PROGRAMMARE

IN

PYTHON

LA GUIDA DI PROGRAMMAZIONE WEB
STEP BY STEP PER PRINCIPIANTI

0101011100111 IDEAL C
1101010010 MODEL SMALL 1
1010101101010100 STACK 100h 1

DATASEG
nger”, 13, 10,'$' HW DB "Danger", 13, 10,'$

CODESEG

Begin:

010010101019901930010 < R V AX, @data, 01001
111001 dﬁigi.‘omomrr 4 g V DSAXE J300M 1110C
THwW | 0010601010 E0r0r0r ; MOV DX, GRESEEHW | 0010C
00010111010 2101 £F JJegnal” AC I ONGAR. GOH wH 0001C

ale 4
4 1000 38, "m’{)s:ﬂﬁf:_ni"_) mes 10°A 20 ’1~
U] ol (zéale 6=
0 (ulss)
nt sys, int parm) S nline int call: ahost!(lnt sys, int parm‘
s luwru(r
J | F0oror L
n | 1101010181510 ." (asind [Pt;f?‘?:w“
| 10111001030101 4=
b" (parm)), ‘: [Iolﬁjitl‘pﬂ agrgro. na W 2" " pnitasnp @lu#sw}agbn (parm))
110 return sys;
1010101010110 ¥
1010101

1010010 .model small
10010101010101010 .stack

ecting...

111010 PN
w wgn | 10101101010100010110 messhge b YeBRNeoIN Y, g

PROGRAMMARE

LA GUIDA DI PROGRAMMAZIONE WEB
STEP BY STEP PER PRINCIPIANTI

0101011100111
1101010010

>

nger”, 13, 10, '$"

1010101101010100

1110010014
00100009071 €
00010111010
0101
0001910408d0dBrororooro
iotoror oot
01119101110 ororrrorooo
10010 roro

OFOrOLOOL000
1001

11010110 rorororo
OFFFOTOrF |

0100101010100101010

OFEQEOFTOTOOF]

14 E 60 3C

15 F 70 46

16 10 80 50

17 11:90 5A

18 12.100 64

19 13.500.1F4

0 A 20 14 1000 3E8,:

VONOO LAWK S

i
2
<)
4
5
6
7
8
9
1

nt sys, int parm)

= v

BR YN

n 1101019040
1011100103010101
0101

110
1010101010110
1010101
1010010
100101010101
111010
101011010101

b" (parm));

01010

000101

10

MOV | AX,1238H

HARRIS

IDEAL
MODEL SMALL
STACK 100h
DATASEG
W.__ DB

CODESEG
Begin

MOV AX, @data

MOV DS}AX

MOV DX, OFESEFHW.

=

D Begirtieo Ha vom
€0 HES TUI

PUSH AX
MOV | AH,09 "
INF—21H
BOPCAX®

({imsq) "d" (zve) "0
inline int call:zhostd(int sys, int parm

asm ("int \60x8Gn
. "=a" (sy§)
Y tfsys)

return sys;

¥

b" (parm));
model small
.stack

data

message _db "Connecting... ", "$

"Danger", 13, 10, '$

PROGRAMMARE IN PYTHON

Sommario

PROGRAMMARE IN PYTHON

Premessa
Capitolo 1 Panoramica
Capitolo 2 Installazione
Windows
Linux
macOS
Editor di testo
Capitolo 3 Le variabili
Stringhe
Numeri
Commenti
Capitolo 4 Liste
Modificare elementi
Aggiungere elementi
Rimuovere elementi
Ordinamento ¢ funzioni utili
Capitolo 5 Cicli

Ciclo for

Le sezioni
Capitolo 6 Istruzioni decisionali

Conclusioni

Premessa

Ogni programmatore ha una storia su come ha imparato a scrivere il suo
primo programma o, in generale, su come ¢ nata la sua passione per
l'informatica.

Personalmente, ho iniziato a studiare informatica da bambino quando mio
padre usava un vecchio PC per disegni tecnici e, non avendo nessuna console
di gioco, usavo il suo PC per giocare. Ben presto 1 giochi prestati dai miei
amici iniziarono a portare dei virus nel PC, mettendo a rischio il lavoro di mio
padre. Da qui ¢ nata la mia passione per l'informatica e ricorderd sempre
quanto mi sentii soddisfatto nel costruire il mio primo programma. C'¢ una
vera soddisfazione nel costruire qualcosa con uno scopo, qualcosa che risolva
un problema. Il software che scrivo ora soddisfa un'esigenza piu significativa
rispetto ai miei sforzi dell'infanzia, ma 1l senso di soddisfazione che provo
dalla creazione di un programma che funziona ¢ sostanzialmente lo stesso.

L'obiettivo di questo ebook ¢ di farti conoscere Python il piu rapidamente
possibile in modo da poter creare programmi che funzionino e risolvano dei
problemi, giochi, visualizzare dei dati o creare applicazioni web. Nel
frattempo, porremo le basi di programmazione che ti serviranno per il resto
della tua vita, a prescindere dal linguaggio di programmazione. Questo ebook
¢ per coloro che non hanno mai programmato in Python prima o che non
hanno mai programmato in alcun linguaggio. Se vuoi imparare rapidamente le
basi della programmazione in modo da poterti concentrare su progetti
interessanti e ti piace mettere alla prova 1 concetti che hai appreso risolvendo
problemi significativi, questo ebook fa per te.

Il mio scopo ¢ renderti un buon programmatore in generale e, in particolare,
un buon programmatore Python. Imparerai in modo efficiente e adotterai delle
buone abitudini man mano che apprendi 1 concetti di programmazione
generale. Imparerai a conoscere diversi tipt di dati e 1 modi in cui puoi
archiviare 1 dati all'interno dei tuoi programmi. Imparerai a creare raccolte di
dati e a lavorare su tali raccolte in modo efficiente. Imparerai ad usare cicli e
if per testare determinate condizioni in modo da poter eseguire specifiche
sezioni di codice quando le condizioni sono vere ed eseguire altre sezioni
quando non lo sono, una tecnica che aiuta notevolmente ad automatizzare i
processi. Scoprirai come scrivere funzioni per rendere riutilizzabili parti del
tuo programma, scrivendo blocchi di codice che eseguono determinate azioni
una sola volta, riutilizzandole tutte le volte che vuoi.

Capitolo 1

Panoramica

Python ¢ un linguaggio incredibilmente efficiente: 1 tuoi programmi saranno
piu concisi e piu potenti in meno righe di codice rispetto a quante ne
richiederebbero altri linguaggi.

La sintassi di Python ti aiutera anche a scrivere codice cosiddetto "pulito"
ovvero il tuo codice sara facile da leggere, facile da capire, facile per eseguire
il debug e facile da integrare rispetto ad altri linguaggi. I programmatori
usano Python per molti scopi: per creare giochi, creare applicazioni web,
risolvere problemi aziendali o sviluppare degli strumenti interessanti. Python
¢ anche ampiamente utilizzato in campo scientifico per la ricerca accademica
e il lavoro applicato.

Uno dei motivi piu importanti per cui Python ¢ molto usato ¢ la sua
community, che comprende un gruppo di persone incredibilmente vario ed
accogliente. La community ¢ essenziale per i1 programmatori perché la
programmazione non diventi una ricerca solitaria infatti molti di noi, anche 1
programmatori piu esperti, hanno bisogno di chiedere consigli ad altri che
hanno gia risolto problemi simili. Avere una community ben organizzata ¢
fondamentale per aiutarti a risolvere 1 problemi e per aiutare le persone come
te che stanno imparando Python come primo linguaggio di programmazione.
Python ¢ un ottimo linguaggio da imparare perché¢ ¢ semplice ed intuitivo,
quindi iniziamo!

Capitolo 2

Installazione

Oggi sono disponibili due versioni di Python: Python 2 e 1l piu recente Python
3. Ogni linguaggio di programmazione si evolve man mano che emergono
nuove idee e tecnologie e, gli sviluppatori di Python, hanno continuamente
reso il linguaggio piu versatile e potente. La maggior parte delle modifiche ¢
incrementale e appena percettibile, ma in alcuni casi il codice scritto per
Python 2 potrebbe non funzionare correttamente su sistemi che utilizzano
Python 3.

In questo libro sottolineo le differenze significative tra Python 2 e Python 3,
quindi qualunque sia la versione che usi, sarai in grado di seguire le
istruzioni. Se entrambe le versioni sono installate sul tuo sistema o se devi
installare Python, usa Python 3. Se Python 2 ¢ 1'unica versione sul tuo sistema
e preferisci passare alla scrittura del codice invece di installare Python, puoi
iniziare con Python 2 ma ti conviene passare a Python 3 dato che la fine del
supporto per Python 2 ¢ stata fissata alla fine del 2019. Alla luce di ci0, prima
installi Python 3, meglio €, in modo da poter lavorare con la versione piu
recente.

