90 Studio locale delle Curve IV.0.

DIMOSTRAZIONE. ~ L’unica cosa che resta da verificare ¢ che i fattori []]_, (Y — y;(X)) sono
in effetti in K((X))[Y]. Per questo osserviamo che un elemento ¢(X'/*) € K(X'/*)) appartiene a
K (X)) se e solose p(X1/*) = o(CX'*) per ogni ¢ radice s-esima (eventualmente primitiva) dell’unita.
Quindi, dato un elemento y(X /) € K(X/#)), allora il prodotto [1¢ y(¢X'/*) appartiene a K ((X)).
Si osservi poi che siccome il polinomio di partenza aveva coefficienti in K (X)), se possiede una radice
y(X'/*) € K((X'/*)) allora possiede anche tutte le radici coniugate y(¢X'/*) (ove ¢ varia sulle radici
s-esime dell’unita). In effetti si tratta di osservazioni elementari della teoria di Galois. g

0.9.3. OSSERVAZIONE SULLA RICERCA DI RADICI PER POLINOMI IN K[X][Y]. Per capire a
fondo la situazione, bisognerebbe saper rispondere alle due domande seguenti. Come si determina il
denominatore comune degli esponenti di una soluzione (cioé per quale s minimo la soluzione appartiene
a K(X'*))? E come si determina quanti fattori irriducibili in K ((X))[Y] comporta una pendenza
unica del poligono? Nel caso di polinomi in K [X][Y], si puo rispondere in modo abbastanza semplice.

Se poniamo s; = r/s e supponiamo che I’equazione polinomiale per ¢; non abbia radici multiple,
allora la soluzione cercata & in K ((X'/*)). Infatti si puo applicare il lemma di Hensel al polinomio che
si ottiene sostituendo X = U® e Y = U"V, ottenendo che la soluzione che ha ¢; come primo termine
¢ a coefficienti in K[U]. Questa risposta & sufficiente, perché il caso di radici multiple puo essere
riconosciuto tramite il discriminante Ry (f, Dy f) per poi eventualmente trovare il fattore comune di
feDyf.

Se poi abbiamo un lato di lunghezza nq e di altezza mq con m,n, q interi e m,n coprimi (dunque
pendenza —m/n), allora vi sono ng soluzioni in K (X*/™)). Scelta una di queste, sia y(X /™), vi sono le
sue coniugate y(¢X 1 ™) ove ( varia sulle radici n-esime dell’unita, che insieme danno luogo ad un fat-
tore formale irriducibile (formale perché stabile per coniugio con le radici n-esime dell’unita, irriducibile
perché nessun divisore proprio ha la stessa stabilitd). Dunque in tale situazione vi sono esattamente ¢
fattori irriducibili (volendo essere pitl formali: possiamo definire una relazione di equivalenza tra le nq
radici dicendo che due radici y(X'/") e y/(X'/™) sono equivalenti se ¢/ (X/™) = y(¢X/™) con (" = 1;
abbiamo allora ¢ classi di equivalenza formate da n elementi ciascuna, e ogni classe di equivalenza da
luogo ad un fattore formale).

0.9.4. EsEMPI. Analizziamo i casi dei poligoni di Newton di alcune curve gia incontrate; con-
sigliamo al lettore di procedere in qualcuno dei passi per trovare le soluzioni di Puiseux.

(1) Y2 — X3 — X2 (nodo)
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ha due radici distinte in K[X] d’ordine 1 che sono yy = £X(X+1)Y/2 = £X 3777, (142)Xi e lo
fattorizzano in K[X][Y] come (Y —y)(Y —y_).

(2) Y2 — X3 (cuspide) \‘»:\—3/2

ha due radici distinte in K[X'/?] d’ordine 3/2 che sono y+ = £X3/2, Pertanto ¢ irriducibile in
K[X][Y].

(3) Y3 —Y?2+ X3 (altra cuspide)

ha tre radici distinte, una di ordine nullo (che comincia con 1—-X3—-2X%+-..), e due di ordine

3/2 (una comincia con X%+%X3+%X%+ .-+ Paltra l'opposta); queste due formano un fattore
irriducibile in K[X][Y] (quindi due fattori irriducibili in K[X][Y]).

(4) Y*— XY + X* (bifoglio)

ha quattro radici, una di ordine 3 (che comincia con X3+ X+ ...) e le altre tre di ordine 1/3

(una comincia con X %—i—%X 34... e le altre ne sono le coniugate), che insieme danno luogo a un
fattore irriducibile in K[X][Y] (quindi due fattori irriducibili in K[X][Y]).

(5) Y4 —Y2-3XY + X% — X2 (altro bifoglio)
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