
bit, o binary digit, capace di assumere due stati 0 e 1 . Tutti i dati in un
computer sono rappresentati tramite opportune sequenze di bit, ovvero
sequenze di 0 e 1 , attraverso specifici formati. Ad esempio esistono formati
per numeri, testo, immagini, musica, video, ecc. Qualsiasi cosa che può
essere rappresentata da sequenze di bits può essere elaborata da un
computer o trasmessa tramite reti di computer come Internet.

Per misurare la quantità di memoria si preferisce usare il byte che
corrisponde a 8 bit consecutivi. Un byte può assumere 256 stati, cioè tutti i
possibili stati di una sequenza di 8 bit. Un byte può rappresentare ad
esempio tutti valori interi da 0 a 255.

La memoria centrale può essere vista, da un punto di vista funzionale, come
una lunga sequenza di byte. Ogni byte della memoria è accessibile tramite il
suo indirizzo, il primo byte ha indirizzo 0, il secondo 1, il terzo 2 e così via.
Quindi la CPU, ovvero un programma, può leggere o scrivere un qualsiasi
byte della memoria indicandolo con l’appropriato indirizzo.

Oggigiorno le memorie sono grandi come anche i dati da elaborare. Per
misurarle si usano vari multipli del byte: il kilobyte (KB) corrispondente a
1024 byte, il megabyte (MB) corrispondente a 1024 KB, il gigabyte (GB)
corrispondente a 1024 MB, e il terabyte (TB) corrispondente a 1024 GB.
Tipiche memorie RAM per laptop e desktop si aggirano dai 4 ai 16 GB,
mentre per gli smartphones vanno da 1 a 4 GB. Tipiche memorie secondarie
vanno da 256 GB a 2 TB per laptop e desktop, e dai 16 ai 128 GB per gli
smartphones.

Per rappresentare informazioni del mondo reale in binario occorre definire
delle codifiche, che sono convenzioni su come convertire dati reali in
sequenze di bits. Ad esempio, la tabella ASCII mette in relazione ogni
carattere usato dagli alfabeti inglesi con un valore specifico rappresentabile

da un byte. Qui sotto riproduciamo una tabella ASCII da un manuale di
stampante del 1972.

La codifica di altri dati tipicamente necessita di più di un byte. Ad esempio i
numeri usano 4 o 8 bytes. Per ogni tipo di dato possono esistere più di una
codifica. Ad esempio, la codifica Unicode UTF8 estende l’ASCII per
rappresentare i caratteri di tutti i possibili alfabeti. Un altro esempio sono le
immagini che possono essere codificate come JPG o PNG.

1.3 LA CPU E I PROGRAMMI

Il comportamento di un computer durante l’esecuzione di una applicazione è
controllato da un programma, che è definito da una serie di istruzioni. Le
istruzioni sono contenute in memoria e codificate con opportune sequenze
di bytes. La CPU è solo in grado di eseguire istruzioni molto semplici, come
ad esempio:

lettura e scrittura di una sequenza di bytes in memoria, tipicamente 4
o 8;

lettera e scrittura di registri, che sono piccolissime memorie interne
alle CPU;

operazioni aritmetiche e logiche con operatori memorizzati nei registri;

salti dell’esecuzione di istruzioni in un particolare punto del
programma.

Una CPU esegue un semplice ciclo ripetutamente. Legge la prossima
istruzione dalla memoria, la decodifica e la esegue leggendo dati dalla
memoria, effettuando qualche operazione aritmetica o logica e scrivendo il
risultato in memoria o in un registro. Poi ripete questo ciclo leggendo
un’altra istruzione, ecc…

I processori sono velocissimi, potendo eseguire miliardi di istruzioni al
secondo. Generalmente la velocità di un processore, cioè il numero di
istruzioni che può eseguire al secondo, può essere approssimata dal
numero di cicli che l’hardware esegue al secondo. L’unità di misura è l’hertz
che corrisponde ad un ciclo al secondo, e i suoi multipli: il kilohertz (KHz)
corrispondente a 1000 hertz, il megahertz (MHz) corrispondente a 1000 KHz,
e il gigahertz (GHz) corrispondente a 1000 MHz. Le CPU attuali di notebooks,
desktops e smartphones si aggirano da 1 a 3 GHz.

1.4 LINGUAGGI A BASSO LIVELLO

Ogni tipo di CPU ha il suo repertorio di istruzioni e questo è chiamato
linguaggio macchina. Ad esempio, il linguaggio macchina di un processore
x86, usato in notebooks e laptops, è differente da quello di un processore
ARM, utilizzato in smartphones. In linea di principio tutti i computer
potrebbe essere programmati direttamente nel loro linguaggio macchina.

I primissimi computer potevano essere programmati solamente in questo
modo. Nonostante i programmi di allora non fossero molto grandi si sentì
subito l’esigenza di poter programmare in un linguaggio più leggibile e
quindi meno suscettibile a semplici errori di scrittura. Già negli anni ’50 fu
introdotto il linguaggio assembly. Questo linguaggio permette di scrivere le
istruzioni in un modo simbolico più facile per i programmatori da
comprendere.

La traduzione da assembly a linguaggio macchina è essere eseguita da un
opportuno programma chiamato assembler. L’assembler è un primo
esempio di un programma che manipola un altro programma. Questa idea è
al cuore dello sviluppo software moderno.

Il linguaggio assembly è sicuramente più agevole del linguaggio macchina
ma è ancora un linguaggio molto difficile da usare per scrivere programmi
medio-grandi. Inoltre, al pari del linguaggio macchina è specifico per un
certo tipo di processore. Un programma scritto nell’assembly di una
particolare CPU, diciamo un processore x86 di un laptop, sarà differente da
un programma per lo stesso compito per una differente CPU, ad esempio il
processore ARM di un cellulare. Se si vuole convertire un programma in
assembly per un processore in uno in assembly di un altro processore, il
programma deve essere completamente riscritto. Per queste ragioni sono
stati molto presto introdotti i cosiddetti linguaggi ad alto livello.

1.5 LINGUAGGI AD ALTO LIVELLO

Software è un termine generale per indicare le sequenze di istruzioni che
determinano il comportamento di un computer. Ovvero, il software sono i
programmi. Questi non sono più scritti direttamente in linguaggio macchina
o in linguaggio assembly, eccetto casi molto rari, ma in linguaggi più facili e
più leggibili per i programmatori, detti linguaggi ad alto livello. Ci penserà il
computer stesso, tramite opportuni programmi, a tradurre in linguaggio
macchina i programmi scritti in un linguaggio ad alto livello.

Tra la fine degli anni ’50 e l’inizio degli anni ’60 fu intrapreso uno dei più
importanti passi nella storia della programmazione dei computer: lo
sviluppo di un linguaggio ad alto livello, cioè un linguaggio indipendente dalla
specifica architettura della CPU. Oltre a questo vantaggio, i linguaggi ad alto
livello sono molto più vicini al modo di esprimersi degli esseri umani,
permettendo di scrivere software più agevolmente.

Un programma scritto in un linguaggio ad alto livello è convertito da un
programma traduttore nel linguaggio macchina di uno specifico processore.
Se la traduzione avviene una sola volta, il linguaggio di dice compilato e il
programma traduttore è un compilatore. Se la traduzione avviene ogni volta
che il programma viene eseguito, il linguaggio si dice interpretato e il
programma traduttore è un interprete. L’uso degli interpreti semplifica la
creazione dei linguaggi di programmazione dato che, in generale, gli
interpreti sono più semplici da scrivere dei compilatori, e possono essere
portati da una architettura hardware all’altra molto semplicemente. I
compilatori hanno invece il vantaggio che il programma eseguito è molto più
veloce.

Esistono moltissimi linguaggi ad alto livello che differiscono per campo
applicativo, metodo di traduzione, livello di astrazione dell’hardware. Sono
stati inventati migliaia di linguaggi di programmazione ma solo poche
centinaia sono usati. Tra i linguaggi compilati ci sono Java, C/C++, C#, Visual
Basic. Tra quelli interpretati ci sono JavaScript, Python, PHP, Ruby.

Sebbene tutti i linguaggi di programmazione siano logicamente equivalenti,
non sono affatto tutti ugualmente adatti per i vari tipi di programmi. C’è un
mondo di differenza tra scrivere un programma in JavaScript che controlla
una sofisticata pagina web e scrivere un programma in C++ che implementa
il compilatore JavaScript.

1.6 STORIA DEI LINGUAGGI DI PROGRAMMAZIONE

I primi linguaggi ad alto livello erano dedicati a campi applicativi specifici.
Alla fine degli anni ’50, il FORTRAN, nome derivato da Formula Translation, fa
sviluppato da un team dell’IBM per programmare calcoli scientifici e
ingegneristici. Sempre negli anni ’50 il COBOL, Common Business Oriented
Language, si facolizzava su applicazioni gestionali e di contabilità. Sia il
Fortran che il COBOL sono ancora usati. Il BASIC, Beginner’s All-purpose
Symbolic Instruction Code, sviluppato a Dartmouth nel 1964, fu concepito per
l’insegnamento della programmazione. Per la sua semplicità fu il primo
linguaggio ad alto livello dei personal computers. Programmi scritti in BASIC
risultano molto più leggibile delle stesse versioni scritte in linguaggio
assembly.

I linguaggi come FORTRAN, COBOL e BASIC, devono in parte il loro successo
all’essere focalizzati su problemi specifici. Il loro design intenzionalmente
non tentò di gestire la scrittura di ogni possibile applicazione. Durante gli
anni ’70 furono creati linguaggi per la programmazione di sistema, cioè per
scrivere assembler, compilatori e sistemi operativi. Quello che ha avuto
maggiore successo è il linguaggio C, sviluppato nel 1973, ed ancora oggi in
uso. Negli anni ’80 furono introdotti linguaggi come il C++ con l’intento di
aiutare a gestire la complessità di programmi molto grandi. Il C++ si è
evoluto a partire dal C ed è oggi uno dei linguaggi più usati. Ad esempio, la
maggior parte del software su Mac è scritto in C, C++ e Objective-C, un
dialetto del C, Word è scritto in C e C++, i sistemi operativi Unix e Linux sono
scritti in C e i web browser Firefox e Chrome sono scritti in C++.

Durante gli anni ’90 vari linguaggi furono sviluppati in congiunzione alla
crescita di Internet e del World Wide Web. Lo scopo originale del linguaggio
Java era la programmazione di piccoli sistemi incorporati in elettrodomestici
e apparecchi elettronici. Ma invece diventò particolarmente utile come
linguaggio per programmare servizi web. Quando si visita un sito come
eBay, il nostro computer esegue il programma browser scritto in C++, ma i
servers di eBay possono usare Java per preparare le pagine che sono inviate

al nostro browser.

A metà degli anni ’90 fu creato JavaScript da Netscape per produrre effetti
dinamici nei browser. Oggigiorno quasi tutte le pagine web includono codice
JavaScript. JavaScript è un esempio di un linguaggio di scripting, che è
flessibile e semplice da usare. Altri esempi di questo tipo nati negli anni ’90
sono il Python per la programmazione generica, e il PHP per creare pagine
Web. I linguaggi di scripting sono una categoria di linguaggi che permette di
scrivere programmi che automatizzano l’esecuzione di compiti, eseguiti
chiamando altri programmi o librerie. Una caratteristica i linguaggi di
scripting è che non hanno bisogno di sfruttare al massimo la velocità del
computer perché i compiti che sono soliti automatizzare demandano il
calcolo intensivo ad altre componenti software. I programmi scritti in questi
linguaggi sono spesso chiamati scripts.

Questo libro introduce i principianti alla programmazione usando il
linguaggio Python, che è stato introdotto nel 1989 da Guido van Rossum per
semplificare l’amministrazione di sistema. Il Python è un linguaggio di
scripting intepretato. Intorno al 1991 la prima versione del linguaggio era
pronta. Il nome Python, che Guido diede al suo linguaggio, deriva da Monty
Python’s Flying Circus, una serie televisiva comica britannica.

Originariamente Python venne subito usato con successo per
l’amministrazione di sistema. Nel tempo Python è stato via via migliorato e
oggi è un linguaggio collaudato e maturo. Python ha una libreria standard
molto ricca ulteriormente estesa da una collezione di librerie esterne che
facilitano lo sviluppo software in vari campi come web, grafica, giochi,
multimedia, calcolo scientifico, ecc. Anche grazie a ciò l’uso di Python è
andato crescendo in tutti gli ambiti commerciali, scientifici ed educativi.
Inoltre, Python è un linguaggio molto facile da apprendere e da usare.

1.7 SVILUPPO SOFTWARE

Compilatori, web browsers e sistemi operativi sono esempi di programmi
che possono avere decine di milioni di linee di codice. Per progettare,
scrivere e mantenere tali sistemi occorrono centinaia di persone che
lavorano insieme e la vita del sistema può durare decenni. Per avere un’idea
di come il software è diventato sempre più complesso, si pensi che il sistema
operativo Unix del 1975 consisteva in appena 9000 linee di codice C e fu
scritto da due persone, Ken Thompson e Dennis Ritchie. Oggi Linux, una
variante moderna di Unix, ha all’incirca 15 milioni di linee di codice.

Oggi chi si accinge a scrivere un programma difficilmente parte da zero.
Come in una qualsiasi altra attività che ha a che fare con costruzioni
complesse, anche la programmazione può usufruire di componenti già fatte
e pronte all’uso. Per esempio, se si vuole scrivere un’applicazione per
Windows, Mac, iPhone o Android, ci sono librerie di programmi già pronti
per gli elementi dell’interfaccia grafica. La maggior parte del lavoro del
programmatore odierno consiste nel capire quali componenti software sono
disponibili e come combinarli insieme.

Molti componenti sono a loro volta complessi e sono costruiti a partire da
librerie di componenti più semplici. Tutto ciò, a volte, per parecchi livelli. Per
questo si può pensare allo sviluppo di software complesso come un lavoro a
strati. Al di sotto di tutto, c’è il sistema operativo che è il programma che
gestisce l’hardware, compresa l’esecuzione degli altri programmi. Il sistema
operativo mette a disposizione dei servizi, chiamati system calls, che
permettono ad esempio di accedere a file e manipolare la memoria. Lo
strato successivo è costituito da librerie che forniscono servizi utili ai
programmatori come il calcolo di funzioni matematiche, la crittografia, la
grafica, la compressione di dati, ecc. Le applicazioni sono l’ultimo strato. Una
tipica applicazione usa sia librerie che servizi del sistema operativo.

Gli ostacoli dello sviluppo software non si esauriscono con la complessità
intrinseca nelle grandi dimensioni del software ma derivano anche dalla

natura stessa della programmazione che è stata ben descritta in un
epigramma di Alan Perlis: “Programming is an unnatural act”, la
programmazione è un atto innaturale. La programmazione richiede
un’attenzione ai dettagli che è difficile da mantenere. Inoltre, nessun
programma abbastanza grande funziona la prima volta. Essenzialmente tutti
i programmi contengono errori che produrranno comportamenti non voluti.
Questi errori sono chiamati bugs, un termine inglese che significa piccolo
insetto. Da qui anche il termine debugging per indicare l’attività, appunto, di
trovare e correggere gli errori nei programmi. Infatti, i programmatori
esperti passano più tempo a rimuovere gli errori che a scrivere i programmi
stessi.

1.8 PROGRAMMAZIONE MODERNA

In questo libro, il nostro scopo è quello di scrivere programmi funzionanti
che risolvono problemi reali in campi applicativi disparati. Non scriveremo
sistemi complessi, ma programmi succinti che dimostrano le tecniche usate
per risolvere i problemi presi in considerazione. Per farlo, faremo uso sia
della estesa libreria standard inclusa con il linguaggio Python, sia di qualche
libreria esterna per risolvere problemi specifici come ad esempio la
creazione di interfacce. In questo senso, eviteremo di reinventare la ruota,
riscrivendo funzionalità presenti in librerie comuni. Io credo che questo sia
una buona introduzione alla programmazione moderna, in cui spesso la
maggioranza dei programmatori deve comprendere come modellare
problemi e come combinare librerie di componenti disparati per risolverli in
modo efficiente ed efficace.

2 PRIMI PASSI IN PYTHON

Python è un linguaggio interpretato. Per eseguire programmi in Python è
necessario installare una distribuzione di Python che contiene l’interprete
per eseguire i programmi, e la libreria standard che aiuta a risolvere una
varietà di problemi disparati. Un programma Python non è altro che un testo
scritto nel linguaggio stesso che viene eseguito dall’interprete. In questo
primo capitolo introdurremo l’uso dell’interprete Python.

2.1 INSTALLAZIONE DI PYTHON

Python è un linguaggio in continua evoluzione, con varie versioni disponili
all’uso. Questo libro è stato scritto basandosi sulla versione 3.5 del
linguaggio. Dato che le varie versioni sono incompatibili fra loro è necessario
fare attenzione a scegliere la versione giusta. Per la maggior parte del libro,
utilizzeremo librerie standard di Python o indicheremo dove scaricare le
librerie necessarie. Per la parte di programmazione interattiva, utilizzeremo
la libreria grafica Qt.

Il sito ufficiale di Python permette di scaricare la versione aggiornata del
linguaggio. Per questo libro è consigliabile la distribuzione del linguaggio
chiamata Anaconda che contiene Python, una collezione di librerie
particolarmente utili nella programmazione interattiva e scientifica, e un
interprete evoluto chiamato IPython o Jupyter. Anaconda è scaricabile dal
sito di Continuum Analytics, l’azienda che la supporta.

http://python.org
https://www.continuum.io

2.2 ESECUZIONE DI PROGRAMMI IN PYTHON

L’interprete Python viene eseguito da terminale. Il terminale è
un’applicazione che permette di eseguire comandi di sistema. Per usare il
terminale, basta lanciare l’applicazione cmd.exe su Windows, Terminal.app
sul Mac e Terminal su Linux. I programmi Python si possono editare con
qualunque editor di testo, come ad esempio l’editor gratuito
multipiattaforma Atom.

Un programma Python può essere eseguito da terminale invocando
l’interprete Python python3 con il nome del file che contiene il programma.
Ad esempio, se salviamo il programma print(2+1) nel documento
program.py , lo possiamo eseguire da terminale lanciando python3

program.py . Il programma stamperà il testo 3 sullo schermo come
dimostrato di seguito.

http://atom.io

2.3 PROGRAMMAZIONE INTERATTIVA

Lo stesso programma può essere anche eseguito immettendo il codice riga
per riga nell’interprete lanciato in modalità shell. Per invocare Python in
questa modalità basta invocare l’interprete senza argomenti. Quando si
invoca la shell, la stringa >>> , che si chiama prompt, indica che la shell è
pronta a ricevere un comando. Per ogni comando inserito, la shell lo legge,
ne calcola il valore o lo stampa. Nella shell non è necessario richiedere
esplicitamente la stampa di un valore con print() come dimostrato di
seguito.

Il linguaggio Python è supportato da varie shell. IPython è una shell avanzata
che supporta la colorazione del programma e permette di editarlo più
facilmente. In IPython il prompt è del tipo In [i]: , dove i è il numero del
comando, e i risultati sono stampati con prompt Out[i]: , come dimostrato
a seguito.

L’esecuzione da shell è particolarmente adatta a sviluppare codice in modo
interattivo, che permette di sperimentare vari modi di risolvere un problema
eseguendo pezzi di codice diversi su dati di test. Una volta che il programma
è completo, lo si può salvare il un file per poterlo eseguire ripetutamente.

Una differenza fondamentale tra i due modi di esecuzione, da programma o
da shell, è che la shell stampa tutti i valori risultanti dalle operazioni
eseguite, mentre il programma eseguito da terminale stampa solo i valori
esplicitamente indicati con print() . Questa differenza deriva dal fatto che la
shell interattiva è ottimizzata per sviluppare programmi, mentre l’esecuzione
da terminale è più adatta quando di usa un programma finito per
manipolare dati.

2.4 ERRORI DI PROGRAMMAZIONE

Nello scrivere i vostri programmi, incontrerete spesso errori di
programmazione. Infatti, la correzione degli errori, detta anche debugging, è
la maggiore attività dei programmatori. Python è un linguaggio
particolarmente utile perché cerca di indicare esplicitamente gli errori di
programmazione. Ad esempio,

La prima istruzione 1+1 è andata a buon termine e eseguita con risultato 1.
La seconda istruzione 1+ciao ha causato un errore. In questo caso il
programma non è valido e la linea Name Error: name 'ciao' not defined
indica il tipo di errore. Non preoccupatevi ora di comprendere questo
particolare errore. Ma è importante abituarsi a leggere i messaggi di errore
di Python, dato che contengono informazioni utile per la correzione del
programma stesso.

Gli errori più insidiosi sono quelli che Python non può trovare. Questi errori
sono tali per cui il programma esegue in modo corretto, ma calcola valori
non desiderati. Questi errori saranno molto più difficili da trovare e
correggere.

2.5 RISORSE PER PROGRAMMARE IN PYTHON

Questo libro è stato scritto per principianti, e non assume alcuna
conoscenza di concetti di programmazione. La risorsa più utile che
suggeriamo di utilizzare nell’imparare a programmare in Python è la
documentazione del linguaggio stesso. Infatti, in questo libro non
ripeteremo informazioni dettagliate sulle funzioni standard di Python, dato
che queste informazioni si possono trovare in modo più completo nella
documentazione.

Un’altra risorsa utile per i principianti può essere il visualizzatore interattivo
Online Python Tutor che permette di tracciare l’esecuzione dei programmi
Python. Ci sono anche vari Integrated Development Environment (IDE) che
sono editor avanzati che possono essere usati per creare programmi
Python. Per quanto questi possano essere utili, suggerisco di iniziare a
programmare senza questi strumenti avanzati, che diventano più utili per
programmi larghi.

Infine, per quanto la libreria standard di Python contenga moltissime
funzionalità, è a volte necessario installare pacchetti aggiuntivi che
arricchiscono il linguaggio. Ad esempio, Anaconda contiene molti di questi
pacchetti aggiuntivi. Per installarne ulteriori pacchetti consigliamo di usare la
funzionalità pip3 install <nome pacchetto> o seguire le indicazioni degli
autori delle librerie stesse.

https://docs.python.org/3/
http://www.pythontutor.com/

3 PYTHON COME CALCOLATRICE

Python, eseguito da shell, può essere usato come un calcolatrice avanzata.
Come ogni calcolatrice, Python supporta tutte le operazioni aritmetiche,
varie funzioni matematiche, ed ha la capacità di memorizzare valori parziali
usando variabili. Per semplicità, nei capitoli qui di seguito, non riportiamo il
prompt della shell in modo esplicito, ma riportiamo i valori stampati dalla
shell, o dal programma eseguita in modo non-interattivo, preceduti da #
Out: .

3.1 ESPRESSIONI ARITMETICHE

Python supporta le comuni operazioni aritmetiche: addizione + , sottrazione
- , moltiplicazione * .

15 + 3
Out: 18
10 - 25
Out: -15
3*7
Out: 21

Python supporta sia numeri interi che numeri con virgola, detti floating point
o in virgola mobile. Se almeno uno degli operandi è un numero con virgola,
l’operazione è automaticamente effettuata in virgola mobile.

15.7 + 3
Out: 18.7
18.0 * 5
Out: 90.0

L’eccezione alla regola precedente è la divisione. In Python esistono due tipi
di divisione: la divisione standard / , che ritorna sempre un numero in
virgola mobile, e la divisone intera // che ignora la parte frazionaria del
quoziente.

15 // 2
Out: 7
15.0 // 2
Out: 7.0
15 / 2
Out: 7.5
15.0 / 2
Out: 7.5

Gli operatori * e / hanno la precedenza su + e - , così in 16 - 2*3 prima è
effettuata la moltiplicazione e poi la sottrazione. Per raggruppare risultati
parziali si possono usare le parentesi tonde.

(12/5)*(16 - 2*3)
Out: 24.0

Python supporta anche operatori più avanzati come il resto della divisione %
e l’elevamento a potenza ** .

24 % 7
Out: 3
27 % 9
Out: 0
27 % 7.5
Out: 4.5
2**8
Out: 256
2**0.5
Out: 1.4142135623730951

I risultati delle operazioni con interi hanno precisione illimitata mentre quelli
in virgola mobile sono approssimazioni dai valori, avendo precisione
limitata. Ad esempio,

2**100
Out: 1267650600228229401496703205376
2.0**100
Out: 1.2676506002282294e+30

3.2 COMMENTI

Si possono inserire commenti all’interno dei programmi. Questi servono per
lasciare note e spiegazioni circa il funzionamento del codice, sia per se stessi
che per altri. In Python, ogni riga che inizia col simbolo # è un commento e
non viene eseguito dall’interprete. Abbiamo usato i commenti nel codice
precedente per indicare i valori calcolati da Python con # Out: .

3.3 STAMPA DI VALORI

I valori calcolati in precedenza e indicati nelle linee # Out: sono solo visibili
quando il programma è eseguito in modalità interattiva, cioè nella shell. Per
forzare la stampa di valori, usiamo l’istruzione print(espressione) .

print(1+1)
Out: 2

Per stampare più espressioni sulla stessa riga basta passare a print() una
lista di espressioni separate da virgole.

print(2+3,5+6)
Out: 5 11

3.4 STRINGHE

In Python, il testo si rappresenta come una sequenza di caratteri chiamata
stringa. Per rappresentare una stringa basta racchiudere la sequenza di
caratteri tra apici singoli ' o doppi " . Usando i doppi apici possiamo usare
all’interno della stringa gli apici singoli e viceversa. Si può indicare una
stringa che non contiene nessun carattere, detta stringa vuota, non
includendo nulla tra gli apici.

'ciao'
Out: 'ciao'
print('ciao')
Out: ciao

print("L'altra mattina")
Out: L'altra mattina

stringa vuota
''
Out: ''
print('')
Out:

Notare come print() non stampa gli apici perché questi sono solo una
notazione usata in Python per indicare l’inizio e la fine del testo. Usando
repr() invece otteniamo la rappresentazione di Python che è delimitata da
apici, la stessa stampata dalla shell in automatico.

print(repr('ciao'))
Out: 'ciao'

Se il testo prende più linee, possiamo racchiuderlo tra tre apici singoli ''' o
tre doppi apici """ e possiamo anche usare liberamente singoli e doppi
apici:

print('''Questo testo
va a capo.''')
Out: Questo testo
Out: va a capo.

print(repr('''Questo testo
va a capo.'''))
Out: 'Questo testo\nva a capo.'

Notare come la funzione print() riproduce le andate a capo correttamente,
mentre usando repr() il valore della stringa contiene ora una codifica del
carattere di fine linea \n . Questo carattere non è rappresentabile
direttamente in una stringa quindi va indicato in modo speciale attraverso
sequenze di escape. I caratteri che possono essere immessi in questo modo
sono: \n per fine linea, \' per l’apice singolo, \" per il doppio apice, \t per
il tab e \\ per il carattere backslash stesso \ .

In Python le stringhe possono rappresentare il testo di qualsiasi lingua nota.
Ad esempio possiamo usare senza problemi le lettere accentate italiane.

print('né così né cosà')
Out: né così né cosà

L’operatore + concatena due stringhe mentre l’operatore * ripete una
stringa più volte.

saluto = 'Buon ' + 'giorno'
print(saluto)
Out: Buon giorno
boom = 'tic tac '*5 + 'BOOM!'
print(boom)
Out: tic tac tic tac tic tac tic tac tic tac BOOM!

3.5 TIPI E CONVERSIONI

Python distingue tra numeri interi, numeri in virgola mobile e stringhe
associando ad ogni valore un tipo. I numeri interi sono di tipo int , quelli in
virgola sono di tipo float , e le stringhe sono di tipo str . Parleremo dei tipi
in dettaglio più avanti. Se si desidera conoscere il tipo di una espressione,
basta usare la funzione type(expr) .

print(type(5 + 2))
Out: <class 'int'>
print(type(10 + 5 / 2))
Out: <class 'float'>
print(type('ciao'))
Out: <class 'str'>

Notate come gli operatori + e * eseguono operazioni differenti a seconda
del tipo degli operandi. Per i numeri, tipi int e float , queste sono le
consuete operazioni aritmetiche. Per le stringhe gli operatori eseguono la
concatenazione e la ripetizione. Nel gergo dei linguaggi di programmazione
si dice che gli operatori sono overloaded. Se proviamo a usare l’operatore +
con operandi misti abbiamo un errore.

print('stringa' + 5)
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: TypeError: Can't convert 'int' object to str implicitly

Se si vogliono convertire valori in tipi diversi, basta usare il nome del tipo
passandogli il valore tra parentesi tonde. Per convertire un numero in una
stringa basta chiamare str() con il valore numerico. Viceversa, se si vuole
convertire una stringa in un numero, basta usare int() o float() .

conversione in stringhe
print('stringa' + str(5))

Out: stringa5

conversione in numeri
print(10 + int('5'))
Out: 15

conversione non valida
print(int('ciao'))
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: ValueError: invalid literal for int() with base 10: 'ciao'

3.6 VARIABILI E ASSEGNAMENTI

Per facilitare la memorizzazione di valori e il loro successivo utilizzo, tutti i
linguaggi di programmazione permettono di usare le variabili. Una variabile
è un nome a cui è associato un valore. Il nome di una variabile può
comprendere lettere, cifre e il carattere underscore _ , ma non deve iniziare
con una cifra. Una variabile è creata nel momento in cui gli è assegnato un
valore con una istruzione di assegnamento che in Python ha la forma

nome_variable = espressione

Una istruzione di assegnamento prima calcola il valore dell’espressione a
destra del segno = , e poi ne assegna il valore alla variabile il cui nome è a
sinistra del segno = . Ad esempio, per creare una variabile di nome pigreco
ed assegnarle il valore 3.14 basta eseguire l’istruzione

pigreco = 3.14

Per utilizzare il valore di una variabile in una espressione, basta indicarne il
nome nell’espressione.

area di un cerchio di raggio 10
raggio = 10
area = pigreco * raggio ** 2
print(area)
Out: 314.0

Le variabili sono chiamate così perché il valore assegnato può essere
cambiato, assegnando alla variabile un nuovo valore. Per questo in
programmazione il significato dell’assegnamento è diverso dall’uguaglianza
in matematica, anche se si usa lo stesso simbolo = per indicare entrambi.

 # ricalcolo dell'area con raggio 20

raggio = 20
area = pigreco * raggio ** 2
print(area)
Out: 1256.0

In Python, si possono assegnare valori a qualunque variabile, ma solo
leggere valori da variabili già assegnate. Se tentiamo di leggere il valore da
una variabile non ancora definita abbiamo un errore.

print(2 * non_definita)
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: NameError: name 'non_definita' is not defined

L’errore è avvenuto alla linea 1 del file <input> , che indica la shell. L’ultima
linea del messaggio, NameError: name 'non_definita' is not defined ,
indica che si è tentato di leggere il nome 'ragio' che non è ancora definito.

Le variabili in Python possono contenere qualunque tipo di dati, come ad
esempio numeri e stringhe.

saluto = "ciao"
print(repr(saluto))
Out: 'ciao'
print(saluto)
Out: ciao

stringa_vuota = ''
print(stringa_vuota)
Out:

In Python, una variabile è sono un nome usato per riferirsi ad un valore. Per
questo possiamo cambiare il tipo di dato a cui una variabile si riferisce
facendo ulteriori assegnamenti. La ragione è che il tipo dei dati in Python è
associato ai valori, non alle variabili, che sono solo nomi.

variabile = 10
print(type(variabile))

Out: <class 'int'>

variabile = 'ciao'
print(type(variabile))
Out: <class 'str'>

Per quanto questa funzionalità sia utile ai programmatori esperti, cambiare
il tipo a cui una variabile di riferisce è sconsigliabile per i principianti perché
può introdurre errori difficili da trovare successivamente.

3.7 INCREMENTI

È a volte necessario incrementare il valore di una variabile a partire dal
valore che le è già stato assegnato. Per fare ciò possiamo semplicemente
assegnare ad una variabile una espressione che la contiene. Questa
funziona perché il valore dell’espressione è calcolato per primo, e poi viene
assegnato nuovamente alla variabile.

raddoppia il raggio
print(raggio)
Out: 20
raggio = raggio * 2
print(raggio)
Out: 40

Questo tipo di assegnamento è talmente comune che Python predispone
operatori speciali di incremento. Questi operatori sono del tipo variabile
<op>= espressione e corrispondono ad assegnamenti del tipo variabile =
variabile <op> espressione. . Gli operatori supportati sono: += , -= , *= , /= ,
//= , %= , ecc.

raddoppia l'altezza
print(raggio)
Out: 40
raggio *= 2
print(raggio)
Out: 80

4 RIUTILIZZO DI ISTRUZIONI

Nel capitolo precedente abbiamo introdotto l’uso di Python per il calcolo di
valori. Ritornando al piccolo programma che abbiamo scritto per calcolare
l’area del cerchio, se volessimo calcolare l’area con un differente raggio
dovremmo riscrivere le istruzioni ogni volta. Questo non solo è tedioso, ma
una sorgente di possibili di errori. Python, come tutti i linguaggi di
programmazione, mette a disposizione una varietà di costrutti per
riutilizzare istruzioni.

4.1 FUNZIONI

Come le variabili permettono di riusare valori dandogli nomi, le funzioni
permettono di dare un nome a sequenze di istruzioni. In Python, una
funzione è definita con la sintassi

def nome_funzione(lista_parametri):
 lista_istruzioni
 return espressione # opzionale

La parola chiave def introduce la definizione della funzione nome_funzione .
A questo nome viene assegnata la lista di istruzioni lista_istruzioni . Dopo
il nome, tra parentesi, ci sono zero, uno o più parametri. Un parametro è una
variabile a cui è assegnato un valore quando la funzione viene eseguita.
Quindi i parametri permettono di fornire gli input alle istruzioni specificate
nella funzione. Dopo i parametri ci sono i due punti : che indicano l’inizio
della lista di istruzioni da eseguite ad ogni chiamata della funzione. Queste
sono specificate nelle righe successive e indentate di 4 spazi. L’output della
funzione è prodotto dall’istruzione return espressione che valuta
l’espressione e poi termina l’esecuzione della funzione ritornando il valore
dell’espressione a chi esegue la funzione.

Per chiamare la funzione, cioè eseguirne le istruzioni, basta utilizzare il nome
della funzione in qualsiasi espressione, indicando tra parentesi i valori delle
variabili da passare. La sintassi per la chiamata è quindi

nome_funzione(lista_valori)

Ad esempio, per calcolare l’area di un cilindro per diversi raggi e altezze,
basta definire la funzione area_cilindro e poi chiamarla con argomenti
diversi.

def area_cilindro(raggio, altezza):
 pigreco = 3.14159

 area = pigreco * raggio ** 2
 circonferenza = 2 * pigreco * raggio
 return 2 * area + altezza * circonferenza

print(area_cilindro(10, 5))
Out: 942.477
print(area_cilindro(20, 10))
Out: 3769.908

In questo esempio, la chiamata area_cilindro(10, 5) assegna il valore 10
al parametro raggio e 5 a altezza immediatamente prima di eseguire le
istruzioni della funzione.

Tutte le variabili create in una funzione, compresi i parametri, sono variabili
locali alla funzione, cioè non esistono al di fuori della funzione. Ad esempio,
se cerchiamo di accedere al valore della variabile circonferenza otteniamo
un errore.

print(circonferenza)
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: NameError: name 'circonferenza' is not defined

Le variabili create al di fuori di ogni funzione sono dette variabili globali e
sono accessibili in lettura da qualunque funzione. Per quanto questo sia
valido, è in generale sconsigliato accedere a variabili globali nelle funzioni
dato che questi accessi sono spesso causa di errori di programmazione
molto difficile da individuare.

4.2 FUNZIONI PREDEFINITE

Python ha molte funzioni già disponibili, dette predefinite o builtin. Si
consulti la documentazione di Python per un elenco completo. Abbiamo già
visto esempi di funzioni predefinite come print() , repr() e type() . In
questo libro, introdurremo l’uso di altre funzioni predefinite quando
necessario per risolvere un problema. Per il calcolo numerico sono ad
esempio utili le funzioni per il valore assoluto abs() e per l’arrotondamento
di numeri frazionari round() .

print(abs(-5))
Out: 5
print(abs(-3.6))
Out: 3.6
print(round(5.8))
Out: 6
print(round(5.3))
Out: 5

4.3 FUNZIONI CHE RITORNANO PIÙ VALORI

Come ulteriore esempio di funzione scriviamo le istruzioni per una funzione
che prende in input un numero di secondi e ritorna l’equivalente in ore,
minuti e secondi. Per ritornare più valori basta includere una lista di
espressioni separate da virgole nell’istruzione return . Per ora possiamo solo
stampare questi valori. Nei capitoli seguenti vedremo come accedere ai
singoli valori di ritorno.

def hms(nsec):
 hh = nsec // 3600
 nsec = nsec % 3600
 mm = nsec // 60
 ss = nsec % 60
 return hh, mm, ss

print(hms(4000))
Out: (1, 6, 40)
print(hms(100000))
Out: (27, 46, 40)

4.4 PARAMETRI OPZIONALI

Finora abbiamo considerato solamente il modo basilare di definire i
parametri di una funzione, dove ad ogni parametro deve essere assegnato
un valore quando la funzione viene chiamata. A volte una funzione ha uno o
più parametri a cui potrebbero essere assegnati dei ragionevoli valori di
default liberando così il chiamante dal dover specificare esplicitamente tutti i
valori.

Ad esempio, potremmo aggiungere valori di default alla funzione
area_cilindro() definendo il valore 1 come default per raggio e altezza. Per
definire un valore di default basta aggiungere = valore dopo il nome del
parametro. Nel gergo di Python un parametro con valore di default è
chiamato parametro di default o parametro opzionale.

def area_cilindro(raggio=1,altezza=1):
 pigreco = 3.14159
 area = pigreco * raggio ** 2
 circonferenza = 2 * pigreco * raggio
 return 2 * area + altezza * circonferenza

La funzione così definita si può chiamare con 0, 1, o 2 argomenti.

equivelente a area_cilindro(1,1)
print(area_cilindro())
Out: 12.56636

equivelente a area_cilindro(2,1)
print(area_cilindro(2))
Out: 37.699079999999995

equivelente a area_cilindro(2,3)
print(area_cilindro(2,3))
Out: 62.831799999999994

Quando una funzione ha molti argomenti e questi sono di default, è
conveniente poter chiamare la funzione specificando il valore di un
argomento non tramite la sua posizione ma tramite il nome del parametro.
Per farlo usiamo la sintassi parametro=valore nella chiamata. Un argomento
così specificato è chiamato argomento chiave. Gli argomenti chiave devono
stare tutti in fondo alla lista degli argomenti, cioè non ci può essere un
argomento chiave seguito da un argomento non chiave, e non si può
specificare il valore di un argomento due volte.

equivelente a area_cilindro(1,2)
print(area_cilindro(altezza=2))
Out: 18.849539999999998

Python usa parametri di default in modo molto esteso nella sua libreria. Ad
esempio, la funzione round() ha un parametro opzionale che definisce il
numero di cifre decimali da mantenere, di default 0.

print(round(3.125))
Out: 3
print(round(3.125,2))
Out: 3.12

4.5 MODULI E FILE

Per riutilizzare variabili e funzioni in programmi diversi, Python permette di
importare il contenuto di un file in un altro, o nella shell stessa. Ad esempio,
se il file modulo.py contiene le funzioni

def area_sfera(raggio):
 return 4 * 3.14 * raggio ** 2

def volume_sfera(raggio):
 return 4/3 * 3.14 * raggio *** 3

possiamo accedere a tali funzioni importando il file con import nome_modulo
e chiamando le funzioni con nome_modulo.nome_funzione .

import modulo

print(modulo.area_sfera(10))
Out: 1256.0
print(modulo.volume_sfera(10))
Out: 4186.666666666667

In generale, un modulo è un qualsiasi programma in Python salvato in un
singolo file. Di solito, le funzioni e le variabili in un modulo sono in qualche
modo connesse tra loro, ad esempio potrebbero essere funzioni
matematiche o funzioni per la manipolazione dei file o per la grafica, ecc.
L’aspetto importante è che le funzioni di un modulo possono essere usate in
un qualsiasi programma senza doverle riscrivere.

Per chiamare le funzioni di un modulo evitando di menzionare il nome del
modulo, basta usare la sintassi from nome_modulo import nome_funzione ,
per una funzione specifica, e from nome_modulo import * per tutte le
funzioni. In generale, è consigliabile usare la versione del comando non
abbreviata per ridurre i possibili errori di programmazione.

from modulo import area_sfera
print(area_sfera(10))
Out: 1256.0

from modulo import *
print(volume_sfera(10))
Out: 4186.666666666667

La libreria standard di Python comprende tantissimi moduli fra cui il modulo
math per le funzioni matematiche.

import math

logaritmo
print(math.log(10))
Out: 2.302585092994046

pi greco
print(math.pi)
Out: 3.141592653589793

fattoriale
print(math.factorial(20))
Out: 2432902008176640000

Quando si fa l’import di un modulo l’interprete deve sapere dove cercare il
corrispondente file. Nel caso dei moduli della libreria standard come math
non ci sono problemi perché si trovano in una directory pre-impostata. Nel
caso di moduli esterni, questi devono essere presenti nella stessa cartella da
cui è stata invocata la shell o il programma attuale.

4.6 DOCUMENTAZIONE INTERATTIVA

Per avere un elenco delle funzioni in un modulo si può usare la funzione
dir() :

print(dir(math))
Out: ['__doc__', '__file__', '__loader__', '__name__',
'__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh',
'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh',
'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial',
'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf',
'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log',
'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians',
'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

Inoltre, possiamo avere la documentazione di ogni funzione di un modulo,
dopo averlo importato, con la funzione help() . La funzione help() può
anche essere usata fornendogli in input il nome di un modulo e in questo
caso mostra la documentazione dell’intero modulo, cioè di tutte le funzioni
contenute in esso.

help(math.log)
Out: Help on built-in function log in module math:
Out:
Out: log(...)
Out: log(x[, base])
Out:
Out: Return the logarithm of x to the given base.
Out: If the base not specified, returns the natural logarithm
(base e) of x.
Out:

La funziona help() deriva le descrizione dal codice Python stesso. La
descrizione di una funzione si può includere con un testo incluso tra tripli
apici, singoli o doppi, subito dopo il nome della funzione. Questo testo si

chiama docstring. È consigliabile scrivere sempre una breve spiegazione di
cosa fa una funzione e quale è il significato dei parametri di input.

def cubo(x):
 '''Calcola il cubo di un numero.'''
 return x ** 3

print(cubo(5))
Out: 125

help(cubo)
Out: Help on function cubo:
Out:
Out: cubo(x)
Out: Calcola il cubo di un numero.
Out:

5 PRENDERE DECISIONI

Per implementare programmi complessi è necessario prendere decisioni su
quali istruzioni eseguire in base ai dati in ingresso. Una decisione è presa in
dipendenza del valore di una certa condizione. Ad esempio, per decidere se
un numero è pari o dispari la condizione è se il resto della divisione per 2 è
uguale a 0 o a 1. La condizione può essere semplice o complessa ma il suo
valore sarà sempre o vero o falso.

