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(4) se ¢ : ¢ —P(K) & mappa razionale, allora tutte le fibre p* X al variare di A\ € P*(K) sono tra loro
linearmente equivalenti. Quest’ultima proprieta giustifica il nome di equivalenza lineare usato: si
tratta di “sezioni lineari” di mappe razionali verso la retta proiettiva.

2.6.3. Per curve algebriche in P"*(K), tra le famiglie di divisori linearmente equivalenti tra loro
troviamo le “sezioni iperpiane” della curva, cioe i divisori tagliati sulla curva dagli iperiani dello spazio
proiettivo.

3. Sistemi lineari (di divisori) sulle curve.

3.1. SISTEMI LINEARI DI DIVISORI. Sia D € Div(%) un divisore su una curva algebrica €.
L’insieme
|ID|={Fe€Div(¢¥) : E>0, E~ D}
dei divisori non negativi linearmente equivalenti a D si dice sistema lineare completo di D e ha
struttura di spazio proiettivo su K, con K-spazio vettoriale sovrastante £ (D) dato da

ZL(D)={pe K(¥) : div(p)+ D =0}

(si tratta delle funzioni razionali che possono avere poli in  d’ordine < ordy (D) se ordy (D) > 0,
devono avere zeri d’ordine > ordy (D) se ordgp(D) < 0, ed essere regolari altrove). In particolare
abbiamo dim |D| = dimg £ (D) — 1.

Ogni sottovarieta lineare proiettiva di |D| si dice un sistema lineare.

L’unica asserzione da verificare riguarda la struttura di spazio proiettivo, e si dimostra osservando
che l'applicazione

P(Z (D)) — |D| definita da fr—div(f)+ D

¢ ben definita e chiaramente una biiezione.

Perché nella definizione siamo interessati ai divisori effettivi?

3.1.1. GRADO E DIMENSIONE DI SISTEMI LINEARI. Dato un sistema lineare G < |D|, diciamo
dimensione di G la sua dimensione come sottospazio proiettivo, e grado di G il grado di un qualunque
suo elemento (hanno tutti lo stesso grado, trattandosi di divisori linearmente equivalenti tra loro).

3.1.2. TERMINOLOGIA SUI SISTEMI LINEARI. Classicamente un sistema lineare di dimensione r
e grado n sulla curva € viene detto “un g; di €”. Eviteremo questa terminologia.

Useremo invece queste notazioni: se D & un divisore, £(D) = dimg .Z (D) (dimensione come
spazio vettoriale su K), d(D) = dim | D| (dimensione come spazio proiettivo, quindi d(D) = ¢(D) — 1),
deg(D) ¢ il grado di D. Di solito ci occuperemo di sistemi lineari completi, ma in ogni caso le stesse
notazioni si usano per un sistema lineare G qualsiasi: £(GQ), d(G), deg(G).

3.1.3. OSSERVAZIONI.

(0) Usando il divisore nullo, troviamo che £(0) = K e |0] = {0}. Quindi £(0) =1 e d(0) = 0.
Risulta subito che £ (D) > K se e solo se D > 0.

Se deg(D) < 0 allora .Z(D) = {0} (abbiamo imposto che le funzioni abbiano piu zeri di quanti

poli siano permessi) e quindi |D| = &. Cioe £(0) =0 e d(0) = —1.

(1) Se D ~ D’ (linearmente equivalenti), allora |D| = |D’| (proprio uguali); il viceversa vale se i
sistemi lineari non sono vuoti: se |D| = |D'| # & allora D ~ D’.

(1) Se D ~ D’ (linearmente equivalenti), allora abbiamo un isomorfismo (D) — £ (D’) di K-
spazi vettoriali definito da ¢ — @ se D — D’ = div(¢)) (cioe indotto dalla moltiplicazione per un
elemento non nullo di K(%)), e quindi £(D) = £(D’) e d(D) = d(D'). Sinoti che la corrispondente
proiettivita |D| — |D’| manda F in E + div(y) (non & I'identita).

Si osservi anche che il viceversa del risultato detto e falso: se abbiamo un isomorfismo di K-spazi

vettoriali £ (D) — £ (D’), fosse anche indotto dalla moltiplicazione per un elemento non nullo di

K(%), non & detto che D e D’ siano equivalenti.

(2) Se D < D' allora risulta £ (D) < .Z(D’) (viceversa falso), quindi ¢(D) < 4(D’) e d(D) < d(D").
Si osservi che la corrispondente “inclusione” |D| < |D’| manda F in E + (D' — D).

(3) Inoltre, {(D")—¢(D) = d(D")—d(D) < deg(D’)—deg(D) da cui deg(D)—£(D) < deg(D’)—£(D").
Si procede infatti per induzione dal confronto di D con D' = D + B, in cui la differenza delle
dimensioni & 0 oppure 1: £(D +P) — (D) = d(D +B) — d(D) € {0, 1}.
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