32 Singolarita di Ipersuperficie 11.1.

1.5.3. Sia Z una ipersuperficie che sia un cono di vertice v(2); scelte coordinate in modo che
v(9) abbia equazioni Xy = --- = X, = 0, allora 2 = div g(X) con g(X) = g(Xo, ..., X,), omogeneo.

Supp (2) ¢ un cono se e solo se 2 ha punti d-upli (cio¢ punti di molteplicita massima), e allora
il vertice v(Supp (2)) & dato dall’insieme dei punti d-upli. Se la dimensione del vertice & n—1, allora
2 = dH ove H ¢ il vertice; se la dimensione ¢ n—2, allora 2 = H1+---+Hy con gli H; iperpiani di
cui almeno due distinti (la cui intersezione ¢ il vertice del divisore).

1.5.4. E chiaro che la terminologia sopra impiegata e coerente, nel senso che per ogni punto P
di una ipersuperficie 2, il cono tangente a 2 in P & un cono il cui vertice contiene P.

1.5.5. ESEMPI. I coni del piano sono le rette e le collezioni finite di rette d’un fascio.

1.5.6. Esempl. Un cono quadrico ¢ una quadrica degenere (cio¢ la cui matrice, in qualsiasi
riferimento, non abbia rango massimo), ed & irriducibile se e solo se ha rango r maggiore di due. Il
vertice ha dimensione n — r se n & la dimensione dello spazio e r il rango delle quadrica.

Se 2 ¢ una quadrica affine (non degenere) a centro (cioé una quadrica proiettiva non degenere
non tangente all’iperpiano improprio Hy,), allora il cono asintotico di 2 & definito come il cono che
proietta 2 N H, dal centro di 2. Se ¢ ¢ ’equazione della quadrica, e hs, € I’equazione di H,,, allora
il cono asintotico ha equazione ¢ + ah?, con « determinato dalla condizione che il cono contenga il
centro di 2.

1.6. CONDIZIONI LINEARI. Abbiamo ora la possibilita di fare altri esempi di condizioni lineari
sulle ipersuprficie:
(0) Il passaggio (semplice) per un punto di P*(K) & una condizione lineare semplice, e fissare
I'iperpiano tangente porta ad una condizione lineare n-upla;
(1) avere un fissato punto P di P*(K’) come punto doppio da ulteriori n condizioni lineari, ed ¢ quindi
condizione lineare (n + 1)-upla; fissare il cono tangente da ulteriori (";‘1) — 1 condizioni lineari,
e quindi ¢ condizione lineare di molteplicita (”J{z) —1;

n+m—1
m—1

— 1 condizioni lineari, ed ¢ quindi condizione lineare

(3) avere un fissato punto P di P*(K) come punto m-plo & condizione lineare (
(n+m—1)
m

)—upla; fissare
inoltre il cono tangente da ulteriori

di molteplicita (") — 1;

Questi risultati possono essere visti facilmente ponendo che il punto in questione sia 1’origine, e usando
i coefficienti a, di un generico polinomio g = >  a, X% quali coordinate per lo spazio proiettivo dei
divisori di grado fissato; le condizioni di molteplicita d’ordine m sono condizioni di annullamento di
alcune di tali coordinate, mentre le condizioni sui coni tangenti sono di proporzionalita tra alcune
coordinate.

1.7. CASO DI CURVE. Se % ¢ un divisore del piano, cio¢ una curva, allora le cose sono ancora piu
semplici. Se ¥ = div (g) con g € K[X],, := K[Xo, X1, Xs2]n € di grado d e P un punto del supporto,
allora le rette del fascio per P hanno tutte la stessa molteplicita di intersezione mp(%) in P con €,
tranne un numero finito (che sono le rette tangenti in P a ¢ ), che hanno molteplicita maggiore.

Supponiamo che P sia origine il primo punto del riferimento, e sviluppiamo espressione di g in

(§) ()

g(1,6X1,tX5) = g((8) + (£ )) = D Dag(1,0,0) X7 xgzgortes

ap,02

da cui si vede che la parte omogenea di grado i in t é esattamente la parte omogenea di grado ¢ in
9(1, X4, X5), dunque del polinomio affinizzato rispetto a Xj.
1.7.1. In un riferimento affine in cui P ¢ l'origine del riferimento, e

g(XOleaXZ)a = f(va) = fs(X7Y)+fs+1(Xa Y)+ T +fd(X’ Y)

con f;(X,Y) € K[X,Y] omogeneo di grado i ed f,(X,Y) # 0, allora mp(%) = s e

f(X, V) =[] (a:iX = biY)"
si dice I'equazione complessiva delle tangenti in P a¢’. Si hadiv f(X,Y)=)".lyr; dover; = div (a; X —
b;Y). Il numero l; si dice molteplicita di r; come tangente in P a ¥. Per ogni altra retta r =
div (aX — bY") distinta dalle r;, abbiamo mp(r - €) = s.
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