Python viene fornito con un interprete che viene eseguito in un terminale, che
consente di provare codice Python senza dover salvare ed eseguire un intero
programma.

Un concetto molto vecchio nel mondo della programmazione ¢ quello di
stampare un messaggio Hello World! sullo schermo affinché il tuo primo
programma in un nuovo linguaggio ti porti fortuna. In Python, ti basta
digitare:

print("Hello World!")

Un programma cosi semplice ha uno scopo davvero importante: se funziona
correttamente sul tuo sistema, qualsiasi altro programma Python dovrebbe
funzionare.

Python ¢ un linguaggio di programmazione multipiattaforma, il che significa
che funziona su tutti 1 principali sistemi operativi. Qualsiasi programma
Python potrebbe essere eseguito su qualsiasi computer su cui sia installato
Python. Tuttavia, 1 metodi per configurare Python sui diversi sistemi operativi

variano leggermente. In questa sezione imparerai come configurare Python ed
eseguire 1l programma Hello World sul tuo sistema.

Per prima cosa controlleremo se Python ¢ gia installato sul tuo sistema e, nel
caso non lo sia, lo installeremo. Userai un semplice editor di testo e salverai
un file Python vuoto chiamato hello world.py. Infine, eseguirai il programma
Hello World e risolverai eventuali problemi. Ti guiderd attraverso questo
processo per ciascun sistema operativo, quindi avrai un ambiente di
programmazione Python a tua disposizione.

Windows

Windows non viene sempre fornito con Python, quindi probabilmente dovrai
scaricarlo e installarlo, quindi scaricare e installare un editor di testo.
Innanzitutto, controlliamo se Python ¢ installato sul tuo sistema. Apri un
terminale dal menu Start e nella finestra del terminale, digita python in
minuscolo. Se ricevi un prompt di Python (>>>), Python ¢ installato sul tuo
sistema. Con maggiore probabilita, purtroppo, vedrai un messaggio di errore
che ti informa che python non ¢ un comando riconosciuto.

In tal caso, € necessario scaricare il programma di installazione di Python per
un pulsante per scaricare Python 3. Fai clic sul pulsante e dovrebbe iniziare
automaticamente a scaricare il programma di installazione corretto per il tuo
sistema. Dopo aver scaricato il file, esegui il programma di installazione e
assicurati di selezionare 1'opzione "Aggiungi Python al PATH", in modo da
semplificare la corretta configurazione del tuo sistema.

Download the latest version for Windows

Download Python 3.8.3
o0 1

|opmient versions of Python? Prereleases,
Docker images

Looking fer Python 2.77 See below for specific releases

L'impostazione dell'editor di testo sara semplice se si configura il sistema per
eseguire Python nella sessione di un terminale. Apri una finestra di comando
e digita python in minuscolo. Se ricevi un prompt di Python (>>>), Windows
ha trovato la versione di Python che hai appena installato e il risultato

https://www.python.org/downloads/

indichera quale versione ¢ stata installata. Adesso sei pronto per il tuo
programma che stampa a video "Hello World!", dal terminale che hai gia
aperto digita:

>>> print("Hello World!")
Hello World!

Se vuoi chiudere la sessione del terminale in Windows potrai premere
CTRLAZ o digitare il comando exit().

Linux

I sistemi Linux sono progettati per la programmazione, quindi Python ¢ gia
installato sulla maggior parte dei computer Linux. La community che ruota
attorno a Linux si aspetta che tu possa programmare fin da subito e ti
incoraggino a farlo. Per questo motivo c'¢ davvero poco da installare e
pochissime impostazioni da cambiare per iniziare con il tuo primo
programma.

Apri una finestra del terminale eseguendo l'applicazione Terminale sul tuo
sistema (in Ubuntu, puoi premere CTRL + ALT + T). Per scoprire se Python ¢
installato, digita python3 in minuscolo. Dovresti vedere 1'output che ti dice
quale versione di Python ¢ installata con un prompt >>> da cui puoi iniziare a
inserire 1 comandi Python.

A questo punto sei pronto per il tuo primo programma, ti basta digitare come
segue:

>>> print("Hello World!");
Hello World!

Nella remota eventualita in cui Python non risulti installato sul tuo sistema,
puoi usare il comando sudo apt-get install python3.8 dal terminale per
installarlo ed iniziare a programmare.

macOS

Python ¢ gia installato sulla maggior parte dei sistemi OS X. Non appena
avrai verificato che Python ¢ installato, dovrai installare un editor di testo e
assicurarti che sia configurato correttamente.

E sufficiente aprire un terminale da Applicazioni -> Utility -> Terminale e
digitare python3, in modo simile a Linux. Se I'output mostra che hai installato
Python3, sarai in grado di usare Python 3 senza ulteriori step da eseguire.

In alternativa, qualora Python non fosse installato, potrai installarlo
semplicemente tramite Brew con 1l comando:

brew install python

Una volta che Python ¢ installato puoi eseguire il tuo primo programma
digitando:

>>> print("Hello World!");
Hello World!

Dovresti vedere il tuo messaggio stampato direttamente nella finestra del
terminale. Ricorda che puoi chiudere l'interprete Python premendo CTRL + D
o digitando 1l comando exit().

Editor di testo

Per programmare in Python ti consiglio di usare un editor di testo (detto IDE)
che ¢ fondamentalmente un pacchetto software costituito da apparecchiature
utilizzate per lo sviluppo e il test del software. Un IDE aiuta ad automatizzare
1 compiti di uno sviluppatore riducendo gli sforzi manuali e combina tutte le
componenti in un quadro comune. Se non usi un IDE, dovrai eseguire
manualmente le selezioni, le integrazioni e il processo di distribuzione di
codice. L'IDE ¢ stato sostanzialmente sviluppato per semplificare lo sviluppo,
riducendo ed evitando errori di battitura. Alcuni IDE hanno la capacita di
eseguire il codice tramite un click ed eseguire il debug del codice in modo
molto facile.

I piu famosi editor di testo sono PyCharm, Idle, Sublime Text, Atom o Visual
Studio Code. Ti ho consigliato alcuni degli editor ma non tutti, tra questi
alcuni sono a pagamento e altri gratuiti ma ti consiglio vivamente di usare un
IDE per la programmazione.

La maggior parte dei programmi che scrivi nell'editor di testo lo eseguirai
direttamente dall'editor tramite un click ma, a volte, ¢ utile eseguire
programmi dal terminale. Ad esempio, potresti voler eseguire un programma
esistente senza aprirlo. Puoi farlo su qualsiasi sistema con Python installato se
sai come accedere alla directory in cui hai memorizzato il tuo file di
programma. Per provare cio, assicurati di aver salvato il file hello world.py
nella cartella imparoPy sul desktop.

Adesso ti bastera digitare i1l comando:

python hello world.py

Potrai eseguire questo comando solo dopo aver navigato tra le cartelle, in
Linux e macOS userai:

cd Desktop/imparoPy

In Windows, allo stesso modo, dovrai digitare:

cd Desktop\imparoPy

Capitolo 3

Le variabili

Diamo un'occhiata piu da vicino a cio che fa Python quando esegui il file
hello world.py. A quanto pare, Python esegue un bel carico di lavoro, anche
quando esegue un semplice programma.

Quando esegui il file hello world.py, I’estensione .py indica che il file ¢ un
programma Python. L'editor quindi esegue il file attraverso l'interprete
Python, che legge il programma e determina il significato di ogni parola nel
programma stesso. Ad esempio, quando l'interprete vede la parola print,
stampa sullo schermo tutto cio0 che ¢ racchiuso tra le parentesi.

Mentre scrivi i tuoi programmi, il tuo editor evidenzia diverse parti del tuo
codice in diversi modi, ad esempio con colori diversi o con un carattere
leggermente in grassetto. Ad esempio, riconosce che print ¢ il nome di una
funzione, visualizzera quella parola in blu, se riconosce che "Hello World!"
non ¢ un codice Python, visualizzera quella frase in arancione. Questa
funzione degli editor si chiama evidenziazione della sintassi ed ¢ abbastanza
utile quando inizi a scrivere 1 tuoi programmi.

