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D’altra parte, sulle cubiche irriducibili di equazione XqX3 = (X1 —a; Xo)(X1—a2X()(X1—a3Xp)
possiamo utilizzare la costruzione geometrica (scegliere un flesso, diciamo il punto improprio delle
equazioni canoniche, come elemento neutro, e dire che tre punti allineati sono di somma nulla) per
determinare una legge di composizione canonica. Quando le radici ay, as, a3 non sono tutte distinte,
abbiamo delle cubiche singolari e I'unico punto doppio & stabile per la legge di composizione; dunque
la curva che si ottiene togliendo il punto doppio possiede una legge di gruppo. Vogliamo vedere che si
tratta di gruppi algebrici affini e determinare di quale struttura si tratti. Precisamente: se € ¢ cubica
irriducibile singolare con S punto doppio, allora & ~ {S} & gruppo algebrico affine di dimensione 1:
(1) se S & cuspide, allora € ~ {S} & isomorfo al gruppo addittivo G;

(2) se S & nodo, allora € ~\ {S} & isomorfo al gruppo moltiplicativo Gy,.

7.6.4. CUBICA CUSPOIDALE. Nel caso della cubica cuspoidale: supponiamo «; = 0, cosicché
I'equazione diventa Xy X3 = X7, il punto singolare & (é) con tangente doppia r = V(X3). Allora
nel piano affine complementare di r possiamo usare le coordinate affini U = Xo/Xs e V = X;/X5 e
I'equazione di ¢ ~\ {S} si scrive U = V3.

Consideriamo allora la parametrizzazione ¢ : A'(K) — ¢~ {S} data da ¢(V) = (‘(/3), chiaramente
biiettiva, e sia w 'inversa. Vogliamo vedere che 7 ¢ un isomorfismo di gruppi. Chiaramente ¢(0) = (8)
che sono le coordinate del punto neutro della composizione di . Supponiamo poi che P, Q, R siano
tre punti allineati di € \ {S} appartenenti alla retta di equazione U +aV +b = 0. Allora 7P, 7Q, 7R
sono soluzioni dell’equazione V3 4 aV 4+ b = 0, e poiché il termine in V2 ha coefficiente nullo si ha che
P 4+ 7@ + wR = 0, che dimostra quanto volevamo.

7.6.5. CUBICA NODALE. Nel caso della cubica nodale: supponiamo a; = ag = 0 e ag = 1,
cosicché I'equazione diventa XoX2 = X{ + X X2, ovvero Xo(Xo + X1)(X2 — X1) = X3; il punto
singolare e (é) con tangenti 7+ = V(X34 X7). Come prima dobbiamo scegliere un riferimento affine

che escluda solo il punto singolare: usiamo il piano affine complementare di » = V(X5 4+ X1) e le

coordinate affini U = 8Xy/(Xa + X1) e V = (X2 — X1)/(X2 + X7) (I'8 compare per motivi estetici).

L’equazione di ¢ \ {S} si scrive UV = (1 — V)3.
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Consideriamo allora la parametrizzazione ¢ : A1(K)\ {0} — %~ {S} data da ¢(V) = ((17‘9 /V),
chiaramente biiettiva, e sia 7w 'inversa. Vogliamo vedere che 7 & un isomorfismo di gruppi. Chiaramente
o(l) = (2) che sono le coordinate del punto neutro della composizione di €. Supponiamo poi che
P, Q, R siano tre punti allineati di € . {S} appartenenti alla retta di equazione U +aV +b = 0. Allora
7P, 7Q, ™R sono soluzioni dell’equazione (1 — V)2 + V(aV + b) = 0, e poiché il termine noto & —1 si
ha che 7(P)7(Q)w(R) = 1, che dimostra quanto volevamo.

7.7. POLARITA. Abbiamo gid visto cosa succede della polaritd per le cubiche irriducibili singolari;
vediamo invece per le curve ellittiche nella forma di Weierstrass. Se Xo X2 = 4X3 — g2 X2 X7 — g3 X§
¢ I'equazione, allora le curve polari sono le coniche della rete go(3g3 X3 + 292 X0 X1 + X3) + q1 (92 X8 —
12X32) +q2(2X0X2) cioe di matrici go (39523 982 %) +q1 (g82 —%2 §> +qo (§ (8) é) al variare di QQ = (%2) S
P2(K). In particolare si nota che:

(1) La polare rispetto al punto di flesso (EJ)) & degenere e le due rette intersecano la cubica nel flesso
stesso (con molteplicita 3) e nei tre punti della cubica sull’ascissa (punti a tangente verticale, cioe
passante per il nostro flesso);

(2) La polare rispetto al punto (g) € degenere e le due rette intersecano la cubica nel suo punto
improprio (ciascuna con molteplicita 1) e in quattro punti affini (punti a tangente orizzontale);

(3) La polare rispetto all’origine & una parabola non degenere che interseca la curva in sei punti affini
(in cui la tangente alla cubica passa per lorigine).

Inoltre i punti del piano per cui la polare & degenere sono tutti e soli i punti di una cubica contenente

i flessi della nostra, la cui equazione si ottiene dal determinante della matrice della rete di coniche.
7.7.1. Per esercizio, analizzare la polarita per il fascio di cubiche di Hasse.
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