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Vediamo, per capire il procedimento, il passo successivo: cerchiamo a; tale che f(X, a9+ a1 X) =
0 (mod X?). Poiché

f(X,a0+a1X) = f(X,a9) + Dy f(X,a0)a; X (mod X?)
= Dx f(0,a0)X + Dy f(X,a0)a1 X (mod X?)

vogliamo che Dx f(0,a9) + Dy f(X,a9)a; = 0 (mod X), e dunque troviamo necessariamente che
dev’essere a; = —Dx f(0,a9)/Dy f(0,a0) (si noti che il denominatore ¢ non nullo per ipotesi).

Vediamo ora il passo induttivo; supponiamo quindi di avere y,, (X) = Z?:o a; X* con la proprieta
che f(X,yn(X)) = 0 (mod X"*1) e cerchiamo a,y; tale che per y,.1(X) = Y77 a; X’ si abbia
F(X,yns1(X)) =0 (mod X"*2). Siccome

F(X, yns1(X)) = f(X, yn(X)) + Dy f(X, yn(X))an 1 X" (mod X"F?)
= D% £(0,,(0) X" + Dy f(X, yn(X))an11 X" (mod X™+?)

vogliamo che D% £(0, ag) + Dy f(X, yn(X))ans1 = 0 (mod X), e dunque troviamo necessariamente
any1 = —D%£(0,a0)/Dy f(0,a0) (si noti che il denominatore & sempre lo stesso, non nullo per
ipotesi). O

0.6.1. RADICI DI SERIE FORMALI. In particolare si osservi che ogni serie formale f(X) di ordine
zero su un corpo algebricamente chiuso ammette n radici n-esime distinte per ogni n primo con la

caratteristica del corpo (ogni n in caratteristica nulla); infatti si tratta di cercare gli zeri del polinomio
fX,)Y)=Y"— f(X), e f(0,Y) =Y" — f(0) ammette n zeri distinti in K se f(0) # 0.

0.7. TEOREMA (LEMMA DI HENSEL DI RIALZAMENTO DELLE FATTORIZZAZIONI). Sia
f(X,Y) € K[X][Y] (polinomio inY a coefficienti in K[X]) monico, e supponiamo che f(0,Y) si fat-
torizzi in fattori primi tra loro g1 (Y)g2(Y) in K[Y]. Allora f(X,Y) si fattorizza come g1 (X,Y )g2(X,Y)
in K[X][Y], di gradi nella Y rispettivamente quelli di g1(Y) e g2(Y), con ¢1(0,Y) = q1(Y) e
92(0,Y) = g2(Y).

DIMOSTRAZIONE.  Si osservi che il polinomio f(X,Y) € K[X][Y] si scrive come serie in X a
coefficienti nei polinomi in Y come

fX,Y)=fo(V)+ X + fo(V)X2+ -+ (V)X - -

ove f;(Y) = D% f(0,Y)/i! sono polinomi in Y di grado minore del grado di f (in V). Esprimendo
allo stesso modo le due serie cercate ¢1(X,Y) e g2(X,Y), si tratta di determinare ricorsivamente i
polinomi g1 ;(Y) e g2,:(Y) con gradi minori di quelli di g;(Y) e g2(Y) rispettivamente. Questo puo
essere fatto perché per ipotesi possiamo usare g10(Y) = g1(Y) e g2.0(Y) = ¢2(Y"), che sono primi tra
loro e per questo permettono il passo induttivo. O

0.7.1. Che relazioni vi sono tra i due lemmi di Hensel?

0.8. DEFINIZIONE (SERIE DI PUISEUX). Introduciamo i simboli X5 con r,s € N, s # 0,
1

soggetti alle relazioni Xt = X, (X5 =XfeXw = X%; da queste relazioni segue che X &n = X = .
Definiamo allora I’anello delle serie di Puiseux, o anello delle serie ad esponenti frazionari come

K[x]= |J KIX*]
0#s€eN
con le operazioni di somma e prodotto unicamente definite dal fatto di restringersi alle operazioni
.. . 1 . . . . . . 1 ..
usuali in ciascun anello K[X 5] (ogni coppia di elementi di K[ X] appartiene a qualche K[X 5] e ivi
possono essere sommati e moltiplicati).

0.8.1. La notazione per le serie di Puiseux non ¢ standard, e credo non vi sia una notazione
universalmente riconosciuta; altre notazioni sensate possono essere K [[\*/)? ] oppure K[X 1/ *] oppure
K[X*] mentre eviterei del tutto abusata K[X]* che si presta a varie confusioni!

0.8.2. ORDINI. Possiamo estendere agli elementi di K[[X] la nozione di ordine di una serie,
ottenendo questa volta una applicazione ordx : K[[X]] — Q con proprieta analoghe a quelle viste per
K[X].

0.8.3. La struttura d’anello di K[[X] ¢ notevolmente pit complicata di quella di K[X];
infatti anche K[[X] ha un unico ideale massimale, ma esso non & nemmeno finitamente generato.
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