Possiamo anche memorizzare il messaggio “Hello World” in una variabile
con il nome messaggio:

messaggio = "Hello World!"
print (messaggio)

Ogni variabile contiene un valore ovvero le informazioni associate a quella
variabile. In questo caso il valore ¢ il testo "Hello World!" e 1’aggiunta di una
variabile aggiunge un po' piu di lavoro per l'interprete Python. Quest’ultimo,
infatti, quando elabora la prima riga, associa il testo "Hello World!" con la
variabile messaggio. Quando raggiunge la seconda riga, stampa il valore
associato alla variabile sullo schermo. Espandiamo questo programma
modificando hello_world.py per stampare un secondo messaggio. Aggiungi
una riga vuota a hello world.py, quindi aggiungi due nuove righe di codice,
in modo che il tuo file sia simile a questo:

messaggio = "Hello World!"
print (messaggio)

messaggio = "Hello Python World!"
print (messaggio)

Quando esegui questo codice vedrai due messaggi sullo schermo ma, in
realta, abbiamo capito che puoi modificare il valore di una variabile nel tuo
programma in qualsiasi momento e Python terra sempre traccia del suo valore
corrente.

Quando usi le variabili in Python, devi rispettare alcune regole e linee guida.
La violazione di una regola causera degli errori mentre le linee guida ti
aiutano a scrivere codice piu facile da leggere e capire.

Assicurati di rispettare le seguenti regole per le variabili:

I nomi delle variabili possono contenere solo lettere, numeri e
caratteri di sottolineatura. Possono iniziare con una lettera o un
trattino basso, ma non con un numero. Ad esempio, puoi chiamare
una variabile messaggio 1 manon 1 _messaggio;

. Gli spazi non sono consentiti nei nomi delle variabili, ma il
carattere underscore (_) puo essere usato per separare le parole nei
nomi delle variabili. Ad esempio, messaggio prova ¢ un nome
valido invece messaggio prova causera errori;

* Evita di usare parole chiave e nomi di funzioni Python come nomi
di variabili; ovvero, non usare le parole che Python ha riservato
per un particolare scopo programmatico, come la parola print;

. I nomi delle variabili devono essere brevi ma descrittivi. Ad
esempio, nome ¢ meglio di n, nome studente ¢ migliore di n_s e
lung nome ¢ migliore di lunghezza nome di persona;

» Presta attenzione quando si usano la lettera minuscola | e la lettera

maiuscola O perché potrebbero essere confuse con 1 numeri 1 e 0.

Puo essere necessaria una certa pratica per imparare a creare buoni

nomi di variabili, soprattutto quando 1 programmi diventano piu

interessanti e piu complicati. Man mano che scrivi piu programmi

e inizi a leggere il codice di altre persone, migliorerai nel trovare

nomi significativi.

Ogni programmatore commette errori e la maggior parte commette errori ogni
giorno. Sebbene 1 bravi programmatori possano creare errori, sanno anche
come identificare e risolvere tali errori in modo efficiente. Diamo un'occhiata
ad un errore che potresti fare presto e scopriamo come risolverlo. Scriveremo
un codice che genera un errore di proposito. Scrivi il codice seguente, incluso
1l messaggio con errori ortografici mostrato in grassetto:

messaggio = "Hello World!"
print (messagio)

Quando si verifica un errore nel programma, l'interprete Python fa del suo
meglio per aiutarti a capire dove si trova il problema. L'interprete fornisce un
traceback quando un programma non puo essere eseguito correttamente. Un
traceback ¢ un record relativo a dove l'interprete ha riscontrato dei problemi
durante 1’esecuzione del codice. Ecco un esempio di traceback fornito da
Python dopo aver erroneamente sbagliato il nome di una variabile:

Traceback (most recent call last):

File "hello_world.py", line 2, in <module>
print(messagio)

NameError: name 'messagio’ is not defined

Il traceback segnala che si ¢ verificato un errore nella riga 2 del file
hello world.py. L'interprete mostra questa riga per aiutarci ad individuare
rapidamente l'errore e informa sul tipo di errore ha trovato.

In questo caso ha rilevato un errore sul nome e segnala che la variabile in fase
di stampa, messagio, non ¢ stata definita. Un errore sul nome (NameError) di
solito significa che ci siamo dimenticati di impostare 1l valore di una variabile
prima di usarlo oppure abbiamo fatto un errore di ortografia durante
l'inserimento del nome della variabile.

Naturalmente, in questo esempio abbiamo omesso la lettera g della variabile
messaggio. L'interprete Python non esegue il controllo ortografico del codice
ma garantisce che 1 nomi delle variabili siano scritti coerentemente. Ad
esempio, guarda cosa succede quando scriviamo il nome della variabile in
modo errato anche in un altro punto del codice:

messagio = "Hello World!"
print (messagio)

In questo caso il codice verra eseguito senza alcun problema. I computer sono
severl ma in alcuni casi, come nell’ambito della programmazione, ignorano il
modo corretto di scrivere una parola. Di conseguenza, non ¢ necessario
prendere in considerazione le regole di ortografia e grammatica quando si
tenta di creare nomi di variabili o scrivere codice. Molti errori di

programmazione sono semplici errori di battitura, se stai impiegando molto
tempo a cercare uno di questi errori, sappi che sei in buona compagnia. Molti
programmatori esperti e di talento passano ore a cercare questo tipo di piccoli
errori. Non ti preoccupare, sono problemi comuni e accadra spesso durante la
tua vita.

Stringhe

Poiché la maggior parte dei programmi definisce e raccoglie dei dati e li
elabora, ¢ utile aiutare I’elaboratore a classificare 1 diversi tipi di dati. Il primo
tipo di dati che vedremo sara string. Le stringhe sono piuttosto semplici a
prima vista, ma puoi usarle in molti modi diversi. Una stringa ¢
semplicemente una serie di caratteri quindi qualsiasi carattere racchiuso tra
virgolette (singole o doppie) ¢ considerata una stringa in Python.

Abbiamo gia visto le stringhe:

"Hello World"

Poiché ¢ possibile usare sia virgolette singole che doppie, automaticamente ¢
possibile inserire delle citazioni all'interno di una stringa:

'Eraclito disse: "Tutto scorre"

Uno dei compiti piu semplici che puoi fare con le stringhe ¢ trasformarle da
maiuscole a minuscole e viceversa. Esamina il seguente codice e prova a
determinare cosa sta succedendo:

nome = "eraclito di efeso”
print (nome. title())
Eraclito D1 Efeso

In questo esempio, la stringa minuscola "eraclito di efeso" ¢ memorizzata
nella variabile nome. Il metodo title() appare dopo la variabile ma
nell'istruzione print(). Un metodo ¢ un'azione che Python puo eseguire su una
porzione di dati e il punto (.) dopo nome indica a Python di far agire il
metodo title() sulla variabile. Ogni metodo ¢ seguito da una coppia di
parentesi, poiché 1 metodi spesso richiedono informazioni aggiuntive per
svolgere il proprio lavoro. Tali informazioni sono fornite tra parentesi.

La funzione title() non ha bisogno di ulteriori informazioni quindi le parentesi
sono vuote. Questa funzione rende I’iniziale di ogni parola una lettera
maiuscola.

Allo stesso modo, puoi usare le funzioni upper() e lower() per modificare la
stringa rispettivamente con tutti 1 caratteri maiuscoli o minuscoli. Il metodo
lower() ¢ particolarmente utile per l'archiviazione dei dati infatti molte volte
non vorrai fidarti di ci0 che ¢ stato digitato dai tuoi utenti quindi convertirai le
stringhe in lettere minuscole prima di memorizzarle.

nome = "Eraclito D1 Efeso"
print (nome. lower ())
eraclito di efeso

print (nome. upper())
ERACLITO DI EFESO

Spesso ¢ utile unire le stringhe, ad esempio, potresti voler memorizzare nome
e un cognome in variabili separate e combinarle quando desideri visualizzare
il nome completo di una persona:

nome = "marco"

cognome = "ross1"

nome_completo =nome + " " + cognome
print (nome completo)

Questo metodo di combinazione delle stringhe si chiama concatenazione .
Puot utilizzare la concatenazione per comporre messaggi completi utilizzando
le informazioni che hai archiviato nelle variabili.

nome = "marco"

cognome = "Rossi"

nome_completo =nome + " " + cognome

print ("Ciao, "+ nome_completo. title() + "!")

In questo esempio abbiamo unito alcune delle nostre conoscenze su Python
fino ad ora. In questo modo, si vedra sullo schermo il seguente messaggio:

Ciao, Marco Rossi!

Nella programmazione, lo spazio bianco si riferisce a qualsiasi carattere non
stampabile, come spazi, tabulazioni e simboli di fine riga. Puoi utilizzare gli
spazi bianchi per organizzare l'output in modo che sia piu facile da leggere
per gli utenti. Per aggiungere un TAB al testo, usa la combinazione di
caratteri \t come mostrato:

>>> print(""Python")

Python

>>> print("\tPython")

Python

Per aggiungere una nuova riga ¢ sufficiente usare il carattere \n:

print ("Linguaggi di programmazione:\nPython\nJava\nJavaScript\nC")

Linguaggi di programmazione:
Python

Java

JavaScript

C

E inoltre possibile combinare TAB e nuove righe in un'unica stringa. La
stringa \n\t indica a Python di passare a una nuova riga e di iniziare la riga
successiva con un TAB.

