88 Studio locale delle Curve IV.0.

In particolare K[[X] non ¢ a ideali principali, anche se si tratta di un anello a fattorizzazione unica
(perché?).

0.8.4. CORPO DEI QUOZIENTI. Si osservi che, evidentemente, K[[X] & integro, e quindi ammette
un corpo dei quozienti che indicheremo con K ((X)) e che chiaramente si descrive come unione dei
corpi quozienti di serie formali:

E@)= U K= J Ux Kix.
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0.8.5. I usuale dire che le “variabili” X+ sono ottenute per “ramificazione da X", ovvero sono
ottenute “risolvendo ’equazione Y* = X”.

0.8.6.  Si faccia attenzione al fatto che non ogni espressione del tipo >, a; X% con (a; € K
e) ¢; € Q appartiene a K[[X] o K((X)); oltre alle condizioni sulla finitezza della eventuale coda di
Laurent, bisogna anche che gli esponenti razionali ¢; abbiamo un denominatore comune (finito).

0.8.7. TEOREMA (NEWTON-PUISEUX).  Se K é algebricamente chiuso di caratteristica zero,
allora il corpo K ((X))) é algebricamente chiuso.
Di conseguenza abbiamo che:
(1) se f(X,Y) € K[X,Y] di grado d = degy f = deg f allora f(X,Y) = [["_,(Y — fi(X)) con
1:(X) € K((X);
(2) se inoltre f(X,Y) € K[X,Y] era polinomio irriducibile, allora non ha radici multiple in K (X)),
né fattori irriducibili multipli come elemento di K (X))[Y]; infatti in tal caso avrebbe discriminante
nullo e quindi radici multiple in K(X) (impossibile se ¢é irriducibile...).

DIMOSTRAZIONE. Proponiamo una dimostrazione per induzione, non costruttiva, di un risultato
piu preciso: se f(X,Y) € K((X))[Y] ¢ polinomio di grado coprimo con la caratteristica del corpo K
(dunque sempre se K ha caratteristica nulla) algebricamente chiuso allora esso ammette uno zero in
K((X)). La dimostrazione usa il lemma di fattorizzazione di Hensel.

Infatti iniziamo col notare che possiamo supporre f(X,Y) € K[X][Y] monico (ap(X) = 1) di
grado d, con coefficiente nullo del termine Y9~ e min{ordxas(X),...,ordxaq(X)} = 0. Questo
perché:

(a) con l'usuale sostituzione (di Y con Y — a;(X)/d) si puo far sparire il coefficiente a;(X) di Y?~1;
(b) sostituendo l'incognita ¥ con XY, ed eliminando X i coefficienti a;(X) sono cambiati in

X g, (X), e si pud scegliere a € Q in modo che gli ordini risultino positivi, e il minimo nullo;
(¢) sostituendo X con X¢ per e € N denominatore comune degli esponenti frazionari si pud supporre

a;(X) € K[X].

Tutte queste trasformazioni permettono, trovata una radice, di ottenere una radice per il polinomio
di partenza (per I'ultima, si noti che K (X)) = K(X*°))).

Sia allora f(X,Y) € K[X][Y] come detto, e osserviamo che f(0,Y) € K[Y] non & Y% e deve
avere almeno due radici distinte (altrimenti sarebbe del tipo (Y —¢)? con d primo con p, e il termine in
Y4=1 sarebbe non nullo). Dunque si fattorizza come prodotto di due fattori coprimi non banali, cioe
di grado strettamente minore, e uno dei due deve avere grado non divisibile per p. Dunque usando il
lemma di fattorizzazione di Hensel si puo procedere per induzione su d, essendo ovvio per d = 1; nel
passo induttivo (almeno) uno dei due fattori propri ha una radice (per ipotesi induttiva). O

0.8.8. Si consideri Y? —Y — X! su un corpo di caratteristica p quale esempio di polinomio
privo di radici in K((X)).

0.9. PoriGoNO DI NEWTON. Se vogliamo determinare in effetti le radici d’un polinomio a
coefficienti in K((X)) conviene introdurre come strumento il poligono di Newton del polinomio. Mo-
tiviamone 1'uso ragionando sulle condizioni necessarie affinché una serie di Puisuex

YX) =1 X + X2 + 3 X -0 € K((X))
con s; € %Z e 51 < 83 < 83 < --- sia zero di un polinomio
FXY) = ao(X) + ar(X)Y + az(X)Y? + -+ +aa(X)Y? € K(X)[Y]
ove ordxa;(X) =r; e a;(X) = ;X" +--- € K((X)). Affinché cid succeda & necessario che il termine

d’ordine minimo in f(X,y(X)) si annulli, e per questo ¢ necessario che esistano almeno due indici
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