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7.1.7. Se g(2)=1¢e g(¥) > 1, allora ram(F) = 2(g(¥¢) + 1).
7.1.8. Se g(2) >1e g(€) > g(2), allora ram(F) < 2(g(¢) — 29(2) + 1).

7.2. FORMULE DI PLUCKER PER IL GENERE. L’argomento chiave & il seguente. Sia % la curva
proiettiva piana di equazione f(Xy, X1, X2) = 0 di grado d. Eventualmente cambiando il riferimento

possiamo supporre che (%) ¢ ¢ e che la retta impropria Xy = 0 non sia tangente a €. Sia e = degy, f
e consideriamo la mappa 7 : € — P¢ che manda (Xo, X1, X>) in (Xo, X1) (nella parte affine manda

(X,Y) in X, la proiezione sull’asse delle ascisse). Allora i punti di ramificazione di 7 sono tutti e soli
quelli con tangente “verticale”, cioe i punti della curva % che appartengono anche alla polare di ¥

rispetto a (%) (ma non alla retta impropria). Si tratta dei punti affini che soddisfano alle equazioni
f=0ez%f=0
Possiamo usare la formula di Riemann-Hurwitz per m: ¢(%) = 1 — deg(w) + ram(n)/2, tenendo

conto che deg(m) = deg(%’) e valutando ram().
7.2.1. In qualche caso si possono fare i conti anche violando le condizioni richieste.

7.2.2. CASO DI CURVE NON SINGOLARI. Se % € non singolare, e il suo grado & d, possiamo
supporre d = degy, f, e basta calcolare i punti di intersezione di %" con la polare Z.,(%’), che sono
esattamente d(d — 1) per il teorema di Bézout. Dunque risulta:

dd—1) (d-1)(d-2)

g(€)=1—-d+ 5 = 5

(formula genere-grado per curve proiettive piane lisce, che gia conoscevamo).

7.2.3. CASO DI CURVE IPERELLITTICHE. Se consideriamo le curve di equazione Y2 = [[;" | (X —
a;) (o # a; se i # j) sappiamo che I'unico punto singolare & il punto improprio dell’asse Y, e con
tangente esattamente la retta impropria. Tuttavia, la proiezione sull’asse delle X & chiaramente un
rivestimento ramificato con due fogli, sono di ramificazione (uno) tutti i punti della curva sull’asse
delle X, e 'unica incertezza riguarda il comportamento del punto improprio, che potrebbe portare
ramificazione 1 oppure 0. D’altra parte, poiché la ramificazione totale dev’essere pari, risulta neces-
sariamente questo: se d = 2n & pari, allora il punto improprio non ramifica, se d = 2n+1 & dispari,
allora il punto improprio ha ramificazione 1. Quindi abbiamo

(%) = 1-2+2d/2=d—-1 sed=2n
KROIZ V124 (2d+2)/2=d sed=2n+1.

Otteniamo quindi la seguente tabellina che distingue di casi pari e dispari delle ipergeometriche:

n 1 2 3 45 6 7 8
genere (d = 2n) 01 2 3 45 6 7
genere (d=2n+1) 1 2 3 4 5 6 7 8

da cui si osserva che ogni genere pud essere realizzato da curve proiettive piane ipergeometriche, (si
tratta quasi sempre di curve singolari). Si noti anche che curve ellittiche (iperellittiche di grado 3,
non singolari) e iperellittiche di grado 4 sono ambedue di genere 1:

grado 1 2 3 4 5 6 7 8 9 10 11 12
genere 0 0 1 1 2 2 3 3 4 4 5 5

7.2.4. CASO DI CURVE SINGOLARI. Per trattare in generale il caso di curve singolari, bisogna
nel ragionamento generale prima esposto tener conto di quanto i punti singolari contribuiscono alla
intersezione della curva con la polare descritta, e di quanto effettivamente essi contribuiscano alla
ramificazione totale.

Conviene percio che il sistema di riferimento sia tale che nessuna tangente nei punti singolari
sia una retta “verticale”. Per ogni tale punto P possiamo distinguere i rami J3;; allora & chiaro
che ciascuno contribuisce con msp,(¢”) al calcolo di intersezione di ¢ con 4’, mentre & chiaro che
contribuisce con mg, — 1 alla ramificazione totale. Questo porta alle formule di Pliicker generalizzate
per il genere:

(d—1)(d-2) Dpeg(mp(?’)—myp+1)

9(%¢) = 5 3
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