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(10)

ha quattro radici distinte, due di ordine 1 (che cominciano con %\/5)( +--+) e due di ordine
nullo (che cominciano con +1 + 32X+ ---) dunque quattro fattori in K[X][Y].

\ 2
\

\

\

|
|
|
|
|
|
|
|
|
|
|
|
e

ha due radici d’ordine 2 e quattro d’ordine 1/2; vi sono quattro fattori irriducibili in K[X][Y].
2n

2n—2 4,

y?2n — X?2n — X272 (iperellittiche pari) n

n in
ha 2n radici distinte tutte di ordine (n—1)/n, e in K[X][Y] vi sono due fattori irriducibili; le radici

sono y¢ = (X5 (14X2) 7 = (X > (1/1,2") X2 ove ( varia sulle radici 2n-esime dell’unita.
I due fattori sono [.._; (Y —yc) che tiene conto delle radici n-esime di 1 e J..__; (Y —yc) che

tiene conto delle altre (radici n-esime di —1).

2n+1

2n—14¢,,

y2n+l _ x2n+l _ y2n—1 (iperellittiche dispari)
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2n+1

ha 2n+1 radici distinte tutte di ordine (2n—1)/(2n+1), e in K[X][Y] & irriducibile; le radici sono
Yo = CX%(H—Xz)ﬁ = CX% > (1/(2?+1))X% ove ( varia sulle radici (2n+1)-esime
dell’unita.

studiare il punto singolare delle parabole generalizzate.

0.9.5. PROBLEMA. Che cosa puo invece succedere se I’equazione per ¢; presenta radici multiple?

Come mai questa ipotesi semplifica molto la situazione? Il problema fondamentale & che non & possibile
essere sicuri di quanto ramifichi la variabile (cioé del denominatore necessario all’esponente) finché
non si vedono tante soluzioni distinte quanto richiede quel lato del poligono...
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0.9.6. ESEMPI DI RAMIFICAZIONE TARDIVA.

Si considerino i casi di f(X,Y) = (Y — X)? — X3 (con soluzioni Y = X + X3/?) e f(X,Y) =
(Y — X)? — X* (con soluzioni Y = X + X?); guardare i poligoni di Newton.

Consideriamo il caso f(X,Y) = (Y — X?2)?2 — V3. 1l poligono di Newton (rispetto a Y) ha un lato
di pendenza —2, lunghezza 2, e radice doppia ¢; = 1. Costruendo il poligono secondario (quello
di f(X,X2%(1+Y1)) rispetto a Y1) si trova un lato di pendenza negativa —1, lunghezza 2 e radici
¢z = +1. Quindi le due soluzioni cominciano con X2 + X3 + ... (niente ramificazione, due fattori
formali).

Consideriamo il caso f(X,Y) = (Y — X?)?2 — XY3. 1l poligono di Newton (rispetto a Y) ha un
lato di pendenza —2, lunghezza 2, e radice doppia ¢; = 1. Costruendo il poligono secondario
(quello di f(X, X?(1+Y1)) rispetto a Y1) si trova un lato di pendenza negativa —3/2, lunghezza
2 e radici ¢, = +1. Quindi le due soluzioni cominciano con X2 4 X7/2 +. .. (soluzioni in K[X /2],
un solo fattore formale).
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