Talvolta, gli spazi vuoti possono essere fonte di confusione nei tuoi
programmi. Per 1 programmatori 'python' e 'python 'sembrano praticamente
uguali ma per un programma, sono due stringhe diverse. Python rileva lo
spazio extra in 'python 'e lo considera significativo.

E importante pensare agli spazi bianchi perché spesso vorrai confrontare due
stringhe per determinare se sono uguali o diverse. Per fortuna, Python
semplifica 1'eliminazione di spazi bianchi dai dati infatti puo cercare spazi
bianchi sia sul lato destro che su quello sinistro di una stringa. Per assicurarti
che non vi siano spazi bianchi all'estremita destra di una stringa, utilizza il
metodo rstrip():

!

linguaggio = 'python
'python '

linguaggio. rstrip()

'python'

Allo stesso modo, puoi usare Istrip() per rimuovere gli spazi vuoti presenti in
testa alla stringa o puoi affidarti al metodo strip() per rimuovere gli spazi
bianchi presenti a sinistra e a destra di una stringa.

linguaggio =" python
#' python '

linguaggio. rstrip()
#' python'

linguaggio. Istrip()
'python '

linguaggio. strip()
'python'

In Python 2 la sintassi di print ¢ leggermente diversa infatti le parentesi non
sono necessarie attorno alla frase che si desidera stampare in Python 2.
Tecnicamente, print ¢ una funzione in Python 3, motivo per cui ha bisogno di
parentesi. Fondamentalmente, quando guardi del codice scritto in Python 2,
puoi trovare alcune istruzioni print con le parentesi e altre senza.

Numeri

I numeri sono usati molto spesso nella programmazione per diversi motivi: il
punteggio in un gioco, archiviare le informazioni nelle applicazioni Web e
cosi via. Python tratta i numeri in diversi modi, a seconda di come vengono
utilizzati. Diamo prima un'occhiata a come Python gestisce gli interi, perché
sono 1 piu semplici con cui lavorare.

Come in buona parte dei linguaggi di programmazione ¢ consentito usare
I’operatore + per addizioni, - per sottrazioni, * per moltiplicazioni e / per
divisioni.

>>>5+4+5

10

>>>10-6
4

>>>10%*3
30

>>>10/2
5

A differenza di alcuni linguaggi che usano il simbolo * per indicare gli
esponenti, Python usa 1’operatore **:

>>> 5 %% ()
1

>>> [0 ** 2
100

Python definisce un qualsiasi numero con virgola come float . Questo termine
viene utilizzato nella maggior parte dei linguaggi di programmazione € si
riferisce al fatto che un punto decimale puo apparire in qualsiasi posizione in
un numero. Ogni linguaggio di programmazione deve essere progettato con
cura per gestire correttamente i numeri decimali in modo che si comportino in
modo appropriato a prescindere da dove appare il punto decimale.

Inserisci semplicemente 1 numeri che desideri utilizzare e Python molto
probabilmente fara ci0 che ti aspetti:

>>>(.1+0.1
0.2

>>>2% (.1
0.2

>>>(.24+0.1
0.30000000000000004

Ti aspettavi qualcosa di diverso? Purtroppo, questo problema si verifica in
molti linguaggi. Python cerca di trovare un modo per rappresentare il risultato
con la maggior precisione, il che a volte ¢ difficile, dato che 1 computer
devono rappresentare 1 numeri al loro interno. Sappi che esistono delle
funzioni, ad esempio round(), che ti consentono di risolvere questo problema
con pochissimo sforzo.

Spesso, capita di usare il valore di una variabile all'interno di una stringa. Ad
esempio, supponi di voler informare qualcuno della sua posizione in coda.
Puot scrivere il codice in questo modo:

posizione =5
messaggio = "Ci sono " + posizione- 1 + " persone prima di te"
print (messaggio)

Ti aspetti un messaggio come abbiamo fatto prima ma in realta otterrai un
errore, in particolare, un errore di tipo. Significa che Python non ¢ in grado di
riconoscere il tipo di informazioni che stai utilizzando infatti in questo
esempio vede che stai usando una variabile che ha un valore intero ma non ¢
sicuro di come interpretare quel valore.

Quando si utilizzano numeri interi all'interno di stringhe come questa, ¢
necessario specificare esplicitamente che si desidera una conversione da
numero a stringa. Questa operazione ¢ possibile grazie alla funzione str(), che
indica a Python di rappresentare 1 valori come stringhe:

posizione =5
messaggio = "Ci sono " + str(posizione- 1) + " persone prima di te"
print (messaggio)

Adesso il risultato sara quello che ci aspettavamo ovvero verra stampato il
messaggio:

Ci sono 4 persone prima di te

Lavorare con 1 numeri in Python ¢ molto semplice per la maggior parte del
tempo. Se stai ottenendo dei risultati imprevisti, verifica se Python sta
interpretando 1 tuoi numeri nel modo desiderato, sia come valore numerico
che come stringa.

Come abbiamo gia visto, Python 2 segue una strada diversa infatti la
divisione 5/2 restituira 2 come risultato. La divisione di numeri interi in
Python 2 genera un numero intero e il resto viene troncato. Nota bene che il
risultato non ¢ un numero intero arrotondato; il resto € semplicemente
omesso. Per ottenere anche il resto devi usare 1 numeri in formato decimale
quindi 5.0/2.0 restituira 2.5 in Python 2.

Commenti

Probabilmente hai gia notato in qualche codice precedente il simbolo
cancelletto (#) accompagnato dal colore verde. In quei casi abbiamo definito
un commento su una singola riga.

[commenti sono estremamente utili nella maggior parte dei linguaggi di
programmazione. Man mano che 1 tuoi programmi diventano piu lunghi e piu
complicati, dovresti aggiungere delle note all'interno dei tuoi programmi che
descrivano il tuo approccio generale al problema che stai risolvendo. Un
commento ti consente di scrivere qualsiasi cosa all'interno dei tuoi
programmi.

Il motivo principale per scrivere commenti ¢ spiegare cosa dovrebbe fare il
tuo codice e come funziona. Quando stai lavorando a un progetto, se ¢
commentato, capisci meglio come si incastrano tutti 1 vari pezzi. Se il codice
non ¢ commentato, puoi sempre studiare il codice per capire come dovrebbero
funzionare le varie parti ma scrivere buoni commenti puo farti risparmiare
tempo riassumendo il tuo approccio generale.

Se vuoi diventare un programmatore professionista o collaborare con altri
programmatori, dovresti scrivere commenti significativi. Oggi, la maggior
parte dei software ¢ scritta in modo collaborativo, sia da un gruppo di
dipendenti di una societa sia da un gruppo di persone che lavorano insieme su
un progetto open source. I programmatori esperti si aspettano di vedere 1

commenti nel codice, quindi ¢ meglio iniziare ora ad aggiungere commenti
descrittivi ai tuoi programmi.

Scrivere commenti chiari e concisi nel codice ¢ una delle migliori abitudini
che puoi apprendere come nuovo programmatore. Quando decidi se scrivere
un commento, chiediti se devi prendere in considerazione diversi approcci
prima di trovare un modo ragionevole per far funzionare qualcosa; in tal caso,
scrivi un commento sulla tua soluzione. E molto piu semplice eliminare in
seguito 1 commenti extra piuttosto che tornare indietro e scrivere commenti
per un programma scarsamente commentato.

Capitolo 4
Liste

Una lista € una raccolta di articoli in un ordine particolare. Puoi creare una
lista che includa le lettere dell'alfabeto, le cifre da 0 a 9 o 1 nomi1 di tutte le
persone della tua famiglia. Puoi inserire tutto cio che desideri in una lista e gli
elementi contenuti non devono essere correlati in alcun modo particolare.

Poiché una lista di solito contiene piu di un elemento, ¢ consigliabile rendere
plurale il nome della lista, ad esempio, puoi usare lettere, cifre o nomi. In
Python, le parentesi quadre ([]) indicano una lista e i1 singoli elementi
nell'elenco sono separati da virgole. Ecco un semplice esempio di una lista
che contiene alcuni tipi di alberi:

alberi = ['quercia', 'abete', 'palma' |
print (alberi)
1l risultato sara ['quercia’, 'abete', 'palma']

Poiché questo non ¢ l'output che desideri venga visualizzato dai tuoi utenti,
impariamo come accedere ai singoli elementi in una lista.

