
Appunti di Calcolo Numerico
parte I

con esercizi svolti in Matlab/Octave

Stefano De Marchi
Dipartimento di Informatica,

Università di Verona

March 14, 2008

2

Introduzione

Queste pagine sono gli appunti del corso di Calcolo Numerico che il sottoscritto ha
tenuto dall’AA. 2006-07, per il corso di laurea triennale in Matematica Applicata e In-
formatica Multimediale della Facoltà di Scienze dell’Università degli Studi di Verona. Al
lettore è richiesta la familiarità con Matlab, MATrix LABoratory, o la sua versione freeware
Octave, di cui si è spesso fatto uso nel testo per scrivere pezzi di codici che implementano
alcuni degli esempi e algoritmi numerici. Chi desiderasse conoscere Matlab, la sua sintassi
e il suo utilizzo, rimandiamo alla lettura del libro [14] oppure al manuale disponibile in rete
all’indirizzo

www.ciaburro.it/matlab/matlab.pdf.

Per quanto riguarda Octave, il manuale è incluso nel download del package che si trova
al link

http://www.gnu.org/software/octave/.

La versione disponibile più recente di Octave è la 2.9.14 che è una pre-release di Octave
3.0 (dati: ottobre 2007).

Gli appunti sono organizzati in 6 capitoli, corrispondenti anche agli argomenti fonda-
mentali trattati in un corso di base di Calcolo Numerico:

• Cap. 1: Rappresentazione dei numeri e analisi degli errori.

• Cap. 2: Ricerca di zeri di funzione.

• Cap. 3: Soluzione di sistemi lineari.

• Cap. 4: Calcolo di autovalori di matrici.

• Cap. 5: Interpolazione e approssimazione.

• Cap. 6: Derivazione e integrazione.

In ogni capitolo c’è una sessione di Esercizi proposti: si tratta di una raccolta di eser-
cizi proposti nel corso degli ultimi tre anni nei vari appelli, compiti e compitini da parte
dell’autore. Pertanto per la maggior parte di essi si possono trovare le soluzioni e, dove
richiesto, il codice Matlab, andando alla pagina web

http://profs.sci.univr.it/∼demarchi/didattica.html.

Il testo non ha la pretesa di essere sostitutivo di libri molto più completi e dettagliati
disponibili in letteratura, come ad esempio i libri [1, 3, 4, 11, 13, 14, 15, 17], ma come traccia
di riferimento per un corso di Calcolo Numerico. Pertanto l’invito è di consultare anche i

3

testi citati in bibliografia, sia per cultura personale, ma soprattutto per un completamento
della preparazione.

Ringrazio fin d’ora tutti coloro che mi segnaleranno sviste ed errori e mi daranno dei
consigli per eventuali miglioramenti.

Stefano De Marchi
Dipartimento di Informatica
Università di Verona.

4

Indice

1 Rappresentazione dei numeri e analisi degli errori 17

1.1 Rappresentazione dei numeri in un calcolatore 17

1.2 Analisi degli errori . 19

1.3 Operazioni con numeri macchina . 21

1.4 Stabilità e condizionamento . 24

1.5 Il calcolo di π . 26

1.6 Esercizi proposti . 28

2 Ricerca di zeri di funzioni 31

2.1 Ricerca di zeri di funzione . 31

2.2 Metodo di bisezione . 32

2.3 Iterazione di punto fisso . 34

2.4 Il metodo di Newton o delle tangenti . 37

2.4.1 Varianti del metodo di Newton . 43

2.5 Accelerazione di Aitken . 45

2.6 Calcolo delle radici di polinomi algebrici . 48

2.6.1 Schema di Hörner . 49

2.7 Esercizi proposti . 50

3 Soluzione di sistemi lineari 55

5

6 INDICE

3.1 Cose basilari sulle matrici . 55

3.1.1 Operazioni aritmetiche con le matrici 56

3.2 Norme di vettore e di matrice . 61

3.3 Soluzione di sistemi lineari: generalità . 64

3.3.1 Condizionamento del problema . 64

3.4 Metodi diretti . 67

3.4.1 Il Metodo di Eliminazione di Gauss (MEG) 67

3.4.2 Metodo di Gauss e la fattorizzazione LU 72

3.4.3 Matrici elementari di Gauss . 74

3.5 Il metodo di Cholesky . 75

3.5.1 Algoritmo di Thomas . 76

3.5.2 Raffinamento iterativo . 77

3.6 Calcolo dell’inversa di una matrice: cenni 78

3.7 Metodi iterativi . 81

3.7.1 I metodi di Jacobi e Gauss-Seidel . 84

3.7.2 Il metodo SOR o di rilassamento . 88

3.8 Sistemi sovra e sottodeterminati . 92

3.9 Soluzione di sistemi non lineari con il metodo di Newton 94

3.10 Esercizi proposti . 95

4 Calcolo di autovalori di matrici 101

4.1 Autovalori di matrici . 101

4.2 Il metodo delle potenze . 106

4.2.1 Convergenza del metodo delle potenze 108

4.2.2 Il metodo delle potenze inverse . 110

4.2.3 Il metodo delle potenze inverse con shift 110

INDICE 7

4.2.4 Metodo delle potenze e metodo di Bernoulli 111

4.3 Il metodo QR . 113

4.3.1 Il metodo QR con shift . 116

4.3.2 Autovalori di matrici simmetriche 118

4.4 Il metodo delle successioni di Sturm . 118

4.5 Il metodo di Jacobi . 120

4.6 Esercizi proposti . 122

5 Interpolazione e approssimazione 125

5.1 Interpolazione polinomiale . 125

5.2 Forma di Lagrange dell’interpolante . 127

5.2.1 Analisi dell’errore d’interpolazione 130

5.3 Errore d’interpolazione e fenomeno di Runge 132

5.3.1 La costante di Lebesgue . 134

5.3.2 Stabilità dell’interpolazione polinomiale 136

5.4 Polinomio interpolante in forma di Newton 137

5.4.1 Differenze divise e loro proprietà . 137

5.4.2 Formula di Hermite-Genocchi per le differenze divise 139

5.4.3 Interpolazione di Hermite . 141

5.4.4 Algoritmo iterativo di Neville . 143

5.5 Interpolazione polinomiale a tratti: cenni 144

5.6 Esercizi proposti . 146

5.7 Funzioni Spline . 149

5.7.1 B-Splines . 149

5.7.2 Interpolazione con funzioni spline . 151

5.7.3 Teorema del campionamento di Shannon e smoothing spline 156

8 INDICE

5.8 Approssimazione con polinomi di Bernstein 157

5.8.1 Curve Bspline e di Bézier . 158

5.8.2 Algoritmo di De Casteljau . 160

5.9 Minimi quadrati discreti e decomposizione SVD 162

5.9.1 Equivalenza tra sistema dei minimi quadrati e decompozione SVD . 163

5.9.2 Esercizi proposti . 166

5.10 Interpolazione trigonometrica e FFT 167

5.10.1 Algoritmo FFT . 169

6 Derivazione ed integrazione 171

6.1 Derivazione . 171

6.1.1 Un esempio . 173

6.2 Integrazione . 176

6.2.1 Formule di tipo interpolatorio . 176

6.2.2 Formule di Newton-Côtes . 177

6.2.3 Stima dell’errore di quadratura . 179

6.2.4 Formule di quadratura composite o generalizzate 182

6.2.5 Routine adattativa per la quadratura: applicazione al metodo di
Simpson e dei trapezi . 185

6.2.6 Polinomi ortogonali (cenni) e formule di quadratura gaussiane 191

6.3 Esercizi proposti . 197

6.4 Estrapolazione di Richardson . 202

6.4.1 Applicazione alla quadratura numerica 205

6.4.2 Una implementazione del metodo di Romberg 209

6.4.3 I polinomi di Bernoulli . 211

6.4.4 Algoritmo di Neville . 211

INDICE 9

A Metodi iterativi ed equazione logistica 213

A.1 Malthus e Verhlust . 213

A.1.1 Modello lineare di Malthus . 213

A.1.2 Il modello non lineare di Verhulst . 214

A.1.3 Isometrie, dilatazioni e contrazioni 216

A.1.4 Esempi di processi iterativi . 218

B Aspetti implementativi dell’interpolazione polinomiale 223

B.1 Richiami sull’interpolazione polinomiale . 223

B.1.1 Interpolazione di Lagrange . 223

B.1.2 Sistema di Vandermonde . 224

B.1.3 Interpolazione di Newton . 224

B.1.4 Interpolazione polinomiale a tratti 225

B.1.5 Strutture in Matlab/Octave . 226

B.1.6 Splines cubiche . 226

B.1.7 Compressione di dati . 230

B.1.8 Esercizi proposti . 230

10 INDICE

Elenco delle Figure

2.1 La funzione dell’Esempio 10 in [0.9, 1] con α = 2. 42

3.1 Raggio spettrale di H(ω) di dimensione n = 10, ottenuto usando la funzione
SOROmegaZero.m. Il valore ottimale calcolato è ω0 = 1.5727. 90

4.1 Cerchi di Gerschgorin della matrice A dell’ Esempio 24: sopra i cerchi riga e
sotto quelli colonna. 104

5.1 Funzione e polinomio d’interpolazione dell’Esempio 29 127

5.2 Grafico di alcuni polinomi elementari di Lagrange. 128

5.3 Funzione di Runge e polinomio d’interpolazione su nodi equispaziati e di
Chebyshev. 133

5.4 10 punti di Chebyshev. 134

5.5 Funzione dell’Esempio 33 . 136

5.6 Funzione seno (linea punteggiata) e la sua interpolante lineare a tratti (linea
continua) . 145

5.7 Bsplines di ordine 3 (quadratiche). 152

5.8 Spline cubica interpolante su nodi ”ad hoc” a (sx) e nodi equispaziati (dx) . 153

5.9 Polinomi di Bernstein di grado 3 . 158

5.10 Approssimazione di f(x) = x(x − 1), x ∈ [0, 1] con l’operatore di Bernstein
di grado 20 . 159

5.11 Costruzione di una curva di Bézier con l’algoritmo di De Casteljau. 160

5.12 Dati da approssimare con il metodo dei minimi quadrati 165

11

12 ELENCO DELLE FIGURE

5.13 Approssimazione ai minimi quadrati . 166

6.1 Grafico che illustra l’errore relativo compiuto dal metodo 1 (differenze in
avanti), in rosso, col + e dal metodo 2 (differenze finite centrali) in nero con
o, nell’approssimare exp(1). 175

6.2 Regola dei trapezi per il calcolo di

∫ 2

1/2
sin (x) dx. 179

6.3 Grafico della funzione errore, erf . 182

6.4 Confronto tra la formula dei trapezi e dei trapezi composita per il calcolo di
∫ 2
0.5 sin (x) dx. 184

6.5 Integrazione con Simpson composito . 188

6.6 Integrazione con Simpson adattativo . 188

6.7 Integrazione con il metodo dei trapezi adattativo. I punti utilizzati sono oltre
2000, molti di più di quelli richiesti dalla stima a priori (6.30), ma distribuiti
non uniformemente ma dove la funzione oscilla di maggiormente. 190

6.8 Tableau dello schema di Richardson per m = 3, con Ti,0 = T (hi). 206

6.9 Alcuni polinomi di Bernoulli. 212

A.1 Thomas Malthus . 213

A.2 La progressione di Malthus a partire da una popolazione iniziale di 100 indi-
vidui per diversi valori di g. 215

A.3 Pierre Verhlust . 215

A.4 La trasformazione lineare della parabola T (x) ≥ 0 in [0, 1] 216

A.5 Iterazione del processo di Verhulst che origina il ben noto diagramma di
biforcazione . 217

A.6 Renato Caccioppoli . 218

A.7 Rappresentazione di un processo iterativo. 219

A.8 Processi iterativi per diversi valori di m . 220

A.9 Processo convergente . 220

A.10 Processo divergente . 221

ELENCO DELLE FIGURE 13

A.11 Processo di Verhulst convergente con x0 = 0.1, κ = 3. 221

A.12 Processo di Verhulst convergente con x0 = 0.1, κ = 3.9 222

A.13 Processo di Verhulst divergente con x0 = 0.1, κ = 4.1 222

14 ELENCO DELLE FIGURE

Elenco delle Tabelle

1.1 Rappresentazione dei numeri in un calcolatore 18

1.2 Rappresentazione in singola precisone: i numeretti indicano i bits d’inizio e
fine delle parti corrispondenti al segno, esponente e mantissa. 18

1.3 Rappresentazione in doppia precisone: i numeretti, come in Tabella 1.2 indi-
cano i bits d’inizio e fine delle parti. 18

2.1 Confonto di una successione di punto fisso e di ∆2 di Aitken 47

3.1 Numero di condizionamento in norma 2 della matrice di Hilbert 65

5.1 Differenze divise della funzione x2 + 1 . 137

5.2 Tabella delle differenze divise per un punto ripetuto k + 1 volte 141

5.3 Tabella delle differenze divise per l’interpolazione di Hermite 142

5.4 Schema di Neville, per n = 3. 144

6.1 Formule di N-C per n = 1, . . . , 6. Per n = 1 si ha la formula del trapezi, per
n = 2 la formula di Cavalieri-Simpson e per n = 3 si parla di formula dei

3/8. 181

6.2 Pesi di formule chiuse di N-C con n = 8 . 182

6.3 Nodi e pesi per le formule di Gauss-Legendre con n = 1, 2, 3, 4 195

6.4 Nodi e pesi per le formule di Gauss-Legendre-Lobatto con n = 1, 2, 3, 4. . . 195

6.5 Tabella del metodo di Romberg . 209

15

16 ELENCO DELLE TABELLE

A.1 Tabella di confronto tra le iterazioni di Malthus e Verhlust 217

B.1 Polinomio elementare di Lagrange. 224

B.2 Matrice di Vandermonde. 224

B.3 Differenze divise. 225

B.4 Spline cubica naturale. 228

Capitolo 1

Rappresentazione dei numeri e
analisi degli errori

In questo capitolo iniziale, metteremo per cos̀ı dire le basi per comprendere la filosofia
sottostante al calcolo numerico. L’analisi degli errori è fondamentale per comprendere come
evitarli, ma se non fosse possibile evitarli, come ridurli almeno al minimo possibile.

Ma per comprendere quali sono i tipi d’errore di cui dobbiamo tenere conto, prima
di tutto dobbiamo capire come si rappresentano i numeri in un calcolatore. Vedremo che
la rappresentazione dei numeri è una delle fonti principali d’errore detti appunti errori di
rappresentazione.

1.1 Rappresentazione dei numeri in un calcolatore

La notazione che maggiormente si usa nei calcolatori è la notazione a virgola mobile o in
inglese floating-point. Se a è un numero, intero o reale, usando la notazione a virgola mobile,
lo possiamo scrivere come

a = pN q , (1.1)

dove p si chiama mantissa che è un numero reale, N è la base di numerazione (solita-
mente N = 2, base binaria) e q è un intero che si chiama esponente.

Osserviamo anzitutto che la notazione non è unica. Infatti

a = pN q = p1N
q−1 = p2N

q+1

con p1 = Np e p2 = p/N .

Se la mantissa p è tale che
1

N
< |p| < 1

17

18CAPITOLO 1. RAPPRESENTAZIONE DEI NUMERI E ANALISI DEGLI ERRORI

allora la rappresentazione (1.1) si dice normalizzata. Facciamo due esempi

• a = 115.78, la sua forma normalizzata è a = 0.11578 · 103.

• a = 0.0026, la sua forma normalizzata è a = 0.26 · 10−2.

Pertanto, fissata la base di numerazione N , per la rappresentazione di un numero a dovremo
conoscere la coppia (p, q) (mantissa ed esponente). Nel caso a = 0, (p, q) = (0, 0). In
generale si usa la seguente rappresentazione dove s indica il bit riservato al segno del numero

s q |p|

Tabella 1.1: Rappresentazione dei numeri in un calcolatore

e che assume valori s = 0 se il segno + e s = 1 quando il segno è −; q lo spazio per l’esponente
e |p| lo spazio per la mantissa normalizzata.

Definizione 1. Si chiama numero macchina un numero tale che p e q sono rappresentabili
esattamente negli spazi riservati.

Se ad esempio, lo spazio per |p| è formato da t cifre, i numeri macchina sono tutti
quelli che hanno la mantissa normalizzata con non più di t cifre. Per l’esponente valgono le
disuguaglianze

m ≤ q ≤M
dove il minimo m < 0 e il massimo M > 0 dipendono da calcolatore a calcolatore. Posto
q∗ = q −m ≥ 0 allora

0 ≤ q∗ ≤M −m .

Parleremo poi di singola precisione se la rappresentazione di Tabella 1.1 è su 32bits
(essendo 1byte=8bits essa equivale a 4 bytes) (cfr. Tabella 1.2), di doppia precisione

quando la rappresentazione di Tabella 1.1 è su 64bits (8 bytes) (cfr. Tabella 1.3). Nel

1 s 1 2 q 9 10 |p| 32

Tabella 1.2: Rappresentazione in singola precisone: i numeretti indicano i bits d’inizio e
fine delle parti corrispondenti al segno, esponente e mantissa.

1 s 1 2 q 12 13 |p| 64

Tabella 1.3: Rappresentazione in doppia precisone: i numeretti, come in Tabella 1.2 indicano
i bits d’inizio e fine delle parti.

caso di singola precisione, essendoci 8 bits riservati all’esponente, allora 28− 1 = 255 sarà il

1.2. ANALISI DEGLI ERRORI 19

massimo numero rappresentabile. Da cui, essendo 0 ≤ q∗ ≤ 255 dalla relazione q∗ = q −m
avremo che −127 ≤ q ≤ 128.

Lo standard IEEE 754-1985, usa la rappresentazione

p = ±1.a−1a−2 . . . a−23 .

Avremo

• L’esponente q∗ = 0 viene usato quando q = −127, p = 0, cioè p = ±0.a−1a−2 . . . a−23 .

• L’esponete q∗ = 255 è riservato quando il numero non è rappresentabile: di solito con
un messaggio NaN, come quando si ha∞ oppure un valore non definito quale log(−2).

Usando questo standard, il generico numero di macchina in singola precisione ha la forma

(−1)sp 2q∗−127, 1 ≤ q∗ ≤ 254

p = ±1.a−1a−2 . . . a−23 ,

mentre in doppia precisione, avendo 3 bit in più per l’esponente e 29 in più per la mantissa

(−1)sp 2q∗−1023, 1 ≤ q∗ ≤ 2046

p = ±1.a−1a−2 . . . a−52 ,

1.2 Analisi degli errori

Sia x un numero che rappresenta un valore esatto. Indichiamo con x̃ una sua rappresen-
tazione sul calcolatore. Allora

Ea := |x− x̃| ,

Erx :=

∣
∣
∣
∣

x− x̃
x

∣
∣
∣
∣
, x 6= 0

Erx̃
:=

∣
∣
∣
∣

x− x̃
x̃

∣
∣
∣
∣
, x̃ 6= 0 ,

definiscono l’errore assoluto, errore relativo su x e l’errore relativo su x̃, rispet-
tivamente.

Usando l’espressione di Erx possiamo scrivere anche

x̃ = x(1 + ǫ) , ǫ =
x̃− x
x

, (1.2)

20CAPITOLO 1. RAPPRESENTAZIONE DEI NUMERI E ANALISI DEGLI ERRORI

che ci dice come un’approssimazione si ottenga dal valore esatto a meno di un errore di
rappresentazione. Questo errore, si dice errore inerente o ineliminabile poiché esso
dipende dalla rappresentazione (finita) dei numeri su un calcolatore.

Nel caso di un sistema floating-point in base N con mantissa a cui sono riservate t
posizioni o cifre, tutti i numeri che nella rappresentazione normalizzata hanno più di t cifre
(con esponente m ≤ q ≤M) dovranno venire approssimati. Come? Ci sono sostanzialmente
due tipi di approssimazione a cui corrispondono anche analoghi errori di rappresentazione.

(a) troncamento: della mantissa p del numero, si prendono solo t cifre, le altre dalla
t+ 1-esima in poi non si considerano. Ad esempio se p = 0.7243591, N = 10 e t = 5,
allora p̃ = 0.72435.

(b) arrotondamento: alla cifra t-esima della mantissa p viene aggiunta la quantità 0.5 e
poi si opera come in (a). Nell’ esempio di prima, alla quinta cifra di p = 0.7243591,
che è 5, si somma 0.5 che diventa 6, cosicché p̃ = 0.72436.

Tra le due tecniche, troncamento e arrotondamento, qual è quella che consente di commet-
tere un errore inferiore?

Dato un numero a = pN q indichiamo con ã = p̃N q una sua approssimazione. Osservi-
amo che le mantisse p̃ dei numeri macchina 1/N ≤ p̃ < 1 non hanno più di t cifre e la
distanza tra due mantisse consecutive p1, p2 è proprio N−t, cioè |p1 − p2| < N−t. Vediamo
cosa accade degli errori nei casi (a), di troncamento, e (b), di arrotondamento.

(a)

|a− ã| = |(p − p̃)|N q < N q−t

essendo p e p̃ consecutive.

(b)

|a− ã| = |(p− p̃)|N q ≤ 1

2
N q−t

essendo p e p̃ consecutive ma nel caso di arrotondamento |p− p̃| ≤ 1
2N

−t.

Segue che l’approssimazione per arrotondamento è da preferirsi! Infine, per quanto rigur-
dano i corrispondenti errori relativi si ha:

(a)
|a− ã|
|a| < N1−t ,

poiché, essendo N q−1 < |a| < N q e dal fatto che |a− ã|/|a| < N q−t/N q−1, si ottiene
la maggiorazione di cui sopra.

1.3. OPERAZIONI CON NUMERI MACCHINA 21

(b)

|a− ã|
|a| ≤ 1

2
N1−t .

A questo punto vale la seguente definizione

Definizione 2. Il numero

eps =
1

2
N1−t , (1.3)

si chiama precisione macchina.

In pratica, la precisione macchina, rappresenta quella costante caratteristica di ogni
aritmetica (arrotondata) floating-point ed è la massima precisione con cui vengono effettuati
i calcoli su quella particolare macchina. Detto altrimenti, eps è il più piccolo numero
che sommato a 1 dà un numero maggiore di 1. Pertanto un algoritmo, scritto in codice
Matlab/Octave, per il calcolo di eps con N = 2 in doppia precisione è il seguente:

e=1; k=0;

while (e+1 > 1)

e=e/2; k=k+1;

end

e=2*e %e’ necessario perche’ si era diviso per 2

k % mi da l’esponente

dove il contatore k serve a ricordare il numero di divisioni e indica pure l’esponente della
rappresentazione del numero eps. La moltiplicazione finale è necessaria perché dopo che il
test è stato verificato, e avrebbe un valore metà del valore vero. Se ora facciamo eseguire il
codice, otteremo il seguente risultato

e = 2.2204e-016

k = 53

infatti e = 2−53. Vale la pena ricordare che in Matlab/Octave esiste la costante predefinita
eps il cui valore è appunto 2.2204e-016.

1.3 Operazioni con numeri macchina

Se indichiamo con con fl(a) = ã l’operazione di arrotondamento e con ⊕, ⊖, ⊙ e ⊘ le
corrispondenti operazioni aritmetiche fatta sui numeri macchina, valgono per esse le seguenti

22CAPITOLO 1. RAPPRESENTAZIONE DEI NUMERI E ANALISI DEGLI ERRORI

regole

ã⊕ b̃ = fl(ã+ b̃) = (ã+ b̃)(1 + ǫ1)

ã⊖ b̃ = fl(ã− b̃) = (ã− b̃)(1 + ǫ2)

ã⊙ b̃ = fl(ã · b̃) = (ã · b̃)(1 + ǫ3)

ã⊘ b̃ = fl(ã/b̃) = (ã/b̃)(1 + ǫ4)

con |ǫi| < eps.

La domanda da porsi è se per queste operazioni macchina valgono le stesse regole che
per le corrispondenti operazioni aritmetiche. La risposta è in generale negativa.

Esempio 1. Consideriamo la somma di due numeri floating-point. Infatti ã ⊕ b̃ = ã se
0 < |b̃| ≪ |ã|

Facciamo vedere un esempio che anche per numeri macchina si possono presentare dei
problemi.

Esempio 2. Siano a = p1N
q1 e b = p2N

q2. Consideriamo a⊘ b. Il risultato sarà overflow

(esponente maggiore di M) se q1 > 0, q2 < 0 e q1 − q2 > M oppure underflow (esponente
minore di m) se q1 < 0, q2 > 0 e q1 − q2 < m.

A conferma ulteriore dei problemi che si possono verificare lavorando con numeri macchina,
diamo alcuni semplici esercizi.

Esercizio 1. Calcolare l’espressioni a+(b+c) e (a+b)+c dove a = 1.0e+308, b = 1.1e+308
e c = −1.001e + 308.

Esercizio 2. Sia x = 1.0e−15. Calcolare
(1 + x)− 1

x
. Perchè l’espressione è inaccurata?

Esercizio 3. Si consideri il polinomio

f(x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1 .

Lo si valuti su 401 punti equispaziati per x ∈ [1 − 2 · 10−8, 1 + 2 · 10−8]. Si plotti quindi
il grafico (x, f(x)) e il grafico di (x, p(x)) con p(x) = (x − 1)7, sugli stessi punti. Se ne
discutano i risultati.

Uno dei problemi che maggiormente si presentano negli algoritmi numerici è la cancel-
lazione numerica che in sostanza è la perdita di cifre significative.

Anzitutto comprendiamo che cosa sono le cifre significative di un numero. Ad esempio
13020.0 ha cifre significative 1302 mentre 0.0534 ha cifre significative 534.

Se due numeri sono quasi uguali, dove uguali s’intende a meno della precisione macchina,
allora è possibile il verificarsi della cancellazione numerica. Vediamo alcuni esempi.

1.3. OPERAZIONI CON NUMERI MACCHINA 23

Esempio 3. Consideriamo i numeri a = p1N
q con p1 = 0.147554326 e b = p2N

q con
p2 = 0.147251742 e N = 10. In aritmetica a t = 6 cifre significative, avremo p̃1 = 0.147554
e p̃2 = 0.147252. Ora a − b = (p1 − p2)N

q = (p1 − p2)10
3 = 0.302584. Ma (p̃1 ⊖ p̃2)10

3 =
0.302000 con la perdita delle cifre significative 584.

Esempio 4. Consideriamo il calcolo della funzione f(x) =
ex − 1

x
in un punto x0. La

funzione data si può anche vedere come la serie
∞∑

k=2

xi−1

i!
. Pertanto si possono usare due

algoritmi per il calcolo di f(x0)

ALGORITMO 1 ALGORITMO 2

if x0==0 y=exp(x0);

f=1; if y==1,

else f=1;

f=(exp(x0)-1)/x0; else

end f=(y-1)/log(y);

end

Nel caso in cui |x| ≪ 1 (cioè molto vicino a 0, usando i due algoritmi otterremo i seguenti
risulati

x0 ALG.1 ALG. 2

1.e− 5 1.000005 1.000005
1.e− 6 1.0036499 1.0000005

...
...

...
1.e− 15 1.1102... 1.000....000 (15 zeri)

1.e− 16 0 1

Pertanto l’ALGORITMO 2 è più stabile (chiariremo meglio più avanti il concetto di stabilità
di un algoritmo numerico). Infatti, nell’ipotesi di singola precisione, la risposta esatta
sarebbe 1.00000005. Se infatti consideriamo fl((ex − 1)/x) ≈ 1.3245.... mentre fl((ex −
1)/(log(ex)) ≈ 1.00000006 che è la risposta corretta.

Cosa fare per evitare la cancellazione numerica? Una prima risposta è di trovare
un’espressione più stabile, ovvero tale da non far aumentare gli errori introdotti dalla for-
mulazione del problema.

Ad esempio, si voglia valutare
√
x+ δ − √x per δ → 0. Razionalizzando si ottiene

δ√
x+ δ +

√
x

dove si evitano i problemi di cancellazione che si avrebbero con l’espressione

originale.

24CAPITOLO 1. RAPPRESENTAZIONE DEI NUMERI E ANALISI DEGLI ERRORI

Un altro esempio è il calcolo di cos(x + δ) − cos(x) sempre per δ → 0. Qui possiamo
evitare i problemi di cancellazione usando la formula di addizione del coseno: cos(x+ δ)−
cos(x) = −2 sin(δ/2) sin(x+ δ/2).

Come ultimo esempio, consideriamo di valutare f(x) = x(
√
x2 − 1 − x) quando x →

+∞. Infatti per un tale valore
√
x2 − 1 ≈ x. Pertanto, sempre razionalizzando possiamo

scrivere f(x) =
x√

x2 − 1 + x
evitando i soliti problemi di instabilità dovuti alla cancel-

lazione.

1.4 Stabilità e condizionamento

Iniziamo subito con la definzione di stabilità di un metodo numerico.

Definizione 3. Un metodo numerico (formula, algoritmo) si dice stabile se non propaga
gli errori. Altrimenti si dice instabile.

La stabilità è quindi un concetto legato al metodo risolutivo o al corrispondente al-
goritmo. Lo scopo dell’analisi di stabilità è di capire come avviene la propagazione degli
errori. Se questa è controllata, cioè non li fa crescere, allora il metodo sarà stabile. Uno dei
problemi connessi all’instabilità è la cancellazione numerica, proprio come evidenziato nei
due esempi successivi.

Esempio 5. Desideriamo risolvere l’equazione ax2 + bx + c = 0. Se a 6= 0, le radici sono

x1,2 =
−b±

√
b2 − 4ac

2a
. Dove si manifesta la cancellazione numerica?

• In x1 quando
√
b2 − 4ac ≈ b oppure in x2 quando −

√
b2 − 4ac ≈ b. Come ovviare a

ciò?

• Vediamo una possibile soluzione. Nel primo caso, prima si calcola x2 dove il problema
della cancellazione non sussiste quindi, usando le ben note relazioni tra le radici,
otteniamo x1 = c/(ax2). In maniera analoga opereremo nel secondo caso: prima
calcolo x1 quindi x2 = c/(ax1).

Esempio 6. Data f(x) = x2 si voglia calcolare f ′(x) per x = x0. Ora, ricorrendo alla
definizione di derivata come

lim
h→0

f(x+ h)− f(x)

h
per x = x0 ,

ma per h→ 0 potrebbero insorgere problemi di cancellazione. Cosa che si ovvia ricorrendo
alla relazione f ′(x) = 2x che verrà quindi valutata per x = x0.

Riassumendo, la stabilità è legata al metodo risolutivo e l’instabilità è dovuta essen-
zialemente agli errori algoritmici legati alle operazioni da effettuarsi durante l’esecuzione

1.4. STABILITÀ E CONDIZIONAMENTO 25

dell’algoritmo. Ma non dimentichiamo gli errori di rappresentazione (che sono errori in-
evitabili).

L’altro aspetto da tenere presente nell’analisi è quello che definiremo come condizion-
amento del problema numerico. Questo aspetto è legato alla definizione del problema,
matematicamente una funzione dei dati del problema. Una definizione che spesso troviamo
nei testi è la seguente.

Definizione 4. Un problema si dice ben condizionato se a piccole perturbazioni (relative)
sui dati in ingresso corrispondono perturbazioni (relative) dello stesso ordine in uscita. In
caso contrario il problema si dice mal condizionato.

Per misurare il condizionamento si introduce il cosidetto numero di condizionamento

C =
r

d
, (1.4)

dove r indica la percentuale d’errore sul risultato rispetto alla percentuale d’errore sul dato
d. Pertanto, usando questo indice, un problema sarà ben condizionato quando C è piccolo
(vedremo più oltre in che senso) altrimenti sarà mal condizionato. Vediamo un esempio.

Esempio 7. Il sistema {
x+ y = 2
1001x + 1000y = 2001

ha soluzione (x, y) = (1, 1). Siano

A =

(
1 1

1001 1000

)

, b =

(
2

2001

)

.

Ora, perturbiamo l’elemento a1,1 della matrice A di 0.01, ovvero consideriamo la matrice

A1 = A+

(
0.01 0
0 0

)

.

Se risolviamo il sistema A1x = b otteniamo la soluzione (x, y) = (−1/9, 1901/900). Per-
tanto, per calcolare il numero di condizionamento (1.4), dobbiamo vedere chi sono i rapporti
r/d su ogni componente del vettore soluzione:

(r

d

)

x
=

1− (−1/9)

1
= 111%,

(r

d

)

y
=

1− (1901/900)

1
= 111%

da cui, complessivamente, C = 111%. Ovvero un errore di 10−2 sul dato A si è riversato
con un errore di 0.11 sul risultato. Il problema è quindi mal condizionato.

Consideriamo la valutazione di una funzione f : R→ R in un punto x0. Prendiamo ora
una perturbazione x0 + h. Le quantità r e d richieste in (1.4), in questo caso sono

d =
x0 + h− x0

x0
=

h

x0
; r =

f(x0 + h)− f(x0)

f(x0)
,

26CAPITOLO 1. RAPPRESENTAZIONE DEI NUMERI E ANALISI DEGLI ERRORI

da cui

C(f, h) :=
f(x0 + h)− f(x0)

h

x0

f(x0)
.

Al tendere di h→ 0,

lim
h→0
|C(f, h)| = |C(f, x0)| =

∣
∣
∣
∣
f ′(x0) ·

x0

f(x0)

∣
∣
∣
∣
.

Questo esempio ci dice che il numero di condizionamento tende ad un limite che in modulo
vale

|C(f, x0)| =
∣
∣
∣
∣
f ′(x0) ·

x0

f(x0)

∣
∣
∣
∣
,

che viene detto fattore d’amplificazione d’errore. Se C(f, x0) < 1 diremo che il
problema è ben condizionato altrimenti verrà detto malcondizionato.

Come applicazione di questa analisi, consideriamo f(x) =
√

1− x. Ora f ′(x) = − 1
2
√

1−x
e quindi

C(f(x)) =

∣
∣
∣
∣

x

2(1− x)

∣
∣
∣
∣

che ha problemi quando x ≈ 1. Ad esempio se x = 0.999 e h = 10−5 allora

d = h/x = 1.001 · 10−5, r =

√

1− (x+ h)−
√

1− x√
1− x ≈ −0.00503

da cui
∣
∣ r
d

∣
∣ ≈ 501.67. Anche passando al limite per h→ 0 le cose non migliorano. Il problema

è malcondizionato e ciò è dovuto al fatto che il fattore d’amplificazione richiede il calcolo
della derivata. Questo ci dice anche che il calcolo della derivata è un problema, in genere,
malcondizionato.

1.5 Il calcolo di π

Per il calcolo di π esistono alcuni importanti algoritmi non tutti convergenti per motivi di
instabilità. Di seguito diamo cenno di 5 algoritmi tra i più importanti. Di essi diamo anche
un pseudo-algoritmo che è un’utile base di partenza per una successiva implementazione in
un linguaggio di programmazione.

1. Algoritmo di Archimede. Mediante questo algoritmo, π è approssimato con l’area del
poligono regolare di 2n lati inscritto nella circonferenza di raggio 1 (che ha area uguale
a π).

Indicando con bi il numero di lati dell’i-esimo poligono regolare iscritto,

si = sin
(π

2i

)

e Ai la corrispondente area, l’algoritmo si può cos̀ı descrivere:

1.5. IL CALCOLO DI π 27

Algoritmo
b1 = 2; s1 = 1
for i=2:n

Ai = bi−1si−1, si =

√
1−
√

1−s2
i−1

2
bi = 2bi−1

end for

2. Algoritmo di Viète. Mediante questo algoritmo, π è approssimato con il semi-perimetro
del poligono regolare di 2n lati inscritto nella circonferenza di raggio 1.

Indicando con
ci = cos

(π

2i

)

e pi il corrispondente semiperimetro, l’algoritmo si descrivere come segue:

Algoritmo
c1 = 0; p1 = 2
for i=2:n

ci =
√

1+ci−1

2

pi = pi−1

ci

end for

3. Algoritmo di Wallis. Qui π è approssimato con la formula:

π

2
=

2

1

2

3

4

3

4

5
· · · 2n

2n − 1

2n

2n+ 1
· · · n ≥ 1 .

Indicando con pi la produttoria al passo i, l’algoritmo si descrivere come segue:

Algoritmo
p0 = 2;
for i=1:n,

pi = pi−1
4i2

4i2−1
;

end for

4. π = 4 arctan(1). Usando l’espansione di Taylor di arctan(1), π è approssimato con la
formula:

arctan(1) = 4

(

1− 1

3
+

1

5
− 1

7
· · ·
)

.

Indicando con qi la somma al passo i, l’algoritmo si può descrivere come segue:

Algoritmo
q1 = 1;
for i=2:n

qi = qi−1 + (−1)i−1

2i−1

end for

28CAPITOLO 1. RAPPRESENTAZIONE DEI NUMERI E ANALISI DEGLI ERRORI

5. π = 6 arcsin(1
2). Come nel caso dell’ arctan, π è approssimato con la seguente formula

che si ottiene ancora una volta espandendo in serie di Taylor l’ arcsin(1
2):

arcsin(
1

2
) = 6

(
1

2
+

1

2

1

3

1

23
+

1

2

3

4

1

5

1

25
+ · · ·

)

.

Indicando con qi la somma al passo i e ti il “punto” corrente, l’algoritmo si descrivere
come segue:

Algoritmo
q1 = 0; t1 = 1

2
for i=1:n-1

qi+1 = qi + ti
2i−1 ; ti+1 = ti(2i−1)

8i

end for

π = 6qn

1.6 Esercizi proposti

Esercizio 4. (Laboratorio del 19/10/05). Implementare queste operazioni:

1. a=4/3;

2. b=a-1;

3. c=b+b+b;

4. e=1-c.

Qual è il risultato dell’operazione?

Esercizio 5. (Laboratorio del 19/10/05). Siano x = 5 e y = 5 − η con x − y = η.
L’errore relativo della differenza è

ǫx−y =
fl(x− y)− (x− y)

x− y ,

dove fl(x− y) è la differenza dei 2 numeri x e y, in aritmetica floating point. Ovvero

fl(x− y) = (x− y)(1 + eps),

con eps la funzione Matlab/Octave che restituisce la precisione macchina. Calcolare ǫx−y

al diminuire di η e riportare su una tabella i valori η, ǫx−y e la percentuale ǫx−y ∗ 100.

1.6. ESERCIZI PROPOSTI 29

Esercizio 6. (Laboratorio del 19/10/05). Si consideri la ricorrenza

z2 = 2 ,

zn+1 =
√

2
zn

√

1 +
√

1− 41−n z2
n

;n ≥ 2

che converge a π quando n→∞. Scrivere un M-file che implementa la ricorrenza precedente
e inoltre visualizza in scala logaritmica al variare di n l’errore relativo |π−zn|

π .

La formula ricorrente è stabile?

Esercizio 7. Si consideri la ricorrenza

I0 =
1

e
(e− 1) =

1

e

∫ 1

0
x0exdx ,

In+1 = 1− (n+ 1)In =
1

e

∫ 1

0
xn+1exdx ;n ≥ 0

sapendo che In → 0 per n→∞, si scriva un M-file che calcola I40. La ricorrenza è stabile?
Come è possibile stabilizzarla? Sugg. Si può procedere mediante stabilizzazione all’indietro.
Ovvero posto n=40, si calcola

vn =
1

e

∫ 1

0
xnexdx ,

vi−1 = (1− vi)/i, i = n, n− 1, . . . , 2

Per il calcolo di vn usare la funzione Matlab/Octave quadl con la seguente chiamata
quadl(’f’,0,1,[],n).

Esercizio 8. Si consideri la ricorrenza

I0 = log

(
6

5

)

, (1.5)

Ik =
1

k
− 5 Ik−1 k = 1, 2, . . . n , (1.6)

che in teoria dovrebbe convergere a

In =

∫ 1

0

xn

x+ 5
dx ,

mentre che cosa possiamo dire circa la convergenza della ricorrenza (1.6)?

30CAPITOLO 1. RAPPRESENTAZIONE DEI NUMERI E ANALISI DEGLI ERRORI

Capitolo 2

Ricerca di zeri di funzioni

Dalla nostra esperienza matematica sin dalla scuola media superiore, dato un polinomo di
grado n, pn(x) = a0 + a1x + · · · + anx

n, sappiamo che esistono delle formule esplicite di
calcolo delle sue radici, solo per n ≤ 4, mentre per n ≥ 5 non esistono formule generali che
ci consentono di determinarne gli zeri in un numero finito di operazioni. A maggior ragione
questo vale nel caso si vogliano determinare le soluzioni di f(x) = 0, per una generica
funzione f .

Queste considerazioni introduttive ci inducono a dire che la ricerca di soluzioni di f(x) =
0 si potrà fare solo con tecniche di tipo iterativo.

2.1 Ricerca di zeri di funzione

La ricerca di zeri di funzione è un problema frequente nel calcolo scientifico. Facciamo un
paio di esempi

1. Dinamica della popolazioni. Consideriamo il seguente modello preda-predatore, che
modellizza l’evoluzione di una determinata popolazione di cellule, di batteri, di animali
ecc... mediante l’equazione

x+ =
rx2

1 +
(

x
c

)2 , r > 0, c > 0 (2.1)

L’equazione (2.1) dice che la popolazione ”successiva” x+ cresce secondo una legge non
lineare dipendente dai parametri r, c che indicano le risorse disponibili. Scrivendola
nella forma x+ = g(x) (con ovvio significato), ci si potrebbe chiedere se esiste un
valore x∗ tale che x∗ = g(x∗). Questa è la tipica formulazione del problema di un
metodo iterativo per la ricerca di un punto fisso dell’equazione (2.1) corrispondente
allo zero della funzione f(x) = x− g(x).

31

32 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

2. Capitale in un fondo d’investimento. Sia C il capitale che si investe all’inizio di ogni
anno su un fondo d’investimento. Il montante dopo il primo anno è M1 = C + Cx =
C(1 + x). Dopo n anni il montante, Mn, sarà la somma dei montanti ottenuti con
capitalizzazione composta. Ovvero

Mn = C(1 + x) + C(1 + x)2 + · · · + C(1 + x)n = C

n∑

i=1

(1 + x)i . (2.2)

con x che indica il tasso fisso d’investimento (x ∈ (0, 1)). Se desideriamo calcolare il
tasso medio x∗ di rendita del nostro piano d’ investimento, chiamando con f(x) =
Mn−C

∑n
i=1(1+x)i, ancora una volta il problema consiste nella ricerca dello zero di

una funzione f(x) = 0.

Passiamo ora ai metodi iterativi per la ricerca di zeri di funzione.

2.2 Metodo di bisezione

Sia f ∈ C[a, b] t.c. f(a)f(b) < 0. Sappiamo allora che esiste almeno uno zero di f in (a, b).
Mettiamoci però nell’ipotesi più semplice che in (a, b) esista un solo zero, α ∈ (a, b)
(altrimenti contrarremo l’intervallo di studio).

L’algoritmo di calcolo si può descrivere come segue.

Algoritmo

Inizializzazione: a0 = a; b0 = b; I0 = (a0, b0); x0 = a0+b0
2

{ Al generico passo k, determineremo l’intervallo Ik = 1
2Ik−1 }

1. calcolo xk−1 =
ak−1+bk−1

2
2. if f(xk−1) = 0, then α = xk−1; {abbiamo trovato la radice},

2.1 else if f(ak−1)f(xk−1) < 0 then ak = ak−1, bk = xk−1

2.2 else if f(ak−1)f(xk−1) > 0 then ak = xk−1, bk = bk−1

end if

3. xk =
ak−1+bk−1

2 , k = k + 1.
ritorna al test 2.

Con questo metodo generiamo una successione {xk} che converge verso α in quanto, poiché
|Ik| = 1

2k |I0|, otteniamo per l’errore ek al passo k

|ek| = |xk − α| <
1

2
|Ik| =

1

2k+1
|b− a| .

Chiedendo poi che |ek| < ǫ troveremo che il numero minimo di iterazioni per ridurre
l’errore a meno di ǫ è

kmin > log2

(|b− a|
ǫ

)

− 1 . (2.3)

2.2. METODO DI BISEZIONE 33

Ecco il codice Matlab/Octave che descrive il metodo di bisezione.

function sol=bisezione(a,b,tol)

%----------------------------------

% Metodo di bisezione

% E’ necessario definire la funzione

% funBisez.m

%----------------------------------

% Inputs

% a,b : estremi dell’intervallo

% tol : tolleranza

% Output

% sol : la soluzione cercata

%----------------------------------

if funBisez(a)*funBisez(b) > 0

error(’L’’ intervallo non contiene la radice’);

elseif

abs(funBisez(a)*funBisez(b)) < tol

error(’ uno degli estremi e’’ gia’’ sulla radice ’)

else

a0=a; b0=b; k=0;

disp(’Numero iterazioni a priori : ’)

ceil((log(abs(b0-a0))-log(tol))/log(2))

while abs(b-a)>tol*abs(b),

m=(a+b)/2;

if abs(funBisez(m))< tol

disp(’La radice cercata e‘ : ’) m

break;

elseif funBisez(m)*funBisez(a)<0,

b=m;

else

a=m;

end

k=k+1;

end

disp(’La radice cercata e‘ : ’)

sol=(a+b)/2

disp(’Numero iterazioni effettuate : ’)

k

end

• Il metodo non garantisce una riduzione progressiva dell’errore ma solo un dimezza-
mento dell’ampiezza dell’intervallo dove sta α.

• Il metodo non tiene conto del reale andamento della funzione f su I0 = [a, b]. Se

34 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

I0 è simmetrico rispetto α allora basterà un passo per determinarla altrimenti anche
quando f è lineare il metodo richiederà più di un passo.

2.3 Iterazione di punto fisso

L’idea del metodo è di trasformare il problema originale, che consiste nel cercare gli zeri di
f risolvendo f(x) = 0, in un problema di punto fisso x = g(x) la cui soluzione è la soluzione
del problema originale.

1. Il primo passo è la trasformazione di f(x) = 0 in un problema di punto fisso x = g(x),
con g derivabile in Iα e t.c. α = g(α) se e solo se f(α) = 0.

2. Dato un valore iniziale x0 costruiamo il metodo iterativo xk+1 = g(xk), k = 0, 1, . . .
che genererà la successione {xk} che convergerà verso un punto ξ = α.

Per inciso, la funzione g(x) viene detta funzione d’iterazione del metodo iterativo.

