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(semplici applicazioni della formula di Eulero). Lo sviluppo di Taylor di g lungo una retta P + pX
passante per P ¢ della forma

1
9(P + pX) = pVg(P)X + Sp* X Hy(P)X + - -

Ora: se il punto & di flesso, significa che tutti i punti della retta tangente in P (equazione Vg(P)X = 0)
annullano il termine di secondo grado, dunque la conica di equazione X' H,(P)X = 0 contiene la retta
tangente, e quindi si riduce, da cui det Hy(P) = 0, come si voleva.

Viceversa, se il determinante ¢ nullo, significa che la conica di equazione X'Hy(P)X = 0 si
spezza in due rette: vogliamo verificare che una delle due ¢ la tangente in P, di modo che P risultera
essere un flesso. Poiché P appartiene alla conica (dalla seconda formula preliminare; la prima formula
preliminare invece dice che P non sara il punto singolare della conica...) possiamo scegliere la retta
L per P contenuta nella conica, e un qualsiasi punto @ su di essa; abbiamo allora P*H,(P)Q =0 (la
retta PV @ ¢ tutta contenuta nella conica) da cui Vg(P)'@ = 0 (dalla trasposta della prima formula
preliminare) e quindi ) appartiene alla tangente a % in P, per cui tale tangente coincide con L, come
si voleva.

In alternativa: poiché P appartiene alla conica (dalla seconda formula preliminare) l'intersezione
della retta tangente con la conica sara data da P e (almeno) un altro punto @ (la prima formula
preliminare dice che P non sara punto singolare della conica, che quindi si spezza in due rette distinte
non enrambe passanti per P...); tale punto soddisfa a Vg(P)'Q = 0 (sta sulla tangente) e quindi a
P'H,(P)Q = 0 (dalla trasposta della prima formula preliminare), e quindi tutta la retta PV @, che &
la tangente, appartiene alla conica (P e @ sono vettori isotropi e ortogonali per la forma quadratica
di matrice Hy(P)).

4.2.1. EsEMPI. Come al solito, vediamo le cubiche singolari irriducibili.

(1) La cubica cuspoidale Xo X3 = X} contiene un unico flesso. Infatti il determinante della matrice

hessiana ¢ 24X X2, e gli unici punti che appartengono alla curva sono (é) che & singolare e <§>

che & semplice, dunque un flesso.
(2) La cubica nodale XoX; X, = X + X3 contiene tre flessi che risultano allineati. Infatti il deter-
minante della sua matrice hessiana & 2(XoX; Xz + 3(X5 + X3)) e i suoi punti che appartengono

anche alla curva data risolvono il sistema XgX7:Xo =0=X f’ —|—X§’. Essi sono (é) che e singolare

. . /(0 . - . . .. .
e i tre punti ( 1) ove w, varia sulle tre radici cubiche di —1, che sono semplici, dunque flessi, e
w

appartengono tutti alla retta Xy = 0.

4.3. DEFINIZIONE (CURVA HESSIANA). Data una curva piana ¥ = divg di grado almeno
2
3, definiamo la curva hessiana di € come e = div hy(X) ove hy(X) = det <8)?89X> (questo
UAg

polinomio, di grado 3(d — 2) se d era il grado di €, si dice hessiano di g).

4.3.1. ESEMPIO: FASCIO (DELLE CUBICHE) DI HAsse. Consideriamo le cubiche di equazioni
gm(X) = X3 + X3 + X3 4+ 6mXo X1 X, al variare di m € K.

Allora hy,, = (14 2m3)XoX1 X2 — m?(X§ + X3 + X3), ovvero si tratta di un’altra cubica dello
stesso fascio.

11 luogo base del fascio rappresenta quindi i punti di flesso (comuni a tutte le cubiche non singolari
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del fascio di Hesse) e si tratta dei nove punti di coordinate proiettive ( 1 ), (0) e (u(.):) ove w varia
w w

sulle radici cubiche di —1.

4.3.2. La definizione di curva hessiana usa l’espressione della curva in un fissato riferimento,
ma essa ¢ indipendente dal riferimento, cioe € un invariante proiettivo della curva, poiché se T &
una proiettivita del piano abbiamo che ¢ = T'(#%). Possiamo verificare questo considerando una
proiettivita T', che confondiamo con la sua matrice, osservando che se g(X) & ’equazione originale di €,
allora nelle Y = TX I'equazione di ¢ (ovvero di T(%)) diventa g7(Y) = g(T~'Y). Allora abbiamo
dalla formula di composizione che Hyr(Y) = T_Hy(T~'Y)T~! (verificare: conviene I'espressione
H = V"'V nelle variabili usate). Ne segue subito che ’equazione di 74 & proporzionale all’equazione

di T(p).
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