Le liste sono raccolte ordinate, quindi puoi accedere a qualsiasi elemento in
un elenco indicando a Python la posizione o I'indice dell'elemento desiderato.
Per accedere a un elemento in una lista, scrivi i1l nome della lista seguito
dall'indice dell'elemento racchiuso tra parentesi quadre. Ad esempio,
estraiamo il primo albero dell'elenco:

alberi = ['quercia', 'abete', 'palma’ |
print (alberi| 0])
quercia

Questo ¢ il risultato che vuoi che 1 tuoi utenti vedano: pulito e ben formattato.
Puoi anche utilizzare le funzioni per le stringhe che abbiamo visto in
precedenza per modificare il tuo risultato.

Probabilmente ti starai chiedendo ben altro. Python considera il primo
elemento in una lista in posizione 0, non in posizione 1. Questo ¢ vero per la
maggior parte dei linguaggi di programmazione € il motivo ha a che fare con
il modo in cui le operazioni dell'elenco vengono implementate a basso livello.

Se ricevi risultati imprevisti, controlla se stai commettendo un errore relativo
all’indice dell’elemento. Il secondo elemento in una lista ha un indice di 1.
Utilizzando questo semplice sistema di conteggio, ¢ possibile ottenere
qualsiasi elemento desiderato da un elenco sottraendo uno dalla sua posizione
nella lista. Ad esempio, per accedere al quarto elemento in un elenco, ¢
necessario richiedere l'indice 3. Recuperiamo il secondo e I'ultimo elemento
dalla nostra lista:

alberi = ['quercia', 'abete', ‘palma’]
print (alberi[1])
abete

print (alberi| 2])
palma

print (alberi[- 1])
palma

Python ha una sintassi speciale per accedere all'ultimo elemento in una lista.
Indicando l'indice -1, Python restituisce sempre l'ultimo elemento della lista
come vedi nell’ultimo caso. Questa sintassi ¢ abbastanza utile, perché spesso
vorrai accedere agli ultimi elementi in una lista senza sapere esattamente
quanto ¢ lunga. Questa convenzione si estende anche ad altri valori con indice
negativo infatti I'indice -2 restituisce il penultimo elemento della lista, 1'indice
-3 restituisce il terzultimo elemento e cosi via.

Modificare elementi

La maggior parte delle liste che crei sara dinamica, il che significa che dopo
averla creata potrai aggiungere e rimuovere elementi nel corso del
programma. Ad esempio, potresti creare un elenco di fatture. E possibile
memorizzare il set iniziale di fatture in una lista e successivamente rimuovere
quelle pagate e aggiungere le nuove (ovvero le non pagate). La tua lista
diminuira e aumentera in lunghezza durante 1’esecuzione del programma.

La sintassi per la modifica di un elemento ¢ simile alla sintassi per 1'accesso
ad un elemento. Per modificare un elemento, utilizza il nome della lista
seguito dall'indice dell'elemento che desideri modificare, quindi fornisci il
nuovo valore per quell'elemento. Modifichiamo il primo elemento della
nostra lista:

alberi = ['quercia', 'abete', ‘palma’ |
alberi| 0 | = 'betulla’

print (alberi)

Il risultato sara ['betulla’, 'abete’, 'palma']

Aggiungere elementi

Potresti voler aggiungere un nuovo elemento ad una lista per diverse ragioni e
Python offre diversi modi per aggiungere nuovi dati alle liste esistenti. Il
modo piu semplice per aggiungere un nuovo elemento ad una lista consiste
nell’uso del metodo append(). In questo caso 1’elemento viene aggiunto alla
fine della lista:

alberi = ['quercia', 'abete', ‘palma’]

alberi. append('betulla")

print (alberi)

Il risultato sara ['quercia’, 'abete’, 'palma’, 'betulla']

Costruire le liste in questo modo ¢ molto comune, perché spesso non si
conoscono 1 dati che gli utenti desiderano archiviare fino a quando il
programma non ¢ in esecuzione. Per avere il controllo dei tuoi utenti, puoi
iniziare definendo una lista vuota che conterra i loro valori, quindi, aggiungi
ogni nuovo valore fornito alla lista appena creata.

E possibile aggiungere un nuovo elemento in qualsiasi posizione nella lista
utilizzando il metodo insert(). Puoi specificare l'indice del nuovo elemento e
il valore del nuovo elemento come segue:

alberi = ['quercia', 'abete', ‘palma’]

alberi. insert(1 , 'betulla")

print (alberi)

Il risultato sara ['quercia’, 'betulla’, 'abete’, 'palma']

In questo esempio, ¢ stato inserito il valore 'betulla’ nella seconda posizione
dell'elenco. Il metodo insert() crea uno spazio nella posizione 1 € memorizza
il valore 'betulla' in quella posizione. Questa operazione sposta ogni altro
valore nell'elenco di una posizione a destra.

Rimuovere elementi

Cosi come hai bisogno di aggiungere o modificare elementi della lista,
potresti avere la necessita di rimuovere un elemento o un insieme di elementi
da una lista. Ad esempio, quando una fattura viene pagata molto

probabilmente vorrai rimuoverla dall'elenco di fatture da pagare, oppure,
quando un utente decide di cancellare il proprio account su un'applicazione
web, ¢ necessario rimuovere tale utente dall'elenco degli utenti attivi. E
possibile rimuovere un elemento in base alla sua posizione nell'elenco o in
base al suo valore:

alberi = ['quercia', 'betulla', 'abete' , 'palma’ |
del alberi| 2]

print (alberi)

Il risultato sara ['quercia’, 'betulla’, 'palma’]

Puoi rimuovere un elemento da qualsiasi posizione in un elenco usando
l'istruzione del, basta conoscere la posizione dell’elemento.

Questo approccio potrebbe non bastare, a volte, dopo aver rimosso dalla lista
un elemento si vuole comunque continuare ad usarlo. Ad esempio, in
un'applicazione Web, ¢ possibile rimuovere un utente da un elenco di membri
attivi e quindi aggiungerlo ad un elenco di membri inattivi. Il metodo pop()
rimuove l'ultimo elemento in un elenco ma ti consente di lavorare con
quell'elemento dopo averlo rimosso. Il termine pop deriva dal pensare ad una
lista come una pila di oggetti e dal far apparire un oggetto in cima alla pila. In
questa analogia, la parte superiore di una pila (anche detta stack) corrisponde
alla fine di una lista.

alberi = ['quercia’, 'betulla', 'abete', 'palma’]
el rimosso = alberi. pop()

print (alberi)

Il risultato sara ['quercia’, 'betulla’, 'abete’]

print (el rimosso)
palma

Abbiamo iniziato definendo l'elenco degli alberi, successivamente abbiamo
rimosso un valore dall'elenco e lo abbiamo memorizzato nella variabile
el rimosso. Infine, abbiamo stampato la lista e, in seguito, il valore che ¢
stato rimosso dall'elenco. L'output mostra che il valore palma ¢ stato rimosso
dalla fine dell'elenco e ora ¢ memorizzato nella variabile el rimosso.

Come puo essere utile questo metodo pop()? Immagina che 1 valori
nell'elenco siano memorizzati in ordine cronologico in base all’ordine con cui
piantare questi alberi. In questo caso, possiamo usare il metodo pop() per

stampare una dichiarazione sull'ultimo tipo di albero che abbiamo piantato.
Tale metodo, inoltre, consente di rimuovere un elemento dalla lista in
qualsiasi posizione semplicemente specificando 1’indice dell’elemento.

A volte, purtroppo, non si conosce la posizione del valore che si desidera
rimuovere dalla lista. Se conosci solo il valore dell'elemento che desideri
rimuovere, puoi utilizzare il metodo remove(). Ad esempio, supponiamo di
voler rimuovere il valore "abete" dall'elenco degli alberi piantati.

alberi = ['quercia', 'betulla', 'abete', 'palma’]
alberi. remove('abete")

print (alberi)

Il risultato sara ['quercia’, 'betulla’, 'palma’]

Questo codice indica a Python di capire dove appare "abete" nell'elenco e
rimuovere quell'elemento.

Ordinamento e funzioni utili

Spesso, le tue liste vengono create in un ordine imprevedibile, perché non
puoi sempre controllare 'ordine in cui i1 tuoi utenti forniscono 1 loro dati.
Sebbene ci0 sia inevitabile nella maggior parte dei casi, ti consigliamo spesso
di presentare le tue informazioni in un ordine preciso. A volte vorrai
preservare l'ordine originale della tua lista e altre volte vorrai cambiare tale
ordine. Python offre diversi modi per organizzare le tue liste, a seconda della
situazione.