La trasformazione di f(x) = 0 in x = g(x) non è unica. Infatti, se consideriamo

x4 − 3 = 0, la possiamo trasformare in x = x4 + x− 3, oppure in x = 3+5x−x4

5 o ancora in

x = 3

√
3
x . In generale esistono infiniti modi di ottenere una formulazione di punto fisso.

L’altro problema, una volta ottenuta la forma x = g(x), è di chiederci se tutte le funzioni
d’iterazione g(x) vanno ugualmente bene. La risposta è negativa.

Proposizione 1. Se g(x) è derivabile in Iα ed esiste un numero µ < 1 t.c.

|g′(x)| ≤ µ, ∀ x ∈ Iα ; (2.4)

allora g(x) ha un unico punto fisso α. Inoltre la successione generata dal metodo xk+1 =
g(xk) converge ad α per ogni scelta di x0 ∈ Iα. Infine si ha

lim
k→∞

xk+1 − α
xk − α

= g′(α) . (2.5)

Da (2.5) deduciamo che le iterazioni di punto fisso convergono almeno linearmente.
Infatti per k > k̄, k̄ sufficientemente grande, l’errore ek+1 = xk+1 − α ha lo stesso compor-
tamento di quello al passo k a meno di una costante |g′(α)| ≤ µ < 1.

Definizione 5. Sia {xk} una successione convergente a ξ. Consideriamo l’errore assoluto
al passo k, ek = xk − ξ. Se esiste un reale p ≥ 1 e una costante reale positiva γ < +∞ t.c.

lim
k→∞

|ek+1|
|ek|p

= lim
k→∞

|xk+1 − ξ|
|xk − ξ|p

= γ , (2.6)

allora la successione {xk} ha ordine di convergenza p.

2.3. ITERAZIONE DI PUNTO FISSO 35

Se p = 1 e 0 < γ < 1 parleremo di convergenza lineare. Se p = 1 e γ = 1 par-
leremo di convergenza sublineare. Nel caso in cui 1 < p < 2 si dice che la convergenza è
superlineare. Se p = 2 parleremo di convergenza quadratica; se p = 3 di convergenza
cubica e cos̀ı via.

Come conseguenza della precedente definizione, il metodo di iterazione funzionale xk+1 =
g(xk) ha ordine di convergenza p se vale la (2.6).

Esempio 8. Consideriamo la funzione d’iterazione g(x) = x(2− qx), q > 0.

(a) Quali sono i punti fissi di g(x).

(b) Preso il metodo xk+1 = g(xk), k ≥ 0, determinare l’intervallo Iα di convergenza della
radice positiva α.

(c) Calcolare l’ordine di convergenza del metodo iterativo di cui al punto precedente.

Soluzione.

(a) Risolvendo x = x(2− qx) si ottengono le soluzioni x1 = 0 e x2 = 1/q > 0.

(b) L’intervallo di convergenza Iα con α = 1/q si ottiene chiedendo che |g′(1/q)| < 1. Ora
risolvendo |g′(x)| < 1, ovvero |2(1− qx)| < 1, si ha

1

2q
< x <

3

2q
.

Questo intervallo contiene la radice α = 1/q e inoltre g′(1/q) = 0 < 1 e quindi, come

richiesto dalla Proposizione 1, il metodo converge alla radice positiva per x ∈
(

1
2q ,

3
2q

)

.

(c) Calcoliamo l’ordine di convergenza verificando per quali p il limite

lim
k→∞

|xk(2− q xk)− α|
|xk − α|p

risulta finito. Per p = 1 non è finito perchè il numeratore si comporta come x2 e il
denomiatore come x. Invece per p = 2, numeratore e denominatore si comportano
come x2 e quindi il limite sarà finito. Pertanto il metodo converge con ordine 2.

⋄

L’ esempio appena svolto ci consente di specializzare il concetto di ordine di convergenza
di un metodo iterativo.

36 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

Definizione 6. Se la funzione d’iterazione è derivabile almeno p volte con continuità in
Iα, con α un punto fisso semplice di g(x) per cui

g′(α) = g′′(α) = · · · = g(p−1)(α) = 0, g(p)(α) 6= 0 ,

allora il metodo d’iterazione ha ordine di convergenza p.

Tornando all’esempio precedente punto (c), notiamo che g′(1/q) = 0 mentre g′′(1/q) =
−2q 6= 0 che come dimostrato ha ordine di convergenza quadratico.

Test di arresto

1. Test sulla differenza tra due iterate successive. Il metodo iterativo continuerà la ricerca
della soluzione finchè |xk+1 − xk| < ǫ. Infatti

xk+1 − α = g(xk)− g(α) = g′(ξk)(xk − α), ξk ∈ [α, xk] . (2.7)

Essendo xk − α = xk − xk+1 + xk+1 − α otteniamo

xk − α =
1

1− g′(ξk)
(xk − xk+1) .

Pertanto, se g′(x) ≈ 0, x ∈ Iα (in particolare ciò sarà vero per x = ξk) allora l’errore
viene stimato abbastanza accuratamente dalla differenze delle iterate successive. Se
invece g′(x) ≈ 1 (nel senso che è un valore maggiore di 1) allora il fattore 1/(1 −
g′(ξk))→∞ e quindi la stima peggiora.

2. Test sulla differenza ”relativa” tra due iterate successive. Il test che faremo ora è

|xk+1 − xk| < ǫ|xk+1| .

3. Test sul valore della funzione. Il test consiste nel verificare se |f(xk)| < ǫ. Purtroppo
questo test non funziona quando la funzione è piatta su Iα, facendo fermare le it-
erazioni troppo lontano dal valore della soluzione. Un esempio: la funzione f(x) =
(x10−10)/x nell’intorno sinistro della radice positiva α ≈ 1.26 è molto piatta e usando
il test in esame partendo da x0 ∈ Iα = [1, 2] usando anche una tolleranza alta come
ǫ = 1.e − 2, ci arresteremo dopo migliaia di iterazioni.

L’esempio appena proposto, ci ha suggerito le seguenti considerazioni.

• Nei test di arresto è necessario inserire anche un controllo sul numero massimo di
iterazioni, k ≤ kmax.

2.4. IL METODO DI NEWTON O DELLE TANGENTI 37

• Il test che ci darà “maggiore sicurezza” è quindi la combinazione del test sull’errore
relativo e il controllo sul numero di passi. Pertanto il metodo iterativo continuerà a
cercare la radice finchè

(|xk+1 − xk| ≥ ǫ|xk+1|) & (k ≤ kmax) . (2.8)

altrimenti se una delle due condizioni non sarà più vera si arresterà.

Il codice Matlab/Octave che implementa un metodo di iterazione funzionale la cui funzione
d’iterazione è descritta nell’ M-file g e che richiede in input il valore iniziale x0, la tolleranza
tol e il numero massimo d’iterazioni kmax, si può descrivere come segue.

% dati x0, tol e kmax

x1=g(x0);

k=1;

while abs(x1-x0) > tol*abs(x1) & k <= kmax

x0=x1;

x1=g(x0);

k=k+1;

end

% Al termine, se converge, x0 oppure x1 contengono il valore

% dello zero cercato.

if (k > kmax)

disp(’Non converge!); break;

else

disp(’Lo zero cercato e’’ ’); x0

end

Esercizio. Trovare un metodo di iterazione funzionale convergente alla radice di x10 = 10.

2.4 Il metodo di Newton o delle tangenti

Supponiamo che f sia derivabile su [a, b]. Pertanto possiamo considerare l’equazione della
tangente di f in xk

y(x) = f(xk) + (x− xk)f
′(xk) . (2.9)

Come punto xk+1 prendiamo il punto in cui la retta tangente interseca l’asse delle ascisse.
In pratica dobbiamo risolvere y(x) = 0.

Imponendo questa condizione in (2.9), otteniamo la formula del metodo di Newton

xk+1 = xk −
f(xk)

f ′(xk)
, (2.10)

purchè f ′(xk) 6= 0, k ≥ 0.

Facciamo ora un paio di osservazioni.

38 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

1. Il metodo di Newton consiste nel sostituire localmente f(x) con la retta tangente.
Infatti

f(xk+1) = f(xk) + (xk+1 − xk)f
′(xk) +O((xk+1 − xk)

2) ,

da cui, imponendo che f(xk+1) = 0 e trascurando i termini di ordine superiore al
primo, otteniamo la (2.10). Questo ci dice che la (2.10) è un modo per approssimare
f in xk+1.

2. Se f(x) = a0 + a1x (f è una retta), allora il metodo di Newton converge in una sola
iterazione. Infatti

x1 = x0 −
a0 + a1x

a1
= −a0

a1
.

⋄⋄

Facciamo ora vedere che se x0 è preso “ sufficientemente” vicino alla radice α, con
f ′(α) 6= 0 (ovvero α radice semplice), allora il metodo converge almeno quadraticamente e
si ha

lim
k→∞

xk+1 − α
(xk − α)2

=
f ′′(α)

2f ′(α)
, (2.11)

da cui, se f ′′(α) 6= 0, allora il metodo converge quadraticamente altrimenti con ordine
maggiore di due.

Dimostriamo la (2.11).

0 = f(α) = f(xk) + f ′(xk)(α− xk) +
(α− xk)

2

2
f ′′(ξ), ξ ∈ (xk, α)

=
f(xk)

f ′(xk)
+ α− xk +

(α− xk)
2

2f ′(xk)
f ′′(ξ)

= xk − xk+1 + α− xk +
(α− xk)

2

2f ′(xk)
f ′′(ξ)

= α− xk+1 + (α− xk)
2 f ′′(ξ)
2f ′(xk)

si conclude dividendo per (xk − α)2, portando a primo membro e passando al limite. �

Il seguente teorema ci da delle condizioni per la convergenza globale del metodo di
Newton.

Teorema 1. Sia f ∈ C2[a, b] con [a,b] chiuso e limitato, inoltre

1. f(a)f(b) < 0

2. f ′(x) 6= 0, x ∈ [a, b]

3. f ′′(x) ≥ 0 oppure f ′′(x) ≤ 0, ∀x ∈ [a, b]

2.4. IL METODO DI NEWTON O DELLE TANGENTI 39

4.
∣
∣
∣

f(a)
f ′(a)

∣
∣
∣ < b− a e

∣
∣
∣

f(b)
f ′(b)

∣
∣
∣ < b− a.

Allora il metodo di Newton converge all’ unica soluzione α ∈ [a, b] per ogni x0 ∈ [a, b].

Osservazione. L’ultima ipotesi del Teorema ci assicura che la tangente agli estremi a e
b interseca l’asse x all’interno di [a, b].

Dim. Supponiamo che f ′ > 0, f ′′ ≤ 0 e f(a) < 0, f(b) > 0 (ovvero nell’ipotesi di
esistenza di un unico zero α in [a, b]).

Sia a ≤ x0 < α e, ovviamente, f(x0) ≤ 0 = f(α). Allora x1 = x0 − f(x0)/f
′(x0) ≥ 0.

Proviamo per induzione che xk ≤ α e xk+1 ≥ xk.

Per k = 0 è vera. Sia vera per k e proviamola per k + 1.

−f(xk) = f(α)− f(xk) = (α− xk)f
′(ξk), xk ≤ ξk ≤ α .

Ma, f ′′(x) ≤ 0, che implica che f ′ è decrescente. Quindi f ′(ξk) ≤ f ′(xk). Allora,

−f(xk) ≤ (α− xk)f
′(xk)

xk+1 = xk −
f(xk)

f ′(xk)
≤ xk + (α− xk) = α .

Segue che f(xk+1) ≤ f(α) = 0 e anche che xk+2 ≥ xk+1 come richiesto.

In conclusione, la successione {xk} è monotona e limitata superiormente e quindi con-
vergente: limk→∞ xk = α . �

Se α è zero multiplo, con molteplicità m > 1 il metodo di Newton converge linear-
mente. Vediamolo su un semplice esempio.

Esempio 9. f(x) = x2. Il metodo di Newton costruisce la successione

xk+1 = xk −
x2

k

2xk
=
xk

2
.

L’errore corrispondente soddisfa la successione ek+1 = ek

2 che ci dice appunto che il metodo
converge linearmente.

Se si considerasse la successione

xk+1 = xk − 2
x2

k

2xk
= 0

come si vede il metodo converge immediatamente alla radice doppia α = 0.

40 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

⋄
L’esempio ci suggerisce come modificare il metodo di Newton affinchè sia mantenuta la
convergenza quadratica anche in presenza di zeri con molteplicità m > 1.

xk+1 = xk −m
f(xk)

f ′(xk)
, f ′(xk) 6= 0, k ≥ 0 . (2.12)

La successione generata con l’iterazione (2.12) converge quadraticamente alla radice multi-
pla α alla luce della seguente osservazione: il metodo di Newton è un metodo di iterazione
funzionale con funzione d’iterazione g(x) = x − f(x)

f ′(x) . Facciamo vedere che nel caso di
radice α di molteplicità m, per mantenere l’ordine di convergenza quadratico, dobbiamo
considerare

g(x) = x−m f(x)

f ′(x)
. (2.13)

Infatti, poichè possiamo scrivere f(x) = (x− α)mh(x) con h(p)(α) 6= 0, p = 0, . . . ,m e

g(x) = x− (x− α)h(x)

mh(x) + (x− α)h′(x)

g′(x) = 1− h(x)

mh(x) + (x− α)h′(x)
− (x− α)

d

dx
ψ(x)

dove ψ(x) = h(x)
mh(x)+(x−α)h′(x) . Pertanto g′(α) = 1 − 1/m 6= 0 se m > 1. È facile a questo

punto verificare che se prendiamo g(x) = x−mf(x)/f ′(x), come in (2.13), allora g′(α) = 0
che ci garantisce ancora convergenza almeno quadratica del metodo di Newton anche per
zeri con multeplicità m > 1.

Se non conosciamo la molteplicità della radice, considereremo invece di f(x) la funzione
φ(x) = f(x)/f ′(x) e applicheremo il metodo di Newton a questa funzione costruendo la
successione

xk+1 = xk −
φ(xk)

φ′(xk)
.

L’unico inconveniente di questa tecnica è che si deve calcoloare la derivata seconda della
funzione f . Alternativamente, si può stimare il valore della molteplicità con una successione

mk =
xk−1 − xk−2

2xk−1 − xk − xk−2

come descritto in [15, §6.2.2].

Vediamo ora un paio di esempi (didattici ma importanti).

1. f(x) = x2 − q, x > 0, q ∈ R+. Il problema ha soluzione x =
√
q. La successione del

metodo di Newton è

xk+1 =
1

2
(xk +

q

xk
) ,

2.4. IL METODO DI NEWTON O DELLE TANGENTI 41

che altro non è che il metodo babilonese o di Erone che calcola
√
q usando le

operazioni elementari. Poiché f ′ > 0, f ′′ > 0 per x > 0, allora per il Teorema 1, per
ogni 0 < a <

√
q < b la successione converge a

√
q.

Nel caso f(x) = xn − q, q > 0, n > 0,

xk+1 = xk(1−
1

n
) +

q

n
x1−k

k

consente di calcolare la radice n-esima del numero reale positivo q.

2. f(x) = 1
x − c. Per c > 0, il problema equivale a calcolare l’inverso di c. La successione

del metodo di Newton è
xk+1 = xk(2− cxk)

che consente di calcolare il reciproco senza divisioni! Ora, per applicare il Teorema
1, osservo che essendo f ′ < 0 e f ′′ > 0 (ricorda che x > 0) dovró trovare c, t.c.
a < 1/c < b tale che

f(b)

f ′(b)
= b(bc− 1) < b− a ⇐⇒ b =

1 +
√

1− ac
c

Pertanto, se a > 0 il metodo di Newton converge pur di prendere 0 < x0 < 2/c.

Concludiamo con un esempio.

Esempio 10. Data la funzione

fα(x) =
sin(αx)

αx+ 2
log(αx), α 6= 0 ,

(a) dire quali sono gli zeri di f(x) risolvendo analiticamente f(x) = 0;

(b) per α = 2, si calcoli lo zero x∗ = 1/α mediante il metodo di Newton a meno di
tol = 1.e − 6.

Anzitutto la funzione è definita per x 6= −2/α, quindi il suo campo di esistenza è R\{−2/α}.
Gli zeri si ottengono dalle equazioni e disequazioni

sin(αx) = 0 ,

log(αx) = 0 ,

α x > 0 .

che hanno soluzioni x = kπ, k ∈ Z e x = ±1/α. In x = 0 la funzione è definita per
continuità e vale 0.

Per α = 2, lo zero richiesto è x∗ = 1/2. Usando il metodo di Newton, sapendo che

f ′α(x) =
sin(αx)

x(αx+ 2)
+ α

[
cos(αx)(αx + 2)− sin(αx)

(αx+ 2)2

]

, con il codice seguente:

42 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

−1 −0.5 0 0.5 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
sin(2x)log(2x)/(2x+2)

Figura 2.1: La funzione dell’Esempio 10 in [0.9, 1] con α = 2.

clear;

kmax=100; tol=1.e-6;

x0=3/(2*a);

iter(1)=x0;

[y,yd]=fun1(x0,a);

x1=x0-y/yd;

k=1;

iter(k+1)=x1;

while abs(x1-x0)> tol*abs(x1) & k <=kmax

x0=x1;

[y,yd]=fun1(x0,a);

x1=x0-y/yd;

iter(k+1)=x1;

k=k+1;

end

disp(’La soluzione cercata e’’ ’); x1

%---file che valuta la funzione e la sua derivata ----

function [y,yd]=fun1(x,a)

Ax=a*x+2; Sx=sin(a*x); y=Sx./Ax.*log(a*x);

yd=Sx./(Ax.*x)+a*(cos(a*x).*Ax-Sx)./(Ax.^2); return

in 12 iterazioni si calcola la soluzione richiesta.

⋄⋄

2.4. IL METODO DI NEWTON O DELLE TANGENTI 43

2.4.1 Varianti del metodo di Newton

Descriviamo brevemente alcune varianti del metodo di Newton note in letteratura con altri
nomi.

Metodo delle corde

Consiste nel considerare costante, uguale ad un certo valore c, la derivata prima della
funzione f . Si ottiene pertanto il metodo delle corde

xk+1 = xk −
f(xk)

c
, c ∈ R\{0}. (2.14)

Per la ricerca del valore ottimale per c, si deve tener conto del fatto che il metodo è un
metodo d’iterazione funzionale con funzione d’iterazione g(x) = x − f(x)/c. Pertanto c si
sceglie cosicché

|g′(x)| =
∣
∣
∣
∣
1− f ′(x)

c

∣
∣
∣
∣
< 1 ,

in un intorno Iα = [α− δ, α+ δ] della soluzione α. Pertanto, per la convergenza del metodo
delle corde dovremo verificare le seguenti condizioni:

f ′(x) 6= 0, x ∈ Iα,
0 < f ′(x)/c < 2 .

Dalla seconda condizione, indicando con M = maxx∈Iα |f ′(x)| si deduce che per la conver-
genza dobbiamo richiedere che |c| > M/2 e anche che c f ′(x) > 0.

Se c 6= f ′(α) allora il metodo ha convergenza lineare, quando c = f ′(α) il metodo è
almeno del primo ordine.

Metodo delle secanti

L’idea è quello di approssimare f ′(xk), che appare nel metodo di Newton, con il rapporto

incrementale
f(xk)− f(xk−1)

xk − xk−1
. Si ottiene

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
, k = 1, 2, ... (2.15)

con f(xk−1) 6= f(xk). Pertanto il metodo richiede la conoscenza di due valori iniziali, x0, x1.
Al passo k, il nuovo valore xk+1 è l’intersezione della secante, ovvero la retta per i punti
(xk−1, f(xk−1)) e (xk, f(xk)), con l’asse delle ascisse.

44 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

Il metodo delle secanti converge, sotto le stesse ipotesi del metodo di Newton, con
ordine di convergenza

p =
1 +
√

5

2
≈ 1.618 ,

che equivale ad una convergenza superlineare. Ma, l’importanza del metodo delle secanti
stà principalmente nel costo computazionale: il metodo richiede solo il calcolo di f(xk)
mentre il metodo di Newton richiede i valori di f(xk) e di f ′(xk). Nel caso di funzioni
la cui espressione è ”complicata”, il calcolo della derivata può essere costoso dal punto
di vista della complessità. Pertanto il metodo delle secanti, pur avendo una convergenza
superlineare, rappresenta sempre una valida alternativa al metodo di Newton.

Nel valutare, se usare il metodo delle secanti o di Newton, si dovrebbe considerare
la loro efficienza computazionale che indica se è più costoso calcolare la derivata o il
rapporto incrementale senza tralasciare il fatto che il calcolo della derivata di una funzione
è comunque un problema mal-condizionato.

Osserviamo che in [2] viene chiamato metodo delle secanti il metodo iterativo

xk+1 = xk − f(xk)
xk − c

f(xk)− f(c)
, k = 1, 2, ... (2.16)

con c ∈ [a, b], che corrisponde ad usare una secante sempre con la stessa pendenza. In
questo caso, la convergenza è di tipo lineare. Se c è scelto cosicché f(c)/(c−α) ha lo stesso
segno di f ′(α) ed inoltre

∣
∣
∣
∣

f(c)

c− α

∣
∣
∣
∣
>

1

2
|f ′(α)|

allora la corrispondente funzione d’iterazione è tale che |g′(x)| < 1 e quindi il metodo
converge.

Il metodo di Steffensen

Il metodo costruisce la sequenza

xk+1 = xk −
f(xk)

g(xk)
, (2.17)

g(xk) =
f(xk + f(xk))− f(xk)

f(xk)
. (2.18)

Posto βk = f(xk), si ha

g(xk) =
f(xk + βk)− f(xk)

f(xk)
= f ′(xk)

(

1− 1

2
hkf

′′(xk) +O(β2
k)

)

con hk = −f(xk)/f
′(xk) che è la correzione di Newton.

2.5. ACCELERAZIONE DI AITKEN 45

Osservando che per la funzione s(x) = 1/(1−x) si può scrivere come s(x) = 1+x+O(x2),
pertanto la (2.17) diventa

xk+1 = xk + hk(1 +
hk

2
f ′′(xk) +O(β2

k)) . (2.19)

Da cui, per l’errore ek = xk − α, osservando che

hk = −ek +
1

2
e2k
f ′′(ξ)
f ′(xk)

(si ottiene dal fatto che hk = (xk − α) +
(xk − α)

2

f ′′(ξk)
f ′(xk)

)

otteniamo

lim
k→∞

ek+1

e2k
=

f ′′(α)

2f ′(α)
(1 + f ′(α)) .

In conclusione il metodo di Steffensen è un metodo di ordine 2.

2.5 Accelerazione di Aitken

Il metodo consente di accelerare una sequenza ottenuta a partire da successioni di punto
fisso xk+1 = g(xk), k ≥ 0.

Se {xk} converge linearmente allo zero α, allora possiamo dire che esiste un η (da
determinarsi) tale che

g(xk)− α = η(xk − α) . (2.20)

Il metodo si propone di definire una “nuova” successione che migliori la successione ottenuta
con il metodo di partenza. Dalla (2.20) otteniamo

α =
g(xk)− ηxk

1− η =
g(xk)− ηxk + xk − xk

1− η
ovvero

α = xk +
g(xk)− xk

1− η . (2.21)

Come possiamo determinare η? Lo approssimiamo con la successione

ηk =
g(g(xk))− g(xk)

g(xk)− xk
. (2.22)

Lemma 1. Se la successione xk+1 = g(xk) converge ad α allora

lim
k→+∞

ηk = g′(α) .

46 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

Dim. Osserviamo che xk+1 = g(xk) e xk+2 = g(g(xk)). Da (2.22)

ηk =
xk+2 − xk+1

xk+1 − xk
=
xk+2 − α− (xk+1 − α)

xk+1 − α− (xk − α)
=

=

xk+2−α
xk+1−α − 1

1− xk−α
xk+1−α

.

Passando al limite, ricordando che per ipotesi la successione converge ovvero che lim
k→+∞

xk+1 − α
xk − α

=

g′(α), otteniamo l’asserto

lim
k→+∞

ηk =
g′(α)− 1

1− 1
g′(α)

= g′(α) .

In definitiva {ηk} approssima η. �

Usando (2.21) e (2.22) otteniamo la “nuova successione”

x̂k+1 = xk −
(g(xk)− xk)

2

g(g(xk))− 2g(xk) + xk
, k ≥ 0 (2.23)

detta formula di estrapolazione di Aitken o anche metodo di Steffensen. La (2.23)
si può considerare una iterazione di punto fisso con funzione d’iterazione

g∆(x) =
x g(g(x)) − (g(x))2

g(g(x)) − 2g(x) + x
.

⋄
Osservazione. Il ∆ a pedice nella g∆ è dovuto alla seguente osservazione. Osserviamo che
la successione di Aitken si può riscrivere come

x̂k+1 = xk −
(xk+1 − xk)

2

xk+2 − 2xk+1 + xk
, (2.24)

dove appare evidente la presenza dell’operatore differenze in avanti, ∆. ∆ è un op-
eratore lineare che si definisce come

∆x = (x+ h)− x, h > 0

Pertanto ∆xk = xk+1 − xk, ∆2 xk = ∆(∆xk) = ∆xk+1 −∆xk = xk+2 − 2xk+1 + xk. In
definitiva la successione di Aitken (2.24), usando l’operatore ∆, diventa

x̂k+1 = xk −
(∆xk)

2

∆2 xk
. (2.25)

Talvolta, per indicare il metodo di accelerazione di Aitken, si usa la notazione ∆2 di

Aitken.
⋄

2.5. ACCELERAZIONE DI AITKEN 47

Tornando alla g∆(x), notiamo che è indeterminata per x = α. Infatti, ricordando che

g(α) = α e g(g(α)) = α otteniamo g∆(α) = α2−α2

α−2α+α = 0
0 . Se g è derivabile e g′(α) 6= 1

allora applicando de l’ Hôpital limx→α g∆(x) = α. Pertanto, in x = α, g∆(x) è estendibile
per continuità e g∆(α) = α.

Se g(x) = x− f(x) allora g′(α) = 1 se e solo se α ha molteplicità 2. Anche per questa
particolare g, si verifica che g∆(α) = α ovvero ha gli stessi punti fissi di g. Possiamo quindi
considerare l’iterazione di punto fisso xk+1 = g(xk), g(x) = x − f(x). Vale il seguente
risultato.

Proposizione 2. Sia g(x) = x− f(x) e α radice di f . Se f è sufficientemente regolare la
successione xk+1 = g(xk) ha le seguenti proprietà.

(i) se le iterazioni di punto fisso convergono linearmente ad una radice semplice di f
allora ∆2 di Aitken converge quadraticamente alla stessa radice.

(ii) se le iterazioni di punto fisso convergono con ordine p ≥ 2 ad una radice semplice di
f allora ∆2 di Aitken converge alla stessa radice con ordine 2p− 1.

(iii) se le iterazioni di punto fisso convergono linearmente ad una radice multipla di molteplicità
m ≥ 2 di f allora ∆2 di Aitken converge linearmente alla stessa radice con fattore
asintotico 1− 1/m.

Inoltre, nel caso p = 1 con α radice semplice di f , il metodo di Aitken converge anche se le
corrispondenti iterazioni di punto fisso non convergono.

Esempio 11. La funzione tan(x) = 3
2x − 1

10 ha la radice α = 0.205921695. Se la deter-

miniamo con il metodo iterativo xk+1 = 2
0.1 + tan(xk)

3
partendo da x0 = 0 otteniamo una

successione linearmente convergente ad α (infatti g′(α) ≈ 0.45636 < 1). In Tabella 2.1 fac-
ciamo vedere la differente velocità di convergenza usando anche la successione del metodo
di accelerazione ∆2 di Aitken.

k xk x̂k (Aitken)

0 0 0
...

...
...

2 0.111 0.2024
...

...
...

5 0.1751 0.2053

Tabella 2.1: Confonto di una successione di punto fisso e di ∆2 di Aitken

Una possibile implemetazione del metodo di accelerazione di Aitken si può fare come
nel codice Matlab/Octave che segue.

48 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

function [alfa]=Aitken(g,x0,tol,kmax)

% g e‘ la funzione di iterazione g(x)=x-f(x)

k=0;

x1=g(x0);x2=g(x1);

xnew=x0-(x1-x0)^2/(x2-2*x1+x0);

while abs(x2-xnew)>tol & k <=kmax)

x0=xnew;

x1=g(x0);

x2=g(x1);

xnew=x0-(x1-x0)^2/(x2-2*x1+x0);

k=k+1;

end

% Al termine, alfa sara’ l’ultimo valore di xnew

alfa=xnew;

2.6 Calcolo delle radici di polinomi algebrici

Indicheremo con

pn(x) =
n∑

k=0

akx
k, ak ∈ R

un poliomio algebrico di grado n. Per la ricerca delle radici reali e/o complesse di pn(x)
ricordiamo anzitutto due risultati utili a comprendere la difficoltà del problema.

• Regola dei segni di Cartesio. Dato pn(x), indichiamo con s il numero di cambiamenti
di segno nell’insieme dei coefficienti {ak} e con p il numero delle radici reali positive
ognuna contata con la propria molteplicità. Allora p ≤ s e s− p è un numero pari.

• Regola di Cauchy. Tutti gli zeri di pn(x) sono inclusi nel cerchio Ω ⊂ C

Ω = {z ∈ C : |z| ≤ 1 + γ}, γ = max
0≤k≤n−1

∣
∣
∣
∣

ak

an

∣
∣
∣
∣

Vediamo ora un paio di esempi esplicativi che ci dicono come la regola di Cauchy ci dia
una localizzazione troppo approssimativa.

1. Sia p3(x) = x3 − 3x + 2 (che si può fattorizzare (x − 1)2(x + 2)). Questo polinomio
ha s = 2, p = 2 quindi la regola di Cartesio vale in quanto 2 ≤ 2 e 2 − 2 = 0 è pari.
Pe Cauchy abbiamo che il cerchio di raggio 1 + γ = 1 + 3 = 4 contiene le radici.

2. Sia p6(x) = x6 − 2x5 + 5x4 − 6x3 + 2x2 + 8x − 8 le cui radici sono ±1, ±2i, 1 ± i.
Abbiamo una sola radice positiva: p = 1. Il numero dei cambi di segno è s = 5. Anche
qui le due regole di Cartesio e Cauchy sono ancora vere. In particolare per Cauchy
avremo che γ = 8!

2.6. CALCOLO DELLE RADICI DI POLINOMI ALGEBRICI 49

2.6.1 Schema di Hörner

Lo schema consente di valutare efficientemente un polinomio in un punto. Partiamo con
un esempio esplicativo. Per valutare il polinomio p2(x) = a0 + a1x + a2x

2 in un punto ζ
richiederebbe 2 addizioni e 2 moltiplicazioni. Se lo riscrivessimo nella forma equivalente
p2(x) = a0 + x(a1 + a2x), per valutarlo in ζ occorerebbero 2 addizioni e 2 moltiplicazioni.

Nel caso generale, la valutazione in ζ di pn(x) = a0 + a1x+ · · ·+ anx
n richiederebbe n

somme e 2n− 1 moltiplicazioni. Usando la riscrittura

pn(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + anx)))

serviranno solo n somme e n moltiplicazioni.

L’algoritmo di Hörner per valutare pn(x) nel punto ζ si può cos̀ı descrivere.

Algoritmo 1.

bn = an;

for k = n− 1 : −1 : 0,

bk = ak + bk+1ζ

end

Alla fine b0 = pn(ζ).

L’algoritmo di Hörner è anche detto di divisione sintetica. Infatti, consideriamo il
polinomio

qn−1(x; ζ) = b1 + b2x+ · · ·+ bnx
n−1

i cui coefficienti sono i coefficienti bk calcolati con l’algoritmo di Hörner e che dipendono da
ζ, allora possiamo scrivere

pn(x) = (x− ζ)qn−1(x; ζ) + b0

con b0 che è il resto della divisione di pn(x) per x− ζ. Per Ruffini sappiamo che b0 = pn(ζ)
e quindi b0 = 0 quando ζ è una radice di pn(x). Pertanto, quando pn(ζ) = 0 possiamo
scrivere

pn(x) = (x− ζ)qn−1(x; ζ) .

Per determinare le rimanenti radici di pn(x) dobbiamo risolvere l’equazione qn−1(x; ζ) = 0.
Per fare questo opereremo per deflazione come descriveremo nel prossimo algoritmo che
dovremo eseguire per ogni valore di k da n fino a 1 (ovvero k=n:-1:1).

Algoritmo 2.

(i) trova una radice ζk di pk con un metodo di ricerca radici (es. Newton);

(ii) calcola il polinomio quoziente qk−1(x; ζk) usando lo schema di Hörner;

(iii) poni pk−1 = qk−1 e vai a (i).

50 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

Metodo di Newton-Hörner

È il metodo di Newton associato allo schema di deflazione: calcola la radice ζk di pk(x).
Osservo anzitutto che se pn(x) = (x− ζ)qn−1(x) allora

p′n(x) = qn−1(x; ζ) + (x− ζ)q′n−1(x; ζ)

Da cui
p′n(ζ) = qn−1(ζ; ζ) .

Pertanto il metodo di Newton-Hörner per approssimare la j-esima radice ζj , j = 1, . . . , n di

pn, consiste, a partire da una approssimazione iniziale ζ
(0)
j , nel costruire la successione

ζ
(k+1)
j = ζ

(k)
j −

pn(ζ
(k)
j)

qn−1(ζ
(k)
j ; ζ

(k)
j)

.

Poi, ricordando che pn(x) = (x − ζj)qn−1(x) si sfrutta la deflazione per approssimare uno
zero di qn−1 finchè determineremo tutte le radici.

2.7 Esercizi proposti

Esercizio 9. (Laboratorio del 2/11/05). Data la funzione f(x) = cosh x+ sinx− γ,
per γ = 1, 2, 3 si individui graficamente un intervallo contenente uno zero ξ ≥ 0 e lo si
calcoli con il metodo di bisezione con tol = 1.e−10. Calcolare anche il numero di iterazioni
necessarie sia a priori che a posteriori. Fare anche il grafico dell’errore relativo da cui si
evince che la convergenza è lineare.

Esercizio 10. (Laboratorio del 2/11/05). Un oggetto si trova fermo su un piano la
cui inclinazione varia con velocità costante ω. Dopo t secondi la posizione del questo oggetto
è

s(t, ω) =
g

2ω2
(sinh(ωt)− sin(ωt))

dove g = 9.81m/sec2 è l’accelerazione di gravità. Supponiamo che il corpo si sia mosso di 1
metro in 1 secondo. Si ricavi il valore corrispondente di ω con accuratezza 1.e−5, mediante
un metodo di iterazione funzionale convergente! (Sugg: si deve trovare una funzione di
iterazione la cui derivata prima risulta in modulo minore di 1 nell’intorno dello zero...).

Esercizio 11. (Appello del 21/6/06). Si consideri la funzione f(x) = x2−sin(πx) e−x.

1. Individuare un metodo di iterazione funzionale convergente linearmente alla radice
positiva, α, di f(x).

2. Individuare un metodo di iterazione funzionale convergente quadraticamente alla radice
β = 0, di f(x).

2.7. ESERCIZI PROPOSTI 51

In tutti i casi usare tol = 1.e− 6 e calcolare l’errore assoluto.

Esercizio 12. (Laboratorio del 16/11/05)

1. Si consideri la funzione f(x) = x2 − log(x2 + 2) di cui si vogliamo trovare gli zeri.

• Individuare le due radici reali di f(x) = 0 e i corrispondenti intervalli separatori
(che denoteremo con Iα1 e Iα2).

• Si costruiscano due metodi convergenti di iterazione funzionale, le cui funzioni
di iterazione sono gi(x), i = 1, 2. Determinare per ciascuno di essi il numero
di iterazioni necessarie, l’ordine di convergenza e il fattore asintotico d’errore.
Usare 50 come numero massimo di iterazioni e un opportuno test d’arresto con
tol = 1.e − 5

2. Data la funzione f(x) = x2 − 2x − log(x), si studi la convergenza del metodo delle
secanti applicato all’equazione f(x) = 0.

Ricordo che la formula del metodo delle secanti è

x(k+1) = x(k) − f(x(k))
x(k) − x(k−1)

f(x(k))− f(x(k−1))
, k ≥ 1 .

Si fornisca anche il plot della sequenza {xi} alle due radici reali di f . Si scelga
tol = 1.e − 5. Rifare quindi l’esercizio con il metodo di Newton (o delle tangenti).

Esercizio 13. (Appello del 19/12/06). Si consideri il metodo d’iterazione funzionale

xi+1 = xi + e1−xi − 1 .

Provare, dapprima teoricamente e quindi numericamente usando tol = 1.e − 9, che questo
procedimento converge all’unico punto fisso della funzione d’iterazione. Calcolarne anche
l’ordine di convergenza.

Esercizio 14. (Appello del 26/9/05). Si consideri la funzione f(x) = (x2−1)p log(x), p ≥
1, x > 0 che ha in α = 1 una radice multipla di molteplicità m = p+1. Nei casi p = 2, 4, 6,
si determini α con i due seguenti metodi a meno di tol = 1.e− 8 partendo da x0 = 0.8.

1.

xk+1 = xk −mk
f(xk)

f ′(xk)
, k ≥ 2 con mk =

xk−1 − xk−2

2xk−1 − xk − xk−2
. (2.26)

2.

xk+1 = xk −m
f(xk)

f ′(xk)
.

Per ciascun metodo si determini il numero di iterazioni necessarie. Nel caso del primo
metodo si faccia vedere che la formula per mk in (2.26) fornisce anche una stima della
molteplicità di α.

52 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

Esercizio 15. (Appello del 23/3/05). Si consideri l’equazione x = e−x.

• Individuato un intervallo che contiene la radice, usando l’iterazione

xn+1 =
e−xn + xn

2
, n ≥ 0 (2.27)

si determini la radice α dell’equazione data con tol = 1.e − 6.

• Si prenda ora l’iterazione

xn+1 =
ωe−xn + xn

1 + ω
, n ≥ 0, ω 6= 0, ω 6= −1 , (2.28)

Determinata α, graficamente si dica per quali valori di ω l’iterazione (2.28) converge
più rapidamente di (2.27) (Sugg. si calcoli in α la derivata della funzione d’iterazione
(2.28))

• Qual è il valore ottimale di ω?

Esercizio 16. Si considerino le funzioni f1(x) = log(2/(3 − x)) e f2(x) = x3 − 3 .

• Mediante il metodo di Newton determinare l’unica intersezione x⋆ di f1(x) = f2(x)
calcolando anche il numero di iterazioni.

• Visualizzare in scala semilogaritmica l’andamento dell’errore relativo usando la soglia
tol = 1.e − 9.

Esercizio 17. (Appello del 21/12/05). Si considerino le funzioni f1(x) = log(2|x|) e
f2(x) = 1− k x, k reale.

1. Aiutandosi con la grafica, dire quante soluzioni reali hanno le due funzioni per i
seguenti valori k1 = 2e−2 − 0.1, k2 = k1 + 0.3 e k3 = 0.

2. Si consideri quindi k = 1. Studiare la convergenza dei seguenti metodi di iterazione
funzionale all’unica radice α

(i)
xi+1 = 1− log(2|xi|) ,

(ii)

xi+1 =
1

2
exp (1− xi) .

Esercizio 18. Si consideri la funzione f(x) = x3 − 3 ex + 3 di cui si vogliamo trovare gli
zeri.

• Individuare le due radici reali di f(x) = 0 e i corrispondenti intervalli separatori (che
denoteremo con Iα1 e Iα2) e verificare che α1 < α2 = 0.

2.7. ESERCIZI PROPOSTI 53

• Si determini α1 con il metodo delle secanti. Usare un opportuno test d’arresto con
tol = 1.e − 8.

• facoltativo: individuare un metodo di iterazione funzionale convergente ad α1.

Esercizio 19. (Appello del 29/3/07). Si consideri la funzione

f(x) = 1.74 log(10
√
x)− 4

10
− 1√

x
.

• Trovare l’intervallo [a, b] che contiene l’unica radice α di f(x).

• Costruire un metodo d’iterazione funzionale convergente in [a, b] alla radice α. Usare
tol = 1.e − 6.

54 CAPITOLO 2. RICERCA DI ZERI DI FUNZIONI

Capitolo 3

Soluzione di sistemi lineari

Prima di addentrarci nello studio dei metodi numerici, è doveroso introdurre le matrici e
alcune strutture particolari di matrici nonchè alcuni concetti fondamentali quali la norma
vettoriale e matriciale e il numero di condizionamento di una matrice.

3.1 Cose basilari sulle matrici

Le definizioni che qui forniamo sono relative a matrici a valori reali ma valgono similmente
nel caso complesso con alcune piccole variazioni.

Una matrice (di numeri reali) è una tabella di m × n numeri disposti su m righe e n
colonne. I numeri che compaiono nella tabella si chiamano elementi (della matrice). La
loro individuazione avviene attraverso la loro posizione di riga e colonna. Ad esempio

A =





1 2 4 8 6
0 −5 16 −9 0.3
3 25 6 3 0.5





è una mtrice 3 × 5. L’elemento 16 essendo posizionato sulla seconda riga e terza colonna,
verrà indicato con a23.

In generale una matrice A avente m righe ed n si indicherà con

A =











a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n

· · · · · · · · · · · · · · · · · ·
ai1 ai2 · · · aij · · · ain

· · · · · · · · · · · · · · · · · ·
am1 am2 · · · amj · · · amn











.

Il numero di righe o di colonne viene detto ordine o dimensione della matrice. Nel caso in
cui m = n si dice che la matrice è quadrata di ordine n altrimenti sarà detta rettangolare.

55

56 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

3.1.1 Operazioni aritmetiche con le matrici

• Somma di matrici. Siano A e B due matrici quadrate di ordine n o in generale dello
stesso tipo m× n. Indicando con C la matrice risultato dell’operazione, si ha:

Cij = (A+B)ij = Aij +Bij .

Esempio.




1 3 2
1 0 0
1 2 2



 +





0 0 5
7 5 0
2 1 1



 =





1 3 7
8 5 0
3 3 3



 .

• Prodotto per uno scalare. Sia A una matrice quadrata di ordine n o rettangolare
m× n. Preso un α ∈ R si ha

(αA)ij = αAij .

Esempio.

2







1 3 4
0 1 5
−1 7 −8

1 0 0







=







2 6 8
0 2 10
−2 14 −16

2 0 0






.

• Prodotto di matrici. La regola fondamentale è che il prodotto di matrici si fa righe
per colonne. Pertanto perchè abbia senso richiederemo che il numero di colonne della
prima matrice sia uguale al numero di righe della seconda matrice.

Se A e B sono matrici quadrate di ordine n il prodotto sarà sempre possibile. Invece
se A è n× p e B è p×m allora C = A×B avrà dimensione n×m. Indicando con C
la matrice risultato dell’operazione, si ha:

Cij =

p
∑

k=1

(Aik Bkj) .

Esempio.




1 3 2
0 0 1
1 2 2



 ·





2 1
4 1
0 1



 =





14 6
0 1
9 5



 .

Elenchiamo le principali proprietà dell’ operazione di somma e prodotto con matrici.

1. A + 0 = 0 + A = A ovvero la matrice formata da tutti zeri è l’elemento neutro della
somma.

2. A+ (−A) = 0, ovvero esiste l’inverso di A che è la matrice −A.

3. (A+B) + C = A+ (B + C), ovvero la somma è associativa.

3.1. COSE BASILARI SULLE MATRICI 57

4. A+B = B +A: la somma è commutativa. Purtroppo questa proprietà non vale per
il prodotto: il prodotto di matrici non è commutativo.

[
1 2
4 −1

]

·
[

5 0
0 1

]

=

[
5 2

20 −1

]

,

mentre
[

5 0
0 1

]

·
[

1 2
4 −1

]

=

[
5 10
4 −1

]

.

5. (AB)C = A(BC): associatività del prodotto di matrici.

6. C(A+B) = CA+ CB: distributività del prodotto rispetto la somma.

Ci sono poi, alcune operazioni sulle matrici, tipiche dell’algebra delle matrici.

• Somma diretta di matrici. Siano A e B due matrici non necessariamente quadrate,
la loro somma diretta, che si indica con A⊕B è

A⊕B =

[
A 0
0 B

]

.

Esempio.

[
1 3 2
2 3 1

]

⊕





2 1
4 1
0 1



 =









1 3 2 0 0
2 3 1 0 0
0 0 0 2 1
0 0 0 4 1
0 0 0 0 1









.

In generale
k⊕

i=1

Ai = A1 ⊕A2 ⊕ · · · ⊕Ak = diag(A1, . . . , Ak) .

• Prodotto diretto di matrici. Siano A, m× n e B, p× q (in generale due matrici
non necessariamente quadrate), il loro prodotto diretto, che si indica con A⊗B è

A⊗B =








a11B · · · a1nB
a21B · · · a2nB

...
...

am1B · · · amnB







.

La matrice C = A⊗B ha quindi dimensione mp× nq.

58 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Esempio.

[
1 2
3 0

]

⊗





0 3
2 1
0 1



 =











0 3 0 6
2 1 4 2
0 1 0 2
0 9 0 0
6 3 0 0
0 3 0 0











.

• Esponenziale di matrici quadrate. Sia A, n× n, l’esponenziale di A si definisce
come

eA =
∞∑

k=0

Ak

k!

serie convergente. Nel caso banale in cui A sia 1 × 1 la serie coincide con l’usuale
funzione esponenziale scalare. L’ esponenziale di matrice viene usata soprattutto
nella soluzione di sistemi di equazioni differenziali ordinarie.

Alcune strutture speciali sono le seguenti

• A è detta diagonale se







a1,1 0
0 a2,2
...

. . .

0 an,n








, ai,j = 0, i 6= j .

• A è detta triangolare superiore se







x · · · · · · x
x · · · x

0
. . .

...
x








, ai,j = 0, i > j .

• A è detta triangolare inferiore se








x

x
. . . 0

... · · · . . .

x · · · · · · x









, ai,j = 0, i < j .

• A è detta tridiagonale se










x x 0
x x x

. . .
. . .

. . .
. . .

. . . x
0 x x











, ai,j = 0, |i− j| > 1 .