5.1 VALORI BOOLEANI

Valori che possono essere solo veri o falsi sono detti booleani, in Python
rappresentati col tipo bool . Un valore booleano può essere solo True o
False , vero o falso.

booleano = True
print(booleano)
Out: True
print(type(booleano))
Out: <class 'bool'>

Sui valori booleani sono definiti tre operatori logici. L’operatore not nega un
valore booleano, l’operatore and è vero solo se entrambi i suoi operatori
sono veri, e l’operatore or è vero quando almeno uno dei suoi operandi è
vero. Più formalmente not x è True se e solo se x è False , x and y è True
se e solo se x e y sono True e x or y è True se e solo se o x è True o y è
True o entrambi sono True . Si osservi che mentre gli operatori not e and
hanno sostanzialmente lo stesso significato che hanno nel linguaggio
comune, questo non è così per l’operatore or . Infatti, se ad esempio si dice
“Mario ha le scarpe nere o la maglietta blu”, l’interpretazione comune è che o
è vera la prima possibilità o è vera la seconda ma non entrambe. Questa
interpretazione si chiama or esclusivo mentre l’interpretazione nella logica
booleana è detta or inclusivo perché risulta vero anche quando sono
entrambe vere. Vediamo qualche esempio.

operazioni semplici
freddo = True
caldo = not freddo
print(caldo)
Out: False

pioggia = False
nuvoloso = True
brutto_tempo = pioggia or nuvoloso

print(brutto_tempo)
Out: True

vento = True
neve = True
tormenta = vento and neve
print(tormenta)
Out: True

combinazione di operazione semplici
bel_tempo = not pioggia and not nuvoloso and not neve
print(bel_tempo)
Out: False

una espressione equivalente
bel_tempo = not (pioggia or nuvoloso or neve)
print(bel_tempo)
Out: False

5.2 OPERATORI RELAZIONALI

Gli operatori relazionali confrontano valori permettendo di determinare se
sono uguali o se uno è maggiore o minore di un altro. Il risultato di un
operatore relazione è un valore booleano. Gli operatori relazionali in Python
sono i seguenti: minore < , maggiore > , minore o uguale <= , maggiore o
uguale >= , uguale == e diverso != o <> . So noti come l’uguaglianza non è
indicata dal simbolo matematico = per evitare di essere confuso con
l’assegnamento che usa quel simbolo.

confronti semplici
print(3 < 5)
Out: True
print(10 == 11)
Out: False
print(10.0 == 10)
Out: True
print(3.5 != 3.45)
Out: True

combinazione di confronti su espressione
x = 2
y = 5
z = 4
print("valori ordinati:", x <= y and y <= z)
Out: valori ordinati: False
versione compatto del doppio confronto
print("valori ordinati:", x <= y <= z)
Out: valori ordinati: False

Le stringhe sono confrontate secondo l’ordinamento lessicale, cioè
confrontando i singoli caratteri da sinistra a destra e differenziando
maiuscole e minuscole. Se tutti i caratteri sono uguali le due stringhe sono
uguali; se una è il prefisso dell’altra quella più corta è la minore; altrimenti il
primo carattere in cui le stringhe differiscono determina l’ordine.

print('Mario' == 'Bruno')
Out: False
print('Mario' > 'Bruno')
Out: True
print('Ma' < 'Mario')
Out: True

print('Stringa' < 'stringa')
Out: True
print("stringa" == "Stringa")
Out: False

5.3 OPERATORE DI APPARTENENZA

Nelle stringhe l’operatore in permette di testare l’appartenenza di una
sottostringa nella stringa originale. Il suo opposto è l’operatore not in .

esclamazione = 'Che bel tempo!'
print('C' in esclamazione)
Out: True
print('c' in esclamazione)
Out: False
print(' ' in esclamazione)
Out: True
print('bel' in esclamazione)
Out: True
print('ciao' not in esclamazione)
Out: True

5.4 ISTRUZIONI CONDIZIONALI

In Python il costrutto che permette di prendere decisioni è l’istruzione if
che nella sua forma base ha la sintassi

if condizione:
 istruzioni

if è la parola chiave che inizia l’istruzione, a seguire c’è una condizione e
dopo i due punti : ci sono le istruzioni , indentate di 4 spazi, che saranno
eseguite solo se il valore della condizione è vera ossia True .

pioggia = False
nuvoloso = True
if pioggia or nuvoloso:
 print("usciamo con l'ombrello")
Out: usciamo con l'ombrello

nuvoloso = False
if pioggia or nuvoloso:
 print("usciamo con l'ombrello")
Non stampa nulla dato che la condizione è False

Si possono anche specificare istruzioni diverse che vengono eseguite
quando la condizione è False seguendo l’if con l’istruzione else: e il
relativo blocco istruzioni_else .

if condizione:
 istruzioni
else:
 istruzioni_else

In questo caso, il blocco istruzioni viene eseguito se la condizione è vera,
altrimenti si eseguono le istruzioni in istruzioni_else . Le istruzioni if e
else , come tutte le istruzioni viste precedentemente, possono essere

incluse in funzioni.

def stampa_ombrello(mal_tempo):
 if mal_tempo:
 print("usciamo con l'ombrello")
 else:
 print("usciamo senza l'ombrello")

pioggia = False
nuvoloso = True
stampa_ombrello(pioggia or nuvoloso)
Out: usciamo con l'ombrello

nuvoloso = False
stampa_ombrello(pioggia or nuvoloso)
Out: usciamo senza l'ombrello

Spesso per prendere una decisione bisogna controllare più condizioni.
Questo si potrebbe fare combinando if ed else , ma Python ha una forma
estesa dell’if che è utile in tali situazioni.

if condizione_1:
 istruzioni_1
elif condizione_2:
 istruzioni_2
elif condizione_3:
 istruzioni_3
...
else:
 istruzioni_else

elif è l’istruzione che dichiara decisioni addizionali, che possono essere un
numero arbitrario, tutte indentate allo stesso livello del primo if . Se
condizione_1 è True , si eseguono le istruzioni_1 e poi si salta alla fine
dell’intero blocco. Se invece condizione_1 è False e condizione_2 è True , si
eseguono le istruzioni_2 e poi si salta alla fine del blocco. Se condizioni_1
e condizione_2 sono False e condizione_3 è True , si eseguono
istruzioni_3 e poi si salta alla fine del blocco. Se nessuna delle condizioni è
soddisfatta, cioè nessuna è True , si eseguono le istruzioni_else .

def commenti_voto(voto):
 print("Il voto e'", voto)
 if voto < 18:
 print("mi dispiace")
 elif voto == 18:
 print("appena sufficiente")
 elif voto < 24:
 print("OK, ma potevi fare meglio")
 elif voto == 30:
 print("congratulazioni!")
 else:
 print("bene!")

commenti_voto(15)
Out: Il voto e' 15
Out: mi dispiace
commenti_voto(18)
Out: Il voto e' 18
Out: appena sufficiente
commenti_voto(23)
Out: Il voto e' 23
Out: OK, ma potevi fare meglio
commenti_voto(27)
Out: Il voto e' 27
Out: bene!
commenti_voto(30)
Out: Il voto e' 30
Out: congratulazioni!

Nei contesti in cui Python si aspetta una condizione booleana, ad esempio
nelle istruzioni if ed elif , se le espressioni passate hanno tipi diversi, il
linguaggio cercherà di interpretarle come booleani usando appropriate
convenzioni. Ad esempio, lo zero per i numeri e la stringa vuota per le
stringhe corrisponde a falso.

def stampa_vuoto(x):
 if x:
 print('valore non nullo')
 else:
 print('valore nullo')

stampa_vuoto(0)
Out: valore nullo
stampa_vuoto(1)
Out: valore non nullo
stampa_vuoto('')
Out: valore nullo
stampa_vuoto('ciao')
Out: valore non nullo

5.5 MODULI E PROGRAMMI

Nel codice scritto fino ad ora abbiamo incluso sia funzioni, che potremmo
essere utili successivamente, che codice per testarle. Questi test sono
convenienti, ma non vogliamo eseguirli ogni volta che importiamo il modulo.
Ad esempio, salviamo l’ultimo blocco di codice in un modulo programma.py .
Quando importiamo il modulo otterremo la stampa indesiderata dei valori
dei test.

import programma
Out: valore nullo
Out: valore non nullo
Out: valore nullo
Out: valore non nullo

Per eseguire i test quando il prgramma viene eseguito da terminale
direttamente, e non durante l’import, basta mettere l’esecuzione dei test in
un blocco delimitato da if __name__ == '__main__': . Questo costrutto è
idiomatico in Python e fa sì che la parte di codice dentro l’if sia eseguita
solamente quando il modulo è eseguito direttamente. Questo funziona
perché la variabile speciale __name__ ha valore '__main__' quando il
modulo è eseguito direttamente, mentre quando è importato ha valore
uguale al nome del modulo stesso. Grazie a ciò possiamo scrivere il codice di
testing all’interno del modulo stesso e possiamo comunque importare il
modulo senza che il codice di testing venga eseguito. Nel nostro caso
modifichiamo il codice precedente mettendo i test nel blocco delimitato.

if __name__ == '__main__':
 stampa_vuoto(0)
 stampa_vuoto(1)
 stampa_vuoto('')
 stampa_vuoto('ciao')

Se ora importiamo il modulo, salvato come modulo.py , non otteniamo la

stampa dei tests, ma possiamo usare le funzioni definite.

import modulo

stampa_vuoto(0)
Out: valore nullo

6 SEQUENZE DI DATI

Negli esempi fatti fino ad ora, le variabili in Python hanno rappresentato
valori singoli. È spesso necessario memorizzare sequenze di valori e lavorare
su queste. Ad esempio, potremmo volere calcolare la temperatura media di
una località a partire dalle temperature giornaliere. In questo capitolo
introdurremo strumenti di programmazione per modellare sequenze di dati.

6.1 LISTE

Per memorizzare un insieme di valori potremmo usare una variabile per
ogni valore. Ma questo metodo non è praticabile quando il numero di valori
diventa alto. In tutti i linguaggi di programmazione esistono tipi di dati che
permettono di raggruppare insieme un numero variabile di valori. Python ha
svariati tipi per rappresentare sequenze ordinate di valori. Il modo più
flessibile è quello di usare liste di tipo list , le quali possono essere scritte
come un elenco di valori separati da virgole e racchiuso tra parentesi
quadrate, e possono contenere valori di qualunque tipo. La lista vuota si
indica non includendo nulla tra le parentesi.

primi = [2, 3, 5, 7, 11, 13, 17, 19]
print(primi)
Out: [2, 3, 5, 7, 11, 13, 17, 19]
colori = ['blu', 'rosso', 'verde', 'giallo']
print(colori)
Out: ['blu', 'rosso', 'verde', 'giallo']
misc = ['red', 2, 3.14, 'blue']
print(misc)
Out: ['red', 2, 3.14, 'blue']

lista_vuota = []
print(lista_vuota)
Out: []

print(type(colori))
Out: <class 'list'>

6.2 TUPLE

A volte è utile rappresentare un sequenza di valori di lunghezza fissa. Per
questo si usano le tuple di tipo tuple . Le tuple si indicano con una lista di
valori racchiusa tra parentesi rotonde. In alcuni casi le parentesi possono
essere omesse, anche se per i principianti è preferibile l’uso esplicito delle
parentesi. Le tuple vuote sono indicate con parentesi tonde vuote.

tupla = ('ciao', 1, 2)
print(tupla)
Out: ('ciao', 1, 2)

tupla_vuota = ()
print(tupla_vuota)
Out: ()

print(type((1,2)))
Out: <class 'tuple'>

Le tuple possono essere utilizzate per definire funzioni che ritornano più
valori. La funzione hms() , definita in un capitolo precedente, faceva proprio
questo. Un altro esempio è una funzione che calcola il quoziente e il resto
della visione.

def quoziente_resto(x,y):
 return x // y, x % y

q = quoziente_resto(5,2)
print(q)
Out: (2, 1)
print(type(q))
Out: <class 'tuple'>

6.3 OPERAZIONI SU SEQUENZE

Liste e tuple rappresentano sequenze di valori su cui si può operare con
operatori e funzioni simili. Molte di queste operazioni hanno lo stesso
significato sulle stringhe, che si possono considerare come sequenze di
caratteri. L’operatore + concatena due sequenze, l’operatore * ripete una
sequenza più volte e la funzione len() calcola la lunghezza di una sequenza.

saluto = 'Buon ' + 'giorno'
print(saluto)
Out: Buon giorno
boom = 'tic tac '*5 + 'BOOM!'
print(boom)
Out: tic tac tic tac tic tac tic tac tic tac BOOM!
len(boom)
Out: 45

primi = [2, 3, 5, 7, 11, 13, 17, 19]
primi2 = primi + [23, 29]
print(primi2)
Out: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
[1, 2, 3]*4
Out: [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
len(primi)
Out: 8

persone = ('Bruno', 'Luisa') + ('Anna', 'Mario')
print(persone)
Out: ('Bruno', 'Luisa', 'Anna', 'Mario')
len(persone)
Out: 4

La libreria standard di Python include varie funzioni predefinite per la
manipolazione di sequenze. Ad esempio, le funzione sum() somma i valori
di una sequenze, mentre all() e any() ritornano True se rispettivamente
tutti i valori, o almeno un valore, sono veri.

sum([2,3,4])
Out: 9
all([False,True])
Out: False
any([False,True])
Out: True

Tra le funzioni predefinite più usate ci sono quelle di ordinamento, che
permettono di calcolare il valore minimo min() e massimo max() di una
sequenza, o di ordinare una sequenza di valori sorted() . L’ordinamento di
numeri è in ordine decrescente, mentre l’ordinamento di stringhe segue
l’odine lessicografico, ma distingue tra maiuscole e minuscole, le prime della
quali vengono sempre prima delle seconde.

lst = [10,1,20]
print(min(lst))
Out: 1
print(max(lst))
Out: 20
print(sorted(lst))
Out: [1, 10, 20]

rubrica = ['Bruno', 'Sofia', 'Anna', 'Mario']
print(sorted(rubrica))
Out: ['Anna', 'Bruno', 'Mario', 'Sofia']

Si possono convertire sequenze tra loro usando list() e tuple() per
convertire sequenze in liste e tuple rispettivamente.

conversione in liste e tuple
print(tuple([1,2]))
Out: (1, 2)
print(list(('Bruno','Luisa')))
Out: ['Bruno', 'Luisa']
print(list('Anna'))
Out: ['A', 'n', 'n', 'a']

6.4 OPERATORI RELAZIONALI E DI APPARTENENZA

Gli operatori relazionali sono applicabili a tutti i tipi sequenza, quindi anche a
liste e tuple. Il confronto è effettuato come per le stringhe considerando i
valori delle sequenze da sinistra verso destra.

lst = [1, 2, 'abc', 5]
print(lst == [1, 2, 'abc', 5])
Out: True
print(lst < [1, 2, 'abcd'])
Out: True

L’operatore relazionale più usato per liste e tuple è l’operatore in , e il suo
inverso not in , che permettono di testare l’appartenenza di un valore a una
sequenza. Nel caso di tuple e liste l’appartenenza è di elementi singoli,
mentre per le stringhe l’appartenenza è, come abbiamo visto, di
sottostringhe.

seq = [1, 2, 3, 5, 8]
print(5 in seq)
Out: True
print(4 in seq)
Out: False
print('mela' in ['noce', 'mela', 'banana'])
Out: True
print(4 not in seq)
Out: True

Come per le stringhe, la lista e la tupla vuota sono interpretate come falso se
usate in una espressione condizionale.

def stampa_vuoto(x):
 if x:
 print('valore non nullo')
 else:

 print('valore nullo')

stampa_vuoto([])
Out: valore nullo
stampa_vuoto([2,3,5])
Out: valore non nullo
stampa_vuoto((2,3))
Out: valore non nullo

L’esempio seguente mostra l’utilità dell’operatore d’appartenenza che può
sostituire un lungo blocco di if-elif .

def frutto(x):
 if x == 'mela':
 return True
 elif x == 'pera':
 return True
 elif x == 'uva':
 return True
 else:
 return False

x = 'melo'
y = 'uva'
print(frutto('melo'))
Out: False
print(frutto('uva'))
Out: True

def frutto2(x):
 return x in ['mela', 'pera', 'uva']

print(frutto2('melo'))
Out: False
print(frutto2('uva'))
Out: True

Possiamo usare condizioni per validare i valore di ingresso di una funzione.
Ad esempio, scriviamo una funzione che prende in input le prime tre lettere
del nome di un mese e il giorno e ritorna True se la data è corretta rispetto

ad un anno non bisestile.

def check_date(mese, giorno):
 if giorno < 1: return False
 if mese == 'feb':
 return giorno <= 28
 elif mese in ['apr', 'giu', 'set', 'nov']:
 return giorno <= 30
 elif mese in ['gen', 'mar', 'mag', 'lug',
 'ago', 'ott', 'dic']:
 return giorno <= 31
 else:
 return False

print(check_date('gen', 31))
Out: True
print(check_date('feb', 29))
Out: False
print(check_date('dic', 0))
Out: False
print(check_date('mir', 1))
Out: False

6.5 ELEMENTI DI SEQUENZE

Ogni elemento in una sequenza è univocamente specificato dal suo indice,
cioè il suo numero d’ordine a partire da zero nella lista. Per accedere ad un
elemento si pone l’indice dell’elemento tra parentesi quadre dopo un
riferimento alla sequenza. Se si tenta di accedere ad un elemento non
presente nella sequenza, si otterrà un errore.

colori = ['blu', 'rosso', 'verde', 'giallo']
print(colori[0])
Out: blu
persone = ('Bruno', 'Sofia', 'Mario')
print(persone[1])
Out: Sofia
stringa = 'abracadabra'
print(stringa[2])
Out: r

print(colori[10])
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: IndexError: list index out of range

Le parentesi quadre accettano anche indici negativi, che in questo caso sono
contati dalla fine verso l’inizio della sequenza, con -1 che rappresenta
l’ultima posizione.

colori = ['blu', 'rosso', 'verde', 'giallo']

L'elemento in ultima posizione
print(colori[-1])
Out: giallo
Quello in penultima posizione
print(colori[-2])
Out: verde

Gli elementi di una lista possono essere modificati assegnando un valore
all’indice desiderato. Gli elementi di tuple e stringhe non possono essere
mutati. Si dice che le liste sono mutabili mentre stringhe e tuple sono
immutabili. Questa distinzione è fondamentale in Python ed è la vera ragione
per cui esistono sia tuple che liste.

colori = ['blu', 'rosso', 'verde', 'giallo']
colori[1] = 'nero'
print(colori)
Out: ['blu', 'nero', 'verde', 'giallo']

persone[1] = 'Sara'
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: TypeError: 'tuple' object does not support item assignment
stringa[5] = 'z'
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: TypeError: 'str' object does not support item assignment

6.6 UNPACKING DI VALORI

Possiamo accedere a più elementi di una sequenza con la notazione della
parentesi quadre. Questo però rende in codice spesso poco leggibile e
prono ad essere perché si manipolano gli indici esplicitamente. Python ha
una notazione piuttosto conveniente chiamata sequence unpacking che
assegna simultaneamente tutti i valori di una sequenza ad altrettante
variabili. Nelle istruzioni di assegnamento basta indicare più variabili
separate da virgole. L’unpacking è maggiormente usato con le tuple, dato
che queste mantengono il numero dei valori, ma può essere usato con un
qualsiasi tipo sequenza.

persone = ('Bruno', 'Sofia', 'Mario')
print(persone)
Out: ('Bruno', 'Sofia', 'Mario')

sequence unpacking
p1, p2, p3 = persone
print(p1, p2, p3)
Out: Bruno Sofia Mario

non si accede con numero di variabili diverso
p1, p2 = persone
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: ValueError: too many values to unpack (expected 2)

L’unpacking, combinato con l’uso delle tuple, può essere usato per
esprimere in modo succinto l’assegnamento di valori multipli, lo scambio dei
valori di due variabili, e l’accesso ai valori multipli ritornati da funzioni.

tupla senza parentesi tonde, seguito da unpacking
a, b = 'primo', 'secondo'
print(a, b)
Out: primo secondo

scambio di valori
b, a = a, b
print(a, b)
Out: secondo primo

def quoziente_resto(a, b):
 return a/b, a%b
q, r = quoziente_resto(5, 3)
print(q, r)
Out: 1.6666666666666667 2

6.7 SOTTOSEQUENZE O SLICES

In Python la sintassi delle parentesi quadre permette di ottenere una
qualsiasi sottosequenza di elementi consecutivi specificando l’indice d’inizio
e quello di fine. La sottosequenza [a:b] indica gli elementi da a e b-1 . Nel
gergo di Python questa sintassi si chiama slice. Gli indici di inizio e fine sono
opzionali, e se mancanti indicano implicitamente il primo e l’ultimo elemento
della sequenza. Gli indici possono essere negativi, come in precedenza.

colori = ['blu', 'rosso', 'verde', 'giallo']

sottolista dalla posizione 1 alla 2
print(colori[1:3])
Out: ['rosso', 'verde']
sottolista dall'inizio alla penultima
print(colori[0:-1])
Out: ['blu', 'rosso', 'verde']
sottolista dalla posizione 2 in poi
print(colori[2:])
Out: ['verde', 'giallo']
sottolista dall'inizio alla pos. 2
print(colori[:2])
Out: ['blu', 'rosso']
copia dell'intera lista
print(colori[:])
Out: ['blu', 'rosso', 'verde', 'giallo']

La sintassi delle sottosequenze si applica a tutte le sequenze viste, incluse
tuple e stringhe.

s = 'Questa è proprio una bella giornata.'
sottostringa dalla posizione 0 alla 5
print(s[0:6])
Out: Questa
sottostringa dalla posizione 7 in poi
print(s[7:])

Out: è proprio una bella giornata.
sottostringa dall'inizio fino alla posizione 15
print(s[:16])
Out: Questa è proprio

Per le liste, le slice possono essere usate anche per l’assegnamento, dove la
sottolista specificata dalla slice è sostituita con la lista assegnatagli.
Possiamo inserire o eliminare valori assegnando liste con lunghezza diverse
dalla sottolista selezionata.

colori = ['blu', 'rosso', 'verde', 'giallo']

cambiamento di valori
colori[1:3] = ['arancio', 'viola']
print(colori)
Out: ['blu', 'arancio', 'viola', 'giallo']

inserimento di valori
colori[1:1] = ['nero']
print(colori)
Out: ['blu', 'nero', 'arancio', 'viola', 'giallo']

cancellazione di valori
colori[1:2] = []
print(colori)
Out: ['blu', 'arancio', 'viola', 'giallo']

Per finire facciamo un semplice esempio che usa le slice per suddividere un
codice fiscale nelle sue componenti.

def print_cf(cf):
 print('Cognome (tre lettere):', cf[0:3])
 print('Nome (tre lettere):', cf[3:6])
 print('Data di nascita e sesso:', cf[6:11])
 print('Comune di nascita:', cf[11:15])
 print('Carattere di controllo:', cf[-1])

codice fiscale fasullo
print_cf('COGNOMDATASCOMUX')
Out: Cognome (tre lettere): COG

Out: Nome (tre lettere): NOM
Out: Data di nascita e sesso: DATAS
Out: Comune di nascita: COMU
Out: Carattere di controllo: X

7 ITERAZIONE SU SEQUENZE

La necessità più comune quando si manipolano sequenze è di applicare una
stessa sequenza di istruzioni per ogni elemento della sequenza, come ad
esempio, stampare tutti i numeri in una lista. In questo capitolo
introdurremo varie istruzioni che permetteranno iterare su sequenze di dati.

7.1 ITERAZIONE SU SEQUENZE

L’istruzione for permette di iterare sugli elementi di una sequenza
ripetendo un blocco di istruzioni per ogni elemento. La sintassi generale è

for var in seq:
 istruzioni

dove for e in sono parole chiavi. Il ciclo for scorre i valori della sequenza
seq in ordine, e ad ogni iterazione assegna alla variabile var il prossimo
valore così che le istruzioni , indentate di 4 spazi, all’interno del for

possano elaborare il valore. Ad esempio, possiamo stampare i valori di una
lista utilizzando la funzione print() all’interno di un for .

colori = ['blu', 'rosso', 'verde', 'giallo']
for colore in colori:
 print(colore)
Out: blu
Out: rosso
Out: verde
Out: giallo

Facciamo ora alcuni esempi di iterazione. Scriviamo una funzione che calcola
la somma degli elementi di una lista. Per questa funzione utilizzeremo una
variabile aggiuntiva, chiamata contatore, che mantiene la somma parziale. La
nostra funzione è equivalente alla funzione predefinita sum() .

def somma(valori):
 '''Ritorna la somma dei valori.'''
 s = 0
 for valore in valori:
 s += valore
 return s

print(somma([1,2,3]))

Out: 6

Per capire cosa sta succedendo nel ciclo è utile stampare dei valori mentre la
funzione esegue.

def somma_stampa(valori):
 s = 0
 for valore in valori:
 print('aggiungi',valore,'a',s)
 s += valore
 print('valore aggiunto',s)
 return s

print(somma_stampa([1,2,3]))
Out: aggiungi 1 a 0
Out: valore aggiunto 1
Out: aggiungi 2 a 1
Out: valore aggiunto 3
Out: aggiungi 3 a 3
Out: valore aggiunto 6
Out: 6

Scriviamo ora una funzione che emula il comportamento della funzione
len() .

def lunghezza(valori):
 '''Ritorna la lunghezza di una sequenza.'''
 l = 0
 for valore in valori:
 l += 1
 return l

print(lunghezza([1,2,3]))
Out: 3

Scriviamo una funzione che prende in input una lista con valori numerici, e
ritorna una nuova lista i cui valori sono quelli della lista di input elevati al
cubo. Per farlo useremo una lista aggiuntiva che a cui aggiungiamo valori
mentre scorriamo la lista iniziale.

def cubi(valori):
 '''Ritorna una nuova lista che contiene i cubi
 dei valori della lista di input.'''
 cubi = []
 for valore in valori:
 cubi += [valore**3]
 return cubi

primi = [2, 3, 5, 7, 11, 13]
cubi_primi = cubi(primi)
print(primi)
Out: [2, 3, 5, 7, 11, 13]
print(cubi_primi)
Out: [8, 27, 125, 343, 1331, 2197]

Per capire cosa sta succedendo nel ciclo è utile stampare dei valori mentre la
funzione esegue.

def cubi_stampa(valori):
 '''Ritorna una nuova lista che contiene i cubi
 dei valori della lista di input.'''
 cubi = []
 for valore in valori:
 cubo = valore**3
 print('aggiungi',cubo,'a',cubi)
 cubi += [cubo]
 print('valore aggiunto',cubi)
 return cubi

primi = [2, 3, 5]
cubi_primi = cubi_stampa(primi)
Out: aggiungi 8 a []
Out: valore aggiunto [8]
Out: aggiungi 27 a [8]
Out: valore aggiunto [8, 27]
Out: aggiungi 125 a [8, 27]
Out: valore aggiunto [8, 27, 125]

Scriviamo infine una funzione che emula l’operatore di concatenamento + .

def concatena(valori1,valori2):
 valori = []
 for valore in valori1:
 valori += [valore]
 for valore in valori2:
 valori += [valore]
 return valori

print(concatena([1,2,3],[4,5,6]))
Out: [1, 2, 3, 4, 5, 6]

7.2 ITERAZIONE SU SEQUENZE DI INTERI

La funzione predefinita range() ci permette di iterare su una sequenza di
numeri interi. La funzione range() accetta un numero variabile di parametri.
Quando è chiamata con un solo parametro, range(n) itera sugli interi a 0 a
n-1 . Con due parametri, range(a,b) itera da a a b-1 . Il terzo parametro
permette di incrementare le sequenza di valori superiori a 1.

for i in range(3):
 print(i)
Out: 0
Out: 1
Out: 2

for i in range(2,5):
 print(i)
Out: 2
Out: 3
Out: 4

for i in range(2,5,2):
 print(i)
Out: 2
Out: 4

La funzione range() definisce una sequenza speciale che può essere
convertita in altre sequenze, applicando le operazioni list() o tuple() .

list(range(2,20,3))
Out: [2, 5, 8, 11, 14, 17]

Possiamo scrivere una funzione che prende in input un intero n e crea una
lista che contiene i cubi degli interi da 1 a n .

def crea_cubi(n):

 """Ritorna una lista che contiene i cubi degli
 interi da 1 a n."""
 lst = []
 for i in range(1, n + 1):
 lst = lst + [i**3]
 return lst

lst = crea_cubi(10)
print(lst)
Out: [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

Un utilizzo comune della funzione range() è quello di iterare sugli indici di
una lista per poterne modificare i valori, anche se in generale, in Python è
preferibile creare nuove liste e non modificare quelle già esistenti.

primi = [2, 3, 5, 7, 11, 13]
for indice in range(len(primi)):
 primi[indice] = primi[indice] ** 2

print(primi)
Out: [4, 9, 25, 49, 121, 169]

Adesso possiamo scrivere una variazione della funzione setta_cubi() in cui
modifichiamo direttamente la lista di input.

def setta_cubi(lst):
 """Modifica la lista di input elevando al
 cubo tutti i suoi valori."""
 for i in range(len(lst)):
 lst[i] = lst[i]**3

primi = [2, 3, 5, 7, 11, 13]
print(primi)
Out: [2, 3, 5, 7, 11, 13]

setta_cubi(primi)
print(primi)
Out: [8, 27, 125, 343, 1331, 2197]

Questo comportamento può apparire strano, ma segue dal modo in cui

Python definisce il passaggio dei parametri a funzioni. Il parametro lst della
funzione setta_cubi() non riceve una copia della variabile primi , ma il suo
valore stesso. Quindi lo può modificare e la modifica è visibile all’esterno
della funzione. Questo comportamento è corretto in Python ma vivamente
sconsigliato perché fonte di innumerevoli errori di programmazioni. Se si
vuole alterare una lista, è spesso meglio crearne una nuova, ad esempio con
la funzione cubi() , e poi assegnare alla variabile la nuova lista.

7.3 ITERAZIONE CON CONDIZIONALI

Usando l’istruzione if possiamo scrivere una funziona che emula
l’operatore in . In questo caso useremo l’istruzione return dentro ad un
ciclo eseguita solo quando la condizione è vera.

def appartiene(valore_test, valori):
 '''Ritorna True se valore_test è in valori,
 False altrimenti.'''
 for valore in valori:
 if valore == valore_test:
 # usciamo dal ciclo e dalla funzione
 # inserendo return nel ciclo
 return True
 return False

lst = ['mela', 'pera', 'uva']
print('arancia' in lst, appartiene('arancia',lst))
Out: False False
print('mela' in lst, appartiene('mela',lst))
Out: True True

Scriviamo una funziona che emula la funziona predefinita max() . Per farlo
manterremo in una variabile aggiuntiva il valore massimo trovato durante lo
scorrimento della lista.

def valore_massimo(valori):
 '''Ritorna il valore massimo di una lista.'''
 if not valori: return None # lista vuota
 massimo = valori[0]
 for valore in valori:
 if valore > massimo:
 massimo = valore
 return massimo

print(valore_massimo([10,1,20]))
Out: 20

Scriviamo una funziona che ritorna l’indice di una elemento di una lista, se
esiste, o -1 se non esiste.

def indice(valori,elemento):
 '''Ritorna l'indice di un elemento,
 o -1 se non esite.'''
 for i in range(len(valori)):
 if valori[i] == elemento:
 return i
 return -1

print(indice([10,1,20],20))
Out: 2
print(indice([10,1,20],30))
Out: -1

Scriviamo una funziona che verifica se una lista è ordinata. Per farlo, basta
confrontare tutte le coppie di elementi consecutivi utilizzando range() per
iterare sul primo indice.

def ordinata(lst):
 '''Ritorna True se la list lst è ordinata,
 altrimenti False.'''
 for i in range(len(lst)-1):
 if lst[i] > lst[i+1]:
 return False
 return True

lst = [2,3,1]
print(ordinata(lst))
Out: False
print(ordinata(sorted(lst)))
Out: True

Con una piccola modifica, scriviamo una funzione che ritorna l’indice del
primo valore di una lista che non è compatibile con l’ordinamento della
stessa.

def elemento_non_ordinato(lst):
 '''Ritorna l'indice del primo valore che non
 rispetta l'ordinamento.'''
 for i in range(len(lst)):
 if lst[i] > lst[i+1]:
 return i
 return -1

print(elemento_non_ordinato([1,2,3,2]))
Out: 2
print(elemento_non_ordinato(['abc','abcc','ab']))
Out: 1

7.4 CONTROLLO DELL’ITERAZIONE

L’istruzione if permette di alterare l’esecuzione di cicli come abbiamo visto
nei vari esempi precedenti dove le condizioni venivano usate per escludere o
includere singole iterazioni in un ciclo. L’utilizzo di for e if insieme è così
comune che Python prevede due istruzioni aggiuntive, continue e break ,
per supportare cicli con condizionali. L’istruzione continue salta le rimanenti
istruzioni del blocco e continua alla prossima iterazione. L’istruzione break
termina il ciclo senza considerare gli elementi successivi.

Possiamo scrivere ad esempio una funzione che prese in input due liste e
ritorna la media degli elementi della prima lista che non appartengono alla
seconda.

def media_esclusiva(lst, nolst):
 '''Media degli elementi in lst e non in nolst'''
 total = 0
 count = 0
 for s in lst:
 if s in nolst:
 # Salta alla prossima iterazione
 continue
 total += s
 count += 1
 return total / count

print(media_esclusiva([2,3,4],[3]))
Out: 3.0

Come ultimo esempio scriviamo una funzione che prende in input una lista e
ritorna la media degli elementi calcolata fino ad incontrare il primo numero
negativo.

def media_esclusiva2(lst):
 total = 0
 count = 0

 for s in lst:
 if s < 0:
 # Esci dal ciclo
 break
 total += s
 count += 1
 return total / count

print(media_esclusiva2([2,3,4,-1,10,20]))
Out: 3.0

7.5 ITERAZIONE SU CONDIZIONE

Il for itera su elementi di una sequenza. Il while permette invece di iterare
finché una condizione non risulta falsa. La sintassi generale del while è

while cond:
 istruzioni

dove il blocco istruzioni sarà eseguito finché la condizione cond risulta
vera. Se non si vuole avere un ciclo infinito occorrerà che l’esecuzione del
blocco istruzioni , ad una certa iterazione, faccia sì che la condizione cond
diventi falsa. Il while risulta utile quando bisogna iterare un blocco di
istruzioni non sapendo, a priori, quale sarà il numero di iterazioni. Ad
esempio, se vogliamo determinare se un numero è primo, cioè è divisibile
solamente per 1 e per se stesso, possiamo usare un while per provare i
possibili divisori.

def primo(n):
 '''Ritorna True se il numero è primo.'''
 k = 2
 while k < n and (n % k) != 0:
 k += 1
 return k == n

print(primo(10))
Out: False
print(primo(13))
Out: True

Ovviamente si poteva scrivere anche usando il for ma così è più chiaro che
ci fermiamo non appena troviamo un divisore. Un esempio in cui la
convenienza di usare un while è ancora più evidente è trovare il più piccolo
numero primo maggiore o uguale ad un intero dato.

def primo_minimo(m):

 '''Ritorna il più piccolo primo >= m.'''
 while not primo(m):
 m += 1
 return m

print(primo_minimo(10))
Out: 11

7.6 ITERAZIONE E UNPACKING

Abbiamo visto come possiamo accedere agli elementi delle sequenze con l’
unpacking che assegna simultaneamente tutti i valori della sequenza ad
altrettante variabili con nomi diversi separate da virgole. Possiamo
combinare iterazione e unpacking insieme per iterare direttamente su
sequenze di tuple.

numeri = [(1,'uno'),(2,'due')]

numero è una tupla
for numero in numeri:
 print(numero)
Out: (1, 'uno')
Out: (2, 'due')

unpacking delle tuple esplicito
for numero in numeri:
 valore, stringa = numero
 print(valore, stringa)
Out: 1 uno
Out: 2 due

unpacking delle tuple implicito
for valore, stringa in numeri:
 print(valore, stringa)
Out: 1 uno
Out: 2 due

Come abbiamo visto finora, c’è spesso la necessità di iterare su elementi di
una sequenza e di conoscerne l’indice alla stesso tempo. La funzione
predefinita enumerate() permette di iterare su coppie indice-valore.

colori = ['blu', 'rosso', 'verde', 'giallo']
for indice, colore in enumerate(colori):
 print(indice, colore)

Out: 0 blu
Out: 1 rosso
Out: 2 verde
Out: 3 giallo

7.7 COMPREHENSIONS

L’iterazione è usata per trasformare una sequenza in un’altra, ad esempio in
cubi() , o creare una sequenza con range() . Manipolazioni di questo tipo
sono molto frequenti in Python. Per questo il linguaggio introduce una
notazione succinta chiamata list comprehension. La sintassi generale è

[espressione for variable in lista if condizione]

che è equivalente alla funzione

def comprehension(lista):
 ret = []
 for variabile in lista:
 if condizione:
 ret += [espressione]
 return ret

Con questa notazione possiamo esprimere alcune variazioni delle funzioni
precedenti.

lista dei quadrati dei numeri tra 1 e 5
quadrati = [i ** 2 for i in range(5)]
print(quadrati)
Out: [0, 1, 4, 9, 16]

sottolista dei numeri pari
pari = [i for i in quadrati if i % 2 == 0]
print(pari)
Out: [0, 4, 16]

8 OGGETTI E METODI

Finora abbiamo usato valori in Python senza preoccuparci ci come solo
rappresentati internamente dal linguaggio. In questo capitolo introdurremo
il concetto di oggetti, che in Python sono usati per rappresenta tutti i valori.

8.1 OGGETTI, TIPI E IDENTITÀ

In Python è un linguaggio orientato agli oggetti, dove ogni valore è un oggetto.
Un oggetto ha un valore, un tipo e una identità. Il valore dell’oggetto
'stringa' è la sequenza di caratteri “stringa”, il tipo è str e l’identità è
determinata dalla locazione in memoria dell’oggetto. Similmente l’oggetto 7
ha come valore il numero sette, come tipo int e una sua identità propria.
Ovviamente due oggetti differenti non possono occupare la stessa locazione
in memoria, quindi due oggetti con la stessa identità sono esattamente lo
stesso oggetto. Però oggetti differenti, cioè con differenti identità, possono
avere lo stesso tipo e valore. Abbiamo già visto come type() ritorna il tipo di
una oggetto.

tipi base
print(type('stringa'))
Out: <class 'str'>
print(type(13))
Out: <class 'int'>
print(type(12345678901234))
Out: <class 'int'>
print(type(13.0))
Out: <class 'float'>
print(type([1,2,3]))
Out: <class 'list'>

La funzione predefinita id(obj) ritorna l’identità dell’oggetto obj , espressa
da un intero che generalmente è l’indirizzo in memoria di obj .

x = [1, 2]
y = [1, 2]

print(id(x))
Out: 4315311432
print(id(y))
Out: 4315351752

gli oggetti x e y hanno lo stesso valore
ma hanno identità differenti

print(x == y)
Out: True
print(id(x) == id(y))
Out: False

L’operatore == controlla l’uguaglianza di valore non l’uguaglianza d’identità.
Può capitare che oggetti immutabili con lo stesso valore, ma creati in posti
diversi, abbiamo la stessa identità. Per ragioni di efficienza Python può usare
lo stesso oggetto immutabile invece che crearne uno nuovo. Questo non
produrrà nessun problema proprio perché sono oggetti il cui valore non può
cambiare mai.

x = 'stringa'
y = 'stringa'
print(id(x))
Out: 4315384832
print(id(y))
Out: 4315384832
x e y sono lo stesso oggetto

Un tipo, ciò che è ritornato dalla funzione type() , è anch’esso un oggetto
ma non approfondiremo oltre questo aspetto. Come abbiamo visto in
precedenza, i nomi dei tipi possono essere usati come costruttori per creare
oggetti di quel tipo e per testare il tipo di un oggetto.

print(int('00123'))
Out: 123
print(int(12.3))
Out: 12
print(str(12.3))
Out: 12.3
print(list())
Out: []

C’è un oggetto speciale None che è usato per indicare l’assenza di un valore
ed è anche ritornato da un funzione quando l’esecuzione non termina

tramite un return o il return non ha espressione.

x = None
print(x)
Out: None
print(type(x))
Out: <class 'NoneType'>

la funzione non ritorna nulla
def printme(val):
 val + 1

print(printme(1))
Out: None

8.2 OGGETTI FUNZIONE

In Python, le funzioni stesse sono oggetti di function che hanno come
valore una codifica delle istruzioni e hanno una operazione definita che è la
chiamata.

def cubo(x): return x**3
def quadrato(x): return x**2

print(cubo)
Out: <function cubo at 0x101364ea0>
print(id(cubo))
Out: 4315303584
print(type(cubo))
Out: <class 'function'>
cubo == quadrato
Out: False

Questo permette di passare funzioni ad altri funzioni e memorizzare
funzioni in variabili in modo completamente naturale. Vedremo alcuni
esempi molo semplici.

memorizza una funzione in una variabile
f = cubo
chiama la funzione usando il nome della variabile
f(3)
Out: 27

funzioni come argomento
def print_f(f,x):
 print(f(x))

passaggio di funzioni come argomenti
print_f(cubo,5)
Out: 125
print_f(quadrato,5)
Out: 25

La nozione di poter trattare funzioni come valori è molto espressiva, e è uno
dei cardini di uno stile di programmazione detto programmazione funzionale.
Questo libro non tratta in modo esplicito di questo tipo di programmazione,
ma utilizzeremo la possibilità di passare funzioni come argomenti quando
necessario per risolvere problemi specifici.