Il metodo sort() di Python rende relativamente facile ordinare un elenco,
immagina di avere una lista di auto e di voler cambiare 1'ordine dell'elenco per
memorizzarle in ordine alfabetico. Per semplificare I'attivita, supponiamo che
tutti 1 valori nell'elenco siano in minuscolo.

auto = ['bmw", 'audi', 'toyota', 'subaru’ |

auto. sort()

print (auto)

1l risultato sara ['audi', 'bmw', 'subaru’, 'toyota']

Il metodo sort() modifica definitivamente I'ordine della lista. Le auto sono ora
in ordine alfabetico e non possiamo piu tornare all'ordinamento originale. E

inoltre possibile ordinare questo elenco in ordine alfabetico inverso passando
I'argomento reverse=True al metodo sort(). L'esempio seguente ordina
I'elenco delle auto in ordine alfabetico inverso:

auto = ['bmw', 'audi', 'toyota', 'subaru’ |

auto. sort(reverse= True)

print (auto)

1l risultato sara ['toyota', 'subaru’, 'omw', 'audi']

Per mantenere l'ordine originale di un elenco ma presentarlo in modo
ordinato, ¢ possibile utilizzare la funzione sorted(). La funzione sorted() ti
consente di visualizzare 1'elenco in un ordine particolare ma non influisce
sull'ordine effettivo della lista.

auto = ['bmw', 'audi', 'toyota', 'subaru’ |
print ("Lista originale:")

print (auto)

#['bmw', 'aud1', 'toyota', 'subaru']

print ("\nLista ordinata:")
print (sorted(auto))
#['audi', 'bmw', 'subaru’, 'toyota']

print ("\nLista originale:")
print (auto)
#['bmw', 'audi', 'toyota', 'subaru']

Infine, ma non meno importante, puoi verificare la grandezza di una lista con
il metodo len(). Questa lista, per esempio, ha lunghezza pari a 4 perché
contiene 4 elementi:

auto = ['bmw", 'audi', 'toyota', 'subaru’ |
len(auto)
#4

Troverai utile la funzione len() quando devi determinare la quantita di dati
che devi gestire in un grafico o quando devi capire il numero di utenti
registrati su un sito Web.

Capitolo 5
Cicli

Spesso vorrai esaminare tutte le voci in un elenco, eseguendo la stessa attivita
per ciascun elemento. Ad esempio, in un gioco potresti voler spostare tutti gli
elementi sullo schermo di una unita o in un elenco di numeri potresti voler
eseguire la stessa operazione statistica su ogni elemento. O forse vorrai
visualizzare ogni titolo da un elenco di articoli su un sito Web.

Ciclo for

Quando vuoi eseguire la stessa azione con ogni elemento in una lista, puoi
usare I’istruzione for di Python. Immaginiamo di avere una lista di nomi e che
vogliamo stampare ogni nome nella lista. Potremmo farlo recuperando ogni
nome individualmente ma questo approccio potrebbe causare diversi
problemi. Innanzitutto, sarebbe ripetitivo farlo se si trattasse di una lunga lista
di nomi, inoltre, dovremmo cambiare il nostro codice ogni volta che cambia
la lunghezza della lista. Un ciclo for evita entrambi questi problemi
consentendo a Python di gestirli internamente. Usiamo un ciclo for per
stampare ogni nome in una lista:

nomi = ['andrea', 'antonio', 'bruno']
for nome in nomi:
print (nome)

Iniziamo definendo una lista, proprio come nel capitolo precedente e, in
seguito, definiamo un ciclo tramite la parola chiave for. Questa riga dice a
Python di estrarre un nome della lista e di memorizzarlo nella variabile nome.
Inoltre, indichiamo a Python di stampare il nome che ¢ stato appena
memorizzato nella variabile. Python quindi ripete le righe, una volta per
ciascun nome nell'elenco. Potrebbe essere utile leggere questo codice come
"Per ogni nome nell'elenco dei nomi, stampa il nome". L'output ¢ una
semplice stampa di ciascun nome nell'elenco:

andrea
antonio
bruno

Il concetto di ciclo ¢ importante perché ¢ uno dei modi pitt comuni in cui un
computer automatizza le attivita ripetitive. Ad esempio, in un semplice ciclo
come quello creato, Python inizialmente legge la prima riga del ciclo che
indica a Python di recuperare il primo valore della lista e di memorizzarlo
nella variabile nome. Questo primo valore ¢ andrea, Python legge quindi la
riga successiva che dice di stampare il valore corrente della variabile nome
quindi verra stampato andrea. Il processo si ripete fino a quando 1’ultimo
valore di nome ¢ pari a bruno.

Dopo aver stampato 1’ultimo elemento, poiché non ci sono piu valori
nell'elenco, Python passa alla riga successiva nel programma. In questo caso
non viene eseguito nulla dopo il ciclo for, quindi il programma termina.

Quando si utilizzano 1 cicli per la prima volta, devi tenere presente che
I'insieme di passaggi viene ripetuto una volta per ogni elemento nell'elenco,
indipendentemente dal numero di elementi presenti. Se hai un milione di
elementi nella lista, Python ripete questi passaggi un milione di volte e, di
solito, molto rapidamente. Quando si scrive il proprio ciclo, considera che ¢
possibile scegliere qualsiasi nome per la variabile temporanea che conterra
ciascun valore dell'elenco. Tuttavia, come sempre, ¢ utile scegliere un nome
significativo che rappresenti un singolo elemento dell'elenco. Ad esempio, se
stai iterando su un gruppo di studenti potrai chiamare la variabile temporanea
studente, se si tratta di un insieme di lettere, la variabile temporanea potrebbe
chiamarsi lettera.

Queste convenzioni sul nome da usare possono aiutarti a seguire 1'azione in
corso su ciascun elemento all'interno di un ciclo for. L'uso di nomi singolari e
plurali puo aiutarti a identificare se una porzione di codice si riferisce ad un
singolo elemento della lista o all'intera lista.

Puoi fare qualsiasi cosa con ogni elemento in un ciclo for. Usando I'esempio
precedente potremmo stampare un messaggio per ogni nome, effettuando
delle elaborazioni:

nomi = ['andrea', 'antonio', 'bruno' |
for nome in nomi:
print ("Ciao " + nome. title() + ", hai un nuovo messaggio!")

Ciao Andrea, hai un nuovo messaggio!
Ciao Antonio, hai un nuovo messaggio!
Ciao Bruno, hai un nuovo messaggio!

L'unica differenza in questo codice ¢ dove componiamo il messaggio per ogni
utente. La prima volta attraverso il ciclo il valore di nome ¢ andrea, quindi
Python scrive il primo messaggio con il nome "Andrea". La seconda volta nel
messaggio usera "Antonio" e la terza volta nel messaggio usera "Bruno".
L'output mostra un messaggio personalizzato per ciascun utente nell'elenco.

Cosa succede una volta che un ciclo for ha terminato l'esecuzione? Di solito,
vorrai riassumere un blocco di output o far eseguire altri task al tuo
programma. Qualsiasi riga di codice dopo il ciclo for che non ¢ indentata
viene eseguita una sola volta e senza ripetizione. Scriviamo un messaggio che
invita gli utenti ad usare una nuova funzionalita. Per visualizzare questo
messaggio dopo che tutti 1 singoli messaggi sono stati stampati, inseriamo il
messaggio dopo il ciclo for senza indentazione:

nomi = ['andrea’, 'antonio', 'bruno']

for nome in nomi:

print ("Ciao " + nome. title() + ", hai un nuovo messaggio!")
print ("Prova la nuova interfaccia!™)

Ciao Andrea, hai un nuovo messaggio!
Ciao Antonio, hai un nuovo messaggio!
Ciao Bruno, hai un nuovo messaggio!

Prova la nuova interfaccia!

La prima istruzione print viene ripetuta una volta per ciascun utente
nell'elenco, come visto in precedenza. Tuttavia, poiché I’ultima riga non ¢
indentata, viene stampata una sola volta.

Quando elabori 1 dati utilizzando un ciclo for, scoprirai che questo € un buon
modo per riassumere un'operazione eseguita su un intero set di dati. Ad
esempio, ¢ possibile utilizzare un ciclo for per inizializzare un gioco iterando
su un elenco di personaggi e visualizzando ogni personaggio sullo schermo.
Dopo questo ciclo potresti usare una funzione (senza indentazione) che
visualizza un pulsante dopo che tutti 1 personaggi sono stati disegnati sullo
schermo.

Python usa l’indentazione per determinare quando una riga di codice ¢
connessa alla riga sopra di essa. Nell’esempio precedente, le righe che
stampavano 1 messaggi ai singoli utenti facevano parte del ciclo for perché
erano indentate. L'uso dell’indentazione da parte di Python rende il codice
molto facile da leggere.

