70 Intersezione di Curve II1.2.

curva ¢’ di grado d — 2 passante per questi punti (la dimensione dello spazio proiettivo di tali cuve &
1d(d—1)—1= %(d —2)(d +1)). Ora applichiamo il teorema di Bézout per ¢ e ¢”: il prodotto dei
gradi & d(d — 2) = d? — 2d, mentre la somma delle molteplicita di intersezione nei vari punti & non
inferiore a 2(3(d — 1)(d —2) + 1) + (d — 3) = (d — 1)? = d® — 2d + 1, il che & assurdo, a meno che % e
¢’ non abbiano una componente comune, e allora ¢ deve essere riducibile.

2.3.1. Piu precisamente valgono i seguenti risultati:
(1) Se € ¢ curva senza componenti multiple, allora i punti singolari soddisfano la condizione

S mp(€)(mp () ~ 1) < deg(€) (deg() ~ 1)

Si deduce subito dal teorema di Bézout e dalla disuguaglianza fondamentale applicata alle curve
€ = V(g) stessa e €’ definita dalla derivata di g rispetto a Xs (in un riferimento scelto oppor-
tunamente). Si osservi che la disuguaglianza non puo essere migliorata, poiché d rette distinte di
un fascio la realizzano con uguaglianza.

(2) Se € é curva irriducibile, allora i punti singolari soddisfano la condizione

Y mp(€)(mp(%) — 1) < (deg(%) — 1)(deg(?) —2) .
P

Consideriamo una curva ¢’ di grado d’ = deg% — 1 che abbia ogni punto singolare P di € con
molteplicita mp — 1 = mp(€) — 1, e che contenga ulteriori 1 ((d — 1)(d + 2) — Zpmp(mp — 1))
punti semplici di € (la dimensione dello spazio proiettivo delle curve di grado d = d — 1 &
(dgl) —1 = $(d—1)(d+2), e dal punto precedente sappiamo che (d—1)(d+2)—Xpmp(mp—1) > 0).

Allora usando disuguaglianza fondamentale e teorema di Bézout abbiamo che
1
> mp(mp —1)+ (@ =1)d+2)- > mp(mp—1)) <d(d—1)
P P

da cui segue Xpmp(mp—1) < 2d(d—1)—(d—1)(d+2) = (d—1)(d—2), come si voleva (problema:

dove si ¢ usata lirriducibilita?). Anche questa disuguaglianza ¢ ottimale, poiché si realizza con

uguaglianza per le curve irriducibili di equazioni Y4~1 = X¢,

2.3.2. Una conica irriducibile non puo avere punti singolari.

2.3.3. Un cubica irriducibile puo avere al pit un punto singolare, al pitt doppio, e in tal caso e
razionale.

2.3.4. Una quartica irriducibile puo avere al piu tre punti singolari (doppi), oppure un punto
triplo. Si tratta di curve razionali?

2.3.5. Una curva irriducibile con un punto (d — 1)-uplo non pud avere altri punti singolari.

2.4. DEFICIENZA (O DIFETTO) DI CURVE E RAZIONALITA. Data una curva ¢ di grado d avente
Py, ..., P. come punti singolari di molteplicita rispettivamente myq, ..., m,, definiamo la deficienza

della curva € l'intero

1

(%) = 5(d = 1)(d~2) - %Zmi(mi —1).

Si tratta di un intero non negativo, se la curva non é riducibile, ed é chiaramente invariante per
proiettivita.

2.4.1. Si osservi che l'irriducibilita implica difetto non negativo, quindi se la curva ha deficienza
negativa essa e riducibile; ma il viceversa & falso: esistono curve riducibili con difetto nullo o positivo
(per esempio una conica e una cubica aventi intersezioni semplici formano una quintica riducibile di
deficienza nulla; due coniche di un fascio bitangente formano una quartica riducibile di deficienza
positiva).

2.4.2. RAZIONALITA. Una curva irriducibile di deficienza nulla é razionale.

Infatti: possiamo costruire un fascio di curve di grado e = d — 2 tali che il ciclo base del fascio
contenga i punti singolari P; di % con molteplicita m; — 1 e ulteriori d — 3 punti di . In totale
abbiamo imposto § Y7 mi(m; — 1)+ (d —3) = 3(d — 1)(d — 2) + (d — 3) = 3(d* — d — 4) condizioni
lineari. Lo spazio delle curve di grado d — 2 ha dimensione proiettiva 3d(d—1) —1= 3(d* —d—2), e
la differenza da 1. Quindi esiste un fascio di tali curve (si noti che qui ¢ essenziale I'indipendenza delle
condizioni poste: deriva dalla irriducibilita delle curva data, altrimenti ci sarebbe almeno una rete di
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