80 Studio locale delle Curve IV.-1.

stati aggiunti tre punti singolari ordinari nei tre punti fondamentali (di molteplicita rispettivamente
d,d—m,d —m per Py, Pi, P); il punto P ¢& stato trasformato in r(< m) punti P, ..., P. ciascuno di
molteplicita m; tali che Y, m; < m (perché?). Allora la differenza ¢ — ¢/ tra gli indici di € e ¢’ ¢
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ed ¢ nullo se e solo se k = 1em; = m. Se t— (¢ > 0, per ipotesi induttiva abbiamo concluso.
Altrimenti vediamo che ¢ sceso la deficienza: infatti calcolando
d—1)(d—2) ((2d—m—1)(2d—m—2) (d)(d—1) 2(2d—m)(2d—m—1)> 9
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che ¢ certamente positivo, poiché m > 2, e quindi usiamo comunque 'ipotesi induttiva. O
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-1.4.1. GENERE DELLE CURVE. Parlando della deficienza, abbiamo gia detto che nel caso di curve
con singolarita ordinarie essa coincide con il genere (per definizione, per noi, visto che non abbiamo
dato una vera definizione del genere). Se decidiamo che il genere ¢ invariante per “trasformazioni
birazionali”, in particolare per quelle di Noether, abbiamo un modo per calcolarlo: basta ordinarizzare
tutte le singolarita, e poi calcolare la deficienza della curva ordinarizzata. Si noti che la deficienza e
invariante per proiettivita, ma non per trasformazioni birazionali (non lo ¢ in particolare per quelle
di Noether), mentre il genere dev’essere un invariante birazionale (dunque anche proiettivo, ma molto
di pin).

-1.5. DEFINIZIONE-TEOREMA (STRUTTURA DELLE SINGOLARITA). Per ogni punto m-uplo
P di una curva ¢ consideriamo una sequenza di trasformazioni quadratiche che lo trasformi in un
insieme di punti semplici; definiamo allora:

(1) primo intorno di P: é formato dai punti P; (diciamo m, le loro molteplicita) che si ottengono da

P via la prima trasformazione;

(2) secondo intorno di P: & formato dai punti P; ; (diciamo m, ; le loro molteplicita) che si ottengono

dai P; via la trasformazione successiva necessaria su P;;

(3) terzo intorno di P: & formato dai punti P; ;i (diciamo m; ;  le loro molteplicita) che si ottengono
dai P; ; via la trasformazione successiva necessaria su P; ;;

(n) e cosi via.

Questi intorni di P non dipendono dalla sequenza di trasformazioni quadratiche che si utilizzano per

trasformare P in punti semplici.

Evitiamo la dimostrazione, difficile e molto tecnica.

-1.5.1. STRUTTURA AD ALBERO. Dalla definizione precedente, si puo rappresentare la struttura
di un punto m-plo usando un albero (a nodi pesati con numeri naturali) che riporti ad ogni livello di
fogliazione I'intorno successivo a quello cui si era arrivati. Si tratta quindi di strutture del tipo:

m

my M2 m3 my

m21 M22 ey mags ms33 ma1 my2
mM331 M332 M411 M412 mas1 M2
M4221 M4222
(le fogliazioni estreme hanno tutte peso 1) che rappresentano graficamente la struttura della singo-
larita.

-1.6. EsEMPI. Riportiamo alcuni esempi per le singolarita piu semplici.

-1.6.1. Nopo. Consideriamo per esempio la cubica di equazione Y2 — X2 — X3 (punto doppio
ordinario nell’origine). Dalla forma omogenea Xo X3 — Xo X7 — X7 (il complesso tangente non contiene
rette eccezionali) otteniamo la trasformata totale X7 Xo(X0X1)? — X1 X2(X0X2)? — (X0X2)3, da cui
la trasformata stretta X3 — X7 X35 — X X3. L’intersezione con la retta Xy = 0 contiene, oltre al punto

-1
che sono non singolari. Infatti, il cambiamento di coordinate Yy = Xg, Y7 2 = X;+X3 sposta i due
punti in Py o, e la curva in 2(Y; + Y2)Y1 Vs — Y (Y1 — Y2)? (ora basta disomogeneizzare rispetto a Y; o
rispettivamente per vedere che si tratta di punti non singolari con tangenti V(Y5 1) rispettivamente).
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eccezionale P, (capita perché la retta eccezionale impropria vi era tangente) i due punti ((%)) e ( 1 )
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