Fondamentalmente, Python utilizza gli spazi bianchi per costringerti a
scrivere codice ben formattato con una chiara struttura visiva. Nei programmi
Python piu lunghi, noterai blocchi di codice indentati a livelli diversi. Questi
livelli di indentazione ti aiutano ad ottenere un senso generale
dell'organizzazione del programma. Quando inizi a scrivere codice ben
formattato, dovrai controllare che tutti 1 cicli siano corretti. Ad esempio, a
volte si indentano blocchi di codice che non devono essere indentati o si
dimentica di indentare blocchi che devono esserlo. Presta attenzione a questo
aspetto perché ¢ una fonte comune di errori, soprattutto tra 1 principianti.

Le sezioni

Tornando ai cicli, puoi anche lavorare con un gruppo specifico di elementi in
una lista che Python chiama sezione (o slice). Per creare una sezione, devi
specificare 1'indice del primo e dell'ultimo elemento con cui vuoi lavorare. Per
produrre 1 primi tre elementi in un elenco, ¢ necessario richiedere gli indici da
0 a 3, che restituiranno gli elementi in posizione 0, 1 e 2. Il seguente esempio
prevede una lista di giocatori in una squadra:

giocatori = ['filippo’, 'michele', 'martina', 'elisa’, 'eva'|

print (giocatori[0: 3])

Questo codice stampa una sezione di questo elenco, che include solo 1 primi
tre giocatori. L'output mantiene la struttura della lista e include 1 primi tre
giocatort nell'elenco:

['filippo', 'michele’, 'martina’l

Se si omette il primo indice in una sezione, Python avvia automaticamente la
sezione all'inizio dell'elenco:

giocatori = ['filippo’, 'michele', 'martina’, 'elisa’, 'eva'|

print (giocatori[: 4])

Il risultato di questo codice sara:

['filippo', 'michele’, 'martina’, 'elisa']

Una sintassi simile ¢ applicabile se si desidera una sezione che include la fine
di un elenco. In tal caso si avra:

print (giocatori| 4 :])

E possibile utilizzare una sezione in un ciclo for se si desidera iterare su un
sottoinsieme degli elementi in un elenco. Nel prossimo esempio passiamo in
rassegna 1 primi tre giocatori e stampiamo i loro nomi come parte di un
semplice elenco:

giocatori = ['filippo’, 'michele', 'martina', 'elisa', 'eva'|
print ("Ecco 1 primi tre giocatori del team:")

for giocatore in giocatorif: 3 |:
print (giocatore. title())

Invece di scorrere l'intero elenco di giocatori, Python itera solo sui primi tre
nomi quindi il risultato € simile al seguente:

Ecco 1 primi tre giocatori del team:
Filippo

Michele

Martina

Le sezioni sono molto utili in diverse situazioni. Ad esempio, puoi aggiungere
il punteggio finale di un giocatore ad una lista ogni volta che quel giocatore
finisce di giocare. In seguito, puoi ottenere i primi tre punteggi di un
giocatore ordinando la lista in ordine decrescente e considerando una sezione
che include solo 1 primi tre punteggi. Quando lavori con i dati, puoi utilizzare
le sezioni per elaborare i1 tuoi dati in blocchi di dimensioni specifiche.
Oppure, quando si crea un'applicazione Web, ¢ possibile utilizzare sezioni per
visualizzare le informazioni in una serie di pagine con una quantita
appropriata di informazioni su ciascuna pagina.

Capitolo 6

Istruzioni decisionali

La programmazione spesso comporta il verificare una serie di condizioni e
prendere una decisione sulla base di tali condizioni. L'istruzione if di Python
ti consente di esaminare lo stato corrente di un programma e di rispondere in
modo appropriato a quello stato.

Il seguente breve esempio mostra come un if consente di rispondere
correttamente a diverse situazioni. Immagina di avere un elenco di auto e di
voler stampare il nome di ogni marchio. I nomi delle auto sono nomi propri,
quindi dovrebbero essere stampati con la funzione title(). Tuttavia, il valore
"bmw" deve essere stampato in maiuscolo. Il seguente codice itera su un
elenco di nomi di auto e cerca il valore "bmw". Ogni volta che il valore ¢ pari
a "bmw", questo viene stampato in maiuscolo anziché avere solo I’iniziale
maiuscola:

auto = ['audi', 'bmw', 'ferrari', 'nissan' |

for marchio in auto:

if marchio == 'bmw":

print (marchio. upper())

else:

print (marchio. title())

Il ciclo in questo esempio controlla innanzitutto se il valore corrente ¢ "bmw",
in tal caso, il valore viene stampato in maiuscolo perché viene usata la
funzione upper(). Se il valore di ¢ diverso da "bmw", questo viene stampato
usando la funzione title():

Audi

BMW
Ferrari
Nissan

Al centro di ogni istruzione if c'¢ un'espressione che puo essere valutata come
vera o falsa e viene chiamata test condizionale . Python utilizza i valori True
e False per decidere se eseguire il codice in un'istruzione if. Se un test
condizionale restituisce True, Python esegue il codice seguendo l'istruzione if.
Se il test restituisce False, Python ignora il codice che segue immediatamente
l'istruzione if.

La maggior parte dei test condizionali confronta il valore corrente di una
variabile con un valore specifico di interesse. Il test condizionale piu semplice
verifica se 1l valore di una variabile ¢ uguale al valore di interesse ma bisogna
prestare attenzione. Come hai visto, il confronto ¢ ottenuto dall’operatore

::):

marchio = 'bmw'

marchio == 'bmw'

True

La prima riga imposta il valore della variabile marchio su "bmw" usando un
unico segno uguale, come hai gia visto molte volte. La riga successiva
verifica se il valore di marchio ¢ "bmw" usando un doppio segno uguale (==).
Questo operatore di uguaglianza restituisce True se 1 valori sul lato sinistro e
destro dell'operatore corrispondono e False se non corrispondono. I valori in
questo esempio corrispondono, quindi Python restituisce True; quando il
valore del marchio ¢ diverso da "bmw", questo test restituisce False.

Il test di uguaglianza ¢ case sensitive in Python, ad esempio, due valori con
lettere maiuscole diverse non sono considerati uguali:

marchio ='Bmw'
marchio == 'bmw'
False

Se la distinzione tra lettere maiuscole e minuscole ¢ importante, questo
comportamento ¢ vantaggioso. Qualora la distinzione non sia importante e
vuoi solo testare il valore di una variabile, puoi convertire il valore della
variabile in minuscolo prima di effettuare il confronto:

marchio ='Bmw'
marchio. lower() == 'bmw'
True

Questo test restituisce True, indipendentemente dalla formattazione del valore
"Bmw" poiché il test non ¢ sensibile alle lettere maiuscole / minuscole. La
funzione lower() non modifica il valore originale che ¢ memorizzato in
marchio, quindi puoi fare questo tipo di confronto senza influire sulla
variabile originale.

Quando vuoi determinare se due valori non sono uguali, puoi combinare un
punto esclamativo e un segno uguale (!=). Il punto esclamativo rappresenta

I’operatore not, come in molti linguaggi di programmazione.

eta= 16
if (eta!=18):
print ("Non sei un diciottenne!")

Se questi due valori non corrispondono, Python restituisce True ed esegue il
codice che segue immediatamente l'istruzione if. Se 1 due wvalori
corrispondono, Python restituisce False e non esegue il codice dopo
l'istruzione if. In questo caso 1 valori non sono uguali e si vedra il messaggio
nella console di output.

Potresti voler controllare piu condizioni nello stesso momento. Ad esempio, a
volte potresti aver bisogno di due condizioni vere per eseguire un’azione,
altre volte potresti essere soddisfatto se anche una sola condizione ¢ vera. Le
parole chiave and e or possono aiutarti in queste situazioni.

Per verificare se due condizioni sono entrambe True contemporaneamente,
utilizza la parola chiave and per combinare i due test condizionali; se ogni
test viene superato, l'espressione complessiva viene valutata come True. Se
uno dei test fallisce o se entrambi 1 test falliscono, 1'espressione viene valutata
False. Ad esempio, puoi verificare se due persone hanno piu di 21 anni
usando il seguente test:

eta 0=22

eta 1 =18

eta 0>=2] andeta 1>=21
False

eta 1 =25

eta 0>=21 andeta 1>=21
True

Abbiamo definito due variabili e le abbiamo inizializzate con valori diversi.
Nel primo caso eta 0 ¢ maggiore di 21 ma eta 1 non lo ¢ quindi Python
valuta I’istruzione come False perché il test a sinistra di and ¢ verificato ma
non quello a destra.

In seguito, 1l valore di eta 1 ¢ stato modificato diventando maggiore di 21,
quindi entrambi 1 test individuali sono verificati, facendo si che I'espressione
condizionale complessiva venga valutata come True. Per migliorare la

leggibilita, ¢ possibile utilizzare le parentesi attorno ai singoli test ma non
sono obbligatorie.