8.3 ASSEGNAMENTO DI OGGETTI

Torniamo a rivedere il concetto di assegnamento alla luce dell’introduzione
degli oggetti. Come abbiamo visto possiamo creare due oggetti diversi con lo
stesso valore. Quando assegnamo un oggetto ad un’atra variabile, non
creiamo una copia dell’oggetto, ma assegnamo l’oggetto stesso. Per questo
si dice che assegnamo un riferimento all’oggetto. Questo si può verificare
guardando l’identità degli oggetti.

l1 = [1,2]
l2 = [1,2]
l3 = l1

l1 e l3 si riferiscono allo stesso oggetto
print(id(l1),id(l2),id(l3))
Out: 4315398280 4315351752 4315398280

le modiche di l1 saranno visibili on l3
print(l1,l2,l3)
Out: [1, 2] [1, 2] [1, 2]
l1[0] = -1
print(l1,l2,l3)
Out: [-1, 2] [1, 2] [-1, 2]

Questo comportamento può causare innumerevoli errori per i tipi mutabili
perché le modifiche di un oggetto si ripercuotono su tutte le variabili che si
riferiscono a quell’oggetto. Questa è la ragione per cui è consigliabile creare
nuovi oggetti, ad esempio nel corpo delle funzioni, invece di alterare quelli
già esistenti. Per i tipi immutabili questo non è problematico dato che i valori
non possono cambiare una volta creati.

8.4 METODI

Intuitivamente, si può dire che un tipo permette di raccogliere tutti gli oggetti
che appartengono ad una stessa “famiglia”. Gli oggetti dello stesso tipo
possono avere valori differenti ma condividono le operazioni che possiamo
effettuare su di essi. Tutti gli interi possono essere sommati, moltiplicati,
elevati a potenza, ma non hanno una lunghezza. Le stringhe hanno una
lunghezza, possono essere concatenate, ma non possono essere elevate a
potenza.

Python offre una sintassi speciale per funzioni specifiche ad un determinato
tipo. Queste funzioni si chiamano metodi e vengono chiamati, o “invocati”,
con la sintassi obj.metodo(parametri) dove obj è l’oggetto su cui eseguire
l’operazione, metodo il nome dell’operazione e parametri i suoi parametri.
Se il metodo fosse una funzione verrebbe chiamata con metodo(obj,

parametri) . Vedremo successivamente come definire nuovi tipi e i relativi
metodi. Per adesso ci limiteremo a considerare i metodi più utili di alcuni tipi
predefiniti. Si può ottenere l’elenco dei metodi supportati da un tipo
chiamando la funzione help(tipo) . Un esempio di metodo è il is_integer
definito per il tipo float , ma non definito ad esempio per il tipo int .

x = 1.5
print(x, x.is_integer())
Out: 1.5 False
x = 1.0
print(x, x.is_integer())
Out: 1.0 True
y = 13
print(y, y.is_integer())
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: AttributeError: 'int' object has no attribute 'is_integer'

8.5 METODI DELLE LISTE

Il metodo count() ritorna il numero di occorrenze di un valore nella lista,
mentre il metodo index() ritorna la posizione della prima occorrenza di un
valore nella lista.

lst = ['uno', 1, 'uno', 'due', 2, 1]
print(lst.count(1))
Out: 2
print(lst.count('uno'))
Out: 2

ritorna l'indice della prima occorrenza di 'due'
print(lst.index('due'))
Out: 3
inizia la ricerca dalla posizione 2
print(lst.index(1, 2))
Out: 5

errore: non trova il valore 3
print(lst.index(3))
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: ValueError: 3 is not in list

Altri metodi permettono di modificare una lista aggiungendo, inserendo o
rimuovendo valori nella lista stessa, senza cioè crearne un’altra. Il metodo
append() aggiunge un valore in coda alla lista stessa. Il metodo insert()
inserisce un valore in una certa posizione all’interno della lista. Il metodo
remove() rimuove la prima occorrenza di un valore e se non c’è genera un
errore, mentre il metodo pop() rimuove il valore in una posizione e lo
ritorna, di default la posizione è l’ultima.

lst = ['uno', 1, 'uno', 'due', 2, 1]
lst.append('tre')
print(lst)

Out: ['uno', 1, 'uno', 'due', 2, 1, 'tre']
lst1 = lst + ['quattro']
lst == lst1
Out: False

inserisce 'sei' in posizione 2, spostando gli
lst.insert(2, 'sei')
print(lst)
Out: ['uno', 1, 'sei', 'uno', 'due', 2, 1, 'tre']
lst.insert(0, 'primo')
print(lst)
Out: ['primo', 'uno', 1, 'sei', 'uno', 'due', 2, 1, 'tre']

lst.remove('uno')
print(lst)
Out: ['primo', 1, 'sei', 'uno', 'due', 2, 1, 'tre']

x = lst.pop()
print(lst)
Out: ['primo', 1, 'sei', 'uno', 'due', 2, 1]
x = lst.pop(2)
print(lst)
Out: ['primo', 1, 'uno', 'due', 2, 1]

Come esempio vogliamo scrivere una funzione rot() che ruota una lista di
una posizione verso destra. Ad esempio se la lista di input è [1,2,3,4,5] la
funzione la modifica così [5,1,2,3,4] . Possiamo poi usare rot() per
scrivere una funzione rotate() che prende in input anche un intero k e
ruota la lista k volte.

def rot(lst):
 '''Ruota la lista data di una posizione
 a destra.'''
 last = lst.pop()
 lst.insert(0, last)

lst = [1,2,3,4,5]
rot([1,2,3,4,5])
print(lst)
Out: [1, 2, 3, 4, 5]

def rotate(lst, k):
 '''Ruota la lista data di k posizioni
 a destra.'''
 for _ in range(k):
 rot(lst)

def test_rotate(lst, k):
 print(lst, " k =", k)
 rotate(lst, k)
 print(lst)

lst = [1,2,3,4,5]
rotate(lst, 3)
print(lst)
Out: [3, 4, 5, 1, 2]

9 TABELLE DI DATI

I Computer sono particolarmente utili per elaborare dati. Fino ad ora
abbiamo visto come memorizzare ed elaborare sequenze di dati con liste. In
questo capitolo introdurremo i dizionari che permettono di memorizzare
tabelle di dati e di associare dati ad altri dati.

9.1 DIZIONARI

Un dizionario è un oggetto di tipo dict che può essere visto come una
collezione di coppie chiave-valore. In un dizionario ad ogni chiave è
univocamente associato un singolo valore. Quindi non possono esistere due
chiavi uguali. Dalla chiave si può accedere direttamente al valore, ma non
viceversa. Ad esempio, la chiave potrebbero essere il codice fiscale e il valore
il nome e cognome.

Un dizionario di può creare mettendo, tra parentesi graffe, una lista di
coppie chiave-valore separati dal simbolo: . Il dizionario vuoto viene creato
con le parentesi graffe senza elementi. Nei dizionari, chiavi e valori posso
avere tipi arbitrati. Ad esempio potremmo creare un dizionario che associa
ad un nome nu numero di telefono.

dizionario con chiavi-valori
rubrica = { 'Sergio': '123456', 'Bruno': '654321' }
print(rubrica)
Out: {'Sergio': '123456', 'Bruno': '654321'}
print(type(rubrica))
Out: <class 'dict'>

dizionari vuoti
print({})
Out: {}

Possiamo accedere ai valori associati alle chiavi usando la sintassi delle
parentesi quadre, similmente alle liste, ma specificando il valore della chiave.
Se si accede ad un elemento non esistente si riceve un errore.

valore associato a 'Sergio'
print(rubrica['Sergio'])
Out: 123456

valore associato a Bruno

print(rubrica['Bruno'])
Out: 654321

valore non estistente
print(rubrica['Giovanni'])
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: KeyError: 'Giovanni'

Una volta che un dizionario è stato creato possiamo aggiungere, modificare
o rimuovere associazioni. Per aggiungere una nuova chiave e il relativo
valore si può sempre usare la sintassi delle parentesi quadre. Per rimuovere
un chiave, basta usare il metodo pop() .

aggiunge una nuova associazione
rubrica['Mario'] = '112233'
print(rubrica)
Out: {'Sergio': '123456', 'Mario': '112233', 'Bruno': '654321'}

modifica un'associazione esistente
rubrica['Sergio'] = '214365'
print(rubrica)
Out: {'Sergio': '214365', 'Mario': '112233', 'Bruno': '654321'}

rimuove un chiave e il corrispondente valore
x = rubrica.pop('Bruno')
print(rubrica)
Out: {'Sergio': '214365', 'Mario': '112233'}

Si può controllare se una chiave è presente nel dizionario con l’operatore
in . Si noti che questo è diverso dalle liste dove in controlla se un valore è
presente. len() ritorna il numero di chiavi.

print('Sergio' in rubrica)
Out: True
print('Luigi' in rubrica)
Out: False
print('214365' in rubrica)
Out: False
print(len(rubrica))

Out: 2

Possiamo iterare sulle chiavi di un dizionario usando il dizionario
direttamente in un ciclo for o utilizzando il metodo keys() . Possiamo
iterare sulle coppie chiave-valore chiamando il metodo items() . Meno
comunemente, si può iterare sui valori con values() , ma in questo caso non
è possibile accedere alla chiave direttamente. Si noti che quando si itera sui
dizionari le chiavi non sono ordinate.

itera sulle chiavi di rubrica
for chiave in rubrica:
 print(chiave, rubrica[chiave])
Out: Sergio 214365
Out: Mario 112233

itera sulle chiavi di rubrica
for chiave in rubrica.keys():
 print(chiave, rubrica[chiave])
Out: Sergio 214365
Out: Mario 112233

itera sulle coppie chiavi-valori di rubrica
for chiave, valore in rubrica.items():
 print(chiave, valore)
Out: Sergio 214365
Out: Mario 112233

itera sui valori di rubrica
for valore in rubrica.values():
 print(valore)
Out: 214365
Out: 112233

Per ottenere esplicitamente le liste di chiavi, valori o delle coppie chiave-
valore, utilizziamo i metodi keys() , values() e items() passandoli alla
funzione list() . Il risultato dei primi due casi saranno liste di elementi
singoli, mentre il risultato di list(items()) sarà una lista di tuple.

print(rubrica.keys())

Out: dict_keys(['Sergio', 'Mario'])
print(rubrica.values())
Out: dict_values(['214365', '112233'])
print(rubrica.items())
Out: dict_items([('Sergio', '214365'), ('Mario', '112233')])

Come esempio scriviamo una funzione aggiorna_dict(d, d2) che aggiorna
il dizionario d aggiungendo ad esso le associazioni di d2 . Questa funzione è
simile al metodo predefinito update() .

def aggiorna_dict(d, d2):
 '''Aggiunge a d gli elementi in d2.'''
 for k, v in d2.items():
 d[k] = v

rubrica = { 'Sergio': '112233',
 'Mario': '654321' }

rubrica2 = { 'Sergio': '333333',
 'Maria': '222222' }

aggiorna_dict(rubrica, rubrica2)
print(rubrica)
Out: {'Sergio': '333333', 'Maria': '222222', 'Mario': '654321'}

Come per le liste, i dizionari si possono creare attraverso comprehensions. In
questo caso la sintassi utilizza le parentesi graffe e le coppie chiave-valore
separata da : .

cubi = { i: i**3 for i in range(3) }
print(cubi)
Out: {0: 0, 1: 1, 2: 8}

9.2 INSIEMI

A volte è necessario memorizzare una serie di valori non ripetuti e non
ordinati. In Python questo si fa con il tipo insieme o set . A differenza delle
liste, un oggetto di tipo set non contiene duplicati e gli elementi sono in
ordine arbitrario. Un insieme è quindi simile a un dizionario con le sole
chiavi e senza valori. In generale, gli insiemi sono usati meno spesso dei
dizionari, ma rimangono utili. Un insieme di valori si creare mettendo la lista
dei valori tra parentesi graffe, mentre l’insieme vuoto si crea con set() .

innsieme con due valori
insieme = { 5, 'five' }
print(insieme)
Out: {'five', 5}

insiemi vuoti
print(set())
Out: set()

Possiamo aggiungere elementi tramite il metodo add() e rimuoverli con i
metodi remove() e pop() . L’aggiunta di un elemento già esistente non ha
effetto.

insieme.add(6)
print(insieme)
Out: {'five', 5, 6}

insieme.add(6)
print(insieme)
Out: {'five', 5, 6}

insieme.remove('five')
print(insieme)
Out: {5, 6}

Le istruzioni for , in e la funzione len() agiscono in modo simile ai
dizionari.

for valore in insieme:
 print(valore)
Out: 5
Out: 6

print(5 in insieme)
Out: True
print('six' in insieme)
Out: False
print(len(insieme))
Out: 2

Un insieme può anche essere creato a partire da una sequenza usando la
funzione set() . Un tipico utilizzo è di rimuovere i duplicati dalle liste, senza
però preservarne l’ordine.

print(set(['rosso', 'verde', 'blu', 'rosso']))
Out: {'rosso', 'blu', 'verde'}

Gli insiemi supportano le operazioni di unione | , intersezione & , differenza -
e differenza simmetrica ^

colori1 = {'rosso', 'verde', 'giallo'}
colori2 = {'rosso', 'blu'}
print(colori1 | colori2)
Out: {'rosso', 'giallo', 'blu', 'verde'}
print(colori1 - colori2)
Out: {'giallo', 'verde'}
print(colori1 & colori2)
Out: {'rosso'}
print(colori1 ^ colori2)
Out: {'blu', 'giallo', 'verde'}

Come esempio, scriviamo una funzione intersezione_liste(lst, lst2) che
ritorna una lista che contiene i valori comuni alle due liste lst1 e lst2

senza ripetizioni.

crea una lista dall'insieme
def intersezione_liste(lst1, lst2):
 inter = set(lst1) & set(lst2)
 return list(inter)

primi = [2,3,5,7,11,13,17,19,23,29,31,37,41]
fib = [1,1,2,3,5,8,13,21,34,55,89]

print(intersezione_liste(primi, fib))
Out: [13, 2, 3, 5]

w1 = ['quali', 'sono', 'le', 'parole', 'in', 'comune']
w2 = ['sono', 'le', 'parole', 'che', 'appaiono', 'sia','in', 'w1',
'che', 'in', 'w2']

print(intersezione_liste(w1, w2))
Out: ['sono', 'in', 'le', 'parole']

9.3 TABELLE DI DATI

Un esempio comune di uso di dizionari in Python è la manipolazione di
tabelle di dati. Abbiamo visto ad esempio come creare una piccola rubrica
associando ad un nome il numero di telefono. Spesso però abbiamo la
necessità di memorizzare dati più complessi, come ad esempio memorizzare
per ciascuna persona il nome, il telefono e l’anno di nascita. Ad esempio
potremmo avere i seguenti dati:

nome	anno	tel
 Sofia | 1973 | 5553546
 Bruno | 1981 | 5558432
 Mario | 1992 | 5555092
 Alice | 1965 | 5553546

Un modo comune di memorizzare questi dati è con liste di dizionari. Ogni
riga della tabella corrisponde ad un dizionario. Questa collezione di dizionari
è poi memorizzata in una lista corrispondente a tutte le righe.

colonne = ['nome', 'anno', 'telefono']

dati = [
 { 'nome':'Sofia', 'anno':1973, 'tel':'5553546' },
 { 'nome':'Bruno', 'anno':1981, 'tel':'5558432' },
 { 'nome':'Mario', 'anno':1992, 'tel':'5555092' },
 { 'nome':'Alice', 'anno':1965, 'tel':'5553546' },
]

print(dati)
Out: [{'nome': 'Sofia', 'anno': 1973, 'tel': '5553546'}, {'nome':
'Bruno', 'anno': 1981, 'tel': '5558432'}, {'nome': 'Mario', 'anno':
1992, 'tel': '5555092'}, {'nome': 'Alice', 'anno': 1965, 'tel':
'5553546'}]

Si può notare chiaramente come la funzione print() non è particolarmente

utile nella stampa di questi dati. Per dati non troppo grandi, utilizzeremo la
funzione pprint() dall’omonimo modulo.

from pprint import pprint
pprint(dati)
Out: [{'anno': 1973, 'nome': 'Sofia', 'tel': '5553546'},
Out: {'anno': 1981, 'nome': 'Bruno', 'tel': '5558432'},
Out: {'anno': 1992, 'nome': 'Mario', 'tel': '5555092'},
Out: {'anno': 1965, 'nome': 'Alice', 'tel': '5553546'}]

9.4 ESTRAZIONE DI DATI

Analogamente all’utilizzo del metodo keys() nei dizionari, è spesso
necessario estrarre singole colonne dai dati e creare dalle tabelle con un
sottoinsieme delle colonne esistenti. Possiamo creare funzioni analoghe
iterando sulle righe della tabella.

def colonna(dati,chiave):
 '''Ritorna la lista dei valori per la colonna
 specificata da chiave.'''
 valori = []
 for dato in dati:
 valori.append(dato[chiave])
 return valori

nomi = colonna(dati,'nome')
pprint(nomi)
Out: ['Sofia', 'Bruno', 'Mario', 'Alice']

def sottotabella(dati,chiavi):
 '''Ritorna la tabella che include solo le
 colonne specificate da chiavi.'''
 ndati = []
 for dato in dati:
 ndato = {}
 for chiave in chiavi:
 ndato[chiave] = dato[chiave]
 ndati.append(ndato)
 return ndati

pprint(sottotabella(dati,['nome','anno']))
Out: [{'anno': 1973, 'nome': 'Sofia'},
Out: {'anno': 1981, 'nome': 'Bruno'},
Out: {'anno': 1992, 'nome': 'Mario'},
Out: {'anno': 1965, 'nome': 'Alice'}]

9.5 RICERCA DI DATI

Vorremmo ora accedere ai dati per, ad esempio, trovare il numero di
telefono corrispondente ad un nome. Con i dati in questo formato,
possiamo iterare sulle lista e accedere ai singoli dizionari per fare operazioni
arbitrarie. Ad esempio, scriviamo una funzione che ritorna il valore di una
chiave per un determinato nome. In caso il nome non è presente
utilizzeremo il valore speciale None .

def ricerca(dati,nome,chiave):
 for dato in dati:
 if dato['nome'] == nome:
 return dato[chiave]
 return None

print(ricerca(dati,'Mario','tel'))
Out: 5555092

Questa operazione è così comune che spesso è utile creare degli indici che
permettono di accedere direttamente alle righe della tabella. Ad esempio,
potremmo creare un dizionario che associa i nomi alle righe della tabella.

indice = {}
for numero_riga, dato in enumerate(dati):
 indice[dato['nome']] = numero_riga

def ricerca_con_indice(dati,indice,nome,chiave):
 if nome in indice:
 numero_riga = indice[nome]
 dato = dati[numero_riga]
 return dato[chiave]
 else:
 return None

print(ricerca_con_indice(dati,indice,'Mario','tel'))
Out: 5555092

9.6 ORDINAMENTO DI DATI

Abbiamo visto che la funzione sorted() permette di ordinare liste di valori
semplici, come interi o stringhe. È spesso utile ordinare tabelle di dati, che
però possono essere ordinati rispetto a ciascuna colonna. Ad esempio,
potremmo ordinare per nome o anno di nascita. Il parametro opzionale key
della funzione sorted() ci permette di fare esattamente questo. Il
parametro key si aspetta il nome di una funzione che ritorna il valore da
usare per l’ordinamento. Per ordinare in modo inverso, basta usare il
parametro opzionale reverse .

dati non ordinati
pprint(dati)
Out: [{'anno': 1973, 'nome': 'Sofia', 'tel': '5553546'},
Out: {'anno': 1981, 'nome': 'Bruno', 'tel': '5558432'},
Out: {'anno': 1992, 'nome': 'Mario', 'tel': '5555092'},
Out: {'anno': 1965, 'nome': 'Alice', 'tel': '5553546'}]

dati ordinati per nome
def nome_dato(dato): return dato['nome']
pprint(sorted(dati,key=nome_dato))
Out: [{'anno': 1965, 'nome': 'Alice', 'tel': '5553546'},
Out: {'anno': 1981, 'nome': 'Bruno', 'tel': '5558432'},
Out: {'anno': 1992, 'nome': 'Mario', 'tel': '5555092'},
Out: {'anno': 1973, 'nome': 'Sofia', 'tel': '5553546'}]

dati ordinati per anno di nascita
def anno_dato(dato): return dato['anno']
pprint(sorted(dati,key=anno_dato))
Out: [{'anno': 1965, 'nome': 'Alice', 'tel': '5553546'},
Out: {'anno': 1973, 'nome': 'Sofia', 'tel': '5553546'},
Out: {'anno': 1981, 'nome': 'Bruno', 'tel': '5558432'},
Out: {'anno': 1992, 'nome': 'Mario', 'tel': '5555092'}]

dati ordinati per anno di nascita inverso
pprint(sorted(dati,key=anno_dato,reverse=True))
Out: [{'anno': 1992, 'nome': 'Mario', 'tel': '5555092'},

Out: {'anno': 1981, 'nome': 'Bruno', 'tel': '5558432'},
Out: {'anno': 1973, 'nome': 'Sofia', 'tel': '5553546'},
Out: {'anno': 1965, 'nome': 'Alice', 'tel': '5553546'}]

10 ACCESSO AI DATI

I dati elaborati dai programmi sono mantenuti in memorie secondarie, come
dischi e memorie flash, o reperibili attraverso connessioni di rete, come le
risorse su Internet. Python permette di accedere a queste due le tipologie di
memorizzazione in modo semplice, astraendo le complessità dei sistemi di
memorizzazione e di connessione alla rete. In questo capitolo, descriveremo
come accedere a informazioni sia su disco che su internet.

10.1 FILE E PERCORSI

I file mantengono nella memoria di un computer, generalmente su disco,
informazioni di qualsiasi tipo: testi, dati, tabelle, immagini, video, musica,
ecc. In Python si accede ai file con oggetti predefiniti di tipo file . Un oggetto
di tipo file , rappresenta uno specifico file che può essere letto, scritto o
modificato tramite i metodi del tipo file . Come vedremo anche documenti
che non sono su disco ma sono accessibili tramite reti di comunicazione
sono gestiti da Python in modo simile ai file su disco.

Se i file a cui vogliamo accedere non sono nella cartella da cui abbiamo
lanciato l’interprete, dobbiamo indicarne il percorso. In questo libro non
andremo in dettaglio sulla definizione dei percorsi e il loro utilizzo,
menzionando solo un piccolo riassunto dei casi più comuni.

Il percorso è formato dai nomi delle directory che contengono il file separati
da un carattere separatore. Su Linux e Mac OS X, il carattere separatore è lo
slash / , su Windows è tradizionalmente il backslash \ , anche se oggigiorno
Windows accetta anche / . Ad esempio usiamo docs/myfile.txt per
accedere al file myfile.txt nella directory docs . Per indicare la cartella
precedente nella gerarchia si può usare il nome speciale .. . Ad esempio
../myfile.txt indica il file nella cartella precedente.

Un percorso assoluto determina la locazione del file partendo dalla root
directory. Per Linux e Mac OS X la root directory è indicata con / . Ad
esempio /home/user/Documents/myfile.txt . Su Windows si deve anche
indicare il volume (o disco). Ad esempio
C:\Users\user\Documents\myfile.txt . L’utilizzo di percorsi globali è
generalmente sconsigliato perché non permette al programma di funzionare
su file diversi o di essere portato su altre macchine.

10.2 APERTURA DI FILE

Prima di poter accedere ad un file bisogna ottenere un oggetto di tipo file
che lo rappresenta, usando la funzione predefinita open(name, mode='rt',
...) . Questa prende come primo argomento obbligatorio il nome del file o il
percorso che si vuole vuole aprire, ad esempio 'myfile.txt' .

Il secondo argomento, che è opzionale, indica la modalità di apertura che può
assumere vari valori. I più comuni sono 'r' per aprire in lettura, 'w' per
aprire in scrittura, e 'a' per aggiungere alla fine del file. Di default la
modalità è di lettura. A seguire si può indicare il tipo di file che può essere t
per un file di testo e b per un file binario.

Se l’apertura del file va a buon fine, si potrà elaborare il contenuto del file
usando i metodi del tipo file . Se invece di tenta di aprire in lettura un file
che non esiste si ottiene un errore. Quando si è terminato di usare il file, è
bene chiuderlo, tramite il metodo close() .

f = open('alice.txt')
qualcosa col file ...
f.close()

f = open('non_esiste.txt')
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: FileNotFoundError: [Errno 2] No such file or directory:
'non_esiste.txt'

Quando si lavora con i file è preferibile usare il costrutto with che gestisce in
modo automatico la chiusura del file, anche se si dovesse verificare un
errore durante l’elaborazione.

with open(...) as f:
 istruzioni

Nel blocco di istruzioni del with , il file è aperto e il relativo oggetto è il
valore della variabile f . Non appena l’esecuzione esce dal blocco il file è
automaticamente chiuso anche se si esce a causa di un errore.

with open('alice.txt') as f:
 print('aperto')
 # fai qualcosa col file ...
Out: aperto

Se del file non specifichiamo il percorso, o il percorso è locale, il file è cercato
nella cartella detta current working directory, o più brevemente cwd, che è
accessibile tramite la funzione getcwd() del modulo os . Questa cartella è
quella da cui abbiamo eseguito l’interprete.

import os

print(os.getcwd())
Out: /Users/fabio/Documents/Work/books/fondamentibook/ch10

10.3 CODIFICA DEI FILE DI TESTO

Sebbene abbiamo visto come le stringhe in Python possono rappresentare
qualunque alfabeto, rimane in problema di come salvare il testo su disco.
Sfortunatamente ci sono varie codifiche, incompatibili tra loro, adatte a
questo scopo. Il default su Mac e Linux è la codifica Unicode UTF8. Su
Windows non c’è un default standard. Quando si apre un file di testo in
Python, l’interprete adotta la codifica di default del sistema operativo.
Possiamo però forzare una codifica diversa utilizzando il parametro
opzionale encoding della funzione open . Per gli esempi di questo libro,
utilizzeremo l’UTF8 se non indicato in modo esplicito.

Un ulteriore differenza tra sistemi operativi, e quindi i file creati sugli stessi, è
il carattere utilizzato per andare a capo che è \n su Mac e Linux e \r\n su
Windows. In questo caso, Python converte i vari formati internamente in
modo che il testo caricato sia valido indipendentemente dalla codifica.

10.4 LETTURA DI FILE

Come file d’esempio usiamo Alice’s Adventures in Wonderland di Lewis Carrol
che si può scaricare da Project Gutenberg. Utilizzeremo la versione in testo
UTF8. Dopo avere aperto un file in lettura, possiamo leggerne il contenuto
con il metodo read() .

f = open('alice.txt')

testo = f.read()
print(len(testo))
Out: 163781

print(testo[686:1020])
Out: CHAPTER I. Down the Rabbit-Hole
Out:
Out: Alice was beginning to get very tired of sitting by her
sister on the
Out: bank, and of having nothing to do: once or twice she had
peeped into the
Out: book her sister was reading, but it had no pictures or
conversations in
Out: it, 'and what is the use of a book,' thought Alice 'without
pictures or
Out: conversations?

Se proviamo a chiamare ancora il metodo read() otteniamo la stringa
vuota, perché la prima chiamata ha letto l’intero file e non è rimasto nessun
carattere da leggere.

print(f.read())
Out:
f.close()

Possiamo utilizzare il metodo read() anche con l’istruzione with .

http://www.gutenberg.org/

with open('alice.txt') as f:
 testo = f.read()
 print(len(testo))
Out: 163781

Il metodo read() può prendere un parametro opzionale che determina il
numero massimo di caratteri da leggere. Il metodo readline() permette di
leggere una linea alla volta. Per provarlo dobbiamo riaprire il file, avendolo
già chiuso in precedenza. Facciamo questo esempio con l’istruzione with .

with open('alice.txt') as f:
 first = f.readline()
 print(repr(first))
Out: "\ufeffProject Gutenberg's Alice's Adventures in Wonderland,
by Lewis Carroll\n"

Il codice alla riga precedente dà problemi, dato che l’encoding dei file di testo
scelto da Python è quello di default del sistema, ma Project Gutemberg usa il
formato utf-8-sig che è una variante non compatibile del formato
standard UTF8. Per assicurarci di leggere i file correttamente possiamo
specificare l’encoding in modo diretto.

with open('alice.txt', encoding='utf-8-sig') as f:
 print(repr(f.readline()))
Out: "Project Gutenberg's Alice's Adventures in Wonderland, by
Lewis Carroll\n"

Avendo determinato l’encoding corretto, possiamo anche usare libri in altre
lingue, ad esempio la versione tradotta in italiano del libro.

with open('alice_it.txt', encoding='utf-8-sig') as f:
 print(repr(f.readline()))
Out: "The Project Gutenberg eBook of Le avventure d'Alice nel
paese delle\n"

Il metodo readlines() legge tutte le linee fino alla fine del file. Questo ci dà
un modo semplice per contare le linee di testo di lunghi documenti,

accedere a linee specifiche, o iterare sulle linee di un file.

with open('alice.txt', encoding='utf-8-sig') as f:
 linee = f.readlines()
 print(len(linee))
 print(linee[200])
 print(linee[400])
Out: 3735
Out: she felt a little nervous about this; 'for it might end, you
know,' said
Out:
Out: anything had happened.) So she began again: 'Ou est ma
chatte?' which
Out:

Gli oggetti di tipo file possono anche essere iterati come se fossero una
sequenza di linee direttamente. Il vantaggio di questo metodo è che il
contenuto del file non deve risiedere completamente in memoria. Come
esempio, scriviamo una funzione che ritorna la lista degli indici di riga in cui
appare una stringa. Questo funzione simula la ricerca nei documenti che
usiamo spesso negli editor di testo.

def ricerca_linee(nome_file, encoding, stringa):
 '''Ritorna la lista dei numeri delle linee del
 file nome_file in cui appare la stringa.'''
 with open(nome_file, encoding=encoding) as f:
 lista_indici = []
 indice_corrente = 1
 for linea in f:
 if linea.find(stringa) != -1:
 lista_indici.append(indice_corrente)
 indice_corrente += 1
 return lista_indici

indici = ricerca_linee('alice.txt', 'utf-8-sig', 'Turtle')
print(indici)
Out: [2213, 2353, 2355, 2357, 2371, 2389, 2396, 2402, 2409, 2410,
2414, 2419, 2421, 2425, 2431, 2438, 2441, 2448, 2452, 2456, 2463,
2468, 2483, 2485, 2493, 2499, 2508, 2520, 2532, 2536, 2550, 2559,
2563, 2571, 2577, 2583, 2587, 2594, 2626, 2632, 2638, 2640, 2679,

2684, 2689, 2696, 2707, 2712, 2740, 2746, 2751, 2774, 2782, 2784,
2786, 2789, 2812, 3347, 3357]
indici = ricerca_linee('alice.txt', 'utf-8-sig', 'Alice')
print(len(indici))
Out: 396

10.5 SCRITTURA DI FILE

Si possono scrivere dati su file aprendo il file in scrittura con modalità 'w' o
'a' . In modalità 'w' il file è creato se non esiste già, o il contenuto
precedente è sovrascritto. Per scrivere in un file si può usare il metodo
write() passando una stringa di testo da scrivere. write() ritorna il
numero di caratteri scritti. Possiamo verificare l’avvenuta scrittura del file
leggendone in contenuto di nuovo.

with open('testo.txt', 'w') as f:
 f.write('Questo è il contenuto del file.')
Out: 31

with open('testo.txt') as f:
 print(f.read())
Out: Questo è il contenuto del file.

Il metodo writelines() permette di scrivere una lista di stringhe. Se si vuole
ad esempio scrivere una lista di stringhe come righe del file basta che ogni
linea contenga esplicitamente il carattere di fine linea '\n' .

with open('lista.txt', 'w') as f:
 f.writelines(['Linea1\n','Linea2\n'])

with open('lista.txt') as f:
 print(f.read())
Out: Linea1
Out: Linea2
Out:

In modalità append 'a' le scritture avvengono in coda all’attuale contenuto.
Ad esempio, se si vuole mantenere un file di log, cioè un file in cui vengono
registrate azioni o eventi, è naturale aggiornarlo in questa modalità,
aggiungendo così di volta in volta le nuove registrazioni e mantenendo
quelle precedenti.

with open('append.txt', 'w') as f:
 f.write('Linea1.\n')
Out: 8

with open('append.txt', 'a') as f:
 f.write('Linea2.\n')
Out: 8

with open('append.txt') as f:
 print(f.read())
Out: Linea1.
Out: Linea2.
Out:

10.6 INPUT E OUTPUT DI DATI

Mentre il testo può essere salvato direttamente, altri tipi di informazioni
devono essere codificate esplicitamente in formati appropriati. Se vogliamo
salvare dati arbitrari in Python, il formato più semplice da usare è il JSON che
permette di codificare in modo standard qualunque combinazione di liste,
dizionari, numeri, booleani, stringhe e None . JSON è particolarmente utile
perché supportato dalla maggioranza di applicazioni su Internet. In Python, il
formato JSON è implementato dal modulo json con le funzioni dump() per
salvare i dati e load() per leggerli.

import json

definisce i dati
dati = [
 { 'nome':'Sofia', 'anno':1973, 'tel':'5553546' },
 { 'nome':'Bruno', 'anno':1981, 'tel':'5558432' },
 { 'nome':'Mario', 'anno':1992, 'tel':'5555092' },
 { 'nome':'Alice', 'anno':1965, 'tel':'5553546' },
]

salva i dati su disco
with open('dati.json','w') as f:
 json.dump(dati,f)

per verificare il salvataggio, rileggiamo i dati
with open('dati.json') as f:
 nuovi_dati = json.load(f)
print(dati == nuovi_dati)
Out: True

http://www.json.org

10.7 ACCEDERE A DOCUMENTI SUL WEB

In Python la manipolazione di dati accessibili tramite connessioni remote,
come ad esempio Internet, usa oggetti molto simili ai file. In questo caso
possiamo solo leggere documenti dalla rete e non salvare file su Web. La
differenza principale rispetto ai file è nell’apertura, perché i dati in remoto
hanno locazioni che sono diverse dai percorsi locali e il loro accesso può
essere regolato da autenticazioni o cookies. In questo capitolo vedremo
solamente gli accessi più semplici ma ci ritorneremo più avanti.

Sul Web le risorse sono localizzate tramite URL o Uniform Resource Locator.
Un esempio di URL è

http://en.wikipedia.org/wiki/Uniform_resource_locator

Lo URL è simile al percorso di un file ed è composto da tre parti principali. Lo
schema http:// è il protocollo usato per l’accesso, in questo caso HTTP o
HyperText Transfer Protocol. Il nome del dominio en.wikipedia.org è il nome
della macchina, virtuale o reale, dove la risorsa è localizzabile. Infine, il
percorso della risorsa /wiki/Uniform_resource_locator identifica la risorsa
nel dominio. L’URL diventa più complicato per siti dove l’utente può
interagire con il sito. Ad esempio su Google l’URL contiene anche i parametri
della ricerca. Per ora consideriamo solo gli URL più semplici.

Per accedere a URL, Python mette a disposizione la libreria urllib costituita
da vari moduli. Il modulo urllib.request permette di accedere a risorse
URL in lettura. Per scaricare una pagina dal sito di Python, si può usare la
funzione urlopen() che ritorna un’oggetto simile ad un file. Quest’ultimo
può essere usato con la funzione read() e in congiunzione all’istruzione
with . In questi casi, i dati sono letti sempre come binario. Per convertirli in
testo dobbiamo chiamare esplicitamente il metodo decode() sui dati di
ritorno.

from urllib.request import urlopen

apre una pagina web
with urlopen('http://python.org') as f:
 page = f.read()

dati in binario
print(page[:50])
Out: b'<!doctype html>\n<!--[if lt IE 7]> <html class="n'

dati come testo
page = page.decode('utf8')
print(page[:50])
Out: <!doctype html>
Out: <!--[if lt IE 7]> <html class="n

Come altro esempio, possiamo scaricare un’immagine da Wikipedia e
salvarla su disco, badando bene a salvare il formato binario con 'wb' .

url = ('https://upload.wikimedia.org/wikipedia/' +
 'commons/thumb/d/df/Face-plain.svg/' +
 '200px-Face-plain.svg.png')
with urlopen(url) as f:
 img = f.read()

with open('face.png', 'wb') as f:
 f.write(img)
Out: 19262

11 ELABORAZIONE DI TESTO

L’elaborazione del testo è una problematica molto comune in
programmazione con usi disparati come l’editing di documenti, il controllo
ortografico, la ricerca e l’estrazione di informazioni, ecc. Per questo Python
ha dotato le stringhe di svariati metodi che introdurremo in questo capitolo
per risolvere il problema della ricerca nei documenti. Quest’ultima si può
formalizzare come il problema di determinare il file, in una collezione di files,
che è più attinente ad una lista di parole di ricerca. Questo è uno degli
ingredienti fondamentali dei search engines, come Google o Bing.
Considereremo una versione estremamente semplificata del problema che
però ne mostra gli elementi principali.

11.1 METODI DELLE STRINGHE

La manipolazione del testo si può eseguire scrivendo funzioni che accedono
direttamente ai singoli caratteri. In questo modo si possono implementare
tutte le possibili manipolazioni, ma il codice risultante è complesso e prono
ad errori. In Python, è più comune elaborare il testo combinando
appropriatamente i metodi delle stringhe che permettono di esprimere
operazioni complesse in modo succinto.

I metodi lower() e upper() ritornano una copia della stringa in cui tutti i
caratteri alfabetici sono stati trasformati, rispettivamente, in minuscolo e in
maiuscolo. Il metodo count() conta il numero di occorrenze di una
sottostringa nella stringa. Il metodo può prendere anche fino a due
parametri opzionali che restringono la ricerca delle occorrenze a una
porzione della stringa.

s = 'Il Numero 1000'
print(s.lower())
Out: il numero 1000
print(s.upper())
Out: IL NUMERO 1000

a = "Ma che bella giornata."
print(a.count('e'))
Out: 2
print(a.count('z'))
Out: 0
print(a.count('giornata'))
Out: 1

conta dalla posizione 9 in poi
print(a.count('i', 9))
Out: 1
dalla posizione 6 alla 9 esclusa
print(a.count('i', 6, 9))
Out: 0

Per illustrare l’uso di questi metodi scriviamo una funzione conta_vocali()
che conta il numero di vocali non accentate, minuscole e maiuscole, presenti
nella stringa di input.

def conta_vocali(s):
 '''Conta le vocali non accentate in s.'''
 # Per contare anche le vocali maiuscole
 s = s.lower()
 count = 0
 for v in 'aeiou':
 count += s.count(v)
 return count

print(conta_vocali("che bello andare a spasso"))
Out: 9
print(conta_vocali("Nn c sn vcl"))
Out: 0

Il metodo find() ritorna la posizione in cui inizia la prima occorrenza di una
stringa, se non ci sono occorrenze ritorna -1 .

s = 'che bello andare a spasso'
print(s.find('bello'))
Out: 4
cerca a partire dalla posizione 4
print(s.find('e', 4))
Out: 5
cerca tra le posizioni 10 e 20 esclusa
print(s.find('bello', 10, 20))
Out: -1

Il metodo splitlines() ritorna la lista delle linee della stringa. Se
specifichiamo il parametro opzionale True anche i caratteri di fine linea
sono ritornati.

testo = '''Prima linea,
seconda linea
e terza linea.'''
print(testo.splitlines())

Out: ['Prima linea,', 'seconda linea', 'e terza linea.']
print(testo.splitlines(True))
Out: ['Prima linea,\n', 'seconda linea\n', 'e terza linea.']

Un altro metodo molto utile delle stringhe è split() che ritorna la lista delle
sottostringhe che sono separate dai caratteri spazio o da una stringa passata
come parametro. Si faccia attenzione che, in generale, split() non è
equivalente a split(' ') dato che nel primo caso le sottostringhe vuote
vengono soppresse, mentre nel secondo restano presenti.

s = "Una frase d'esempio, non troppo lunga"
il separatore di default è lo spazio
print(s.split())
Out: ['Una', 'frase', "d'esempio,", 'non', 'troppo', 'lunga']

altri separatori
print(s.split(','))
Out: ["Una frase d'esempio", ' non troppo lunga']
print(s.split('p'))
Out: ["Una frase d'esem", 'io, non tro', '', 'o lunga']
print(s.split('pp'))
Out: ["Una frase d'esempio, non tro", 'o lunga']

fa al massimo 2 separazioni
print(s.split('p', 2))
Out: ["Una frase d'esem", 'io, non tro', 'po lunga']

differenza per le stringhe ripetute
print(s.split(' '))
Out: ['Una', 'frase', "d'esempio,", 'non', '', '', '', 'troppo',
'lunga']

A volte può essere utile eliminare spazi sono all’inizio e alla fine di una
stringa, ad esempio per normalizzare un testo di input, eliminare i fine linea
dopo splitlines() o determinare le parole con split() . Per fare questo
usiamo il metodo strip() .

s = ' spazio prima e dopo '
print(repr(s))

Out: ' spazio prima e dopo '
print(repr(s.strip()))
Out: 'spazio prima e dopo'

Il metodo replace() sostituisce tutte le occorrenze di una data sottostringa
con un’altra sottostringa, rispettando la differenza tra maiuscole e
minuscole. replace() può anche essere usato per cancellare parte di una
stringa.

s = "Ciao Bruno come stai?"
print(s.replace('Bruno', 'Sara'))
Out: Ciao Sara come stai?
print(s.replace('bruno', 'sara'))
Out: Ciao Bruno come stai?
print(s.replace('come ', '').replace('?',' bene?'))
Out: Ciao Bruno stai bene?

Per creare stringhe formattate a partire dai valori si usa il metodo format() .
La stringa su cui si chiama il metodo esprimere il formato in cui convertire i
valori passati al metodo. Il formato si riferisce ai valori con {i} , che indica l’i-
esimo argomento del metodo, e {var} , che indica l’argomento chiave var= .
L’indice può essere omesso dal formato se si accede ai valori in modo
continuo. La stringa formato ha molte altre opzioni che non elencheremo
esplicitamente, riferendo il lettore alla documentazione di Python.