3.1. COSE BASILARI SULLE MATRICI 59

Si dirà che una matrice è a banda con banda di ampiezza 2s+ 1 se gli elementi nulli
sono quelli i cui indici soddisfano la disuguaglianza |i− j| > s.

• A è detta avere la forma di matrice di Hessenberg superiore se











x x x · · · x
x x x · · · x

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 x x











, ai,j = 0, i > j + 1 .

Si dirà poi che A ha la forma di Hessenberg inferiore se ai,j = 0, j > i+ 1 .

• A si dice a blocchi se i suoi elementi sono a loro volta delle matrici. Ad esempio una
matrice a blocchi 2× 2 si indica come segue

A =

(
A11 A12

A21 A22

)

.

• Trasposta di una matrice

La matrice trasposta di A, denotata con AT è tale che (A)Tij = Aji. La trasposizione
gode delle seguenti proprietà.

(AT)T = A, (cA)T = cAT , (A+B)T = BT +AT , (AB)T = BTAT .

Se A e B sono due matrici a blocchi, i cui blocchi hanno la stessa dimensione, la somma
A+B equivale alla matrice i cui elementi sono la somma dei rispettivi blocchi. Sempre
nel caso di matrici a blocchi 2× 2 avremo

A+B =

(
A11 +B11 A12 +B12

A21 +B21 A22 +B22

)

.

Anche l’operazione di trasposizione si applica a matrici a blocchi. Ad esempio

AT =





AT
11 AT

21

AT
12 AT

22



 .

SeAT = A allora A è detta simmetrica. QuandoAT = −A, A è detta antisimmetrica.

Osserviamo che la matrice trasposta esiste sia nel caso di matrici quadrate che ret-
tangolari.

• Inversa di una matrice

La matrice inversa di una matrice quadrata A di ordine n, che si indica con A−1, è
tale che AA−1 = A−1A = I. Valgono operazioni simili alla trasposta. Se A e B sono
quadrate di ordine n allora (AB)−1 = B−1A−1.

60 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Nel caso di matrici rettangolari, non si può definire l’inversa nel modo in cui siamo
abituati, ma come vedremo più oltre nel contesto della soluzione di sistemi lineari sovra
o sotto-determinati, si parlerà di inversa generalizzata o pseudo inversa di Moore-
Penrose (vedi sezione 3.8).

Definizione 7. Data A, diremo che B è simile ad A se esiste una matrice invertibile P
tale che

P−1AP = B .

⋄⋄

Ad ogni matrice quadrata A di ordine n, possiamo associare un numero detto determi-
nante che denoteremo con det(A) oppure |A|. Se indichiamo con M l’algebra delle matrici
quadrate di ordine n, allora il determinante det è una funzione daM a valori nei reali:

det : M→ R

A→ det(A)

Per il calcolo del determinante ci si può avvalere della regola di Laplace

det(A) =







a11 n = 1

∑n
j=1 Ãi,jai,j , i = 1, ..., n n > 1

(3.1)

con Ãi,j = (−1)i+jdet(Ai,j) dove Ai,j è la matrice ottenuta sopprimendo la i-esima riga e
la j-esima colonna.

Definizione 8. Un autovalore di una matrice A, è un numero λ ∈ C per cui esiste un
vettore x non nullo per cui vale l’uguaglianza

λx = Ax . (3.2)

Il vettore x 6= 0 viene detto autovalore di A associato all’autovalore λ.

Il numero λ è soluzione dell’equazione caratteristica

pA(λ) = det(A− λI) = 0 ,

con pA(λ) che si chiama polinomio caratteristico della matrice A. Vale inoltre la re-
lazione

det(A) =

n∏

i=1

λi, tr(A) =

n∑

i=1

λi,

dove tr(A) =
∑n

i=1 ai,i è la traccia di A.

3.2. NORME DI VETTORE E DI MATRICE 61

Definizione 9. Una matrice simmetrica si dice definita positiva se per ogni vettore
x 6= 0 la forma quadratica xT Ax risulta essere maggiore di zero. Se xT Ax ≥ 0 la matrice
si dice semidefinita positiva.

Proposizione 3. Se A è simmetrica definita positiva allora

1. |Ak| > 0, ∀ k = 1, ..., n, cioè i minori principali di testa (incluso il determinante)
sono positivi.

2. ai,i > 0.

3. |a2
i,j | < ai,iaj,j, i 6= j , ovvero l’elemento più grande sta sulla diagonale principale.

4. Gli autovalori di A sono tutti positivi. Infatti se λ è un autovalore, dalla definizione
di una matrice simmetrica e definita positiva otteniamo la disuguaglianza

0 < xT Ax = λxT x

da cui si conclude essendo xT x = ‖x‖22 > 0 per ogni vettore x non nullo.

3.2 Norme di vettore e di matrice

Per ogni vettore x ∈ R
n, possiamo definire la norma come una funzione

‖ · ‖ : R
n → R+ ,

avente le seguenti proprietà:

1. ‖x‖ > 0, ∀ x 6= 0, ‖x‖ = 0 ⇔ x = 0

2. ‖c x‖ = |c|‖x‖, ∀ c ∈ R

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ R
n (disuguaglianza triangolare).

Una proprietà importante è che in uno spazio vettoriale di dimensione finita tutte le norme
vettoriali sono equivalenti. Ovvero per ogni coppia di norme ‖ · ‖(1) e ‖ · ‖(2) esistono due
costanti positive m e M t.c.

m‖x‖(2) ≤ ‖x‖(1) ≤M‖x‖(2), ∀ x ∈ R
n . (3.3)

Gli esempi di norme vettoriali più usate sono:

(a) ‖x‖∞ = max
1≤i≤n

|xi| (norma infinito)

(b) ‖x‖1 =
∑

1≤i≤n

|xi| (norma 1)

62 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

(c) ‖x‖2 =




∑

1≤i≤n

|xi|2




1/2

=
√
xT x (norma 2 o norma euclidea)

(d) ‖x‖p =




∑

1≤i≤n

|xi|p




1/p

, p ≥ 1 (norma p)

In Matlab/Octave, queste norme si determinano usando la funzione norm(x,*), dove *

potrà assumere i valori 1,2,inf,p. Per default norm(x) è la norma 2.

Se A ∈ R
n×n, la sua norma è ancora una funzione ‖ · ‖ : R

n×n → R+, che soddisfa le
seguenti proprietà

1. ‖A‖ > 0, ∀ x 6= 0, ‖A‖ = 0 ⇔ A = 0

2. ‖cA‖ = |c|‖A‖, ∀ c ∈ R

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖, ∀ A,B ∈ R
n×n (disuguaglianza triangolare).

4. ‖AB‖ ≤ ‖A‖ ‖B‖, ∀ A,B ∈ R
n×n

L’ultima proprietà è caratteristica della norma di matrice. Anche per le norme di matrici
vale un’equivalenza simile alla (3.3). Gli esempi di norme matriciali più usate sono:

(a) ‖A‖∞ = max
1≤i≤n

n∑

j=1

|ai,j| (norma infinito o norma per righe)

(b) ‖A‖1 = max
1≤j≤n

n∑

i=1

|ai,j| (norma 1 o norma per colonne)

(c) ‖A‖F =




∑

1≤i≤n

∑

1≤j≤n

|ai,j |2




1/2

=
√

tr(AAT) , (norma di Frobenius)

(d) ‖A‖2 =
√

ρ(ATA) (norma 2 o norma euclidea o norma spettrale)

Osserviamo che la norma euclidea si chiama anche norma spettrale poiché ρ(A) = max1≤i≤n |λi|,
con λi i-esimo autovalore di A. Se A è simmetrica ‖A‖2 = ρ(A) altrimenti ‖A‖2 = σ1(A),
con σ1(A) il più grande valore singolare della matrice A (per la definizione di valori singolari
di una matrice rimandiamo al capitolo successivo). Infatti, nel caso in cui A = AT per il
generico autovalore avremo: λ(A ∗ AT) = λ(A2) = λ2(A) e dunque ρ(A) = ‖A‖2. Pertanto
nel caso di matrici simmetrice il raggio spettrale è una norma.

3.2. NORME DI VETTORE E DI MATRICE 63

Definizione 10. Data una norma di matrice e una vettoriale, diremo che esse sono
compatibili o consistenti se

‖Ax‖ ≤ ‖A‖‖x‖, ∀ A ∈ R
n×n, x ∈ R

n .

Ad ogni norma di vettore possiamo associare una norma di matrice nel seguente modo

‖A‖ := sup
x 6=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖ (3.4)

Questa viene detta norma naturale o norma indotta. Ne consegue che ‖Ax‖ ≤ ‖A‖‖x‖,
ovvero che una norma indotta è anche compatibile. Come esempio, è facile verificare ricor-
rendo alla definizione che per la matrice identica

‖I‖ = max
‖x‖=1

‖Ix‖ = 1

e che le norme 1, 2,∞ sono norme naturali indotte dalle corrispondenti norme vettoriali.
L’unica norma matriciale che non è naturale è quella di Frobenius. Infatti ‖I‖F =

√
n.

Infine è interessante ricordare la seguente proprietà:

Proposizione 4. Per ogni norma compatibile con la corrispondente norma vettoriale, si
ha

ρ(A) ≤ ‖A‖ .

Dim. Sia λ autovalore di A associato all’autovettore v 6= 0. Avremo

|λ|‖v‖ = ‖λv‖ = ‖Av‖ ≤ ‖A‖ ‖v‖

da cui ‖λ‖ ≤ ‖A‖. �

64 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

3.3 Soluzione di sistemi lineari: generalità

Data A ∈ R
n×n e il vettore b ∈ R

n il problema consiste nel determinare il vettore x ∈ R
n

soluzione del sistema lineare
Ax = b . (3.5)

Anzitutto la soluzione di (3.5) esiste se e solo se la matrice A è invertibile, che significa che
det(A) 6= 0. Se A è invertibile sappiamo che grazie alla regola di Cramer le componenti del
vettore soluzione x sono

xi =
det(Ai)

det(A)
,

con Ai che è la matrice ottenuta da A sostituendo la colonna i-esima con il termine noto b.

In pratica con la regola di Cramer si calcolano n + 1 determinanti. Considerato che
il calcolo di un determinante (con la regola di Laplace) costa O(n3) operazioni, allora
determinare la soluzione del sistema con Cramer costa O(n4) operazioni. Pensando di
doverla applicare a sistemi di grandi dimensioni, ad esempio n > 100, il metodo diventa via
via inapplicabile dal punto di visto del tempo di calcolo.

3.3.1 Condizionamento del problema

Analizziamo due situazioni: perturbazione del termine noto e perturbazione simultanea
della matrice e del termine noto.

1. Sia δb la quantità di cui perturbiamo il termine noto b. Questa perturbazione si
ripercuoterà sulla soluzione cosicchè invece di x otteremo la soluzione x+δx. Vogliamo
vedere come δx può essere legato a δb.

A(x+ δx) = b+ δb

ma ricordando Ax = b otteniamo Aδx = δb. Allora

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖ ‖δb‖ ,

ma ‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖. Pertanto

‖δx‖
‖A‖‖x‖ ≤ ‖A

−1‖‖δb‖‖b‖

da cui per l’errore relativo abbiamo infine

‖δx‖
‖x‖ ≤ ‖A‖‖A

−1‖‖δb‖‖b‖ (3.6)

Definendo poi κ(A) = ‖A‖‖A−1‖ come il numero di condizionamento della matrice
A, possiamo dire che la (3.6) ci dice il rapporto tra l’errore relativo sulla soluzione e

3.3. SOLUZIONE DI SISTEMI LINEARI: GENERALITÀ 65

quello sul termine noto è maggiorato dal numero di condizionamento della matrice.
Più la matrice sarà malcondizionata e peggiore sarà la maggiorazione e quindi la
perturbazione indotta sulla soluzione. κ(A) è quindi un fattore di amplificazione
dell’errore.

In Matlab/Octave la funzione cond(A,p) consente di calcolare il numero di condizion-
amento di A in norma p = 1, 2,∞.

Facciamo notare inoltre che in alcuni testi, invece che κ(A) si trovano anche le no-
tazioni µ(A) o ν(A).

2. Se perturbiamo anche la matrice A di una quantità δA, si può dimostrare che per
l’errore relativo vale la maggiorazione

‖δx‖
‖x‖ ≤

κ(A)

1− κ(A)‖δA‖
‖A‖

(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)

(3.7)

Nel caso in cui ‖δA‖ ≤ 1
2‖A−1‖ , in (3.7) si ha

κ(A)

1− κ(A)‖δA‖
‖A‖

≤ 2κ(A) .

Come dicevamo il numero di condizionamento diA dà indicazioni sull’amplificazione dell’errore
relativo sulla soluzione. Osservando che κ(A) ≥ 1 (assume il valore 1 quando A è la matrice
identica), pertanto più piccolo è κ(A) e meglio condizionato risulta essere il problema della
soluzione di un sistema lineare.

Diamo solo un paio di esempi che quantificano il concetto di matrice malcondizionata.

1. Matrice di Hilbert.

È la matrice H di ordine n i cui elementi sono Hi,j = 1/(i + j − 1), 1 ≤ i, j ≤ n.

Si dimostra che κ2(H) ≈ e3.5n. Alcuni valori di κ2(H), sono riportati in tabella 3.1.

n 2 6 10

κ2(H) 12 4.4 106 3.5 1012

Tabella 3.1: Numero di condizionamento in norma 2 della matrice di Hilbert

In Matlab/Octave esiste la funzione hilb(n) che consente di definire la matrice di
Hilbert di ordine n.

2. Matrice di Vandermonde.

66 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

È la matrice associata al problema d’interpolazione polinomiale su n+1 punti (distinti)
x0, · · · , xn. La matrice di Vandermonde di ordine n è

V =








1 1 . . . 1
x1 x2

1 . . . xn
1

...
...

xn x2
n . . . xn

n








Si dimostra che det(V) =
∏

i6=j(xi − xj) 6= 0 se xi 6= xj.

Anche per la matrice di Vandermonde esiste una funzione Matlab/Octave che si invoca
come V=vander(x) dove x è un vettore e la matrice V è tale che Vi,j = xn−j

i .

A completamento ricordiamo che Matlab contiene una galleria di matrici test nel cosidetto
Matrix Computational Toolbox (MCT) di Nick Higham

www.maths.manchester.ac.uk/∼higham/mctoolbox/.

Per ottenere la lista di tutte le matrici test disponibili basta usare il comando

[out1,out2,...]=gallery(matname,opt1,opt2,...)

3.4. METODI DIRETTI 67

3.4 Metodi diretti

Si tratta di metodi numerici che consentono di determinare la soluzione del sistema lineare,
teoricamente in un numero finito di passi. Putroppo a causa degli inevitabili errori di
rappresentazione e algoritmici, i metodi necessitano di alcune strategie implementative. I
metodi diretti che studieremo in questo testo sono: il metodo di eliminazione di Gauss che
dimostreremo essere equivalente alla fattorizzazione LU di A, il metodo di Cholesky che si
applica quando A è simmetrica e l’algoritmo di Thomas per matrici tridiagonali.

3.4.1 Il Metodo di Eliminazione di Gauss (MEG)

Dato il sistema Ax = b il metodo di Gauss consiste di due passi principali:

(i) eliminazione;

(ii) sostituzione all’indietro.

L’obiettivo del passo di eliminazione è di trasformare la matrice A in forma di matrice
triangolare superiore allo scopo di ricavere la soluzione del sistema mediante appunto la
sostituzione all’indietro (ovvero determinando dapprima xn e via via tutte le altre compo-
nenti del vettore x).

Dato il sistema 





a11x1 + a12x2 + · · · +a1nxn = b1
a21x1 + a22x2 + · · · +a2nxn = b2
...

... =
...

an1x1 + an2x2 + · · · +annxn = bn

(3.8)

che indicheremo più compattamente con A(1)x = b(1), dove l’apice ci ricorda il passo di

eliminazione, avendo posto A(1) = A. Ora se a
(1)
11 6= 0 la prima equazione può essere

usata per ricavare x1 e sostituirlo nelle rimanenti equazioni ottenendo un nuovo sistema
A(2)x = b(2) che avrà un solo elemento non nullo nella prima colonna







a
(2)
11 x1 +a

(2)
12 x2 + · · · +a

(2)
1n xn = b

(2)
1

0 +a
(2)
22 x2 + · · · +a

(2)
2n xn = b

(2)
2

...
...

... =
...

0 +a
(2)
n2 x2 + · · · +a

(2)
nnxn = b

(2)
n

(3.9)

In pratica per passare da A(1) ad A(2) si individua dapprima il moltiplicatore

mi,1 =
a

(1)
i,1

a
(1)
1,1

, i = 2, . . . , n

68 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

di modo che gli elementi di A(2) e b(2) saranno

a
(2)
i,j =







a
(1)
i,j i = 1

a
(1)
i,j −mi,1a

(1)
1,j i > 1

b
(2)
i =







b
(1)
i i = 1

b
(1)
i −mi,1b

(1)
1 i > 1

Se a
(2)
2,2 6= 0 si può continuare con la seconda colonna e cos̀ı via.

Pertanto per 1 ≤ k ≤ n− 1, se a
(k)
k,k 6= 0 avremo

mi,k =
a

(k)
i,k

a
(k)
k,k

, i = k + 1, . . . , n

e

a
(k+1)
i,j =







a
(k)
i,j i ≤ k

a
(k+1)
i,j −mi,ka

(k)
k,j i = k + 1, . . . , n j = 1, ..., n

b
(k+1)
i =







b
(k)
i i ≤ k

b
(k+1)
i −mi,kb

(k)
k i = k + 1, . . . n

Alla fine il sistema A(n)x = b(n) avrà la matrice A(n) che sarà triangolare superiore







a
(n)
11 x1 +a

(n)
12 x2 + · · · +a

(n)
1n xn = b

(n)
1

+a
(n)
22 x2 + · · · +a

(n)
2n xn = b

(n)
2

. . .
...

a
(n)
nn xn = b

(n)
n

(3.10)

A questo punto si può applicare la sostituzione all’indietro e determinare il vettore
soluzione. Infatti se

a
(n)
i,i 6= 0, i = 1, . . . , n , (3.11)

allora

xn = b(n)
n /a(n)

n,n (3.12)

xi =
1

a
(n)
i,i






b
(n)
i −

n∑

j=i+1

a
(n)
i,j xj






, i = n− 1, . . . , 1 . (3.13)

3.4. METODI DIRETTI 69

Algoritmo di eliminazione e di sostituzione all’indietro

I due passi del metodo di eliminazione di Gauss si possono discrivere da un punto di vista
algoritmico, usando sempre la sintassi Matlab/Octave, come segue.

Algoritmo 3. Eliminazione

for i=1:n-1,

for j=i+1:n,

m=a(j,i)/a(i,i);

for k=i:n,

a(j,k)=a(j,k)-m*a(i,k);

end

b(j)=b(j)-m*b(i);

end

end

Dal punto di vista della complessità, al passo i-esimo di eliminazione il costo, in termini
di moltiplicazioni e divisioni, è

(n− i)
︸ ︷︷ ︸

ciclo su j

(n− i+ 1)
︸ ︷︷ ︸

ciclo su k

+ (n− i)
︸ ︷︷ ︸

ciclo su j per i bj

= (n− i)(n − i+ 2) ,

Pertanto, per i tre cicli for, la complessità totale sarà

n−1∑

i=1

(n − i)(n − i+ 2) =

n−1∑

i=1

(n2 + 2n− 2(n + 1)i+ i2) . (3.14)

Ricordando le identità

n∑

i=1

i =
n(n+ 1)

2
,

n∑

i=1

i2 =
n(n+ 1)(2n + 1)

6
(3.15)

sostituendo in (3.14) (con n− 1 al posto di n) otteniamo

n−1∑

i=1

(n2 + 2n− 2(n+ 1)i+ i2) = n2−n+
2n3 − 3n2 + n

6
=
n3

3
+
n2

2
− 5n

6
≈ O(n3) . (3.16)

Dimenticando i termini di ordire inferiore a 3, diremo che la complessità dell’algoritmo di
eliminazione è n3/3.

Algoritmo 4. Sostituzione all’indietro

for i=n:-1:1,

sum=0;

for j=i+1:n,

70 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

sum=sum+ a(i,j)*x(j);

end

x(i)=(b(i)-sum)/a(i,i);

end

Anche per la sostituzione all’indietro possiamo fare un calcolo della complessità. Come
è facile vedere, per costruire sum si fanno n − i moltiplicazioni. Pertanto la complessità
totale è

n∑

i=1

(n− i) =
n(n− 1)

2
.

La complessità del metodo di Gauss si ottiene sommando la complessità dell’algoritmo
di elminazione e quella dell’algoritmo di sostituzione

n3

3
+
n2

2
− 5n

6
+
n(n− 1)

2
=
n3

3
+ n2 − 4n

3
.

In conclusione, l’algoritmo di Gauss richiede O(n3/3) operazioni.

Esempio 12.

A := A(1) =





11 4 −6
−7 17 9
−1 −4 6



 , b = b(1) =





9
19
1



 ,

• Primo passo. I moltiplicatori sono m21 = −7/11, m31 = −1/11.

A(2) =









11 4 −6

0 215
11

57
11

0 −40
11

60
11









, b(2) =









9

272
11

20
11









,

• Secondo passo. Il moltiplicatore è m32 = −8/43.

A(3) =









11 4 −6

0 215
11

57
11

0 0 276
43









, b(3) =









9

272
11

276
43









,

Con la sostituzione all’indietro troveremo che la soluzione è x = (1, 1, 1)T .

3.4. METODI DIRETTI 71

Strategia del pivot

L’ipotesi su cui si basa il MEG è che al passo k gli elementi diagonali siano in modulo diversi

da zero, ovvero |a(k)
k,k| 6= 0. Ma se accade che a

(k)
k,k ≈ 0, si può applicare la stategia del pivot

parziale per righe consistente nel ricercare nelle righe k+ 1, ..., n (quelle sotto la diagonale)
l’elemento in modulo più grande. Sia r l’indice di riga corrispondente al tale massimo,
quindi si scambierà la riga r con la riga k (sia nella matrice che nel vettore termine noto).

Con questa strategia si ha una riduzione dell’ errore algoritmo e quindi maggiore sta-
bilità. Infatti, detto

|a(k)
r,k | = max

k≤i≤n
|a(k)

i,k | ,

gli elementi di A(k+1) saranno tali che

|a(k+1)
i,j | = |a(k)

i,j −mi,ka
(k)
k,j | ≤ |a

(k)
i,j |+ |a

(k)
k,j | . (3.17)

La disuguaglianza deriva dal fatto che per costruzione |mi,k| ≤ 1. Detto poi a
(k)
M =

max1≤i,j≤n |a(k)
i,j | , da (3.17) otteniamo

a
(n)
M ≤ 2a

(n−1)
M ≤ 22a

(n−2)
M ≤ · · · ≤ 2n−1a

(1)
M . (3.18)

Pertanto la strategia del pivot parziale per righe garantisce maggiore stabilità al MEG. È
da osservare che la maggiorazione (3.18) non è quasi mai raggiunta.

Vediamo come implementare la tecnica del pivot parziale per righe. Si fa uso di un
vettore p che memorizza gli scambi di righe. All’inizio pi = i, i = 1, ..., n. Il significato
di pi è il seguente: ai,j è memorizzato nella posizione di indice di riga pi e colonna j (e bi
nella posizione indicata da pi). Quando si scambia la riga k con la riga r, si scambia pk e
pr cosicchè l’indice di riga che contiene il pivot è pr.

Esempio 13. Mettiamo in un’unica matrice, la matrice dei coefficienti, il vettore colonna
del termine noto e il vettore degli scambi, come segue:





2 3 −1 5 1
4 4 −3 3 2
−2 3 −1 1 3



 ,

• Primo passo. L’elemento pivot che vale 4, si trova in riga 2. Pertanto scambieremo p2

e p1 e l’indice del pivot sarà 2. Otteniamo i moltiplicatori m(1) = 1/2 e m(2) = −1/2
e la nuova matrice





0 1 1/2 7/2 2
4 4 −3 3 2
0 5 −5/2 5/2 3



 ,

72 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

• Secondo passo. L’elemento pivot, che vale 5, si trova in riga 3. Pertanto dobbiamo
scambiare p2 e p3. Il moltiplicatore è m = 1/5. Abbiamo allora





0 0 1 3 2
4 4 −3 3 3
0 5 −5/2 5/2 1



 ,

A questo punto per applicare la sostituzione all’indietro, partiremo da p3 = 1 ovvero dalla
prima riga ricavando x3 = 3. Poi si passa a p2 = 3, quindi alla terza riga, ricavando x2

dall’equazione 5x2 − 15/2 = 5/2 che ci dà x2 = 2. Infine essendo p1 = 2 dalla seconda
equazione determineremo x1 che, dopo aver risolto 4x1 + 8− 9 = 3 mi darà x1 = 1. È facile
provare che il vettore x = (1, 2, 3)T è la soluzione del sistema lineare.

La tecnica del pivoting parziale si può applicare anche alle colonne ottenendo il pivot
parziale per colonne.

Se invece la ricerca del massimo la facciamo su tutta la sottomatrice A(k+1 : n, k+1 : n),
ovvero quella di indici di riga e colonna compresi tra k+ 1 e n, allora parleremo di pivoting
totale. In questo caso se r e s sono gl’indici di riga e colonna corrispondenti nella matrice
A(k), allora dovremo scambiare la riga k con la riga r e la colonna k con la colonna s.

3.4.2 Metodo di Gauss e la fattorizzazione LU

Faremo vedere che il MEG altro non è che la fattorizzazione della matrice del sistema
A = LU con L triangolare inferiore con elementi diagonali tutti uguali a 1 e U triangolare
superiore. Ma prima di tutto enunciamo il teorema che ci garantisce quando è attuabile la
fattorizzazione LU di una matrice quadrata A.

Teorema 2. Sia A una matrice quadrata di ordine n e siano Ak, k = 1, . . . , n le
sottomatrici principali di testa. Ovvero

A1 = (a11), A2 =

(
a11 a12

a21 a22

)

Ak =






a11 · · · a1k
...

. . .
...

ak1 akk






cosicché An = A. Se |Ak| 6= 0, k = 1, ..., n allora esiste unica la fattorizzazione di A nella
forma LU , con L triangolare inferiore con elementi diagonali uguali a 1 e U triangolare
superiore. Altrimenti esiste una matrice di permutazione P (i cui elementi sono 0 e 1)
tale che PA = LU .

Facciamo un paio di esempi che ci consentono di capire meglio il Teorema 2.

3.4. METODI DIRETTI 73

Esempio 14.

La matrice

A =





1 2 −1
−1 −1 2
1 1 2



 ,

soddisfa le ipotesi del Teorema 2. Si vede che facilmente essa si può fattorizzare

A =





1 0 0
−1 1 0
1 −1 1









1 2 −1
0 1 1
0 0 4



 .

Esempio 15. La matrice

B =





1 2 −1
−1 −2 0
1 1 2





non soddisfa le ipotesi del Teorema 2. Infatti

det(B2) = det

(
1 2
−1 −2

)

= 0 .

Però scambiando la seconda e terza riga mediante la matrice di permutazione

P =





1 0 0
0 0 1
0 1 0





allora avremo

PB =





1 2 −1
1 1 2
−1 −2 0



 =





1 0 0
1 1 0
−1 0 1









1 2 −1
0 −1 3
0 0 −1



 .

È facile far vedere che si sarebbe ottenuta un’altra fattorizzazione se avessimo usato un’altra
matrice di permutazione

P1 =





0 0 1
0 1 0
1 0 0





ovvero scambiando la prima e la terza riga di B.

Ricordiamo che in Matlab/Octave esiste la funzione lu la cui chiamata completa si fa
scrivendo il comando [L,U,P] = lu(A), con ovvio significato delle matrici coinvolte. Se
effettuassimo invece la chiamata [L,U]=lu(A), la matrice L sarà triangolare inferiore ma
L=P*M con M triangolare inferiore e P matrice di permutazione che serve al pivoting per righe
di A.

74 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

3.4.3 Matrici elementari di Gauss

In questa breve sottosezione facciamo vedere chi sono realmente le matrici L e U della fattor-
izzazione LU . Il generico passo di eliminazione è infatti equivalente alla premoltiplicazione
per la matrice Mk = I −mk e

T
k dove I è la matrice identica e

mk =













0
...

mk+1,k

mk+2,k
...

mn,k













, ek =













0
...
1
0
...
0













← k

con mi,k = a
(k)
i,k /a

(k)
k,k. Pertanto la k-esima matrice elementare di Gauss è

Mk =













1
. . . 0

1
0 −mk+1,k

...
. . .

−mn,k 1













, (3.19)

Quindi dopo gli n− 1 passi di eliminazione

Mn−1 · · ·M2M1A = A(n) .

Ecco che le matrici L e U non sono altro che

L = (Mn−1 · · ·M1)
−1 = M−1

1 · · ·M−1
n−1 ;U = A(n) . (3.20)

È facile provare che

M−1
k =













1
. . . 0

1
0 mk+1,k

...
. . .

mn,k 1













da cui

L =













1 0
m2,1 1

...
. . .

...
...

. . .

mn,1 · · · mn,n−1 1













.

3.5. IL METODO DI CHOLESKY 75

Infine nel caso generale in cui siano richieste ad ogni passo delle matrici di permutazione,
ovvero

(Mn−1Pn−1) · · · (M1P1)A = U

posto P = Pn−1 · · ·P1 otterremo

L = P (Mn−1 Pn−1 · · ·M1 P1)
−1 .

Osservazioni

• Nota la fattorizzazione LU di una matrice A o, più in generale, la fattorizzazione
LU = PA, la soluzione del sistema lineare Ax = b si farà risolvendo due sistemi
triangolori. Ovvero,

1. Risolvi il sistema Lz = Pb;

2. Risolvi il sistema Ux = z.

La soluzione di un sistema triangolare costa O(n2). Complessivamente, come visto
nella sezione precedente, la soluzione di un sistema lineare con il MEG o equivalente-

mente la fattorizzazione LU della matrice A, costa O
(

n3

3

)

.

• Grazie alla fattorizzazione LU di A possiamo anche calcolare facilmente il determi-
nante di A. Infatti, |A| = |LU | = |L| |U | =∏n

i=1 ui,i essendo |L| = 1.

3.5 Il metodo di Cholesky

Si applica quando la matrice A è simmetrica definita positiva. Vista la simmetria, A si
potrà fattorizzare nella forma

A = HHT , H =









h1,1
...

. . . 0
...

. . .

hn,1 · · · hn,n









, hi,i > 0 .

Come determiniamo la matrice H? Basta fare il prodotto H HT e identificare gli
elementi corrispondenti ottendo le formule

h1,1 =
√
a1,1

hi,j =
1

hj,j

(

ai,j −
j−1
∑

k=1

hi,khj,k

)

, i = 2, . . . , n ; j = 1, . . . , n

hi,i =

√
√
√
√ai,i −

j−1
∑

k=1

h2
i,k .

Una possibile implementazione della fattorizzazione di Cholesky è la seguente.

76 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Algoritmo 5. Fattorizzazione di Cholesky

h(1,1)=sqrt(a(1,1));

for i=2:n,

for j=1:i-1,

s=0;

for k=1:j-1,

s=s+h(i,k)*h(j,k);

end

h(i,j)=1/h(j,j)*(a(i,j)-s);

end

s=0;

for k=1:i-1,

s=s+h(i,k)^2;

end

h(i,i)=sqrt(a(i,i)-s);

end

end

È facile verificare che la complessità è metà del MEG ovvero O(n3/6).

Un’altra interessante osservazione è che data la simmetria di A, la matrice H può essere
memorizzata nella stessa area di memoria di A invece che allocare memoria aggiuntiva.

Infine, in Matlab/Octave la fattorizzazione di Cholesky si effettua usando il comando
H=chol(A).

3.5.1 Algoritmo di Thomas

Si consideri la matrice tridiagonale

A =









a1 c1 0

b2 a2
. . .

. . . cn−1

0 bn an









Se la fattorizzazione LU di A esiste, allora L e U sono due matrici bidiagonali (inferiore e
superiore, rispettivamente) della forma

L =








1 0
β2 1

. . .
. . .

0 βn 1








, U =









α1 c1 0

α2
. . .
. . . cn−1

0 αn









.

3.5. IL METODO DI CHOLESKY 77

I coefficienti incogniti si determinano imponendo l’uguaglianza LU = A, mediante il seguente
Algoritmo di Thomas

α1 = a1, βi =
bi
αi−1

, αi = ai − βici−1, i = 2, ..., n .

Esercizio 20. Come esercizio, si chiede di costruire una matrice tridiagonale T con i
comandi Matlab/Octave

>> b=ones(10,1); a=2*b; c=3*b;

>> T=spdiags([b a c],-1:1,10,10);

quindi di risolvere il sistema T*x=d con l’algoritmo di Thomas, con d scelto cosicché si abbia
x=ones(10,1). Quante operazioni si risparmiano rispetto alla fattorizzazione classica LU
fatta con Gauss?

3.5.2 Raffinamento iterativo

Sia x̂ la soluzione del sistema Ax = b calcolata mediante l’algoritmo di Gauss, MEG. Il
raffinamento iterativo detto anche metodo post-iterativo consiste dei 3 seguenti passi

1. calcola r = b−Ax̂;

2. risolvi il sistema Ad = r usando per A la fattorizzazione LU usata per risolvere Ax = b;

3. poni y = x̂+ d

ripeti finché
‖d‖
‖y‖ > tol

dove tol è una prefissata tolleranza. Ovvero ci si arresterà quando l’errore relativo rispetto
alla soluzione y risulta essere minore o uguale a tol.

Nota: di solito (cioè in assenza di errori di arrotondamento) bastano 1-2 iterazioni per
convergere. Il metodo serve come stabilizzatore del MEG.

Una funzione Matlab/Octave che implementa l’algoritmo del raffinamento iterativo

si può scrivere come segue.

function y=RafIter(x,L,U,tol)

%--

% Inputs:

% x = soluzione con MEG

% L, U = matrici della fattorizzazione LU di A

78 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

% tol = tolleranza

%

% Output:

% y = soluzione ‘‘raffinata’’

%--

A=L*U;

b=A*x; % determino il termine noto

kmax=20; % numero massimo d’iterazioni

r=b-A*x; % residuo iniziale

% Risolvo il sistema Ad=r, sapendo che A=LU

z=L\r;

d=U\z;

y=x+d;

k=1; %contatore delle iterazioni

while (norm(d)/norm(y)> tol & k<=kmax)

x=y;

r=b-A*x;

z=L\r;

d=U\z;

y=x+d;

k=k+1;

end

3.6 Calcolo dell’inversa di una matrice: cenni

Un metodo semplice e immediato di calcolo dell’inversa di una matrice A non singolare è
questo: risolvi gli n sistemi non omogenei

Axi = ei, i = 1, ..., n , (3.21)

con xi vettore che rappresenta la i-esima colonna della matrice inversa e ei il vettore di tutti
zeri eccetto che per la i-esima componente che vale 1. Purtroppo questa tecnica è molto
costosa: O(n4).

Ma il calcolo di A−1 può essere fatto più semplicemente usando la fattorizzazione A =
LU e si ha A−1 = U−1L−1. Detta Y = L−1, da L possiamo ricavare Y chiedendo che
LY = Y L = I mediante le formule







lj,jyj,j = 1

lj+1,jyj,j + lj+1,j+1yj+1,j = 0

...

ln,jyj,j + ln,j+1yj+1,j + · · ·+ ln,nyn,j = 0

3.6. CALCOLO DELL’INVERSA DI UNA MATRICE: CENNI 79

valide per j = 1, ..., n. Ora ricordando che L ha elementi diagonali unitari, dalle relazioni
precedenti possiamo ricavare i valori di Y come segue

for j=1:n,

y(j,j)=1;

end

for j=1:n-1,

for i=j+1:n,

s=0;

for k=j:i-1,

s=s+l(i,k)*y(k,j);

end

y(i,j)=-s;

end

end

In maniera analoga si procede per il calcolo di Z = U−1.

Un metodo piú efficiente è il seguente (cfr. Du Croz J., Higham N. IMA J. Numer. Anal.
12:1-19, 1992). Esso risolve l’equazione UXL = I, supponendo X parzialmente nota ad
ogni step. L’idea é di partizionare le matrici X,L e U come segue:

U =

(
u1,1 uT

1,2

0 UT
2,2

)

X =

(
x1,1 xT

1,2

x2,1 XT
2,2

)

L =

(
1 0T

l2,1 LT
2,2

)

dove i blocchi (1,1) sono scalari e la sottomatrice X2,2 si assume già nota. Quindi il resto
di X si calcola risolvendo le equazioni:

x2,1 = −XT
2,2l2,1

xT
1,2 = −uT

1,2X
T
2,2/u1,1

x1,1 = 1
u1,1
− xT

1,2l2,1

.

In maniera algoritmica, usando notazioni Matlab/Octave, si può sintetizzare come
segue, facendo attenzione al fatto che il blocco X(k + 1 : n, k + 1 : n) si assume già
noto. All’inizio dovremo conoscere l’elemento xn,n che si può determinare dall’equazione
UXL = I.

for k=n-1:-1:1,

X(k+1:n,k)=-X(k+1:n,k+1:n)*L(k+1:n,k)

X(k,k+1:n)=-U(k,k+1:n)*X(k+1:n,k+1:n)/U(k,k)

X(k,k)=1/U(k,k)-X(k,k+1:n)*L(k+1:n,k)

end;

Esercizio 21. Scrivere degli scripts Matlab che implementano i metodi su descritti. Come
matrice A si consideri la matrice ottenuta usando la funzione gfpp del Toolbox The Matrix

80 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Computational Toolbox (MCT) di N. Higham (www.maths.manchester.ac.uk/∼higham/mctoolbox/).
La funzione può essere usata con la sintassi A=gfpp(n) generando una matrice il cui fattore
di crescita degli elementi è 2n−1, come per l’eliminazione gaussiana.

• Verificare che effettivamente la matrice gfpp(n) dà un fattore di crescita pari a 2n−1.

• Sempre nel MCT Toolbox, esiste la funzione gecp che data una matrice determina,
usando l’eliminazione gaussiana completa, la sua fattorizzazione LU e il fattore di
crescita. Far vedere che se si usa come matrice la matrice gfpp(n), questa darà un
fattore di crescita uguale a 2.

3.7. METODI ITERATIVI 81

3.7 Metodi iterativi

La filosofia di questi metodi sta nell’approssimare la soluzione del sistema lineare Ax = b
con una successione di vettori {xk, k ≥ 0}, a partire da un vettore iniziale x0 ∈ R

n,
con l’obiettivo che converga verso la soluzione x del sistema. A differenza dei metodi
diretti, in questi metodi non si altera la struttura della matrice e pertanto sono utilizzati
prevalentemente quando la matrice è sparsa.

La matrice A di ordine n, che supponiamo sia non singolare, si può decomporre come

A = M −N

con la richiesta che det(M) 6= 0 e facilmente invertibile. Pertanto

Mx−Nx = b (3.22)

Mx = Nx+ b (3.23)

x = M−1Nx+M−1b (3.24)

da cui, ponendo P = M−1N e q = M−1b, la soluzione di Ax = b è ricondotta al sistema
x = Px+ q. Scelto x(0), costruiremo la successione

x(i+1) = Px(i) + q, i = 0, 1, . . . (3.25)

Definizione 11. La successione {x(i)} si dirà convergente al vettore x∗, e si scrive

lim
i→∞

x(i) = x∗

se per i→∞ le componenti di x(i) convergono verso le corrispondenti componenti di x∗.

La (3.25) rappresenta un metodo iterativo per la soluzione di Ax = b, con P che si
chiama matrice d’iterazione.

Definizione 12. Un metodo iterativo si dice convergente, se per ogni vettore iniziale x(0)

la successione {x(i)} è convergente.

Esempio 16. Siano

P =





1
2 0 0
0 1

2 0
0 0 2



 , q = 0, con x∗ = 0 .

Partendo da x(0) = (1, 0, 0)T costruiremo la successione

x(1) = P · x(0) =





1
2 0 0
0 1

2 0
0 0 2









1
0
0



 =





1
2
0
0





x(2) = P · x(1) = P 2 · x(0)





1
22 0 0
0 1

22 0
0 0 22









1
0
0



 =





1
22

0
0





82 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

e continuando otterremo

x(i) =





1
2i

0
0



 .

Pertanto per i → ∞ la successione converge verso x∗. Si verifica facilmente che partendo

da x(0) = (0, 1, 1)T si avrebbe x(i) =

(

0,
1

2i
, 2i

)T

e quindi una successione divergente.

A questo punto dobbiamo chiarire sotto quali condizioni il metodo iterativo risulta
essere convergente.

Teorema 3. Condizione necessaria per la convergenza è che esista una norma matrice
indotta ‖ · ‖ per la quale risulta ‖P‖ < 1.

Dim. Sia ek = x∗ − x(k) l’errore al passo k. Abbiamo

ek = x∗ − x(k) = Px∗ + q − Px(k−1) − q = P (x∗ − x(k−1)) = Pek−1, k = 1, 2,

Ma Pek−1 = · · · = P k−1e(0). Da cui

‖ek‖ ≤ ‖P k‖‖e0‖ ≤ ‖P‖k ‖e0‖ .

Se quindi ‖P‖ < 1, allora limk→∞ ‖P‖k = 0 e anche ‖ek‖ → 0 ∀ k . Per la continuità della
norma concludiamo che limk→∞ ek = 0 da cui l’asserto. �

Ricordando che vale

ρ(P) ≤ ‖P‖,
per ogni norma indotta, la condizione necessaria e sufficiente per la convergenza di un
metodo iterativo è contenuta nel seguente teorema.

Teorema 4. Sia P di ordine n. Allora

lim
k→∞

P k = 0 ⇐⇒ ρ(P) < 1 .

⋄⋄
Prima di passare ai metodi, concludiamo questa parte sulle generalità dicendo quando
numericamente condideriamo convergente un metodo iterativo. Fissata una tolleranza ǫ e
indicato un numero massimo d’iterazioni kmax, il test d’arresto che valuteremo sarà

‖x(k) − x(k−1)‖ ≤ ǫ‖x(k)‖ ∨ k > kmax

ovvero xk sarà una buona approssimazione di x∗ quando l’errore relativo è sotto una pre-
fissata tolleranza. Ma il metodo si arresta anche quando k > kmax. In quest’ultimo caso

3.7. METODI ITERATIVI 83

molto probabilmente avremo fallito e onde evitare che si iteri all’infinito è buona norma
inserire questo ulteriore controllo.

Ma possiamo anche fare le seguenti considerazioni. I metodi iterativi, per la soluzione di
un sistema lineare Ax = b, teoricamente richiedono un numero infinito di iterazioni. Nella
pratica ciò non è ragionevole poiché invece che x ci si accontenta di una sua approssimazione
x̃ o più concretamente di xk, l’iterata ad un certo passo k del metodo, per la quale l’errore
sia inferiore ad una prescelta tolleranza ǫ. Ma l’errore è a sua volta una quantità incognita
perchè dipende dalla soluzione esatta. Nella pratica ci si rifà a degli stimatori dell’errore a
posteriori.

(a) Un primo stimatore è il residuo ad ogni iterazione

rk = b−Ax(k) .

In tal caso ci arresteremo in corrispondenza a quel kmin tale che

‖rkmin‖ ≤ ǫ‖b‖ . (3.26)

Infatti, ricordando che Ax = b, la (3.26) altro non è che l’errore relativo

∥
∥
∥
∥

x− xk

x

∥
∥
∥
∥

=

∥
∥
∥
∥

Ax−Axk

Ax

∥
∥
∥
∥
.

Quindi, l’errore relativo

‖x− xkmin‖
‖x‖ =

‖A−1(b−Axkmin)‖
‖x‖ ≤ ‖A

−1‖‖rkmin‖
‖x‖ ≤ ǫκ(A) ,

dove l’ultimo passaggio si ottiene dividendo numeratore e denominatore per ‖b‖ e
ricordando che

‖b‖
‖x‖ ≤ ‖A‖ .

Perció, il controllo sul residuo ha senso solo se κ(A), il numero di condizionamento
della matrice A, è ragionevolmente piccolo.

(b) Alternativamente si può calcolare il cosidetto incremento δk = x(k+1) − x(k). In tal
caso il metodo si arresterà al passo kmin per cui

‖δkmin‖ ≤ ǫ‖b‖ .

Nel caso in cui la matrice di iterazione P (non la matrice del sistema!) è simmetrica
e definita positiva, si otterrà

‖ek‖ = ‖ek+1 − δk‖ ≤ ‖P‖‖ek‖+ ‖δk‖ = ρ(P)‖ek‖+ ‖δk‖ .

84 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Per la convergenza, ρ(P) < 1, avremo alla fine

‖ek‖ ≤ 1

1− ρ(P)
‖δk‖ . (3.27)

Nota: anche se P non è simmetrica e definita positiva si arriva alla stessa conclusione
ma non vale la (3.27).

In conclusione: il controllo sull’incremento ha senso solo se ρ(P)≪ 1.

3.7.1 I metodi di Jacobi e Gauss-Seidel

Anzitutto facciamo alcune posizioni. Data la matrice quadrata A indichiamo con D la
matrice dei valori diagonali di A, ovvero di = ai,i e con B e C le matrici triangolari inferiori
e superiori rispettivamente ottenute nel seguente modo

bi,j =

{
−ai,j i > j
0 i ≤ j ci,j =

{
0 i ≥ j
−ai,j i < j

,

con A = D −B − C.

Nel metodo di Jacobi le matrici M e N prima definite sono

M = D, N = B +C .

Pertanto se ai,i 6= 0, ∀i, allora M è non singolare. La matrice di iterazione di Jacobi è

J = M−1N = D−1(B + C) .

Il metodo iterativo di Jacobi si può allora scrivere in termini vettoriali come

x(k) = Jx(k−1) +D−1b, k ≥ 1 , (3.28)

o per componenti come

x
(k)
i =

1

ai,i






−

n∑

j=1,j 6=i

ai,jx
(k−1)
j + bi






, i = 1, . . . , n. (3.29)

Nota

J =









0 −a1,2

a1,1
. . . −a1,n

a1,1

−a2,1

a2,2
0 . . . −a2,n

a2,2

. . .

− an,1

an,n
0









.

Nel metodo di Gauss-Seidel, o semplicemente G-S, le matrici M e N prima definite sono

M = D −B, N = C .