La parola chiave or consente di controllare anche piu condizioni ma ¢
verificata quando uno o entrambi 1 singoli test sono verificati. Un'espressione
or fallisce solo quando entrambi 1 singoli test falliscono. Consideriamo di
nuovo I’esempio precedente ma questa volta cercheremo solo una persona che
abbia piu di 21 anni:

eta 0=22

eta 1 =18

eta 0>=2]oreta 1>=21
True

eta 0=18

eta 0>=21andeta 1>=21
False

Un altro scenario che spesso si verifica durante lo sviluppo di codice Python
consiste nel verificare se un elemento si trova in una lista. A volte ¢
importante verificare se un elenco contiene un determinato valore prima di
eseguire un'azione. Ad esempio, potresti voler verificare se esiste gia un
nuovo nome utente in un elenco di nomi utente prima di completare la
registrazione di qualcuno su un sito Web. Per scoprire se un determinato
valore ¢ gia in un elenco, usa la parola chiave in. Consideriamo un sito Web
con alcuni nomi utente dedicati agli amministratori, in base al valore digitato
dall’utente vuoi mostrare la console di amministrazione o quella per 1’utente.
In particolare, se il nome utente € contenuto nella lista dei nomi utente degli
amministratori, mostreral la console di amministrazione, in caso contrario
mostrerai quella dell’utente.

nome_utente = 'pippo’
amministratori = ['root', 'superuser' , 'master’ |

if (nome utente in amministratori):
print ("console amministratore"
else:

print ("console utente")

Questa tecnica ¢ abbastanza potente perché puoi creare un elenco di valori
essenziali e quindi verificare facilmente se il valore che stai testando

corrisponde a uno dei valori nell'elenco. In questo caso verra mostrata la
console utente invece, sostituendo uno dei valori contenuti nella lista, verra
mostrata la console di amministrazione.

Molto spesso vorrai eseguire un'azione quando viene superato un test
condizionale e un'azione totalmente diversa in tutti gli altri casi. La sintassi if-
else di Python rende possibile tutto ci0, proprio come abbiamo fatto
nell’esempio. Un blocco if-else € simile a un'istruzione if ma 1'istruzione else
consente di definire un'azione o un insieme di azioni eseguite quando il test
condizionale ha esito negativo.

Ancora piu frequentemente dovrai testare piu di due possibili situazioni e per
valutarle puoi usare la sintassi if-elif-else di Python. Python esegue ogni test
condizionale in ordine fino a quando uno di questi ¢ verificato. Quando viene
superato un test, viene eseguito il codice che segue quel test e saltando tutti
gli altri. Molte situazioni del mondo reale coinvolgono piu di due possibili
scenari. Ad esempio, considera un parco di divertimenti che addebita tariffe
diverse per diverse fasce di eta:

e Qratis sotto 1 4 anni
e 5€da4d4alf anni
e 10€ per 1 maggiorenni

Come possiamo utilizzare un'istruzione if per determinare quanto pagare? Il
codice seguente verifica la fascia d'eta di una persona e quindi stampa il
prezzo di ammissione in base all’eta:

age =16

ifage<4:

print ("Entrata gratuita")

elifage < 18 :

print ("L'entrata ha un costo di 5€")
else:

print ("L'entrata ha un costo di 10€")

Il test if verifica se una persona ha meno di 4 anni, in tal caso, viene stampato
un messaggio appropriato e Python salta il resto dei test. La parola chiave elif
¢ essenzialmente un altro if, che viene eseguito solo se il test precedente ¢
fallito. A questo punto della catena, sappiamo che la persona ha almeno 4
anni perché il primo test ha fallito. Se la persona ha meno di 18 anni, viene
stampato un messaggio appropriato e Python salta il blocco else. Se entrambi

1 test if ed elif falliscono, Python esegue il codice nel blocco else. In questo
esempio 1l test verificato ¢ il secondo quindi il blocco di codice in else non
viene eseguito. L'output ¢ una frase, che informa l'utente del costo di
ammissione:

['entrata ha un costo di 5€

Puoi usare anche piu blocchi elif nel tuo codice, ad esempio, se il parco
divertimenti dovesse prevedere uno sconto per gli anziani, potresti aggiungere
un altro test condizionale al codice per determinare se qualcuno ha diritto allo
sconto senior:

age = 16

ifage<4:

print ("Entrata gratuita")

elifage < 18 :

print ("L'entrata ha un costo di 5€")
elif age > 65 :

print ("L'entrata ha un costo di 5€")
else:

print ("L'entrata ha un costo di 10€")

In realta puoi migliorare questo codice, rendendolo piu compatto grazie
all’operatore or. Due messaggi sono uguali quindi puoi raggrupparli in
un’unica condizione if:

age =16

ifage<4:

print ("Entrata gratuita")

elif age < 18 or age > 65 :

print ("L'entrata ha un costo di 5€")
else:

print ("L'entrata ha un costo di 10€")

Conclusioni

Congratulazioni! Hai imparato le basi di Python e applicato le tue conoscenze
a semplici esempi. Abbiamo affrontato alcuni tipici scenari della
programmazione in Python. Da qui, puoi andare in diverse direzioni per
continuare a sviluppare le tue capacita di programmazione, innanzitutto,
dovresti continuare a lavorare su progetti significativi che ti interessano. La
programmazione ¢ piu interessante quando risolvi problemi rilevanti e
significativi e ora hai le competenze per impegnarti in una varieta di progetti.
Puoi inventare un gioco ed implementarlo, scrivere una tua applicazione o un
tuo programma per scrivere file. Potresti voler esplorare alcuni dati importanti
per te e realizzare grafici che mostrino modelli e connessioni interessanti.
Puoi creare la tua applicazione Web o provare ad emulare una delle tue app
preferite.

Quando possibile, invita altre persone a provare a utilizzare 1 tuoi programmi,
questo ti fornisce un feedback molto importante sul tuo lavoro. Se crei un
gioco, lascia che gli altri lo provino e lascia che siano critici. Se crei un’app
Web, distribuiscila online e invita altri utenti a provarla. Ascolta i tuoi utenti e
cerca di incorporare il loro feedback nei tuoi progetti; diventerai sicuramente
un programmatore migliore perché restare fermi sulla propria idea non
sempre aiuta. Quando lavori ai tuoi progetti, ti imbatterai in problemi che
sono difficili o addirittura impossibili da risolvere da soli. Trova dei modi per
chiedere aiuto tramite 1 motori di ricerca o chiedi alla comunita Python.

Unisciti ad un gruppo di utenti Python della tua zona o esplora alcune
community di Python online. Dovresti cercare di mantenere un equilibrio tra
il lavoro su progetti che ti interessano e lo sviluppo delle tue abilita in Python
in generale. Sono disponibili online molte fonti di apprendimento riguardo a
Python e un gran numero di libri si rivolge a programmatori con un po’ di
esperienza, proprio come te. Molte di queste risorse ti saranno accessibili ora
che conosci le basi e sai come applicare le tue skills.

Adesso puoi lavorare con 1 tutorial e altri libri su Python basandoti
direttamente su ci0 che hai imparato qui e approfondendo la tua
comprensione della programmazione in generale e di Python in particolare.
Quindi, quando torni a lavorare sui progetti dopo esserti concentrato
sull'apprendimento di Python, sarai in grado di risolvere una varieta piu
ampia di problemi in modo piu efficiente. Congratulazioni per essere arrivato
a questo punto e buona fortuna per il tuo continuo apprendimento!

Indice

PROGRAMMARE IN PYTHON
Premessa
Capitolo 1 Panoramica

Capitolo 2 Installazione
Windows
Linux
macOS
Editor di testo
Capitolo 3 Le variabili
Stringhe
Numeri
Commenti
Capitolo 4 Liste
Modificare elementi
Aggiungere elementi
Rimuovere elementi
Ordinamento e funzioni utili
Capitolo 5 Cicli
Ciclo for
Le sezioni
Capitolo 6 Istruzioni decisionali

Conclusioni

O© © 9 O\ W NN

10
12
15
19
21
23
25
26
26
28
30
30
33
35

41

	PROGRAMMARE IN PYTHON
	Premessa
	Capitolo 1 Panoramica
	Capitolo 2 Installazione
	Windows
	Linux
	macOS
	Editor di testo

	Capitolo 3 Le variabili
	Stringhe
	Numeri
	Commenti

	Capitolo 4 Liste
	Modificare elementi
	Aggiungere elementi
	Rimuovere elementi
	Ordinamento e funzioni utili

	Capitolo 5 Cicli
	Ciclo for
	Le sezioni

	Capitolo 6 Istruzioni decisionali
	Conclusioni