'{} per {} uguale {}'.format(5,3,5*3)
Out: '5 per 3 uguale 15'
'{nome} nato in {indirizzo} nel {anno}'.format(
 nome='Mario', indirizzo='Italia', anno='1974')
Out: 'Mario nato in Italia nel 1974'

11.2 ELABORAZIONE DEL TESTO

Vediamo ora un esempio che usa i metodi appena descritti. Abbiamo visto in
precedenza come elaborare informazioni utilizzando tabelle di dati. Spesso
però i dati sono contenuti in stringhe da cui devono essere estratti i singoli
valori. Siamo interessati a scrivere una funzione rubrica(elenco, nome) che
prende in input una stringa elenco che in ogni linea contiene un nome, il
carattere : e poi un numero di telefono. La funziona deve ritornare il
numero di telefono corrispondente al nome nome preso anch’esso come
input. Procederemo riducendo prima le stringhe nome e elenco in
minuscole, con il metodo lower() , per far sì che poi la ricerca del nome non
sia intralciata da differenze tra maiuscole e minuscole. Poi suddividiamo
elenco in linee, tramite il metodo splitlines() e ogni linea in nome e
numero con split() . Infine eliminiamo gli spazi a destra e sinistra di ogni
elemento con il metodo strip() .

def ricerca(elenco, nome):
 '''Ritorna il numero di telefono nell'elenco
 per la riga con nome nome.'''
 nome = nome.lower()
 elenco = elenco.lower().splitlines()
 for e in elenco:
 e_nome, e_num = e.split(':')
 if nome == e_nome.strip():
 return e_num.strip()
 return 'Non esiste'

elenco = '''Marco: 5551234
Luisa: 5557653
Sara: 5558723'''

print(ricerca(elenco, 'Marco'))
Out: 5551234
print(ricerca(elenco, 'Luisa'))
Out: 5557653
print(ricerca(elenco, 'Giuseppe'))

Out: Non esiste

Possiamo anche convertire la stringa di inizio in un dizionario, usando una
funzione simile alla precedente.

def rubrica_to_dict(elenco):
 '''Converte un elenco da testo a tabella.'''
 d = {}
 elenco = elenco.lower().splitlines()
 for e in elenco:
 nome, numero = e.split(':')
 d[nome.strip()] = numero.strip()
 return d

elenco = '''Marco: 5551234
Luisa: 5557653
Sara: 5558723'''

dizionario = rubrica_to_dict(elenco)

from pprint import pprint
pprint(dizionario)
Out: {'luisa': '5557653', 'marco': '5551234', 'sara': '5558723'}

Scriviamo una funzione camel(s) che prende in input una stringa s del tipo
fraseSenzaSpazi e ritorna la lista delle parole, che nel nostro esempio è
['frase', 'senza', 'spazi'] . Questo formato è molto usato da
programmatori come convenzioni per i nomi delle variabili. Lo
decodifichiamo usando replace() per sostituire ogni carattere maiuscolo
con il corrispondente minuscolo preceduto da spazi, seguito da split() per
separare le parole.

def camel(s):
 for c in 'ABCDEFGHILMNOPQRSTUVWXYZ':
 s = s.replace(c, " "+c.lower())
 return s.split()

print(camel('fraseSenzaSpazi'))
Out: ['frase', 'senza', 'spazi']

print(camel('sentenceWithoutSpaces'))
Out: ['sentence', 'without', 'spaces']

È spesso molto utile creare una lista delle parole contenute in una stringa.
Per parola intendiamo una qualsiasi sequenza di caratteri alfabetici,
maiuscoli o minuscoli, di lunghezza massimale. Per prima cosa vediamo
come determinare i caratteri non alfabetici presenti in una stringa. Possiamo
usare il metodo isalpha() delle stringhe che ritorna True se la stringa a cui
è applicato contiene solamente caratteri alfabetici. Scriviamo allora una
funzione noalpha(s) che ritorna una stringa contenente tutti i caratteri non
alfabetici in s , senza ripetizioni. Scritta in questo modo, noalpha()

funzionerà per tutte le lingua possibili.

def noalpha(s):
 '''Ritorna una stringa contenente tutti i
 caratteri non alfabetici contenuti in s,
 senza ripetizioni'''
 noa = ''
 for c in s:
 if not c.isalpha() and c not in noa:
 noa += c
 return noa

print(noalpha("Frase con numeri 0987"))
Out: 0987
print(noalpha("Frase con simboli vari [],{} %&#@"))
Out: [],{}%&#@
print(noalpha("FraseSenzaCaratteriNonAlfabetici"))
Out:

Per determinare la lista delle parole possiamo usare il metodo split()
dopo aver sostituto convertito il testo in minuscolo con lower() e sostituito
tutti i caratteri non alfabetici con il carattere spazio tramite replace() .

def words(s):
 '''Ritorna la lista delle parole contenute
 nella stringa s'''
 noa = noalpha(s)
 for c in noa:

 s = s.replace(c, ' ')
 return s.lower().split()

print(words("Che bel tempo, usciamo!"))
Out: ['che', 'bel', 'tempo', 'usciamo']

Per gli esempi di seguito utilizzeremo file da libri scaricati da Project
Gutemberg. I metodi sviluppati funzioneranno su qualunque libro. Per
generare i nostri risultati, abbiamo utilizzato le versioni in testo UTF8 del
libro Alice in Wonderland di Lewis Carroll.

Se vogliamo creare una lista di tutte le parole in un file di testo possiamo
sfruttare la funzione words() che abbiamo definito. Ad esempio possiamo
contare il numero di parole in Alice in Wonderland sia in versione inglese che
in versione italiana. Notiamo come i libri sono approssimativamente di
lunghezza uguale, come ci si aspetta.

def fwords(fname,encoding):
 with open(fname, encoding=encoding) as f:
 testo = f.read()
 return words(testo)

parole = fwords('alice.txt','utf-8-sig')
print(len(parole))
Out: 30419
print(parole[1000:1005])
Out: ['bats', 'eat', 'cats', 'for', 'you']

parole_italiano = fwords('alice_it.txt','utf-8-sig')
print(len(parole_italiano))
Out: 27794
print(parole_italiano[1000:1005])
Out: ['era', 'in', 'fondo', 'e', 'andando']

La lista prodotta contiene tutte le occorrenze delle parole con le appropriate
ripetizioni. Possiamo rimuovere le ripetizioni usando set() . Da qui
possiamo notare come la versione italiana utilizzi un vocabolario più ampio,
probabilmente dovuto alla differenze grammaticali e alla coniugazioni dei
verbi.

https://www.gutenberg.org/

parole_uniche = set(fwords('alice.txt','utf-8-sig'))
print(len(parole_uniche))
Out: 3007

parole_uniche_italiano= set(fwords('alice_it.txt','utf-8-sig'))
print(len(parole_uniche_italiano))
Out: 5180

11.3 RICERCA DI DOCUMENTI

Abbiamo ora gli strumenti per risolvere agevolmente il nostro problema
iniziale: data una collezione di documenti e una lista di parole, trovare il
documento che è più attinente alla lista di parole. L’idea è di calcolare la
frequenza con cui le parole della lista occorrono in ogni documento e poi
scegliere il documento in cui occorrono con maggiore frequenza. Per prima
cosa dobbiamo, per ogni documento, contare le occorrenze di ogni parola
della lista. Un dizionario è perfetto per mantenere un conteggio, infatti
basterà creare un dizionario le cui chiavi sono le parole della lista e ad ogni
parola è associato il conteggio delle occorrenze della parola.
Schematicamente, procederemo come segue.

1. per ogni documento, creiamo la lista delle parole che appaiono nel
documento;

2. creiamo un dizionario per mantenere le frequenze calcolando, per ogni
parola nella lista di ricerca, il numero delle sue occorrenze nelle parole
del documento, e aggiungendo la coppia parola-occorrenze al
dizionario;

3. per tenere conto che i documenti possono avere lunghezze diverse,
modifichiamo il dizionario normalizzando le frequenze assolute in
frequenze relative, cioè dividendo per il numero totale di parole;

4. infine, assegniamo uno score ad ogni documento pari alla somma delle
frequenze percentuali delle parole nella lista data: più alto è lo score e
più attinente è ritenuto il documento.

Conviene decomporre la procedura in due funzioni. La prima ritorna il
dizionario delle frequenze relativo ad un file e alla lista di parole da ricercare.
La seconda funzione ritorna un dizionario che per ogni file, in una lista
specificate, associa il suo score relativamente alla parole da ricercare.
Decomponendo il problema in questo modo, si ha anche la possibilità di fare
analisi aggiuntive sui dizionari ritornati.

def wfreq(fname, ricerca, enc):
 '''Ritorna un dizionario che ad ogni parola nella
 lista ricerca associa la sua frequenza
 percentuale nel file fname. Il file è
 decodificato tramite la codifica enc.'''

 # ottiene la lista delle parole
 parole = fwords(fname, enc)
 # prepare il dizionario delle frequenze
 frequenze = {}
 # per orgni parole nella ricerca
 for parola in ricerca:
 # calcola le occorrenze
 occ = parole.count(parola.lower())
 # calcola frequenza percentuale
 freq = occ*100/len(parole)
 # aggiorna il dizionario
 frequenze[parola] = round(freq,3)
 return frequenze

fname = 'alice.txt'
ricerca = ['alice','rabbit','turtle','king']
freq = wfreq(fname, ricerca, 'utf-8-sig')
print(freq)
Out: {'king': 0.207, 'alice': 1.325, 'turtle': 0.194, 'rabbit':
0.168}

Quindi la parola “alice” ha una frequenza percentuale superiore all’1%, cioè
più di una parola su 100 è la parola “alice”, mentre “turtle” appare con una
frequenza inferiore allo 0.2%, cioè appare meno di una volta ogni 500
parole. Passiamo ora alla seconda funzione.

def scores(fnames, ricerca, enc):
 '''Ritorna un dizionario che ad ogni nome di file
 in fnames associa il suo punteggio relativamente
 alla lista di parole ricerca. I file sono
 decodificati tramite la codifica enc.'''
 frequenze = {}
 for fname in fnames:
 # dizionario delle frequenze di fname
 f = wfreq(fname, ricerca, enc)

 # score arrotondata
 frequenze[fname] = round(sum(f.values()), 3)
 return frequenze

Proviamo la funzione su una lista di file che contengono alcuni libri celebri
ottenuti da Project Gutemberg: Frankeinstein di Mary Shelley, Il Principe di
Nicolò Machiavelli (versione inglese), Moby Dick di Herman Melville, Treasure
Island di Robert Stevenson e The Adventures of Sherlock Holmes di Arthur
Conan Doyle.

fnames = ['alice.txt', 'holmes.txt',
 'frankenstein.txt', 'prince.txt',
 'mobydick.txt', 'treasure.txt']

ricerca = ['monster', 'horror', 'night']
pprint(scores(fnames, ricerca, 'utf-8-sig'))
Out: {'alice.txt': 0.016,
Out: 'frankenstein.txt': 0.216,
Out: 'holmes.txt': 0.119,
Out: 'mobydick.txt': 0.103,
Out: 'prince.txt': 0.023,
Out: 'treasure.txt': 0.066}

Per terminare il nostro piccolo search engine aggiungiamo una funzione che
ritorna la lista dei documenti in ordine crescente di score. Utilizzeremo la
funzione sorted() applicata alla sequenza della coppie (chiave, valore)
ritornata da scores().items() e ordinando in modo inverso con reverse .

def extract_value(kv): return kv[1]
def searchdocument(fnames, ricerca, enc):
 '''Ritorna la lista ordindata per score dei
 documenti in fnames per le parole in ricerca.'''
 s = scores(fnames, ricerca, enc)
 return sorted(s.items(), key=extract_value,
 reverse=True)

ricerca = ['monster', 'horror', 'night']
pprint(searchdocument(fnames, ricerca, 'utf-8-sig'))
Out: [('frankenstein.txt', 0.216),

Out: ('holmes.txt', 0.119),
Out: ('mobydick.txt', 0.103),
Out: ('treasure.txt', 0.066),
Out: ('prince.txt', 0.023),
Out: ('alice.txt', 0.016)]

12 ELABORAZIONE DI IMMAGINI

In questo capitolo implementeremo semplici operazioni su immagini digitali,
che sono rappresentazioni al computer di fotografie e grafica. In generale,
un’immagine digitale è rappresentata come una matrice di colori. Ogni
elemento della matrice si chiama pixel. In Python rappresenteremo
un’immagine tramite la lista delle righe della matrice dell’immagine ed ogni
riga è la lista dei suoi pixels, ognuno dei quali è un colore.

12.1 RAPPRESENTAZIONE DEI COLORI

I colori sono rappresentati con combinazioni di tre colori primari, detti
canali: rosso red, verde green e blu blue; RGB in breve. Per ogni canale si usa
solitamente un intero tra 0 e 255 per indicare l’intensità di quel colore
primario. Rappresentammo il colore di un pixel con la tupla (r, g, b).
Possiamo accedere al valore dei canali con l’unpacking.

bianco = (255,255,255)
nero = (0,0,0)
arancio = (255,128,0)
print(arancio)
Out: (255, 128, 0)
r, g, b = arancio
print(r, g, b)
Out: 255 128 0

Facciamo alcuni esempi di iterazione su colori che useremo
successivamente.

colori = [(255,0,0),(0,255,0),(0,0,255)]

colore è una tupla
for colore in colori:
 print(colore)
Out: (255, 0, 0)
Out: (0, 255, 0)
Out: (0, 0, 255)

unpacking delle tuple esplicito
for r, g, b in colori:
 r, g, b = colore
 print(r, g, b)
Out: 0 0 255
Out: 0 0 255
Out: 0 0 255

unpacking delle tuple implicito
for r, g, b in colori:
 print(r, g, b)
Out: 255 0 0
Out: 0 255 0
Out: 0 0 255

12.2 RAPPRESENTAZIONE DI IMMAGINI

Possiamo rappresentare immagini tramite una matrice di colori, utilizzando
una lista di liste. La lista “esterna” è la lista delle righe dell’immagine. Ogni
lista “interna” contiene i valori della corrispondente riga dell’immagine. Ad
esempio una piccolissima immagine 2x2 si può rappresentare con

img = [
 [(255,0,0), (0,255,0)],
 [(0,0,255), (255,128,0)]
]
print(img)
Out: [[(255, 0, 0), (0, 255, 0)], [(0, 0, 255), (255, 128, 0)]]

L’accesso agli elementi avviene accedendo prima alla riga e poi alla colonna.

prima riga (riga 0)
print(img[0])
Out: [(255, 0, 0), (0, 255, 0)]
seconda riga (riga 1)
print(img[1])
Out: [(0, 0, 255), (255, 128, 0)]

secondo elemento, prima riga (riga 0, colonna 1)
print(img[0][1])
Out: (0, 255, 0)
primo elemento, seconda riga (riga 1, colonna 0)
print(img[1][0])
Out: (0, 0, 255)

Le immagini rappresentate in questo modo hanno come altezza il numero di
righe len(img) e come larghezza il numero delle colonne, che possiamo
calcolare come la lunghezza della prima riga len(img[0]) .

def width(img):
 '''Ritorna la larghezza dell'immagine img.'''

 return len(img[0])

def height(img):
 '''Ritorna l'altezza dell'immagine img.'''
 return len(img)

w, h = width(img), height(img)
print(w, h)
Out: 2 2

Possiamo iterare sui pixel dell’immagine iterando prima sulle righe e poi
sulle colonne.

iteriamo sulle righe
for riga in img:
 # iteriamo sulle colonne
 for colore in riga:
 print(colore)
Out: (255, 0, 0)
Out: (0, 255, 0)
Out: (0, 0, 255)
Out: (255, 128, 0)

12.3 SALVATAGGIO DI IMMAGINI

Da ora in avanti per vedere i risultati, salveremo le nostre immagini su disco
in formato binario PNG utilizzando il modulo png.py scaricabile dalla libreria
PyPNG. Per salvare un’immagine, chiamiamo la funzione from_array() per
creare un’immagine PNG e la salviamo con il suo metodo save() .

import png

def save(filename, img):
 '''Salva un'immagine in formato PNG.'''
 pyimg = png.from_array(img, 'RGB')
 pyimg.save(filename)

save('img_small.png', img)

Questo salva nel file img_small.png la nostra piccolissima immagine, che è
mostrata di seguito ingrandita.

https://github.com/drj11/pypng

12.4 CREAZIONE DI IMMAGINI

Per creare immagini più grandi, definiamo una funzione create() che crea
un’immagine di larghezza iw e altezza ih con tutti i pixel settati al colore c .
Per l’ultimo parametro utilizziamo un parametro opzionale, dato che
useremo lo sfondo nero nella maggior parte degli esempi.

def create(iw, ih, c=(0,0,0)):
 '''Crea e ritorna un'immagine di larghezza iw,
 altezza ih e riempita con il colore c'''

 # L'immagine inizialmente vuota
 img = []
 # Per ogni riga,
 for _ in range(ih):
 # inizializza la riga vuota
 row = []
 # e per ogni pixel della riga,
 for _ in range(iw):
 # aggiunge un pixel di colore c.
 row.append(c)
 # Aggiunge la riga all'immagine
 img.append(row)
 return img

Ad esempio, la chiamata create(256, 256) , produce un’immagine nera di
256x256. Se stiamo usando la shell di IPython possiamo visualizzare inline,
cioè direttamente sulla shell, le immagini che creiamo. Se eseguiamo il
codice da terminale, salviamo l’immagine su disco per vederla.

img = create(256, 128)
save('img_create.png', img)

12.5 ACCESSO AI PIXEL

Possiamo creare immagini con create() e poi alterarne i pixels con varie
funzioni, creando immagini più complesse dalla combinazione di funzioni
semplici.

Iniziamo con una funzione draw_quad_simple() che disegna sull’immagine
un rettangolo di colore dato specificandone l’angolo superiore sinistro e le
dimensioni.

def draw_quad_simple(img, x, y, w, h, c):
 '''Disegna su img un rettangolo con lo spigolo in
 alto a sinistra in (x, y), larghezza w, altezza h
 e di colore c. Va in errore se il rettangolo
 fuoriesce dall'immagine.'''

 # Per ogni riga j del rettangolo,
 for j in range(y, y+h):
 # per ogni colonna i della riga j,
 for i in range(x, x+w):
 # imposta il colore del pixel a c
 img[j][i] = c

img = create(256,128)
draw_quad_simple(img, 16, 16, 224, 96, arancio)
save('img_quad_simple.png', img)

Nella funzione draw_quad_simple() si assume che l’utente specifichi un
rettangolo che non esce dall’immagine. La funzione genera un errore se
accede al di fuori del rettangolo dell’immagine.

draw_quad_simple(img, 16, 16, 512, 512, arancio)
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: File "<input>", line 12, in draw_quad_simple
Error: IndexError: list assignment index out of range

Per essere modificare la funzione precedente mettendo un test per
controllare se le coordinate siano dentro l’immagine. Per fare ciò, ad ogni
accesso confrontiamo gli indici di riga e colonna con le dimensioni
dell’immagine.

def inside(img, i, j):
 '''Ritorna True se il pixel (i, j) è dentro
 l'immagine img, False altrimenti'''
 iw, ih = width(img), height(img)
 return 0 <= i < iw and 0 <= j < ih

def draw_quad(img, x, y, w, h, c):
 '''Disegna su img un rettangolo con lo spigolo
 in alto a sinistra in (x, y), larghezza w,
 altezza h e di colore c.'''
 for j in range(y,y+h):
 for i in range(x,x+w):
 # Disegna il pixel solo se è dentro
 if inside(img,i,j):
 img[j][i] = c

img = create(256, 128)
draw_quad(img, 16, 16, 512, 512, arancio)
save('img_quad.png',img)

Definiamo ora una funzione draw_checkers() che disegna una scacchiera di
quadrati di lato dato colorati in modo alternato tra due colori. Per farlo,

calcoliamo gli indici di ogni quadrato dividendo le coordinate del pixel per la
dimensione del quadrato utilizzando la divisione intera. Fatto questo,
possiamo selezionare il colore facendo la somma degli indici modulo 2
alternando così i due colori sia per righe che per colonne.

def draw_checkers(img, s, c0, c1):
 '''Disegna su img una scacchiera di quadratini,
 ognuno di lato s, coi colori c0 e c1'''
 # Per ogni indice di riga,
 for jj in range(height(img)//s):
 # per ogni indice di colonna
 for ii in range(width(img)//s):
 # seleziona il colore
 if (ii + jj) % 2: c = c1
 else: c = c0
 # e disegna il quadratino
 draw_quad(img,ii*s,jj*s,s,s,c)

img = create(256, 128)
draw_checkers(img, 32, (0,0,0), (255,255,255))
save('img_checkers.png',img)

12.6 OPERAZIONI SUI COLORI

Oltre a disegnare sull’immagine possiamo operare direttamente sui colori.
Ad esempio possiamo scrivere la funzione draw_gradienth() che disegna
sull’immagine un gradiente di colore orizzontale interpolando due colori
dati.

def draw_gradienth(img, c0, c1):
 '''Disegna su img un gradiente di colore da
 sinistra a destra, dal colore c0 al colore c1'''
 r0, g0, b0 = c0
 r1, g1, b1 = c1
 for j in range(height(img)):
 for i in range(width(img)):
 # float da 0 a 1
 u = i / width(img)
 # Interpola i canali
 r = round(r0 * (1-u) + r1 * u)
 g = round(g0 * (1-u) + g1 * u)
 b = round(b0 * (1-u) + b1 * u)
 img[j][i] = (r,g,b)

img = create(256, 128)
draw_gradienth(img, (255,0,0), (0,255,0))
save('img_gradienth.png',img)

In modo simmetrico possiamo definire la funzione che disegna un gradiente
verticale.

def draw_gradientv(img, c0, c1):

 '''Disegna su img un gradiente di colore dall'
 alto in basso, dal colore c0 al colore c1'''
 r0, g0, b0 = c0
 r1, g1, b1 = c1
 for j in range(height(img)):
 for i in range(width(img)):
 v = j / height(img)
 r = round(r0 * (1-v) + r1 * v)
 g = round(g0 * (1-v) + g1 * v)
 b = round(b0 * (1-v) + b1 * v)
 img[j][i] = (r,g,b)

img = create(256, 128)
draw_gradientv(img, (255,0,0), (0,255,0))
save('img_gradientv.png',img)

Possiamo infine creare gradienti in tutte e due le direzioni
contemporaneamente, interpolando i colori sui due assi. Questo combina i
due esempi precedenti.

def draw_gradient_quad(img, c00, c01, c10, c11):
 '''Disegna un gradiente di colore combinato
 orizzontale e verticale con c00 in alto a
 sinistra, c01 in basso a sinistra, c10 in
 alto a destra e c11 in basso a destra'''
 for j in range(height(img)):
 for i in range(width(img)):
 u = i / width(img)
 v = j / height(img)
 c = [0,0,0]
 for k in range(3):
 c[k] = round(c00[k]*(1-u)*(1-v) +
 c01[k]*(1-u)*v +
 c10[k]*u*(1-v) +
 c11[k]*u*v)

 img[j][i] = tuple(c)

img = create(256, 128)
draw_gradient_quad(img, (255,0,0), (0,255,0),
 (0,0,255), (255,255,255))
save('img_gradientq.png',img)

12.7 CARICAMENTO DI IMMAGINI

Per caricare le immagini, useremo ancora il modulo png.py nel definire una
funzione load(filename) che carica un’immagine PNG da filename . In
questo caso la funzione è più complessa e ne riportiamo il codice
commentato qui sotto.

def load(filename):
 '''Carica l'immagine in formato PNG dal file
 filename, la converte nel formato a matrice
 di tuple e la ritorna'''
 with open(filename,'rb') as f:
 # legge l'immagine come RGB a 256 valori
 r = png.Reader(file=f)
 iw, ih, png_img, _ = r.asRGB8()
 # converte in lista di liste di tuple
 img = []
 for png_row in png_img:
 row = []
 # l'immagine PNG ha i colori in
 # un'unico array quindi li leggiamo
 # tre alla volta in una tupla
 for i in range(0,len(png_row),3):
 row.append((png_row[i+0],
 png_row[i+1],
 png_row[i+2]))
 img.append(row)
 return img

Per testare la funzione, leggiamo e scriviamo la stesso file. Nel resto di
questo capitolo si possono usare immagini arbitrarie, ma noi consigliamo
l’uso di foto.

img = load('photo.png')
save('img_photo.png',img)

12.8 COPIE E CORNICI

Se vogliamo aggiungere una cornice di un certo colore ad un’immagine
possiamo farlo creando una nuova immagine riempita con il colore della
cornice, grande tanto da contenere l’immagine originale più la cornice, e poi
copiamo l’immagine originale al centro della nuova immagine. Definiremo la
funzione di copia in modo generico perché possa poi essere utilizzata per
fare altre manipolazioni.

def copy(dst, src, dx, dy, sx, sy, w, h):
 '''Copia la porzione rettangolare dell'immagine
 src con spigolo in alto a sinistra in (sx, sy)
 e dimensioni w, h sull'immagine dst a partire
 da (dx, dy)'''
 for j in range(h):
 for i in range(w):
 di, dj = i+dx, j+dy
 si, sj = i+sx, j+sy
 if (inside(dst, di, dj) and
 inside(src, si, sj)):
 dst[dj][di] = src[sj][si]

def border(img, s, c):
 '''Ritorna una nuova immagine che è l'immagine
 img contornata da una cornice di spessore s
 e colore c'''
 w, h = width(img), height(img)
 ret = create(w+s*2, h+s*2, c)
 copy(ret, img, s, s, 0, 0, w, h)
 return ret

save('img_border.png', border(img, 8, (0,0,0)))

12.9 ROTAZIONI

Possiamo ruotare un’immagine intorno all’asse verticale o a quello
orizzontale. Per ruotarla intorno all’asse verticale, basta scambiare tra loro i
pixels di ogni riga che si trovano alla stessa distanza dal centro
dell’immagine.

def fliph(img):
 '''Ritorna una nuova immagine che e' l'immagine
 img ruotata intorno al suo asse verticale, cioè
 i pixels sono scambiati orizzontalmente'''
 w, h = width(img), height(img)
 ret = create(w, h)
 for j in range(h):
 for i in range(w):
 ret[j][i] = img[j][w - 1 - i]
 return ret

save('img_fliph.png',fliph(img))

In modo simmetrico possono implementare la rotazione intorno all’asse
orizzontale.

def flipv(img):
 '''Ritorna una nuova immagine che è l'immagine
 img ruotata intorno al suo asse orizzontale,

 cioè i pixels sono scambiati verticalmente'''
 w, h = width(img), height(img)
 ret = create(w, h)
 for j in range(h):
 for i in range(w):
 ret[j][i] = img[h - 1 - j][i]
 return ret

save('img_flipv.png',flipv(img))

Infine, consideriamo la rotazione attorno all’angolo inferiore sinistro. Questa
equivale ad invertire le righe con le colonne. In questo caso, l’immagine
creata avrà altezza e larghezza invertite rispetto a quella di input.

def rotate(img):
 '''Ritorna una nuova immagine che è l'immagine
 img ruotata intorno all'angolo inferiore
 sinistro, equivalente a scambiare le righe
 con le colonne'''
 w, h = width(img), height(img)
 # altezza e larghezza sono invertite
 ret = create(h, w)
 for j in range(h):
 for i in range(w):
 ret[i][j] = img[h-1-j][i]
 return ret

save('img_rotate.png',rotate(img))

12.10 MODIFICA DEI COLORI

Possiamo modificare i colori di un’immagine per creare effetti interessanti o
semplicemente per migliorare l’aspetto dell’immagine. Una modifica molto
semplice è l’inversione che corrisponde a creare il “negativo” dell’immagine,
prendendo per ogni canale il valore 255 e sottraendo il valore del canale.
Questo ad esempio trasforma il bianco in nero e viceversa.

def invert(img):
 '''Ritorna una nuova immagine che è l'immagine
 img con colori invertiti'''
 w, h = width(img), height(img)
 ret = create(w, h, (0,0,0))
 for j in range(h):
 for i in range(w):
 r, g, b = img[j][i]
 ret[j][i] = (255 - r, 255 - g, 255 - b)
 return ret

save('img_invert.png',invert(img))

Possiamo scrivere molti altri esempi di manipolazione del colore e tutti
avrebbero la stessa forma, cioè l’applicazione ad ogni pixel di una
trasformazione dei canali. Per sfruttare questa similarità introduciamo una
funzione filter() che altera i colori di una immagine applicando una
funzione func presa come input. Con questa funzione possiamo

implementare lo stesso effetto della funzione invert() .

def filter(img,func):
 '''Ritorna una nuova immagine che è l'immagine
 img con colori filtrati da func'''
 w, h = width(img), height(img)
 ret = create(w, h, (0,0,0))
 for j in range(h):
 for i in range(w):
 r, g, b = img[j][i]
 ret[j][i] = func(r, g, b)
 return ret

def invertf(r,g,b):
 return 255 - r, 255 - g, 255 - b

save('img_invertf.png',filter(img,invertf))

Adesso che abbiamo filter() possiamo applicare qualunque
trasformazione di colori, come ad esempio la conversione in bianco e nero,
che setta ogni canale alla media dei loro valori, o applicare del contrasto
all’immagine, scalando i canali rispetto al valore medio 128.

def grayf(r,g,b):
 gray = (r + g + b) // 3
 return gray, gray, gray

save('img_grayf.png',filter(img,grayf))

def contrastf(r,g,b):
 return (max(0,min(255, (r - 128) * 2 + 128)),
 max(0,min(255, (g - 128) * 2 + 128)),
 max(0,min(255, (b - 128) * 2 + 128)))

save('img_contrastf.png',filter(img,contrastf))

12.11 MOSAICI

Possiamo creare un mosaico da un’immagine dividendola in quadrati e
riempendo ogni quadrato con un solo colore che dipende dai colori dei pixel
dell’immagine originale contenuti nel quadrato stesso. Nella prima versione
scegliamo di colorare ogni quadrato con il colore del suo pixel nell’angolo in
alto a sinistra.

def mosaic_nearest(img, s):
 '''Ritorna una nuova immagine ottenuta dividendo
 l'immagine img in quadrati di lato s e riempendo
 ogni quadrato con il colore del suo angolo in
 alto a sinistra'''
 w, h = width(img), height(img)
 ret = create(w, h)
 # itera sui possibili quadrati
 for jj in range(h//s):
 for ii in range(w//s):
 # colore dell'angolo in alto-sinistra
 c = img[jj*s][ii*s]
 draw_quad(ret, ii*s, jj*s, s, s, c)
 return ret

save('img_mosaicn.png',mosaic_nearest(img,16))

Come si può notare l’immagine è poco riconoscibile. Possiamo invece

scegliere il colore di ogni quadrato facendo la media dei colori dei pixel del
quadrato.

def average(img, i, j, w, h):
 '''Calcola la media dei valori dell'area
 [i,w-1]x[j,h-1].'''
 c = [0,0,0]
 for jj in range(j,j+h):
 for ii in range(i,i+w):
 for k in range(3):
 c[k] += img[jj][ii][k]
 for k in range(3):
 c[k] //= w*h
 return tuple(c)

def mosaic_average(img, s):
 '''Ritorna una nuova immagine ottenuta dividendo
 l'immagine img in quadrati di lato s e riempendo
 ogni quadratino con la media dei suoi colori.'''
 w, h = width(img), height(img)
 ret = create(w, h)
 # itera sui possibili quadrati
 for jj in range(h//s):
 for ii in range(w//s):
 # colore medio dell'immagine
 c = average(img,ii*s,jj*s,s,s)
 draw_quad(ret, ii*s, jj*s, s, s, c)
 return ret

save('img_mosaica.png',mosaic_average(img,16))

Un modo piuttosto diverso di creare un mosaico è di disegnare dentro ogni
quadrato un quadrato bianco centrale, su sfondo nero, di lato proporzionale
alla luminosità media della parte di immagine considerata.

def mosaic_size(img, s):
 '''Ritorna una nuova immagine ottenuta dividendo
 l'immagine img in quadratini di lato s e
 disegnando all'interno di ognuno di essi,
 su sfondo nero, un quadratino centrale bianco di
 lato proporzionale alla luminosità media del
 corrispondente quadratino'''
 w, h = width(img), height(img)
 ret = create(w, h)
 # itera sui possibili quadrati
 for jj in range(h//s):
 for ii in range(w//s):
 # colore medio dell'immagine
 c = average(img,ii*s,jj*s,s,s)
 # lato del quadratino bianco
 r = round(s*(c[0]+c[1]+c[2])/(3*255))
 draw_quad(ret, ii*s+(s-r)//2,
 jj*s+(s-r)//2, r, r, (255,255,255))
 return ret

save('img_mosaics.png',mosaic_size(img,16))

12.12 SPOSTAMENTO DI PIXELS

Possiamo modificare il colore di un pixel copiando il colore di un altro pixel
scelto in modo casuale ma a distanza massima prefissata. Scegliere valori in
modo causale è molto per ottenere variazioni che non si ripetono. La libreria
standard di Python ha il modulo random che contiene funzioni per la
generazione di numeri casuali. In particolare, le funzioni randint(a, b) e
uniform(a, b) generano, ad ogni chiamata, rispettivamente un intero e un
numero reale random compreso tra a e b . Per riprodurre la stessa
sequenza di numeri casuali ad ogni chiamata di una funzione si può usare la
funzione seed(value) con lo stesso seme value .

import random

def scramble(img, d, s):
 '''Ritorna una nuova immagine ottenuta colorando
 ogni pixel (i, j) con il colore di un pixel
 scelto a caso nel quadratino centrato in (i, j)
 di lato 2*d + 1'''
 # settiamo il seed per generare la stessa
 # sequenza di numeri casuali
 random.seed(s)
 w, h = width(img), height(img)
 ret = create(w, h)
 for j in range(h):
 for i in range(w):
 # sceglie a caso un pixel nel quadrato
 ri = i + random.randint(-d,d)
 rj = j + random.randint(-d,d)
 # evitando che si esca dall'immagine
 ri = max(0, min(w-1, ri))
 rj = max(0, min(h-1, rj))
 ret[j][i] = img[rj][ri]
 return ret

save('img_scramble.png',scramble(img,16,0))

Infine, per creare un effetto lente, basta spostare i pixel lungo la linea che
collega il centro della lente e la posizione del pixel stesso. Lo spostamento
effettualo può essere controllata semplicemente elevando a potenza la
distanza pixel-centro, dove la potenza scelta definisce le caratteristiche della
lente.

import math

def lens(img, x, y, r, p):
 '''Ritorna una nuova immagine ottenuta dall'
 immagine img applicando una lente di raggio r,
 centrata in (x, y) e di power p. Se p = 1.0 la
 lente non distorce, se p > 1.0 la lente
 ingrandisce e se p < 1.0 riduce.'''
 w, h = width(img), height(img)
 ret = create(w, h)
 for j in range(h):
 for i in range(w):
 di, dj = i - x, j - y
 # distanza al quadrato da (x, y)
 d2 = di*di + dj*dj
 # se è nel raggio della lente
 if d2 < r*r:
 rr = math.sqrt(d2) / r
 if rr > 0:
 ratio = (rr ** p) / rr
 else:
 ratio = 1.0
 li = int((i-x)*ratio+x)
 lj = int((j-y)*ratio+y)
 if inside(img, li, lj):
 ret[j][i] = img[lj][li]
 else:
 ret[j][i] = (0,0,0)
 else:
 ret[j][i] = img[j][i]
 return ret

save('img_lenss.png',lens(img,128,128,100,0.5))
save('img_lensb.png',lens(img,128,128,100,2.0))

13 TIPI DEFINITI DALL’UTENTE

Questo capitolo introduce i concetti necessari per definire nuovi tipi in
Python e ne dimostra l’utilità riscrivendo alcuni esempi già visti di
elaborazione di immagini usando i nuovi tipi introdotti.

13.1 CLASSI

Python, al pari di altri linguaggi orientati agli oggetti, permette di introdurre
nuovi tipi tramite il concetto di classe. Una classe è la definizione di un tipo i
cui valori sono oggetti che hanno uno stato, memorizzato in variabili
specifiche per ogni oggetto, e delle operazioni, definite da metodi. Le
variabili e i metodi definiti in una classe sono spesso chiamati attributi. Tutti i
tipi di Python, inclusi ad esempio int e list , sono definiti tramite classi e
tutte le operazioni che possono essere eseguite su di essi sono definite
come metodi nella loro classe.

Le classi non sono necessarie per risolvere nuovi problemi. Infatti quello che
si può elaborare con le classi si può anche elaborare senza di esse. Tuttavia
l’uso delle classi spesso rende il codice più leggibile per due motivi. Per
primo, le classi associano, in modo esplicito, il tipo di un oggetto con le
operazioni definite su quel tipo di dati, attraverso la definizione di metodi.
Inoltre, le classi permettono di nascondere i dettagli implementativi che non
servono ai fini dell’utilizzo del nuovo tipo. Al contrario, usare solamente tipi
di base e funzioni porta a dover esplicitare più dettagli implementativi che
poi devono essere ricordati durante la programmazione. Ad esempio, nella
manipolazione dei colori abbiamo sempre esplicitato il fatto che un colore è
rappresentato tramite una tupla invece di esprimere un colore con oggetto
di un tipo specifico, ad esempio Color . Stessa cosa per le immagini che
abbiamo manipolato esplicitamente come liste di liste, invece di usare un
oggetto più specifico di tipo Image .

13.2 COSTRUTTORE

Per definire una classe in Python si usa la parola chiave class seguita dal
nome che si vuole dare al nuovo tipo. Per convenzione i tipi hanno nomi che
iniziano con una lettera maiuscola. Il nome è seguito dall’elenco dei metodi,
ognuno dei quali prende come primo argomento la variabile self che indica
l’oggetto su cui si sta agendo. Le variabili che definiscono lo stato di ogni
oggetto sono definite attraverso un metodo speciale, chiamato costruttore,
ed indicato col nome __init__() .

class NomeTipo:
 def __init__(self, parametri):
 self.nome_variabile = valore
 ...
 definizione dei metodi ...

Iniziamo a fare un esempio con la classe Color che rappresenta colori. Ogni
oggetto di tipo Color rappresenta un colore specifico, ad esempio nero o
bianco, determinato assegnando opportuni valori a tre variabili che ne
definiscono lo stato. Possiamo definire una classe Color minimale
specificando solo il costruttore.

class Color:
 def __init__(self, r, g, b):
 self.r = r
 self.g = g
 self.b = b

Il parametro self è speciale e deve sempre essere il primo parametro di un
qualsiasi metodo della classe. Python assegna automaticamente al
parametro self l’oggetto relativamente al quale il metodo è stato chiamato,
quindi non deve essere specificato nella chiamata del metodo. Nel caso del
costruttore, il valore di self è l’oggetto che si sta costruendo. La sintassi del
. , come già sappiamo, permette di accedere agli attributi di un oggetto che

possono essere metodi o variabili. Nel nostro caso self.r , self.g e self.b
sono variabili che vengono definite per gli oggetti di tipo Color e che
contengono valori numerici.

13.3 OGGETTI

Gli oggetti di una classe si creano chiamando il costruttore che è invocato col
nome della classe usato come se fosse il nome di una funzione e con gli
argomenti che vogliamo passare al costruttore.

crea un oggetto e poi chiama
il construttore NomeTipo.__init__
oggetto = NomeTipo(argomenti)

L’oggetto creato è del tipo della classe e possiamo accedere alle sue variabili
usando la sintassi del punto.

Creazione di un oggetto di tipo Color
c1 = Color(255,0,0)
print(type(c1))
Out: <class '__console__.Color'>

Valore dell'attributo r dell'oggetto creato
print(c1.r)
Out: 255
print(c1.g)
Out: 0
print(c1.b)
Out: 0

Creando due oggetti dello stesso tipo, i valori delle rispettive variabili sono
diverse.

Un altro oggetto di tipo Color
c2 = Color(0,255,0)
print(type(c2))
Out: <class '__console__.Color'>

Il valore dell'attributo r è diverso
print(c2.r)

Out: 0
print(c2.g)
Out: 255
print(c2.b)
Out: 0

Infatti i due oggetti hanno identità differenti
print(id(c1))
Out: 4427973240
print(id(c2))
Out: 4427973520

Cercando di accedere ad attributi non esistenti, otteniamo un errore.

print(c1.z)
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: AttributeError: 'Color' object has no attribute 'z'

Gli oggetti in Python sono mutabili, cioè possiamo accedere ad una qualsiasi
degli variabili e cambiarne il valore. Ovviamente questo modifica solamente
il valore dell’attributo di uno specifico oggetto, non di altri oggetti.

Modifica l'attributo g dell'oggetto in c1
c1.g = 128
print(c1.g)
Out: 128

Il corrispondente attributo di c2 non è cambiato
print(c2.g)
Out: 255

13.4 METODI

Le operazioni su oggetti sono definite tramite metodi e agiscono,
tipicamente, sulle variabili dell’oggetto sul quale sono chiamati. Abbiamo già
usato metodi predefiniti su stringhe e liste, ad esempio append() e split() .
La sintassi per definire un metodo è simile a quella per il costruttore. Il
primo parametro deve sempre essere self che contiene l’oggetto su cui
agisce il metodo.

class NomeTipo:
 def nome_metodo(self, parametri):
 istruzioni

Aggiungiamo un metodo alla classe Color che crea un nuovo oggetto con
colore inverso e lo ritorna.

class Color:
 def __init__(self, r, g, b):
 self.r, self.g, self.b = r, g, b
 def inverse(self):
 return Color(255 - self.r,
 255 - self.g, 255 - self.b)

Possiamo chiamare un metodo usando la solita sintassi già presentata.
Come per l’accesso alle variabili, un metodo può essere chiamato solamente
in riferimento ad uno specifico oggetto.

c = Color(255,0,0)
print(c.r, c.g, c.b)
Out: 255 0 0
ci = c.inverse()
print(ci.r, ci.g, ci.b)
Out: 0 255 255

13.5 METODI SPECIALI

Il nostro tipo Color non è però equivalente ai tipi predefiniti. Ad esempio
non possiamo stamparlo né applicargli operazioni aritmetiche.

Creiamo due colori
c1 = Color(255,0,0)
c2 = Color(0,255,0)

Proviamo a stamparli
print(c1)
Out: <__console__.Color object at 0x107ed85f8>
print(c1.r, c1.g, c1.b)
Out: 255 0 0

Proviamo a sommarli
c3 = c1 + c2
Error: Traceback (most recent call last):
Error: File "<input>", line 1, in <module>
Error: TypeError: unsupported operand type(s) for +: 'Color' and
'Color'

Oltre ai costruttori ci sono molti altri metodi speciali, con nomi che iniziano e
finiscono con doppio underscore __ , che permettono di dare ai tipi definiti
da un programmatore un comportamento simile a quello dei tipi predefiniti.
Ciò è molto utile per estendere il linguaggio e adattarlo a problemi specifici,
ma mentendo una certa eleganza nella sintassi. Nel nostro caso, definiremo
i metodi __str__ , chiamato quando l’oggetto è convertito in stringa o
stampato con print , e i metodi __add__ e __mul__ usati per addizione e
moltiplicazione.

class Color:
 def __init__(self, r, g, b):
 self.r, self.g, self.b = r, g, b
 def inverse(self):
 return Color(255 - self.r,

 255 - self.g, 255 - self.b)
 def __str__(self):
 return 'Color({},{},{})'.format(
 self.r,self.g,self.b)
 def __add__(self, other):
 return Color(self.r+other.r,
 self.g+other.g,self.b+other.b)
 def __mul__(self, f):
 return Color(self.r*f, self.g*f, self.b*f)

Creiamo due colori
c1 = Color(255,0,0)
c2 = Color(0,255,0)

Stampa di un colore
print(c1)
Out: Color(255,0,0)

Operazioni su colori
c3 = c1 + c2
print(c3)
Out: Color(255,255,0)
c4 = c3*0.7
print(c4)
Out: Color(178.5,178.5,0.0)

13.6 INCAPSULAMENTO

Le classi, se usate in modo adeguato, permettono di nascondere i dettagli
con cui i metodi sono implementati. Questo è importante perché migliora la
leggibilità del codice. Ad esempio, per usare list.append() è sufficiente
sapere cosa fa il metodo, non come lo fa. Detto in una altro modo, non è
importante sapere come il metodo è implementato. In Python si usa una
convenzione per nascondere i dettagli implementativi: gli attributi i cui nomi
iniziamo con _ sono da considerarsi nascosti, cioè non dovrebbero essere
usati dall’esterno della classe.

