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DIMOSTRAZIONE.  Accenniamo solo all’argomento classico: si fa per induzione discendente
sul grado della curva 5. Tramite una sequenza di trasformazioni quadratiche standard, possiamo
supporre che tutti i punti comuni siano “effettivi” (cio¢ non di intorni successivi di qualche altro punto).
Per gradi alti di 57 le condizioni di molteplicita dei punti chieste dal teorema sono indipendenti tra
loro, e si puo calcolare la dimensione dello spazio lineare corrispondente di curve. D’altra parte
la condizione per h di essere combinazione di f e g da luogo ad altro sistema lineare, chiaramente
contenuto nel precedente, e che si verifica avere la stessa dimensione. Dunque coincidono.

Per scendere di grado si ragiona per assurdo, moltiplicando ’eventuale eccezione di grado massimo
per qualche retta ben scelta. O

-1.7.1. Si noti la simmetria dell’enunciato rispetto alle due curve, che nella versione semplice
del teorema non avevamo (e non ci sara nemmeno nella versione moderna).

-1.7.2. Come si puo dedurre il teorema semplice del capitolo precedente dalla versione classica
del teorema di Noether?

0. Serie formali e serie di Puiseux.

0.1. DEFINIZIONE (SERIE FORMALI).  Definiamo I’anello delle serie formali in una indetermi-
nata X a coefficienti in un anello K (integro con unita) come l'insieme delle applicazioni di N in K,
dotato delle operazioni di somma puntuale e di prodotto alla Cauchy. Useremo la notazione K[X] per
indicare questo anello, e la notazione “funzionale” f(X) =Y .2, a; X" per i suoi elementi. Il prodotto
alla Cauchy si scrive allora (7% a; X*) (32720 0;X7) = 3207 0 (D04 jop aiby) X ™.

0.1.1.  E chiaro dalla definizione che K[X] C K[X] in un modo canonico: i polinomi si
identificano con le serie formali “finite”.

0.1.2. Si osservi che la definizione di prodotto & ben posta: per trovare ogni coefficiente di un
prodotto di serie, e sufficiente un numero finito di operazioni sui coefficienti delle serie di partenza.

0.2. DEFINIZIONE-TEOREMA (ORDINE). Data f(X) = Y. ~ja; X" € K[X], definiamo
ordx f(X) il minimo intero i per cui a; # 0; intendiamo inoltre ordx0 = oo. Allora la funzione
ord : K[X] = NU{oco} gode delle seguenti proprieta:

(1) nullita: ordx f = oo se e solo se f = 0.
(2) moltiplicativita: ordx(fg) = ordx f + ordxg.
(3) ultra-supaddittivita: ordx (f+g) > min(ordx f,ordxg) (e vale 'uguaglianza se ordx f # ordxg).

0.2.1. Si osservi per inciso che la parte tra parentesi segue dalle altre proprieta della funzione
ordy; infatti se ordx f < ordxg e fosse ordx (f + ¢) > ordx f avremmo ordx f = ordx(f +9 —g) =
min(ordx (f + g),ordxg) > ordx f, assurdo.

0.2.2. CORPO DELLE FRAZIONI: SERIE DI LAURENT. In particolare segue che se K & integro,
allora K[X] e integro, ed indicheremo con K ((X)) il suo corpo dei quozienti. I suoi elementi sono
chiamati serie (formali) di Laurent.

In tal caso, come si fa per i polinomi, useremo se necessario ’ovvia estensione ricorsiva della
definizione di serie formali a pit variabili, ponendo: K[Xy,...,X,] = K[X1,..., Xn_1][Xy], ma si
faccia attenzione al fatto che K (X1, ..., X)) (corpo quoziente di K[X1,..., X,]) e K(X1,..., Xn-1))(Xn))
non coincidono (si vede facilmente gia per due variabili che il primo & contenuto nel secondo, ma
quest’ultimo & decisamente pin grande: farsi degli esempi).

0.2.3. Si verifica quasi immediatamente che un elemento f(X) di K[X] & invertibile se e solo
se il suo termine noto ¢ invertibile in K (diverso da zero se K ¢ un corpo). Supponiamo d’ora in poi
che K sia un corpo; allora la condizione vale se e solo se f(X) non ¢& divisibile per X, o anche se e solo
se ordy f(X) = 0. Infatti il sistema lineare (con infinite equazioni) da risolvere per trovare un inverso
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