3.7. METODI ITERATIVI 85

La matrice di iterazione di Gauss-Seidel è

G = M−1N = (D −B)−1C .

Osserviamo che

x(k) = (D −B)−1Cx(k−1) + (D −B)−1b

(D −B)x(k) = Cx(k−1) + b

Dx(k) = Bx(k) + Cx(k−1) + b

da cui otteniamo che, in termini vettoriali, il metodo di G-S si può scrivere come

x(k) = D−1Bx(k) +D−1Cx(k−1) +D−1b, k ≥ 1 , (3.30)

o per componenti come

x
(k)
i =

1

ai,i






−

i−1∑

j=1

ai,jx
(k)
j −

n∑

j=i+1

ai,jx
(k−1)
j + bi






, i = 1, . . . , n. (3.31)

Dalle equazioni (3.28) e (3.30) si comprende perchè il metodo di Jacobi viene anche detto
degli spostamenti simultanei mentre quello di G-S degli spostamenti successivi. Ma il van-
taggio di G-S rispetto a Jacobi sta soprattutto nel poter memorizzare le componenti di x(k)

nella stessa area di memoria di x(k−1).

Prima di discutere delle condizioni sotto le quali i metodi di Jacobi e G-S convergono,
premettiamo alcune definizioni.

Definizione 13. Una matrice A si dice diagonalmente dominante per righe (o anche
a predominanza diagonale per righe) se

|ai,i| ≥
n∑

j=1,j 6=i

|ai,j| (3.32)

ed esiste un indice s per cui la disuguaglianza vale in senso stretto. La matrice si dice
invece diagonalmente dominante in senso stretto per righe (o a predominanza diago-
nale stretta per righe) se la (3.32) vale per ogni i = 1, ..., n.

Analoga definizione vale per colonne.

Definizione 14. Un grafo orientato si dice fortemente connesso se per ogni 1 ≤ i, j ≤
n, i 6= j esiste un cammino orientato che parte da pi ed arriva a pj (con pi, pj nodi del
grafo).

Data una matrice il grafo ad essa associato si ottiene definendo tanti nodi pi quanti il
numero n (dimensione della matrice) con archi corrispondenti agli elementi non nulli di A.
Ovvero, se ai,j 6= 0 allora si disegnerà un arco che va da pi a pj .

86 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Definizione 15. Una matrice A si dice riducibile se e solo se il suo grafo orientatato
non è fortemente connesso, altrimenti si dice irriducibile.

Esempio 17. La matrice

A =







1 0 −1 0
2 3 −2 1
−1 0 −2 0

1 −1 1 4







ha il grafo che non è fortemente connesso. Infatti non esiste un arco orientato che va da p1

a p4.

Vale il seguente Teorema.

Teorema 5. Sia A = M −N la decomposizione di A che, nel caso di Jacobi equivale ad
M = D, N = B +C, mentre nel caso di G-S, M = D−B e N = C. Se una delle seguenti
ipotesi è verificata

• A è strettamente diagonalmente dominate per righe o per colonne;

• A è diagonalmente dominante e irriducibile;

allora ρ(M−1N) < 1 e quindi i metodi di Jacobi o di G-S sono convergenti.

Dim. Omessa.

Esempio 18. La matrice

A =







4 −1 1 1
0 −4 −1 1
−1 −1 4 1

1 −1 0 4







ha il grafo che è fortemente connesso essendo diagonalmente dominante in senso stretto per
colonne. Le matrici d’iterazione di Jacobi (J) e G-S (G) sono

J =
1

4







0 −1 1 1
0 0 −1 1
1 1 0 −1
−1 1 0 0






, G =

1

16







0 −4 4 4
0 0 −4 4
0 −1 0 −2
0 1 −2 0







.

È facile vedere che ρ(J) =
√

3
4 < 1 come pure ρ(G) = 1

4 < 1. Si noti inoltre che ρ(G) < ρ(J).
Pertanto sia il metodo di Jacobi che di G-S convergono.

Nel prossimo esempio facciamo vedere che se A non è strettamente diagonalemente
dominante, ma solo diagonalmente dominante, non è detto che il metodo di Jacobi e di G-S
siano convergenti.

3.7. METODI ITERATIVI 87

Esempio 19. La matrice

A =







−4 −1 1 1
0 −4 0 −4
1 1 4 1
0 −4 0 4







È facile vedere che ρ(J) = ρ(G) = 1, pertanto sia il metodo di Jacobi che di G-S non
convergono.

Due possibili codici Matlab/Octave che implementano i metodi di Jacobi e di Gauss-
Seidel per componenti, si possono scrivere come segue.

function [xn,i,flag]=jacobi(a,f,xv,nmax,toll)

%--

% Metodo di Jacobi per sistemi lineari.

%---

% Parametri in ingresso:

% a : Matrice del sistema

% f : Termine noto (vettore riga)

% xv : Vettore iniziale (vettore riga)

% nmax : Numero massimo di iterazioni

% toll : Tolleranza sul test d’arresto (fra iterate)

%

% Parametri in uscita

% xn : Vettore soluzione

% i : Iterazioni effettuate

% flag: se flag=1 converge altrimenti flag=0

%---

flag=1;

d=diag(diag(a));

b=-inv(d)*(a-d);

g=inv(d)*f; i=1;

xn=b*xv+g;

while (i<=nmax & norm(xn-xv,2)>toll)

xv=xn;

xn=b*xv+g;

i=i+1;

end

%

if i>nmax,

disp(’** Jacobi non converge nel numero di iterazioni fissato’);

flag=0;

end

Il codice per il metodo di G-S è più generale e può essere utilizzato anche per il metodo
SOR che viene presentato nel prossimo paragrafo. Infatti, come faremo vedere, il metodo
di G-S è un particolare metodo di rilassamento.

88 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

function [xv,iter,flag]=gaussril(a,f,xin,nmax,toll,omega)

%---

% Metodo di Gauss-Seidel rilassato per sistemi lineari.

% Per omega uguale a 1 si ottiene il metodo di Gauss Seidel

%--

% Parametri di ingresso:

% a : Matrice del sistema

% f : Termine noto (vettore riga)

% xin : Vettore iniziale (vettore riga)

% nmax : Numero massimo di iterazioni

% toll : Tolleranza sul test d’arresto (fra iterate)

% omega : Parametro di rilassamento

%

% Parametri in uscita

% xv : Vettore soluzione

% iter : Iterazioni effettuate

% flag : se flag=1 converge altrimenti flag=0

%---

flag=1; [n,m]=size(a); d=diag(a); dm1=ones(n,1)./d; dm1=diag(dm1);

b=eye(size(a))-dm1*a; g=dm1*f; bu=triu(b); bl=tril(b);

%-------------

% Iterazioni

%------------

xv=xin; xn=xv; i=0; while i<nmax,

for j=1:n;

xn(j)=(1-omega)*xv(j)+omega*(bu(j,:)*xv+bl(j,:)*xn+g(j));

end;

if abs(xn-xv)<toll,

iter=i;

i=nmax+1;

else

dif=[dif;norm(xn-xv)];

xv=xn;

i=i+1;

end,

end if i==nmax,

disp(’** Non converge nel numero di iterazioni fissato’)

flag=0;

end

3.7.2 Il metodo SOR o di rilassamento

La filosofia di questo metedo sta nel determinare un parametro ω di accelerazione della
convergenza del metodo di G-S. Partiamo considerando l’uguaglianza

ωAx = ωb, ω 6= 0, ω ∈ R .

3.7. METODI ITERATIVI 89

Usando il fatto che vale ωA = M −N , una scelta è

M = D − ωB , N = (1− ω)D + ω C .

Come si vede immediatamente, quando ω = 1 , il predetto splitting equivale al metodo di
G-S.

Se det(M) 6= 0 allora ricaviamo il metodo

x(k) = (D − ωB)−1 [(1− ω)D + ωC]x(k−1) + ω(D − ωB)−1b , k = 0, 1, . . . (3.33)

con matrice d’iterazione, dipendente da ω, data da

H(ω) = (D − ωB)−1 [(1− ω)D + ωC] . (3.34)

Dalla (3.33) ricaviamo

Dx(k) − ωBx(k) = (1− ω)Dx(k−1) + ωCx(k−1) + ωb ,

x(k) = (1− ω)x(k−1) + ωD(−1)
[

Bx(k) + Cx(k−1) + b
]

,

che per componenti diventa

x
(k)
i = (1− ω)x

(k−1)
i +

ω

ai,i



bi −
i−1∑

j=1

ai,jx
(k) −

n∑

j=i+1

ai,jx
(k−1)



 , i = 1, ..., n . (3.35)

Facciamo notare come il termine dentro parentesi quadre rappresenti la soluzione al passo
k ottenuta con il metodo di G-S. Pertanto il metodo SOR, come prima detto, coincide con
il metodo di G-S per ω = 1 e ω ha il significato di parametro per accelerare la convergenza.

Teorema 6. Condizione necessaria per la convergenza del metodo SOR è che

0 < ω < 2 . (3.36)

1. Se A è definita positiva e ω soddisfa la (3.36) allora SOR converge, ovvero la con-
dizione è anche sufficiente.

2. Se A è tridiagonale, vale la (3.36) e gli autovalori della matrice d’iterazione di Jacobi,
J , sono reali e t.c. ρ(J) < 1, allora esiste uno e uno solo ω0 t.c.

ρ(H(ω0)) = min
0<ω<2

ρ(H(ω)) , (3.37)

il cui valore è

ω0 =
2

1 +
√

1− ρ2(J)
. (3.38)

90 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Infine se 0 < ω < 1 il metodo si dice di sottorilassamento mentre se 1 < ω < 2 il
metodo si dice di sovrarilassamento. Facciamo inoltre notare, che quando ω = 0, H(ω) = I
e ρ(H(ω)) = 1.

Esempio 20. Sia

A = (ai,j) =







2 i = j

−1 |i− j| = 1

0 altrimenti

Quando n = 4, si verifica che ρ(J) ≈ 0.901 ed essendo tridiagonale simmetrica possiamo
determinare ω0, ottenendo il valore ω0 ≈ 1.395 e ρ(H(ω0)) ≈ 0.395.

Il grafico dell’andamento del raggio spettrale al variare di ω, relativamente all’ Esempio
20 ma con n = 10, è visibile in Figura 3.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 ω

 p
(H

ω
)

Raggio spettrale della matrice del metodo SOR

Figura 3.1: Raggio spettrale di H(ω) di dimensione n = 10, ottenuto usando la funzione
SOROmegaZero.m. Il valore ottimale calcolato è ω0 = 1.5727.

In generale, per determinare ω0, nel caso di una matrice tridiagonale simmetrica, pos-
siamo avvalerci del seguente codice Matlab/Octave.

function [omega0]=SOROmegaZero(d,b,n)

%---

% Inputs

% d : vettore elementi diagonale principale

% b : vettore elementi extradiagonali

3.7. METODI ITERATIVI 91

% n : lunghezza vettore d

% Output

% omega0 : il parametro ottimale w0

%--

% costruisco la matrice

A=diag(d)-diag(b,1)-diag(b,-1);

d1=diag(d); b1=tril(A)-d1; c1=triu(A)-d1;

w=linspace(.1,1.9,100);

for i=1:100

p(i)=max(abs(eig(inv(d1-w(i)*b1)*((1-w(i))*d1+w(i)*c1))));

end;

plot(w,p); xlabel(’ \omega ’); ylabel(’ p(H_\omega) ’);

title(’Raggio spettrale della matrice del metodo SOR’);

[mp,imp]=min(p);

omega0=w(imp);

Per comprendere meglio la “filosofia” del metodo SOR, suggeriamo di seguito un paio
di esercizi dei quali si chiede di scriversi i corrispondenti M-files.

Esercizio 22. Si consideri il sistema lineare






4 0 1 1
0 4 0 1
1 0 4 0
1 1 0 4













x1

x2

x3

x4







=







1
2
3
4







.

Si risolva il sistema con il metodo iterativo di Gauss-Seidel a partire dalla soluzione iniziale
(0, 0, 0, 0) con precisone di 1.0e−6. Si determini inoltre il fattore ottimale di rilassamento
per il metodo SOR. Scrivere un M-file che assolva a dette richieste, calcolando anche il
numero di iterazioni effettuate.

Facoltativo: Determinare la soluzione con il metodo SOR con il fattore ottimo di
(sovra)rilassamento.

Esercizio 23. Si consideri il sistema lineare




7 4 −7
4 5 −3
−7 −3 8









x1

x2

x3



 =





4
6
−2



 .

Si determini sperimentalmente il fattore ottimale di rilassamento per il metodo SOR nel
seguente modo a partire dal vettore iniziale (0, 0, 0). In pratica si scelgano alcuni 0 < ωi < 2
e per ognuno di essi si eseguano 10-15 iterazioni. Quell’ ωi che stabilizza le soluzioni
è da considerarsi quello ”ottimale” (si osservi che la soluzione del sistema è il vettore
(1,1,1)). Perció per sapere quale ω segliere si suggerisce di calcolare per ogni i norm([1;
1; 1]-x(ωi),inf), dove x(ωi) è la soluzione dopo 10-15 iterazioni dell’ SOR con ωi.

92 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Facoltativo: Sia A decomposta al solito come A = D−B−C e ricordando che la matrice
di iterazione del metodo SOR è:

Hω = (D − ωB)−1[(1− ω)D + ω C]

si disegni la funzione r :]0, 2[→ R, tale che r(ω) = ρ(Hω). Verificare quindi se il valore
empirico scelto è ”vicino” al valore ”ottimale” teorico.

Scrivere un M-file che assolva a dette richieste, calcolando anche il numero di iterazioni
effettuate.

3.8 Sistemi sovra e sottodeterminati

Quando parliamo di sistemi sovradeterminati pensiamo a sistemi lineari del tipo Ax = b
con matrice m×n, m > n (ovvero più equazioni che incognite). Se m < n il sistema si dice
sottodeterminato.

In generale un sistema sovradeterminato non ha soluzione, pertanto si cerca la “migliore”
soluzione nel senso che ora chiariremo. Dato b ∈ R

m, diremo che x∗ ∈ R
n è la migliore

soluzione del sistema sovradeterminato, in quanto minimizza la norma 2 del residuo r =
b−Ax. Detto altrimenti,

Φ(x∗) = ‖b−Ax∗‖22 ≤ min
x∈Rn

‖b−Ax‖22 = min
x∈Rn

Φ(x) . (3.39)

Definizione 16. Il vettore x∗, quando esiste, si dice soluzione ai minimi quadrati del
sistema Ax = b.

La soluzione ai minimi quadrati è caratterizzata dal seguente teorema.

Teorema 7. Sia A ∈ R
m×n, b ∈ R

m. Se x∗ soddisfa l’equazione

AT (b−Ax∗) = 0 (3.40)

allora per ogni y ∈ R
n si ha

‖b−Ax∗‖2 ≤ ‖b−Ay‖2 . (3.41)

Dim. Indico con rx∗ = b−Ax∗ e ry = b−Ay. Ora,

ry = b−Ax∗ +Ax∗ −Ay = rx∗ +A(x∗ − y) ,

da cui

rT
y ry = (rx∗ +A(x∗ − y))T (rx∗ +A(x∗ − y))

=(3.40) rT
x∗rx∗ + rT

x∗A(x∗ − y) + (x∗ − y)TAT rx∗ + (x∗ − y)TATA(x∗ − y) .

3.8. SISTEMI SOVRA E SOTTODETERMINATI 93

Pertanto

‖ry‖22 = ‖rx∗‖22 + ‖A(x∗ − y)‖22 ≥ ‖rx∗‖22 .

Questo conclude la dimostrazione. �

Seguono due interessanti osservazioni.

1. Dalla (3.40) segue che per ogni vettore z ∈ R
m

(Az)T (b−Ax) = 0 ,

ovvero il residuo è ortogonale alla soluzione x ai minimi quadrati. Detto altrimenti,
il vettore z sta rg(A) = {y ∈ R

m, y = Ax, ∀x ∈ R
n }.

2. Sempre dalla (3.40), segue che la soluzione x∗ ai minimi quadrati è soluzione delle
equazioni normali

(AT A)x∗ = AT b . (3.42)

Circa il sistema (3.42), sapendo che la matrice A ha rango r = min{m,n}, se ha rango pieno
allora è non singolare e B = AT A è simmetrica, definita positiva. Infatti, vale il seguente
risultato.

Teorema 8. La matrice AT A è non singolare se e solo se le colonne di A sono linear-
mente indipendenti.

Dim. Se le colonne di A sono linearmente indipendenti, preso x 6= 0, Ax 6= 0, avremo

xT (ATA)x = (Ax)T (Ax) = ‖Ax‖22 > 0 .

Quindi ATA è definita positiva e det(ATA) > 0 ovvero ATA è non singolare.

Se le colonne sono linearmente dipendenti, allora ∀ z 6= 0, Az = 0 ma anche ATAz = 0
che implica che ATA è singolare. �

Sotto le ipotesi di questo teorema, allora esiste un’unica soluzione del sistema (nel senso
dei minimi quadrati) e il corrispondente sistema si può risolvere mediante la fattorizzazione
di Cholesky di B.

Approfondimenti. A causa degli immancabili errori d’arrotondamento il calcolo di
ATA può introdurre la perdita di cifre significative con il risultato che ATA non è più definita
positiva. In alternativa invece della fattorizzazione di Cholesky si usa la fattorizzazione QR
di A.

Proposizione 5. Ogni matrice A ∈ R
m×n, m ≥ n si può scrivere unicamente come

A = QR con Q ortogonale quadrata di ordine m e R ∈ R
m×n triangolare superiore con le

righe di indice k > n+ 1 tutte nulle.

94 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Se viene usata la fattorizzazione QR di A, la soluzione ai minimi quadrati di A si può
scrivere come

x∗ = R̃−1Q̃T b ,

dove R̃ ∈ R
n×n, Q̃ ∈ R

m×n con R̃ = R(1 : n, 1 : n) e Q̃ = Q(1 : m, 1 : n) e R̃ non singolare.

Esempio 21. Dati tre punti A,B,C sopra il livello del mare. Per misurare le rispettive
altezze sopra il mare, calcoliamo le altezze h1, h2, h3 tra altri punti D,E,F ed i punti A,B,C,
nonchè le altezze h4, h5, h6 tra i punti AB, BC e AC rispettivamente. I valori trovati sono

h1 = 1, h2 = 2, h3 = 3 ;

h4 = 1, h5 = 2, h6 = 1 .

Pertanto, ciascuna misurazione da origine ad un sistema lineare che rappresenta la relazione
tra le altezze dei punti A,B,C, che indichiamo con xA, xB, xC











1 0 0
0 1 0
0 0 1
−1 1 0

0 −1 1
−1 0 1















xA

xB

xC



 =











1
2
3
1
2
1











.

Le equazioni normali sono




−3 −1 −1
−1 3 −1
−1 −1 3









xA

xB

xC



 =





−1
1
6



 .

Risolvendo, ad esempio con la fattorizzazione di Cholesky (ma anche MEG va bene ugual-
mente) troviamo la soluzione

xA = 3, xB =
7

4
, xC =

5

4
,

con residuo
b−Ax =

(
−1

4 ,
1
4 , 0, 2

4 ,
3
4 , −3

4

)T

che è ortogonale alle colonne di A.

3.9 Soluzione di sistemi non lineari con il metodo di Newton

Un sistema non-lineare di n funzioni in n incognite, si può scrivere come il sistema






f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0
...
fn(x1, . . . , xn) = 0

(3.43)

3.10. ESERCIZI PROPOSTI 95

dove fi : R
n → R, i = 1, ..., n sono funzioni non lineari.

Posto f = (f1, . . . , fn)T , x = (x1, . . . , xn)T e indicato con 0 lo zero di R
n, il sistema

(3.43) può riscriversi compattamente come f(x) = 0. Inoltre, se indichiamo con

Jf (x) =

(
∂fi

∂xj

)n

i,j=1

la matrice jacobiana, allora possiamo risolvere il predetto sistema con il metodo di Newton,
che formuleremo come segue

risolvi Jf (x
(k))δx(k) = −f(x(k)), k = 0, 1, ... (3.44)

x(k+1) = x(k) + δx(k) . (3.45)

Il metodo consiste nel risolvere ad ogni passo il sistema lineare (3.44) con matrice del sistema
che è la matrice jacobiana.

Due semplici sistemi non lineari

Esempio 22. 





x2
1 + x2

2 = 0
ex1 + ex2 = log(x3)
x1x2x3 = 5

Esempio 23. {
x2

1 + x2
2 = 1

sin
(

πx1
2

)
+ x3

2 = 0

Per implementare in Matlab il metodo di Newton avremo bisogno di una soluzione
iniziale x0, due funzioni fun e jfun che definiscono la funzione f e la matrice jacobiana Jf ,
rispettivamente. Come test d’arresto, come al solito, cicleremo finchè

‖x(k+1) − x(k)‖ ≤ tol‖x(k)‖ ∨ k > kmax .

3.10 Esercizi proposti

Esercizio 24. (Laboratorio del 23/01/06). Si consideri la matrice

A =





1 α α
α 1 α
α α 1





Provare graficamente, nel piano (α, ρ(α)), che se 1
2 ≤ α < 1 il metodo di Gauss-Seidel è

convergente mentre quello di Jacobi non lo è.

96 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Sia ora α = 2
3 e b = [1 −1 3]′. Risolvere il sistema Ax = b con Gauss-Seidel: calcolando

anche il numero di iterazioni.

Trovare la soluzione anche con SOR con ω ∈ [1.2, 1.8]. Come varia il numero di iter-
azioni al variare di ω?

Esercizio 25. Dato n ≥ 2 si considerino le matrici Ak, k = 1, ..., n − 1 di dimensione n
definite come segue:







ak
i,i = n

ak
i,j = −1 |i− j| = k

0 altrimenti

.

Sia inoltre b = ones(n, 1).

Si risolvano gli n− 1 sistemi lineari

Akx = b

con il metodo iterativo di Jacobi. La M-function che implementa il metodo di Jacobi dovrà
restituire la soluzione, il numero di iterazioni e il massimo autovalore in modulo della ma-
trice di iterazione di Jacobi.

Provare servendosi di alcuni grafici, che all’aumentare di k (la grandezza della banda) il
numero di iterazioni decresce fino a che k = floor((n+1)/2) per poi stabilizzarsi. Perchè?

Facoltativo: sia ora b = 1 : n e k = n − 1. Risolvere il sistema An−1x = b sia con
Jacobi che con Gauss-Seidel. Quale dei due metodi è più veloce?

Esercizio 26. Data la matrice tridiagonale

A =









d −1

−1 d
. . .

. . .
. . . −1
−1 d









,

con d ≥ 2, si risolva il sistema lineare Ax = b con b tale che x = (1, . . . , 1)T . Valutando la
norma euclidea della differenza tra due iterate successive, ovvero

δk+1 = ‖x(k+1) − x(k)‖

nei casi d = 2, 3 presentiamo in tabella alcune di tali differenze

d = 2 d = 3
...

...
456 7.2754e − 3 16 1.0229e − 4
457 7.2616e − 3 17 6.5117e − 5
458 7.2477e − 3 18 4.1563e − 5
459 7.2340e − 3 19 2.6593e − 5

3.10. ESERCIZI PROPOSTI 97

• Si stimi in norma 2, il numero di iterazioni m necessarie nei casi d = 2 e d = 3
affinchè la differenza ‖xk+m − xk+m−1‖ ≤ 1.e − 9 partendo da k = 458 e k = 18,
rispettivamente. (Sugg.: È noto che

δk+1 ≤ Ckδk

con Ck la norma 2 della matrice d’iterazione al passo k. Usando i valori tabulati,
dapprima si determini un’ approssimazione di Ck nei due casi d = 2 e d = 3 e quindi
iterando ...)

• Scrivere inoltre un programma Matlab che risolve il sistema precedente usando il
metodo di Jacobi, prendendo come dati in ingresso d, n, b, tol, senza allocare la ma-
trice A e la matrice di iterazione di Jacobi, partendo da x0 = 0. Lo si applichi nel
caso d = 3, n = 10, b=ones(n,1) e tol = 1.e− 9.

Esercizio 27. (Appello del 26/9/05). Dati i sistemi lineari A1x = b e A2y = b con

A1 =









1 2 3 4 5
2 13 18 23 28
3 18 50 62 74
4 23 62 126 148
5 28 74 148 255









A2 =









1 2 3 4 5
0 3 4 5 6
0 0 5 6 7
0 0 0 7 8
0 0 0 0 9









e il termine noto

b = [15, 18, 18, 15, 9]T.

1. Risolvere i due sistemi con un opportuno metodo diretto.

2. Sia δb = rand(5, 1) ∗ 1.e− 3 una perturbazione del vettore b. Si risolvano ora i due
sistemi perturbati A1x = b + δb e A2y = b + δb. Confrontando le nuove soluzioni
con quelle ottenute al punto precedente, dire quale sistema risulta meglio condizionato
analizzando la quantità

‖Erel
x ‖2

‖Erel
b ‖2

,

dove Erel indica l’errore relativo .

3. Verificare la correttezza della risposta, in (b), dopo aver calcolato B = AT
2A2 e con-

frontato i numeri di condizionamento in norma 2 di B e A1.

Esercizio 28. (Laboratorio del 23/01/06). Si consideri la matrice

A =





−0.5 α 0.5
0.5 −0.5 α
α 0.5 −0.5



 , α ∈ R. (3.46)

98 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

1. Individuare un intervallo Iα di valori di α in cui la matrice d’iterazione del metodo
di Gauss-Seidel è convergente. (Sugg.: calcolare al variare di α l’ autovalore di di
modulo maggiore usando eig e quindi).

2. Preso α∗ ∈ Iα, risolvere il sistema Ax = b con b tale che x = [1, 1, 1]T , con il metodo
di Gauss-Seidel con tol = 1.e− 6, determinando anche il numero di iterazioni e come
test di arresto sul residuo rk = b−Axk, ovvero iterando finchè ‖rk‖ > tol‖b‖.

Esercizio 29. Data la matrice

A = diag(ones(7, 1) ∗ 10) + diag(ones(6, 1) ∗ 3,+1) + diag(ones(6, 1) ∗ 3,−1)
e il termine noto

b = [1 2 3 4 5 6 7]T.

1. Dire perchè convergono i metodi di Jacobi e Gauss-Seidel.

2. Fissata la tolleranza τ = 1.e − 9 e sia P la matrice di iterazione tale che ‖P‖ < 1,
allora risolvendo

‖P‖k
1− ‖P‖‖x

1 − x0‖ < τ

possiamo calcolare a priori il numero di iterazioni k necessarie per ottenere una
soluzione a meno di τ . Partendo dalla soluzione iniaziale x0=0 e usando la norma
infinito, ‖ ‖∞ determinare k sia per il metodo di Jacobi che Gauss-Seidel.

3. Verificare sperimentalmente i risultati ottenuti applicando i metodi di Jacobi e Gauss-
Seidel, rispettivamente, alla soluzione del sistema Ax = b.

Esercizio 30. (Appello del 29/3/07). Data la matrice A=pascal(5) di ordine n = 5,

1. Determinare M = max1≤i≤n{λi}, m = min1≤i≤n{λi} . Usare tol = 1.e − 6.

2. Studiare il metodo iterativo dipendente dal parametro reale θ ∈ [0, 1/2]

x(k+1) = (I − θA)x(k) + θ b , k ≥ 0 . (3.47)

Si chiede di verificare graficamente per quali valori di θ il metodo converge.

3. Sia θ∗ = min{0 ≤ θ ≤ 1/2} per cui il metodo iterativo converge. Siano b ∈ R
n tale

che x=ones(n,1) e x0=zeros(n,1). Risolvere quindi il sistema Ax = b con il metodo
iterativo (3.47).

Esercizio 31. (Appello del 20/7/07). Si consideri la matrice A ∈ R
10×10

A =










5 −1
−1 5 −1

−1 5 −1
. . .

. . .

−1 5










,

e il vettore b = ones(10, 1).

3.10. ESERCIZI PROPOSTI 99

1. Si dica (senza fare calcoli) se i metodi iterativi di Jacobi e Gauss-Seidel convergono
alla soluzione del sistema Ax = b.

2. Si consideri ora il metodo iterativo di Richardson stazionario per la soluzione di
Ax = b:

x(k+1) = (I − αA)x(k) + α b

dove α ∈ [0.01, 0.3] è un parametro di accelerazione. Si chiede di stimare il parametro
ottimale α∗ (quello per il cui il metodo di Richardson converge più rapidamente).

3. Produrre un grafico comparativo dell’errore assoluto, in funzione del numero delle
iterazioni fatte, ottenuto con i metodi di Jacobi, Gauss-Seidel e Richardson stazionario
con parametro α∗. Usare: x0 = zeros(10, 1), tol = 1.e− 6, nmax = 100.

Esercizio 32. Si consideri la matrice A = pentadiag(−1,−1, 10,−1,−1) ∈ R
10×10 che

possiamo decomporre in A = M+D+N con D = diag([9, 9,, 9]), M = pentadiag(−1,−1, 1, 0, 0)
e N = A−M −D.

Si considerino i seguenti schemi iterativi

1. (M +D)x(k+1) = −Nx(k) + q ,

2. Dx(k+1) = −(M +N)x(k) + q ,

3. (M +N)x(k+1) = −Dx(k) + q .

Dire quali di essi è convergente analizzando il raggio spettrale delle matrici d’iterazione.

Sia poi q=1:10. Si calcoli la soluzione del sistema Ax = q con uno dei metodi conver-
genti, a partire dalla soluzione x(0) =[ones(2,1);zeros(8,1)] a meno di tol = 1.e − 6.

Esercizio 33. (Appello del 11/9/07). Si consideri la matrice A = pentadiag(−1,−1, α,−1,−1) ∈
R

10×10, α ∈ [0.5, 1.5] che possiamo decomporre in A = M + D + N con D = diag([α −
1,, α − 1]), M = pentadiag(−1,−1, 1, 0, 0) e N = A−M −D.

1. Per quale valore α∗ il metodo iterativo (M + N)x(k+1) = −Dx(k) + q risulta essere
convergente più velocemente?

2. Sia poi q=1:10. Si calcoli la soluzione del sistema Ax = q a partire dalla soluzione
x(0) =[ones(5,1);zeros(5,1)] a meno di tol = 1.e− 6.

100 CAPITOLO 3. SOLUZIONE DI SISTEMI LINEARI

Capitolo 4

Calcolo di autovalori di matrici

4.1 Autovalori di matrici

Iniziamo introducendo alcune utili definizioni.

Definizione 17. Data una matrice quadrata A ∈ R
n×n, si chiama autovalore di A, quel

numero reale o complesso λ tale che per ogni vettore x 6= 0 soddisfa l’equazione

Ax = λx . (4.1)

Il vettore x viene detto autovettore associato all’autovalore λ. Osserviamo che l’autovettore
x non è unico. Infatti, se α ∈ R è un qualsiasi numero reale non nullo, allora il vettore
y = αx è ancora un autovettore associato all’autovalore λ.

Se l’autovettore x è noto, il corrispondente autovalore si può determinare usando il
quoziente di Rayleigh

λ =
xTAx

xTx
. (4.2)

Dalla definizione precedente, segue che λ è autovalore di A se è una radice del polinomio
caratteristico

pA(λ) = det(A− λ I) .
Infatti, l’equazione (4.1) è equivalente a

(A− λI)x = 0

ma essendo x 6= 0 essa sarà soddisfatta se e solo se la matrice A−λI risulta essere singolare.
Inoltre, il polinomio caratterisco associato ad una matrice A di ordine n, ha n radici reali
e/o complesse. Se λ ∈ C è autovalore di A, anche λ̄ è un autovalore complesso di A.

Premettiamo due utili risultati circa gli autovalori di matrici con struttura. Il primo ci
ricorda che le trasfomazioni per similitudine conservano gli autovalori. Mentre il secondo ci
ricorda che le matrici simmetriche hanno autovalori reali.

101

102 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

Proposizione 6. Matrici simili hanno gli stessi autovalori

Dim. Siano A e B simili, ovvero P−1AP = B, con P invertibile. Ora, se λ è autovalore
di A e x 6= 0 è l’autovettore associato, allora

BP−1x = P−1Ax = λP−1x .

Quindi λ è autovalore di B con autovettore associato P−1x. �

Proposizione 7. Matrici simmetriche hanno autovalori reali.

Dim. Dapprima osserviamo che per il coniugato del polinomio caratteristico di A
valgono le identità

det(A− λI) = det(A− λI)∗ = det(A∗ − λ̄I)

dove A∗ è la matrice trasposta e coniugata di A. Si deduce allora che gli autovalori di A∗

sono i coniugati di quelli di A. Valendo le identità

x∗A∗x = λ̄‖x‖22 , xTAx = λ‖x‖22 ,

si conclude che λ̄ = λ ovvero se e solo se λ ∈ R. �

⋄⋄

Definizione 18. Una matrice A ∈ R
n×n è diagonalizzabile, se esiste una matrice U ∈ R

n×n

tale che

U−1AU = Λ , (4.3)

con Λ = diag(λ1, . . . , λn) e U che ha per colonne gli n autovettori di A (che formano una
base per R

n).

Nel caso di matrice rettangolare non parliamo di autovalori ma di valori singolari.
Vale il seguente risultato noto come decomposizione ai valori singolari (o SVD).

Teorema 9. Sia A ∈ R
m×n. Allora esistono due matrici ortogonali U ∈ R

m×m e V ∈ R
n×n

tali che

UTAV = Σ , (4.4)

con Σ = diag(σ1, . . . , σp) ∈ R
m×n, p = min{m,n}, σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

I numeri σi sono i valori singolari di A che di cui parleremo più oltre nella sezione
dedicata alla soluzione del problema del ”data fitting” e ”decomposizione SVD” (vedi
Sezione 5.9).

Infine c’è un interessante risultato di localizzazione degli autovalori di una matrice.

4.1. AUTOVALORI DI MATRICI 103

Definizione 19. Data A di ordine n, i cerchi

C
(r)
i = {z ∈ C : |z − ai,i| ≤

n∑

j=1,j 6=i

|ai,j | } , i = 1, . . . , n (4.5)

C
(c)
i = {z ∈ C : |z − ai,i| ≤

n∑

j=1,j 6=i

|aj,i| } , i = 1, . . . , n (4.6)

sono cerchi riga e colonna e sono detti i cerchi di Gerschgorin associati alla matrice
A.

Vale il seguente Teorema (che non dimostreremo).

Teorema 10. Le seguenti affermazioni sono vere.

1. Ogni autovalore di A appartiene alla regione del piano complesso

R =

n⋃

i=1

C
(r)
i .

Ogni autovalore di A appartiene alla regione del piano complesso

C =
n⋃

i=1

C
(c)
i .

Pertanto essi appartengono anche all’intersezione R ∩C.

2. Ogni componente di R o C, ovvero ogni componente connessa massimale formata
da Ri cerchi o Cj cerchi, contiene tanti autovalori di A quanti sono i cerchi che la
compongono (contando anche la molteplicità di ogni autovalore e di ogni cerchio).

A supporto di questo Teorema facciamo un esempio tratto da [13, pag. 89].

Esempio 24. Sia

A =









4 −1 1 0 0
1 3 −1 0 0
0 1 1 0 0
0 0 0 2 1
0 0 0 1 8









i cui autovalori sono λ1 = 5 +
√

10, λ2 = λ3 = 3, λ4 = 2 e λ5 = 5−
√

10. I cerchi riga sono

R1 = {z : |z − 4| ≤ 2},
R2 = {z : |z − 3| ≤ 2},
R3 = {z : |z − 1| ≤ 1},
R4 = {z : |z − 2| ≤ 1},
R5 = {z : |z − 8| ≤ 1} .

104 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

quelli colonna sono

C1 = {z : |z − 4| ≤ 1},
C2 = {z : |z − 3| ≤ 2},
C3 = {z : |z − 1| ≤ 2},
C4 = {z : |z − 2| ≤ 1},
C5 = {z : |z − 8| ≤ 1} .

I grafici dei corrispondenti cerchi di Gerschgorin sono riprodotti in Figura 4.1. È facile
osservare che gli autovalori stanno nell’insieme

R2 ∪R3 ∪R4 ∪R5

poiché R2 = C2, R4 ⊂ R2; C1, C4 ⊂ C2 e R5 = C5.

−1 0 1 2 3 4 5 6 7 8 9
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cerchi riga

−1 0 1 2 3 4 5 6 7 8 9
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cerchi colonna

Figura 4.1: Cerchi di Gerschgorin della matrice A dell’ Esempio 24: sopra i cerchi riga e
sotto quelli colonna.

L’Esempio 24, ci suggerisce che se A è simmetrica allora le regioni R e C del Teorema
10 coincidono ed essendo gli autovalori di matrici simmetriche reali, la loro intersezione è
formata dall’unione di intervalli dell’asse reale.

Proposizione 8. Se A è diagonalmente dominante in senso stretto allora è non singolare.

4.1. AUTOVALORI DI MATRICI 105

Dim. La dimostrazione è ora facilitata dalla conoscenza dei cerchi di Gerschgorin.
Infatti, se A è diagonalmente dominante vale la disguaglianza

n∑

j=1,j 6=i

∣
∣
∣
∣

ai,j

ai,i

∣
∣
∣
∣
< 1 .

Ciò implica che

|z − ai,i|
|ai,i|

=

n∑

j=1,j 6=i

∣
∣
∣
∣

ai,j

ai,i

∣
∣
∣
∣
< 1 , (4.7)

da cui
|z − ai,i| < |ai,i| .

La matrice A ha quindi cerchi di Gerschgorin che non passano mai per l’origine e pertanto
non potrà mai avere autovalori nulli. �

La funzione CerchiGerschgorin.m consente di costruire e plottare i cerchi di Ger-
schgorin.

function CerchiGerschgorin(A)

%---

% Costruiamo i cerchi di Gerschgorin di una matrice A

%---

tol=1.e-10; Amod=abs(A); n=max(size(A));

raggi=sum(Amod,2)-diag(Amod);

xc=real(diag(A)); yc=imag(diag(A));

% angoli per il disegno dei cerchi

th=[0:pi/100:2*pi];

x=[]; y=[];

figure(1);

clf;

axis equal;

hold on;

for i=1:n,

x=[x; raggi(i)*cos(th)+xc(i)];

y=[y; raggi(i)*sin(th)+yc(i)];

patch(x(i,:),y(i,:),’red’);

end

% disegno il bordo e il centro dei cerchi

for i=1:n,

plot(x(i,:),y(i,:),’k’,xc(i),yc(i),’ok’);

end

xmax=max(max(x));

ymax=max(max(y));

xmin=min(min(x));

ymin=min(min(y));

106 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

hold off;

figure(2);

clf;

axis equal;

hold on;

%---

% I cerchi lungo le colonne... sono quelli della matrice trasposta

%--

raggi=sum(Amod)-(diag(Amod))’;

x=[]; y=[];

for i=1:n,

x=[x; raggi(i)*cos(th)+xc(i)];

y=[y; raggi(i)*sin(th)+yc(i)];

patch(x(i,:),y(i,:),’green’);

end

% disegno il bordo e il centro dei cerchi

for i=1:n,

plot(x(i,:),y(i,:),’k’,xc(i),yc(i),’ok’);

end

%Determino il bounding box per il plot ottimale

xmax=max(max(max(x)),xmax);

ymax=max(max(max(y)),ymax);

xmin=min(min(min(x)),xmin);

ymin=min(min(min(y)),ymin);

hold off; axis([xmin xmax ymin ymax]);

figure(1);

axis([xmin xmax ymin ymax]); return

Infine, ricordando che ρ(A) ≤ ‖A‖ per ogni norma indotta, una sovrastima dell’autovalore
di modulo più grande è appunto ‖A‖.

Le domande più frequenti quando si ha a che fare con problemi di autovalori sono le
seguenti.

1. Quali autovalori desideriamo conoscere? Il più grande in modulo o il più piccolo in
modulo? E cosa si può dire dei corrispondenti autovettori?

2. E se volessimo determinare tutti gli autovalori e autovettori?

3. La struttura della matrice che ruolo gioca nei metodi di calcolo?

4.2 Il metodo delle potenze

Il metodo delle potenze permette di determinare l’autovalore di modulo massimo.

4.2. IL METODO DELLE POTENZE 107

Supponiamo che gli autovalori di A possano essere ordinati come segue:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ,

con λ1 ben distinto dai rimanenti autovalori. Sia x1 l’autovettore corrispondente a λ1.

Se gli autovettori di A sono linearmente indipendenti, λ1 e x1 si possono determinare
come segue

1. Dato il vettore iniziale x(0), poniamo y(0) = x(0)/‖x(0)‖.

2. Per k = 1, 2, ... calcolo

x(k) = Ay(k−1), y(k) =
x(k)

‖x(k)‖ , λ(k) = (y(k))T Ay(k) .

La procedura si arresta in corrispondenza al primo indice k tale che |λ(k)−λ(k−1)| < ǫ|λ(k)|.

Il predetto metodo costruisce due successioni convergenti

lim
k→∞

y(k) = αx1 , lim
k→∞

λ(k) = λ1 .

Perchè si chiama metodo delle potenze? Basta osservare che y(k) = r(k)Aky(0), cioè
appaiono le potenze della matrice A, con

r(k) =
k∏

i=1

1

‖x(i)‖ .

Infatti,

• y(1) =
Ay(0)

‖x(1)‖ ;

• y(2) =
Ay(1)

‖x(2)‖ =
A2y(0)

‖x(1)‖‖x(2)‖ ;

• y(3) =
Ay(2)

‖x(3)‖ =
A3y(0)

‖x(1)‖‖x(2)‖‖x(3)‖ ;

•

La seguente funzione Matlab/Octave MetPotenze.m implementa il metodo delle potenze.

108 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

function [lam,x,iter]=MetPotenze(A,tol,kmax,x0)

%--

% Inputs

% A: matrice,

% tol: tolleranza;

% kmax: numero massimo d’iterazioni

% x0: vettore iniziale

%--

% Outputs

% lam : autovalore di modulo massimo

% x: autvettore corrispondente

% iter: iterazioni effettuate

%--

x0=x0/norm(x0);

lam=x0’*(A*x0);

err=tol*abs(lam)+1;

iter=0;

while (err > tol*abs(lam) & abs(lam)~=0 & iter<=kmax)

x=A*x0;

x=x/norm(x);

lamnew=x’*(A*x);

err=abs(lamnew-lam);

lam=lamnew;

x0=x;

iter=iter+1;

end return

4.2.1 Convergenza del metodo delle potenze

Gli autovettori x1, . . . , xn sono linearmente indipendenti, cosicché possiamo scrivere x(0) =
∑n

i=1 α1xi da cui

y(0) = β(0)
n∑

i=1

αixi, β
(0) = 1/‖x(0)‖ .

(i) Al primo passo

x(1) = Ay(0) = β(0)A

n∑

i=1

αixi = β(0)
n∑

i=1

αiλixi

y(1) = β(1)
n∑

i=1

αiλixi, β(1) =
(

‖x(0)‖‖x(1)‖
)−1

4.2. IL METODO DELLE POTENZE 109

(ii) Al passo k

y(k) = β(k)
n∑

i=1

αiλ
k
i xi, β(k) =

(
k∏

i=0

‖x(i)‖
)−1

da cui

y(k) = λk
1β

(k)

(

α1x1 +
n∑

i=2

αi

(
λi

λ1

)k

xi

)

,

Poiché
∣
∣
∣
λi

λ1

∣
∣
∣ < 1, i = 2, ..., n allora per limk→∞ y(k) = x1 o meglio converge alla direzione

dell’autovettore x1 purchè α1 6= 0. Nel caso in cui α1 = 0 e |λ2| > |λ3|, il processo dovrebbe
convergere verso λ2. Però a causa degli (inevitabili) errori di arrotondamento si ha α1 6= 0
e quindi il metodo converge ancora a λ1.

Quando però |λ2| ≈ |λ1|, la successione {λ(k)
1 } converge verso λ1 molto lentamente e in

tal caso il metodo viene usato come stima iniziale per il metodo delle potenze inverse che
vedremo oltre.

Concludendo, il rapporto

∣
∣
∣
∣

λ2

λ1

∣
∣
∣
∣

è importante ai fini della velocità di convergenza del

metodo delle potenze. Il prossimo esempio ci fa capire proprio questo fatto.

Esempio 25. Si consideri la matrice

A1 =





−7 −9 9
11 13 −9
−16 −16 20





i cui autovalori sono λ1 = 20, λ2 = 4, λ3 = 2 con

∣
∣
∣
∣

λ2

λ1

∣
∣
∣
∣
≈ 0.2. Si può provare che partendo

dal vettore x(0) = [1, 1, 1]T con tol = 1.e − 6, il metodo delle potenze (implementato nella
funzione MetPotenze.m) converge a λ1 in 10 iterazioni.

Se consideriamo invece la matrice

A2 =





−4 −5 4
14 15 −5
−1 −1 11





che ha autovalori λ1 =
√

5+21
2 , λ2 =

√
5−21
2 , λ3 = 1. In tal caso

∣
∣
∣
∣

λ2

λ1

∣
∣
∣
∣
≈ 0.81 con la con-

seguenza che il metodo, con gli stessi valori di tol e x(0), impiega 58 iterazioni per deter-
minare l’autovalore di modulo massimo.

Esercizio 34. Si consideri, per α ∈ R, la famiglia di matrici

A =







α 2 3 10
5 12 10 7
9 7 6 13
4 16 18 0







110 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

Provare che se α = 30 il metodo converge all’autovalore di modulo massimo in 27 iterazioni,
mentre se α = −30 il metodo richiede ben 1304 iterazioni partendo da x(0) =ones(4,1) con
tolleranza ǫ = 1.e− 10. Come mai questo fatto?

Per verificare l’esattezza dei calcoli, usare la funzione eig(A) di Matlab/Octave che
restituisce tutti gli autovalori di una matrice quadrata A. Come ulteriore controllo deter-
minare anche il residuo Ax1 − λ1x1.

4.2.2 Il metodo delle potenze inverse

Per determinare l’autovalore di modulo minimo, basta ricordare che A−1 ha autovalori che
sono i reciprochi degli autovalori della matrice A. Infatti, se λ è autovalore di A associato

all’autovettore x, allora da Ax = λx deduciamo che
1

λ
x = A−1x. Ovvero 1/λ è autovalore

di A−1 associato al vettore x.