Per illustrare questo concetto e vedere anche un esempio un po’ più
complesso, introduciamo la classe Image per rappresentare immagini. Nel
farlo re-implementeremo come metodi alcune funzioni viste nel capitolo
precedente. La classe Image rappresenterà i pixel tramite oggetti Color e il
costruttore sarà analogo alla funzione create() . Aggiungiamo poi dei
metodi per ritornare le dimensioni dell’immagine, per leggere e impostare i
singoli pixels, e per leggere e salvare l’immagine su disco con png.py . Nel
metodo set_pixel() i canali colore sono impostati individualmente perché
non vogliamo sostituire l’oggetto Color con uno nuovo, ma solamente i
valori dei suoi attributi r , g e b .

import png

class Image:
 def __init__(self, w, h):
 '''Crea un'immagine di dimensioni w x h
 riempita con colore nero'''
 # L'attributo _pixels deve rimanere nascosto
 self._pixels = []
 for j in range(h):
 row = []
 for i in range(w):
 row.append(Color(0,0,0))
 self._pixels.append(row)
 def width(self):

 '''Ritorna la larghezza dell'immagine'''
 return len(self._pixels[0])
 def height(self):
 '''Ritorna l'altezza dell'immagine'''
 return len(self._pixels)
 def set_pixel(self, i, j, color):
 '''Imposta il colore del pixel (i, j)'''
 if (0 <= i < self.width() and
 0 <= j < self.height()):
 self._pixels[j][i].r = color.r
 self._pixels[j][i].g = color.g
 self._pixels[j][i].b = color.b
 def get_pixel(self, i, j):
 '''Ritorna l'oggetto Color del pixel (i,j)'''
 if (0 <= i < self.width() and
 0 <= j < self.height()):
 return self._pixels[j][i]
 def load(self, filename):
 '''Carica l'immagine dal file filename'''
 with open(filename,'rb') as f:
 r = png.Reader(file=f)
 iw, ih, png_img, _ = r.asRGB8()
 img = []
 for png_row in png_img:
 row = []
 for i in range(0,len(png_row),3):
 row.append(Color(png_row[i+0],
 png_row[i+1],png_row[i+2]))
 img.append(row)
 def save(self, filename):
 '''Salva l'immagine nel file filename'''
 pixels = []
 for j in range(self.height()):
 pixels.append([])
 for i in range(self.width()):
 c = self.get_pixel(i,j)
 pixels[-1] += [c.r,c.g,c.b]
 pyimg = png.from_array(pixels, 'RGB')
 pyimg.save(filename)
 def draw_quad(self, x, y, w, h, c):
 '''Disegna sull'immagine un rettangolo con
 spigolo in (x,y), dimensioni wxh e
 colore c'''

 for j in range(y, y+h):
 for i in range(x, x+w):
 self.set_pixel(i,j,c)
 def draw_gradienth(self, c0, c1):
 '''Disegna sull'immagine un gradiente
 orizzontale dal colore c0 al colore c1'''
 for j in range(self.height()):
 for i in range(self.width()):
 u = float(i) / float(self.width())
 self.set_pixel(i,j,c0*(1-u)+c1*u)
 def __str__(self):
 return 'Image@{}x{}'.format(
 self.width(),self.height())

Da notare come il codice delle funzioni draw_XXX() è più leggibile,
eliminando check espliciti a inside() , e molto meno prono ad errori. Inoltre,
potremmo cambiare la codifica dell’immagine alternando il costruttore e
l’implementazione di alcuni metodi, ad esempio set_pixel() e width() ,
senza dover cambiare l’implementazione dei metodi draw_XXX() . Infine, le
operazioni di somma e moltiplicazione per un fattore della classe Color
permettono di definire in modo molto più semplice i metodi dei gradienti.
Potremmo ovviamente implementare molti altri metodi sulla linea delle
manipolazioni fatte in precedenza, ma lasciamo questo come esercizio al
lettore.

img = Image(256,128)
img.draw_gradienth(Color(255,128,128),
 Color(128,255,128))
img.draw_quad(32,32,64,64,Color(0,200,255))
img.save('img_draw.png')
print(img)
Out: Image@256x128

14 ESPLORARE IL FILE SYSTEM

Questo capitolo introdurrà la ricorsione, una tecnica di programmazione che
permette di elaborare strutture ad albero, come ad esempio ls struttura di
file e cartelle nei sistemi operativi. Il file system, cioè la collezione di file e
cartelle su disco, è organizzato in modo gerarchico dove ogni cartella, o
directory, contiene files ed altre directory, che a loro volta possono contenere
altri file e directory. Gli esempi di questo capitolo si riferiscono ad una
piccola porzione di file system rappresentata qui di seguito.

14.1 ESPLORARE IL FILE SYSTEM

Prima di tutto scriviamo una funzione che stampa il contenuto di una
directory. Ci avvarremo del modulo os di Python che offre funzioni per
accedere a vari aspetti del sistema operativo. La funzione os.listdir(dir)
ritorna una sequenza contenente i nomi dei file e directory contenute
direttamente nella directory dir . La funzione os.path.join(p1, p2, …)

concatena, in modo intelligente, cioè secondo le regole del sistema operativo
che si sta usando, due o più componenti di un percorso. Ad esempio
stampiamo il contenuto della directory Informatica .

import os

def print_dir(dirpath):
 '''Stampa i percorsi di file e directory
 contenute nella directory dirpath'''
 for name in os.listdir(dirpath):
 # per evitare file nascosti
 if name.startswith('.'): continue
 print(os.path.join(dirpath, name))

print_dir('Informatica')
Out: Informatica/Hardware
Out: Informatica/Software

Se vogliamo stampare i contenuti delle directory contenute in
'Informatica' , possiamo richiamare la funzione su ciascuna subdirectory.

print_dir('Informatica/Hardware')
Out: Informatica/Hardware/Cache.txt
Out: Informatica/Hardware/CPU.txt
Out: Informatica/Hardware/RAM.txt

print_dir('Informatica/Software')
Out: Informatica/Software/Linguaggi
Out: Informatica/Software/SistemiOperativi

Se vogliamo stampare anche i contenuti delle subdirectory a qualsiasi livello
di profondità, dovremmo richiamare la funzione su ogni subdirectory che
incontriamo durante l’esplorazione. Il modo più naturale per farlo è di
chiamare richiamare la stessa funzione su ogni subdirectory che
incontriamo. Infatti, la funzione di esplorazione deve fare ricorsivamente la
stessa cosa su ogni directory. Per riconoscere se un certo percorso si
riferisce a una directory possiamo usare la funzione os.path.isdir(path) .

def print_dir_tree(dirpath):
 '''Stampa i percorsi di tutti i file e directory
 contenuti, a qualsiasi livello, nella directory
 dirpath'''
 for name in os.listdir(dirpath):
 # per evitare file nascosti
 if name.startswith('.'): continue
 pathname = os.path.join(dirpath, name)
 print(pathname)
 # se e' una directory
 if os.path.isdir(pathname):
 # chiama ricorsivamente la funzione
 print_dir_tree(pathname)

print_dir_tree('Informatica')
Out: Informatica/Hardware
Out: Informatica/Hardware/Cache.txt
Out: Informatica/Hardware/CPU.txt
Out: Informatica/Hardware/RAM.txt
Out: Informatica/Software
Out: Informatica/Software/Linguaggi
Out: Informatica/Software/Linguaggi/C.txt
Out: Informatica/Software/Linguaggi/Java.txt
Out: Informatica/Software/Linguaggi/JavaScript.txt
Out: Informatica/Software/Linguaggi/Python.txt
Out: Informatica/Software/SistemiOperativi
Out: Informatica/Software/SistemiOperativi/Linux.txt
Out: Informatica/Software/SistemiOperativi/MacOS.txt
Out: Informatica/Software/SistemiOperativi/Windows.txt

Questo semplice esempio illustra una tecnica fondamentale della
programmazione detta ricorsione. L’idea è che una funzione può richiamare

se stessa su input diversi. La ricorsione risulta utile quando la risoluzione di
un problema richiede la risoluzione di sottoproblemi dello stesso tipo, per
cui il metodo risolutivo può essere applicato anche ad essi ricorsivamente.
Nel nostro esempio, l’esplorazione di una directory richiede l’esplorazione
delle sue subdirectories.

14.2 RICORSIONE

Vediamo un altro semplice esempio per cui la ricorsione è utile. Data una
sequenza seq (lista, stringa, ecc.) vogliamo costruire una lista di tutte le
permutazioni degli elementi di seq . Ad esempio, se seq = [1,2,3] la
funzione deve ritornare la lista

[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]]

Un modo per generare le permutazioni di una sequenza è di generare, per
ogni elemento, tutte le permutazioni in cui esso è in testa. Per falso, basta
generare le permutazioni dei rimanenti elementi e poi aggiungere l’elemento
scelto in testa. Così abbiamo ricondotto la generazione delle permutazioni di
una sequenza di lunghezza n alla generazione delle permutazioni di
sequenze di lunghezza n-1.

def permute(seq):
 '''Ritorna la lista di tutte le permutazioni
 della sequenza seq'''
 if len(seq) <= 1:
 perms = [seq]
 else:
 perms = []
 for i in range(len(seq)):
 # genera ricorsivamente le permutazioni
 # degli elementi escluso l'i-esimo
 sub = permute(seq[:i]+seq[i+1:])
 for p in sub: # mette in testa l'i-esimo elemento
 perms.append(seq[i:i+1]+p)
 return perms

print(permute([1,2,3]))
Out: [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3,
2, 1]]

Per visualizzare meglio l’albero delle chiamate risorsive, aggiungiamo la
stampa di qualche messaggio alla funzione.

def permute_print(seq):
 '''Ritorna la lista di tutte le permutazioni
 della sequenza seq'''
 print(' '*(3-len(seq)),'chiamata',seq)
 if len(seq) <= 1:
 perms = [seq]
 else:
 perms = []
 for i in range(len(seq)):
 sub = permute_print(seq[:i]+seq[i+1:])
 for p in sub:
 perms.append(seq[i:i+1]+p)
 print(' '*(3-len(seq)),'ritorna',perms)
 return perms

permute_print([1,2,3])
Out: chiamata [1, 2, 3]
Out: chiamata [2, 3]
Out: chiamata [3]
Out: ritorna [[3]]
Out: chiamata [2]
Out: ritorna [[2]]
Out: ritorna [[2, 3], [3, 2]]
Out: chiamata [1, 3]
Out: chiamata [3]
Out: ritorna [[3]]
Out: chiamata [1]
Out: ritorna [[1]]
Out: ritorna [[1, 3], [3, 1]]
Out: chiamata [1, 2]
Out: chiamata [2]
Out: ritorna [[2]]
Out: chiamata [1]
Out: ritorna [[1]]
Out: ritorna [[1, 2], [2, 1]]
Out: ritorna [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1,
2], [3, 2, 1]]
Out: [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3,
2, 1]]

In questo secondo esempio la ricorsione non esplora un albero esplicito,
come quello dei file e delle sottodirectory, ma visita un albero implicito
prodotto dalla nidificazione delle chiamate ricorsive.

14.3 ALBERI

I semplici esempi che abbiamo visto illustrano il legame tra la ricorsione e gli
alberi. Gli alberi si presentano in tantissime situazioni. Ad esempio, sono
frequentemente usati per rappresentare classificazioni o tassonomie.

L’albero in figura ci permette anche di introdurre un po’ della terminologia
standard relativa agli alberi. Ogni elemento dell’albero è chiamato nodo,
nella figura “organismo”, “vegetale”, “vertebrato”, ecc. Le linee che collegano i
nodi sono chiamate archi. Ogni arco va da un nodo genitore a un nodo figlio.
Generalmente, il nodo genitore è disegnato più in alto o più a sinistra del
nodo figlio. La relazione genitore-figlio è quella che determina la struttura
gerarchica dell’albero. In alberi di classificazione, il nodo genitore
rappresenta un concetto più generale mentre il nodo figlio una
specializzazione di questo, ad es. “animale-mammifero”. Il nodo in cima è
chiamato radice, nel nostro esempio “organismo”, mentre i nodi in fondo,
cioè quelli senza figli, sono detti foglie, nella figura “cetaceo”, “umano”, ecc. I
discendenti di un nodo sono i suoi nodi figli, i figli dei figli e così via fino alle
foglie. Il sottoalbero di un nodo è l’albero che ha come radice il nodo e
comprende tutti i suoi discendenti. Possiamo mostrare l’albero del file
system dell’esempio precedente.

Gli alberi sono anche usati per rappresentare analisi grammaticali o
sintattiche sia in linguaggi naturali sia in linguaggi artificiali come linguaggi di
markup o linguaggi di programmazione. In quest’ultimo caso si parla di
alberi di parsing. La loro costruzione è generalmente il primo passo
intrapreso da un qualsiasi compilatore o interprete. Nel capitolo successivo
ne vedremo la costruzione ed uso relativamente al linguaggio di markup
HTML. Mostriamo qui un semplice esempio per la seguente funzione.

def somma2(x):
 x += 2
 return x

14.4 ALBERI DI OGGETTI

L’operazione fondamentale su un albero è la visita di tutti i suoi nodi che
permette, ad esempio, di stamparli, contarli, di fare ricerche, ecc. Un modo
generale per rappresentare gli alberi in linguaggi di programmazione
orientati agli oggetti come Python è di definire un tipo per i nodi i quali
contengono una lista di oggetti dello stesso tipo. Conoscendo l’oggetto che
rappresenta la radice, si può arrivare a un qualsiasi altro nodo dell’albero
seguendo opportunamente i link da genitore a figlio.

Vediamo come fare ciò per l’albero dei file e directory. Ogni nodo
rappresenta o un file o una directory. Se rappresenta un file non ha figli se
invece rappresenta una directory ha per figli i nodi che rappresentano tutti i
file e directory contenuti direttamente nella directory.

class FSNode(object):
 def __init__(self, path):
 self.path = path
 self.content = [] # lista dei nodi figli
 def __str__(self):
 return 'FSNode("'+self.path+'")'

Per creare l’albero che rappresenta tutti i file e le directory contenute a
qualsiasi livello in una data directory, definiamo una funzione che partendo
dal percorso della directory radice crea un nodo di tipo FSNode per ogni file
e directory esplorato ricorsivamente e quando trova una directory aggiunge
al suo attributo content i nodi figli.

def gen_fstree(path):
 '''Genera l'albero partendo dal percorso path e
 ritorna il nodo radice'''
 node = FSNode(path)
 if os.path.isdir(path):
 for name in os.listdir(path):
 if name.startswith('.'): continue

 fullpath = os.path.join(path, name)
 node.content += [gen_fstree(fullpath)]
 return node

tree = gen_fstree('Informatica')
print(tree)
Out: FSNode("Informatica")

Per stampare l’intero albero scriviamo una funzione che visita
ricorsivamente i nodi e stampa il nome di ogni nodo che incontra. Per
rispecchiare la struttura dell’albero il nome di ogni nodo è stampato con una
indentazione proporzionale al suo livello nell’albero. Per fare ciò occorre che
la funzione prenda anche un argomento che indica il livello del nodo
corrente.

def print_fstree(node, level):
 '''Stampa l'albero con radice node'''
 # os.path.basename ritorna l'ultima componente
 print(' '*level + os.path.basename(node.path))
 # stampa ricorsivamente i sottoalberi dei nodi figli
 for child in node.content:
 print_fstree(child, level + 1)

print_fstree(tree, 0)
Out: Informatica
Out: Hardware
Out: Cache.txt
Out: CPU.txt
Out: RAM.txt
Out: Software
Out: Linguaggi
Out: C.txt
Out: Java.txt
Out: JavaScript.txt
Out: Python.txt
Out: SistemiOperativi
Out: Linux.txt
Out: MacOS.txt
Out: Windows.txt

Definiamo ora una funzione che conta ricorsivamente i nodi dell’albero, che
vengono calcolati, per ogni nodo, come la somma dei nodi contenuti nei figli
più uno.

def count_fstree(node):
 '''Ritorna il numero di nodi dell'albero di
 radice root'''
 count = 1
 # per ogni nodo figlio,
 for child in node.content:
 # conta i nodi nel suo sottoalbero
 count += count_fstree(child)
 return count

print(count_fstree(tree))
Out: 15

Ancora una volta è utile aggiungere qualche stampa per capire cosa
succede.

def count_fstree_print(node,level):
 '''Ritorna il numero di nodi dell'albero di
 radice root'''
 print(' '*level + os.path.basename(node.path))
 count = 1
 for child in node.content:
 count += count_fstree_print(child,level+1)
 print(' '*level,'->',count)
 return count

print(count_fstree_print(tree,0))
Out: Informatica
Out: Hardware
Out: Cache.txt
Out: -> 1
Out: CPU.txt
Out: -> 1
Out: RAM.txt
Out: -> 1
Out: -> 4
Out: Software

Out: Linguaggi
Out: C.txt
Out: -> 1
Out: Java.txt
Out: -> 1
Out: JavaScript.txt
Out: -> 1
Out: Python.txt
Out: -> 1
Out: -> 5
Out: SistemiOperativi
Out: Linux.txt
Out: -> 1
Out: MacOS.txt
Out: -> 1
Out: Windows.txt
Out: -> 1
Out: -> 4
Out: -> 10
Out: -> 15
Out: 15

Infine, definiamo una funzione che fa una ricerca nell’albero e ritorna una
lista dei nodi che hanno un nome dato. Chiaramente anche questa funzione
può essere implementata facendo una visita ricorsiva dell’albero.

def find_fstree(node, name):
 '''Ritorna una lista dei nodi dell'albero di
 radice root con nome name'''
 ret = []
 if os.path.basename(node.path) == name:
 ret += [node]
 # per ogni nodo figlio,
 for child in node.content:
 # cerca ricorsivamente nel suo sottoalbero
 ret += find_fstree(child, name)
 return ret

print(find_fstree(tree, 'Python.txt')[0])
Out: FSNode("Informatica/Software/Linguaggi/Python.txt")

15 DOCUMENTI STRUTTURATI

I documenti strutturati si possono rappresentare come alberi i cui nodi
definiscono le differenti sezioni del documento, che a loro volta contengono
testo formattato. L’elaborazione di un documento strutturato richiede come
primo passo il parsing, cioè l’analisi della struttura sintattica del documento.
Il risultato del parsing è il cosiddetto albero di parsing, che visitato
ricorsivamente permette di ottenere informazioni o di modificare il
documento in vari modi. Questo capitolo mostrerà come fare il parsing e poi
l’elaborazione di documenti HTML, il formato delle pagine Web.

15.1 HTML

Per formattare un testo in modo da poter indicare che, ad esempio, una
parte di testo è un titolo o che va enfatizzata, si possono usare i linguaggi di
markup. Quello usato per le pagine Web è il linguaggio HTML, o HyperText
Markup Language. L’HTML usa dei marcatori chiamati tag che marcano parti
di un documento, come ad esempio titoli, paragrafi, links a pagine o
contenuti multimediali. Un documento HTML è letto da un web browser che
interpreta i tag HTML e visualizza la pagina nel modo che ben conosciamo.
Questo capitolo non è una guida HTML, ma introduce solamente le basi per
mostrare come i documenti HTML possono essere elaborati in Python.

L’HTML usa marcatori, detti tag, che delimitano le parti del documento che
hanno specifiche proprietà. Ad esempio, un paragrafo è indicato con

<p>Questo è un paragrafo.</p>

dove il tag <p> indica l’inizio del paragrafo e </p> la fine. Per indicare due
paragrafi consecutivi, basta aggiungere altri paragrafi a seguire.
Nell’esempio sotto ci avvaliamo anche del tag per enfatizzare testo e
del tag per inserire un’immagine. Quest’ultima conterrà l’attributo src
che punta al file immagine da inserire.

<p>Questo è un paragrafo.</p>
<p>Questo è un altro paragrafo.</p>
<p>Questo è un paragrafo.</p>
<p>Questa è una immagine: </p>

La struttura di un documento HTML è determinata dai tag. Ogni tag delimita
una porzione del documento che può contenere testo, immagini, ecc. e altri
tag. Quindi il documento può essere visto come un albero i cui nodi sono
determinati dai tag. I nodi figli di un nodo corrispondono ai tag e alle parti di
testo contenuti direttamente nella porzione delimitata dal tag del nodo. Ogni
nodo tag comprende una porzione del documento che inizia con l’apertura

di un tag indicata dal nome del tag tra i caratteri < e > , ad es. , e
termina con la chiusura del tag indicata dal nome del tag preceduto da '/'
e sempre tra i caratteri < , > , ad es. . Inoltre i tag, e quindi anche i nodi,
possono avere degli attributi che specificano varie proprietà. Gli attributi
sono indicati nell’apertura del tag con il loro nome seguito da = e una
stringa che ne specifica il valore. Gli attributi sono opzionali. Il formato
generale di un nodo è quindi

<tag attributo1="valore1"...>contenuto</tag>

Non tutti i tag hanno una chiusura esplicita, come ad esempio il tag img . I
tag che invece devono essere chiusi hanno generalmente un contenuto. Il
contenuto di un tag e del relativo nodo è una lista di altri nodi che sono i
suoi figli nell’albero. Non ci sono tag per delimitare esplicitamente il testo
semplice, però conviene che le porzioni di testo siano comunque comprese
in opportuni nodi dell’albero del documento. Ai nodi di testo noi
assegneremo il tag di comodo _text_ . La struttura generale di un
documento HTML ha la seguente forma

<html>
<head>
 <!-- attributi del documento,
 come titolo, autore, etc. -->
</head>
<body>
 <!-- contenuto del documento che
 viene visualizzato -->
</body>
</html>

I web browser accettano anche frammenti di HTML, cioè solamente la parte
contenuta nel nodo del tag body . Ma nel seguito assumeremo che i
documenti HTML siano completi. L’HTML ha molti tag per marcare un
documento. Indichiamo qui i più comuni:

<html>contenuto</html> : il documento HTML

<body>contenuto</body> : il contenuto del documento

<h1>titolo</h1> : un titolo di livello 1

<h2>titolo</h2> : un titolo di livello 2

<p>contenuto</p> : un paragrafo

contenuto : enfatizza il contenuto

 : un’immagine scaricata dall’indirizzo indirizzo

contenuto : un link all’indirizzo indirizzo

Un esempio molto semplice di documento HTML è il seguente:

<html>
<body>
<h1>Un Semplice Documento</h1>
<p>Un paragrafo con testo enfatizzato.</p>
<p>Un paragrafo con un link a Wikipedia e un'immagine a
seguire.</p>

</body>
</html>

Visualizziamo ora la struttura ad albero del documento dove marcheremo i
nodi di testo con _text_ e non visualizzeremo il testo non visibile.

15.2 RAPPRESENTAZIONE DI DOCUMENTI HTML

Per rappresentare un documentato HTML useremo una classe che ne
rappresenta i nodi con quattro variabili. tag è il nome del tag, ad esempio
'body' . attr è il dizionario degli attributi, che rimarrà vuoto se l’elemento
non ha attributi. Ogni chiave del dizionario è il nome di un attributo, di tipo
stringa, a cui è associato il suo valore, di tipo stringa. Ad esempio { 'src':
"img_logo.png" } . content è il contenuto del nodo. Se il nodo è di testo, con
tag _text_ , il contenuto è la stringa di testo, altrimenti è una lista dei nodi
figli, che può anche essere vuota. closed è True se il nodo ha la chiusura,
altrimenti è False .

La classe conterrà metodi per stamparne il contenuto, print_tree() per
visualizzare l’albero e to_string() che ritorna la stringa HTML
corrispondente al nodo. Per quest’ultimo metodo dobbiamo considerare che
HTML ha caratteri speciali per rappresentare i caratteri usati nei tags.
Possiamo semplicemente usare la funzione escape() dal modulo html per
supportare questo caso.

import html

class HTMLNode(object):
 def __init__(self,tag,attr,content,closed=True):
 self.tag = tag
 # dizionario degli attributi
 self.attr = attr
 # testo per nodi _text_ o lista dei figli
 self.content = content
 # True se il nodo ha la chiusura
 self.closed = closed

 # per distinguere i nodi testo
 def istext(self):
 return self.tag == '_text_'

 def open_tag(self):

 '''Ritorna la stringa del tag di inizio.'''
 if self.istext():
 return self.tag
 s = '<'+self.tag
 for k, v in self.attr.items():
 # usiamo escape per i valori
 s += ' {}="{}"'.format(
 k, html.escape(v,True))
 s += '>'
 return s

 def close_tag(self):
 '''Ritorna la stringa del tag di fine.'''
 return '</'+self.tag+'>'

 def print_tree(self, level=0):
 '''Stampa l'albero mostrando la struttura
 tramite indentazione'''
 if self.istext():
 print(' '*level + '_text_ ' +
 repr(self.content))
 else:
 print(' '*level + str(self))
 for child in self.content:
 child.print_tree(level+1)

 def to_string(self):
 '''Ritorna la stringa del documento HTML che
 corrisponde all'albero di questo nodo.'''
 if self.istext():
 # usiamo escape per i caratteri speciali
 return html.escape(self.content,False)
 s = self.open_tag()
 doc = self.open_tag()
 if self.closed:
 for child in self.content:
 doc += child.to_string()
 doc += self.close_tag()
 return doc

 def __str__(self):
 '''Ritorna una rappresentazione semplice
 del nodo'''

 if self.istext(): return self.tag
 else: return '<{}>'.format(self.tag)

Possiamo quindi creare un piccolo documento HTML in modo
programmatico.

doc = HTMLNode('html',{},[
 HTMLNode('body',{},[
 HTMLNode('p',{},[
 HTMLNode('_text_',{},'Un paragrafo con '),
 HTMLNode('em',{},[
 HTMLNode('_text_',{},'enfasi')
]),
 HTMLNode('_text_',{},' e un\'immagine'),
 HTMLNode('img',{'src':'img_logo.png'},
 [],closed=False)
])
])
])

stampa la struttura nell'albero
doc.print_tree()
Out: <html>
Out: <body>
Out: <p>
Out: _text_ 'Un paragrafo con '
Out:
Out: _text_ 'enfasi'
Out: _text_ " e un'immagine"
Out:

stampa la stringa HTML corrispodente
print(doc.to_string())
Out: <html><body><p>Un paragrafo con enfasi e
un'immagine</p></body></html>

15.3 PARSING DI DOCUMENTI HTML

Per elaborare un documento HTML la prima cosa da fare è costruire l’albero
che ne rappresenta la struttura. Per fare ciò useremo il modulo html.parser
della libreria standard ed in particolare la classe HTMLParser . Per creare il
nostro parser dovremo modificare il comportamento della classe standard
ridefinendone alcuni metodi. Python permette di fare ciò specificando una
classe di base quando creiamo una nuova classe, con un meccanismo
chiamato derivazione o inheritance. Non tratteremo questo argomento di
programmazione in questo libro, se non usandolo in casi strettamente
necessari, come la creazione di un parser HTML. Riportiamo a seguito il
codice completo del parser per completezza, ma consigliamo al lettore di
usarlo semplicemente come specificato.

import html.parser

class _MyHTMLParser(html.parser.HTMLParser):
 def __init__(self):
 '''Crea un parser per la class HTMLNode'''
 # inizializza la class base super()
 super().__init__()
 self.root = None
 self.stack = []
 def handle_starttag(self, tag, attrs):
 '''Metodo invocato per tag aperti'''
 closed = tag not in ['img','br']
 node = HTMLNode(tag,dict(attrs),[],closed)
 if not self.root:
 self.root = node
 if self.stack:
 self.stack[-1].content.append(node)
 if closed:
 self.stack.append(node)
 def handle_endtag(self, tag):
 '''Metodo invocato per tag chiusi'''
 if self.stack and self.stack[-1].tag == tag:
 self.stack[-1].opentag = False

 self.stack = self.stack[:-1]
 def handle_data(self, data):
 '''Metodo invocato per il testo'''
 if not self.stack: return
 self.stack[-1].content.append(
 HTMLNode('_text_',{},data))
 def handle_comment(self, data):
 '''Metodo invocato per commenti HTML'''
 pass
 def handle_entityref(self, name):
 '''Metodo invocato per caratteri speciali'''
 if name in name2codepoint:
 c = unichr(name2codepoint[name])
 else:
 c = '&'+name
 if not self.stack: return
 self.stack[-1].content.append(
 HTMLNode('_text_',{},c))
 def handle_charref(self, name):
 '''Metodo invocato per caratteri speciali'''
 if name.startswith('x'):
 c = unichr(int(name[1:], 16))
 else:
 c = unichr(int(name))
 if not self.stack: return
 self.stack[-1].content.append(
 HTMLNode('_text_',{},c))
 def handle_decl(self, data):
 '''Metodo invocato per le direttive HTML'''
 pass

Per usare la classe _MyHTMLParser basta crearne una istanza, chiamare il
metodo feed() della classe di base e ritornare il contenuto della variabile
root . Per semplicità definiamo le funzioni parse() e fparse() che
ritornano l’albero dei nodi a partire rispettivamente da una stringa HTML o
dal nome del file.

def parse(html):
 '''Esegue il parsing HTML del testo html e
 ritorna la radice dell'albero.'''
 parser = _MyHTMLParser()

 parser.feed(html)
 return parser.root

def fparse(fhtml):
 '''Esegue il parsing HTML del file fhtml e
 ritorna la radice dell'albero .'''
 with open(fhtml) as f:
 root = parse(f.read())
 return root

Proviamo a fare il parsing del semplice file
che abbiamo visto sopra.
doc = fparse('page_simple.html')

doc.print_tree()
Out: <html>
Out: _text_ '\n'
Out: <body>
Out: _text_ '\n'
Out: <h1>
Out: _text_ 'Un Semplice Documento'
Out: _text_ '\n'
Out: <p>
Out: _text_ 'Un paragrafo con testo '
Out:
Out: _text_ 'enfatizzato'
Out: _text_ '.'
Out: _text_ '\n'
Out: <p>
Out: _text_ 'Un paragrafo con un link a '
Out: <a>
Out: _text_ 'Wikipedia'
Out: _text_ " e un'immagine a seguire."
Out: _text_ '\n'
Out:
Out: _text_ '\n'
Out: _text_ '\n'

print(doc.to_string())
Out: <html>
Out: <body>
Out: <h1>Un Semplice Documento</h1>
Out: <p>Un paragrafo con testo enfatizzato.</p>

Out: <p>Un paragrafo con un link a Wikipedia e un'immagine a
seguire.</p>
Out:
Out: </body>
Out: </html>

15.4 OPERAZIONI SUI DOCUMENTI

Ora che abbiamo l’albero di parsing possiamo facilmente fare delle
operazioni su di esso. Possiamo implementare queste operazioni sia come
metodi che come funzioni, che come si è potuto notare finora, sono molto
simili nel nostro uso. Nel seguito scriveremo funzioni per semplicità.

Prima di tutto consideriamo operazioni che calcolano delle semplici
statistiche, come contare il numero totale dei nodi e l’altezza dell’albero,
quest’ultima definita come il numero di relazioni genitore-figlio massimale.

def count(node):
 '''Ritorna il numero di nodi dell'albero di
 questo nodo'''
 cnt = 1
 if not node.istext():
 for child in node.content:
 cnt += count(child)
 return cnt

print('Numero di nodi:', count(doc))
Out: Numero di nodi: 22

def height(node):
 '''Ritorna l'altezza dell'albero con radice
 questo nodo, cioè il massimo numero di nodi
 in un cammino radice-foglia'''
 h = 1
 if not node.istext():
 for child in node.content:
 h = max(h, height(child) + 1)
 return h

print('Altezza:', height(doc))
Out: Altezza: 5

Poi possiamo aggiungere una funzione che ritorna una lista dei nodi che

hanno un dato tag.

def find_by_tag(node, tag):
 '''Ritorna una lista dei nodi che hanno il tag'''
 ret = []
 if node.tag == tag: ret += [node]
 if not node.istext():
 for child in node.content:
 ret += find_by_tag(child,tag)
 return ret

for node in find_by_tag(doc,'a'):
 print(node.to_string())
Out: Wikipedia
for node in find_by_tag(doc,'p'):
 print(node.to_string())
Out: <p>Un paragrafo con testo enfatizzato.</p>
Out: <p>Un paragrafo con un link a Wikipedia e un'immagine a
seguire.</p>

Infine, implementiamo una funzione che modifica l’albero, ad esempio
eliminando i nodi che hanno un tag dato. I nodi figli di un nodo eliminato
diventano figli del nodo genitore del nodo eliminato.

def remove_by_tag(node, tag):
 '''Rimuove dall'albero tutti i nodi con il tag,
 esclusa la radice, cioè il nodo su cui è invocato
 il metodo.'''
 if node.istext(): return
 for child in node.content:
 remove_by_tag(child,tag)
 newcont = []
 for child in node.content:
 if child.tag == tag:
 if not child.istext():
 newcont += child.content
 else:
 newcont += [child]
 node.content = newcont

remove_by_tag(doc,'a')
print(doc.to_string())
Out: <html>
Out: <body>
Out: <h1>Un Semplice Documento</h1>
Out: <p>Un paragrafo con testo enfatizzato.</p>
Out: <p>Un paragrafo con un link a Wikipedia e un'immagine a
seguire.</p>
Out:
Out: </body>
Out: </html>

remove_by_tag(doc,'_text_')
print(doc.to_string())
Out: <html><body><h1></h1><p></p><p></p><img
src="photo.png"></body></html>

Finora abbiamo usato un documento d’esempio molto piccolo ma le pagine
web sono di solito documenti HTML molto più complessi. Proviamo allora la
nostra classe su documenti presi dal web, ad esempio calcolando qualche
statistica sulla pagina iniziale del sito di Python o dalla pagina di Wikipedia
del linguaggio Python.

from urllib.request import urlopen

def print_stats(url):
 '''Stampa alcune statistiche della pagina web
 all'url specificato.'''
 with urlopen(url) as f:
 page = f.read().decode('utf8')
 doc = parse(page)
 print('Numero di nodi:', count(doc))
 print('Altezza:', height(doc))
 print('Numero di links:', len(find_by_tag(doc,'a')))
 print('Numero di immagini:', len(find_by_tag(doc,'img')))

print_stats('http://python.org')
Out: Numero di nodi: 1506
Out: Altezza: 56
Out: Numero di links: 196
Out: Numero di immagini: 1

print_stats('https://en.wikipedia.org/wiki/Python_(programming_language)'

Out: Numero di nodi: 9146
Out: Altezza: 16
Out: Numero di links: 1372
Out: Numero di immagini: 22

16 INTERFACCE UTENTE

In questo capitolo introdurremo i concetti fondamentali per la creazione di
interfacce utenti, creando un paio di semplici applicazioni interattive. Nei
capitoli successivi useremo le interfacce utente come base per altri esempi
di interazione.

16.1 PROGRAMMI INTERATTIVI

I programmi visti finora sono stati di tipo non-interattivo perché l’utente non
poteva alterare il comportamento del programma durante la sua
esecuzione. Invece un programma interattivo può cambiare il proprio
comportamento in risposta all’input dell’utente, durante l’esecuzione. Tra i
programmi interattivi ci sono quelli che rispondono solamente agli input da
tastiera, i programmi grafici con bottoni e menu, e quelli che rispondono a
interazioni “naturali” tramite touch screens. Gli ultimi due tipi usano
interfacce utente grafiche, in inglese Graphical User Interface, o più
brevemente GUI. Nel seguito considereremo le interfacce per sistemi a
finestra, tipiche dei programmi su notebook e desktop.

16.2 LIBRERIE PER INTERFACCE UTENTE

Non ci sono librerie standard per le interfacce, sia per ragioni storiche che di
mercato. Storiche perché sistemi differenti come Windows e Mac si sono
evoluti adottando diverse filosofie di interfaccia utente e durante la loro
evoluzione non hanno voluto perdere la compatibilità con i programmi
precedenti. Le interfacce sono la parte del sistema operativo più visibile agli
utenti e quindi per ragioni di mercato sono spesso usate per evidenziare le
differenze tra i sistemi.

Ciò ha portato allo sviluppo di una moltitudine di librerie software per creare
interfacce. Anche se molti dei principi di base sono simili, le librerie sono
incompatibili tra loro. In questo libro utilizziamo Qt 5, una libreria
multipiattaforma per la creazione di interfacce. La libreria Qt tenta di
uniformare il comportamento dei vari sistemi per agevolare lo sviluppo di
GUI portabili. È una libreria vastissima sia come funzionalità sia come
numero di funzioni e classi fornite. Non tenteremo di trattarla
esaustivamente, la useremo solamente per illustrare i concetti fondamentali
della programmazione delle GUI.

Qt è scritta nel linguaggio C++ per ragioni storiche e di efficienza. Per usare
Qt in Python utilizzeremo un “wrapper” chiamato PyQt 5, che permettono di
chiamare le funzioni della libreria C++ direttamente dal linguaggio Python.
PyQt è installato di default da Anaconda. Per utilizzare PyQt5 useremo i
seguenti imports.

Importa tutte le classi per costruire GUI con Qt
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtWebEngineWidgets import *

In generale, consigliamo di eseguire i programmi con GUI da terminale
perché i programmi interattivi interferiscono con la shell di Python e

http://www.qt.io
https://wiki.python.org/moin/PyQt

IPython.

16.3 APPLICAZIONI QT

In Qt l’interazione utente è gestita da un oggetto QApplication che prende il
controllo del programma una volta che si fa partire l’applicazione. Possiamo
creare vari elementi dell’interfaccia utente come finestre e bottoni che nella
terminologia di Qt si chiamano widget. Iniziamo con la struttura base di un
programma Qt con una finestra vuota.

Crea un'applicazione Qt
app = QApplication([])

Crea una finestra (ma non e' visibile)
window = QWidget()

Imposta dimensione e titolo della finestra
window.resize(500, 300)
window.setWindowTitle('Fondamenti di Programmazione')

Mostra la finestra
window.show()

Lancia l'interazione con l'utente
app.exec_()
Out: 0

Per creare un’applicazione, importiamo tutte le definizioni della libreria Qt
dal modulo PyQt5.QtWidgets e creiamo un oggetto applicazione
QApplication che amministra l’interazione con l’utente. Creiamo poi una
finestra come oggetto della classe QWidget impostandone la dimensione e il
titolo tramite i suoi metodi resize e setWindowTitle . Rendiamo poi la
finestra visibile chiamando il metodo show . Infine, facciamo partire
l’applicazione chiamando il metodo exec_ dell’applicazione app . Da questo
momento, il controllo del programma è completamente gestito da Qt che
tornerà al Python solo quando la finestra sarà chiusa. Eseguendo il
programma otteniamo la seguente applicazione, non molto interessante ma

già funzionale, la finestra è ridimensionabile e può essere chiusa.

16.4 METODI STATICI

Dato che utilizzeremo questa struttura per tutti gli esempi di questo
capitolo, definiamo le funzioni init() per creare una finestra e
run_window() per lanciare l’applicazione. Dato che Qt permette solo di avere
una QApplication , useremo il metodo QApplication.istance() per
determinare se una QApplication è già presente. Questo metodo è
chiamato con la sintassi NomeClasse.metodo , cioè il metodo è chiamato in
relazione alla classe e non a un suo oggetto. Metodi di questo tipo sono detti
metodi della classe o anche metodi statici e sono usati spesso in linguaggi
come il C++, con cui Qt è implementato. In Python questi metodi sono meno
naturali e li troveremo quindi spesso relegati all’uso in casi di compatibilità
con librerie di altri linguaggi.

def init():
 '''Crea un'applicazione Qt e una finestra'''
 # verifica se l'applicazione è già esistente
 app = QApplication.instance()
 # o ne crea una nuova
 if not app: app = QApplication([])
 window = QWidget()
 window.resize(500, 300)
 window.setWindowTitle(
 'Fondamenti di Programmazione')
 return app, window

def run(app, window):
 '''Rende la finestra visibile e lancia
 l'applicazione'''
 window.show()
 app.exec_()

16.5 WIDGETS, EVENTI E CALLBACKS

Aggiungiamo ora dei componenti all’applicazione per renderla più utile.
Possiamo aggiungere un bottone alla finestra semplicemente creandolo
come oggetto della classe QPushButton dopo la creazione della finestra. Il
primo argomento del costruttore è il testo che apparirà come titolo del
bottone. Per attaccare il bottone alla finestra, passiamo l’oggetto QWidget
della finestra, nel nostro caso window , come secondo argomento al
costruttore di QPushButton .

Crea un bottone sulla finestra
app, window = init()
button = QPushButton('Button', window)
run(app, window)

Però cliccando sul bottone non succede nulla perché non abbiamo ancora
specificato cosa fare in risposta ad un click. Per farlo utilizzeremo la
programmazione ad eventi. L’idea principale è di specificare delle funzioni,
dette callback, che sono chiamate da Qt quando l’utente genera eventi, ad
esempio premendo il bottone.

Possiamo allora definire una semplice funzione button_callback che
stampa un messaggio e collegarla tramite il metodo connect() all’evento di
un mouse click sul bottone che è chiamato clicked . Definiamo ciò subito
dopo la creazione del bottone e prima di lanciare l’applicazione. Al metodo
connect() passiamo l’oggetto funzione, non il suo risultato della sua
chiamata.

Definisce la callback del bottone
def button_callback():
 print('Clicked')

app, window = init()

Crea un bottone sulla finestra
button = QPushButton('Print', window)

Imposta la callback in risposta all'evento
clicked del bottone
button.clicked.connect(button_callback)

run(app, window)
Out: Clicked

Ora, ogni volta che si clicca sul bottone, viene stampato il messaggio
Clicked . Una callback può essere una funzione qualsiasi o un metodo,
anche di un oggetto dell’interfaccia. Ad esempio, potremmo chiudere
l’applicazione con un click sul bottone se impostiamo come callback il
metodo app.quit() .

