96 Studio locale delle Curve IV.35.

e la parametrizzazione del flesso (& nell’origine) {X = . Le facili stime sugli ordini (in t) delle

Y=—trt24..

entrate della matrice hessiana danno il risultato voluto.
3.2. PLUCKER. Tenendo conto del teorema di struttura di singolaritd che lega molteplicita di
posti e punti, la classe d* di una curva € di grado d e il numero f dei suoi flessi si calcolano in base

alle formule
d*=d(d—1)=Y myp(¢') e f=3d(d-2) me

in cui la somma é estesa ai posti di € centrati sui punti singolari di € (cosmche si tiene conto di tutti
i contributi dei punti singolari di ¢ alla intersezione con €”), e ove ¢’ & una generica prima polare
di € (formule generalizzate di Pliicker). “Generica” polare significa una polare che si comporti come
“quasi tutte” le altre: la molteplicita mg(€”) varia al variare della polare ¢”, ma al di fuori di un
insieme di polari definito da certe condizioni speciali (geometricamente: polari rispetto a punti il cui
fascio di rette contiene tangenti nei punti singolari) tale molteplicita & costante, e minima. Si noti in
particolare che, nella formula, per ogni posto si possono usare polari diverse, purché generiche (per
quel posto)!
Ora ci ¢ agevole calcolare i contributi delle varie singolarita.

Vo f2+ e equazione f = XY + fso otteni-
amo myp(¢’) = 1 e myp () = 3. Quindi ogni nodo contribuisce con —2 e —6 rispettivamente alle due

formule generali (si ricordi che un nodo ha due posti lineari, per cui mp (€¢,¢')=2emp(€,#)=06).

3.2.1. Nobi. Usando parametrizzazione standard {

3.2.2. PUNTI ORDINARI. Consideriamo Pequazione f =Y [/ Y @; X))+ f>m, € parametriz-
zazione {))f:ffq_m per l'unico posto B con tangente V(Y). Allora mgp(€¢') = m—1 e mgp(H) =

3(m—1). Dunque, poiché un punto ordinario m-uplo possiede m posti, abbiamo mp(€,€’) = m(m—1)
e mp(¥¢, ) = 3m(m—1), e tale punto contribuisce con —m(m—1) e —3m(m—1) alle due formule
generali.

2
3.2.3. CusPIDI ORDINARIE. Usando parametrizzazione standard { =t

Y=t3+4-..
Y2+ X3 +Y fo+ f-3 otteniamo mg(€”’) = 3 e mg () = 8. Quindi ogni cuspide contribuisce con
—3 e —8 rispettivamente alle due formule generali (si ricordi che una cuspide ha un solo posto).

3.2.4. CUSPIDI SUPERIORI ORDINARIE. Consideriamo l'equazione Y™ + X" + Y f. + fo, e
X=t"
Y=tr+l4...

e myp(H) = (3r+2)(r—1). Quindi ogni cuspide ordinaria di molteplicita r (diremo una (r—1)-cuspide
ordinaria) contribuisce con —(r+1)(r—1) e —(3r+2)(r—1) rispettivamente alle due formule generali
(si ricordi che anche cuspidi superiori hanno un solo posto).

3.2.5. Quindi nel caso di curve aventi solo punti multipli ordinari e cuspidi ordinarie, possiamo
specializzare le formule generalizzate di Pliicker nel modo seguente:

d* Zmp p—l Z(ré—l)

P ordinari Q@ cuspidi ordinarie

e equazione f =

parametrizzazione { per I'unico posto di centro l'origine. Allora abbiamo mgq(¢”’) = r 21

f=3dd—2) = 3mp(mp—1) =Y (3rq +2)(rq — 1)
P ordinari Q@ cuspidi ordinarie
ove mp indica la molteplicita del punto ordinario P e r¢ indica la molteplicita della cuspide ordinaria
Q. In particolare (ri)troviamo le prime due formule di Pliicker, nel caso vi siano solo nodi e cuspidi
ordinarie.

3.2.6. TAcNODO. Si consideri I'equazione Y2 + Y fo + X* + Y f3 + f-4 e usiamo la parametriz-
X=t
Y=at?4--

polinomio che la definisce (qual’e?). Allora risulta mg(¢’) = 2 e myp(#°) = 6. Dunque un tacn-
odo contribuisce alle formule generali con —4 e —12 (vi sono due posti, per cui mp(€,¢’) = 4 e
mp (€, ) = 12). Che succederebbe se la condizione posta non fosse realizzata?

zazione { per uno dei due posti nell’origine. Supponiamo che « non sia radice doppia del

3.3. POsTI DUALI. Possiamo ora fare uno studio preciso delle curve duali.
11 duale P* di un posto P & definito come P x P’, ove si & scelta una parametrizzazione di P e P’ ¢ la
derivata (componente per componente) rispetto al parametro. Sinoti che mentre la definizione di curva
duale non fa riferimento ad alcuna scelta di coordinate, qui definiamo il duale di un posto scegliendone
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