Da un punto di vista implementativo, al passo k invece di definire x(k) = A−1y(k−1)

risolveremo, con uno dei metodi numerici visti al capitolo precedente, il sistema

Ax(k) = y(k−1) .

Se fosse nota la fattorizzazione LU o quella di Cholesky (nel caso A sia simmetrica definita
positiva), basterà ricordarla ed usarla ad ogni passo k.

Esercizio 35. Si consideri la matrice dell’Esercizio 34, con gli stessi valori del parametro
α, determinare l’autovalore di modulo minimo λn mediante il metodo delle potenze inverse
(ovvero il metodo delle potenze applicato ad A−1). Usare x(0) =ones(4,1) e tolleranza
ǫ = 1.e− 10.

4.2.3 Il metodo delle potenze inverse con shift

Data una matrice quadrata A n × n, a coefficienti reali, i cui autovalori possono essere
ordinati come segue:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| .
Con il metodo delle potenze con shift è possibile cercare l’ autovalore di A, più vicino ad
numero η fissato. In pratica si tratta di applicare il metodo delle potenze inverse per il
calcolo dell’autovalore minimo λmin(Aη) della matrice Aη = A− η I. L’autovalore cercato,
dipendente da η, è λη = λmin(Aη) + η.

Per individuare un valore η da cui partire, si possono costruire i cerchi di Gerschgorin,

C
(r)
i e C

(c)
i , i = 1, ..., n (vedi (4.5) e (4.6)), associati alle righe e alle colonne di A, rispetti-

vamente (vedasi la funzione CerchiGerschgorin.m).

Esercizio 36. Cercare l’/gli autovalore/i di A, con α = −30, più vicino/i al numero
η = −15. In pratica si tratta di applicare il metodo delle potenze inverse per il calcolo

4.2. IL METODO DELLE POTENZE 111

dell’autovalore minimo della matrice Aη = A− η I. Quindi l’autovalore cercato sarà λη =
λmin(Aη) + η.

Come cambia il numero delle iterazioni se prendiamo η = −17? Prendere x(0) =ones(4,1)

e tolleranza ǫ = 1.e − 10.

4.2.4 Metodo delle potenze e metodo di Bernoulli

Dato il polinomio

pn(x) =

n∑

i=0

aix
i, a0 an 6= 0 ,

per determinare la radice ξ1 di modulo massimo si può usare il metodo di Bernoulli. Tale
metodo consiste nell’applicare il metodo delle potenze alla matrice (di Frobenius), detta
anche matrice companion

F =











0 1 0 · · · 0
. . .

. . .

. . .
. . .

0 . . . 0 1
− a0

an
− a1

an
. . . −an−2

an
−an−1

an











.

Per calcolare tutti i rimanenti autovalori si opera poi per deflazione, ovvero applicando il
metodo alle sottomatrici di ordine n−1, n−2, ..., 1 che si ottengono mediante trasformazioni
per similitudine con matrici ortogonali (quali le matrici di Householder).

Facciamo vedere su un semplice esempio come calcolare la radice più grande in modulo,
che chiameremo ξ1, e la successiva radice più grande in modulo ξ2.

Esempio 26. Calcolare ξ1 per il polinomio

p6(x) = 13x6 − 364x5 + 2912x4 − 9984x3 + 16640x2 − 13312x + 4096 ,

usando tolleranza tol = 1.e− 6.

Calcolare quindi (per deflazione) ξ2 la seconda radice più grande in modulo. Per calco-
lare ξ2, si suggerisce dapprima di costruire la matrice P di Householder tale

PFP T =

(
ξ1 aT

0 F1

)

cosicchè Px1 = e1 con x1 autovettore associato a ξ1 (calcolato al passo 1) e e1 = (1, 0, ..., 0)T .
La matrice P si può costruire mediante il seguente codice Matlab:

112 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

% Costruisco la matrice di Householder P t.c. P*x1=(1,0,...,0)

x12=norm(x1,2); beta=1/(x12*(x12+abs(x1(1))));

v(1)=sign(x1(1))*(abs(x1(1))+x12); v(2:n)=x1(2:n);

P=eye(n)-beta*v’*v; % n = dimensione matrice

Pertanto, per calcolare ξ2 si applicherà il metodo delle potenze alla matrice F1.

Confrontare i risultati con la funzione roots(c), con c vettore dei coefficienti del poli-
nomio p6(x), aiutandosi anche con un grafico.

Una possibile implementazione in Matlab/Octave del metodo di Bernoulli, per calcolare
le due radici è la seguente.

function [rad}=metBernoulli(c,nmax,tol)

%---

% inputs:

% c= vettore dei coefficienti del polinomio

% nmax= numero max iterazioni per il metodo

% delle potenze

% tol= tolleranza richiesta

% output:

% rad= vettore delle 2 radici richieste

%---

%c=[4096 -13312 16640 -9984 2912 -364 13];

c1=c(1:length(c)-1)/c(length(c)); %normalizzo

n=length(c1);

% Costruisco la matrice di Frobenius

F(n,:)=-c1;

F=F+diag(ones(1,n-1),1);

%---

% Applico la funzione MetPotenze per il calcolo

% dell’autovalore di modulo max della matrice F

% a partire da un vettore t0 formato da tutti 1

%---

t0=ones(n,1);

[lam1,t1,iter]=MetPotenze(F,tol,namx,t0)

rad(1)=lam1;

%---

% Calcolo del secondo autovalore-radice per deflazione

% Costruisco la matrice di Householder P t.c. P*t1=(1,0,...,0)

%---

t12=norm(t1,2); beta=1/(t12*(t12+abs(t1(1))));

v(1)=sign(t1(1))*(abs(t1(1))+t12); v(2:n)=t1(2:n);

P=eye(n)-beta*v’*v;

F1=P*F*P’;

4.3. IL METODO QR 113

%--

% Per determinare il successivo autovalore devo riapplicare il

% metodo delle potenze alla sottomatrice di F1, detta F2,

% di dimensione n-1 x n-1

%--

F2=F1(2:n,2:n);

t0=ones(n-1,1);

[lam2,t2,iter]=MetPotenze(F2,tol,namx,t0)

rad(2)=lam2;

Il metodo di Bernoulli si può quindi applicare per il calcolo di tutte le radici di un polinomio.
Nel codice precedente basterà sostituire la parte relativa al calcolo del secondo autovalore,
con il ciclo seguente

% Calcolo i rimanenti autovalori per deflazione

% y, la prima volta, indichera’ l’autovettore corrispondente

% all’autovalore lam(1).

for s = 2:n

m=length(y);

t12=norm(y,2);

beta=1/(t12*(t12+abs(y(1))));

v(1)=sign(y(1))*(abs(y(1))+t12);

v(2:m)=y(2:m);

P=eye(m)-beta*v’*v;

F1=P*F*P’;

F=F1(2:end,2:end);

x=rand(m,1);

[lam(s), y, iter] = MetPotenze(F,tol, nmax, x);

clear v

end disp(’Controllo usando la funzione roots’)

norm(roots(c(end:-1:1))-lam’)

4.3 Il metodo QR

Se si desiderano tutti gli autovalori di una matrice, bisogna ricorrere a tecniche che con-
sentono dapprima di ridurre la matrice ad una forma più semplice mediante trasformazioni
per similitudine pervenendo a una forma triangolare superiore o diagonale: il calcolo degli
autovalori diventa cos̀ı notevolemente semplificato. Questa è la filosofia delle trasformazioni
con matrici ortogonali di Householder o Givens. Su tale filosofia si basa infatti il metodo
QR e le sue varianti.

Il metodo QR fa uso della fattorizzazione QR della matrice A. La fattorizzazione QR di

114 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

A consiste nel premoltiplicare A ad ogni passo k per una matrice ortogonale, di Householder
o Givens, cosicchè dopo n − 1 passi (Un−1 · · ·U1)A = R, con R triangolare superiore. La
matrice Q richiesta è

Q = (Un−1 · · ·U1)
−1 = (Un−1 · · ·U1)

T .

Il metodo QR per autovalori si descrive come segue. Sia A ∈ R
n×n; data Q(0) ∈ R

n×n

ortogonale (cioè QTQ = I) e posto T (0) = (Q(0))TAQ(0), per k = 1, 2, ... finché converge
esegui

• mediante la fattorizzazione QR di A (ad esempio usando la funzione qr di Mat-
lab/Octave o una propria implementazione), determinare T (k−1) = Q(k)R(k);

• quindi, porre T (k) = R(k)Q(k) = (Q(k))TT (k−1)Q(k).

Se A ha autovalori reali e distinti in modulo il metodo converge ad una matrice tri-
angolare superiore i cui autovalori stanno sulla diagonale principale. Nel caso in cui gli
autovalori non soddisfino la predetta condizione, la successione converge verso una matrice
con forma triangolare a blocchi, come si vede nel prossimo esempio.

Esempio 27. Data

A =





0 0 2
1 0 1
0 1 1



 .

Dopo 25 iterazioni del QR, si perviene alla matrice in forma ”quasi” triangolare (di Hes-
senberg superiore)

T (25) =





2 1.069 0.9258
0 −0.5 0.866
0 −0.866 −0.5



 ,

i cui autovalori sono λ1 = 2 e λ2,3 che si determinano dal blocco

[
−0.5 0.866
−0.866 −0.5

]

,

che sono complessi coniugati λ2,3 = −0.5± 0.866 i.

Vale la seguente Proposizione

Proposizione 9. Data A ∈ R
n×n, esiste Q ∈ R

n×n ortogonale e una matrice B ∈ R
n×n

triangolare superiore a blocchi tale che

B = QTAQ =








R1,1 R1,2 · · · R1,m

R2,2 · · · R2,m

. . .
...

0 Rm,m








(4.8)

4.3. IL METODO QR 115

dove Ri,i, i = 1, ...,m è un blocco 2 × 2 con autovalori complessi coniugati o un blocco
1 × 1 nel caso l’autovalore sia un numero reale. La somma delle dimensioni dei blocchi
Ri,i, i = 1, ...,m è pari ad n. Inoltre

Q = lim
k→∞

[

Q(0) · · · Q(k)
]

,

dove Q(k) è la k-esima matrice ortogonale generata al passo k della fattorizzazione QR di A.

La matrice con blocchi Ri,j viene detta la decomposizione reale di Schur di A.

Poiché il metodo ha lo scopo di annullare gli elementi della parte triangolare inferiore
sotto la diagonale principale partendo dall’elemento in basso a sinistra, un possibile test di
arresto è che al passo k

n−1∑

i=1

∣
∣
∣T

(k)
i+1,i

∣
∣
∣ < ǫ

ovvero che tutti gli elementi della sottodiagonale siano in modulo minori di una prescelta
tolleranza ǫ (vedasi più sotto).

function [T,iter]=MetQR(A,tol,kmax)

%--

% Metodo QR per il calcolo di tutti gli autovalori di una

% matrice data.

%--

[Q,R]=qr(A); T=Q*R;

%...

% QQ e‘ la matrice contenente il prodotto comulativo

% delle matrici ortogonali Q_k, ovvero

% QQ=\prod_{k=1}^M Q_k.

%..

QQ=Q; k=1;

while convergenzaQR(T,tol)==0 & k <= kmax,

T1=R*Q;

[Q,R]=qr(T1);

QQ=QQ*Q;

T=Q*R;

k=k+1;

end disp(’Numero iterazioni ’) k

% Verifica

disp(’Calcolo del residuo diag(T)-eig(A) ’)

norm(diag(T),2)-norm(eig(A),2) iter=k-1;

Questa è la funzione che verifica se il metodo QR converge, controllando che gli elementi
della sottodiagonale siano tutti in modulo minori di una fissata tolleranza.

116 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

function nn=convergenzaQR(T,tol)

%---

% Controlla che gli elementi extradiagonali della matrice

% T sono sotto la tolleranza

%--

[n1,n2]=size(T);

if n1 ~= n2,

error(’Attenzione matrice non quadrata’);

return

end

if sum(abs(diag(T,-1))) <= tol,

nn=1;

else

nn=0;

end

return

4.3.1 Il metodo QR con shift

Dalla Proposizione 9, abbiamo visto che il metodo QR converge, nel caso generale, verso
una matrice triangolare superiore a blocchi. Risolvendo quindi il problema degli autovalori
sui blocchi, si avranno tutti gli autovalori di A (vedasi l’Esempio 27).

Conviene applicare la tecnica dello shift il cui scopo è di accelerare la convergenza.

Infatti, il metodo QR ha velocità che dipende dal numero max1≤i≤n−1

∣
∣
∣
λi+1

λi

∣
∣
∣, più questo

numero è vicino ad 1 e più lenta sarà la convergenza.

Il metodo QR con shift consiste nella seguente iterazione: dato l’approssimazione µ ∈ R

di un autovalore λ di A,

• poni T (0) = (Q(0))TAQ(0), matrice in forma di Hessenberg superiore;

• quindi, per k = 1, 2, ... mediante la fattorizzazione QR di A (usare la funzione qr),
determinare T (k−1) − µI = Q(k)R(k);

• quindi porre T (k) = R(k)Q(k) + µI.

Osserviamo che Q(k)T (k) = Q(k)R(k)Q(k) + µQ(k) = T (k−1)Q(k), ovvero T (k) e T (k−1) sono
simili e pertanto hanno gli stessi autovalori.

Dalla teoria sul metodo QR, sappiamo che se µ viene scelto cosicchè

|λn − µ| < |λi − µ| , i = 1, . . . , n− 1

allora l’elemento t
(k)
n,n−1 generato dalla precedente iterazione tende rapidamente a zero al

crescere di k. Al limite se µ fosse un autovalore della matrice T (k), e ovviamente anche di

4.3. IL METODO QR 117

A, t
(k)
n,n−1 = 0 e t

(k)
n,n = µ. Questo suggerisce di scegliere

µ = t(k)
n,n .

Con questa scelta la convergenza del metodo è quadratica, mentre nel caso di matrice
simmetrica, si dimostra (cf. [9]) che la convergenza è cubica.

Di questo fatto possiamo tenere conto durante l’esecuzione del metodo QR con shift,

controllando il valore di |t(k)
n,n−1| e ponendolo uguale a zero se risulta

|t(k)
n,n−1| < ǫ

(

|t(k)
n−1,n−1|+ |t(k)

n,n|
)

. (4.9)

Questo sarà il test da usare nell’implementazione del metodo QR con shift. Se, la matrice A

è in forma di Hessenberg superiore, l’azzeramento di t
(k)
n,n−1 implica che t

(k)
n,n sarà una buona

approssimazione di λn. Quindi, noto λn la ricerca dei rimanenti autovalori si farà sulla
matrice T (k)(1 : n − 1, 1 : n − 1), riducendo di volta in volta la dimensione del problema
fino a determinare tutti gli autovalori di A. In pratica una strategia di deflazione.

Riassumendo, il metodo QR con shift si può implementare come segue:

function [T,iter]=MetQRShift(A,tol,kmax)

nA=size(A); n=nA(1);

[Q,R]=qr(A);

T=Q*R;

iter=1;

for k=n:-1:2,

I=eye(k);

while convergenzaQRShift(T,tol,k)==0 & iter <= kmax,

mu=T(k,k);

[Q,R]=qr(T(1:k,1:k)-mu*I);

T(1:k,1:k)=R*Q+mu*I;

iter=iter+1;

end

T(k,k-1)=0; end

dove il test di convergenza, si farà implementando una funzione Matlab chiamata convergenzaQRShift
per la disuguaglianza (4.9).

⋄⋄

Esercizio 37. Calcolare con il metodo QR tutti gli autovalori di A=[30 1 2 3; 4 15 -4

-2; -1 0 3 5; -3 5 0 -1];. Determinare anche il numero di iterazioni fatte.

118 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

Esercizio 38. Si consideri la matrice A (tratta da [15, pag. 178])

A =









17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9









,

i cui autovalori (arrotondati a due decimali) sono λ1 = 65, λ2,3 = ±21.28 e λ4,5 =
±13.13. Calcolare tutti gli autovalori sia con il metodo QR che con il metodo QR con shift.
Osservare la velocità di convergenza che con la tecnica dello shift è notevolmente accelerata.

4.3.2 Autovalori di matrici simmetriche

Quando la matrice A ∈ R
n×n è tridiagonale simmetrica o simmetrica, per la ricerca dei

corrispondenti autovalori si usano il metodo delle successioni di Sturm e il metodo di Jacobi,
rispettivamente.

4.4 Il metodo delle successioni di Sturm

Sia A ∈ R
n×n tridiagonale simmetrica. Indichiamo con d e b i vettori diagonale e extradi-

agonali (sopra e sotto la diagonale principale) di dimensioni n e n− 1, rispettivamente.

Sia Ai il minore principale di ordine i di A. Posto p0(x) = 1, indichiamo con pi(x) =
det(Ai − xIi). Si ha

p1(x) = d1 − x; (4.10)

pi(x) = (di − x) pi−1(x)− b2i−1pi−2(x), i = 2, ..., n.

Alla fine pn(x) = det(A − xI). La successione {pi(x)} è detta una successione di Sturm.
Vale il seguente fatto: per i=2,...,n gli autovalori di Ai−1 separano quelli di Ai,
ovvero

λi(Ai) < λi−1(Ai−1) < λi−1(Ai) < · · · < λ2(Ai) < λ1(Ai−1) < λ1(Ai) . (4.11)

Inoltre, per ogni reale ν, definiamo

Sν = {p0(ν), p1(ν), . . . , pn(ν)} . (4.12)

Allora s(ν), il numero di cambiamenti di segno in Sν , indica il numero di autovalori di A
strettamente minori di ν.

Da un punto di vista implementativo, per costruire A, noti i vettori d e b, basta usare
il comando Matlab/Octave A=diag(d)+diag(b,1)+diag(b,-1). Quindi si può procedere
come segue:

4.4. IL METODO DELLE SUCCESSIONI DI STURM 119

• Scelgo un valore reale ν e costruisco l’insieme Sν . Qui bisogna implementare le formule
(4.10), ottenendo in output un array che contiene i numeri pi(ν), i = 0, 1, ..., n.

• Determino il numero s(ν) che mi dirà, grazie alla (4.11), quanti autovalori di A sono
minori in senso stretto, di ν.

• Esiste un metodo, detto metodo di Givens, per determinare tutti gli autovalori di una
matrice A tridiagonale simmetrica. Poniamo b0 = bn = 0 allora l’intervallo I = [α, β]
con

α = min
1≤i≤n

(di − (|bi|+ |bi−1|)), β = max
1≤i≤n

(di + (|bi|+ |bi−1|)) , (4.13)

conterrà tutti gli autovalori di A (infatti α e β indicano gli estremi dell’intervallo di
Gerschgorin).

Una volta determinato I = [α, β], per determinare λi, l’i-esimo autovalore di A,
mediante il metodo di bisezione si opera come segue: si construiscono le successioni
a(i) e b(i) con a(0) = α, b(0) = β; quindi si calcola c(0) = (a(0) + b(0))/2, grazie alla
proprietà (4.11), se s(c(0)) > n − i allora b(1) = c(0) altrimenti a(1) = c(0). Si
continua finchè ad un passo k∗, |b(k∗) − a(k∗)| ≤ tol(|a(k∗)|+ |b(k∗)|).
Procederemo poi in modo sistematico per calcolare tutti gli altri autovalori.

Esercizio 39. Data la matrice tridiagonale avente diagonale principale il vettore d=ones(1,n)
e sopra e sotto diagonali il vettore b=-2*ones(1,n-1). Con n = 4, calcolarne tutti gli au-
tovalori usando il metodo di Givens delle successioni di Sturm.

Per facilitare l’implemetazione presentiamo la funzione succSturm.m che costruisce le suc-
cessione di Sturm e i suoi cambiamenti di segno.

function [p,cs]=succSturm(d,b,x)

%---

% Calcolo della successione di Sturm ’p’ in x

% a partire dai vettori d e b

% e dei corrispondenti cambiamenti di segno ’cs’

%---

n=length(d); p(1)=1; p(2)=d(1)-x; for i=2:n,

p(i+1)=(d(i)-x)*p(i)-b(i-1)^2*p(i-1);

end

cs=0; %contatore cambi di segno

s=0; %contatore dei segni costanti

for i=2:length(p),

if(p(i)*p(i-1)<=0),

cs=cs+1;

end

if(p(i)==0),

s=s+1;

end

end

cs=cs-s;

return

120 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

4.5 Il metodo di Jacobi

Il metodo, come detto, si applica a matrici simmetriche. Genera una successione di matrici
A(k) ortogonalmente simili ad A e convergenti verso una matrice diagonale i cui elementi
sono gli autovalori di A.

Si parte da A(0) = A. Per k = 1, 2, . . . si fissa una coppia di interi p e q con 1 ≤ p < q ≤ n
e si costruisce

A(k) = (Gpq)
T A(k−1)Gpq (4.14)

(ortogonalmente simile ad A) cosicchè

a
(k)
i,j = 0, se (i, j) = (p, q) .

La matrice Gpq è la matrice ortogonale di rotazione di Givens definita come segue

Gpq =
















1 0
. . .

cos(θ) sin(θ)
. . .

− sin(θ) cos(θ)
. . .

0 1
















.

Siano c = cos(θ) e s = sin(θ). Allora, gli elementi di A(k) che variano rispetto a quelli di
A(k−1) per effetto della trasformazione (5.39) si ottengono risolvendo il sistema

[

a
(k)
pp a

(k)
pq

a
(k)
pq a

(k)
qq

]

=

[
c s
−s c

]T
[

a
(k−1)
pp a

(k−1)
pq

a
(k−1)
pq a

(k−1)
qq

] [
c s
−s c

]

. (4.15)

Il nostro scopo è trovare l’angolo θ che consente al passo k di annullare gli elementi ex-

tradiagonali di A(k−1) interessati dalla trasformazione. Ora, se a
(k−1)
pq = 0, allora c = 1 e

s = 0. Se invece a
(k−1)
pq 6= 0, posto t = s/c = tan(θ), il sistema (4.15) equivale alla soluzione

dell’equazione

t2 + 2ηt− 1 = 0, con η =
a

(k−1)
qq − a(k−1)

pp

2a
(k−1)
pq

. (4.16)

Nell’equazione precedente, se η ≥ 0 si sceglie la radice t = 1/(η +
√

1 + η2) altrimenti
t = −1/(−η +

√

1 + η2). Quindi c e s risultano

c =
1√

1 + t2
, s = ct .

4.5. IL METODO DI JACOBI 121

La convergenza del metodo si verifica calcolando la seguente quantità, valida per una
generica matrice M

Φ(M) =





n∑

i,j=1,i6=j

m2
ij





1/2

=

(

‖M‖2F −
n∑

i=1

m2
ii

)1/2

. (4.17)

Il metodo garantisce che Φ(A(k)) ≤ Φ(A(k−1)), ∀k.

Una strategia ottimale di scelta degli indici p, q tale che Φ(A(k)) ≤ Φ(A(k−1)) sia sempre
verificata, è quella di scegliere l’elemento di A(k−1) tale che

|a(k−1)
p,q | = max

i6=j
|a(k−1)

i,j | .

Una M-function che implementa il metodo di Jacobi, data A e una tolleranza tol e che
restituisce la matrice diagonale D degli autovalori, il numero di iterazioni effettuate e la
quantità Φ(·), potrebbe essere come segue.

function [D,iter,phi]=symJacobi(A,tol)

%---

% Data la matrice simmetrica A e una tolleranza tol, determina,

% mediante il metodo di Jacobi tutti i suoi autovalori che memorizza

% nella matrice diagonale D. Determina inoltre il numero di iterazioni,

% iter, e la quantit phi che contiene la norma degli elementi extra-diagonali

% e come converge il metodo.

%---

n=max(size(A)); D=A; phiD=norm(A,’fro’); epsi=tol*phiD;

phiD=phiNorm(D); iter=0; [phi]=phiD;

while (phiD > epsi)

iter=iter+1;

for p=1:n-1,

for q=p+1:n

[c,s]=calcoloCeS(D,p,q);

D=calcoloProdottoGtDG(D,c,s,p,q);

end;

end

phiD=phiNorm(D);

phi=[phi; phiD];

end return

122 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

4.6 Esercizi proposti

Esercizio 40. Data la matrice simmetrica.

A =









4 1 0 0 0
1 3 2 0 0
0 2 −1 −4 0
0 0 −4 6 2
0 0 0 2 5









1. Localizzare, mediante i cerchi di Gerschgorin, gli autovalori di A e dare alcune stime
”a priori”.

2. Determinare tutti gli autovalori con il metodo più idoneo per la struttura della matrice.

Esercizio 41. (Appello del 23/3/05). Data la matrice simmetrica.

A =







4 1 1 0
1 3 2 3
1 2 −1 −2
0 3 −2 5







1. mediante il metodo delle potenze determinare l’autovalore di modulo massimo M , con
precisione tol = 1.e − 6;

2. mediante il metodo delle potenze inverse determinare l’autovalore di modulo minimo
m, con precisione tol = 1.e− 6;

3. si determinino infine gli altri due autovalori (interni a [−M,M].)

Esercizio 42. Data la matrice A di ordine n = 5,

A =









17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9









,

i cui autovalori (arrotondati a due decimali) sono λ1 = 65, λ2,3 = ±21.28 e λ4,5 =
±13.13. Calcolare tutti gli autovalori con il metodo QR con shift. Costruire una tabella
che riporti i valori della sequenza

ρk = 1 +
1

log ηk
log
|t(k)

n,n−1|
|t(k−1)

n,n−1|
, k = 1, 2,

con ηk = |t(k)
n,n−1|/‖T (0)‖2, T (0) = (Q(0))T AQ(0) e Q(0) (la prima delle matrici ortogonali

usati nella fattorizzazione QR di A) che faccia vedere che la convergenza del metodo è
quadratica.

4.6. ESERCIZI PROPOSTI 123

Esercizio 43. Si considerino le matrici

A1 =





−7 −9 9
11 13 −9
−16 −16 20



 A2 =





−4 −5 4
14 15 −5
−1 −1 11



 (4.18)

entrambe con autovalori reali e distinti.

1. Calcolare tutti gli autovalori di A1 e A2, mediante il metodo delle inverse con shift
(usare tol = 1.e− 6).

2. Si dica perchè il metodo delle potenze per il calcolo dell’autovalore di modulo massimo
ci impiega di più nel caso della matrice A2?

Esercizio 44. (Appello del 23/3/06). Si consideri la matrice

A =







1
3

2
3 2 3

1 0 −1 2
0 0 −5

3 −2
3

0 0 1 0







. (4.19)

1. Perchè il metodo delle potenze non funziona per il calcolo dell’autovalore di modulo
massimo?

2. Calcolare l’autovalore di modulo massimo e il corrispondente autovettore con il metodo
delle potenze con shift.

Esercizio 45. (Laboratorio del 6/2/07) Data la matrice di Hilbert di ordine 4 (in
Matlab hilb(4)), i cui autovalori (arrotondati) sono λ1 = 1.5002, λ2 = 0.1691, λ3 =
0.0067, λ4 = 0.0001. Calcolare detti autovalori usando il metodo di Jacobi con una toller-
anza tol=1.e-15. In quante iterazioni converge il metodo? Calcolare anche ad ogni iter-
azione la quantità Φ(A(k)) per verificare che decresce. (Sugg. Usare la funzione symJacobi.m
(implementare le M-functions calcoloCeS e calcoloProdottoGtDG)).

124 CAPITOLO 4. CALCOLO DI AUTOVALORI DI MATRICI

Capitolo 5

Interpolazione e approssimazione

Nelle applicazioni si conoscono solitamente dati provenienti da campionamenti di una fun-
zione f sui valori xi, i = 0, . . . , n, ovvero (xi, f(xi)) oppure dati sparsi provenienti di mis-
urazioni (xi, yi), i = 0, ..., n. Il problema dell’interpolazione consiste nel trovare una funzione
f̃ tale da soddisfare le condizioni d’interpolazione

f̃(xi) = f(xi), oppure , f̃(xi) = yi . (5.1)

A seconda della forma di f̃ parleremo di interpolazione

• polinomiale: f̃(x) = a0 + a1x+ · · · + anx
n := pn(x) ;

• polinomiale a tratti: in tal caso su ognuno degli intervallini Ik = [xk, xk+1], k =
0, ..., n − 1 f̃ coincide con un polinomio. Nel caso questo polinomio sia una spline

parleremo d’interpolazione spline;

• trigonometrica: f̃(x) = a−Me−iMx + · · · + aMeiMx, ove M = n/2 se n pari ovvero
M = (n− 1)/2 se n è dispari;

• razionale: in tal caso f̃(x) = pn(x)
qm(x) , con pn e qm polinomi di grado n e m rispettiva-

mente.

5.1 Interpolazione polinomiale

Il seguente Teorema dice che il problema dell’interpolazione polinomiale ha un’unica soluzione
se i punti d’interpolazione xi, su cui costruiremo il polinomio interpolante, sono distinti.

Teorema 11. Dati n + 1 punti (xi, yi), i = 0, ..., n con xi 6= xj , i 6= j, esiste un unico
polinomio di grado n, pn(x) = a0 + a1x+ · · ·+ anx

n per cui

pn(xi) = yi, i = 0, ..., n (5.2)

125

126 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

Dim. Le condizioni (5.2) sono equivalenti al sistema lineare








1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1
...

...
1 xn x2

n . . . xn
n















a0

a1
...
an








=








y0

y1
...
yn








la cui matrice A altro non è che la matrice di Vandermonde. Si dimostra (vedi anche [5])
che

det(A) =

n∏

i,j=0, i<j

(xi − xj) ,

Tale determinante è diverso zero perchè xi 6= xj, i 6= j. Pertanto la soluzione esiste ed è
unica. �

Esempio 28. Si consideri la funzione di Runge

g(x) =
1

1 + x2
, x ∈ [−5, 5] (5.3)

Sugli n + 1 punti equispaziati xi = −5 + ih, i = 0, 1, ..., n, h = 10/n si costruisca il
polinomio d’interpolazione di grado n, pn(x) = anx

n + an−1x
n−1 + . . .+ a1x+ a0. Si tratta

di risolvere il sistema lineare

V a = y

con a = (a0, a1, ..., an)T , y = (g(x0), g(x1), ..., g(xn))T e V la matrice di Vandermonde. Ad
esempio se n = 3, x0 = −5, x1 = −5 + 10/3 ≈ −1.667, x2 = −5 + 20/3 ≈ 1.667, x3 = 5 il
sistema diventa

V =







1 −5 25 −125
1 −1.667 2.779 −4.63
1 1.667 2.779 4.63
1 5 25 125













a0

a1

a2

a3







=







1
26 ≈ 0.04

0.26
0.26
0.04






.

⋄⋄

Il concetto di condizioni d’interpolazione può essere generalizzato, come vediamo nel prossimo
esempio, considerando non solo i valori della funzione nei nodi ma altri valori.

Esempio 29. Si consideri la funzione f(x) =
20

1 + x2
− 5 ex ristretta all’intervallo [0, 1].

Determinare l’unico polinomio di secondo grado, p2(x) = a0 + a1x+ a2x
2 tale che

p2(0) = f(0), p2(1) = f(1),

∫ 1

0
p2(x)dx =

∫ 1

0
f(x)dx .

5.2. FORMA DI LAGRANGE DELL’INTERPOLANTE 127

Si tratta di risolvere il sistema lineare con matrice non singolare

A =





1 0 0
1 1 1
1 1

2
1
3





e termine noto

b =









15
5(2− e)

∫ 1

0
f(t)dt









L’integrale definito è facilmente calcolabile analiticamente ottenendo 20 arctan(1) − 5(e −
1) = 5π − 5e + 5 ≈ 7.1166 . Risolvendo il sistema si trovano i valori dei coefficienti del
polinomio. Il sistema lo possiamo risolvere anche numericamente con il MEG o usando la
funzione Matlab/Octave "\": otteniamo a0 = 15, a1 = −10.118; a2 = −8.474. Il grafico
della funzione e del polinomio sono visibili in Fig. 5.1.

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

12

14

16
Polinomio
Funzione

Figura 5.1: Funzione e polinomio d’interpolazione dell’Esempio 29

5.2 Forma di Lagrange dell’interpolante

Il polinomio d’interpolazione si può esprimere usando la base di Lagrange. I polinomi
elementari di Lagrange sono definibili a partire dai punti d’interpolazione xi come segue

li(x) =

n∏

j=0,j 6=i

x− xj

xi − xj
. (5.4)

128 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

I polinomi li, i = 0, ..., n sono polinomi di grado n, valgono 1 quando x = xi e 0 altri-
menti, cioè li(xj) = δi,j (vedasi Figura 5.2). Pertanto possiamo esprimere il polinomio
d’interpolazione pn(x), costruito sull’insieme (xi, f(xi)), i = 0, ..., n, come

pn(x) =
n∑

i=0

li(x)f(xi) . (5.5)

Inoltre vale la seguente identità

n∑

i=0

li(x) = 1 ,

che altro non è che il polinomio d’interpolazione della funzione f(x) ≡ 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5
Polinomi di Lagrange di grado 5 su nodi equispaziati

l1
l2
l3
l4
l5
l6
Nodi

Figura 5.2: Grafico di alcuni polinomi elementari di Lagrange.

Posto ωn+1(x) =

n∏

i=0

(x− xi) è facile provare che

li(x) =
ωn+1(x)

(x− xi)ω
′
n+1(xi)

.

Pertanto una forma alternativa del polinomio d’interpolazione è (cfr. [1]):

pn(x) =

n∑

i=0

ωn+1(x)

(x− xi)ω′
n+1(xi)

f(xi) .

5.2. FORMA DI LAGRANGE DELL’INTERPOLANTE 129

Tale forma, si può provare, ha un costo computazionale di ordine n2 invece che ordine n3

come per la forma (5.5). Infine, circa i polinomi elementari li, essi valgono 1 in xi e zero
negli altri punti xj , j 6= i, ma possono assumere valore maggiore di 1 in modulo, come si
evince anche dalla Figura 5.2.

Esempio 30. Consideriamo il caso n = 1. I punti che prendiamo sono (x0, f(x0)) e
(x1, f(x1)). Il corrispondente sistema di Vandermonde è

(
1 x0

1 x1

)(
a0

a1

)

=

(
f(x0)
f(x1)

)

.

La matrice inversa è
1

x1 − x0

(
x1 −x0

−1 1

)

e pertanto avremo la soluzione

(
a0

a1

)

=
1

x1 − x0

(
x1f(x0)− x0f(x1)
−f(x0) + f(x1)

)

.

Quindi il polinomio p1(x) è

p1(x) =
x1f(x0)− x0f(x1)

x1 − x0
+
f(x1)− f(x0)

x1 − x0
x

ed evidenziando f(x0), f(x1) possiamo anche riscriverlo in forma di Lagrange

p1(x) = f(x0)
x1 − x
x1 − x0

+ f(x1)
x− x0

x1 − x0

dove sono ben visibili i polinomi l0, l1.

La funzione Matlab/Octave lagrai, che qui sotto presentiamo, consente di calcolare
l’i-esimo polinomio elementare di Lagrange nel punto x.

function l=lagrai(x,z,s)

%--

% Calcola l’s-esimo pol. elementare di Lagrange

% x= punto su cui valutare

% z=nodi di interpolazione

% s=indice del polinomio

%--

n=length(z);

l=1;

for j=1:n,

if (j ~= s),

l=l*(x-z(j))/(z(s)-z(j));

end;

end;

return

130 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

Nel caso di nodi xi equispaziati, cioè xi − xi−1 = h ovvero xi = x0 + i h, i = 0, ..., n, i
polinomi elementari assumono una forma particolarmente interessante dal punto di vista
implementativo.

Con il cambio di variabile x(t) = x0 + t h, t = 0, . . . , n, li(x) sarà una funzione di t,
ovvero

li(t) =
n∏

j=0,j 6=i

x0 + t h− x0 − j h
x0 + i h− x0 − j h

=
n∏

j=0,j 6=i

t− j
i− j .

Detta ora ωn+1(t) = t(t− 1) · · · (t− n), risulta

n∏

j=0,j 6=i

(t− j) =
ωn+1(t)

t− i , (5.6)

n∏

j=0,j 6=i

(i− j) =
i−1∏

j=0

(i− j) ·
n∏

j=i+1

(i− j) = (−1)n−ii!(n − i)! , (5.7)

da cui

pn(t) =
ωn+1(t)

n!

n∑

i=0

(−1)n−i

(
n

i

)
yi

(t− i) . (5.8)

Quando i nodi sono equispaziati, è facile verificare che per il calcolo di pn(t) sono necessarie
n2/2 addizioni e 4n moltiplicazioni.

Esercizio 46. Costruire la funzione Matlab/Octave che calcola l’i-esimo polinomio ele-
mentare di Lagrange su nodi equispaziati facendo uso delle formule (5.6) e (5.7). Costruire
quindi il polinomio interpolante mediante la (5.8).

5.2.1 Analisi dell’errore d’interpolazione

Sia f(x) definita su [a, b]. Detto pn(x) il polinomio d’interpolazione sugli n+ 1 punti a due
a due distinti x0, ..., xn, indicheremo con

rn+1(x) = f(x)− pn(x)

la funzione errore per la quale si ha rn+1(xi) = 0, i = 0, ..., n.

Teorema 12. Se f ∈ Cn+1[a, b], allora

rn+1(x) = (x− x0) · · · (x− xn)
f (n+1)(ξ)

(n + 1)!
, (5.9)

con ξ ∈ (a, b) e xi distinti.

5.2. FORMA DI LAGRANGE DELL’INTERPOLANTE 131

Dim. Se x = xi, l’errore è nullo e quindi il risultato è ovvio.

Sia ora x 6= xi, allora preso un qualsiasi t ∈ Ix (Ix il più piccolo intervallo che contiene
i punti x0, ..., xn, x) possiamo definire la funzione ausialiaria

g(t) = rn+1(t)−
ωn+1(t)rn+1(x)

ωn+1(x)
.

Poiché f ∈ Cn+1(Ix) segue che g ∈ Cn+1(Ix) ed ha n+ 2 zeri distinti in Ix. Infatti g(xi) =
0, i = 0, . . . , n e g(x) = 0. Allora per il teorema del valor medio di Lagrange, g′ ha n + 1
zeri e cos̀ı via finché g(n+1) ha un solo zero, che indichiamo con ξ.

Ma r
(n+1)
n+1 (t) = f (n+1)(t) e ω

(n+1)
n+1 = (n + 1)! pertanto

g(n+1)(t) = f (n+1)(t)− (n+ 1)!

ωn+1(x)
rn+1(x) .

Quando valutiamo questa espressione in t = ξ otteniamo il risultato richiesto. �

Esempio 31. Calcoliamo l’errore nell’interpolazione lineare. Dal Teorema 5.9, r2(x) =

(x− x0)(x− x1)
f ′′(ξ)

2 , ξ ∈ (x0, x1). Ora,

max
x∈(x0,x1)

|(x− x0)(x− x1)| =
(x0 − x1)

2

4
.

Se indichiamo con M2 = maxx∈(x0,x1) |f ′′(x)|, possiamo dare la seguente maggiorazione

|r2(x)| ≤M2
(x0 − x1)

2

8
.

Ad esempio, per f(x) = tan(x), x ∈ [1.35, 1.36], sapendo che f ′′(x) =
2 sinx

cos3 x
, troveremo

|r2(x)| ≤ 0.24 · 10−2.

Esempio 32. Per approssimare
√
x̄, dove x̄ non è un quadrato perfetto, possiamo interpo-

lare come segue. Siano x0, x1, x2 i quadrati perfetti più vicini ad x̄, dei quali consideriamo
le loro radici. Si tratta quindi di costruire il polinomio di grado 2, p2(x), interpolante i dati
(xi,
√
xi), i = 0, 1, 2. Allora

√
x̄ ≈ p2(x̄).

Se x̄ = 0.6, consideriamo i tre punti (0.49,
√

0.49 = 0.7), (0.64,
√

0.64 = 0.8), (0.81,
√

0.81 =
0.9) ed il relativo polinomio d’interpolazione p2(x). È facile provare che p2(0.6) ≈ 0.774 è
un’approssimazione di

√
0.6.

Circa l’errore che commettiamo, si tratta di stimare l’errore in [0.49, 0.81]. Ora essendo
ω3(x) = (x− 0.49)(x− 0.64)(x− 0.81), g(x) =

√
x t.c. g(3)(x) = 3

8
√

x5
, l’errore in modulo è

|r3(x)| ≤ |ω3(x)|
3

3! 8
√

ξ5
, ξ ∈ [0.49, 0.81] .

132 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

Infine,

|r3(0.6)| ≤
0.924 · 10−3

16
√

(0.49)5
≤ 0.35 · 10−3 .

5.3 Errore d’interpolazione e fenomeno di Runge

Se xi = xi−1 + h, i = 1, . . . , n, con x0 dato e h > 0, si può provare che

∣
∣
∣
∣
∣

n∏

i=0

(x− xi)

∣
∣
∣
∣
∣
≤ n!

hn+1

4
.

La dimostrazione, per induzione, procede come segue.

• Per n = 1, abbiamo due punti x0, x1 distanti h. La funzione |(x− x0)(x− x1)|, come
visto nell’Esempio 31, è una parabola il cui massimo, nel vertice, vale h2/4. Questo
prova il passo iniziale dell’induzione.

• Sia vera per n+ 1 punti, x0, . . . , xn. Prendiamo un altro punto xn+1. Avremo

|
n+1∏

i=0

(x− xi)| = |
n∏

i=0

(x− xi)| · |x− xn+1| ≤
︸︷︷︸

ind.

n!
hn+1

4
(n+ 1)h = (n + 1)!

hn+2

4
.

Pertanto l’errore d’interpolazione si maggiora come segue:

max
x∈I
|rn+1(x)| ≤ max

x∈I

∣
∣
∣f (n+1)(x)

∣
∣
∣

hn+1

4(n + 1)
. (5.10)

La disuguaglianza (5.10) ci dice che per h → 0, nonostante limh→0
hn+1

4(n+1) = 0, non è detto

che l’errore vada a zero. Dipenderà dal massimo della derivata (n + 1)-esima.

Come visto nell’Esempio 28, riconsideriamo la funzione di Runge:

g(x) =
1

1 + x2
, x ∈ [−5, 5] (5.11)

Sugli n+1 punti equispaziati xi = −5+i h, i = 0, ..., n, h = 10/n consideriamo il polinomio
d’interpolazione di grado n. Runge osservò che nonostante g ∈ C∞(R), l’errore g(x)−pn(x)
tende a crescere con n. In particolare dimostrò che se |x| > 3.63 il polinomio di discosta
sempre più dalla funzione oscillando enormemente. In Figura 5.3 si vede la funzione di
Runge (scalata in [-1,1]) e il suo polinomio d’interpolazione di grado 10 su nodi equispaziati
e nodi di Chebyshev (che descriveremo oltre).

5.3. ERRORE D’INTERPOLAZIONE E FENOMENO DI RUNGE 133

−5 0 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Esempio di Runge. Polinomio d’interpolazione di grado 6

funzione
Pol. su nodi eq.
nodi equis.
Pol. su nodi Cheb.
nodi Cheb.

−5 0 5
−0.5

0

0.5

1

1.5

2
Esempio di Runge. Polinomio d’interpolazione di grado 10

funzione
Pol. su nodi eq.
nodi equis.
Pol. su nodi Cheb.
nodi Cheb.

Figura 5.3: Funzione di Runge e polinomio d’interpolazione su nodi equispaziati e di
Chebyshev.

• Prima domanda: come evitare il fenomeno di Runge?

Una prima risposta è quella di usare i punti di Chebyshev invece dei punti equispaziati.
In [−1, 1] i nodi di Chebyshev sono gli zeri del polinomio ortogonale di Chebsyhev (di
prima specie) di grado n

x
(C)
k = cos

(
2k − 1

n

π

2

)

, k = 1, . . . , n . (5.12)

Osserviamo che, se invece di [−1, 1] consideriamo il generico intervallo [a, b], allora
applicando la trasformazione lineare che manda l’intervallo [−1, 1] in [a, b] i punti
corrispondenti sono

xk =
a+ b

2
+
b− a

2
x

(C)
k

dove x
(C)
k sono i nodi di Chebsyehv in [−1, 1]. In alcuni testi (vedasi ad es. [14, p.

78]) si considerano come nodi di Chebyshev i punti di Chebyshev-Lobatto, x
(CL)
k =

cos(kπ/n), k = 0, . . . , n, che includono pure gli estremi dell’intervallo.

Da un punto di vista geometrico, i punti di Chebyshev sono le proiezioni sull’intervallo
[−1, 1] dei punti equispaziati sul semicerchio di diametro [−1, 1] (vedasi Figura 5.4).

• Seconda domanda: perchè i punti di Chebsyhev sono migliori di quelli equispaziati?

Una prima risposta è grafica (vedasi Figura 5.3)... ma non basta! Nella prossima
sessione presenteremo una risposta matematicamente più formale basata sullo studio
della costante di Lebesgue.

134 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Punti di Chebsyhev

Figura 5.4: 10 punti di Chebyshev.

5.3.1 La costante di Lebesgue

Indichiamo con X la matrice triangolare inferiore di dimensione infinita, i cui elementi xi,j

sono punti appartenenti all’intervallo [a, b]. Inoltre per ogni n ≥ 0, la riga (n+ 1)-esima ha
n + 1 elementi (corrispondenti ai punti su cui costruiremo il polinomio d’interpolazione di

grado n). Sia pf
n(x) il polinomio di grado n che interpola la funzione f usando gli n + 1

nodi della n+ 1-esima riga di X.

Fissata X e la funzione f , indichiamo con

En,∞(X) = ‖f − pf
n‖∞, n = 0, 1, (5.13)

l’errore in norma infinito tra f e il suo polinomio d’interpolazione. Indichiamo con p∗n ∈ Pn

il polinomio di migliore approssimazione uniforme di f per il quale consideriamo

E∗
n = ‖f − p∗n‖∞ ≤ ‖f − qn‖∞, ∀ qn ∈ Pn . (5.14)

Teorema 13. Sia f ∈ C[a, b] e X come prima. Allora

En,∞(X) ≤ (1 + Λn(X))E∗
n, n = 0, 1, . . . (5.15)

con

Λn(X) = max
x∈[a,b]

n∑

i=1

|li(x)|

che si chiama costante di Lebesgue.

