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distinti 0 < j # k < d tali che

Ty — T4
s =rcbka(=s) cot r—re=si(k—j),  dwmque s =T

e inoltre

Z aici =0.

i t.c. rit+isy=s’
La prima condizione identifica i possibili s; come le pendenze di certe rette nel piano cartesiano, e la
seconda condizione determina i possibili ¢; (non nulli) come zeri di una equazione di grado imax — imin
ove i pedici indicano il minimo e il massimo indice ¢ per cui si realizza la condizione della sommatoria.

Conviene quindi introdurre quest’oggetto: si dice poligono di Newton di f(X,Y) = Z?:o a;(X)Yie

K((X)[Y] il poligono che si ottiene facendo I'inviluppo convesso dei punti del piano dati dalle
semirette verticali sopra i punti (i,ordxa;(X)) per i = 1,...,d; in effetti ci interesseremo solo ai
lati inferiori della figura, che si possono ottenere come sequenze di segmenti che uniscono due o pit
dei punti dati, e lasciano gli altri al di sopra. Chiameremo pendenza di un lato il suo coefficiente
angolare usuale, e lunghezza del lato la lunghezza della proiezione sull’ascissa. Si osservi che ogni

lato ha estremi ad ascisse intere e ordinate razionali, e dunque le pendenze sono tutte razionali e le
lunghezze tutte intere; la somma delle lunghezze é d.

Un poligono di Newton ha una forma di questo \ T
tipo, in generale: per un polinomio Zgo a;(X)Y?" in “\\l
K((X)[Y] con ordxa;(X) = 6, 13/2, 1, 1/6, 2, —3/2, N
3, —2,-3/4,1/2,5/2 rispettivamente per i = 0,1, ..., 10.
(dico questo, perché quelli che vedremo poi saranno pi-
uttosto semplici).

Riprendendo il discorso: gli esponenti s; cercati sono esattamente gli opposti delle pendenze del
poligono, e le equazioni che determinano i coefficienti ¢; sono indiciate sui punti che effettivamente
cadono su un lato del poligono.

Ora potremo iterare il procedimento, sostituendo ¥ = X®!(¢; 4+ Y1), ponendo f1(X,Y) =
f(X, X% (c; + Y1)) e rifare a f; e Y7 cid che abbiamo fatto a f e Y, solo che cercheremo espo-
nenti sp > s1, ovvero pendenze —sh del poligono di Newton di f; minori di 0. Conoscendo gia il
teorema di Newton-Puiseux, sappiamo che questo procedimento dara le radici cercate; se volessimo
invece dimostrare quel teorema usando questo procedimento costruttivo dovremmo dimostrare che
(a) il procedimento non si blocca a qualche passo finito, a meno che non dia una soluzione polinomiale:

cioe al passo m-esimo il poligono di Newton di f; deve avere un lato di pendenza negativa;
(b) la sequenza degli esponenti razionali s; ammette un denominatore comune limitato.

La dimostrazione di questi fatti si puo trovare nel libro di R.J.Walker.

0.9.1. CASO DI UNICA PENDENZA. Un polinomio f(X,Y) € K((X))[Y] ha un poligono di
Newton di pendenza unica —q se e solo se tutte le sue radici hanno lo stesso ordine q.

Infatti una implicazione viene dalle considerazioni fatte. Viceversa, possiamo supporre che il
polinomio sia monico; se tutte le radici y;(X) hanno ordine g, allora il coefficiente a;(X) di Y7 in
[L;(Y —y;(X)) & un polinomio simmetrico di grado d — j nelle y;(X), e dunque il suo ordine ¢ maggiore
o uguale a (d — j)g, e dunque il punto (j,ordxa,;(X)) sta sopra il punto (4, (d — j)q) che a sua volta
appartiene alla retta congiungente (0,ordxao(X)) = (0,dq) con (d,ordxaq(X)) = (d,0), la quale &
quindi I'unica retta (giustamente di pendenza —¢q) del poligono di Newton.

0.9.2. TEOREMA (NEWTON).  Sia f(X,Y) = 320 a;(X)Y? € K((X)[Y]. Per ogni lato di
pendenza —q e di lunghezza s del suo poligono di Newton vi sono esattamente s radici y; (X), ..., ys(X)
del polinomio in K (X)), non necessariamente distinte, tutte di ordine q.

Inoltre, il prodotto [[;_,(Y — y;(X)) & elemento di K((X))[Y], con poligono di Newton di unica

pendenza —q, che divide f(X,Y) (in K((X))[Y], ma si faccia attenzione al fatto che non é necessaria-
mente irriducibile).
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