16.6 LAYOUTS

Per controllare come gli elementi di una interfaccia sono posizionati in una
finestra, Qt usa il concetto di layout, cioè uno schema predefinito di
disposizione. Ad esempio, se vogliamo aggiungere due bottoni disponendoli
in verticale, creiamo un oggetto layout di disposizione verticale tramite la
classe QVBoxLayout e aggiungiamo i due bottoni con il suo metodo
addWidget() . Impostiamo poi il layout della finestra con il metodo
setLayout() .

app, window = init()

Crea un layout verticale
layout = QVBoxLayout()

Crea due bottoni
button1 = QPushButton('Exit')
button2 = QPushButton('Print')

Aggiunge i bottoni al layout
layout.addWidget(button1)
layout.addWidget(button2)

Imposta il layout come layout della finestra
window.setLayout(layout)

Definisce una semplice callback
def print_callback():
 print('ciao')

Imposta le callback dei due bottoni
button1.clicked.connect(app.quit)
button2.clicked.connect(print_callback)

run(app, window)

16.7 ESEMPIO: TEXTEDITOR

Creeremo adesso un editor di testo minimale che avrà tre bottoni, uno per
aprire un file di testo, uno per salvarlo e uno per uscire dall’applicazione, ed
un’area per editare il testo, implementata grazie al widget QTextEdit . Per
disporre questi elementi useremo un layout orizzontale QHBoxLayout per
posizionare i tre bottoni come in una toolbar e poi un layout verticale
QVBoxLayout per disporre la toolbar in alto e l’area per editare in basso. Il
codice seguente crea gli elementi della nostra applicazione.

app, window = init()

Crea i layout per la finestra e la toolbar
layout = QVBoxLayout()
tlayout = QHBoxLayout()

Crea i tre bottoni
button_open = QPushButton('Open')
button_save = QPushButton('Save')
button_exit = QPushButton('Exit')

Aggiunge i bottoni al layout della toolbar
tlayout.addWidget(button_open)
tlayout.addWidget(button_save)
tlayout.addWidget(button_exit)

Aggiunge la toolbar al layout della finestra
layout.addLayout(tlayout)

Crea un'area per editare testo
textedit = QTextEdit('')
Aggiunge l'area testo al layout della finestra
layout.addWidget(textedit)

Imposta il layout della finestra
window.setLayout(layout)

run(app, window)

Per caricare e salvare un testo definiamo due callbacks. Per selezionare un
file, usiamo i dialog box offerti dalla classe QFileDialog di Qt. Useremo i
metodi statici getOpenFileName() e getSaveFileName() che creano oggetti
pre-configurati della classe QFileDialog e li rendono visibili in modo che
l’utente possa scegliere un file. Alla fine dell’interazione, questi metodi
ritornano il percorso del file scelto in una tupla il cui secondo argomento
possiamo ignorare. Se l’utente sceglie di annullare l’operazione, i metodi
ritornano la stringa vuota. Per interagire con l’area di testo textedit usiamo
i metodi setText() per assegnare una stringa al testo visibile nella GUI, e
toPlainText() per ottenere il contenuto dell’area di testo.

Definisce la callback per aprire un file
def open_callback():
 filename, _ = QFileDialog.getOpenFileName(window)
 # Verifuca se l'utente ha scelto "Cancel"

 if not filename: return
 with open(filename) as f:
 textedit.setText(f.read())

Definisce la callback per salvare il file
def save_callback():
 filename, _ = QFileDialog.getSaveFileName(window)
 # Veriuca se l'utente ha scelto "Cancel"
 if not filename: return
 with open(filename, 'w') as f:
 f.write(textedit.toPlainText())

Imposta le callback dei tre bottoni
button_open.clicked.connect(open_callback)
button_save.clicked.connect(save_callback)
button_exit.clicked.connect(app.exit)

run(app, window)

16.8 ESEMPIO: WEBBROWSER

Come secondo esempio, creiamo un web browser minimale, usando l’engine
Chromium incluso in Qt. Un oggetto della classe QWebEngineView , dal
modulo PyQt5.QtWebEngineWidgets , carica e visualizza una pagina web. Per
visualizzare ed editare l’URL della pagina introdurremo una barra di
navigazione tramite una linea di testo editabile implementata da QLineEdit .
Aggiungeremo anche due bottoni per andare avanti ed indietro tra le pagine
già scaricate. Il layout sarà similare all’esempio precedente.

app, window = init()

Crea il layout per la finestra
layout = QVBoxLayout()

Crea il layout per la toolbar
tlayout = QHBoxLayout()

Crea la navigation bar e i bottoni di navigazione
text_bar = QLineEdit('')
button_back = QPushButton('<')
button_forward = QPushButton('>')

Aggiunge i widgets alla toolbar
tlayout.addWidget(button_back)
tlayout.addWidget(button_forward)
tlayout.addWidget(text_bar)

Aggiunge la toolbar alla finestra
layout.addLayout(tlayout)

Crea un widget per visualizzare pagine web
web_view = QWebEngineView()
Aggiunge al layout della finestra
layout.addWidget(web_view)

Imposta il layout della finestra

window.setLayout(layout)

run(app,window)

Per interagire con la pagina impostiamo le seguenti azioni:

1. quando l’utente preme RETURN sulla text_bar , evento returnPressed ,
carichiamo nella web_view il nuovo url leggendolo dalla text_bar ;

2. quando cambia l’url della pagina nella web_view , evento urlChanged ,
aggiorniamo il testo nella text_bar ;

3. quando l’utente clicca sul bottone back , richiamiamo la pagina
precedente della web_view tramite il suo metodo back() .

4. Quando l’utente clicca sul bottone forward , richiamiamo la pagina
successiva della web_view tramite il suo metodo forward() .

Prima di tutto definiamo la callback per l’immissione di un nuovo URL da
parte dell’utente. Il contenuto della text_bar si ottiene col metodo text() e
si imposta l’URL da scaricare nella web_view col metodo setUrl() che però
prende come argomento un oggetto QUrl .

Per aiutare l’utente l’URL può essere digitato senza lo schema. In tal caso,
inseriamo lo schema 'http://' automaticamente. Se il testo dell’utente non
è interpretabile come indirizzo, ad esempio contiene spazi e non contiene
punti, lo usiamo come interrogazione su Google. Aggiungeremo infine un
test iniziale per evitare di ricaricare una pagina già caricata.

In risposta all’evento urlChanged di web_view , immettiamo il nuovo URL
nella barra di navigazione impostandone il testo. Per i bottoni back and
forward , chiameremo direttamente gli appropriati metodi di web_view .

La callback per caricare una pagina
def load_page():
 if text_bar.text() == web_view.url().toString():
 return
 text = text_bar.text()
 if ' ' in text or '.' not in text:
 text = ('http://google.com/search?q=' +
 '+'.join(text.split()))
 elif '://' not in text:
 text = 'http://'+text
 web_view.setUrl(QUrl(text))

La callback per il nuovo url nella navigation bar
def set_url():
 text_bar.setText(web_view.url().toString())

Imposta la callback della navigation bar
text_bar.returnPressed.connect(load_page)
Imposta la callback della web_view
web_view.urlChanged.connect(set_url)
Imposta le callback dei due bottoni
button_back.clicked.connect(web_view.back)
button_forward.clicked.connect(web_view.forward)

run(app, window)

17 GRAFICA INTERATTIVA

In questo capitolo introdurremo alcuni semplici esempi di grafica interattiva
che saranno il preludio alla creazione di applicazioni interattive più ricche.

17.1 SCHELETRO DELL’APPLICAZIONE

Adotteremo un modello molto semplice di grafica interattiva in cui forziamo
l’applicazione ad aggiornare il proprio stato ogni sessantesimo di secondo,
invece di attendere che si verifichi un evento. Il tempo di aggiornamento di
un sessantesimo di secondo è sufficientemente breve per produrre
animazioni convincenti. Per fare questo, dobbiamo creare un widget
specifico modificando il comportamento di QWidget tramite derivazione.
Dato che questo argomento di programmazione non è trattato in modo
esplicito in questo libro, riportiamo il codice qui di seguito per completezza,
consigliando al lettore di utilizzare il nuovo widget come se fosse un widget
predefinito.

from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *

class PaintInfo:
 def __init__(self):
 self.mouse_pressed = False
 self.mouse_x = 0
 self.mouse_y = 0
 self.mouse_px = 0
 self.mouse_py = 0
 self.key = ''
 self.size = (0, 0)

class _GWidget(QWidget):
 def __init__(self):
 super().__init__()
 self.image = QImage(self.width(),
 self.height(), QImage.Format_ARGB32)
 self.paint_handler = None
 self.info = PaintInfo()
 self.info.size = self.width(), self.height()
 self.setMouseTracking(True)
 def drawing(self):

 painter = QPainter(self.image)
 painter.setRenderHints(
 QPainter.Antialiasing,True)
 painter.setRenderHints(
 QPainter.SmoothPixmapTransform,True)
 painter.info = self.info
 self.paint_handler(painter)
 self.info.mouse_px = self.info.mouse_x
 self.info.mouse_py = self.info.mouse_y
 self.update()
 def paintEvent(self, event):
 painter = QPainter(self)
 painter.drawImage(0, 0, self.image)
 def resizeEvent(self,event):
 prev_img = self.image
 self.image = QImage(self.width(),
 self.height(), QImage.Format_ARGB32)
 self.image.fill(QColor(0,0,0).rgb())
 painter = QPainter(self.image)
 painter.drawImage(0, 0, prev_img)
 self.info.size = self.width(), self.height()
 self.update()
 def mousePressEvent(self,event):
 self.info.mouse_pressed = True
 def mouseReleaseEvent(self,event):
 self.info.mouse_pressed = False
 def mouseMoveEvent(self,event):
 self.info.mouse_x = event.x()
 self.info.mouse_y = event.y()
 def keyPressEvent(self,event):
 if not event.text():
 super().keyPressEvent(event)
 self.info.key = event.text()
 def keyReleaseEvent(self,event):
 self.info.key = ''

def run_app(paint,w,h):
 app = QApplication.instance()
 if not app: app = QApplication([])
 widget = _GWidget()
 widget.resize(w,h)
 widget.setWindowTitle('Fondamenti di Programmazione')
 widget.paint_handler = paint

 timer = QTimer()
 timer.setInterval(1000/60)
 timer.timeout.connect(widget.drawing)
 widget.show()
 timer.start()
 app.exec_()

Per usarlo basta chiamare la funzione run_app(paint, w, h) che crea
l’applicazione Qt con una finestra di dimensioni w e h e che chiamerà la
callback paint() ad ogni frame. Quest’ultima prende come argomento un
oggetto painter di tipo QPainter che permette di disegnare varie forme
semplici e che fornisce informazioni tramite l’oggetto interno info , di tipo
PaintInfo , come le dimensioni della finestra. Il painter disegna su
un’immagine che è poi copiata sullo schermo ad ogni frame.

17.2 DISEGNO DI FORME

Il QPainter usa un oggetto “penna” QPen per disegnare il contorno di una
forma e un oggetto “pennello” QBrush per disegnarne l’interno. Questi
possono essere impostati con i metodi setPen() e setBrush() di QPainter .
I colori sono rappresentati da oggetti di tipo QColor . Quest’ultimo tipo è
simile alla nostra classe Color ma, come si vedrà, è più versatile.

Iniziamo con esempi che disegnano ellissi drawEllipse() , rettangoli
drawRect() e linee drawLine() . Ellissi e rettangoli sono specificati dalle
coordinate dell’angolo in alto a sinistra e le dimensioni. Le linee sono
specificate dalle coordinate di due punti. Ricordiamo che non cancellando
l’immagine, le forme vengono disegnate una per frame sull’immagine
corrente, quindi si sovrappongono.

from random import randint

def random_color(a=128,b=255):
 '''Colore casuale tra a e b'''
 return randint(a,b), randint(a,b), randint(a,b)

def paint(painter):
 '''Disegna un cerchio casuale'''
 # Dimensioni della finestra
 width, height = painter.info.size
 # Colore scelto in modo casuale
 r, g, b = random_color()
 # Colore del contorno e dell'interno
 painter.setPen(QColor(r//2,g//2,b//2))
 painter.setBrush(QColor(r,g,b))
 # Diametro e posizione casuali
 s = randint(10, 150)
 x = randint(-s, width+s)
 y = randint(-s, height+s)
 # Disegna il cerchio
 painter.drawEllipse(x, y, s, s)

run_app(paint,500,300)

def paint(painter):
 '''Disegna un rettangolo casuale'''
 width, height = painter.info.size
 r, g, b = random_color()
 painter.setPen(QColor(r//2,g//2,b//2))
 painter.setBrush(QColor(r,g,b))
 # Lato e posizione del quadrato casuale
 s = randint(50, 150)
 x = randint(-s, width+s)
 y = randint(-s, height+s)
 # Disegna il quadrato
 painter.drawRect(x, y, s, s)

run_app(paint,500,300)

def paint(painter):
 '''Disegna una linea casuale'''
 width, height = painter.info.size
 r, g, b = random_color()
 # Spessore della linea casuale
 lw = randint(1, 10)
 painter.setPen(QPen(QColor(r,g,b), lw))
 # Estremi della linea casuali
 x1 = randint(-20, width+20)
 y1 = randint(-20, height+20)
 x2 = randint(-20, width+20)
 y2 = randint(-20, height+20)
 # Disegna la linea
 painter.drawLine(x1, y1, x2, y2)

run_app(paint,500,300)

Disegnare caratteri o testo è anch’esso molto semplice con il metodo
drawText() di QPainter . Per cambiare la font si crea un oggetto QFont
inizializzandolo con il nome e la dimensione del font che si vuole, ad
esempio Helvetica a 12 punti, e poi lo si imposta con il metodo setFont() . Il
QPainter userà il colore della penna per disegnare il testo.

def paint(painter):
 '''Disegna un carattere casuale'''
 width, height = painter.info.size
 r, g, b = random_color()
 # Dimensione del font casuale
 fw = randint(12, 196)
 # Imposta la fonte
 painter.setFont(QFont('Helvetica', fw))
 painter.setPen(QColor(r,g,b))
 # Posizione random
 x = randint(-20, width+20)
 y = randint(-20, width+20)

 # Carattere random
 c = chr(randint(ord('A'),ord('z')))
 # Disegna il carattere
 painter.drawText(x, y, c)

run_app(paint,500,300)

È altrettanto facile disegnare un’immagine. Basta caricare l’immagine in un
oggetto QImage e disegnarla con il metodo drawImage() . I metodi width() e
height() di QImage ritornano le dimensioni dell’immagine.

Carica l'immagine da file
img = QImage('photo.png')

def paint(painter):
 '''Disegna l'immagine img in posizione casuale'''
 width, height = painter.info.size
 # Posizione casuale

 x = randint(-img.width(), width+img.width())
 y = randint(-img.height(), height+img.height())
 # Disegna l'immagine img con l'angolo in
 # alto a sinitra in (x,y)
 painter.drawImage(x, y, img)

run_app(paint,500,300)

17.3 PULIZIA DELL’IMMAGINE

Finora abbiamo lasciato che i disegni dei frame si sovrapponessero l’uno
sull’altro. Per evitare ciò possiamo ripulire l’immagine della finestra
disegnando un rettangolo nero che copre l’intera immagine prima del
disegno ad ogni frame. Se invece di disegnare un rettangolo nero solido, ne
disegnamo uno semi-trasparente i disegni dei frame precedenti
scompariranno progressivamente, lasciando tracce che diventeranno
sempre più tenui. Il costruttore di QColor ammette anche un quarto canale,
chiamato alfa, che indica il livello di trasparenza del colore. I suoi valori
possono variare come per gli altri canali da 0 a 255, dove 0 significa
completa trasparenza e 255 completa opacità.

def clear(painter,a=255):
 '''Pulisce l'immagine della finestra con
 trasparenza a'''
 width, height = painter.info.size
 painter.setPen(QColor(0,0,0,a))
 painter.setBrush(QColor(0,0,0,a))
 painter.drawRect(0, 0, width, height)

def paint(painter):
 '''Pulisce la finestra poi disegna'''
 clear(painter)
 width, height = painter.info.size
 r, g, b = random_color()
 painter.setPen(QColor(r//2,g//2,b//2))
 painter.setBrush(QColor(r,g,b))
 s = randint(10, 150)
 x = randint(-s, width+s)
 y = randint(-s, height+s)
 painter.drawEllipse(x, y, s, s)

run_app(paint,500,300)

def paint(painter):
 '''Decolora la finestra prima di disegnare'''
 # Pulissce la finestra parzialmente
 clear(painter,4)
 width, height = painter.info.size
 r, g, b = random_color()
 painter.setPen(QColor(r//2,g//2,b//2))
 painter.setBrush(QColor(r,g,b))
 s = randint(10, 150)
 x = randint(-s, width+s)
 y = randint(-s, height+s)
 painter.drawEllipse(x, y, s, s)

run_app(paint,500,300)

17.4 INTERAZIONE

Per interagire con il mouse e la tastiera, abbiamo aggiunto al QPainter un
attributo info con valore un oggetto di tipo PaintInfo contenente i valori
correnti di vari parametri tra cui quelli del mouse e della tastiera. In
particolare, l’oggetto dice se un pulsante del mouse è premuto
mouse_pressed , dà la posizione corrente del mouse mouse_x e mouse_y , la
posizione precedente mouse_px e mouse_py , l’ultimo tasto premuto key e la
dimensione dell’immagine size .

Iniziamo con il mouse disegnando cerchi centrati sulla sua posizione usando
la dissolvenza progressiva per renderlo più interessante. Il colore del cerchio
sarà deciso dalla pressione o meno del pulsante del mouse.

def paint(painter):
 '''Disegna un cerchio centrato nel mouse'''
 clear(painter, 2)
 painter.setPen(QColor(0,0,0))
 if painter.info.mouse_pressed:
 color = (128,255,128)
 else:
 color = (255,128,128)
 painter.setBrush(QColor(*color))
 painter.drawEllipse(painter.info.mouse_x - 25,
 painter.info.mouse_y - 25, 50, 50)

run_app(paint,500,300)

Usando la posizione precedente del mouse, possiamo disegnare linee
continue. Ad ogni frame, connettiamo semplicemente la posizione corrente
con quella precedente.

def paint(painter):
 '''Disegna una linea seguendo il mouse'''
 clear(painter, 2)
 if painter.info.mouse_pressed:
 color = (128,255,128)
 else:
 color = (255,128,128)
 painter.setPen(QPen(QColor(*color),4))
 painter.drawLine(
 painter.info.mouse_px,painter.info.mouse_py,
 painter.info.mouse_x,painter.info.mouse_y)

run_app(paint,500,300)

Infine, usiamo la tastiera per disegnare caratteri. Si noti che quando un tasto
è rilasciato, il valore di info.key diventa la stringa vuota.

def paint(painter):
 '''Disegna il carattere premuto sulla tastiera'''
 clear(painter, 2)
 if painter.info.mouse_pressed:
 color = (128,255,128)
 else:
 color = (255,128,128)
 painter.setPen(QColor(*color))
 painter.setFont(QFont('Helvetica',300))
 painter.drawText(painter.info.mouse_x,
 painter.info.mouse_y,painter.info.key)

run_app(paint,500,300)

17.5 VARIABILI GLOBALI

Possiamo scrivere un’applicazione che permette all’utente di scegliere le
modalità di disegno interattivo precedenti associando a ognuna di esse un
certo tasto. Usiamo una variabile globale scribblemode per registrare il
carattere associato alla modalità di disegno corrente. Se usassimo una
variabile locale il suo valore sarebbe perso alla chiamata successiva.
Dichiarando la variabile come global nel corpo della funzione paint

possiamo modificarne il valore nella funzione evitando così che venga
definita automaticamente una variabile locale con lo stesso nome. Dopo
aver impostato una modalità, tramite un opportuno tasto, cancelliamo
info.key assegnandogli la stringa vuota. Questo è per evitare di ripetere
l’impostazione della modalità quando un tasto è mantenuto premuto.

Modalita' di disegno, default cerchi
scribblemode = 'c'

def paint(painter):
 '''Disegna forme controllate della tastiera'''
 # Per poter modificare il valore della variabile
 global scribblemode
 if painter.info.key in ['c','l','t','s']:
 scribblemode = painter.info.key
 painter.info.key = ''
 # Blocca il disegno e la dissolvenza
 if scribblemode == 's':
 return
 clear(painter, 2)
 if painter.info.mouse_pressed:
 color = (128,255,128)
 else:
 color = (255,128,128)
 # Cerchi
 if scribblemode == 'c':
 painter.setPen(QColor(0,0,0))
 painter.setBrush(QColor(*color))
 painter.drawEllipse(painter.info.mouse_x-25,

 painter.info.mouse_y-25,50,50)
 # Linee
 elif scribblemode == 'l':
 painter.setPen(QPen(QColor(*color),4))
 painter.drawLine(painter.info.mouse_px,
 painter.info.mouse_py,
 painter.info.mouse_x,
 painter.info.mouse_y)
 # Caratteri
 elif scribblemode == 't':
 painter.setPen(QColor(*color))
 painter.setFont(QFont('Helvetica',300))
 painter.drawText(painter.info.mouse_x,
 painter.info.mouse_y,painter.info.key)

run_app(paint,500,300)

17.6 TRASFORMAZIONI

La libreria Qt ha anche la possibilità di trasformare le forme disegnate
specificando trasformazioni del sistema di coordinate del disegno. Quando
specifichiamo le coordinate in Qt lo facciamo allo stesso modo delle
immagini, cioè con l’origine nell’angolo in alto a sinistra. Possiamo cambiare
questo riferimento spostandolo, ruotandolo e scalandolo. Questo ha l’effetto
di spostare, ruotare o scalare il disegno. È utile, ad esempio, per disegnare
un’immagine ruotata.

Iniziamo, disegnando un’immagine centrata nelle coordinate x e y del
mouse e disegnando anche gli assi. Per centrare l’immagine su (x,y) ,
dobbiamo calcolare le coordinate dell’angolo in alto a sinistra sottraendo
metà larghezza e metà altezza.

def paint(painter):
 '''Disegna un'immagine in (x, y), che per
 testare seguone il mouse'''
 clear(painter)
 width, height = painter.info.size
 x = painter.info.mouse_x
 y = painter.info.mouse_y
 painter.setPen(QPen(QColor(255,255,255),4))
 painter.drawLine(-width+x,y,width+x,y)
 painter.drawLine(x,-height+y,x,height+y)
 painter.drawImage(-img.width()/2+x,
 -img.height()/2+y, img)

run_app(paint,500,300)

Per ottenere lo stesso effetto tramite una trasformazione del sistema di
riferimento, possiamo fare una traslazione dell’intero disegno che porta
l’origine in (x,y) e disegnare l’immagine centrata nell’origine. Possiamo
adesso aggiungere una rotazione, ad esempio di 45 gradi.

def paint(painter):
 '''Disegna un'immagine ruotata al centro'''
 clear(painter)
 width, height = painter.info.size
 x = painter.info.mouse_x
 y = painter.info.mouse_y
 # Angolo della rotazione (in gradi)
 a = 45
 # Traslazione che porta l'origine in (x,y)
 painter.translate(x,y)
 # Rotazione intorno all'origine di angolo a
 painter.rotate(a)
 painter.setPen(QPen(QColor(255,255,255),4))
 painter.drawLine(-width,0,width,0)

 painter.drawLine(0,-height,0,height)
 painter.drawImage(-img.width()/2,
 -img.height()/2, img)

run_app(paint,500,300)

Possiamo ora prendere considerare posizioni e rotazioni casuali e
aggiungere il fading.

def paint(painter):
 '''Disegna un'immagine con rotazione e
 posizione casuale'''
 clear(painter, 8)
 width, height = painter.info.size
 # Centro casuale
 x, y = randint(0,width), randint(0,height)
 # Angolo di rotazione casuale
 a = randint(0,360)
 painter.translate(x,y)

 painter.rotate(a)
 painter.drawImage(-img.width()/2,
 -img.height()/2, img)

run_app(paint,500,300)

18 GIOCHI

In questo capitolo svilupperemo un semplice gioco per mostrare come si
può usare la grafica interattiva in combinazione con l’interazione utente.
Utilizzeremo la funzione run_app() e la classe _GWidget introdotte in
precedenza, che per comodità considereremo salvate in un modulo
gwidget.py .

18.1 STATO DEL GIOCO

Con gli strumenti introdotti in precedenza svilupperemo ora un piccolo gioco
interattivo che è una versione semplice dello storico gioco Tetris. Non
implementeremo il calcolo e la visualizzazione dei punteggi e assumiamo
che il lettore conosce le regole del Tetris. Per utilizzare gwidget e Qt
iniziamo col dichiarare alcuni imports.

from gwidget import run_app
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *

Per prima cosa vediamo come rappresentare lo stato in cui si può trovare il
gioco in un qualsiasi momento. Dobbiamo poter rappresentare i pezzi che
sono già caduti e il pezzo che sta cadendo. Ogni pezzo è composto da
quattro quadrati disposti in una certa forma. Per rappresentare la
disposizione dei quadrati usiamo una matrice board i cui elementi sono i
quadrati che possono essere vuoti, o occupati dal pezzo corrente o da quelli
precedenti. Le dimensioni della matrice sono pari alle dimensioni dello
spazio in cui i pezzi si muovono. Per rappresentare i colore dei quadrati
usiamo stringhe che indicano i colori. Ad esempio, 'r' rappresenta un
quadrato di colore rosso. Per rappresentare una cella vuota, cioè una che
non è occupata da un pezzo, usiamo la stringa vuota. In modo simile,
definiamo ogni pezzo tramite una matrice di colori, o celle vuote,
sufficientemente grande da contenere la forma del pezzo. Usiamo un
dizionario colors per definire le associazioni tra le stringa e i colori Qt con
cui disegnarle. Le forme possibili per i pezzi sono mantenute in una lista
pieces contenente le matrici che definiscono tali forme.

Dizionario dei colori
colors = { 'r': QColor(255,128,128),
 'g': QColor(128,255,128),
 'b': QColor(128,128,255),

https://en.wikipedia.org/wiki/Tetris

 'c': QColor(128,255,255),
 'm': QColor(255,128,255),
 'y': QColor(255,255,128),
 'o': QColor(255,128,0) }

Lista delle matrici delle forme dei pezzi
pieces = [
 [['c','c'], ['c',''], ['c','']],
 [['','r'], ['r','r'], ['r','']],
 [['o','o'], ['','o'], ['','o']],
 [['g',''], ['g','g'], ['','g']],
 [['b'], ['b'], ['b'], ['b']],
 [['m','m'], ['m','m']],
 [['y',''], ['y','y'], ['y','']]
]

Per completare la rappresentazione dello stato di gioco usiamo la variabile
globale piece per contenere la matrice del pezzo corrente, cioè il pezzo che
sta cadendo, e piece_x , piece_y per le sue coordinate definite rispetto alla
matrice di gioco board . Inoltre dobbiamo mantenere un conteggio dei frame
per sapere quando il pezzo corrente deve spostarsi verso il basso. Per
questo usiamo la variabile globale frame_count . Per comodità manteniamo
le dimensioni della matrice di gioco board nelle variabili globali board_w ,
board_h e quelle della matrice del pezzo corrente in piece_w , piece_h . Nella
nostra implementazione usiamo una matrice di 22x10 , più larga
dell’originale, per vedere meglio il gioco durante la stesura del codice.

Dimensioni matrice di gioco
board_w, board_h = 22, 10
Matrice di gioco, inizializzata
board = []
for _ in range(board_h):
 board.append(['']*board_w)

Forma del pezzo corrente
piece = pieces[0]
Larghezza e altezza del pezzo corrente
piece_w = len(piece[0])
piece_h = len(piece)
Posizione pezzo corrente

piece_x, piece_y = board_w//2, 0
Conteggio frames per la caduta del pezzo
frame_count = 0

18.2 GRAFICA

La grafica del gioco è molto semplice. Per ogni elemento della matrice,
disegniamo un quadrato, di lato block_size , col rispettivo colore. Definiamo
una funzione paint_blocks() che poi useremo sia per disegnare la matrice
di gioco che il pezzo corrente.

Dimensione in pixel di un blocchetto
block_size = 16

def paint_blocks(painter, blocks, x, y, w, h):
 '''Disegna gli elementi della matrice blocks di
 dimensioni w, h, con l'angolo in alto a sinistra
 nel pixel di posizione x, y'''
 for j in range(h):
 for i in range(w):
 c = blocks[j][i]
 # Se non è una celletta vuota
 if not c: continue
 painter.setBrush(colors[c])
 painter.drawRect(
 (i+x)*block_size, (j+y)*block_size,
 block_size, block_size)

Nella funzione paint() , che sarà chiamata ad ogni frame, prima di
aggiornare la grafica si dovrà gestire l’aggiornamento dello stato del gioco
dovuto ad un eventuale tasto premuto e alla caduta del pezzo corrente. Per
aggiornare lo stato del gioco definiremo fra poco una funzione update() .

def update(key):
 '''Aggiorna lo stato del gioco tenendo conto
 dell'eventuale tasto key'''
 # indica la funzione vuota
 pass

def paint(painter):

 '''Aggiorna un frame del gioco'''
 # Aggiorna lo stato del gioco
 update(painter.info.key)
 # Ripulisce la variabile della tastiera
 painter.info.key = ''
 # Ripulisci la finestra
 painter.setBrush(QColor(128,128,128))
 painter.drawRect(0, 0,
 block_size*board_w, block_size*board_h)
 # Disegna i pezzi
 paint_blocks(painter, board, 0, 0,
 board_w, board_h)
 # Disegna il pezzo corrente
 if piece:
 paint_blocks(painter, piece,
 piece_x, piece_y, piece_w, piece_h)

Crea la GUI (la finestra) e chiama la funzione
paint() ad ogni frame
run_app(paint, board_w*block_size,
 board_h*block_size)

18.3 AGGIORNAMENTO DEL GIOCO

L’aggiornamento del gioco è definito nella funzione update() . Qui dobbiamo
prima di tutto gestire l’eventuale tasto premuto dal giocatore e poi
l’aggiornamento della caduta del pezzo corrente. Infatti il tasto premuto può
modificare la posizione o rotazione del pezzo corrente e quindi anche la
successiva caduta. Demandiamo la gestione del tasto ad una funzione
move() che definiremo più avanti.

def move(key):
 '''Muovi (eventualmente) il pezzo corrente con
 tasto key, se possibile'''
 pass

def update(key):
 '''Aggiorna lo stato del gioco tenendo conto
 dell'eventuale tasto key'''
 # Se e' stato premuto un tasto,
 if key:
 # gestisci il tasto premuto
 move(key)
 # aggiornamento caduta del pezzo corrente ...
 pass

Durante il gioco, il pezzo corrente cade di una singola posizione, cioè di un
quadrato, ogni volta che il numero di frames frames_droppiece è passato. Il
conteggio dei frame è mantenuto in frame_count e viene azzerato ogni volta
che il pezzo cade di una posizione. Notiamo però che non sappiamo se c’è
spazio per far scendere il pezzo perché potrebbe aver raggiunto il fondo o
potrebbe toccare altri pezzi già caduti. In questo caso, il pezzo viene
congelato nella board e un altro pezzo è fatto partire.

Per implementare questa logica, proviamo a far scendere il pezzo con
piece_y += 1 e testiamo se collide con qualcosa tramite la funzione hit() .
Se collide, torniamo alla posizione precedente e congeliamo il pezzo nella

board tramite la funzione resolve_board() , che eliminerà anche le eventuali
righe piene, e iniziamo a far cadere un nuovo pezzo tramite la funzione
newpiece() . Quest’ultima operazione potrebbe però fallire, se non c’è spazio
per nessun nuovo pezzo. In Tetris questo è game over. Ancora una volta
usiamo la funzione hit() per validare se il pezzo è ok e se non lo è, iniziamo
di nuovo il gioco con la funzione start() . Modifichiamo ora
l’implementazione di update() per includere le azioni descritta.

Numero frames per caduta del pezzo
frames_droppiece = 30
Frame corrente
frame_count = 0

def hit():
 '''Ritorna True se il pezzo corrente collide'''
 pass

def resolveboard():
 '''Aggiorna la matrice di gioco aggiungendo il
 pezzo corrente, che è arrivato, ed elimina le
 eventuali righe piene.'''
 pass

def newpiece():
 '''Crea un nuovo pezzo'''
 pass

def start():
 '''Inizializza la matrice di gioco vuota e crea
 un nuovo pezzo'''
 pass

def update(key):
 '''Aggiorna lo stato del gioco tenendo conto
 dell'eventuale tasto key'''
 if key:
 move(key)
 global piece_x, piece_y, frame_count
 # Incrementa il conteggio dei frames
 frame_count += 1
 # fai cadere il pezzo solo se sono passati

 # frames_droppiece frames
 if frame_count < frames_droppiece:
 return
 # Muovi il pezzo corrente in basso
 piece_y += 1
 # Se adesso il pezzo collide,
 if hit():
 # riportalo indietro e aggiorna il gioco
 piece_y -= 1
 resolveboard()
 # Crea un nuovo pezzo
 newpiece()
 # Se già collide, game over
 if hit():
 start()
 frame_count = 0

piece_x, piece_y = board_w//2, 0
run_app(paint, board_w*block_size,
 board_h*block_size)

La funzione hit() controlla se un c’è almeno un quadrato del pezzo
corrente che si sovrappone ad un quadrato nella matrice di gioco, o se il
pezzo è uscito dall’area di gioco. La funzione resolveboard() copia il pezzo
corrente nella matrice di gioco e poi elimina le eventuali righe piene facendo
cadere le righe superiori.

def hit():
 '''Ritorna True se il pezzo corrente collide'''
 # Collisione bordi verticali
 if not (0 <= piece_x <= board_w-piece_w):
 return True
 # Collisione bordi orizzontali
 if not (0 <= piece_y <= board_h-piece_h):
 return True
 # Controlla se collide coi pezzi già caduti
 for j in range(piece_h):
 for i in range(piece_w):
 if (piece[j][i] and
 board[j+piece_y][i+piece_x]):
 return True
 return False

def resolveboard():
 '''Aggiorna la matrice di gioco aggiungendo il
 pezzo corrente, che è arrivato, ed elimina le
 eventuali righe piene.'''
 # Aggiungi il pezzo alla matrice di gioco
 for j in range(piece_h):
 for i in range(piece_w):
 if piece[j][i]:
 pj, pi = j+piece_y, i+piece_x
 board[pj][pi] = piece[j][i]
 # Cerca se ci sono righe piene da eliminare
 for j in range(board_h):
 # Se la riga j e' piena,
 if all(board[j]):
 # fai cadere le righe superiori
 for jj in range(j,0,-1):
 for ii in range(board_w):
 board[jj][ii] = board[jj-1][ii]
 # e vuota la prima riga

 for ii in range(board_w):
 board[0][ii] = ''

piece_x, piece_y = board_w//2, 0
run_app(paint, board_w*block_size,
 board_h*block_size)

Infine la funzione start() inizializza il gioco vuotando ogni cella della board
e con newpiece() inizializza un nuovo pezzo scelto a caso, facendolo cadere
dall’alto e centrato.

from random import choice

def newpiece():
 '''Crea un nuovo pezzo'''
 global piece, piece_x, piece_y, piece_w, piece_h
 # Scegli in modo casuale il nuovo pezzo
 piece = choice(pieces)
 # Imposta la posizione iniziale del pezzo
 piece_x, piece_y = board_w//2, 0
 piece_w, piece_h = len(piece[0]), len(piece)

def start():
 '''Inizializza la matrice di gioco vuota e crea
 un nuovo pezzo'''
 for j in range(board_h):
 for i in range(board_w):
 board[j][i] = ''
 newpiece()

start()
run_app(paint, board_w*block_size,
 board_h*block_size)

18.4 INTERAZIONE

L’interazione con il giocatore è implementata nella funzione move() , che per
prima cosa tenta di muovere il pezzo corrente secondo il tasto premuto e
poi testa se si è verificata una collisione on hit() . In questo caso, il
movimento è invertito per tornare allo stato iniziale. Tra le mosse
contemplate, ci sono lo spostamento orizzontale, tasti a e d , e verticale, w e
s , implementate modificando la posizione del pezzo piece_x , piece_y . Lo
spostamento in alto è utile durante lo sviluppo. La caduta rapida, (spazio, è
implementa scendendo fino a quando non avviene una collisione.
Includiamo anche il restart del gioco col tasto g . Infine, il pezzo può essere
ruotato, tasti q e e . Per le rotazioni prevediamo due funzioni rotater() e
rotatel() che saranno implementate a breve.

def rotater():
 '''Ruota a destra il pezzo corrente'''
 pass

def rotatel():
 '''Ruota a sinistra il pezzo corrente'''
 pass

def move(key):
 '''Muovi (eventualmente) il pezzo corrente con
 tasto key, se possibile'''
 global piece_x, piece_y
 # A sinistra
 if key == 'a':
 piece_x -= 1
 if hit(): piece_x += 1
 # A destra
 elif key == 'd':
 piece_x += 1
 if hit(): piece_x -= 1
 # In alto
 elif key == 'w':
 piece_y -= 1

 if hit(): piece_y += 1
 # In basso
 elif key == 's':
 piece_y += 1
 if hit(): piece_y -= 1
 # Rotazione a sinistra
 elif key == 'q':
 rotatel()
 if hit(): rotater()
 # Rotazione a destra
 elif key == 'e':
 rotater()
 if hit(): rotatel()
 # Caduta immediata
 elif key == ' ':
 while not hit(): piece_y += 1
 piece_y -= 1
 # Inizia un nuovo gioco
 elif key == 'g':
 start()

start()
run_app(paint, board_w*block_size,
 board_h*block_size)

Le rotazioni sono implementate in modo simile a quelle delle immagini, viste
in precedenza. La modifica che facciamo è di invertire le coordinate x e y
nelle due funzione per implementare rotazioni di 90 gradi o sinistra e destra.

def rotater():
 '''Ruota a destra il pezzo corrente'''
 global piece, piece_w, piece_h
 # Crea e inizializza vuota la matrice
 newp = []
 # per il pezzo ruotato
 for _ in range(piece_w):
 newp.append(['']*piece_h)
 # Riempi la matrice con i valori ruotati
 for j in range(piece_h):
 for i in range(piece_w):
 newp[i][j] = piece[piece_h-1-j][i]
 piece_w, piece_h = piece_h, piece_w
 piece = newp

def rotatel():
 '''Ruota a sinistra il pezzo corrente'''

 global piece, piece_w, piece_h
 # Crea e inizializza vuota la matrice
 newp = []
 for _ in range(piece_w):
 newp.append(['']*piece_h)
 # Riempi la matrice con i valori ruotati
 for j in range(piece_h):
 for i in range(piece_w):
 newp[i][j] = piece[j][piece_w-1-i]
 piece_w, piece_h = piece_h, piece_w
 piece = newp

start()
run_app(paint, board_w*block_size,
 board_h*block_size)

19 SIMULAZIONE INTERATTIVA

In questo capitolo, vedremo le basi per creare simulazioni interattive
prendendo come esempio il moto di un insieme di particelle soggette a vari
tipi di forze in uno spazio bidimensionale. Questo tipo di simulazioni sono
basilari per giochi ispirati alla fisica e per interfacce naturali come lo scrolling
negli smartphone. Useremo ancora una volta il modulo gwidget .

19.1 SIMULAZIONE DI PARTICELLE

Svilupperemo un piccolo simulatore basato su principi fisici per muovere
delle particelle in uno spazio bidimensionale. Nella simulazione la fisica sarà
molto semplificata per poter implementare effetti interessanti con poco
codice. Ogni particella ha una posizione p, con due componenti x e y, e una
velocità v. Ad ogni frame dell’animazione la posizione è aggiornata in base
alla velocità. A sua volta la velocità è aggiornata applicando forze che
causano un’accelerazione a calcolata come forza diviso massa a=F/m. In ogni
frame, i nuovi valori di posizione p’ e velocità v’ sono calcolati con il metodo
di Eulero, che scriviamo in modo semplificato come v’=v+F/m e p’=p+v’,
assumendo che l’intervallo di tempo tra un frame e l’altro è fisso e
nominalmente 1.

19.2 VETTORI

Per modellare questi concetti, introduciamo la classe vec2f che rappresenta
in modo conveniente punti e direzioni in due dimensioni, e le principali
operazioni vettoriali su di essi. Questo permette di evitare di ripetere ogni
operazione sulle due componenti.

from random import random, uniform, randint
from math import pi, sqrt, sin, cos

class vec2f(object):
 '''Vettore bidimensionale di float'''
 def __init__(self,x,y):
 self.x = float(x)
 self.y = float(y)
 def __add__(self,other):
 '''Somma di vettori'''
 return vec2f(self.x+other.x,self.y+other.y)
 def __sub__(self,other):
 '''Somma con vettore opposto'''
 return vec2f(self.x-other.x,self.y-other.y)
 def __neg__(self):
 '''Vettore opposto'''
 return vec2f(-self.x,-self.y)
 def __mul__(self,other):
 '''Prodotto per scalare'''
 return vec2f(self.x*other,self.y*other)
 def __truediv__(self,other):
 '''Divisione per scalare'''
 return vec2f(self.x/other,self.y/other)
 def length(self):
 '''Lunghezza del vettore'''
 return sqrt(self.x*self.x + self.y*self.y)
 def normalized(self):
 '''Vettore normalizzato'''
 l = self.length()
 if l < 0.000001:
 return vec2f(0,0)

 else:
 return vec2f(self.x/l,self.y/l)
 def clamped(self,maxlen):
 '''Vettore con lunghezza massima maxlen'''
 l = self.length()
 if l > maxlen:
 return self * maxlen / l
 else:
 return vec2f(self.x,self.y)

funzioni utili su vettori
def length(v): return v.length()
def normalize(v): return v.normalized()
def clamp(v,maxlength): return v.clamped(maxlength)

def dot(v0,v1):
 '''Prodotto scalare'''
 return v0.x*v1.x+v0.y*v1.y

def random_pos(x0, y0, x1, y1):
 '''Vettore random tra i valori dati'''
 return vec2f(uniform(x0,x1), uniform(y0,y1))

def random_dir():
 '''Vettore random di lunghezza 1'''
 a = uniform(0,2*pi)
 return vec2f(cos(a),sin(a))

def random_vec(maxlen):
 '''Vettore random di lunghezza al più maxlen'''
 return random_dir() * random() * maxlen

19.3 MODELLO PER LE PARTICELLE

Svilupperemo il programma della simulazione attraverso il graduale
arricchimento di versioni intermedie. Partiremo da una sola particella
immobile, ed arriveremo alla simulazione di un insieme di particelle il cui
moto è soggetto a varie forze e all’interazione tra le particelle. Lo stato di
una particella è mantenuto da oggetti della classe Particle , che contiene sia
variabili per lo stato fisico, come la posizione, la velocità, l’accelerazione, il
raggio, e la massa, che variabili di simulazione, come il colore, un timer, ecc.