Osservazione. È facile provare che Λn(X) ≥ 1.

5.3. ERRORE D’INTERPOLAZIONE E FENOMENO DI RUNGE 135

Ora, dal Teorema 13, E∗
n è indipendente da X mentre lo è En,∞(X). Pertanto la scelta

del vettore dei nodi è fondamentale per il valore che può assumere Λn. Si dimostra (vedi ad
esempio [16]) che la crescita della costante di Lebesgue per nodi equispaziati Xe e nodi di
Chebyshev Xc è come segue:

Λn(Xe) ≈
2n−1

n e loge n

Λn(Xc) ≈
2

π
loge n .

In entrambi i casi per n→∞ la costante di Lebesgue tende ad infinito, ma nel caso di nodi
di Chebyshev la crescita è logaritmica invece che esponenziale.

Come ultima osservazione, i nodi di Chebyshev sono nodi quasi-ottimali. Infatti, sempre
in [16, pag. 101], si osserva che esiste un’insieme X∗ di nodi ottimali anche se il loro calcolo
non è semplice. Ma, come provato da L. Brutman in SIAM J. Numer. Anal. 15 (1978),
l’insieme dei nodi di Chebsyhev espansi

x
(Ce)
i = cos

(
π i

n

)

è utile per tutti gli usi più frequenti e quindi essi possono essere considerati come i nodi
ottimali sull’intervallo.

Per calcolare la costante di Lebesgue ci si può avvalere della seguente funzione

function leb=CostLebesgue(x)

%--

% Dato il vettore x di N nodi (ordinato), la funzione calcola

% il valore della costante di Lebesgue per i=1,...,N-1

%

% Input: x (vettore ordinato dei nodi)

% Output: leb (vettore dei valori della costante di Lebesgue)

%--

a=x(1); b=x(end); M=1000;

xx=linspace(a,b,M); %sono i punti "target"

N=length(x);

for i=2:N,

for s=1:i,

for j=1:M,

l(s,j)=lagrai(xx(j),x,s);

end

end

leb(i-1)=max(sum(abs(l)));

end

return

136 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

5.3.2 Stabilità dell’interpolazione polinomiale

Dati (xi, f(xi)), i = 0, . . . , n, invece dei valori f(xi) consideriamo dei valori perturbati

f̃(xi). Indichiamo con pf̃
n il polinomio di grado n che interpola (xi, f̃(xi)), i = 0, . . . , n.

Allora,

‖pf
n − pf̃

n‖∞ = max
x∈[a,b]

∣
∣
∣
∣
∣
∣

n∑

j=0

lj(x)
(

f(xj)− f̃(xj)
)

∣
∣
∣
∣
∣
∣

(5.16)

≤ max
x∈[a,b]

n∑

j=0

|lj(x)| max
0≤i≤n

|f(xi)− f̃(xi)| . (5.17)

Essendo Λn(X) := maxx∈[a,b]

∑n
j=0 |lj(x)|, con X = {x0, . . . , xn}, la costante di Lebesgue si

può interpretare come il numero di condizionamento del problema d’interpolazione polino-
miale.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5
Polinomio d’interpolazione di grado 21, nodi equispaziati

funzione
Pnf
Pn{\tilde{f}}
nodi interp.

Figura 5.5: Funzione dell’Esempio 33

Esempio 33. Consideriamo la funzione f(x) = sin(2πx), x ∈ [−1, 1] che desideriamo
interpolare su 22 nodi equispaziati. Conderiamo poi i valori perturbati f̃(xi) tali che

δ := max
0≤i≤21

|f(xi)− f̃(xi)| ≈ 4.5 10−2 .

Costruiamo pf
21 e pf̃

21. Mediante la (5.17) otteniamo la stima Λ21 ≈ 4500. Ovvero il problema
è sensibile alle perturbazioni (che ritroviamo soprattutto nei punti di massima oscillazione
della funzione).

5.4. POLINOMIO INTERPOLANTE IN FORMA DI NEWTON 137

5.4 Polinomio interpolante in forma di Newton

Si può esprimere il polinomio di interpolazione di grado n della funzione f , pf
n(x), in forma

di Newton:

pf
n(x) = b0 + b1(x− x0) + b2(x− x0)(x− x1) + · · · + bn(x− x0) · · · (x− xn−1) ,

dove bi rappresenta la differenza divisa di ordine i della funzione f . Per comprendere
come costruire sifatto polinomio, dobbiamo dapprima introdurre le differenze divise di una
funzione.

5.4.1 Differenze divise e loro proprietà

Definizione 20. Dati n+1 punti distinti x0, . . . , xn e i valori yi = f(xi), la differenza divisa
di ordine 0 della funzione f è f [xi] = f(xi), la differenza divisa di ordine 1 è f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi
e ricorsivamente, la differenza di ordine k è

f [xi, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi
. (5.18)

1. La differenza divisa di ordine k+ 1 di un polinomio di grado k è identicamente nulla.
Vediamolo su un esempio.

Esempio 34. Consideriamo i punti {−1, 2, 3, 5} e f(x) = x2 + 1. La tabella delle
differenze divise è la seguente

xi yi ordine 1 ordine 2 ordine 3

-1 2

2 5 1

3 10 5 1

5 26 8 1 0

Tabella 5.1: Differenze divise della funzione x2 + 1

2. La differenza divisa di ordine n, si esprime come

f [x0, . . . , xn] =
n∑

j=0

f(xj)
∏

i=0,i6=j(xi − xj)
. (5.19)

La verifica viene lasciata come esercizio.

138 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

3. Le differenze divise sono invariati rispetto all’ordine dei nodi. Ovvero

f [x0, . . . , xk] = f [xi0, . . . , xik] (5.20)

dove (i0, . . . , ik) è una qualsiasi permutazione di (0, . . . , k). Questa proprietà è una
diretta conseguenza della formula (5.19).

Di tutte le predette proprietà, il lettore curioso può trovare la dimostrazione ad esempio in
[2, pag. 384 e ss.].

Possiamo osservare che il polinomio

pf
n(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xn](x− x0) · · · (x− xn−1) (5.21)

è interpolante la funzione f(x) nei punti xi: infatti pn(xi) = f(xi). Per l’unicità del
polinomio d’interpolazione possiamo dire che esso è il polinomio d’interpolazione!

La (5.21) è detta la forma di Newton del polinomio d’interpolazione che potremo riscri-
vere più semplicemente come

pf
n(x) = b0 + b1(x− x0) + b2(x− x0)(x− x1) + · · ·+ bn(x− x0) · · · (x− xn−1) , (5.22)

dove bi rappresenta la differenza divisa di ordine i della funzione f .

Algoritmo delle differenze divise

Per determinare i coefficienti bi, i = 0, ..., n in (5.22), possiamo implementare l’algoritmo
delle differenze divise nel codice Matlab seguente:

function [b]=DiffDivise(x,y)

%--

% Algoritmo delle differenze divise

%--

% Inputs

% x: vettore dei punti di interpolazione,

% y: vettore dei valori della funzione.

% Output

% b: vettore delle differenze divise b=[b_1,....b_n]

%---

n=length(x);

b=y;

for i=2:n,

for j=2:i,

b(i)=(b(i)-b(j-1))/(x(i)-x(j-1));

end;

end;

5.4. POLINOMIO INTERPOLANTE IN FORMA DI NEWTON 139

Il valore del polinomio pn in x, si determina con lo schema di Hörner:

p = bn; (5.23)

p = (x− xi)p+ bi, i = n− 1, ..., 0

Per quanto riguarda l’errore di interpolazione, vale la formula seguente:

En(f) = f(x)− pf
n(x) =

(
n+1∏

i=1

(x− xi)

)

f (n+1)(ξ)

(n+ 1)!
. (5.24)

Infatti,

Proposizione 10. Se f ∈ Cn+1(I), allora

f (n+1)(ξ)

(n+ 1)!
= f [x0, ..., xn, x] , (5.25)

con ξ punto che appartiene al più piccolo intervallo che contiene x0, . . . , xn, x.

Dim. Dati x0, . . . , xn e i valori corrispondenti della funzione f(xi), i = 0, ..., n, indichi-

amo con pf
n il polinomio d’interpolazione. Preso poi un punto x, diverso dai punti xi, che

potremo considerare come un altro punto xn+1 d’interpolazione, costruiamo pf
n+1. Grazie

alla formula di Newton dell’interpolante

pf
n+1(t) = pf

n(t) + (t− x0) · · · (t− xn)f [x0, . . . , xn, t] .

Per t = x, pf
n+1(x) = f(x), da cui

En(x) = f(x)− pf
n(x) = pf

n+1(x)− pf
n(x) (5.26)

= (x− x0) · · · (x− xn)f [x0, . . . , xn, x]

= ωn+1(x)f [x0, . . . , xn, x] .

Essendo f ∈ Cn+1(I) e ricordando che

En(x) = (x− x0) · · · (x− xn)
f (n+1)(ξ)

(n+ 1)!
, (5.27)

dal confronto di (5.27) e (5.27) si conclude. �

⋄⋄

5.4.2 Formula di Hermite-Genocchi per le differenze divise

Questa formula è interessante perchè permette di estendere la forma di Newton dell’interpolante
anche al caso di punti ripetuti.

140 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

Teorema 14. Siano dati n + 1 punti distinti x0, x1, ..., xn e sia f ∈ Cn(I) con I il più
piccolo intervallo che li contiene. Allora

f [x0, x1..., xn] =

∫

τn

f (n)(x0t0 ++ xntn)dt1dt2...dtn , (5.28)

dove t0 = 1− (t1 + t2 + ...+ tn) e l’integrale è fatto sul simplesso

τn =

{

(t1, t2, ..., tn) : ti ≥ 0,

n∑

i=1

ti ≤ 1

}

.

Dim. Osserviamo che t0 ≥ 0 e
∑n

i=0 ti = 1.

La dimostrazione si fa per induzione su n.

1. Se n = 1, τ1 = [0, 1]. Allora l’equazione 5.28 diventa

∫ 1

0
f ′(t0x0 + t1x1)dt1 =

∫ 1

0
f ′(x0 + t1(x1 − x0))dt1

=
1

x1 − x0
f(x0 + t1(x1 − x0))|t1=1

t1=0

=
f(x1)− f(x0)

x1 − x0
= f [x0, x1] .

2. Nel caso n = 2, τ2 è il triangolo di vertici (0, 0), (1, 0), (0, 1).

∫

τ2

f ′′(t0x0 + t1x1 + t2x2)dt1dt2 =

=

∫ 1

0

∫ 1−t1

0
f ′′(x0 + t1(x1 − x0) + t2(x2 − x0))dt2dt1

=

∫ 1

0

1

x2 − x0
f ′(x0 + t1(x1 − x0) + t2(x2 − x0))|t2=1−t1

t2=0 dt1

=
1

x2 − x0

{∫ 1

0
f ′(x2 + t1(x1 − x2))dt1−

−
∫ 1

0
f ′(x0 + t1(x1 − x0))dt1

}

=
1

x2 − x0
{f [x1, x2]− f [x0, x1]} = f [x0, x1, x2] .

3. Nel caso generale si integrerà prima rispetto ad una variabile per ridurre la dimensione,
quindi per ipotesi induttiva si conclude.

Questo conclude la dimostrazione.

5.4. POLINOMIO INTERPOLANTE IN FORMA DI NEWTON 141

Nel caso in cui tutti punti ”collassano” in x0 (ciò ha senso poichè la funzione f [x0, ..., xn]
è continua nelle sue variabili) usando le proprietà delle differenze divise avremo

f [x0, ..., x0
︸ ︷︷ ︸

n+1 volte

] =

∫

τn

f (n)(x0)dt1 · · · dtn = f (n)(x0) · V oln(τn)

ove V oln(τn) indica il volume n-dimesionale del simplesso τn. Ora, ricordando la relazione

V oln(τn) =
1

n!

si ottiene la formula

f [x0, ..., x0
︸ ︷︷ ︸

n+1 volte

] =
f (n)(x0)

n!
. (5.29)

Esempio 35. Se di una funzione f(x) si conoscono il valore in un punto x0 e i valori
delle derivate fino all’ordine k in x0, la tabella delle differenze divise è la Tabella 5.2. dove

x0 f [x0] f [x0, x0] → f [x0, x0, x0] . . . f [x0, . . . , x0
︸ ︷︷ ︸

k+1 volte

]

x0 f [x0] f [x0, x0] ր
...

...
...

...
...

... f [x0, x0, x0]
x0 f [x0] f [x0, x0]

Tabella 5.2: Tabella delle differenze divise per un punto ripetuto k + 1 volte

f [x0, x0] = f ′(x0), f [x0, x0, x0] =
f ′′(x0)

2
e f [x0, . . . , x0

︸ ︷︷ ︸

k+1 volte

] =
f (k)(x0)

k!
. In questo caso quindi

il polinomio d’interpolazione in forma Newton coinciderà con la formula di Taylor.

5.4.3 Interpolazione di Hermite

Il polinomio osculatore di Hermite (dal latino, osculare che significa baciare) è quel polinomio
p2n+1(x), di grado 2n+1 costruito usando n+1 distinti xi, i = 0, ..., n che soddisfa le 2n+2
condizioni

p2n+1(xi) = f(xi), p′2n+1(xi) = f ′(xi) , i = 0, . . . , n . (5.30)

In forma di Lagrange, il polinomio osculatore di Hermite si scrive come segue:

p2n+1(x) =

n∑

i=0

ui(x)f(xi) +

n∑

i=0

vi(x)f
′(xi) (5.31)

142 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

dove i polinomi ui(x) e vi(x) sono funzioni dei polinomi elementari di Lagrange, ovvero

ui(x) = [1− l′i(xi)(x− xi)]l
2
i (x), (5.32)

vi(x) = (x− xi)l
2
i (x) . (5.33)

È facile verificare che i polinomi ui(x) e vi(x) hanno grado 2n + 1 e per essi valgono le
condizioni

ui(xk) = δi,k,

vi(xk) = 0, u′i(xk) = 0, ∀ k
v′i(xk) = δi,k .

Ne segue che il polinomio (5.31) ha grado ≤ 2n+1 e soddisfa le condizioni d’interpolazione
(5.30).

Il polimomio (5.31) si può costruire anche in forma di Newton mediante la seguente
tabella delle differenze divise: dove f [xi, xi] = f ′(xi), i = 0, ..., n. Per gli aspetti implemen-

x0 f [x0]
f [x0, x0]

x0 f [x0] f [x0, x0, x1]

f [x0, x1]
. . .

x1 f [x1] f [x0, x1, x1]
f [x1, x1]

x1 f [x1]
...

... f [x0, x0, . . . , xn, xn]

...
...

...
... f [x0, x0, xn]

f [xn−1, xn]
xn f [xn] f [x0, xn, xn]

f [xn, xn]
xn f [xn]

Tabella 5.3: Tabella delle differenze divise per l’interpolazione di Hermite

tativi del polinomio di Hermite in forma di Newton, rimandiamo all’Esercizio 52.

Possiamo anche estendere l’errore d’interpolazione (5.9) o (5.24) al caso del polinomio
costruito su nodi non necessariamente distinti. Vale infatti il seguente

Teorema 15. Se f(x) ∈ Cn+1[a, b], esiste un punto ξ = ξ(x) ∈ (a, b) tale che

f [x0, x1, . . . , xn, x] =
f (n+1)(ξ)

(n+ 1)!
. (5.34)

5.4. POLINOMIO INTERPOLANTE IN FORMA DI NEWTON 143

Se f(x) ∈ Cn+2[a, b], esiste un punto η = η(x) ∈ (a, b) tale che

d

dx
f [x0, x1, . . . , xn, x] =

f (n+2)(η)

(n+ 2)!
. (5.35)

Infine, se i punti x0, . . . , xn, x sono tutti coincidenti allora ξ = η = x.

Dim. Applicando il teorema della media integrale alla funzione f [x0, x1, . . . , xn, x]
espressa mediante la formula di Hermite-Genocchi, otteniamo

f [x0, x1, . . . , xn, x] = f (n+1)(ξ)

∫ 1

0
dt1

∫ t1

0
dt2 . . .

∫ tn

0
dtn

si ottiene immediatamente la (5.34). La (5.35) si ottiene in maniera analoga osservando che

d

dx
f [x0, x1, . . . , xn, x] = f [x0, x1, . . . , xn, x, x] .

Questo conclude la dimostrazione. �

5.4.4 Algoritmo iterativo di Neville

Dati a, b, estremi dell’intervallo di interpolazione, n il numero dei nodi di interpolazione,
x,y array di dimensione n che contengono i nodi equispaziati e il valore della funzione
f = (f(x0), . . . , f(xn)) nei nodi equispaziati xi = a + (b − a) i

n , i = 0, ..., n. Posto yi =
f(xi), indichiamo con x ∈ [a, b] il punto su cui valutare il polinomio interpolante allora il
polinomio interpolante in x è ottenuto con la seguente formula iterativa, nota come schema
d’interpolazione di Neville:

pi = yi, i = 0, . . . , n;

allora

p0,...,k(x) =
p1,...,k(x)(x− x0)− p0,...,k−1(x)(x− xk)

xk − x0
(5.36)

è il polinomio d’interpolazione su x0, . . . , xk. Pertanto alla fine, p0,1,...,n(x) rappresenterà
il valore in x del polinomio d’interpolazione di grado n costruito mediante l’uso dei punti
(xi, yi).

Il vantaggio di questa tecnica, è che il polinomio d’interpolazione viene costruito come
una successione di polinomi di grado crescente, per cui il procedimento si arresta quando è
stata raggiunta l’approssimazione richiesta.

In Tabella 5.4 riportiamo lo schema triangolare di Neville nel caso cubico. Come si può
facilmente verificare, i polinomi della prima riga p0,...,s, s = 0, . . . , 3 hanno grado crescente
da 0 a 3.

144 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

x0 y0 p0,1(x) p0,1,2(x) p0,1,2,3(x)
x1 y1 p1,2(x) p1,2,3(x)
x2 y2 p2,3(x)
x3 y3

Tabella 5.4: Schema di Neville, per n = 3.

Esercizio 47. Si valuti il polinomio di Neville di grado n− 1, interpolante la funzione

f(x) =
sin(x)

(1 + ex)
, x ∈ [0, 2π],

su alcuni punti dell’intervallo e si determini anche l’errore (con segno) nei punti d’interpolante.
Fare quindi il grafico della funzione e dell’interpolante di Neville, nonchè quello dell’errore
nei nodi di interpolazione.

5.5 Interpolazione polinomiale a tratti: cenni

L’ idea sottostante a questa tecnica è di limitare il grado del polinomio di interpolazione
aumentando la flessibilità dell’interpolante.

Si parte da una suddivisione ∆ =
⋃n

i=1 Ii, dove Ii è il generico sottointervallo in cui si è
suddiviso lintervallo [a, b], e si opera un’approssimazione polinomiale di grado basso su ogni
sottointervallo Ii. Rispetto allinterpolazione (globale) su tutto l’intervallo, pur perdendo in
regolarità, questa tecnica migliora la descrizione della funzione da approssimare.

È assai diffuso l’uso dell’ interpolazione lineare a tratti che genera una funzione che si
presenta come un segmento di retta su ogni sottointervallo e come una spezzata sull’intero
intervallo dove risulta continua ma non necessariamente derivabile. Dati i punti x0, . . . , xn

(non necessarimente equispaziati) di I = [x0, xn] e i valori f(xi), i = 0, . . . , n, indichiamo
con Ii = [xi, xi+1] l’i-esimo intervallino. Su ognuno degli n sotto-intervalli Ii, i = 0, ..., n−1,
iniziamo con l’approssimare f con un polinomio lineare a tratti. Ovvero, su Ii, costruiamo

pf
1,hi

(x) = f(xi) + (x− xi)
f(xi+1)− f(xi)

xi+1 − xi
, (5.37)

dove l’indice hi in pf
1,hi

ci ricorda che gli intervallini non hanno tutti la stessa ampiezza.

Posto H = max0≤i≤n−1 hi, vale il seguente risultato.

Proposizione 11. Se f ∈ C2(I), allora

max
x∈I
|f(x)− pf

1,H(x)| ≤ H2

8
max
x∈I
|f ′′(x)| . (5.38)

5.5. INTERPOLAZIONE POLINOMIALE A TRATTI: CENNI 145

La proposizione dice che se f è sufficientemente regolare allora il polinomio lineare e
continuo a tratti converge alla funzione con H → 0.

Facciamo notare come le funzioni fplot e plot di Matlab costruiscano proprio l’interpolante
lineare a tratti.

Esempio 36. Consideriamo i valori della funzione sin nei punti equispaziati xi = i, i =
0, ..., 10. Usando le seguenti istruzioni Matlab, facciamo vedere come plot produca l’interpolante
lineare a tratti (vedasi Figura 5.6).

x=1:10; y=sin(x);

xx=0:0.01:10; yy=sin(xx);

plot(x,y,’-’,xx,yy,’:r’)

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figura 5.6: Funzione seno (linea punteggiata) e la sua interpolante lineare a tratti (linea
continua)

La generalizzazione dell’interpolante lineare a tratti è l’interpolazione polinomiale (con-
tinua) a tratti.

Definizione 21. s è un polinomio continuo a tratti in [a,b] di grado k se s ∈ C[a, b] e se
esistono dei punti ξi, i = 0, ..., n a = ξ0 < ξ1 < · · · < ξn = b cosicché s è un polinomio di
grado ≤ k su ciascun intervallino [ξi, ξi+1], i = 0, ..., n − 1 .

Nella sezione che segue introdurreremo brevemente le funzioni splines polinomiali che
rappresentano tuttora uno degli strumenti più flessibili, sia in termini di ordine di ap-
prossimazione che di efficienza computazionale, per l’approssimazione sia di funzioni che di

146 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

dati. In pratica le funzioni splines sono un ottimo compresso per chi desidera un strumento
matematico sufficientemente duttile e preciso per approssimare e/o interpolare.

5.6 Esercizi proposti

Esercizio 48. (Appello del 26/9/05). Si consideri la funzione

f(x) = log(2 + x) , x ∈ [−1, 1] .

Indichiamo con pn il polinomio di interpolazione di grado ≤ n costruito usando i punti

xk = cos

(
2k + 1

2n
π

)

, k = 0, 1, ..., n

noti come punti di Chebysehv. Sotto tale ipotesi, è noto che l’errore di interpolazione si può
maggiorare come segue:

‖f − pn‖∞ ≤
‖f (n+1)‖∞
(n+ 1)!

2−n . (5.39)

1. Nel caso n = 4, si determini una maggiorazione dell’errore usando la (5.39).

2. Nel caso in cui il polinomio di interpolazione, sia invece scrivibile in forma in Taylor
come

tn(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)
2!

x2 + · · ·+ f (n)(0)

n!
xn , (5.40)

l’errore nel generico punto x si esprime come

f(x)− tn(x) =
f (n+1)(ξ)

(n+ 1)!
xn+1 , −1 < ξ < 1 .

Determinare una maggiorazione di

‖f − t4‖∞ = max
−1≤x≤1

|f(x)− t4(x)| ,

e confrontare il risultato con quello ottenuto nel caso dei punti di Chebyshev.

3. Facoltativo: Plottare in un unico grafico, f(x), p4(x) e t4(x).

Esercizio 49. (Appello del 23/3/06). Si consideri la funzione f(x) = x+ex+
20

1 + x2
−5

ristretta all’intervallo [−2, 2].

1. Determinare il polinomio d’interpolazione di grado 5 in forma di Newton sui nodi
equispaziati xk = −2 + kh, k = 0, ..., 5.

2. Calcolare l’errore d’interpolazione in un generico punto x ∈ (−2, 2).

5.6. ESERCIZI PROPOSTI 147

3. Ripetere i calcoli usando i punti di Chebyshev.

Esercizio 50. Si consideri la funzione f(x) =
20

1 + log(x2)
−5 sin(ex) ristretta all’intervallo

[1, 2]. Determinare l’unico polinomio (d’interpolazione) di secondo grado, p2(x) = a0+a1x+
a2x

2 tale che

p2(0) = f(0), p2(1) = f(1),

∫ 2

2
p2(x)dx =

∫ 2

1
f(x)dx .

Per il calcolo dell’integrale della funzione usare la funzione quadl di Matlab, con tolleranza
di 1.e− 6. Fare quindi il grafico della funzione, del polinomio e di ‖f − p2‖∞.

Esercizio 51. (Appello del 20/7/07). Si consideri la funzione f(x) = cos(x3) (x −
2π) e−x, x ∈ [0, π]. Sperimentalmente si determini il grado del polinomio d’interpolazione,
costruito sui nodi di Chebsyhev in [0, π], che approssima f(x) in norma infinito a meno di
tol = 1.e− 4.

Esercizio 52. È noto che se f ∈ C1[a, b] e x0, ..., xn sono n + 1 punti distinti esiste un
unico polinomio di grado 2n + 1 che interpola f(x) e f ′(x) nei punti xi. Tale polinomio è
quello di Hermite

H2n+1(x) =
n∑

i=0

[

f(xi)Hn,i(x) + f ′(xi)Ĥn,i(x)
]

, (5.41)

con Hn,i(x) e Ĥn,i(x) polinomi di Hermite di grado n, definiti come

Hn,i(x) =
[
1− 2(x− xi)L

′
n,i(xi)

]
L2

n,i(x)

Ĥn,i(x) = (x− xi)L
2
n,i(x)

ove Ln,i(x) è l’i-esimo polinomio di Lagrange di grado n.

Implementare (5.41) è computazionalmente costoso. Si può alternativamente usare lo
schema di interpolazione nella forma di Newton nel seguente modo. Si considerano i punti

{z0, z1, z2, z3, ..., z2n+1} = {x0, x0, x1, x1, ..., xn, xn}

e i corrispondenti valori della funzione f e della sua derivata prima f ′ nei punti, cosicchè
il polinomio H2n+1(x) si può scrivere nella forma equivalente

H2n+1(x) = q0,0 + q1,1(x− x0) + q2,2(x− x0)
2 + q3,3(x− x0)

2(x− x1) (5.42)

+ q4,4(x− x0)
2(x− x1)

2 +

+ · · ·+ q2n+1,2n+1(x− x0)
2(x− x1)

2 · · · (x− xn−1)
2(x− xn) .

Il problema è quindi ricondotto a determinare i coefficienti qi,i, come per lo schema di
interpolazione di Newton. In pratica q0,0 = f [z0], q1,1 = f [z0, z1] ecc..

148 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

Sia Algoritmo 1 lo schema alle differenze divise che calcola i suddetti coefficienti,
restituendo l’array (q0,0, q1,1,, q2n+1,2n+1).

Scrivere un programma Matlab che implementa l’Algoritmo 1 e costruisce il polinomio
di interpolazione di Hermite mediante (5.42). Si consideri f(x) = sin(ex − 2), x ∈ [0, 2].

Produrre anche il grafico di f e del polinomio interpolante.

Qual è il massimo errore tra la funzione e l’interpolante? L’errore ha analogie con
l’errore d’interpolazione classico (solo sui dati)?

5.7. FUNZIONI SPLINE 149

5.7 Funzioni Spline

Per avere un quadro completo dell’argomento, che richiederebbe una trattazione molto più
estesa, rinviamo il lettore interessato alla fondamentale monografia di Carl de Boor [6]
oppure al più recente e compatto volume ad opera dell’autore [7].

Definizione 22. Si dice che s è una funzione spline di grado k se oltre ad essere un
polinomio di grado k è Ck−1[a, b]. In tal caso i punti xi, i = 1, ..., n − 1 vengono detti nodi

(interni).

Notazione: S(k; x0, x1, ..., xn) è lo spazio lineare delle splines di grado k.

Una spline si può scrivere

s(x) =
k∑

j=0

cjx
j +

1

k!

n−1∑

j=1

dj(x− xj)
k
+, x ∈ [a, b]. (5.43)

La funzione (x− xj)
k
+ si chiama potenza troncata ed è definita come segue:

(x− xj)
k
+ =

{
(x− xj)

k x > xj

0 x ≤ xj
.

In (5.43) ci sono k + n parametri (cj e dj), ciò implica che lo spazio delle splines di grado
k ha dimensione n+ k.

Esempio 37. Le splines cubiche, che sono anche le più usate, si ottengono per k = 3. Il
comando Matlab/Octave spline costruisce proprio splines cubiche. Vedremo nel paragrafo
?? come costruire splines cubiche interpolanti imponendo diverse condizioni sui nodi di
”bordo”.

Ordine di approssimazione: se f ∈ Ck+1[a, b] e se n (numero nodi) è variabile, allora si
prova che

min
s∈S(k;ξ0,ξ1,...,ξn)

‖f − s‖ = O(hk+1)

con h = max
1≤0≤n−1

|xi+1 − xi|.

5.7.1 B-Splines

Sia {x1, x2, ..., xn} (o {xi}+∞
i=−∞) una sequenza finita (o infinita) crescente di numeri reali

(xi < xi+1), detti nodi che per ora assumiamo distinti.

150 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

Definizione 23. La i-esima B-Spline di ordine k, che si indica con B(x;xi, ..., xi+k) (grado
k − 1) è la k-esima differenza divisa della potenza troncata p(x; t) = (x− t)k−1

+

B(x;xi, ..., xi+k) = (xi+k − xi)p[xi, ..., xi+k](x) ,

dove con p[·](x) si è la k-esima differenza divisa costruita sui nodi xi, xi+1, ..., xi+k di p(x; ·)
vista come funzione di x.

Esercizio. Per capire meglio questa definizione, suggeriamo di costruirsi le B-splines
lineari, ovvero per k = 2.

Proposizione 12. Alcune proprietà delle B-Splines.

• Bi,k(x) = 0 se x 6∈ (xi, xi+k].

• Bi,k > 0 nel suo supporto [xi, xi+k)

• ∀x ∈ R,
∑∞

i=−∞Bi,k(x) = 1 o equivalentemente
∫

R

Bi,k(x)dx = 1 .

Le B-splines sono quindi a supporto compatto e positive e formano partizione dell’unità.

Relazione di ricorrenza. Si basa sulla regola di Steffensen per la differenza divisa
del prodotto di due funzioni f e g.

Proposizione 13. Regola di Steffensen
Siano f e g due funzioni sufficientemente differenziabili e i punti x1 ≤ ... ≤ xn+1 siano
dati. Allora

(f · g)[x1, ..., xn+1] =

n+1∑

j=1

f [x1, ..., xj]g[xj , ..., xn+1] (5.44)

Pertanto, se riscriviamo la funzione potenza p(x; t) = (x − t)k+ come il prodotto delle

funzioni f(x) = (x− t) e g(x) = (x − t)k−1
+ , possiamo applicare la regola di Steffensen per

ottenere la seguente relazione di ricorrenza (utile ai fini computazionali!) per le B-splines

Bi,l(x) =

(
xi − x
xi+l − xi

+ 1

)

Bi+1,l−1(x) +

(
x− xi

xi+l − xi

)

Bi,l−1(x) . (5.45)

dove l indica l’ordine (= grado +1), i l’indice di intervallo. La relazione si “innesca” a
partire da Bi,1(x) = 1 se x ∈ [ξi, ξi+1].

In Figura 5.7, sono rappresentate le B-splines di ordine 3. La suddivisione su cui sono
costruite ha il secondo nodo doppio e l’ultimo nodo con molteplicità pari 3. Vedremo nel
prossimo paragrafo che scegliendo i nodi multipli, le B-splines e di conseguenza la risultante
spline, diventano via via meno regolari. In particolare se il nodo ha molteplicità pari
all’ordine, la B-spline diventa discontinua, come in Fig. 5.7 nel caso della prima B-spline
(dall’alto) costruita sui nodi [4, 6, 6, 6]: infatti essa risulta discontinua in 6.

5.7. FUNZIONI SPLINE 151

function [y] = bspline(k,ind,x,p)

%---

% Questa funzione calcola la ind-esima B-spline

% di ordine k sul vettore dei nodi x nel punto p

%---

% continuita’ sull’estremo destro dell’intervallo

if(p == x(length(x)) & ind==(length(x)-k))

y=1; return

end

% valori iniziali per la relazione di ricorrenza

if k==1

if (x(ind) <= p & x(ind+1) > p)

y=1; return

else

y=0; return

end

end

% correzione per rimediare all’annullamento del denominatore

if (x(ind+k-1)-x(ind))==0

div1=0;

else

div1=(p-x(ind))/(x(ind+k-1)-x(ind));

end

% correzione per rimediare all’annullamento del denominatore

if (x(ind+k)-x(ind+1))== 0

div2=0;

else

div2=(x(ind+k)-p)/(x(ind+k)-x(ind+1));

end

% ricorrenza

y= div1 * bspline(k-1,ind,x,p) + div2 * bspline(k-1,ind+1,x,p);

5.7.2 Interpolazione con funzioni spline

Sia f(x) una funzione nota sui punti t1, t2, ..., tm. Si desideri interpolarla per mezzo di
una spline S(x) di ordine n (grado n-1) con prescritti nodi interni x1, ..., xN−1. Inoltre
t1 < t2 < ... < tm e

t1 < x1 < x2 < ... < xN−1 < tm .

I parametri da determinare sono

m = N + n− 1

152 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

All quadratic B−splines for the knot sequence [0 1 1 3 4 6 6 6]

Figura 5.7: Bsplines di ordine 3 (quadratiche).

che verranno determinati dalle condizioni d’interpolazione

S(tj) = f(tj), j = 1, ...,m . (∗∗)
Per l’unicità della soluzione è necessario che m = N + n− 1 .

I. J. Schoenberg e A. Whitney nel 1953 (cfr. C. de Boor:I.J. Schoenberg: Selected
Papers, Vol 2. pag. 342-344) hanno dimostrato che esiste un’unica soluzione del problema
d’interpolazione se e solo se i nodi soddisfano le relazioni

t1 < x1 < tn+1

t2 < x2 < tn+2
...

...
tN−1 < xN−1 < tm

(5.46)

Osservazione. Non sono richieste informazioni circa le derivate finali. In tal caso il prob-
lema d’interpolazione è trattato come un normale problema di interpolazione polinomiale.

Possiamo scrivere S(x) =
∑m

i=1 ciBi(x) , dove Bi sono B-spline di ordine n con nodi
interni la sequenza x1, ..., xN−1. Perciò (**) diventa

m∑

i=1

ciBi(tj) = f(tj), j = 1, ...,m . (5.47)

ovvero, in forma matriciale, Ac = f

Costruiamo le B-spline Bi, i = 1, ...,m. Aggiungiamo dapprima 2n nodi addizionali:
x1−n, ..., x0 ≤ t1; x1−n < x2−n < · · · < x0 .

tm ≥ xN , xN+1, ..., xN+n−1;

xN > xN+1 > · · · > xN+n−1 .

5.7. FUNZIONI SPLINE 153

Nota. I 2n nodi addizionali possono essere presi coincidenti (come dimostrato da
Carrasso e Laurent in Information Processing 68, IFIP Congress, Edinburgh 1968, Ed.
A.J.H Morell, pp. 86-89).

Per la proprietà delle B-spline di avere supporto minimo cioè

Bi,n(x) =

> 0 xi−n ≤ x < xi

ր
ց

= 0 altrimenti

si ha che la matrice A ha al più n elementi diversi da zero per ogni riga. Non solo, tale
matrice è anche stocastica (somma x righe = somma x colonne = 1)

sin(x)*cos((x^3)/3)

spline cub.

punti di int.

nodi x Bsplines

0 0.5 1 1.5 2 2.5 3 3.5
−1

0

1

sin(x)*cos((x^3)/3)

spline cub.

punti di int.

nodi x Bsplines

0 0.5 1 1.5 2 2.5 3 3.5
−1

0

1

Figura 5.8: Spline cubica interpolante su nodi ”ad hoc” a (sx) e nodi equispaziati (dx)

Esempio 38. N = 6, n = 4 (spline cubiche) con nodi

a = t1 < t2 < x1 < t3 < x2 < x3 < t4 < t5 < t6 < x4 < t7 < t8 <

< x5 < t9 = b .

La matrice A (N + n− 1), 9× 9 sarà :

A =

















×
× × × ×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

×

















154 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

Interpolazione con splines cubiche

Si consideri una funzione f(x) in un intervallo I = [a, b] della retta reale. Si prenda una
partizione di I (non necessariamente equispaziata)

a = x1 < x2 < ... < xn = b .

Facciamo vedere che il problema d’ interpolazione con una spline cubica è equivalente
alla soluzione di un sistema lineare A·m = d con A matrice tridiagonale simmetrica, definita
positiva e diagonalmente dominante.

Infatti, su ogni intervallino Ii = [xi, xi+1], i = 1, ..., n − 1 la spline è un polinomio
cubico, ovvero si(x) = a0,i + a1,ix + a2,ix

2 + a3,ix
3. Per determinare univocamente la mia

spline su I avremo bisogno di 4(n−1) condizioni (tante quanti i coefficienti incogniti). Ora,
le condizioni d’interpolazione negli n punti xi

si(xi) = f(xi), si(xi+1) = f(xi+1), i = 1, ..., n , (5.48)

vanno a sommarsi alle 3(n− 2) condizioni di continuità nei nodi interni (s3 deve essere C2)

s′i(xi) = s′i+1(xi) , i = 2, ..., n − 1 , (5.49)

s′′i (xi) = s′′i+1(xi) , i = 2, ..., n − 1 . (5.50)

In definitiva avremo n+3(n−2) = 4n−6. Restano due condizioni da assegnare per rendere
univoca la determinazione dei coefficienti incogniti. Tra le possibili scelte elenchiamo le più
usate

• s′′1(x1) = s′′n(xn) = 0, in tal caso la spline viene detta naturale;

• nel caso in cui siano noti i valori f ′(x1) e f ′(xn) s’imporranno le condizioni s′1(x1) =
f ′(x1) e s′n(xn) = f ′(xn), in tal caso la spline viene detta vincolata o completa;

• nel caso in cui siano f(x) sia periodica di periodo xn−x1 = b−a, ovvero f(x1) = f(xn)
s’imporranno le condizioni s′1(x1) = s′n(xn) e s′′1(x1) = s′′n(xn), in tal caso la spline
viene detta periodica.

Indichiamo con m il vettore dei momenti (cfr. eq. (5.50))

mi = s′′i (xi), i = 1, ..., n − 1

mn = s′′n−1(xn) .

Questa scelta riduce il numero di equazioni necessarie a determinare la spline. Infatti,
s′′i (x), x ∈ [xi, xi−1] è un polinomio di grado al più 1, poiché

s′′i (x) = mi+1
x− xi

hi
−mi

x− xi+1

hi
(5.51)

5.7. FUNZIONI SPLINE 155

dove hi = xi+1 − xi. Integrando due volte si ottiene

s′i(x) = mi+1
(x− xi)

2

2hi
−mi

(x− xi+1)
2

2hi
+ αi , (5.52)

si(x) = mi+1
(x− xi)

3

6hi
−mi

(x− xi+1)
3

6hi
+ αi(x− xi) + βi

e le costanti αi e βi vengono determinate imponendo le condizioni d’interpolazione nei nodi.
Ovvero

mi
h2

i

6
+ βi = f(xi)

mi+1
h2

i

6
+ αihi + βi = f(xi+1) .

Da cui ricaveremo βi, αi. In definitiva restano da determinare i momenti mi, i = 1, ..., n.
Dalle (5.52) imponendo la continuità della derivata prima nei nodi interni e sostituendo i
valori di αi e αi−1 si ottiene il sistema tridiagonale di ordine n−2 nelle incognite m1, . . . ,mn

hi−1

6
mi−1 +

hi−1 + hi

6
mi +

hi

6
mi+1 =

f(xi+1)− f(xi)

hi
− f(xi)− f(xi−1)

hi−1
, i = 2, ..., n − 1 ,

(5.53)
I valori di m1 e mn si determineranno imponendo le condizioni aggiuntive (5.48)-(5.50).

Facciamo vedere come determinare la spline cubica vincolata, ovvero la spline cubica per
la quale oltre ai valori della funzione f(x) nei nodi devono essere soddisfatte le condizioni
s′(a) = f ′(a) e s′(b) = f ′(b).

Per facilitare l’implementazione siano x il vettore dei nodi della partizione, y il vettorre
dei valori della funzione, yi = f(xi), i siano dati i valori aggiuntivi y′1 = f ′(a) e y′n = f ′(b).
Pertanto l’algoritmo dovrà eseguire i seguenti passi.

1. Costruire la matrice A e il vettore d come segue.

• Costruire il vettore h, tale che hi = xi+1 − xi.

• Costruire il vettore d, tale che d1 = y2−y1

h1
− y′1, di = yi+1−yi

hi
− yi−yi−1

hi−1
, i =

2, ..., n − 1 e dn = y′n − yn−yn−1

hn−1
.

• Costruire la matrice A, tridiagonale simmetrica, tale che

A1,1 =
h1

3
, An,n =

hn−1

3

e

Ai,i+1 =
hi

6
, Ai,i−1 =

hi−1

6
, Ai,i =

(hi + hi−1)

3
, i = 2, ..., n − 1 .

Infine A1,2 = A2,1 e An,n−1 = An−1,n.

156 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

2. Risolvere il sistema A ·m = d.

3. Visualizzare i punti (xi, yi), i = 1, ..., n e la spline interpolante definita nell’intervallo
xi ≤ x < xi+1, i = 1, ..., n − 1 come segue:

s(x) =
(xi+1 − x)3mi + (x− xi)

3mi+1

6hi
+ C (xi+1 − x) +D (x− xi)

dove le costanti C,D sono date dalle formule seguenti: C = yi

hi
− himi

6 e D = yi+1

hi
−

himi+1

6 .

Infine per la ricerca dell’intervallo a cui appartiene il generico punto x, si può fare una ricerca
binaria o sequenziale. Il codice Matlab/Octave per la ricerca sequenziale è il seguente

function j=search_int(x,d);

%---

% Cerca l’indice j dell’intervallo a cui appartiene

% il punto x su cui valutare la spline

%---

for i=1:length(d)-1,

if(x >= d(i) & x < d(i+1))

j=i;

break;

end;

if(x >= d(length(d)-1))

j=length(d)-1;

break;

end;

end;

5.7.3 Teorema del campionamento di Shannon e smoothing spline

Dato un segnale limitato in banda s(x) esso può essere ricostruito dai suoi campionamenti
(Nyquist rate) sk mediante l’uso della funzione sinc, ovvero ”sinus cardinalis”, sinc(x) =
sin(π x)

πx
(forma normalizzata) oppure sinc(x) =

sin(x)

x
(forma non normalizzata):

s(x) =
∑

k∈Z

sksinc(x− k) . (5.54)

Nota: sinc(0) = 1, sinc(k) = 0, k ∈ Z \ {0}. Nel caso discreto tale campionamento dà
stime poco accurate.

5.8. APPROSSIMAZIONE CON POLINOMI DI BERNSTEIN 157

In alternativa, si possono usare spline cardinali e relative B-splines cardinali.
B-spline cardinali di ordine n si ottengono facendo la convoluzione n + 1volte di β0(x) =
1, |x| < 1/2, β0(x) = 0.5, |x| = 1/2 e altrove 0. limn→∞ βn(x) = sinc(x).

s(x) =
∑

k∈Z

skβ
n(x− k) .

Tale scelta è più smooth e meno costosa computazionalmente.

Smoothing: è l’altro modo di fare data fitting con spline.

Problema 1. Siano dati i punti (xi, yi), i = 1, ..., n con yi = f(xi). Trovare la funzione f
che minimizza

n∑

i=1

(yi − f(xi))
2 + α

∫ xn

x1

(f (p)(x))2dx .

La risultante curva è un polinomio continuo a tratti di grado 2p − 1 Il primo termine
misura la vicinanza della funzione di fitting dai dati. Il secondo penalizza la curvatura della
funzione e α il collegamento tra i due termini. Se 0 < α <∞, Schoenberg provò che tale f
è la spline naturale di grado 2p− 1. Se α = 0, f=interpolante polinomiale;

Nota: i dati sono assunti del tipo segnale+rumore

yi = f(xi) + ǫi, ǫi ≈ N(0, σ2), i = 1, ..., n .

5.8 Approssimazione con polinomi di Bernstein

Si consideri l’intervallo [a, b] = [0, 1]. Sia inoltre k (grado) fissato. La base di B-spline sulla
sequenza di nodi

t0 = ... = tk = 0, tk+1 = ... = t2k+1 = 1 ,

Bi,k, i = 0, 1, ..., k sono polinomi di grado k su [0,1] che verificano la ricorrenza:

Bi,k(x) = xBi,k−1(x) + (1− x)Bi+1,k−1(x) , (5.55)

che è quella delle B-spline con le opportune modifiche. Sono detti polinomi di Bernstein di
grado k e si denotano con Bk

i (x) o βk
i (x).

Teorema 16. (Teorema di Weierstrass)
Sia f ∈ C[a, b]. Dato ǫ > 0 è sempre possibile trovare un polinomio pn(x) (di grado suffi-
cientemente grande) tale che

|f(x)− pn(x)| ≤ ǫ, ∀x ∈ [a, b] .

Definizione 24. Sia f definita su [0, 1]. Il polinomio di Bernstein di grado n associato
ad f è

Bn(f ;x) =
n∑

k=0

f(
k

n
)

(
n

k

)

xk(1− x)n−k .

158 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

0 0.5 1
0

0.5

1
Polinomi di Bernstein di grado 3

B_{0,3}

B_{1,3} B_{2,3}

B_{3,3}

Figura 5.9: Polinomi di Bernstein di grado 3

Nota: Bn(f ; 0) = f(0), Bn(f ; 1) = f(1) (“quasi” interpolante).

β
(n)
k =

(n
k

)
xk(1−x)n−k polinomi elementari di Bernstein. Circa la convergenza dell’approssimazione

di Bernstein, vale il seguente risultato

Teorema 17. (di Bernstein) Sia f(x) limitata in [0,1]. Allora

lim
n→∞

Bn(f ;x) = f(x)

su ogni punto x ∈ [0, 1] dove f è continua. Se inoltre f ∈ C[0, 1] allora il limite vale
uniformemente.

Come corollario a questo teorema possiamo ri-ottenere il Teorema di Weierstrass.

Corollario 1. Se f ∈ C[0, 1], allora per ogni ǫ > 0 e per n sufficientemente grande

|f(x)−Bn(f ;x)| ≤ ǫ ∀x ∈ [0, 1] .

