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Si osservi che le coppie (go,g3) e (A3g2, A2g3) danno luogo allo stesso modulo, e dunque a due
curve ellittiche proiettivamente equivalenti; questo conferma che le classi di equivalenza proiettiva di
curve ellittiche dipendono essenzialmente da un solo parametro.

Osservazione: quindi possiamo dire che le classi di equivalenza proiettiva di curve ellittiche
(insieme quoziente di un P? sotto I’azione delle proiettivitd del piano sulle coordinate delle curve
ellittiche) sono, a parte quelle riducibili: una per le curve nodali, una per le curve cuspoidali, e
una collezione indiciata da A! \ {0,1} modulo la relazione indotta dal gruppo finito (Klein) sulle
permutazioni del birapporto. Per la classificazione proiettiva delle coniche bastava un numero finito
di classi.

7.2.5. CUBICHE NON SINGOLARI. Aspetti possibili di curve nella forma di Weierstrass:
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Y2=X(X%11), XoX3=X1(X7-X2) Y?=X341, XoX2=X{+X% VZ2=4X®-2X42, XoX3=4X?2X1X2+2X¢

7.3. RAZIONALITA. Abbiamo gia visto che le cubiche irriducibili singolari, avendo un punto
doppio, sono razionali, e ne avevamo anche gia scritto delle parametrizzazioni per le forme canoniche:
il lettore le ritrovi. Per contro vedremo che le curve ellittiche non sono razionali, essendo non singolari
e di deficienza positiva (1, che coincide in questo caso con il genere).

A livello piu elementare, si puo tentare il seguente argomento: se una curva piana e razionale e di
grado maggiore di 2, allora possiede almeno un punto singolare; in particolare curve piane lisce (cioe
senza punti singolari) non possono essere razionali, se non sono rette o coniche. Infatti, e senza usare
il teorema di Bézout nel caso delle cubiche, si osserva subito che per una curva razionale di grado
d, la duale ammette una parametrizzazione di grado non superiore a 2d — 1 (si controlli il prodotto
vettore), mentre dovrebbe essere di grado d(d — 1) nel caso di curve lisce; ora d(d — 1) < 2d — 1 solo
per gradi d = 1, 2.

7.4. CONFIGURAZIONE DEI FLESSI SULLE CUBICHE IRRIDUCIBILI.

7.4.1. FoLIiUM DI DECARTES. La cubica nodale contiene tre flessi, che sono allineati.

7.4.2. PARABOLA DI NEIL. La cubica cuspoidale contiene un solo flesso.

7.4.3. CUBICA NON SINGOLARE. Una cubica non singolare ha nove flessi (e la retta per due
qualsiasi flessi ne contiene un terzo). Quindi per ognuno dei nove flessi passano quattro rette che
uniscono flessi, e in ognuna delle 12 rette che uniscono flessi cadono 3 flessi.

7.4.4. PROBLEMA. L’allineamento di un terzo flesso con due dati si vede chiaramente nelle forme
canoniche. Provare una dimostrazione diretta usando la seguente strategia: scegliamo un riferimento
in cui due flessi siano punti fondamentali, e il terzo punto fondamentale sia l'intersezione delle loro
tangenti. Se il terzo punto della curva sulla retta per i due flessi usati viene usato come punto unita
di quella retta, ne risulta per la cubica un’equazione del tipo XS’ + X0X12 — XgXl + BXoX1Xo=0c¢
della retta tangente Xg = X7 + 8X5 nel terzo punto si riconosce subito essere di flesso...

Curiosita: come si dispongono le tre tangenti di tre flessi allineati? Sono concorrenti in un punto
o no? Forme canoniche associate a queste situazioni?

7.4.5. NOTA SULLE CONFIGURAZIONI DI PUNTI E RETTE. In generale si dice configurazione di
punti e rette sul piano proiettivo una collezione di [ rette e di p punti tali che ogni retta contiene
lo stesso numero di punti, e ogni punto appartiene allo stesso numero di rette. Se ad ogni retta
appartengono A di quei punti e per ogni punto passano 7 di quelle rette, allora la configurazione si
rappresenta con il simbolo (py,l)). Chiaramente abbiamo IA = pm, 7 < I, A < p. Conosciamo gia
alcuni esempi:

(0) configurazione banali: (n1,1,) parla di n punti allineati e (1,,n1) parla di n rette d’un fascio; di
conseguenza anche (m,, mn1) e (mny,m,) sono configurazioni banali;

(1) configurazione del triangolo: (32, 32);
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