11.5. Curve Polari. 39

3.2. TEOREMA (FONDAMENTALE DELLA POLARE). Sia % una curva piana senza componenti
multiple o lineari. Allora Supp (€) N Supp (Pq(%€)) consiste dei punti singolari di € e dei punti di
tangenza con € delle rette per ) tangenti a €.

DIMOSTRAZIONE. Sappiamo gia che i punti singolari appartengono all’intersezione di 4" con
qualsiasi sua polare. Supponiamo allora che P € Supp (%) sia punto semplice di €. Scegliamo un
riferimento in cui P sia Porigine affine, e ) punto improprio dell’ascissa. Allora I’equazione f di €
¢ priva di termine noto. Il termine f; & tale che X non vi compaia (cioé P appartenga alla polare
Po(€)) se e solo se la tangente in P e Y = 0, esattamente PV @ (se g & 'equazione omogenea, allora
manca il termine in Xg, e il termine che moltiplica ngl dev’essere del tipo a1 X14asXs; ora a; =0
¢ condizione equivalente sia a che la derivata parziale aq ngl rispetto a X; si annulli nell’origine, sia
a che la retta tangente nell’origine sia X5 = 0).

In termini piti astratti si puo ragionare cosi: la tangente in P alla curva ha equazione Vg(P)-X =
0, mentre la polare rispetto a @ ha equazione Vg(X) - @ = 0; quindi @ appartiene alla tangente in P
se e solo se P appartiene alla polare rispetto a @... O

3.2.1. TANGENTI ALLA CURVA DA PUNTI DEL PIANO. In particolare, se ¥ non e singolare,
allora i punti di Supp (%) N Supp (Pq(%€)) sono quelli di tangenza con € di rette per @ tangenti a
%¢'; anticipando una applicazione del teorema di Bézout, possiamo quindi dire che si tratta di al piu
d(d — 1) punti, e che quindi per ogni punto del piano vi sono al pitt d(d — 1) rette per quel punto
tangenti ad una curva irriducibile di grado d.

3.2.2. EseEmPI. Il lettore conosce gia la situazione per le coniche irriducibili. Consideriamo qui
le cubiche irriducibili singolari.

(1) La cubica di equazione Xy X2 = X3 ha una cuspide nell’origine, e la sua polare rispetto al punto

0 0
Q ¢ la conica di equazione o X2 —3q1 X2 +2¢2 X0 X2 = 0, ovvero di matrice (qO —3a ;62 ), e dunque
2 0

degenere se e solose q1g2 = 0. Se Q = (qtl) ) allora la polare & Xo(X5+2¢2X() = 0 (la seconda retta
2

identifica il punto di tangenza). Se Q = (%1 ) allora la polare & X5 —3q; X? = (Xo+/3¢1 X1)(Xo—
V3q1X1) = 0 (le due rette identificano i due punti di tangenza). Altrimenti, parametrizzando la
3
curva tramite sst; e sostituendo nella polare si trova 'equazione 3(got® — 3q1 5%t + 2¢25%) = 0
t
il cui secondo termine da in generale tre punti distinti della cubica, che sono i punti di tangenza
da Q.
(2) La cubica di equazione XoX;Xo = X7 + X3 ha un nodo nell’origine, e la sua polare rispetto al
punto Q ¢ la conica di equazione qo(X1X2) + q1(XoXo — 3X2) + ¢2(Xo X1 — 3X2) = 0, ovvero
0
di matrice (gz —;%qu %l)q ), e dunque degenere se e solo se 2qoq1q2 + 6¢5 + 6¢3 = 0 (punti di una
1 0 - 2
. . . 344® .
cubica con un nodo...). Parametrizzando la curva tramite (8525 ) e sostituendo nella polare
st
si trova l'equazione st(qit* — 2q25t3 + qos*t? — 2¢15%t + q25*) = 0 il cui secondo termine da in
generale quattro punti distinti della cubica, che sono i punti di tangenza da Q.

& 3.3. POLARI SUPERIORI. Chiaramente, la teoria delle curve polari si puo estendere ad ordini
superiori nel modo seguente. Dati una curva proiettiva 4 = divg e un punto ), per ogni i €

efintamo la polare 2-esima di rispetto a come la curva 1 equazione p, =
N definiamo la polare i-esima di € ri 1 25 (%) di i (g
2 laj=i Dag(X)Q*. Sitratta di una curva di grado d—i se d era il grado di ¢, e chiaramente ,@8) (€)=
Po(€) (la polare precedentemente definita).

3.3.1. Anche qui si verifica che ogni polare & un invariante proiettivo.

3.3.2. Per formalizzare meglio ’operazione di generazione della polare i-esima si puo utilizzare
l'operatore V e le sue potenze formali. Come?
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