Concludiamo con l’approssimazione con operatori di Bernstein

5.8.1 Curve Bspline e di Bézier

Sia t ∈ [α, β] ⊂ R il parametro di una curve parametrica e P0, P1, ..., Pn−1, n punti del
piano.

5.8. APPROSSIMAZIONE CON POLINOMI DI BERNSTEIN 159

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0
f(x)=x(x−1) su [0,1] e pol. di Bernstein di grado 20

f(x)=x(x−1)
Pol. di Bern.

Figura 5.10: Approssimazione di f(x) = x(x − 1), x ∈ [0, 1] con l’operatore di Bernstein
di grado 20

1. La curva Bspline di ordine m associata al poligono di controllo individuato dai
punti Pi è la curva

S(t) =

n−1∑

i=0

PiBi,m(t), t ∈ [α, β] .

2. La curva di Bézier di grado n− 1 associata al poligono di controllo individuato
dai punti Pi è la curva

S(t) =

n−1∑

i=0

PiB
n−1
i (t), t ∈ [α, β] .

Bn−1
i (t): polinomi di Bernstein.

Come per le funzioni spline, valgono gli stessi algoritmi di valutazione, derivazione
e “knot-insertion”. In particolare, l’algoritmo di valutazione viene chiamato di De
Casteljau. Le cose interessanti in questo “nuovo” contesto sono relative alle condizioni
di adiacenza tra curve di Bézier, che si esprimono come differenze finite “in avanti”
dei punti di controllo, agli algoritmi di suddivisione e al blossoming. Tali curve sono
però solo interpolanti agli estremi dell’intervallo (dei parametri) e approssimano il
“convex-hull” della curva. Esse sono invarianti per affinità, simmetriche e “variation-
diminishing”.