Dimensioni dello spazio di simulazione
size = vec2f(500, 300)

class Particle(object):
 '''Rappresenta una particella tramite i suoi'''
 def __init__(self):
 '''parametri di simulazione'''
 # Raggio
 self.radius = 25.0
 # Posizione, inizialmente al centro
 self.pos = size/2
 # Velocità, inizialmente 0
 self.vel = vec2f(0,0)
 # Accelerazione, inizialmente 0
 self.acc = vec2f(0,0)
 # Massa
 self.mass = 1.0
 # Se simulata calcoleremo il moto
 self.simulated = True
 # Colore
 self.color = QColor(128,128,128,200)
 # Colore quando non simulata
 self.color_paused = QColor(128,255,128,200)
 # Timer, se 0 disattivato
 self.timer = 0
 # Attiva le collisioni tra particelle
 self.collisions = False

19.4 STRUTTURA DEL PROGRAMMA

Il simulatore userà una lista globale particles per mantenere le particelle e
il widget per la grafica interattiva usato nei capitoli precedenti. Le particelle
sono inizializzate con la funzione init() , che per ora ne crea solo una
immobile. Per il momento, la funzione paint() calcola il nuovo stato del
sistema con update() e poi disegna le particelle con draw() . In questa
funzione, ogni particella è disegnata come un cerchio con una linea dal
centro alla direzione della velocità.

from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
from gwidget import run_app

Lista delle particelle
particles = []

def init():
 '''Crea e inizializza le particelle,
 per adesso una sola particella immobile'''
 global particles
 particles = [Particle()]

def update():
 '''Aggiorna posizioni e moto delle particelle'''
 pass

def v2qt(v):
 '''Converte un vec2f v in un vettore di Qt'''
 return QPointF(v.x, v.y)

def clear(painter):
 '''Pulisce lo schermo'''
 painter.fillRect(0,0,size.x,size.y,
 QColor(255,255,255))

def set_color(painter,c):
 '''Setta il color di brush e pen'''
 painter.setPen(QPen(QColor(0,0,0,c.alpha()),2))
 painter.setBrush(c)

def draw(painter):
 '''Disegna le particelle'''
 clear(painter)
 for p in particles:
 if p.simulated:
 set_color(painter,p.color)
 else:
 set_color(painter,p.color_paused)
 painter.drawEllipse(v2qt(p.pos),
 p.radius, p.radius)
 # Disegna una linea dal centro della particella
 # che ne indica la velocità
 painter.drawLine(v2qt(p.pos),
 v2qt(p.pos+normalize(p.vel)*p.radius))

def paint(painter):
 '''Aggiorna la simulazione ad ogni frame'''
 # Aggiorna posizioni e moto delle particelle
 update()
 # Disegna il nuovo stato della simulazione
 draw(painter)

Inizializza le particelle
init()

Esegue la simulazione chiamando paint ogni frame
run_app(paint, int(size.x), int(size.y))

19.5 SIMULAZIONE DEL MOTO

Il moto delle particelle è guidato dalle equazioni viste sopra che
implementiamo nella funzione update() . Se la particella si muove, uscirà
dallo spazio di simulazione. Perciò aggiungiamo il rimbalzo sui bordi dello
spazio controllando, per ogni bordo, se la particella l’ha superato. Se è
accaduto, riportiamo la particella sul bordo e dirigiamo la velocità nel verso
opposto. Introduciamo una funzione per creare e inizializzare una particella
e modifichiamo quindi anche la funzione init() .

def handle_walls():
 '''Gestisce le collisioni particelle-bordi'''
 for p in particles:
 # Bordo sinistro
 if p.pos.x < p.radius:
 p.pos.x = p.radius
 p.vel.x = abs(p.vel.x)
 # Bordo destro
 if p.pos.x > size.x - p.radius:
 p.pos.x = size.x - p.radius
 p.vel.x = -abs(p.vel.x)
 # Bordo alto
 if p.pos.y < p.radius:
 p.pos.y = p.radius
 p.vel.y = abs(p.vel.y)
 # Bordo basso
 if p.pos.y > size.y - p.radius:
 p.pos.y = size.y - p.radius
 p.vel.y = -abs(p.vel.y)

def update():
 '''Aggiorna posizioni e moto delle particelle'''
 for p in particles:
 # salta se non simulata
 if not p.simulated: continue
 # aggiorna posizione con la velocità
 p.pos += p.vel

 # Gestisce le collisioni particelle-bordi
 handle_walls()

def init_particle():
 '''Crea e inizializza una particella'''
 p = Particle()
 p.vel = vec2f(1,4)
 return p

def init():
 '''Crea e inizializza le particelle'''
 global particles
 particles = [init_particle()]

init()
run_app(paint, int(size.x), int(size.y))

19.6 PARAMETRI DI SIMULAZIONE

Per convenienza, introduciamo una classe Params che raccoglie tutti i
parametri della simulazione, come ad esempio il numero di particelle da
creare, la velocità massima, la densità, le forze attive, la dissolvenza, se la
posizione è relativa al mouse e un timer. I parametri della simulazione
corrente sono memorizzati nella variabile globale params di tipo Params .

class Params:
 '''Parametri della simulazione'''
 def __init__(self):
 # Numero particelle
 self.num = 4
 # Minimo e massimo raggio
 self.radius_min = 25.0
 self.radius_max = 25.0
 # Massima intensità delle velocità
 self.vel = 4.0
 # Densità
 self.density = 1.0/(pi*25*25)
 # Fattore d'attrazione verso il mouse
 self.force_mouse = 0.0
 # Fattore di decelerazione
 self.force_drag = 0.002
 # Max intensità forza casuale
 self.force_random = 0.0
 # Accelerazione di gravità
 self.force_gravity = 0.0
 # Dissolvenza dei movimenti precedenti
 self.fade = True
 # Posizione relativa al mouse
 self.mouse = False
 # Max timer
 self.timer = 0

Parametri della simulazione
params = Params()

19.7 CREAZIONE DI PARTICELLE

Modifichiamo la funzione init_particle() per creare una particella con
raggio, posizione e velocità casuali, ma nei limiti imposti dai parametri
definiti in precedenza. Infine una piccola modifica alla funzione init() per
creare un numero di particelle desiderato. Infine, modifichiamo la funzione
clear() per il disegno tenendo conto dell’eventuale dissolvenza dei
movimenti precedenti.

def init_particle():
 '''Crea e inizializza una particella'''
 p = Particle()
 # Raggio random
 p.radius = uniform(params.radius_min,
 params.radius_max)
 # Posizione random
 p.pos = random_pos(0, 0, size.x, size.y)
 # Velocita' random ma limitata
 p.vel = random_vec(params.vel)
 # Massa = area x densità
 p.mass = pi*(p.radius**2)*params.density
 return p

def init():
 '''Crea e inizializza le particelle'''
 global particles
 particles = []
 # Ora ci sono più particelle
 for _ in range(params.num):
 particles += [init_particle()]

def clear(painter):
 '''Pulisce lo schermo'''
 if params.fade:
 fade = 8
 else:
 fade = 255
 painter.fillRect(0,0,size.x,size.y,

 QColor(255,255,255,fade))

init()
run_app(paint, int(size.x), int(size.y))

19.8 FORZE

Ora aggiungiamo varie forze, i cui parametri sono memorizzati in Params .
Considereremo una forza casuale di lunghezza massima force_random ,
l’accelerazione di gravità force_gravity , una forza che rallenta la particella
in modo proporzionale alla velocità force_drag , e una forza che attrae la
particella nella direzione del mouse force_mouse . Per applicare le forze
modifichiamo update() , passandogli in input la posizione del mouse dalla
funzione paint() .

def handle_forces(mouse_pos):
 '''Aggiorna l'accelerazione di ogni particella'''
 for p in particles:
 # salta se non simulata
 if not p.simulated: continue
 # Parte da accelerazione 0
 p.acc = vec2f(0,0)
 # Accelerazione proporzionale alla distanza
 # dal mouse
 p.acc += (normalize(mouse_pos - p.pos) *
 params.force_mouse)
 # Accelerazione casuale
 p.acc += (random_vec(params.force_random) /
 p.mass)
 # Decelerazione proporzionale alla velocità
 p.acc += -p.vel*params.force_drag / p.mass
 # Accelerazione di gravità
 p.acc += vec2f(0, params.force_gravity)

def update(mouse_pos):
 '''Aggiorna posizioni e moto delle particelle'''
 # Aggiorna l'accelerazione di ogni particella
 handle_forces(mouse_pos)
 # Aggiorna velocità e posizione
 for p in particles:
 if not p.simulated: continue
 p.vel += p.acc

 p.pos += p.vel
 # Gestisce le collisioni particelle-bordi
 handle_walls()

def paint(painter):
 '''Aggiorna la simulazione ad ogni frame'''
 # Aggiorna posizioni e moto delle particelle,
 # tenendo anche conto del mouse
 update(vec2f(painter.info.mouse_x,
 painter.info.mouse_y))
 draw(painter)

Possiamo ora variare la nostra simulazione cambiando semplicemente i
parametri.

params = Params()
params.force_gravity = 0.5

init()
run_app(paint, int(size.x), int(size.y))

params = Params()
params.force_random = 0.5

init()
run_app(paint, int(size.x), int(size.y))

params = Params()
params.force_mouse = 0.5

init()
run_app(paint, int(size.x), int(size.y))

19.9 INTERAZIONE

Permettiamo all’utente di interagire tramite il mouse con le particelle.
L’utente seleziona una particella cliccando con il mouse su di essa. Finché il
mouse rimane premuto, la particella segue la posizione del mouse. Quando
il mouse è rilasciato, la particella torna ad essere simulata con la velocità
impartita dalla ultime posizioni del mouse. Questo permette di “lanciare” la
particella tramite mouse.

Per implementare questo comportamento, memorizziamo la particella
selezionata nella variabile globale grabbed . Quando l’utente clicca sullo
schermo, una particella è selezionata se la distanza tra la posizione del
mouse e il centro della particella è inferiore al suo raggio. In questo caso,
modifichiamo grabbed e impostiamo l’attributo simulated a False , cosicché
il movimento della particella non sia più gestito dalla simulazione ma
dipenda solamente dal movimento del mouse fintanto che il mouse rimane
premuto. Da questo momento, la posizione della particella selezionata è
quella del mouse finché il mouse rimane premuto. Al rilascio del mouse,
impostiamo la velocità della particella in modo proporzionale al vettore dalla
posizione precedente del mouse a quella attuale, e poi rimettiamo la
particella in simulazione riportando il suo attributo simulated a True .

Eventuale particella presa con il mouse
grabbed = None

def grab(mouse_pressed, mouse_pos, mouse_lpos):
 '''Gestisce la particella selezionata'''
 global grabbed
 # Se il mouse è premuto
 if mouse_pressed:
 # Se non c'è una particella presa
 if not grabbed:
 # Controlla per ogni particella se
 for p in particles:
 # Se è vicina al mouse
 if length(p.pos-mouse_pos)<p.radius:

 # prendila
 grabbed = p
 # e escludila dalla simulaazione
 grabbed.simulated = False
 grabbed.vel = vec2f(0,0)
 break
 # Se c'è una particella presa,
 else:
 # spostala con il mouse
 grabbed.pos += mouse_pos - mouse_lpos
 # Il mouse non è premuto e una particella è presa
 elif grabbed:
 # Rimettila in simulazione lanciandola con
 # velocità dipendente dal mouse
 grabbed.simulated = True
 v = mouse_pos - mouse_lpos
 grabbed.vel = clamp(v, 16)
 grabbed = None

def paint(painter):
 '''Aggiorna la simulazione ad ogni frame'''
 # Gestisci la presa di una particella con il mouse
 grab(painter.info.mouse_pressed,
 vec2f(painter.info.mouse_x,
 painter.info.mouse_y),
 vec2f(painter.info.mouse_px,
 painter.info.mouse_py))
 update(vec2f(painter.info.mouse_x,
 painter.info.mouse_y))
 draw(painter)

params = Params()

init()
run_app(paint, int(size.x), int(size.y))

19.10 GENERAZIONE CONTINUA

Finora le particelle sono inizializzate quando create e i loro parametri
rimangono invariati durante l’intera simulazione. Per creare effetti come
fuochi d’artificio, possiamo inizializzare le particelle con un timer che,
fungendo da conto alla rovescia, rappresenta il numero di frame per cui la
particella manterrà i valori dei suoi parametri attuali. Nella funzione
update() , ad ogni frame il timer di ogni particella temporizzata è
decrementato e quando raggiunge lo zero, la particella è inizializzata con
nuovi parametri. Utilizziamo i parametri params.timer per valore massimo
dei timer delle particelle e params.mouse che determina se la posizione di
una particella è inizializzata con quella del mouse o è generata in modo
casuale. Inoltre aumentiamo il numero di particelle e diminuiamo i loro
raggi. Per ogni particella, utilizziamo l’attributo timer , il cui valore 0

significa che la particella non è temporizzata, cioè la sua inizializzazione non
è regolata dal timer.

params = Params()

params.num = 120
params.radius_min = 5.0
params.radius_max = 5.0
params.force_gravity = 0.1
params.fade = False
params.mouse = True
params.timer = 120
params.Fade = False

Modifichiamo ora la funzione init_particle() per far sì che possa essere
chiamata anche per inizializzare una particella già creata. La funzione
prenderà ora in input anche la posizione del mouse, che all’inizio è l’origine.
Inoltre modifichiamo la funzione update() per gestire le particelle
temporizzate.

def init_particle(mouse_pos=vec2f(0,0), p=None):
 '''Crea e inizializza una particella, o inizializza
 una particella già esistente, inizializza la
 posizione con quella del mouse o random e
 imposta un timer'''
 # Reusa la particella se già esistente
 if not p: p = Particle()
 # Timer
 p.timer = randint(params.timer/2, params.timer)
 p.radius = uniform(params.radius_min,
 params.radius_max)
 # Posizione relativa al mouse o casuale
 if params.mouse:
 p.pos = vec2f(mouse_pos.x, mouse_pos.y)
 else:
 p.pos = random_pos(0,0,size.x,size.y)
 p.vel = random_vec(params.vel)
 p.mass = pi*(p.radius**2)*params.density
 return p

def handle_timers(mouse_pos):
 '''Gestisce il timer delle particelle'''
 for p in particles:
 if not p.simulated: continue
 # Se non temporizzata, ignorala
 if not p.timer: continue
 # decrementa il timer
 p.timer -= 1
 # e se e' arrivato a zero
 # rinizializza la particella
 if p.timer < 1:
 init_particle(mouse_pos, p)

def update(mouse_pos):
 '''Aggiorna posizioni e moto delle particelle'''
 # Gestisce il timer delle particelle
 handle_timers(mouse_pos)
 handle_forces(mouse_pos)
 for p in particles:
 if not p.simulated: continue
 p.vel += p.acc
 p.pos += p.vel

 handle_walls()

Per far sì che l’inizializzazione continua delle particelle non risulti un effetto
troppo brusco, rendiamo la trasparenza delle particelle temporizzate
proporzionale al timer. Così più il timer si avvicina a zero e più la particella
diventa trasparente.

def draw(painter):
 '''Disegna le particelle'''
 clear(painter)
 for p in particles:
 # La trasparenza dipende dal timer
 if p.timer:
 set_color(painter, QColor(p.color.red(),
 p.color.green(), p.color.blue(),
 p.timer*2))
 elif p.simulated:
 set_color(painter,p.color)
 else:
 set_color(painter,p.color_paused)
 painter.drawEllipse(v2qt(p.pos),
 p.radius, p.radius)
 painter.drawLine(v2qt(p.pos),
 v2qt(p.pos+normalize(p.vel)*p.radius))

init()
run_app(paint, int(size.x), int(size.y))

19.11 COLLISIONI

Fino ad ora, le particelle non si scontrano tra loro. Gestire le collisioni tra
particelle è molto più complesso delle collisioni con i bordi. La ragione è che
la fisica dell’impatto richiede la decomposizione delle velocità proiettandole
sull’asse che passa per i centri delle particelle e sull’asse ad esso
perpendicolare e richiedendo anche di tener conto delle masse delle
particelle. Riportiamo ora il codice per le collisione che include commenti
sull’implementazione. Con questo programma si può giocare al biliardo con
le particelle.

def handle_collisions():
 '''Gestisce le collisioni tra particelle'''
 if not params.collisions:
 return
 for p in particles:
 for p1 in particles:
 if p1 is p: continue
 # Versore tra i centri delle particelle
 pp = normalize(p1.pos - p.pos)
 # Distanza dei centri delle particelle
 d = length(p1.pos - p.pos)
 # Somma dei raggi
 rr = p1.radius + p.radius
 # Se la distanza è maggiore dei raggi
 if d >= rr:
 # non c'è collisione
 continue
 # Se la seconda particella è simulata
 if p1.simulated:
 # Punto medio dei centri
 m = (p.pos + p1.pos)/2
 # Posiziona le particelle in modo
 p.pos = m - pp * rr/2
 # che siano tangenti
 p1.pos = m + pp * rr/2
 # Determina le velocità

 vo0 = pp*dot(p.vel, pp)
 vp0 = p.vel - vo0
 vo1 = pp*dot(p1.vel, pp)
 vp1 = p1.vel - vo1
 if dot(vo1 - vo0, pp) < 0:
 m = p1.mass+p.mass
 vn0 = (vo0 * (p.mass-p1.mass) +
 vo1*2*p1.mass) / m
 vn1 = (vo1 * (p1.mass-p.mass) +
 vo0*2*p.mass) / m
 p.vel = vn0 + vp0
 p1.vel = vn1 + vp1
 # Se la seconda particella non è simulata
 else:
 p.pos = p1.pos - pp * rr
 vo0 = pp * dot(p.vel, pp)
 vp0 = p.vel - vo0
 if dot(-vo0, pp) < 0:
 p.vel = vp0 - vo0

def update(mouse_pos):
 '''Aggiorna posizioni e moto delle particelle'''
 # Gestisce il timer delle particelle
 handle_timers(mouse_pos)
 # Aggiorna l'accelerazione di ogni particella
 handle_forces(mouse_pos)
 # Aggiorna posizione e velocità
 for p in particles:
 if not p.simulated: continue
 p.vel += p.acc
 p.pos += p.vel
 handle_walls()
 # Gestisce le collisioni tra particelle
 handle_collisions()

params = Params()
params.collisions = True
params.num = 10

init()
run_app(paint, int(size.x), int(size.y))

20 APPLICAZIONI WEB E CLI

Fino ad ora abbiamo visto applicazioni interattive con interfacce grafiche. In
questo capitolo introdurremo le basi per la applicazioni Web e da terminale
implementando queste interfacce sulla stessa applicazione.

20.1 STRUTTURA DELL’APPLICAZIONE

Come esempio sviluppiamo un’applicazione per la gestione di una lista di
promemoria, o todo list, memorizzata in un file di testo, con un promemoria
per ogni riga del file. Ogni promemoria è costituito dal simbolo - , che indica
l’inizio riga, il simbolo [_] o [x] per promemoria incompleti o no, un
numero univoco che identifica il promemoria formattato con @xxxx , ed
infine il titolo del promemoria, fino a fine riga. Ad esempio,

 - [_] @0000 scrivere libro
 - [x] @0001 mangiare un gelato buono

Questo semplice formato ci permette di agire sui promemoria direttamente
editando il testo con un qualunque editor, ed allo stesso tempo di creare
interfacce specifiche. Nella nostra applicazione l’utente non dovrà
preoccuparsi di salvare o caricare esplicitamente i dati, come avviene
comunemente nelle applicazioni Web o smartphone. I comandi che la nostra
applicazione dovrà supportare sono la stampa dell’elenco dei promemoria,
la creazione di nuovi promemoria, la spuntatura del flag di completamento,
la cancellazione di un promemoria e la spostamento di un elemento in alto o
in basso nella lista. Ad ogni comando, il file di testo sarà cambiato
opportunamente.

20.2 FUNZIONALITÀ LOGICHE DELL’APPLICAZIONE

Scriviamo ora una serie di funzioni che implementa le funzionalità logiche
dell’applicazione, senza preoccuparci di come verranno chiamate queste
funzioni dalle interfacce. Tutte le funzioni agiranno sul file al percorso
filename usando le funzioni load() e save() che manipolano il formato.
L’utente può configurare il file dell’applicazione con init() . next_uid() crea
un nuovo identificativo, nel nostro caso il numero successivo al maggiore dei
numeri usati come id, e find() trova l’indice della riga per l’identificativo
specificato.

import os

percorso del file todo
filename = 'todo.txt'

def load():
 '''Carica la lista dei promemoria e ritorna la
 lista delle linee del file'''
 with open(filename) as f:
 return f.read().splitlines()

def save(lst):
 '''Salva la lista di promemoria come testo'''
 with open(filename,'w') as f:
 return f.write('\n'.join(lst))

def init(clear=True):
 '''Inizializza il file dei promemoria'''
 if clear:
 save([])
 else:
 if os.path.exists(filename): return
 save('')

def next_uid(lst):
 '''Calcola un nuovo identificativo univoco'''

 max_uid = 0
 for line in lst:
 uid = line.split()[2]
 num = int(uid[1:])
 if num > max_uid:
 max_uid = num
 return '@{:04}'.format(max_uid+1)

def find(lst, uid):
 '''Ritorna l'indice di riga del promemoria
 con identificativo uid'''
 for i, line in enumerate(lst):
 if uid in line.lower().split():
 return i
 return -1

Implementiamo ora le funzionalità dell’applicazione. La funzione add(title)
aggiunge un promemoria dal titolo title alla fine della lista. La funzione
print_txt(checked,search) stampa i promemoria che contengono la
stringa filter , che è opzionale, includendo i promemoria completati se
checked è True . La funzione check(uid,checked) cambia lo stato del
promemoria all’identificativo uid . Tutte le funzioni ritorneranno vero o falso
per esecuzioni corrette o con errori.

def add(title,uid=None):
 '''Aggiunge un promemoria alla lista'''
 lst = load()
 if not uid:
 uid = next_uid(lst)
 lst += ['- [_] {} {}\n'.format(uid,title.strip())]
 save(lst)
 return True

def print_txt(checked=False,search=None):
 '''Stampa la lista. Se checked è falso, esclude
 i promemoria completati. Se search non è None,
 includi solo i promemoria che la contengono'''
 lst = load()
 for line in lst:
 if (not checked and
 '[x]' in line.lower()): continue

 if (search and (search.lower() not in
 line.lower().split())): continue
 print(line)
 return True

def check(uid,checked):
 '''Setta la stato del promemoria uid come
 spuntato o no'''
 lst = load()
 pos = find(lst,uid)
 if pos < 0: return False
 if checked:
 lst[pos] = lst[pos].replace('[_]','[x]')
 else:
 lst[pos] = lst[pos].replace('[x]','[_]')
 save(lst)
 return True

Per testare queste funzionalità, creiamo una piccola lista di promemoria
eseguendo una sequenza di comandi dell’applicazione. Si noti come non
accediamo mai ai dati in modo esplicito. Eseguiamo i tests solo quando il
codice è eseguito dalla console interattiva di Python, per assicurare l’uso del
programma in modo applicazione.

inizializziamo il sistema
if __name__ == '__console__':
 init()

aggiungiamo due todo
if __name__ == '__console__':
 add('scrivere un libro')
 add('mangiare un gelato buono')
 add('andare a pescare')
 print_txt()
Out: True
Out: True
Out: True
Out: - [_] @0001 scrivere un libro
Out: - [_] @0002 mangiare un gelato buono
Out: - [_] @0003 andare a pescare
Out: True

spunta una todo
if __name__ == '__console__':
 check('@0002',True)
 print_txt()
Out: True
Out: - [_] @0001 scrivere un libro
Out: - [_] @0003 andare a pescare
Out: True

stampa
if __name__ == '__console__':
 print_txt(checked=True)
Out: - [_] @0001 scrivere un libro
Out: - [x] @0002 mangiare un gelato buono
Out: - [_] @0003 andare a pescare
Out: True

if __name__ == '__console__':
 check('@0002',False)
 print_txt(search='pescare')
Out: True
Out: - [_] @0003 andare a pescare
Out: True

if __name__ == '__console__':
 print_txt(search='@0001')
Out: - [_] @0001 scrivere un libro
Out: True

Implementiamo infine le funzioni up(uid) e down(uid) che spostano un
elemento in su o giù di uno, e la funzione erase(uid) che cancella
l’elemento uid .

def up(uid):
 '''Muove in sù un promemoria'''
 lst = load()
 pos = find(lst,uid)
 if pos < 0: return False
 if pos == 0: return False
 lst[pos], lst[pos-1] = lst[pos-1], lst[pos]

 save(lst)
 return True

def down(uid):
 '''Muove in giù un promemoria'''
 lst = load()
 pos = find(lst,uid)
 if pos < 0: return False
 if pos == len(lst)-1: return False
 lst[pos], lst[pos+1] = lst[pos+1], lst[pos]
 save(lst)
 return True

def erase(uid):
 '''Cancella un promemoria'''
 lst = load()
 pos = find(lst,uid)
 if pos < 0: return False
 lst = lst[:pos] + lst[pos+1:]
 save(lst)
 return True

facciamo alcuni tests
if __name__ == '__console__':
 print_txt()
Out: - [_] @0001 scrivere un libro
Out: - [_] @0002 mangiare un gelato buono
Out: - [_] @0003 andare a pescare
Out: True

if __name__ == '__console__':
 up('@0002')
 print_txt()
Out: True
Out: - [_] @0002 mangiare un gelato buono
Out: - [_] @0001 scrivere un libro
Out: - [_] @0003 andare a pescare
Out: True

if __name__ == '__console__':
 erase('@0001')
 print_txt()
Out: True

Out: - [_] @0002 mangiare un gelato buono
Out: - [_] @0003 andare a pescare
Out: True

if __name__ == '__console__':
 down('@0002')
 print_txt()
Out: True
Out: - [_] @0003 andare a pescare
Out: - [_] @0002 mangiare un gelato buono
Out: True

20.3 DECORATORI

In Python, i decoratori sono una sintassi speciale per modificare il
comportamento di una funzione o aggiungere informazioni addizionali alla
stessa. I decoratori sono un meccanismo molto flessibile che noi useremo
solo in congiunzione con librerie per creare interfacce. I decoratori si
specificano con un lista di dichiarazioni prima di una funzione. Ogni
dichiarazione ha la forma @decorator(params) dove decorator è il nome del
decoratore e params la lista dei suoi parametri.

20.4 INTERFACCIA A RIGA DI COMANDO

Abbiamo già usato un programma che ha un’interfaccia a riga di comando,
python3 , che prende come primo argomento opzionale il nome di un file, ad
esempio python3 file.py . Specifichiamo ora una riga di comando per la
nostra applicazione todo.py .

 todo.py print [-s search] [-c]
 # stampa la lista di promemria
 # opzione -s: filtra con search
 # opziona -c: include spuntati
 todo.py add "title" [-u uid]
 # aggiunge il promemoria title
 # opzione -u: assegna uid
 todo.py erase uid
 # cancella il promemoria uid
 todo.py up uid
 # muove uid in alto
 todo.py down uid
 # muove uid in basso

Come si può vedere questi comandi sono già implementati nella varie
funzioni di cui sopra. Basta solo chiamare queste funzioni in modo
appropriato leggendo i parametri dalla riga di comando del terminale. Per
farlo, potremmo gestire manualmente la conversione dei comandi, cosa che
risulta tediosa e prona ad errori.

Per scrivere la nostra interfaccia a riga di comando useremo invece la
libreria Click installabile con pip3 install click . Questa libreria definisce
un gruppo di decoratori per creare applicazioni a riga di comando. L’idea di
base è che ogni comando è una funzione Python che viene eseguita con
argomenti copiati dalla riga di comando. Per mappare comandi a funzioni,
usiamo il decoratore @click.command(nome) che espone la funzione
successiva come comando nome . Per ogni argomento necessario usiamo
@click.argument(nome, required=True) . Per ogni argomento opzionale,

http://click.pocoo.org

usiamo @click.option(nome) dove il nome inizia con -- . Per ulteriori
informazioni su Click consultare la documentazione della libreria.

import click

@click.group()
def cli():
 '''Funzione vuota che raggruppa i comandi'''
 pass

definisce il comando: add title [-u uid]
@cli.command('add')
@click.argument('title', required=True)
@click.option('-u','--uid',default=None)
def add_cli(title,uid=None):
 '''interfaccia cli per add'''
 if add(title,uid): print('add new')
 else: print('add error')

definisce il comando: print [-s search] [-c]
@cli.command('print')
@click.option('-s', '--search', default=None)
@click.option('-c', '--checked', is_flag=True,
 default=False)
def print_cli(search=None,checked=False):
 '''interfaccia cli per print'''
 print_txt(search=search,checked=checked)

definisce il comando: check uid
@cli.command('check')
@click.argument('uid', required=True)
def check_cli(uid):
 '''interfaccia cli per check'''
 if check(uid,True): print('check',uid)
 else: print('check error')

definisce il comando: uncheck uid
@cli.command('uncheck')
@click.argument('uid', required=True)
def uncheck_cli(uid):
 '''interfaccia cli per check'''
 if check(uid,False): print('uncheck',uid)

 else: print('uncheck error')

definisce il comando: up uid
@cli.command('up')
@click.argument('uid', required=True)
def up_cli(uid):
 '''interfaccia cli per up'''
 if up(uid): print('up',uid)
 else: print('up error')

definisce il comando: down uid
@cli.command('down')
@click.argument('uid', required=True)
def down_cli(uid):
 '''interfaccia cli per down'''
 if down(uid): print('down',uid)
 else: print('down error')

definisce il comando: erase uid
@cli.command('erase')
@click.argument('uid', required=True)
def erase_cli(uid):
 '''interfaccia cli per erase'''
 if erase(uid): print('erase',uid)
 else: print('erase error')

comando per lanciare l'applicazione web
definito successivamente
@cli.command('web')
def web_cli():
 '''lancia l'applicazione web'''
 global run_web
 run_web = True

chiama click se stiamo eseguendo come todo.py
if __name__ == '__main__':
 run_web = False
 cli(standalone_mode=False)

Con queste dichiarazioni la nostra applicazione è completa. Possiamo ora
testarla eseguendola come un programma da riga di comando. Per farlo,
basta salvare il codice di questo capitolo in todo.py e usare python3

todo.py su MacOs e Linux o python3.exe todo.py su Windows. Eseguendo
l’applicazione senza comandi si ottiene un messaggio di errore, generato
automaticamente, con informazioni su come usare l’applicazione.
Aggiungendo comandi, possiamo vedere come usare l’applicazione in modo
interattivo.

20.5 INTERFACCIA WEB

Per creare un’applicazione Web useremo la libreria bottle.py che è
scaricabile gratuitamente o installabile con pip3 install bottle .
L’applicazione Web visualizza una pagina HTML che include una barra per
aggiungere un nuovo promemoria ed una per iniziare una ricerca, seguite
dalla lista dei promemoria. Per ogni promemoria includiamo quattro bottoni
per chiamare le funzioni check() , up() , down() e erase() sul promemoria
scelto.

Per chiamare le varie funzioni utilizzeremo un decoratore
@bottle.route(url) che definisce la corrispondenza di un indirizzo Web con
la funzione. In altre parole, se nella bara di navigazione del browser si
immette url la funzione decorata viene chiamata e il suo risultato viene
inviato al browser come HTML. Notiamo che url è relativo all’applicazione
corrente. Nel nostro caso, utilizzeremo in server Web locale creato
automaticamente da Bottle, chiamato localhost . Il decoratore di Bottle
supporta anche la specifica delle parti dell’url che vengono mappate a
parametri della funzioni. Nel nostro caso supporteremo i seguenti comandi:

 / applicazione base
 /add aggiungi un promemoria
 /check/<uid> spunta un promemoria
 /uncheck/<uid> spunta un promemoria
 /up/<uid> mouvi un promemoria
 /down/<uid> mouvi un promemoria
 /erase/<uid> cancella un promemoria

Dato che tutti i comandi necessitano di ritorna la pagine HTML al broswer,
scriviamo una funzione print_html() che ritorna la pagina corrente. Per
questo utilizzeremo un template per la pagina intera, in cui poi inseriamo la
lista dei promemoria. Per poter integrare gli elementi attivi dell’interfaccia
usiamo il tag <form> che contiene elementi di tipo <input type="tipo"
formaction="url"> . Come tipo di elementi useremo submit per i checkbox,

http://bottlepy.org

text per il testo e button per i bottoni. Per ogni elemento specifichiamo
l’azione da compiere dichiarando l’url da invocare con l’attributo formaction .
Nel caso dei bottoni basta farlo direttamente nell’elemento. Per l’input di
testo, inseriamo l’elemento, dichiarandone il nome con name , in una form
separata che specificherà il proprio url con action e il metodo method=get
che appena all’url il valore dell’elemento. Per la ricerca, manteniamo una
variabile globale web_search che usiamo per filtrare i risultati.

web_search = ''

template_html = '''
<!DOCTYPE html>
<htlm lang="it">
 <head>
 <title>todo.py</title>
 <meta charset="utf-8">
 </head>
 <body>
 <form action="/add" method="get">
 <p><input type="text" name="title"
formaction="/add">Aggiungi</p>
 </form>
 <form action="/search" method="get">
 <p><input type="text" name="title" value="
{web_search}">Cerca</p>
 </form>
 <form>
 {items}
 </form>
 </body>
</html>
'''

template_item = '''
<p>
 <input type="submit" value={checked}
formaction="/{checkcmd}/{uid}">
 <input type="submit" value="U" formaction="/up/{uid}">
 <input type="submit" value="D" formaction="/down/{uid}">
 <input type="submit" value="X" formaction="/erase/{uid}">
 {title}

</p>
'''

def print_html():
 '''Ritorna la pagina HTML dell'applicazione'''
 lst = load()
 items = ''
 for line in lst:
 if (web_search and (web_search.lower()
 not in line.lower().split())): continue
 _, checked, uid, title = line.split(maxsplit=3)
 if checked == '[x]': checkcmd = 'uncheck'
 else: checkcmd = 'check'
 items += template_item.format(uid=uid,
 title=title, checked=checked,
 checkcmd=checkcmd)
 return template_html.format(items=items,
 web_search=web_search)

Possiamo ora connettere le varie funzioni agli URL predisposti dalla funzione
print_html() . Bottle permette di definirei sia URL statici, come / , che URL
dinamici, come /check/<uid> . In questo secondo caso, Bottle accetta URL
con qualsiasi valore per la parte <uid> . Questo valore verrà poi passato
come stringa all’omonimo parametro della funzione. L’unica accortezza
finale è di considerare la funzione add() che prende una stringa arbitraria in
input. Bottle supporta questo mapping dando l’accesso ad un dizionario
request.query . Utilizzeremo lo stesso modello per definire la ricerca.

import bottle

comando add con titolo in request.query['title']
@bottle.route('/add')
def add_web():
 '''interfaccia web per add'''
 title = bottle.request.query.get('title')
 add(title)
 return print_html()

setta la stringa di ricerca da request.query['title']
@bottle.route('/search')

def search_web():
 '''interfaccia web per settare il filtro
 di visualizzazione'''
 global web_search
 title = bottle.request.query.get('title')
 web_search = title
 return print_html()

comando check uid
@bottle.route('/check/<uid>')
def check_web(uid):
 '''interfaccia web per check'''
 check(uid,True)
 return print_html()

comando uncheck uid
@bottle.route('/uncheck/<uid>')
def uncheck_web(uid):
 '''interfaccia web per check'''
 check(uid,False)
 return print_html()

comando up uid
@bottle.route('/up/<uid>')
def up_web(uid):
 '''interfaccia web per up'''
 up(uid)
 return print_html()

comando down uid
@bottle.route('/down/<uid>')
def down_web(uid):
 '''interfaccia web per down'''
 down(uid)
 return print_html()

comando erase uid
@bottle.route('/erase/<uid>')
def erase_web(uid):
 '''interfaccia web per erase'''
 erase(uid)
 return print_html()

pagina dell'applicazione
@bottle.route('/')
def print_web():
 '''interfaccia web per print_html'''
 return print_html()

if __name__ == '__main__' and run_web:
 bottle.run(debug=True)

Possiamo testare l’applicazione Web, lanciata con python3 todo.py web ,
considerando alcune operazioni a partire dallo stato iniziale usato sopra.

21 NAVIGARE LABIRINTI

Nei capitoli precedenti abbiamo visto che gli alberi permettono di
rappresentare relazioni di contenimento tra elementi di vario tipo. Ma ci
sono tanti scenari in cui le relazioni non sono gerarchiche e possono dar
luogo a cicli. Ad esempio, le relazioni tra le città collegate da tratte aeree o le
relazioni di amicizia tra le persone in una rete sociale. In questo capitolo,
introdurremo i grafi, una struttura dati che permette di rappresentare
relazioni più complesse.

21.1 GRAFI

Un grafo è un insieme di elementi che sono tra loro interconnessi da un
qualche tipo di relazione. Nella terminologia dei grafi, gli elementi sono
chiamati nodi, come per gli alberi, e le interconnessioni sono chiamate archi.
Questa struttura si presta a rappresentare varie classi di problemi. Ad
esempio, in una rete sociale i nodi sono le persone e gli archi sono le
relazioni di amicizia. In una mappa, i nodi sono città e gli archi
rappresentano strade di comunicazione. Esistono due principali tipi di grafi,
simmetrici come nel caso delle amicizie, e asimmetrici come nel caso delle
strade a senso unico. La figura che segue mostra un grafo molto semplice.

21.2 RAPPRESENTAZIONE DI GRAFI

Prima di tutto vediamo come possiamo rappresentare un grafo in Python.
Nel caso degli alberi abbiamo definito solo una classe per i nodi e la
struttura dell’albero era rappresentata dai legami nodo-figli contenuti in ogni
nodo. Per i grafi potremmo adottare la stessa tecnica ma risulterebbe poco
agevole, perché in un grafo non c’è un nodo particolare come negli alberi da
cui è possibile visitare tutti gli altri.

Per queste ragioni, rappresenteremo il grafo utilizzando una classe che
gestisce l’intero grafo e una classe senza metodi usata per memorizzare le
informazioni dei nodi. I nodi sono identificati da un nome che potrà essere
un qualsiasi valore immutabile, ad esempio una stringa, un intero o una
tupla. Per rappresentare gli archi possiamo mantenere per ogni nodo un
insieme di tutti i nodi che gli sono connessi, detti adiacenti. Per mantenere i
nodi e trovare velocemente un nodo dato il suo nome, utilizziamo un
dizionario.

La classe Graph utilizza un dizionario che ad ogni nome di nodo associa un
oggetto _GraphNode che contiene il nome name , l’insieme degli adiacenti
adj , e la posizione del nodo pos utilizzata per poter visualizzare il grafo. In
questo modo non ci possono essere due nodi con lo stesso nome. La classe
_GraphName è una classe di convenienza a cui l’utente non può accedere. Un
grafo sarà creato dai metodi addEdge(name) per aggiungere un nodo e
addEdge(name1,name2) per aggiungere un arco. Per interrogare il grafo,
utilizzeremo i metodi nodes() per la lista dei nodi, adjacent(name) per la
lista dei nodi adiacenti a name , edges() per la lista di tutti gli archi,
pos(name) per la posizione del nodo e info(name) per ottenere le
informazioni aggiuntive al nodo name . Nei grafo, salveremo anche due colori,
per i nodi e per gli archi, da usare durante la visualizzazione. I colori saranno
accessibili dal metodo colors() e assegnabili dal metodo setColors() .

class _GraphNode:
 '''Rappresenta un nodo del grafo.

 Da usarsi solo all'interno di Graph.'''

 def __init__(self,name,adj,pos):
 self.name = name
 self.adj = set(adj)
 self.pos = pos

class Graph:
 '''Rappresenta un grafo.'''

 def __init__(self,colors=["black","black"]):
 '''Inizializza un grafo vuoto.'''
 self._nodes = {}
 self._colors = list(colors)

 def addNode(self, name, pos):
 '''Aggiunge un nodo name, se non esiste'''
 if name in self._nodes: return
 self._nodes[name]=_GraphNode(name,set(),pos)

 def addEdge(self, name1, name2):
 '''Aggiunge un arco che collega i nodi
 name1 e name2'''
 if name1 not in self._nodes: return
 if name2 not in self._nodes: return
 self._nodes[name1].adj.add(name2)
 self._nodes[name2].adj.add(name1)

 def adjacents(self, name):
 '''Ritorna una lista dei nomi dei nodi
 adiacenti al nodo name, se il nodo non
 esiste, ritorna None'''
 if name not in self._nodes: return None
 return list(self._nodes[name].adj)

 def nodes(self):
 '''Ritorna una lista dei nomi dei nodi'''
 return list(self._nodes.keys())

 def edges(self):
 '''Ritorna una lista degli archi'''
 edges = set()
 for name, node in self._nodes.items():

 for adj in node.adj:
 # salta archi ripetuti
 if (adj, name) in edges:
 continue
 edges.add((name,adj))
 return list(edges)

 def pos(self, name):
 '''Ritorna la posizione del nodo name'''
 if name not in self._nodes: return None
 return self._nodes[name].pos

 def colors(self):
 return list(self._colors)

 def setColors(self,colors):
 self._colors = list(colors)

Abbiamo usato un set per gli adiacenti anziché una lista per motivi di
efficienza. Infatti il metodo addEdge() , che aggiunge un arco tra due nodi ,
deve evitare di aggiungere l’arco se è già presente. I set garantiscono ciò e
in modo molto efficiente. Si osservi che l’arco aggiunto è simmetrico
essendo aggiunto sia per la coppia di nodi che per quella opposta.

Il metodo adjacents(name) ritorna una lista dei nomi degli adiacenti al nodo
name . Avrebbe potuto ritornare anche un set ma sarebbe dovuto essere
comunque una copia dell’insieme originale per evitare che chi usa un
oggetto Graph possa modificare il grafo senza che l’oggetto Graph possa
aggiornare la propria rappresentazione. Stesso discorso per il metodo
nodes() che ritorna anch’esso una lista creata ex novo dei nomi dei nodi.

Possiamo ora creare un semplice grafo che simula una piccolissima rete
sociale con 4 persone e 3 relazioni di amicizia, come ad esempio quella vista
sotto. Per poter visualizzare i nodi, assegneremo anche le loro posizioni.

g = Graph()

aggiunge i nodi
g.addNode('Sara',(125,75))
g.addNode('Ciro',(0,75))

g.addNode('Marco',(225,0))
g.addNode('Andrea',(225,125))

aggiunge gli archi
g.addEdge('Ciro', 'Sara')
g.addEdge('Marco', 'Sara')
g.addEdge('Andrea', 'Sara')

Interroga il grafo
print(g.nodes())
Out: ['Sara', 'Ciro', 'Marco', 'Andrea']
print(g.adjacents('Sara'))
Out: ['Marco', 'Ciro', 'Andrea']

21.3 VISUALIZZAZIONE DI GRAFI

Per visualizzare i grafi scriviamo una funzione che esporta una lista di grafi
come SVG, un formato simile all’HTML, ma che permette di definire una
collezione di elementi grafici invece che testuali. Usiamo cerchi per i nodi,
linee per gli archi, e un nodo per centrare il grafo nell’immagine.

def size_graphs(graphs):
 '''Trova la dimensione di una lista di grafi'''
 w, h = 0, 0
 for g in graphs:
 for node in g.nodes():
 p = g.pos(node)
 if w < p[0]: w = p[0]
 if h < p[1]: h = p[1]
 return w, h

def dump_graph(g):
 '''Crea il codice SVG per il grafo g.'''
 # formati
 circle_fmt = '<circle r="3" cx="{}" cy="{}" fill="{}"/>\n'
 line_fmt = '<line x1="{}" y1="{}" x2="{}" y2="{}" stroke="{}"
stroke-width="2"/>\n'
 svg = ''
 node_color, edge_color = g.colors()
 if node_color:
 for name in g.nodes():
 pos = g.pos(name)
 svg += circle_fmt.format(pos[0], pos[1],
 g.colors()[0])
 if edge_color:
 for name1, name2 in g.edges():
 pos1 = g.pos(name1)
 pos2 = g.pos(name2)
 svg += line_fmt.format(pos1[0], pos1[1],
 pos2[0], pos2[1], g.colors()[1])
 return svg

def dump_graphs(graphs):
 '''Crea un'immagine SVG per i grafi graphs.'''
 # trova la dimensione del grafo
 w, h = size_graphs(graphs)
 # formati
 svg_fmt ='<svg xmlns="{}" width="{}" height="{}">\n'
 group_fmt = '<g transform="translate(5,5)">\n'
 # svg namespace
 ns = "http://www.w3.org/2000/svg"
 svg = svg_fmt.format(ns, w+10, h+10)
 svg += group_fmt
 for g in graphs:
 svg += dump_graph(g)
 svg += '</g>\n'
 svg += '</svg>\n'
 return svg

def save_graphs(filename,graphs):
 '''Salva i grafi in SVG sul file filename'''
 with open(filename,'w') as f:
 f.write(dump_graphs(graphs))

print(dump_graphs([g]))
Out: <svg xmlns="http://www.w3.org/2000/svg" width="235"
height="135">
Out: <g transform="translate(5,5)">
Out: <circle r="3" cx="125" cy="75" fill="black"/>
Out: <circle r="3" cx="0" cy="75" fill="black"/>
Out: <circle r="3" cx="225" cy="0" fill="black"/>
Out: <circle r="3" cx="225" cy="125" fill="black"/>
Out: <line x1="125" y1="75" x2="225" y2="125" stroke="black"
stroke-width="2"/>
Out: <line x1="125" y1="75" x2="0" y2="75" stroke="black" stroke-
width="2"/>
Out: <line x1="125" y1="75" x2="225" y2="0" stroke="black"
stroke-width="2"/>
Out: </g>
Out: </svg>
Out:

save_graphs('img_graph00.svg',[g])

Implementiamo ora una funzione per visualizzare i grafi in modo interattivo
usando il modulo gwidget . In questo caso usiamo una variabile globale
nascosta per memorizzare i grafi da disegnare ad ogni frame. Aggiungiamo
anche una variabile globale per disattivare il disegno interattivo nel caso
vogliamo velocizzare l’esecuzione.

from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
from gwidget import run_app

grafo usato implicitamente da paint_graph
_paint_graphs = None

variabile globale per disattivare il
disegno interattivo
skipui = True

def paint_graph(painter,g):
 '''Disegna un grafo con la libreria Qt.'''
 node_color, edge_color = g.colors()
 if node_color:
 painter.setPen(QColor(node_color))
 painter.setBrush(QColor(node_color))
 for name in g.nodes():
 pos = g.pos(name)
 painter.drawEllipse(
 QPoint(pos[0], pos[1]), 3, 3)
 if edge_color:
 painter.setPen(QColor(edge_color))
 painter.setBrush(QColor(edge_color))
 for name1, name2 in g.edges():
 pos1 = g.pos(name1)
 pos2 = g.pos(name2)
 painter.drawLine(

 QPoint(pos1[0], pos1[1]),
 QPoint(pos2[0], pos2[1]))

def paint_graphs(painter):
 '''Disegna una lista di grafi con la libreria
 Qt. I grafi sono memorizzati nella variabile
 globale _paint_graphs.'''
 size = painter.info.size
 painter.fillRect(0, 0, size[0], size[1],
 QColor(255,255,255))
 for g in _paint_graphs:
 paint_graph(painter,g)

def view_graphs(graphs):
 '''Visualizza i grafi graphs'''
 # velocizza l'esecuzione saltando la ui
 if skipui: return
 global _paint_graphs
 _paint_graphs = graphs
 w, h = size_graphs(graphs)
 run_app(paint_graphs,w,h)
 _paint_graphs = None

view_graphs([g])

21.4 LABIRINTI

I grafi possono essere usati per risolvere problemi di navigazione, come
calcolare il percorso tra due punti su una mappa o, equivalentemente,
risolvere labirinti. Inizieremo come questo secondo problema. Per
specificare i labirinti più semplicemente, scriviamo una funziona che prende
in input una stringa in cui i corridoi sono spazi e tutti gli altri caratteri sono
muri. Un esempio di labirinto memorizzato in questo modo è incluso di
seguito.

labyrinth = '''
+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+ +-+-+-+-+-+ + + +-+-+ +
| | | | | | |
+-+ + +-+ +-+-+-+-+ + + +
| | | | | | | |
+ +-+-+ +-+ +-+ + +-+ + +
| | | | | | | |
+-+-+ +-+ +-+ + + + +-+-+
| | | | | |
+ +-+-+-+-+-+ + +-+ +-+ +
| | | | | |
+-+ + +-+ + +-+ +-+-+-+ +
| | | | |
+-+-+-+-+-+-+-+-+-+-+-+-+
'''

Data questa rappresentazione creiamo un grafo i cui nodi sono i corridoi e
dove inseriamo archi tra i nodi dei corridoi che sono adiacenti nel testo. I
nomi dei nodi sono le tuple (x,y) delle coordinate dei nodi nel testo. Per poter
visualizzare il labirinto meglio, ritorniamo anche il grafo dei muri creato in
modo similare.

def parse_labyrinth(text):
 '''Creare il grafo dei corridoi e il grafo dei

 muri a partire da un labirinto testulae.'''
 # lista delle linee del testo
 lines = text.strip().splitlines()
 # Dimensioni del labirinto
 w, h = len(lines[0]), len(lines)
 # grafo di corridoi e muri
 corridors = Graph(['red','red'])
 walls = Graph(['','black'])
 # aggiunta dei nodi
 for j in range(h):
 for i in range(w):
 # calcola la posizione
 pos = (i*12, j*+12)
 # aggiungi il nodo ai corridoi o muri
 if lines[j][i] == ' ':
 corridors.addNode((i,j), pos)
 else:
 walls.addNode((i,j), pos)
 # aggiunta degli archi
 for j in range(h):
 for i in range(w):
 # itera sui possibili vicini
 adj = [(-1,0),(1,0),(0,-1),(0,1)]
 for di, dj in adj:
 # coordinate vicino
 ii, jj = i + di, j + dj
 if ii < 0 or jj < 0: continue
 if ii >= w or jj >= h: continue
 # verifica se entrambi sono corridoi
 if (lines[j][i] == ' ' and
 lines[jj][ii] == ' '):
 corridors.addEdge((i,j),(ii,jj))
 # verifica se entrambi sono muri
 elif (lines[j][i] != ' ' and
 lines[jj][ii] != ' '):
 walls.addEdge((i,j),(ii,jj))
 return corridors, walls

corridors, walls = parse_labyrinth(labyrinth)
view_graphs([corridors, walls])
save_graphs('img_graph01.svg',[corridors, walls])

21.5 VISITA DI GRAFI

La visita di un grafo è l’esplorazione dei nodi a partire da un nodo scelto e
seguendo gli archi per passare da un nodo ad un altro, prendendo le dovute
precauzioni per evitare di ritornare su nodi già visitati.

Una delle proprietà più semplici che una visita permette di scoprire è la
connessione del grafo, cioè, se per ogni due nodi c’è un cammino che parte
da uno di essi e arriva all’altro passando per archi e possibilmente altri nodi.
Ad esempio, in un grafo di una rete sociale, la connessione del grafo significa
che una persona è collegata ad una qualsiasi altra seguendo gli amici, gli
amici degli amici, e così via. In un labirinto, è possibile trovare l’uscita solo se
il grafo è connesso.

Un’altra proprietà che può essere facilmente determinata con una visita
sono le distanze tra i nodi. La distanza tra due nodi è il numero minimo di
archi che bisogna attraversare per raggiungere uno dei nodi partendo
dall’altro. Nelle reti sociali, la distanza è il numero di amici tra due persone.
Nei labirinti, la distanza è il numero di mosse da fare per uscire.

21.6 VISITA IN AMPIEZZA

La visita che considereremo è la visita in ampiezza o Breadth First Search. A
partire da un nodo, si visitano tutti i nodi adiacenti, poi per ognuno di questi
si fa la stessa cosa finché non ci sono più altri nodi da visitare. Bisogna però
evitare di visitare nodi già visitati, altrimenti il programma non conclude mai
l’esecuzione. Per questo basta salvare in un insieme, che chiameremo
visited , i nodi già visitati. Così testando se un nodo incontrato durante la
visita appartiene a visited sapremo se lo abbiamo già visitato. Ci occorre
anche sapere quali nodi tra quelli in visited sono ancora utili per visitare
nuovi nodi, cioè i loro vicini non sono stati ancora esplorati. Questo insieme
di nodi lo chiameremo active e all’inizio conterrà il nodo di partenza. Ad
ogni passo della visita estraiamo un nodo da active ed esploriamo i suoi
vicini. Ogni volta che troviamo un vicino non ancora visitato, lo salviamo in
un altro insieme che chiameremo newactive . Quando tutti i nodi in active
saranno stati esaminati, l’insieme newactive prenderà il ruolo di active e la
visita continua in modo analogo fino a che non ci saranno più nodi in
active .

Scriviamo ora una funziona che ritorna la lista dei nodi visitati a partire da un
certo nodo. La useremo per verificare se il labirinto precedente è risolvibile a
partire da (1,1), verificando che il labirinto è interamente connesso.

def visit(g, name):
 '''Visita (tramite BFS) il grafo g a partire dal
 nodo name e ritorna l'insieme dei nomi dei nodi
 visitati'''
 # Inizializza l'insieme dei visitati
 visited = set([name])
 # Inizializza l'insieme degli attivi
 active = set([name])
 # Finchè ci sono nodi attivi,
 while active:
 # Insieme dei nuovi attivi
 newactive = set()

 # Finchè ci sono nodi attivi,
 while active:
 # estrai un nodo da active
 u = active.pop()
 # e per ogni suo vicino,
 for v in g.adjacents(u):
 # se non è già visitato,
 if v not in visited:
 # aggiungilo ai visitati
 visited.add(v)
 # e ai nuovi attivi
 newactive.add(v)
 # I nuovi attivi diventano gli attivi
 active = newactive
 return visited

visited = visit(corridors, (1,1))
print(len(corridors.nodes()),len(visited))
Out: 167 167
Il labirinto è connesso a (1,1).

21.7 VISUALIZZAZIONE DELLA VISITA

Per capire meglio la funzione precedente possiamo visualizzarne
l’esecuzione, ad esempio salvando una lista di coppie (active, visited) ,
con una coppia per ogni iterazione del ciclo while active . Dato che le
nostre funzioni di visualizzazione prendono come input i grafi, salveremo
active e visited come grafi con soli nodi.

def make_node_graph(g, names, colors):
 '''Crea un grafo con i nodi in names e le
 posizioni in g'''
 ng = Graph(colors)
 for name in names:
 ng.addNode(name,g.pos(name))
 return ng

def visit_traced(g, name):
 '''Visita (tramite BFS) il grafo g a partire dal
 nodo name e ritorna l'insieme dei nomi dei nodi
 visitati. Traccia l'esecuzione con una lista di
 grafi.'''
 visited = set([name])
 active = set([name])
 # Traccia di eseguzione
 trace = []
 while active:
 # Aggiorna la traccia
 trace += [(
 make_node_graph(g,visited,['blue','']),
 make_node_graph(g,active,['yellow','']),
)]
 newactive = set()
 while active:
 u = active.pop()
 for v in g.adjacents(u):
 if v not in visited:
 visited.add(v)
 newactive.add(v)

 active = newactive
 return visited, trace

visited, trace = visit_traced(corridors, (1,1))

visualizziamo le iterazioni
for i in range(len(trace)):
 t = trace[i]
 save_graphs('img_graph01/v{:02}.svg'.format(i),
 [corridors, walls] + list(t))

L’immagine di seguito è un’animazione della visita ottenuta dai fotogrammi
in precedenza. Su alcuni lettori è necessario premere l’immagine per vedere
l’animazione.

Possiamo visualizzare in modo interattivo la visita, modificando la funzioni di
visualizzazione per includere una lista di grafi animati.

_animated_graphs = None
_frame = 0
_frame_toswitch = 15

def paint_animated_graphs(painter):
 '''Disegna una lista di grafi con la libreria
 Qt. I grafi sono memorizzati nella variabile
 globale _paint_graphs. I grafi da animare sono
 contenuti in _animated_graphs.'''
 size = painter.info.size
 painter.fillRect(0, 0, size[0], size[1],
 QColor(255,255,255))
 for g in _paint_graphs:
 paint_graph(painter,g)

 global _frame
 _frame += 1
 animateid = ((_frame // _frame_toswitch) %
 len(_animated_graphs))
 for g in _animated_graphs[animateid]:
 paint_graph(painter,g)

def view_animated_graphs(graphs, animated):
 '''Visualizza i grafi graphs e i grafi animati
 animated_graphs'''
 if skipui: return
 global _paint_graphs, _animated_graphs
 _paint_graphs = graphs
 _animated_graphs = animated
 w, h = size_graphs(graphs)
 run_app(paint_animated_graphs,w,h)
 _paint_graphs = None
 _animated_graph = None

view_animated_graphs([corridors, walls],trace)

Facciamo un’altro esempio togliendo molti muri dal labirinto.

labyrinth1 = '''
+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +-+-+ +
| | | | |
+-+ + +-+ +-+-+ + + +
| | | | |
+ +-+ +-+ +-+-+
| | | | | |
+ | | | +
| | | | | |
+ | | | +-+ +
| | | |
+-+ + +-+ +-+-+ +
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+
'''

corridors1, walls1 = parse_labyrinth(labyrinth1)

save_graphs('img_graph02.svg',[corridors1, walls1])
view_graphs([corridors1, walls1])

Visualizziamo ora la vista su questo grafo. Notiamo come l’algoritmo si
espande “a macchia d’olio”.

visited, trace = visit_traced(corridors1, (1,1))

visualizziamo alcuni step
for i in range(len(trace)):
 t = trace[i]
 save_graphs('img_graph02/v{:02}.svg'.format(i),
 [corridors1, walls1] + list(t))
 view_graphs([corridors1, walls1] + list(t))

visualizziamo l'animazione
view_animated_graphs([corridors1, walls1],trace)

21.8 SOTTOGRAFI

Modifichiamo adesso il labirinto introducendo alcuni muri e ripetiamo le
operazioni precedenti, notando ora che questo secondo labirinto non è
connesso.

labyrinth2 = '''
+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+ +-+-+-+-+-+ + + +-+-+ +
| | | | | | |
+-+ + +-+ +-+-+-+-+-+ + +
| | | | | | | |
+ +-+-+ +-+ +-+ + +-+ + +
| | | | | | | |
+-+-+ +-+ +-+ + + + +-+-+
| | | | | |
+ +-+-+-+-+-+-+ +-+ +-+ +
| | | | | |
+-+ + +-+ + +-+ +-+-+-+ +
| | | | |
+-+-+-+-+-+-+-+-+-+-+-+-+
'''

corridors2, walls2 = parse_labyrinth(labyrinth2)
view_graphs([corridors2, walls2])
save_graphs('img_graph03.svg',[corridors2, walls2])

visited2 = visit(corridors2, (1,1))
print(len(corridors2.nodes()),len(visited2))
Out: 165 103

Per visualizzare più chiaramente quali sono le zone raggiungibili da un certo
punto, estraiamo un sottografo a partire da un grafo e un insieme di nodi. Il
sottografo sarà il grafo che ha come nodi i nodi specificati e come archi tutti
gli archi del grafo originale che collegano i nodi specificati.

def subgraph(g, names):
 '''Ritorna il sottografo di g relativo ai nodi
 in names'''
 subg = Graph(g.colors())
 for name in names:
 pos = g.pos(name)
 subg.addNode(name, pos)
 for name in names:
 for a in g.adjacents(name):
 if a in names:
 subg.addEdge(name, a)
 return subg

sub_corridors2 = subgraph(corridors2,visited2)
view_graphs([sub_corridors2, walls2])
save_graphs('img_graph04.svg',
 [sub_corridors2, walls2])

21.9 COMPONENTI CONNESSE

Se un grafo non è connesso sarà formato da due o più sottografi che sono
connessi, dette componenti connesse. Abbiamo visto in precedenza un
esempio di componente connessa, ottenuta estraendo un sottografo da un
grafo iniziale. Scriveremo ora una funzione che estrae tutte le componenti
connesse da un grafo. Per farlo iteriamo le funzione visit() e subgraph() a
partire da un grafo iniziale e sottraendone iterativamente le componenti
trovate.

def subcomponents(g):
 '''Ritorna le component connesse di g'''

 # lista delle componenti connesse
 components = []
 # sottografo rimasto, all'inizio g
 todo = g
 # finchè il grafo non è vuoto
 while todo.nodes():
 # sceglie un nodo a caso
 startnode = todo.nodes()[0]
 # visita il grafo
 visited = visit(todo,startnode)
 # estrae la component connessa
 component = subgraph(todo,visited)
 # e la aggiunge alla lista
 components += [component]
 # nodi rimanenti
 reminders = set(todo.nodes()) - set(visited)
 # aggiorna il sottografo
 todo = subgraph(todo,reminders)

 # setta i colori da una lista di colori
 colors = ['red', 'green', 'blue', 'orange',
 'yellow', 'magenta', 'purple', 'cyan']
 for i, component in enumerate(components):
 color = colors[i % len(colors)]

 # setta i colori
 component._colors = [color,color]
 return components

components2 = subcomponents(corridors2)
view_graphs(components2 + [walls2])
save_graphs('img_graph05.svg',
 components2 + [walls2])

21.10 DISTANZE

Una proprietà interessante della visita in ampiezza è che i nodi sono visitati
in ordine di distanza crescente dal nodo di partenza. Infatti, il nodo di
partenza è a distanza 0 da sé stesso, poi sono visitati i suoi adiacenti che
sono a distanza 1, poi sono visitati gli adiacenti di quest’ultimi che sono a
distanza 2, ecc. Possiamo facilmente modificare la funzione visit() per
calcolare le distanze dei nodi visitati, che manterremo in un dizionario le cui
chiavi sono i nomi dei nodi e i valori associati sono le distanze dal nodo di
partenza.

def distance(g, name):
 '''Ritorna un dizionario che ad ogni nodo
 visitato a partire dal nodo name associa la
 distanza da tale nodo'''
 visited = set([name])
 active = set([name])
 # Dizionario delle distanze
 dist = {name:0}
 while active:
 newactive = set()
 while active:
 u = active.pop()
 for v in g.adjacents(u):
 if v not in visited:
 visited.add(v)
 newactive.add(v)
 # Distanza del nodo visitato
 dist[v] = dist[u] + 1
 active = newactive
 return dist

distances = distance(corridors,(1,1))
print(distances[(23,13)])
Out: 58

distances1 = distance(corridors1,(1,1))

print(distances1[(23,13)])
Out: 34

distances2 = distance(corridors2,(1,1))
print(distances2[(1,13)])
Out: 28

non raggiungibile
distances2 = distance(corridors2,(1,1))
print((23,13) in distances2)
Out: False

21.11 ALBERO DI VISITA

Se vogliamo sapere più dettagli su un cammino, dobbiamo tener traccia di
come siamo arrivati a visitare ogni nodo. Così facendo costruiremo
implicitamente un albero con radice il nodo di partenza che connette tutti i
nodi visitati. Questo è chiamato albero di visita. Per costruire l’albero di visita
modifichiamo visit() registrando per ogni nodo u, non appena è visitato, il
nodo v che ha permesso di visitarlo. Il nodo v è il nodo genitore del nodo u
nell’albero di visita. Conviene usare un dizionario che ad ogni nodo visitato
associa il suo nodo genitore. La radice, cioè il nodo di partenza, non ha il
nodo genitore e quindi gli assoceremo None .

def visit_tree(g, name):
 '''Ritorna l'albero di visita tramite un
 dizionario che ad ogni nodo visitato, a partire
 dal nodo name, associa il nome del nodo che lo
 ha scoperto, cioè il nodo genitore.'''
 visited = set([name])
 active = set([name])
 # Albero di visita
 tree = {name:None}
 while active:
 newactive = set()
 while active:
 u = active.pop()
 for v in g.adjacents(u):
 if v not in visited:
 visited.add(v)
 newactive.add(v)
 # Associa al nodo v al genitore
 tree[v] = u
 active = newactive
 return tree

Per visualizzare l’albero della visita, lo possiamo convertire in un grafo i cui i
nodi sono i nodi visitati e gli archi sono le relazioni padre-figlio. Con questo

possiamo visualizzare gli alberi di visita dei tre labirinti precedenti.

def tree_to_graph(g,tree,colors=['blue','blue']):
 '''Converte un albero di visita in grafo.'''
 sg = Graph(colors)
 for node in tree:
 sg.addNode(node,g.pos(node))
 for node, parent in tree.items():
 if parent:
 sg.addEdge(node,parent)
 return sg

tree = visit_tree(corridors,(1,1))
save_graphs('img_graph06_0.svg',
 [walls,tree_to_graph(corridors,tree)])
view_graphs([walls,
 tree_to_graph(corridors,tree)])

tree1 = visit_tree(corridors1,(1,1))
save_graphs('img_graph06_1.svg',
 [walls1,tree_to_graph(corridors1,tree1)])
view_graphs([walls1,
 tree_to_graph(corridors1,tree1)])

tree2 = visit_tree(corridors2,(1,1))
save_graphs('img_graph06_2.svg',
 [walls2,tree_to_graph(corridors2,tree2)])
view_graphs([walls2,
 tree_to_graph(corridors2,tree2)])

Dall’albero di visita, rappresentato tramite il dizionario dei genitori,
possiamo facilmente ottenere il cammino dal nodo radice a un qualsiasi
altro nodo visitato. Basta percorrere a ritroso la sequenza dei nodi genitore
dal nodo visitato fino alla radice.

def visit_path(tree, name):
 '''Ritorna una lista contenente il cammino dalla
 radice al nodo name dell'albero tree
 rappresentato come dizionario dei genitori'''
 root = None
 # Cerca la radice dell'albero
 for u, gen in tree.items():
 if gen == None:
 root = u
 break
 # Se è presente nell'albero
 if name in tree:
 # Costruisce il cammino risalendo
 path = [name]
 # l'albero dal nodo name fino
 while name != root:
 # alla radice
 name = tree[name]
 path.insert(0, name)

 return path
 else:
 return []

def path_to_graph(g,path,colors=['blue','blue']):
 '''Converte un percorso in un grafo.'''
 sg = Graph(colors)
 for node in path:
 sg.addNode(node,g.pos(node))
 for i in range(len(path)-1):
 sg.addEdge(path[i],path[i+1])
 return sg

path = visit_path(tree,(23,13))
save_graphs('img_graph07_0.svg',
 [walls, path_to_graph(corridors, path)])
view_graphs([walls,
 tree_to_graph(corridors, tree)])

path1 = visit_path(tree1,(23,13))
save_graphs('img_graph07_1.svg',
 [walls1, path_to_graph(corridors1, path1)])
view_graphs([walls1,
 path_to_graph(corridors1, path1)])

path2 = visit_path(tree2,(1,13))
save_graphs('img_graph07_2.svg',
 [walls2, path_to_graph(corridors2, path2)])
view_graphs([walls2,
 path_to_graph(corridors2, path2)])

21.12 GENERAZIONE DI LABIRINTI

Una variazione della funzione di visita può anche essere usata per creare
labirinti in modo casuale. Per farlo, costruiamo un sottografo a partire da un
grafo connesso. Il sottografo conterrà tutti i nodi, ma solo un sottinsieme di
archi. Sceglieremo gli archi facendo una variazione della visita, dove ad ogni
iterazione aggiungiamo archi a caso, ma che mantengono il sottografo
connesso.

def make_grid_graph(w,h):
 '''Crea un grafo fatto a griglia con tutti i
 nodi connessi'''
 g = Graph()
 for j in range(h):
 for i in range(w):
 g.addNode((i,j),(i*20+10,j*20+10))
 adj = [(-1,0),(1,0),(0,-1),(0,1)]
 for i, j in g.nodes():
 for di, dj in adj:
 ii, jj = i + di, j + dj
 if ii < 0 or jj < 0: continue
 if ii >= w or jj >= h: continue
 g.addEdge((i,j), (ii,jj))
 return g

import random

def make_labyrith(g,name,seed=0):
 '''Crea un labirinto a partire da un grafo
 rimuovendo archi non voluti'''
 # Inizializza un grafo con i nodi di g
 labyrinth = Graph()
 for node in g.nodes():
 labyrinth.addNode(node,g.pos(node))
 # Inizia la visita di g
 visited = set([name])
 # Mantiene una lista di celle adiacenti
 active_adj = g.adjacents(name)

 random.seed(seed)
 while active_adj:
 newactive = set()
 # ordine di visita casuale
 random.shuffle(active_adj)
 while active_adj:
 u = active_adj.pop()
 adj = g.adjacents(u)
 # ordine di visita casuale
 random.shuffle(adj)
 # aggiungi u se v è visitato
 for v in adj:
 if v in visited:
 visited.add(u)
 labyrinth.addEdge(u,v)
 break
 # aggiungi tutte gli altri ai candidati
 for v in adj:
 if v not in visited:
 newactive.add(v)
 active_adj = list(newactive)
 return labyrinth

labyrinthr = make_labyrith(make_grid_graph(12,7),
 (0,0), seed=1)
save_graphs('img_graph08_0.svg',[labyrinthr])
view_graphs([labyrinthr])

Come vi può vedere, il grafo ha solo gli archi corrispondenti ai corridoi. Se
vogliamo fare esempi similari a quelli precedenti, basta convertire il grafo in
testo, e poi usare le funzioni già definite. Per farlo, associamo ad ogni nodo
ed arco il carattere ' ' ed ad ogni arco mancante i caratteri - quando ci si
muove in orizzontale e | quando ci si muove in verticale.

def labyrith_to_text(g,w,h):
 '''Converte un grafo di corridoi in testo'''
 txt = '+-' * w + '+\n'
 for j in range(h):
 txt += '| '
 for i in range(1,w):
 if (i-1,j) in g.adjacents((i,j)):
 txt += ' '
 else:
 txt += '| '
 txt += '|\n'
 if j >= h-1: continue
 txt += '+'
 for i in range(w):
 if (i,j+1) in g.adjacents((i,j)):
 txt += ' +'
 else:
 txt += '-+'
 txt += '\n'
 txt += '+-' * w + '+\n'
 return txt

labyrinthr_text = labyrith_to_text(labyrinthr,12,7)
print(labyrinthr_text)
Out: +-+-+-+-+-+-+-+-+-+-+-+-+
Out: | |
Out: + + +-+ +-+ +-+ +-+ +-+-+
Out: | | | | | | |
Out: + + + + + +-+ +-+ + +-+-+
Out: | | | | | | | | |
Out: + + +-+ + +-+-+-+ +-+-+-+
Out: | | | | | |
Out: + + + + +-+ + + +-+ +-+ +
Out: | | | | | | | | | |
Out: + + + +-+ +-+ + + +-+ + +
Out: | | | | | | | | | |
Out: + +-+-+-+ + + + + + +-+-+
Out: | | | | | | | |
Out: +-+-+-+-+-+-+-+-+-+-+-+-+
Out:

corridorsr, wallsr = parse_labyrinth(labyrinthr_text)

treer = visit_tree(corridorsr,(1,1))
pathr = visit_path(treer,(23,13))
save_graphs('img_graph08_1.svg',
 [wallsr, path_to_graph(corridorsr, pathr)])
view_graphs([wallsr,
 tree_to_graph(corridorsr, treer)])

21.13 MAPPE COME GRAFI DI PIXELS

In questa sezione considereremo grafi di pixel, ovvero grafi i cui nodi sono i
pixel di un’immagine e due pixel sono collegati da un arco se sono adiacenti,
cioè consecutivi sulla stessa riga o sulla stessa colonna, e hanno colori simili.
Questo semplice concetto ci permette di applicare la visita in ampiezza per
trovare la strada tra due punti in un’immagine che rappresenta una mappa o
un labirinto. Per farlo, scriviamo una funzione che converte l’immagine in un
grafo, in modo simile alla funzione che crea un grafo dal testo di un labirinto,
e una funzione che altera l’immagine disegnandogli sopra il percorso.
Faremo i nostri test su immagini public domain da Wikipedia.

def similar_pixels(img,i,j,ii,jj,threshold):
 '''Verifica se la differenza in colore tra due
 pixel è inferiore a threshold'''
 w, h = len(img[0]), len(img)
 # verifica se i nodi sono nell'immagine
 if i < 0 or j < 0 or i >= w or j >= h:
 return False
 if ii < 0 or jj < 0 or ii >= w or jj >= h:
 return False
 # calcola la differenza dei colori
 c1 = img[j][i]
 c2 = img[jj][ii]
 diff = (abs(c1[0]-c2[0]) +
 abs(c1[1]-c2[1]) +
 abs(c1[2]-c2[2])) // 3
 return diff <= threshold

def image_to_graph(img,threshold):
 '''Converte un'immagine in un grafo dove i nodi
 sono i pixel dell'immagine e due nodi sono
 adiacenti nel grafo se sono adiacenti
 nell'immagine e la differenza dei colori è
 inferiore a threshold.'''
 g = Graph()
 w, h = len(img[0]), len(img)

 # aggiunge i nodi
 for j in range(h):
 for i in range(w):
 g.addNode((i,j),(i,j))
 # aggiunge gli archi
 for j in range(h):
 for i in range(w):
 # itera sui vicini
 adj = [(-1,0),(1,0),(0,-1),(0,1)]
 for di, dj in adj:
 ii, jj = i + di, j + dj
 # se i colori sono simili,
 if similar_pixels(img, i, j,
 ii, jj, threshold):
 # aggiungi un arco
 g.addEdge((i,j), (ii,jj))
 return g

def draw_path(img,path,color=(255,0,0)):
 '''Scrive i pixel in path nell'immagine img con
 colore color.'''
 for i, j in path:
 img[j][i] = color

funzioni dal capitolo sulle immagini
from image import load, save

def compute_path(infilename, outfilename, start,
 end, threshold=10):
 '''Altera l'immagine nel file infilename
 colorando il percorso da start a end e
 salvandola nel file outfilename. Usa le
 funzioni load() e save() dal capitolo sulle
 immagini.'''
 img = load(infilename)
 g = image_to_graph(img,threshold)
 tree = visit_tree(g,start)
 path = visit_path(tree,end)
 draw_path(img,path)
 save(outfilename,img)

compute_path('in_maze00.png', 'img_maze00_0.png',
 (215,420), (215,251))

21.14 VISITA DI GRAFI DI PIXEL

La funzione precedente è piuttosto lenta dato che un’immagine di medie
dimensioni può contenere centinaia di migliaia di pixel e la costruzione del
grafo è piuttosto onerosa. Non è necessario costruire esplicitamente il grafo
perché esso è rappresentato implicitamente dall’immagine stessa. Il fatto
che un pixel sia un nodo o meno del grafo dipende solamente dal suo colore
che possiamo conoscere dalla posizione (x, y) del pixel. Inoltre i nodi
adiacenti sono ricavabili dalla posizione del pixel considerando il colore dei
pixels (x-1, y), (x+1, y), (x, y-1) e (x, y+1). Dobbiamo quindi solamente adattare
l’algoritmo di visita che conosciamo a questo tipo di grafo. Dato che usiamo
questa versione solo per il calcolo del percorso, possiamo aggiungere anche
un argomento opzionale end che esce dal ciclo se il punto finale è raggiunto.

def visit_tree_image(img, start, end, threshold=10):
 '''Adatta la funzione visit_tree() al grafo
 implicito di un'immagine.'''
 visited = set([start])
 active = set([start])
 tree = {start:None}
 while active:
 newactive = set()
 while active:
 # esce se ha già visitato end
 if end in visited: return tree
 i, j = active.pop()
 # itera sui vicini
 adj = [(-1,0),(1,0),(0,-1),(0,1)]
 for di, dj in adj:
 ii, jj = i + di, j + dj
 # se non sono connessi, continua
 if not similar_pixels(img, i, j,
 ii, jj, threshold): continue
 if (ii,jj) not in visited:
 visited.add((ii,jj))
 newactive.add((ii,jj))
 tree[(ii,jj)] = (i,j)

 active = newactive
 return tree

def compute_path_image(infilename, outfilename,
 start, end, threshold=10):
 '''Altera l'immagine nel file infilename
 colorando il percorso da start a end e
 salvandola nel file outfilename.
 Usa un grafo implicito.'''
 img = load(infilename)
 tree = visit_tree_image(img,start,end,threshold)
 path = visit_path(tree,end)
 draw_path(img,path)
 save(outfilename,img)

compute_path_image('in_maze00.png',
 'img_maze00_1.png', (215,420), (215,251))

Questa versione è più veloce della precedente, e calcola un percorso che ha
la stessa lunghezza del precedente. Le piccole differenze sono dovuto
all’ordine con cui i vicini vengono considerati che non è lo stesso nei due
algoritmi. Applichiamo ora questa funzione ad altre immagini.

compute_path_image('in_maze01.png',
 'img_maze01_1.png', (270,290), (245,265))

compute_path_image('in_maze02.png',
 'img_maze02_1.png', (130,160), (674,588),25)

22 WEB CRAWLING

I motori di ricerca come Google hanno una copia locale di tutte le pagine
web esistenti in modo da poterle indicizzare. Per fare questa copia ci serve
un elenco di tutte le possibili pagine Web in modo da poterle scaricare.
Questo non è possibile direttamente perché il Web è decentralizzato nel
senso che non esiste un elenco completo delle pagine dato che qualunque
persona può creare un pagina web senza dover informare nessuno. Per fare
la copia possiamo però trovare le pagine a partire da link in altre pagine.
Questo processo è chiamato Web crawling e, come vedremo, è equivalente
alla visita di un grafo.

22.1 GESTIONE DEGLI ERRORI

Nei programmi scritti fino ad ora, gli errori di esecuzione causano la
terminazione dell’interprete con la stampa di una stringa di errore. Ci sono
però casi in cui gli errori sono legittimi. Ad esempio, potremmo collegarci ad
un server Web che è al momento non raggiungibile. In questo caso non
sarebbe corretto terminare il programma, ma sarebbe auspicabile gestire
l’errore quando avviene. Python utilizza il costrutto delle eccezioni per gestire
gli errori. Consideriamo un caso semplice dell’accesso ad un elemento non
esistente di una lista. Se vogliamo gestire questo errore lo possiamo
includere in un blocco try/except con la sintassi generale:

try:
 istruzioni
except nome_errore1:
 istruzioni_errore1
except nome_errore2:
 istruzioni_errore2
except:
 istruzioni_altri_arrori

In questo caso Python esegue le istruzioni istruzioni e se avviene un
errore considera le i blocchi except . I blocchi except nome_error vengono
eseguiti sono se avviene l’errore nome_errore , mentre le istruzioni nel blocco
except generico vengono eseguite nel caso di qualunque altro errore.

try:
 l = [1,2,3]
 l[10] # causa un errore
 print('ciao') # non viene esguita
except:
 print('errore gestito')
Out: errore gestito

22.2 WEB CRAWLING

Il Web crawling è la visita delle pagine del Web che inizia da una pagina e
segue i link ricorsivamente. Il Web crawling si può interpretare come la visita
in ampiezza del grafo del Web, i cui nodi sono le pagine e gli archi sono i link
tra le pagine. I link, in questo caso, sono archi asimmetrici dato che una
pagina punta verso un’altra, ma non necessariamente il viceversa.

Implementeremo il Web crawling con un modifica della visita sui grafi. Per
ogni URL, scarichiamo la pagina e ne estraiamo i link. Questi vengono messi
in un insieme di pagine da scaricare successivamente. Per evitare di
scaricare più volte la stessa pagina, manteniamo l’insieme degli URL che
sono già stati archiviati. In un Web crawler, ad ogni visita si salvano tutte le
informazioni scaricate su disco. Nel nostro caso, non salveremo
esplicitamente le pagine dato che vogliamo solo simulare il Web crawling e
non implementarlo in modo completo.

def load_page(url):
 '''Ritorna la pagina HTML dato un URL.'''
 return ''

def get_links(url, html):
 '''Ritorna i links in un HTML.'''
 return []

def web_crawl(url, maxvisits=5):
 '''Visita il grafo del web a partire dall'url
 url e stampa i siti visitati. Visita al massimo
 maxvisits.'''
 # URL visitati
 visited = set()
 # URL da visitare
 active = set([url])
 # Finchè ci sono nodi attivi
 while active and len(visited) < maxvisits:
 # Insieme dei nuovi attivi

 newactive = set()
 # Finchè ci sono nodi attivi,
 while active and len(visited) < maxvisits:
 # estrai un nodo da active
 url = active.pop()
 # se già visitato, continua
 if url in visited: continue
 # scarica la pagina, aggiungi a visitati
 print('loading page:',url)
 html = load_page(url)
 visited.add(url)
 # verifica se lo scaricamento è ok
 if not html: continue
 # trova i link
 links = get_links(url,html)
 # per ogni pagina linkata e non visitata
 for link in links:
 if link not in visited:
 # aggiungi ai nuovi attivi
 newactive.add(link)
 # I nuovi attivi diventano gli attivi
 active = newactive
 return visited

22.3 SCARICARE UNA PAGINA

Per scaricare una pagina abbiamo visto i metodi predefiniti di Python. Questi
funzionano bene per casi semplici, ma nei casi più complessi danno
problemi di vario tipo. Per questo utilizzeremo una libreria più ad alto livello
chiamata Requests, come suggerito dal sito di Python. Per evitare che il
programma si interrompa in attesa di un server molto lento, includiamo un
timeout di 1 secondo. Per evitare che errori di connessione terminino il
programma, includiamo l’intera funzione in un blocco try/except .

import requests

def load_page(url):
 '''Ritorna la pagina HTML dato un URL.'''
 try:
 page = requests.get(url,timeout=1)
 if page.encoding:
 return page.content.decode(
 page.encoding)
 else:
 return page.content.decode('utf8')
 except:
 return ''

sites = web_crawl('http://python.org')
Out: loading page: http://python.org

http://docs.python-requests.org

22.4 ELENCO DEI LINKS

Per trovare i link dobbiamo convertire la pagina in un albero HTML e trovare
i tag dei link. Potremmo usare le classi create nei capitoli precedenti, ma
queste causerebbero molti errori dato che la maggioranza di documenti
HTML nel Web non è ben formata. Per questo usiamo la libreria lxml.
L’albero del documento sarà di tipo xml.etree.ElementTree , che ha il
metodo iter(tag) per iterare su tag specifici, nel nostro i tag a . Useremo
urljoin() in urllib.parse per risolvere i link da locali a globali. Ancora una
volta includiamo la funzione in un blocco try/except per evitare che errori
nella pagine possano interrompere il programma.

import html5lib
import urllib

def get_links(url,html):
 '''Ritorna i links in un HTML.'''
 try:
 links = []
 document = html5lib.parse(html,
 namespaceHTMLElements=False)
 for link_elem in document.iter('a'):
 link = link_elem.get('href')
 # Manca l'url del link
 if not link: continue
 # ignoriamo referenze interne
 if '#' in link: continue
 # link locale, aggiungiamo l'url
 if '://' not in link:
 link = urllib.parse.urljoin(url,
 link)
 # ci sono ancora errori, saltiamo
 if '://' not in link: continue
 # normalizziamo url
 link = urllib.parse.urljoin(link,'.')
 links += [link]
 return links

http://lxml.de/

 except:
 return []

sites = web_crawl('http://python.org',maxvisits=15)
Out: loading page: http://python.org
Out: loading page:
http://www.riverbankcomputing.co.uk/software/pyqt/
Out: loading page: http://jobs.python.org/
Out: loading page: http://python.org/users/membership/
Out: loading page: http://pythonmentors.com/
Out: loading page: http://python.org/psf/donations/
Out: loading page: http://python.org/downloads/mac-osx/
Out: loading page: https://pypi.python.org/
Out: loading page: http://plus.google.com/
Out: loading page: https://www.openstack.org/
Out: loading page:
http://feedproxy.google.com/~r/PythonInsider/~3/1zUlkKxW27U/
Out: loading page: http://python.org/community/merchandise/
Out: loading page: http://python.org/community/diversity/
Out: loading page: http://python.org/privacy/
Out: loading page: http://python.org/success-stories/

	Prefazione
	Indice
	1 I Computer e la Programmazione
	2 Primi Passi in Python
	3 Python come Calcolatrice
	4 Riutilizzo di Istruzioni
	5 Prendere Decisioni
	6 Sequenze di Dati
	7 Iterazione su Sequenze
	8 Oggetti e Metodi
	9 Tabelle di Dati
	10 Accesso ai Dati
	11 Elaborazione di Testo
	12 Elaborazione di Immagini
	13 Tipi Definiti dall’Utente
	14 Esplorare il File System
	15 Documenti Strutturati
	16 Interfacce Utente
	17 Grafica Interattiva
	18 Giochi
	19 Simulazione Interattiva
	20 Applicazioni Web e CLI
	21 Navigare Labirinti
	22 Web Crawling