160 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

�
�

�
�

�
�

��
`````````̀

e
e

e
e

e
e

,
,

,
,

,
,,

HHHHHHHHHHHH

!!!!!!!

b

b

b

b

b

b

b

b

b

b

b30

b0

b1

b2

b3

b10

b11

b12

b20

b21

Figura 5.11: Costruzione di una curva di Bézier con l’algoritmo di De Casteljau.

5.8.2 Algoritmo di De Casteljau

I polinomi di Bernstein hanno trovato applicazione nella geometria computazionale
e in particolare modo nella descrizione di curve e superfici di Bézier, che sono funzioni
polinomiali che si ottengono con ripetute interpolazioni lineari.
Consideriamo in questa sezione un algoritmo per la costruzione di curve di Bézier noto
col nome di Algoritmo di De Casteljau (descritto ad esempio in [8]).

Algoritmo 6. Dato un insieme B = {b0, ..., bn} di punti del piano e t ∈ R (usualmente
t ∈ [0, 1]), il generico punto appartenente alla curva di Bézier si determina con i
seguenti passi:

1. {Passo di inizializzazione}
b
(0)
i (t) = bi (5.56)

2. {Passo iterativo}

b
(r)
i (t) = (1− t)b(r−1)

i (t) + tb
(r−1)
i+1 (t) r=1,...,n i=0,...,n−r (5.57)

La curva di Bézier calcolata con l’algoritmo 6 è quindi ottenuta con combinazioni
baricentriche ripetute. In figura 5.11 è descritto il funzionamento dell’algoritmo di De
Casteljau.

Proposizione 14. I punti b
(r)
i (t) possono essere espressi in termini di polinomi di

Bernstein Br
j di grado r risultando

b
(r)
i (t) =

r∑

j=0

bi+jB
r
j (t) i = 0, ..., n − r (5.58)

Dim. Induzione su r.

b
(r)
i (t)

(5.57)
= (1− t)b(r−1)

i (t) + tb
(r−1)
i+1 (t)

(5.58)
= (1− t)

i+r−1∑

j=i

bjB
r−1
j−1(t) + t

i+r∑

j=i

bjB
r−1
j−i−1(t)



5.8. APPROSSIMAZIONE CON POLINOMI DI BERNSTEIN 161

Usiamo il fatto che Br
j (t) = 0 se j 6∈ {0, ..., n}. Riordinando gli indici otteniamo

(1− t)
i+r∑

j=i

bjB
r−1
j−1(t) + t

i+r∑

j=i

bjB
r−1
j−i−1(t) =

i+r∑

j=i

bj







(1− t)Br−1
j−i (t) + tBr−1

j−i−1(t)
︸ ︷︷ ︸

Br
j−i

(t)







=

i+r∑

j=i

bjB
r
j−i(t)

Questo conclude la dimostrazione

Usando l’algoritmo di De Casteljau e la geometria ad esso sottostante possiamo de-
durre delle proprietà possedute dalle curve di Bézier. Di queste ricordiamo l’invarianza
per affinità, l’interpolazione nei punti estremi dell’intervallo di approssimazione, la
proprietà di convex hull5, la simmetria e come per i polinomi di Bernstein la caratter-
istica capacità mimica della curva.

Un codice per costruire una curva di Bézier è il seguente

function Bezier(Px,Py)

%--------------------------------------------------------

% Dati i vettori Px e Py la funzione costruisce la

% curva di Bezier approssimante il poligono di controllo

%--------------------------------------------------------

n=length(Px);

b=[Px; Py];

t=linspace(0,1,100);

for k=1:length(t)

for r=2:n,

for i=1:n-r+1,

b(:,i)=(1-t(k))*b(:,i)+t(k)*b(:,i+1);

end

end

bb(:,k)=b(:,1);

end

plot(Px,Py,’o-’, bb(1,:),bb(2,:),’.-’)

5Si definisce convex hull l’insieme formato dalle combinazioni convesse di un insieme di punti (di uno
spazio euclideo) detto il poligono di controllo.



162 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

5.9 Minimi quadrati discreti e decomposizione SVD

Dati m+1 punti (xi, yi), i = 0, ...,m, ci si propone di trovare un polinomio di grado n ≤ m
(possibilmente n≪ m) t.c. siano minime le deviazioni (errori) (p(xi)− fi)

2, i = 0, ...,m.

La soluzione si ricerca minimizzando il seguente funzionale quadratico rispetto a tutti
i polinomi p di grado m

E(p) =
m∑

i=0

(p(xi)− yi)
2 =

m∑

i=0

{a0 + a1xi + · · · + anx
n
i − yi}2 . (5.59)

Ma, in effetti, il funzionale E(p) dipendente dai coefficienti del polinomio p, cioè a0, ..., an,
pertanto potremo scrivere E(a0, ..., an) per indicarne tale dipendenza. Essendo un fun-
zionale quadratico, il minimo lo si ricerca tra i punti che annullano le derivate parziali
rispetto ai coefficienti. Vale infatti il seguente Teorema

Teorema 18. Condizione necessaria affinchè si raggiunga il minimo è che

∂E

∂aj
= 0, j = 0, ..., n . (5.60)

Questo da origine al sistema quadrato

m∑

i=0

{a0 + a1xi + · · · + anx
n
i − yi}xj

i = 0, j = 0, ..., n ,

che in forma matriciale diventa















m∑

i=0

x0
i

m∑

i=0

xi · · ·
m∑

i=0

xn
i

m∑

i=0

xi

m∑

i=0

x2
i · · ·

m∑

i=0

xn+1
i

...
...

...
m∑

i=0

xn
i

m∑

i=0

xn+1
i · · ·

m∑

i=0

x2n
i























a0

a1
...
an








=
















m∑

i=0

x0
i yi

m∑

i=0

xiyi

...
m∑

i=0

xn
i yi
















(5.61)

Il sistema (5.61) si può quindi scrivere nelle cosidette equazioni normali

Ba = f ,

con B matrice simmetrica (n + 1) × (n + 1), bij =
m∑

i=0

xi+j−2
i e z vettore colonna zi =

m∑

j=0

xi−1
j yj, oppure come vederemo più oltre ricorrendo alla decomposizione SV D della

matrice rettangolare A i cui elementi sono ai,j = xj−1
i , i = 1, ...,m + 1, j = 1, ..., n + 1.



5.9. MINIMI QUADRATI DISCRETI E DECOMPOSIZIONE SVD 163

Teorema 19. Se i punti x0, ..., xm sono distinti e n ≤ m allora esiste ed è unico il
polinomio p, deg(p) ≤ n tale che E(p) è minimo. I coefficienti a0, . . . , an sono determinati
dalla soluzione del sistema (5.61).

5.9.1 Equivalenza tra sistema dei minimi quadrati e decompozione SVD

Sia A una matrice rettangolarem×n, m ≥ n che rappresenta la matrice di un problema
di approssimazione dell’ insieme di valori X = {(xi, yi), i = 1, ...,m} con polinomi di grado
≤ n− 1, ovvero

n∑

i=1

aix
i−1
j = yj, j = 1, ...,m . (5.62)

Sappiamo che ATA è n × n simmetrica e semidefinita positiva. Usando, ad esempio, il
metodo di Jacobi per il calcolo di tutti gli autovalori di ATA possiamo determinare una
matrice ortogonale U e una matrice diagonale D tale che

UT (ATA)U = D . (5.63)

Ora, essendo D = diag(λ1, . . . , λn), le cui componenti sono gli autovalori di ATA in ordine
decrescente, se qualche λi risultasse un numero negativo (piccolo), lo si può considerare
zero, poiché gli autovalori di ATA sono tutti positivi a meno di errori di arrotondamento
dovuti al metodo di calcolo (premoliplicazione di A per la sua trasposta) e alla precisone
usata.

Da (5.63), posto B = AU (m× n), si ha che

BTB = D . (5.64)

Il che implica che le colonne di B sono ortogonali.

Usando invece la fattorizzazione QR della matrice rettangolare B, determineremo una
matrice ortogonale V tale che

V TB = R (5.65)

con R che è zero sotto la diagonale principale. Inoltre, la matrice R è tale che

RTR = BTV TV B = BTB = D ;

Questo fatto ci suggerisce che le colonne di R sono ortogonali. Inoltre, se per qualche i si
ha λi = 0 allora è facile verificare che la corrispondente colonna di R sarà zero.

Poiché R è triangolare superiore ed è ortogonale, allora essa risulta essere zero anche
sopra la diagonale principale. In definitiva R è diagonale ed ha la stessa forma della matrice
F della decomposizione SVD di A (ricordiamo che V TAU = F ) cioè

R =








µ1 0 0 0 0
0 µ2 0 0 0
...

. . .

0 · · · 0 µn








(5.66)



164 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

Ora avremo che R = F con µi =
√
λi.

In (5.65), essendo B = AU , si ha che la decomposizione SVD richiesta è:

V TAU = R .

1. Vantaggio: Semplicità di implementazione del metodo, una volta risolto il problema
della ricerca degli autovalori di ATA.

2. Svantaggio: Si deve fare il prodotto ATA che come noto può portare ad una perdita
di informazioni ed ad un aumento del numero di condizionamento di A.

Data Fitting. Si vuole determinare la funzione che approssima, nel senso dei minimi
quadrati i punti {(xi, yi), 1 ≤ i ≤ m}, con un polinomio cubico p3(x) = a1 + a2x+ a3x

2 +
a4x

3. Questo è quello che si chiama “data fitting”.

Per determinare i coefficienti ai, i = 1, ..., 4 minimizzeremo l’errore quadratico medio

E(a1, a2, a3, a4) =




1

m

m∑

j=1

(yj − p3(xj))
2





1
2

.

Osserviamo che minimizzare E o E2 è la stessa cosa. Ora, poichè E2 è una funzione convessa,
il minimo lo ricercheremo chiedendo che ∂E2

∂ai
= 0, i = 1, 2, 3, 4. Ciò dà luogo ad un sistema

lineare Aa = y con A, m× 4 e i vettori a, y che sono 4× 1 e m× 1, rispettivamente.

Vediamo il tutto in un caso concreto.

Si considerino i punti:

t=0:.05:1.0;

y=[.486; .866; .944;

1.144; 1.103; 1.202;

1.166; 1.191; 1.124;

1.095; 1.122; 1.102;

1.099; 1.017; 1.111;

1.117; 1.152; 1.265;

1.380; 1.575; 1.857];

Una possibile implementazione in Matlab/Octave della decomposizione SVD di una
matrice A è come segue.

%-------------------------------------

% NB: Si usa la matrice A del metodo

% delle equazioni normali



5.9. MINIMI QUADRATI DISCRETI E DECOMPOSIZIONE SVD 165

0 0.5 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Dati di cui si cerca una approx. LS

Figura 5.12: Dati da approssimare con il metodo dei minimi quadrati

%-------------------------------------

for i=1:length(t),

for j=1:4,

a(i,j)=t(i)^(j-1);

end;

end;

a1=a’*a;

[u,d]=eig(a1);

b=a*u;

[v,r]=qr(b);

z=inv(r’*r)*r’*(v’*y);

disp(’Soluzione con la decomposizione SVD di A ’);

x=u*z

Eseguendo il codice ecco il risulatati

>> Soluzione con la decomposizione SVD di A

0.5747

4.7259

-11.1282

7.6687



166 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

Dati                   
LS solution with cubics

0 0.5 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figura 5.13: Approssimazione ai minimi quadrati

5.9.2 Esercizi proposti

Esercizio 53. (Appello del 21/6/06). Si considerino i valori di tabella

xi 1 2.5 3 5 6.5 8 9.3

yi 4 2 3 3.5 3.9 7 5.3

1. determinare il polinomio Pm, di grado m = 3 approssimante le coppie di valori (xi, yi)
nel senso dei minimi quadrati discreti.

2. Si giustifichi il fatto che per m = 6 il polinomio è interpolante.

3. Si consideri il punto x̄ = 4 e come valore corrispondente ȳ, quello dell’interpolante
lineare sull’intervallo [3,5]. Si ora |Pm(x̄)− ȳ| l’errore assoluto in x̄. Far vedere che
per m = 2 l’errore è minimo.



5.10. INTERPOLAZIONE TRIGONOMETRICA E FFT 167

5.10 Interpolazione trigonometrica e FFT

Definizione 25. Una funzione della forma

tM (x) =

M∑

k=0

(ak cos(kx) + bk sin(kx)) , (5.67)

si chiama un polinomio trigonometrico di grado M .

Se f : [0, 2π]→ C è una funzione periodica di periodo 2π (f(0) = f(2π)), se si desidera
interpolarla negli n + 1 nodi equispaziati xj = 2πj

n , j = 0, ..., n con tM(x) chiederemo che
siano soddisfatte le condizioni

tM (xj) = f(xj), j = 0, ..., n . (5.68)

Anzitutto osserviamo che tM (x) si può scrivere come segue

• se n è pari e M = n/2

tM (x) =
a0

2
+

M∑

k=1

(ak cos(kx) + bk sin(kx)) ; (5.69)

• se n è dispari e M = (n− 1)/2

tM (x) =
a0

2
+

M∑

k=1

(ak cos(kx) + bk sin(kx)) + aM+1 cos((M + 1)x) . (5.70)

Ricordando l’identità eix = cos x+ i sinx dimostriamo ora la seguente

Proposizione 15.

tM (x) =
M∑

k=−M

cke
ikx ; (5.71)

con {
ak = ck + c−k

bk = i(ck − c−k), k = 0, . . . ,M .
(5.72)

Dim. Infatti,

M∑

k=−M

cke
ikx =

M∑

k=−M

ck(cos(kx) + i sin(kx)) =

=

M∑

k=1

ck(cos(kx) + i sin(kx)) +

M∑

k=1

c−k(cos(kx)− i sin(kx)) + c0



168 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

se n è pari è facile verificare che valgono le (5.72), mentre se n è dispari, osservando che

tM (x) =

(M+1)
∑

k=−(M+1)

cke
ikx, si ha che i ck, k = 0, ...,M sono come in (5.72) e cM+1 =

c−(M+1) = aM+1/2. �

Alla luce della precedente Proposizione, possiamo scrivere tM (x) compattamente come
segue

tM (x) =

(M+s)
∑

k=−(M+s)

cke
ikx

con s = 0 quando n è pari e s = 1 quando n dispari.

Ritorniamo al problema dell’interpolazione trigonometrica, le condizioni di interpo-
lazione (5.68) si riscrivono come segue

(M+s)
∑

k=−(M+s)

cke
ikxj = f(xj) . (5.73)

Moltiplichiamo in (5.73) a sinistra e destra per e−imxj , 0 ≤ m ≤ n e sommiamo su j.
Otteniamo

n∑

j=0





(M+s)
∑

k=−(M+s)

cke
−imxjeikxj



 =

n∑

j=0

e−imxjf(xj) . (5.74)

Facciamo vedere che

Lemma 2.
n∑

j=0

e−imxjeikxj = (n+ 1)δk,m, 0 ≤ m ≤ n .

Dim. Infatti, osservando che la somma è
∑n

j=0 eijh(k−m) con xj = j h, h = 2π/(n + 1).

(i) Per k = m è verificata: la somma si riduce
∑n

j=0 1 = n+ 1.

(ii) Per k 6= m osserviamo che

n∑

j=0

eixj(k−m) =
1−

(
eih(k−m)

)n+1

1− eih(k−m)

con numeratore che è uguale a zero poiché
(

eih(k−m)
)n+1

= ei(n+1)h(k−m) = cos(2π(k−
m)) + i sin(2π(k −m)) = 1. Pertanto anche quando k 6= m vale la somma. �.



5.10. INTERPOLAZIONE TRIGONOMETRICA E FFT 169

Alla luce del precedente Lemma, possiamo concludere che

ck =
1

n+ 1

n∑

j=0

e−i kxjf(xj) , k = −(M + s), . . . ,M + s . (5.75)

In analogia con le serie di Fourier, i coefficienti ck sono detti trasformata discreta di

Fourier (o DFT). Ricordiamo infatti, che i coefficienti della serie di Fourier continua sono

γk =
1

2π

∫ 2π

0
e−ikxf(x)dx, k ∈ N .

Da un punto di vista computazionale, il calcolo di ogni coefficiente ck in (5.75), richiede
(n + 1)2 operazioni. Basta infatti osservare che ck, nel caso M = n

2 , è il prodotto scalare

dei vettori f = [f(x0), . . . , f(xn)] e e = [ei n
2
jh, . . . , e−i n

2
jh] che hanno lunghezza n+ 1.

Ma è possibile calcolare ck in modo più efficiente mediante l’algoritmo noto come Fast

Fourier Transform o FFT.

5.10.1 Algoritmo FFT

Dato l’insieme X = {x0, . . . , xn} con n = 2r, r > 1, poniamo ωn+1 = e
2πi
n+1 cosicché

l’equivalente di ck per l’insieme X, è

dk =
1

n+ 1

n∑

j=0

ω−jk
n xj , k = 0, ..., n .

Posto quindi p = 2, q = 2r−1 (cosicchè pq = n)

dk =
1

p

p−1
∑

l=0

ω−kl
n

(

1

q

q−1
∑

s=0

ω−ks
q xl+ps

)

.

Posto quindi

e
(l)
k =

1

q

q−1
∑

s=0

ω−ks
q xl+ps, l = 0, ..., p − 1 ,

allora

dk =
1

p

p−1
∑

l=0

ω−kl
n+1e

(l)
k .

Complessità. La complessità dell’algoritmo FFT è

2n+ 2
(

2 · n
2

)

+ 22
(

2 · n
22

)

+ · · ·+ 2r
(

2 · n
2r

)

=

r∑

k=1

2n = 2n r = 2n log2(n) < n2 .

Per maggiori dettagli vedasi [1, pag.81 e ss.].



170 CAPITOLO 5. INTERPOLAZIONE E APPROSSIMAZIONE

function [ff]=myfft(f,p)

%---------------------------------------------

% Dato un vettore f di lunghezza n=p*q

% determina il vettore ff che rappresenta

% la FFT di f (algoritmo tratto dal riferimento

% [1], ovvero K. E. Atkinson pag. 181 e ss)

%---------------------------------------------

disp(’Trasformata di Fourier tradizionale’);

n=length(f);

for j2=1:n,

s=0;

for j1=1:n,

s=s+f(j1)*exp(-2*pi*i/(n*j2*(j1-1)));

end

f1(j2)=s/n;

end

disp(’Trasformata di Fourier veloce’);

p=2; q=n/p;

for k=1:n,

s1=0;

for l=1:p,

s=0;

for g=1:q,

w=exp(2*pi*i*k*(g-1)/q);

s=s+w*f(l+p*(g-1));

end

w1=exp(2*pi*i*k*(l-1)/n);

s1=s1+(s/q)*w1;

end

ff(k)=s1/p;

end



Capitolo 6

Derivazione ed integrazione

6.1 Derivazione

Sia f ∈ C1[a, b]. Come possiamo approssimare f ′(x̂) in un generico punto x̂ ∈ [a, b]?
Vediamo tre approssimazioni utili in molti casi di nostro interesse.

1. Differenze finite in avanti: ∆a.
Ricordando che se f è derivabile in x̂ allora

f ′(x̂) = lim
h→0

f(x̂+ h)− f(x̂)

h
,

allora una prima approssimazione di f ′(x̂) si ottiene usando il rapporto incrementale:

f ′(x̂) ≈ f(x̂+ h)− f(x̂)

h
:= ∆af(x̂) (6.1)

Se f ∈ C2[a, b] avremo

f(x̂+ h) = f(x̂) + hf ′(x̂) +
h2

2
f ′′(ξx̂) ,

con ξx̂ ∈ (x̂, x̂+ h). Pertanto per l’errore avremo l’espressione

f ′(x̂)−∆af(x̂) = −h
2
f ′′(ξx̂) , (6.2)

che tende a zero come h. In pratica ∆a f(x̂) fornisce un’approssimazione del primo
ordine della derivata di f in x̂.

2. Differenze finite all’ indietro: ∆i.
Come prima, una prima approssimazione di f ′(x̂) si ottiene usando il rapporto incre-
mentale relativamente al punto x̂− h:

f ′(x̂) ≈ f(x̂)− f(x̂− h)
h

:= ∆i f(x̂) (6.3)

171



172 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

Se f ∈ C2[a, b] avremo

f(x̂− h) = f(x̂)− h f ′(x̂) +
h2

2
f ′′(ηx̂) ,

con ηx̂ ∈ (x̂− h, x̂). Pertanto per l’errore avremo un’espressione simile alle differenze
finite in avanti

f ′(x̂)−∆i f(x̂) =
h

2
f ′′(ηx̂) , (6.4)

che tende a zero come h. In pratica ∆i f(x̂) fornisce anch’esso un’approssimazione del
primo ordine della derivata di f in x̂.

3. Differenze finite centrali: δ.
Una approssimazione migliore di f ′(x̂) si ottiene usando i valori di f in x̂− h e x̂+ h
come segue:

f ′(x̂) ≈ f(x̂+ h)− f(x̂− h)
2h

:= δ f(x̂) (6.5)

Infatti, se f ∈ C3[a, b]

f(x̂+ h) = f(x̂) + h f ′(x̂) +
h2

2!
f ′′(x̂) +

h3

3!
f (3)(ξx̂) ,

con ξx̂ ∈ (x̂, x̂+ h)

f(x̂− h) = f(x̂)− h f ′(x̂) +
h2

2!
f ′′(x̂) +

h3

3!
f (3)(ηx̂) ,

con ηx̂ ∈ (x̂− h, x̂). Sommando membro a membro e dividendo per 2h otteniamo

f(x̂+ h)− f(x̂− h)
2h

= f ′(x̂) +
h2

12

(

f (3)(ξx̂) + f (3)(ηx̂)
)

.

Pertanto l’errore assume l’espressione

f ′(x̂)− δ f(x̂) = −h
2

12

(

f (3)(ξx̂) + f (3)(ηx̂)
)

, (6.6)

che tende a zero come h2. Osserviamo anche che al tendere di h → 0 anche ξx̂) e
ηx̂) tenderanno allo stesso valore. In pratica δ f(x̂) fornisce un’approssimazione del
secondo ordine della derivata di f in x̂.

Data una suddivisione regolare dell’intervallo [a, b], ovvero i punti xk = a+ kh, k = 0, ..., n
con xn = b, da un punto di vista implementativo le formule ∆a si possono applicare per ogni
punto eccetto il punto b; le formule ∆i si possono applicare per ogni punto eccetto il punto
a mentre le formule centrali δ si possono applicare per ogni punto interno dell’intervallo.



6.1. DERIVAZIONE 173

Nel caso delle differenze centrali, nei punti x0 e xn si usano invece le seguenti ap-
prossimzioni

1

2h
[−3f(x0) + 4f(x1)− f(x2)] in x0 (6.7)

1

2h
[3f(xn)− 4f(xn−1) + f(xn−2)] in xn , (6.8)

che si ottengono calcolando in x0 (rispettivamente in xn) la derivata prima del polinomio
d’interpolazione di grado 2 della funzione f .

Infatti, il polinomio di secondo grado relativo ad x0, si può costruire usando i punti
x0, x1, x2 ottenendo

p2(x) = f(x0)l0(x) + f(x1)l1(x) + f(x2)l2(x)

dove, al solito, li(x) =

2∏

j=0,j 6=i

(x− xj)

(xi − xj)
. Derivandolo e valutandolo in x0, sapendo che

x1 = x0 + h e x2 = x0 + 2h, si ottiene la (6.7).

6.1.1 Un esempio

Vediamo come si comportano le approssimazioni alle differenze finite in avanti e alle dif-
ferenze finite centrali nel calcolo della derivata prima della funzione f(x) = exp(x) nel punto
x = 1. Essendo f ′(x) = exp(x), il valore da approssimare è quindi exp(1).

Scriviamo quindi un codice Matlab che confronta i due metodi sopracitati per valori del
passo h della forma h = 2−k, k = 1, . . . , 50 e ne determina anche l’errore relativo commesso.

Salviamo in un file mydiff.m il seguente codice

%--------------------------------

% Questo M-file calcola la

% derivata dell’esponenziale

% in x0=1.

%-------------------------------

% punto in cui valutare la derivata

x0=1;

% valore esatto della derivata

f1xesatta=exp(x0);

for index=1:50

%--------------------------------------



174 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

% METODO 1: differenze finite in avanti

%--------------------------------------

% passo

h=2^(-index);

% punto "x"

x=x0+h;

% rapporto incrementale

f1x(index)=(exp(x)-exp(x0))/h;

% errore relativo

relerr1(index)=abs(f1xesatta-f1x(index))/abs(f1xesatta);

fprintf(’\n \t [x]: %5.5f [h]: %2.2e’,x,h);

fprintf(’[rel.err.]: %2.2e’,relerr1(index));

%-------------------------------------

% METODO 2: differenze finite centrali

%-------------------------------------

% punti di valutazione

xplus=x+h; xminus=x-h;

% approssimazione con differenze finite centrali

f1x(index)=(exp(xplus)-exp(xminus))/(2*h);

% errore relativo

relerr2(index)=abs(f1xesatta-f1x(index))/abs(f1xesatta);

fprintf(’\n \t [x]: %5.5f [h]: %2.2e’,x,h);

fprintf(’[rel.err.]: %2.2e’,relerr2(index));

end

% plot comparato degli errori

semilogy(1:50,relerr1,’r-+’);

hold on

semilogy(1:50,relerr2,’k-o’);

I grafici di Figura 6.1, mostrano come entrambi i metodi siano instabili. Quando il passo

h è troppo piccolo, l’approssimazione di entrambe peggiora invece di migliorare. Nel grafico
in scala semi-logaritmica, la curva in rosso coi + rappresenta il primo metodo, quella in
nero con i − il secondo. Osserviamo che tra i due metodi il secondo sembra avere comunque
performance migliori.

Vediamo di giustificare questo fatto analizzando l’errore. Infatti, come dimostrato, l’
errore assoluto con differenze finite in avanti ∆a è del tipo

E1 =
|h| |f (2)(ξ)|

2
, ξ ∈ I(x, x0)

mentre con le differenze finite centrali δ è

E2 =
|h|2| f (3)(ξ1) + f (3)(ξ2)|

12
, ξ1, ξ2 ∈ I(x0 + h, x0 − h)



6.1. DERIVAZIONE 175

0 5 10 15 20 25 30 35 40 45 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Figura 6.1: Grafico che illustra l’errore relativo compiuto dal metodo 1 (differenze
in avanti), in rosso, col + e dal metodo 2 (differenze finite centrali) in nero con o,
nell’approssimare exp(1).

dove I(s, t) è il più piccolo intervallo aperto contenente s e t.

Nel nostro caso essendo f (n)(x) = exp(x) per ogni n ∈ N, e poiché per x ≈ 1 si ha
exp(x) ≈ exp(1) deduciamo

E1 ≈
|h| exp(1)

2
(6.9)

E2 ≈
|h|2 exp(1)

6
(6.10)

Per esercizio verificare se sono buone approssimazioni dell’errore le stime (6.9) e (6.10).



176 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

6.2 Integrazione

Consideriamo ora il problema di calcolare
∫ b

a
f(x)dx .

I motivi che possono indurci a calcolare numericamente un integrale sono svariati. Ad
esempio nel caso in cui non si conosca una primitiva di f(x), oppure f(x) sia nota solo in
alcuni punti o ancora f(x) è valutabile su ogni valore di x ma solo mediante una routine
automatica. In tutti questi casi, si preferiscono le cosidette formule di quadratura. In pratica
una formula di quadratura è una approssimazione dell’integrale che fa uso dei valori della
funzione in alcuni punti

∫ b

a
f(x)dx ≈

n∑

i=0

wif(xi) , (6.11)

dove xi sono detti nodi di quadratura e i coefficienti wi sono detto pesi della formula di
quadratura.

Nel seguito ci limiteremo allo studio di integrali definiti del tipo
∫ b

a
ω(x)f(x)dx

dove ω(x) è una funzione positiva su [a, b] detta funzione peso. Le formule di quadratura che
considereremo saranno di tipo interpolatorio costruite sia su nodi equispaziati che su nodi
coincidenti con gli zeri dei polinomi ortogonali rispetto all’intervallo [a, b] e alla funzione
peso ω(x).

6.2.1 Formule di tipo interpolatorio

Siano assegnati i punti distinti x0, . . . , xn dell’intervallo [a, b]. Sia pn(x) =
∑n

i=0 li(x)f(xi)
l’unico polinomio di grado n che interpola f nei punti xi ed Enf l’errore d’interpolazione.
Allora, grazie alla proprietà di linearità dell’integrale

∫ b

a
ω(x)f(x)dx =

n∑

i=0

(∫ b

a
ω(x) li(x)dx

)

f(xi) +

∫ b

a
ω(x)Enf(x)dx . (6.12)

Posto quindi

wi =

∫ b

a
ω(x) li(x)dx, Rnf =

∫ b

a
ω(x)Enf(x)dx ,

allora
∫ b

a
ω(x) f(x)dx =

n∑

i=0

wif(xi) +Rnf . (6.13)

Le formule di quadratura della forma (6.13) si dicono interpolatorie perchè si basano sul
polinomio d’interpolazione della funzione f .



6.2. INTEGRAZIONE 177

Definizione 26. Una formula di quadratura di tipo interpolatorio si dice esatta con

ordine di esattezza n se integra esattamente i polinomi di grado n.

La definzione appena data afferma che se f(x) ∈ Pn allora Enf(x) = 0 e pertanto anche
Rn f = 0. Non solo, se f(x) = 1, x, x2, . . . , xn e la formula (6.13) è esatta di ordine n,
allora possiamo scrivere







w0 + · · · + wn =
∫ b
a ω(x)x0dx

w0x0 + · · · + wnxn =
∫ b
a ω(x)xdx

...
...

...

w0x
n
0 + · · · + wnx

n
n =

∫ b
a ω(x)xndx

(6.14)

dove gli integrali
∫ b
a ω(x)xk, k = 0, ..., n si chiamano momenti. Il sistema (6.14) è un sistema

di dimensione n + 1 con matrice di Vandermonde che è non singolare poiché xi 6= xj .
Pertanto il sistema può essere utilizzato per determinare univocamente i pesi wi, i =
0, . . . , n. L’unicità dei pesi di quadratura ci assicura anche che non esistono altre formule
per i pesi che producono formule di tipo interpolatorio (6.11).

Osserviamo subito che essendo la matrice di Vandermonde malcondizionata, dovremo
aspettarci che per n → ∞ le formule di tipo interpolatorio saranno instabili. Vedremo più
oltre come sia possibile evitare questi problemi di legati all’instabilità delle formule di tipo
interpolatorio.

Definizione 27. La formula di quadratura di tipo interpolatorio (6.11) si dice convergente
se

lim
n→∞

n∑

i=0

wif(xi) =

∫ b

a
ω(x)f(x)dx . (6.15)

Si può dimostrare (cfr. [3]) che se f ∈ C[a, b] si ha convergenza se

n∑

i=0

|wi| ≤ C (6.16)

con C una costante indipendente da n. Ovvero si ha convergenza quando i pesi sono limitati
in modulo. Se inoltre f ∈ Ck[a, b] si ha anche che

|Rn f | ≤
A

nk
, (6.17)

con A costante positiva. Pertanto più f è regolare e più veloce è la convergenza.

6.2.2 Formule di Newton-Côtes

Le formule di quadratura di Newton-Côtes, di seguito useremo N-C, sono caratterizzate
dalla scelta di nodi equispaziati: xi = a+ ih, h = (b− a)/n. Sono di due tipi



178 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

• formule chiuse: quelle per cui x0 = a, xn = b e xi = x0 + ih, i = 1, . . . , n − 1 con
h = (b− a)/n, n ≥ 0;

• formule aperte: quelle per cui x0 = a+h, xn = b−h e xi = x0+ih, i = 1, . . . , n−1, h =
(b− a)/(n + 2), n ≥ 0.;

I pesi di quadratura wi delle formule di N-C hanno la caratteristica di dipendere solo da
n e h ma non dall’intervallo di quadratura. Infatti, nel caso di formule chiuse e ω(x) = 1,
posto x = a+ th, 0 ≤ t ≤ n, i pesi diventano

wi =

∫ b

a
li(x)dx = h

∫ n

0

n∏

j=0,j 6=i

t− j
i− j dt . (6.18)

Posti

αi =

∫ n

0

n∏

j=0,j 6=i

t− j
i− j dt, i = 0, . . . , n , (6.19)

che dipendono solo da i e n ma non dai nodi xi, allora la formula di quadratura diventa

In(f) = h

n∑

i=0

αif(xi) .

Pertanto, i “nuovi” pesi αi si possono tabulare una volta per tutte usando la (6.19). Os-
serviamo anche che vale la simmetria αi = αn−i cosicchè potremo limitarci a calcolarne solo
la metà. I pesi αi sono noti col nome di numeri di Côtes. Come ulteriore osservazione, che
deriva dalle proprietà dei polinomi di Lagrange,

∑n
i=0 αi = n.

Anche nel caso di formule aperte possiamo calcolare i pesi αi. Essendo x0 = a + h,
xn = b− h e xk = a+ (k + 1)h, k = 1, ..., n, da cui risulta

αi =

∫ n+1

−1

n∏

j=0,j 6=i

t− j
i− j dt, i = 0, . . . , n . (6.20)

Nel caso particolare in cui n = 0, essendo l0(x) = 1, da (6.20) si ha α0 = 2.

Esempio 39. Calcoliamo i coefficienti αi per le formule di N-C chiuse con n = 1. Essendo
x0 = a, x1 = b, e b− a = h, allora

α0 =

∫ 1

0
(1− t)dt =

1

2
, α1 = α0 .

La formula di quadratura corrispondente è la ben nota formula dei trapezi ovvero

I1(f) =
h

2
[f(a) + f(b)] . (6.21)



6.2. INTEGRAZIONE 179

In Figura 6.2, facciamo vedere come si comporta la formula per il calcolo di

∫ 2

1/2
sin (x) dx.

L’area evidenziata in colore è il valore approssimato ottenuto con la formula dei trapezi.
L’errore commesso è rappresentato dalla “differenza” di area tra il grafico della funzione e
l’area colorata.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figura 6.2: Regola dei trapezi per il calcolo di

∫ 2

1/2
sin (x) dx.

Esercizio 54. Costruire una formula di quadratura di N-C a 3 punti di tipo aperto nota
come formula di Milne:

∫ 2h

−2h
f(x)dx ≈ w1f(−h) + w2f(0) + w3f(h) .

Sugg. Determinare i pesi wi chiedendo l’esattezza su 1, x, x2.

6.2.3 Stima dell’errore di quadratura

Sia f ∈ Ck[a, b]. Sotto queste ipotesi di regolarità della funzione, vale il seguente risultato
(la cui dimostrazione si trova ad esempio in [2, p. 721]).

Proposizione 16. Al solito h = b−a
n . Allora

Rn(f) = In(f)−
∫ b

a
f(x)dx = γnh

k+1 f
(k)(ξ)

k!
, ξ ∈ (a, b) , (6.22)

con

k = n+ 2 n pari γn =

∫ n

0
tπn(t)dt

k = n+ 1 n dispari γn =

∫ n

0
πn(t)dt



180 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

dove πn(t) = t(t− 1) · · · (t− n).

Riprendiamo l’esempio precedente.

• Sia n = 1. Essendo n dispari, k = 2, pertanto γ1 =
∫ 1
0 t(t − 1)dt = −1/6. Da cui

l’errore di quadratura per la formula dei trapezi è:

R1(f) = −h
3

6

f (2)(ξ)

2!
= −h

3

12
f (2)(ξ), ξ ∈ (a, b) . (6.23)

• Sia ora n = 2. La funzione f viene approssimata con un polinomio di secondo grado
costruito usando i punti x0 = a, x1 = a+b

2 e x2 = b. Pertanto

α0 =

∫ 2

0

1

2
(t− 1)(t− 2)dt =

1

3
, α1 =

∫ 2

0
t(2− t)dt =

4

3
, α2 = α0 .

Da cui si ottiene la formula di Simpson

I2(f) =
h

3
[f(x0) + 4f(x1) + f(x2)] .

Per l’errore, grazie alla Prop. 16, otteniamo

R2(f) = − 1

90
h5f (4)(ξ), ξ ∈ (a, b) . (6.24)

L’esame dell’errore di quadratura indica due situazioni

1. quando n è pari, le formule di N-C sono esatte per i polinomi di grado n+ 1;

2. quando n è dispari, esse sono esatte per polinomi di grado n.

Pertanto, ai fini dell’errore, sono preferibili le formule per n pari, ovvero con n + 1 punti
d’interpolazione.

Riassumiamo questi risultati nella seguente tabella per alcuni valori di n

Esempio 40. Vogliamo calcolare

I =

∫ 1

0
e−x2

dx ,

con un errore minore o uguale a tol = 0.5 · 10−3. L’integrale dato si può esprimere analiti-
camente mediante la funzione errore, erf

erf(f) =
2√
π

∫ x

0
e−t2dt ,



6.2. INTEGRAZIONE 181

n α0 α1 α2 α3 errore

1
1

2
− 1

12
h3f (2)(ξ)

2
1

3

4

3
− 1

90
h5f (4)(ξ)

3
3

8

9

8
− 3

80
h5f (4)(ξ)

4
14

45

64

45

24

45
− 8

945
h7 f (6)(ξ)

5
95

288

375

288

250

288
− 275

12096
h7 f (6)(ξ)

6
41

140

216

140

27

140

272

140
− 9

1400
h9 f (8)(ξ)

Tabella 6.1: Formule di N-C per n = 1, . . . , 6. Per n = 1 si ha la formula del trapezi, per
n = 2 la formula di Cavalieri-Simpson e per n = 3 si parla di formula dei 3/8.

il cui grafico è riportato in Figura 6.3 ottenendo

I =

√
π

2
erf(1) ≈ 0.747 .

Mediante le formule date nella Proposizione 16, si tratta di trovare n cosicché l’errore
sia ≤ tol.

• Partiamo con n = 1. Abbiamo bisogno di maxx∈[0,1] |f ′′(x)|. Essendo f ′′(x) = 2(2x2−
1)e−x2

, che è strettamente crescente in [0, 1] e per x = 0 (assume il valore minimo)
vale −2 mentre per x = 1 vale 2/e < 1. Pertanto maxx∈[0,1] |f ′′(x)| = 2. Calcoliamo

γ2 =
∫ 1
0 t(t−1)dt = −1

6 e quindi, la stima richiesta, ricordando che ora h = 1, k = n+1
perchè n è dispari, sarà

|R1| ≤
2 · 12

6 · 2 ≈ 0.1667̄ > tol .

Dobbiamo aumentare n.

• Prendiamo n = 2. Ragionando come prima, abbiamo ora bisogno di

max
x∈[0,1]

|f (4)(x)| = max
x∈[0,1]

|4(4x3 − 12x2 + 3)e−x2| = 12 .



182 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

Figura 6.3: Grafico della funzione errore, erf

n w0 w1 w2 w3 w4

8 3956
14175

23552
14175 − 3712

14175
41984
14175 −18160

14175

Tabella 6.2: Pesi di formule chiuse di N-C con n = 8

Ricordando che ora h = 1/2, n = 2, ricaviamo la stima

|R2| ≤
(

1

2

)5

· 12 · 1

90
=

2

2880
≈ 4. · 10−3 > tol .

• Infine prendiamo n = 4. Ragionando allo stesso modo, dobbiamo ora calcolare

max
x∈[0,1]

|f (6)(x)| = max
x∈[0,1]

|8(8x6 − 60x4 + 90x2 − 15)e−x2| = 120 .

Ricordando che ora h = 1/4, n = 4 (pari), ricaviamo la stima richiesta

|R4| ≤
1

16128
≈ 6. · 10−5<tol .

6.2.4 Formule di quadratura composite o generalizzate

Estendendo la Tabella 6.1, si può verificare che già per n = 8 alcuni dei pesi wi risultano
negativi. Infatti, come riportato in [15, p. 279], i valori dei wi, i = 0, ..., 4 per le formule di
N-C chiuse sono riportati in Tabella 6.2. Essendo alcuni di essi negativi, ciò può dar luogo
ad instabilità dovuta a cancellazione numerica, rendendo pertanto le formule inutilizzabili
per gradi elevati.

Una prima alternativa alle formule di Newton-Côtes classiche, sono quelle composite

o generalizzate.



6.2. INTEGRAZIONE 183

A tal proposito, consideriamo l’intervallo [a, b] che suddividiamo in N sottointervalli
mediante i punti equispaziati zk, k = 0, ..., N (con z0 = a e zN = b). Grazie alla additività
dell’integrale possiamo scrivere

∫ b

a
f(x)dx =

∫ z1

z0

f(x)dx+

∫ z2

z1

f(x)dx+ · · · +
∫ zN

zN−1

f(x)dx =

N−1∑

k=0

∫ zk+1

zk

f(x)dx . (6.25)

In ciascuno dei sottointervalli Ik = [zk, zk+1] applichiamo ora una formula di N-C di grado
n. Indicato con Ik

n(f) il valore dell’integrale di f sul k-esimo intervallino Ik, allora

I(f) =

N−1∑

k=0

Ik
n(f) .

I due casi di nostro interesse sono per n = 1 e n = 2 che corrispondono alla formula dei

trapezi composita e alla formula di Simpson composita, rispettivamente.

1. Per n = 1, su ogni intervallino Ik = [xk, xk+1] si usa la formula dei trapezi, ovvero

∫ zk+1

zk

f(x)dx ≈ h

2
[f(zk) + f(zk+1)] h =

b− a
N

.

Mettendo assieme tutti gli integrali avremo la formula dei trapezi composita

∫ b

a
f(x)dx ≈ h

2
[f(a) + f(z1)] +

h

2
[f(z1) + f(z2)] + · · ·+ h

2
[f(zN−1) + f(zN )]

=
h

2
[f(a) + 2f(z1) + 2f(z2) + · · ·+ 2f(zN−1) + f(b)] . (6.26)

2. Per n = 2, su ogni intervallino Ik = [xk, xk+1] si usa la formula di Simpson. Ovvero,

∫ zk+1

zk

f(x)dx ≈ h

3

[
f(zk) + +4f(z′k) + f(zk+1)

]
z′k =

zk + zk+1

2
, h =

b− a
2N

.

Osservando che ora su ogni intervallino Ik dobbiamo aggiungere il punto medio z′k,
rinumerando tutti i punti da 0 a 2N , la formula generalizzata di Simpson sarà

∫ b

a
f(x)dx ≈ h

3
[f(a) + 2f(z1) + 4f(z2) + 2f(z3) + · · ·+ 2f(z2N−1) + f(b)] (6.27)

dove al solito a = z0 e b = z2N .

L’osservazione precedente sul numero dei punti si può assumere a priori e dato N si
considereranno sempre 2N + 1 punti.



184 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figura 6.4: Confronto tra la formula dei trapezi e dei trapezi composita per il calcolo di
∫ 2
0.5 sin (x) dx.

Come semplice esempio, in Figura 6.4 facciamo vedere come si comporta la formula dei
trapezi composita rispetto a quella classica. È interessante vedere la differenza d’errore tra
le due formule.

Vediamo ora come si comporta l’errore di quadratura composita.

Supponiamo che f ∈ Cs[a, b], sapendo che l’errore nel k-esimo intervallino è

r(k)
n = γn h

s+1 f
(s)(ξk)

s!
, ξk ∈ (zk, zk+1), h =

b− a
N

,

allora l’errore totale sarà

Rn(f) =

N−1∑

k=0

r(k)
n =

N−1∑

k=0

γn h
s+1 f

(s)(ξk)

s!
= γn

hs+1

s!

N−1∑

k=0

f (s)(ξk) . (6.28)

Si dimostra che vale la seguente uguaglianza

Rn(f) = γn
N f (s)(ξ)

s!
hs+1 = γn(b− a)s+1 f

(s)(ξ)

s!N s
ξ ∈ (a, b) . (6.29)

Nei due casi precedentemente studiati, trapezi e Simpson compositi, valgono le seguenti
formule d’errore:

R1(f) = −(b− a)3
12N2

f ′′(ξ) , (6.30)

R2(f) = −(b− a)5
2880N4

f (4)(ξ) . (6.31)

Infine, grazie alla (6.29), ricordando che N dipende in effetti da n, se f ∈ Cs[a, b] allora
limN→∞ |RN (f)| = 0. Ovvero, fissato ǫ > 0, possiamo trovare N tale che |RN+1| < ǫ.



6.2. INTEGRAZIONE 185

Esempio 41. Riprendiamo l’Esempio 40. Vogliamo approssimare

∫ 1

0
e−x2

dx a meno di

tol = 0.5 10−3 con le formule composite dei trapezi e di Simpson.

• Trapezi composito. Sapendo che maxx∈[0,1] |f (2)(x)| = 2, si ha |R1(f)| ≤ 1/(6N2) .
Pertanto, affinché |R1(f)| < tol, dovremo chiedere che N ≥ 19, ovvero dovremo
prendere 20 punti equispaziati.

• Simpson composito. Sapendo che maxx∈[0,1] |f (4)(x)| = 12, si ha |R2(f)| ≤ 12/(2880N4) .
Pertanto, affinché |R2(f)| < tol, dovremo chiedere che N ≥ 2, ovvero dovremo pren-
dere 5 punti equispaziati.

6.2.5 Routine adattativa per la quadratura: applicazione al metodo di
Simpson e dei trapezi

L’idea delle routine adattative è di usare punti di integrazione dove “serve”, ovvero dove
la funzione ha maggiori oscillazioni o discontinuità. La tecnica adattativa ha lo scopo di
variare la posizione dei nodi secondo il comportamento locale della funzione integranda,
avendo cos̀ı un risparmio sul numero di valutazioni della funzione integranda.

Di seguito presentiamo il codice Matlab della function simp ada che implementa la

routine adattativa di Simpson per il calcolo di

∫ b

a
f(x)dx . Come input l’utente fornirà gli

estremi di integrazione a, b, la tolleranza epss e gli verrà richiesto di passare un parametro di
dilatazione della tolleranza allo scopo di rendere la stima sui sottointervalli più conservativa
possibile, al fine di verificare la disuguaglianza

|
∫ b

a
f(x)dx− Ĩ(f)| ≤ ǫ ;

ove Ĩ(f) è l’approssimazione dell’integrale calcolata con una formula di quadratura com-
posita.

In output si otterranno il valore approssimato dell’integrale, nella variabile integral e
il numero di valutazioni della funzione integranda in nv.



186 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

function [integral,nv]=simp_ada(aa,bb,epss,f)

%-------------------------------------------------------------

% Calcolo di un integrale con il metodo di Simpson adattativo

%-------------------------------------------------------------

% Inputs

% aa,bb: estremi dell’intervallo d’integrazione

% epss: tolleranza richiesta

% f: la funzione da integrare

%

% Outputs

% integral: valore approssimato dell’integrale

% nv: numero di valutazioni di funzioni

%-------------------------------------------------------------

NMAXL=100; % numero massimo livelli

integral=0; % valore approssimato dell’integrale

max_err=0; % errore commesso

ff=input(’Fattore dilatazione tolleranza = ’);

i=1;

l(i)=1; % contatore numero livelli

tol(i)=ff*epss;

%----------------------------Plot della funzione integranda

x=aa:.01:bb;

for j=1:length(x),

y(j)=f(x(j));

end;

plot(x,y);

title(’Metodo di Simpson adattativo’); hold on;

%----------------------------------------------------------

a(i)=aa; b(i)=bb; h(i)=(b(i)-a(i))/2; min_h=h(i); m(i)=a(i)+h(i);

fa(i)=f(a(i)); fb(i)=f(b(i)); fm(i)=f(m(i));

s(i)=h(i)/3*(fa(i)+4*fm(i)+fb(i));

nv=3; % Valutazioni di funzione

while( i > 0),

% --------------- PLOT dei punti di integrazione

p=zeros(5,1);

fp=zeros(5,1);

p(1)=a(i);

p(2)=a(i)+h(i)/2;

p(3)=a(i)+h(i);

p(4)=a(i)+1.5*h(i);

p(5)=a(i)+2*h(i);

plot(p,zeros(5,1),’r+’);

fp(1)=f(a(i));

fp(2)=f(a(i)+h(i)/2);

fp(3)=f(a(i)+h(i));

fp(4)=f(a(i)+1.5*h(i));

fp(5)=f(a(i)+2*h(i));

plot(p,fp,’g+’);

nv=nv+2;



6.2. INTEGRAZIONE 187

% ---------------------------------------------

fd=f(a(i)+h(i)/2);

fe=f(a(i)+3/2*h(i));

ss1=h(i)/6*(fa(i)+4*fd+fm(i));

ss2=h(i)/6*(fm(i)+4*fe+fb(i));

%---------------------------

% Salvo i dati del livello

%---------------------------

t1=a(i);

t2=fa(i); t3=fm(i); t4=fb(i);

t5=h(i); t6=tol(i); t7=s(i);

t8=l(i);

i=i-1;

if (abs(ss1+ss2-t7) < t6)

max_err=abs(ss1+ss2-t7);

integral=integral+ss1+ss2;

if( t5 < min_h),

min_h=t5;

end;

elseif (t8 >= NMAXL)

disp(’Superato il livello max. STOP! ’);

break;

else

% Meta‘ Intervallo dx .

i=i+1;

a(i)=t1+t5;

fa(i)=t3;

fm(i)=fe;

fb(i)=t4;

h(i)=t5/2;

tol(i)=t6/2;

s(i)=ss2;

l(i)=t8+1;

%% Meta‘ Intervallo sx.

i=i+1;

a(i)=t1;

fa(i)=t2;

fm(i)=fd;

fb(i)=t3;

h(i)=h(i-1);

tol(i)=tol(i-1);

s(i)=ss1;

l(i)=l(i-1);

end;

end;

disp(’Valore approssimato dell’’integrale’); integral

legend(’r+’,’Punti integr.’,’g+’,’Valore funzione’); hold off;

disp(’Errore max. = ’); max_err disp(’Minimo step usato ’); min_h

Le Figure 6.5 e 6.6 mostrano la differenza tra la routine classica e quella adattativa applicate



188 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

al calcolo numerico di
∫ 3
1

100
x2 sin(10

x )dx con precisione ǫ = 1.e − 5. Dall’output ottenuto, il
numero di valutazioni con il metodo classico è di 256 contro le 161 con la routine adattativa
(avendo usato un fattore di dilatazione 15). Infine l’errore calcolato è di 2.43 · 10−6 con il
metodo classico contro 4.17 · 10−7 con il metodo adattativo.

punti di int.  
Valore funzione

1 2 3
−60

−40

−20

0

20

40

60

80
Metodo di Simpson classico

Figura 6.5: Integrazione con Simpson composito

Punti integr.  
Valore funzione

1 2 3
−60

−40

−20

0

20

40

60

80
Metodo di Simpson adattativo

Figura 6.6: Integrazione con Simpson adattativo

Alternativamente una funzione Matlab che calcola adattativamente un integrale definito
usando il metodo dei trapezi è la seguente. Quest’ ultima è ottenuta considerando una
formula base su tre punti e che la stima dell’errore sia fatta usando l’estrapolazione di
Richardson (vedi sessione 6.4 per dettagli) (che equivale a usare la formula di Simpson
sugli stessi punti).



6.2. INTEGRAZIONE 189

Detto

Ĩ(i) =
hi

4

{

f(xi−1) + 2f(
xi + xi−1

2
) + f(xi)

}

,

l’integrale approssimato con i trapezi su [xi−1, xi], allora

ei =

∫ xi

xi−1

−Ĩ(i) ≈ hi

12

{

−f(xi−1) + 2f(
xi + xi−1

2
)− f(xi)

}

dove hi = xi − xi−1. Se l’errore ei è tale che

ei ≤
ǫ

b− ahi

(cosicchè quello totale risulta essere ≤ ǫ) allora si conclude altrimenti procede alla suddivi-
sione.

La function Matlab/Octave trap ada di seguito riportata fa proprio questo.

function [I,errest,x] = trapadatt(func,a,b,tol,varargin)

%--------------------------------------------------------------

% Calcolo di un integrale con

% il metodo dei trapezi adattativo

%--------------------------------------------------------------

% Inputs

% func: la funzione da integrare

% a,b: estremi dell’intervallo d’integrazione

% tol: tolleranza richiesta

%

% Outputs

% I: valore approssimato dell’integrale

% errest: stima d’errore

% x: vettore contenente i nodi usati

%------------------------------------------------

if (nargin

== 4)

n = 2;

else

n = varargin{1};

end

h = (b-a)/(n-1);

x = linspace(a,b,n)’;

x(2:end-1) = x(2:end-1)+2*(rand(size(x(2:end-1)))-0.5)*h/10;

weight = h*[0.5,ones(1,length(x)-2),0.5];

I = weight*feval(func,x);

n = 2*n-1; h = h/2;

x = linspace(a,b,n)’;

x(2:end-1) = x(2:end-1)+2*(rand(size(x(2:end-1)))-0.5)*h/10;



190 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 

 
function
qudrature
points

Figura 6.7: Integrazione con il metodo dei trapezi adattativo. I punti utilizzati sono
oltre 2000, molti di più di quelli richiesti dalla stima a priori (6.30), ma distribuiti non
uniformemente ma dove la funzione oscilla di maggiormente.

weight = h*[0.5,ones(1,length(x)-2),0.5];

I2 = weight*feval(func,x); errest = abs(I2-I)/2;

if (errest < tol)

I = I2;

else

[Il,errestl,xl] = trapadatt(func,a,a+(b-a)/2,tol/2,n);

[Ir,errestr,xr] = trapadatt(func,a+(b-a)/2,b,tol/2,n);

I = Il+Ir;

errest = errestl+errestr;

x = union(xl,xr);

end

La Figura 6.7 applica la routine adattativa dei trapezi appena descritta al calcolo di
∫ 3

−3

sin(x)

(1 + ex)
dx con precisione ǫ = 1.e − 4. In output si otterrà il valore approssimato

dell’integrale, nella variabile I, l’errore approssimato in errest e nel vettore x i punti usati
per il calcolo.



6.2. INTEGRAZIONE 191

6.2.6 Polinomi ortogonali (cenni) e formule di quadratura gaussiane

Prima di introdurre le formule di quadratura gaussiane, facciamo dei richiami sui polinomi
ortogonali.

Definizione 28. Un insieme infinito di polinomi {p0, p1, . . . , pn, . . .} tali che

pn(x) = an,0x
n + an,1x

n−1 + · · ·+ an,n ,

è detto ortogonale in [a,b] rispetto ad una funzione peso ω(x) non negativa, se valgono le
relazioni 





∫ b
a ω(x)pn(x)pm(x)dx = 0 m 6= n

∫ b
a ω(x)(pn(x))2dx > 0 m = n .

Di solito si indica hn =
∫ b
a ω(x)(pn(x))2dx > 0.

Alcune importanti proprietà dei polinomi ortogonali sono le seguenti.

(a) La funzione peso non negativa ω(x) e l’intervallo [a, b] definiscono univocamente
l’insieme dei polinomi {pn}.

(b) Per ogni n ≥ 1, pn(x) ha esattamente n zeri reali, distinti ed interni ad [a, b]. Inoltre
gli zeri di pn(x) separano quelli di pn−1(x) (tra 2 zeri di pn si trova uno ed uno solo
zero di pn−1).

(c) Ogni sistema di polinomi ortogonali {pn}, soddisfa ad una relazione di ricorrenza a 3
termini

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x), n = 1, 2, . . . (6.32)

dove Cn > 0 e

An =
an+1,0

an,0
(6.33)

Bn = An

(
an+1,1

an+1,0
− an,1

an,0

)

, (6.34)

Cn =
An

An−1

hn

hn−1
= An

an+1,2

an+1,1
, (6.35)

Elenchiamo qui di seguito i polinomi ortogonali che per noi rivestono maggior interesse.

Tn : Polinomi di Chebyshev di prima specie. Sono definiti su [−1, 1], ω(x) = (1 −
x2)−1/2 e per essi vale la ricorrenza T0(x) = 1, T1(x) = x e

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1 . (6.36)



192 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

Gli zeri di questi polinomi, che abbiamo già incontrato quando abbiamo parlato di
interpolazione polinomiale, sono i punti di Chebyshev

xk = cos

(
2k − 1

2n
π

)

.

Osserviamo che Tn(x) = cos(n arccos x) n = 0, 1, . . . . Facciamo vedere che

Tn(x) = 2n−1xn + · · · (6.37)

Infatti, ricordando che

cos[(n+ 1)θ] + cos[(n− 1)θ] = 2 cos θ cos(nθ)

posto θ = arccos x si riottiene la (6.36). Pertanto, essendo T2(x) = 2x2 − 1, T3(x) =
4x3 − 3x = 23−1x3 − 3x, per induzione si ottiene la (6.37).

Un: Polinomi di Chebyshev di seconda specie. Sono definiti su [−1, 1], ω(x) = (1−
x2)1/2 e per essi vale la ricorrenza U0(x) = 1, U1(x) = 2x e

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 1 .

Pn: Polinomi di Legendre. Sono definiti su [−1, 1], ω(x) = 1 e per essi vale la ricorrenza
P0(x) = 1, P1(x) = 2x e

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x), n ≥ 1 .

In questo caso possiamo anche facilmente calcolare an,0 = (2n)!
2n(n!)2 e hn = 2/(2n + 1).

Ln: Polinomi di Laguerre. Sono definiti su [0,+∞), ω(x) = e−x e per essi vale la
ricorrenza L0(x) = 1, L1(x) = 1− x e

Ln+1(x) =
2n+ 1− x
n+ 1

Ln(x)− n

n+ 1
Ln−1(x), n ≥ 1 .

Anche in questo caso possiamo calcolare an,0 = (−1)n

n! e hn = 1.

Hn: Polinomi di Hermite. Sono definiti su (−∞,+∞), ω(x) = e−x2
e per essi vale la

ricorrenza H0(x) = 1, H1(x) = 2x e

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1 .

In questo caso an,0 = 2n e hn = 2nn!
√
π.

Vale la pena osservare che in [−1, 1] i polinomi ortogonali di Legendre e di Chebsyshev
sono un caso particolare di una famiglia più generale e associata alla funzione peso ω(x) =



6.2. INTEGRAZIONE 193

(1 − x)α(1 + x)β , α, β > −1, detti polinomi di Jacobi, Pα,β
n (x). Posto γ = α + β, per

essi vale la ricorrenza

Pα,β
n+1(x) =

(2n + 1 + γ)[(α2 − β2) + (2n + γ + 2)(2n + γ)x]

2(n+ 1)(n + γ + 1)(2n + γ)
Pα,β

n (x) +

2(n + α)(n+ β)(2n + γ + 2)

2(n+ 1)(n + γ + 1)(2n + γ)
Pα,β

n−1(x), n ≥ 1 .

Pertanto, per α = β = 0 otteniamo i polinomi di Legendre, per α = β = −1/2 otteniamo i
polinomi di Chebyshev di prima specie e per α = β = 1/2 otteniamo i polinomi di Chebyshev
di seconda specie.

Siamo ora in grado di descrivere come si possano costruire le formule di quadratura

gaussiane. Dato l’intervallo [a, b] e la funzione peso ω(x), siano xi, i = 1, . . . , n gli zeri del
corrispondente polinomio ortogonale di grado n. Allora possiamo scrivere

∫ b

a
ω(x)f(x)dx ≈

n∑

i=1

Aif(xi) (6.38)

dove i pesi Ai dipendono dalla particolare formula di quadratura gaussiana.

Prima di dare alcune espressioni esplicite dei pesi di quadratura, enunciamo un risultato
fondamentale per la quadratura gaussiana (la cui dimostrazione si può trovare, ad esempio,
in [15]).

Teorema 20. Siano x1, . . . , xn gli zeri del polinomio ortogonale di grado n rispetto all’intervallo
[a, b] e alla funzione peso ω(x). Supponiamo che i pesi Ai siano stati determinati cosicché

∫ b

a
ω(x)f(x)dx =

n∑

i=1

Aif(xi) +Rn(f) , (6.39)

è esatta per i polinomi di grado ≤ n−1. Allora la formula (6.39) è esatta per tutti i polinomi
di grado ≤ 2n− 1.

Una caratteristica ulteriormente positiva delle formule di quadratura gaussiane, che è
uno dei motivi per i quali sono preferite rispetto a quelle di N-C, è che i pesi Ai sono

positivi. Infatti vale la rappresentazione

Ai =
1

(P ′
n(xi))2

∫ b

a
ω(x)

[
Pn(x)

x− xi

]2

dx i = 1, . . . , n , (6.40)

dove Pn indica il polinomio ortogonale di grado n relativo all’intervallo [a, b] e alla funzione

peso ω(x). Da questa relazione segue che
∫ b
a ω(x)dx =

∑n
i=1Ai =

∑n
i=1 |Ai|, pertanto si ha

convergenza delle formule al valore dell’integrale. Pertanto nel caso [−1, 1], ω(x) = 1, si ha
∑n

i=1Ai = 2.



194 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

• [a, b] = [−1, 1], ω(x) = (1 − x2)−1/2, la corrispondente formula di quadratura si dice
di Gauss-Chebyshev di prima specie. I pesi sono

Ai =
π

n
, ∀ i .

I nodi, che sono gli zeri di Chebyshev, sono

xi = cos

(
2i− 1

2n
π

)

i = 1, ..., n .

La (6.38) diventa

∫ 1

−1
f(x)

1√
1− x2

dx ≈ π

n

n∑

i=1

f

(

cos

(
2i− 1

2n
π

))

.

• Sempre in [−1, 1] ma con ω(x) = (1−x2)1/2: la corrispondente formula di quadratura
si dice di Gauss-Chebyshev di seconda specie. I pesi sono

Ai =
π

n+ 1

(

sin

(
iπ

n+ 1

))2

, i = 1, ..., n .

I nodi, che sono gli zeri dei polinomi di Chebyshev di seconda specie, sono

xi = cos

(
i

n+ 1
π

)

i = 1, ..., n .

La (6.38) diventa

∫ 1

−1
f(x)

√

1− x2dx ≈ π

n+ 1

n∑

i=1

(

sin

(
i

n+ 1
π

))2

f

(

cos

(
i

n+ 1
π

))

.

• Sempre in [−1, 1] ma con ω(x) = 1: la corrispondente formula di quadratura si dice
di Gauss-Legendre. I pesi sono

Ai =
2

(1− x2
i )
(
P ′

n+1(xi)
)2 , i = 0, ..., n .

Riassumiamo nella Tabella 6.3, per n = 1, . . . , 4, i valori dei nodi (zeri) del polinomio
di Legendre e dei corrispondenti pesi. Si noti che sono indicati n+ 1 nodi, poiché per
un dato n calcoliamo i = 0, ..., n nodi e pesi. Ad esempio, per n = 1, significa che
stiamo considerando il polinomio di grado 2, che ha appunto zeri ±3−1/2. Per i pesi
sono indicati, per simmetria, solo quelli con i = 0, ..., ⌊n2 ⌋. Sempre relativamente alla
formula di quadratura di Gauss-Legendre, osserviamo che talvolta conviene includere
anche gli estremi dell’intervallo, ovvero −1, 1. Si parla allora di formule di quadratura
di Gauss-Legendre-Lobatto. Ora, poiché i nodi x0 = −1 e xn = 1 sono fissati, gli
altri n− 1 sono scelti come gli zeri P ′

n(x) ottenendo per i pesi l’espressione

Ai =
2

n(n+ 1)

1

(Pn(xi))2
, i = 0, ..., n .



6.2. INTEGRAZIONE 195

n xi Ai

1 ± 1√
3

1

2 ±
√

15
5 , 0 5

9 ,
8
9

3 ± 1
35

√

525− 70
√

30 , ± 1
35

√

525 + 70
√

30 1
36(18 +

√
30), 1

36 (18−
√

30)

4 0,± 1
21

√

245 − 14
√

70,± 1
21

√

245 + 14
√

70 128
225 ,

1
900 (322 + 13

√
70), 1

900(322 − 13
√

70)

Tabella 6.3: Nodi e pesi per le formule di Gauss-Legendre con n = 1, 2, 3, 4

n xi Ai

1 ±1 1

2 ±1, 0 1
3 ,

4
3

3 ±1 , ±
√

5
5

1
6 ,

5
6

4 ±1, ±
√

21
7 , 0 1

10 ,
49
90 ,

32
45

Tabella 6.4: Nodi e pesi per le formule di Gauss-Legendre-Lobatto con n = 1, 2, 3, 4.

Pertanto il grado di esattezza delle formule di Gauss-Legendre-Lobatto sarà 2n − 1.
In Tabella 6.4 ricordiamo chi sono i nodi e i pesi per le formule di Gauss-Legendre-
Lobatto con n = 1, 2, 3, 4. Un altro interessante esempio è fornito dalle formule di
Gauss-Chebyshev-Lobatto, in cui ω(x) = 1/

√
1− x2, delle quali i nodi ed i pesi sono

come segue

xi = cos

(
π i

n

)

,

Ai =
π

n di
, d0 = dn = 2, di = 1, 1 ≤ i ≤ n− 1 .

Infine, per quanto riguarda l’errore di quadratura con formule di Gauss-Legendre
(GL) e Gauss-Legendre-Lobatto (GLL), ricordiamo le seguenti formule che per essere
applicate richiedono una certa regolarità della funzione integranda (cfr. [14]).

I(f)− IGL(f) =
22n+3((n + 1)!)4

(2n+ 3)((2n + 2)!)3
f (2n+2)(ξ) , ξ ∈ (−1, 1). (6.41)

I(f)− IGLL(f) = −22n+1n3(n+ 1)((n − 1)!)4

(2n + 1)((2n)!)3
f (2n)(ξ) , ξ ∈ (−1, 1). (6.42)



196 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

Due considerazioni conclusive.

1. Le formule gaussiane in [−1, 1] sono estendibili ad un generico intervallo [a, b] con
l’opportuna trasformazione lineare sia sui nodi che sui pesi.

2. In Matlab la funzione quadl implementa la formula di quadratura di Gauss-Lobatto.
Si chiama con quadl(fun,a,b): in questo caso la tolleranza di default è 1.e− 3 e fun

può essere definita sia su un altro M-file di tipo funzione o mediante fun=inline(’

’). Per usare una tolleranza definita dall’utente, tol utente, si userà la chiamata
quadl(fun,a,b,tol utente).

Infine, facciamo una osservazione circa la costruzione di formule composite gaussiane.
Partendo da una suddivisione equispaziata consideriamo, invece dei punti xk−1 e xk, i punti

yk−1 = xk−1 +
h

2

(

1− 1√
3

)

, yk = xk−1 +
h

2

(

1 +
1√
3

)

.

La formula di quadratura di Gauss composita si esprime allora come segue.

• Formula di Gauss composita e relativo errore.

Ic
G(f) =

h

2

n∑

k=1

(f(yk−1) + f(yk)) ,

I(f)− Ic
G(f) =

b− a
4320

h4f (4)(ξ) , ξ ∈ (a, b).

Esercizio 55. Si calcoli numericamente

∫ 2π

0
xe−x cos 2xdx =

3(e−2π − 1)− 10πe−2π

25
≈ −0.12212260462 ,

mediante le tre formule composite dei trapezi, di Simpson e di Gauss, con n = 7. Si deter-
mini anche l’errore assoluto. Se invece si prendesse n = 10, come cambierebbe l’approssimazione?

Un M-file che può essere usato per implementare simultaneamente le formule composite dei
trapezi, di Simpson e di Gauss appena descritta è come segue. Si noti che per il suo utilizzo,
si deve definire la funzione integranda in funQ.m.

clear; format long

tipoFormula=input(’Quale formula: (T) trapezi, (S) Simpson o (G)

gaussiana ? ’,’s’);

n=input(’Numero di punti della suddivisione ’);



6.3. ESERCIZI PROPOSTI 197

a=0; b=2*pi; h=(b-a)/n;

x=linspace(a,b,n+1); %punti equispaziati.

xx=a:0.01:b; yy=funQ(xx);

realValue=quadl(@funQ,a,b,1.e-6); switch

tipoFormula

case {’T’}

fTc=funQ(x);

plot(xx,yy,’-.g’,x,fTc,’o’);

fTc(2:end-1)=2*fTc(2:end-1);

ValTc=0.5*h*sum(fTc)

title(’Quadratura composita con i trapezi e relativi nodi’);

disp(’Errore assoluto’)

erroreT=abs(realValue-ValTc)

case {’S’}

fSc=funQ(x);

plot(xx,yy,’-.g’,x,fSc,’ob’), hold on

fSc(2:end-1)=2*fSc(2:end-1);

ValSc=h*sum(fSc)/6;

x=linspace(a+h/2,b-h/2,n);

fSc=funQ(x);

plot(x,fSc,’or’)

ValSc=ValSc+2*h/3*sum(fSc)

title(’Quadratura composita di Simpson e relativi nodi’);

disp(’Errore assoluto’)

erroreT=abs(realValue-ValSc)

hold off

case {’G’}

y1=x(1:end-1)+h/2*(1-1/sqrt(3));

plot(xx,yy,’-.g’,y1,funQ(y1),’ok’); hold on

y=[y1 y1+h/sqrt(3)];

fGc=funQ(y);

plot(xx,yy,’-.g’,y,fGc,’or’)

ValGc=0.5*h*sum(fGc)

title(’Quadratura composita con formula di Gauss e relativi nodi’);

disp(’Errore assoluto’)

erroreT=abs(realValue-ValGc)

hold off

otherwise

error(’Formula sconosciuta’)

end

6.3 Esercizi proposti

Esercizio 56. (Appello del 23/3/05). Calcolare numericamente

∫ 1

−1
(1 + x2)

√

1− x2 dx



198 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

usando il metodo di Simpson composito. Quanti punti sono necessari affinchè l’errore as-
soluto sia < 1.e − 4? Come valore esatto, considerare il valore dell’integrale ottenuto con
quadl a meno di 1.e − 6.

Esercizio 57. (Appello del 21/12/05). Si calcoli un’approssimazione di

I =

∫ 2

−1

(
5

2
x4 − 15

2
x3 + 2

)

dx

con le formule di Newton-Côtes di tipo chiuso con n ≤ 4. Ricordiamo che le formule di
Newton-Côtes di tipo chiuso hanno la forma seguente

In+1(f) = κ · h ·
n∑

j=0

cjf(xj)

dove h = (b−a)/n, xj = a+jh, j = 1, ..., n e i coefficienti si ricavano della tabella seguente

n κ c0 c1 c2 c3 c4 c5

1 1/2 1 1
2 1/3 1 4 1
3 3/8 1 3 3 1
4 2/45 7 32 12 32 7
5 5/288 19 75 50 50 75 19

Calcolare anche l’errore assoluto commesso rispetto al valore dell’integrale.

Esercizio 58. (Appello del 22/6/07). Un corpo in caduta libera all’equatore, subisce
una deviazione dalla verticale dovuta all’ accelerazione di Coriolis. Supponendo che al
tempo t = 0 il corpo sia fermo (cioe‘ x(0)=0, v(0)=0 e a(0)=0) e che la sua accelerazione
di Coriolis sia nota solo negli istanti di tempo di Tabella, si determini lo spostamento dalla
verticale dovuto a tale accelerazione dopo t = 100 sec..

In tabella elenchiamo al variare del tempo t, i valori dell’accelerazione a(t):

t | 10 15 30 40 50 70 100

-----------------------------------------------

a |.0144 .0216 .0432 .0576 .072 .1008 .1439

Mediante integrazione dell’accelerazione, il suggerimento è quindi di calcolare la velocità
v(t) negli istanti di tempo indicati usando la formula di quadratura dei trapezi composita e
integrando nuovamente calcolare la deviazione x(t) (sempre integrando numericamente con
i trapezi compositi) negli stessi istanti di tempo. Essendo

a =
dv(t)

dt
=
d2x(t)

dt2



6.3. ESERCIZI PROPOSTI 199

v(T ) =

∫ T

0

dv(t)

dt
dt = v(T )− v(0) (6.43)

x(T ) =

∫ T

0

dx(t)

dt
dt = x(T )− x(0) (6.44)

Applicando all’equazione (6.43), la formula di quadratura composita dei trapezi, si
avrebbe

v(0) = 0

v(10) =
10

2
(0.0144 + 0);

v(15) = v(10) +
5

2
(0.0144 + 0.0216);

ecc...

Applicando ancora all’equazione (6.44), la formula di quadratura composita dei trapezi, si
avrebbe

x(0) = 0

x(10) =
10

2
(v(10) + v(0));

x(15) = x(10) +
5

2
(v(10) + v(15));

ecc...

• Quale sarebbe la distanza percorsa dal corpo dopo t = 100 sec (supponendo non ci sia
attrito)? Sugg. 1 L’energia potenziale si trasforma in cinetica, quindi .... Sugg. 2
oppure per la seconda legge della dinamica

m g = m
d2x

dt2

e integrando due volte si conclude.

Esercizio 59. Si consideri il seguente integrale definito
∫ 5π

1
π

sin

(
1

x

)

dx .

1. Dire a priori quanti punti sono necessari, sia col metodo dei trapezi composito che con
il metodo di Simpson composito, per il calcolo dell’integrale a meno di tol = 1.e − 4.
Si suggerisce di costruire una funzione funQ che valuta sia f(x) = sin(1/x) che le
derivate f (2) e f (4).

2. Calcolare quindi l’integrale con il metodo di Simpson composito usando il numero
minimo di nodi richiesto al punto precedente. Qual è l’errore assoluto commesso?
Come valore esatto usare quello ottenuto con quadl con tolleranza tol = 1.e− 4. Che
conclusione si può trarre osservando l’errore di approssimazione?



200 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

3. Calcolare l’integrale con il metodo di Simpson composito usando i punti xi = (i +
1)/π, i = 0, ..., 4 e xi = (i − 4)π, i = 5, . . . , 9. (Sugg. Applicare Simpson com-
posito ai due insiemi di punti sommandone poi il valore che si ottiene con Simpson
nell’intervallo [5/π, π]...)

Esercizio 60. (Appello del 11/09/07). Si consideri il seguente integrale definito

∫ − 1
π

−π
sin

(
1

x2

)

dx .

1. Dire a priori, analizzando la formula dell’errore, quanti punti sono necessari per il
calcolo del precedente integrale con il metodo dei trapezi composito a meno di tol =
1.e − 3.

2. Calcolare quindi l’integrale con il metodo di trapezi composito usando 20 punti equi-
spaziati tra −π e −5/π e 50 punti equispaziati tra −5/π e −1/π. Qual è l’errore
assoluto commesso? Usare come valore esatto quello ottenuto con la funzione quadl

con la stessa tolleranza.

Esercizio 61. Calcolare numericamente

∫ 1

−1

√

|x3 − 0.7| dx

usando il metodo dei trapezi composito su 10 sottointervalli di [-1,1]. Confrontare poi i
risultati con la funzione quadl di Matlab usando come tolleranza 1.e − 6.

Esercizio 62. (Appello del 29/3/07). L’integrale di f(x) = x
2e−

x
2 cos(x) su [−1, 1] si

può approssimare con la formula di Gauss-Legendre

∫ 1

−1
f(x)dx ≈

n∑

i=1

wif(zi) . (6.45)

Il vettore dei nodi z e dei pesi w si possono determinare con la M-function:

function [z,w]=zwlegendre(n)

% This function computes nodes z and weights

% w of the Gauss-Legendre quadrature formula.

%---------------------------------------------

% Input:

% n = number of quadrature nodes

%Outputs:

% z = column vector of the nodes

% w = column vector of the weights

%---------------------------------------------

if n<=1



6.3. ESERCIZI PROPOSTI 201

z=[0]; w=[2];

return

end

A=zeros(n);

k=[1:n-1];

v=k./(sqrt(4*(k.^2)-1));

A=A+diag(v,1)+diag(v,-1);

[w,z]=eig(A);

nm2=sqrt(diag(w’*w));

w=(2*w(1,:)’.^2)./nm2;

z=diag(z);

Si chiede di calcolare l’integrale (6.45) con la formula di Gauss-Legendre costruita prendendo
n = 2i, i = 0, 1, ..., imax = 8 punti a meno di tol = 1.e−9. In pratica ci si arresterà quando
n > 28 oppure l’errore in modulo diventa minore di tol, assumendo come valore esatto quello
che si ottiene con la funzione quadl).



202 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

6.4 Estrapolazione di Richardson

In questa sezione presentiamo la tecnica di estrapolazione di Richardson che rappresenta
uno degli strumenti più interessanti per l’accelerazione di successioni, ovvero il loro calcolo
”veloce”, e che trova applicazione anche alla quadratura numerica.

Uno degli ingredienti su cui si basa la tecnica di Richardson è la formula di sommazione
di Eulero-Maclaurin che a sua volta si basa sui numeri di Bernoulli ovvero il valore in zero
dei polinomi di Bernoulli di grado pari.

Presenteremo quindi lo schema di (estrapolazione) di Romberg come applicazione della
tecnica di Richardson alla quadratura numerica. A sua volta, la tecnica di Romberg si può
pensare come l’algoritmo di Neville per la valutazione in 0 del polinomio di interpolazione
i cui nodi non sono altro che i passi al quadrato da cui si parte per raffinare la formula di
quadratura (ovvero per aumentarne l’ordine di convergenza).

Molti dei metodi numerici quali quelli per l’interpolazione e la quadratura si basano sulle
informazioni di una certa funzione su un insieme di valori che dipende da un passo h 6= 0.

Ad ogni h 6= 0 corrisponde il valore T (h) di un funzionale, che rappresenta il processo
approssimato numerico, che ammette una espansione asintotica in termini di potenze di h:

T (h) = τ0+τ1h
γ1+τ2h

γ2+. . .+τmh
γm+αm+1(h)h

γm+1 , 0 < γ1 < γ2 < ... < γm+1 , (6.46)

con τi, i = 0, ...,m indipendenti da h e |αm+1(h)| ≤ A (ovvero limitata), γi non tutti interi.
Inoltre τ0 = limh→0 T (h) è la soluzione esatta del problema considerato.

Presentiamo ora due semplici esempi di funzionali lineari che si possono rappresentare
nella forma (6.46).

Esempio 42. Sia

T (h) =
f(x+ h)− f(x− h)

2h

l’operatore alle differenze finite centrali. È noto che T (h) ≈ f ′(x). Se f ∈ C2m+3[x−
a, x+ a], m ≥ 0 e |h| ≤ |a|, allora dall’espansione di Taylor possiamo riscrivere T (h) come
segue:

T (h) =
1

2h

{

f(x) + f ′(x)h+ f (2)(x)
h2

2!
+ . . .+

h2m+3

(2m+ 3)!
[f (2m+3)(x) + o(1)]

}

−

− 1

2h

{

f(x)− f ′(x)h+ f (2)(x)
h2

2!
+ . . .+ (−1)2m+3 h2m+3

(2m+ 3)!
[f (2m+3)(x) + o(1)]

}

=

= τ0 + τ1h
2 + . . .+ τmh

2m + αm+1(h)h
2m+2 ,

dove τ0 = f ′(x), τk =
f (2k+1)(x)

(2k + 1)!
, k = 1, ...,m + 1 e αm+1(h) = τm+1 + o(1)1.

1Con il simbolo o(1) si intende indicare una quantità che ha ordine di infinitesimo di una costante.



6.4. ESTRAPOLAZIONE DI RICHARDSON 203

Esempio 43. Sia

T (h) =
f(x+ h)− f(x)

h

l’operatore alle differenze finite in avanti. Operando come prima si ha

T (h) = τ0 + τ1h+ τ2h
2 . . .+ τmh

m + αm+1(h)h
m+1 ,

dove τk =
f (k+1)(x)

(k + 1)!
, k = 0, 1, ...,m + 1 e αm+1(h) = τm+1 + o(1).

Infine, osserviamo che l’operatore alle differenze finite centrali è una approssimazione
migliore dell’operatore alle difference finite in avanti, poiché la sua espansione asintotica
contiene solo potenze pari di h.

La domanda d’obbligo a questo punto è la seguente:

Come possiamo costruire un metodo generale di estrapolazione?

Dato un metodo di discretizzazione, scegliamo una sequenza di passi, {h0, h1, h2, ...}, tali
che h0 > h1 > h2 > . . . > 0, e calcoliamo T (hi), i = 0, 1, 2, .... Fissato poi un indice k, per
i ≤ k costruiamo i polinomi

T̃i,k(h) = b0 + b1h
γ1 + ...+ bkh

γk (6.47)

tali da soddisfare alle condizioni di interpolazione

T̃i,k(hj) = T (hj), j=i−k,i−k+1,...,i .

Consideriamo quindi i valori

Ti,k = T̃i,k(0)

come approssimazione di τ0.
2

Ci limiteremo al caso in cui γk = k γ.

Poniamo, z = hγ e zj = hγ
j , j = 0, 1, ...,m, cosicché

T̃i,k(h) = b0 + b1z + b2z
2 + ...+ bkz

k := Pi,k(z) .

Proviamo un risultato che sostanzialmente afferma che il valore estrapolato Ti,k altro
non è che il valore in z = 0 del polinomio di interpolazione di grado k sui nodi zj , j =
i− k, ..., i che assume il valore T (hj).

2Talvolta ai polinomi (6.47) si preferiscono funzioni razionali.



204 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

Proposizione 17. In z = 0,

Ti,k := Pi,k(0)
Lagrange

=

i∑

j=i−k

c
(i)
k,jPi,k(zj) =

i∑

j=i−k

c
(i)
k,jT (hj) (6.48)

dove

c
(i)
k,j =

i∏

s 6= j
s = i− k

zs
zs − zj

sono i polinomi elementari di Lagrange, tali che

i∑

j=i−k

c
(i)
k,jz

p
j =







1 p = 0
0 p = 1, ..., k
(−1)kzi−kzi−k+1 · · · zi p = k + 1

(6.49)

Dim. Osserviamo che i coefficienti c
(i)
k,j dipendono solo da zj . Consideriamo i monomi

zp, p = 0, 1, ..., k. Riscriviamoli come polinomi di interpolazione di Lagrange

zp =

i∑

j=i−k

zp
j ·

i∏

s 6= j
s = i− k

z − zs
zj − zs

p = 0, 1, ..., k .

Da cui, per z = 0 si ottengono le prime due uguaglianze in (6.49).

Infine, osserviamo che

zk+1 =
i∑

j=i−k

zk+1
j ·

i∏

s 6= j
s = i− k

z − zs
zj − zs

+
i∏

s=i−k

(z − zs) . (6.50)

Infatti, poiché zk+1 sta sia a sinistra che a destra della (6.50), il polinomio differenza

zk+1 − (membro destro in (6.50)) ∈ Pk

e si annulla nei k+1 punti zs, s = i−k, ..., i. Cioè esso si annulla identicamente. Ciò prova
la validità della (6.50).

Sostituendo z = 0, si ottiene la terza delle (6.49). �

Siamo in grado di usare l’espansione (6.48). Pertanto, per k < m

Ti,k =

i∑

j=i−k

c
(i)
k,jT (hj) =

i∑

j=i−k

c
(i)
k,j

[

τ0 + τ1zj + τ2z
2
j + . . .+ τkz

k
j + zk+1

j (τk+1 +O(hj))
]

,

(6.51)



6.4. ESTRAPOLAZIONE DI RICHARDSON 205

e per k = m

Ti,m =
i∑

j=i−m

c
(i)
m,jT (hj) =

i∑

j=i−m

c
(i)
m,j

[

τ0 + τ1zj + τ2z
2
j + . . .+ τmz

m
j + zm+1

j αm+1(hj)
]

.

(6.52)
Se i passi hj sono tali che hj = h0b

j , 0 < b < 1, ovvero formano una successione geometrica

di ragione b, o in generale
hj+1

hj
≤ b < 1, ∀ j, si può dimostrare che esiste una costante Ck

dipendente solo da b tale che

i∑

j=i−k

|c(i)k,j|zk+1
j ≤ Ckzi−kzi−k+1 · · · zi . (6.53)

Dalle relazioni (6.49) e (6.53) segue che

Ti,k = τ0 + (−1)kzi−kzi−k+1 · · · zi(τk+1 +O(hi−k)), k < m ; (6.54)

e
|Ti,m − τ0| ≤Mm+1Cmzi−mzi−m+1 · · · zi , (6.55)

se |αm+1(hj)| ≤Mm+1, per j ≥ 0.

Concludendo, per k fissato e i→∞

|Ti,k − τ0| = O(zk+1
i−k ) = O(h

(k+1)γ
i−k ) . (6.56)

Rappresentando il tutto su un “tableau”, come in Figura 6.8, potremo dire che Ti,k, ovvero
l’ i-esimo elemento della (k + 1)-esima colonna, converge a τ0 con ordine (k + 1)γ.

6.4.1 Applicazione alla quadratura numerica

Sia f ∈ C2m+2[a, b] e si desideri calcolare

∫ b

a
f(t)dt su una partizione uniforme, xi = a +

ih, i = 0, 1, ..., n, h = (b− a)/n, n ≥ 1.

Regola trapezoidale

Se si fa uso della formula trapezoidale, è noto che

T (h) = h

(
f(a)

2
+ f(a+ h) + . . .+ f(b− h) +

f(b)

2

)

.

Per tale funzionale vale la formula di sommazione di Eulero-Maclaurin

T (h) =

∫ b

a
f(t)dt+

m∑

l=1

B2l

(2l)!

(

f (2l−1)(b)− f (2l−1)(a)
)

+h2m+2 B2m+2

(2m+ 2)!
(b−a)f (2m+2)(ξ), a < ξ < b .

(6.57)



206 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

Figura 6.8: Tableau dello schema di Richardson per m = 3, con Ti,0 = T (hi).

La formula precedente ci da una espressione esplicita dell’errore che si commette approssi-
mando l’integrale di f su [a, b] mediante la formula dei trapezi. I coefficienti Bk sono i
numeri di Bernoulli che sono definiti come il valore in 0 dei polinomi di Bernoulli di grado
k, con k pari (si veda la sottosezione 6.4.3 per alcuni cenni sui polinomi di Bernoulli).

Alla luce di quanto detto, la formula trapezoidale (6.57) si può riscrivere come

T (h) = τ0 + τ1h
2 + . . .+ τmh

2m + αm+1h
2m+2 , (6.58)

ove τ0 =
∫ b
a f(t)dt e τk =

B2k

(2k)!

(

f (2k−1)(b)− f (2k−1)(a)
)

, k = 1, ...,m e αm+1(h) =

B2m+2

(2m+ 2)!
(b − a)f (2m+2)(ξ(h)) a < ξ(h) < b . Poiché f (2m+2) ∈ C[a, b], allora esiste una

costante L tale che |f (2m+2)(x)| ≤ L, uniformemente in x. Ció implica che ∃Mm+1 tale che

|αm+1(h)| ≤Mm+1, ∀ h =
b− a
n

, n > 0 . (6.59)



6.4. ESTRAPOLAZIONE DI RICHARDSON 207

La disequazione (6.59) ci dice che il termine di errore dell’espansione asintotica (6.58) tende
a zero come h → 0. Infine, detta espansione approssima τ0 come un polinomio in h2, al
tendere a zero di h.

Metodo di Romberg

Per il calcolo di τ0 si può procedere come segue:

1. h0 = b− a, h1 =
h0

n1
, . . . ,hm =

h0

nm
, con n1, ..., nm > 0, m > 0.

2. In corrispondenza determino

Ti,0 = T (hi) , i = 0, 1, ...,m ;

dove T (h) è il funzionale (6.58).

3. Sia
T̃m,m(h) = a0 + a1h

2 + ...+ amh
2m ;

tale che T̃m,m(hi) = T (hi), i = 0, 1, ...,m. Il polinomio T̃m,m altro non è che il
polinomio di interpolazione di Ti,0.

4. Sia T̃m,m(0) il valore estrapolato di τ0.

Su queste idee si basa il metodo di Romberg. Le scelte dei passi hi e dei polinomi T̃i,k sono
fatte come segue:

• hi =
b− a

2i
, i ≥ 0.

• Per calcolare T̃m,m(0) (ovvero il valore estrapolato di τ0) si usa l’algoritmo di Neville
(vedi sottosezione 6.4.4). Per 1 ≤ i ≤ k ≤ m sia T̃i,k il polinomio di grado k in h2 tale
che:

T̃i,k(hj) = T (hj), j = i− k, ..., i ;

T̃i,k(0) = Ti,k .

A partire da k = 1, l’algoritmo di Neville consente di determinare Ti,k dai valori di
Ti,k−1 e Ti−1,k−1, usando la formula

Ti,k = Ti,k−1 +
Ti,k−1 − Ti−1,k−1
[

hi−k

hi

]2
− 1

. (6.60)

Si osservi che la formula precedente ha xi = h2
i .

Per capire meglio il funzionamento del metodo facciamo un’esempio.



208 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

Esempio 44. Calcoliamo

I =

∫ 1

0
x5dx .

Il valore esatto dell’ integrale è I = 1
6 . Prendiamo h0 = 1, h1 = 2−1, h2 = 2−2. Calcoliamo

mediante la formula trapezoidale i valori T0,0 = 0.5 corrispondente a h2
0, T1,0 = 0.265625 ≈

17
64 corrispondente a h2

1 e T2,0 = 0.192383 ≈ 197
1024 corrispondente a h2

2. Usiamo la (6.60)
per calcolare T1,1 e T2,1. Un ulteriore applicazione della (6.60) consente di determinare
T2,2 = 0.1666667 ≈ 1

6 .

Una prima importante proprietà dello schema di Romberg è che ogni Ti,k del tableau
costruito con la (6.60) (vedi Figura 6.8) rappresenta una regola di integrazione lineare,
ovvero

Ti,k = α0f(a) + α1f(a+ hi) + ...+ αni−1f(b− hi) + αni
f(b) .

Proposizione 18. Per i = k alcune formule Tk,k rappresentano formule di quadratura di
tipo Newton-Cotes. In particolare

• T0,0 è la formula dei trapezi (Ti,0 formule dei trapezi composte);

• T1,1 è la formula di Simpson, (Ti,1 formule di Simpson composte);

• T2,2 è la formula di Milne.

T3,3 non è una formula di Newton-Cotes.

Dim. Facilmente si prova che

T0,0 =
b− a

2
(f(a) + f(b)) , (formula dei trapezi)

T1,0 =
b− a
22

(f(a) + 2f(
a+ b

2
) + f(b)) .

Da cui, mediante l’algoritmo di Neville

T1,1 = T1,0 +
T1,0 − T0,0

3
=

4

3
T1,0 −

1

3
T0,0 .

Sviluppando

T1,1 =
b− a

2

(
1

3
f(a) +

4

3
f

(
a+ b

2

)

+
1

3
f(b)

)

,

che è la ben nota formula di Simpson.

Le rimanenti affermazioni si lasciano per esercizio. �

Come ultima osservazione, il metodo di Romberg è un metodo di estrapolazione di
Richardson della formula (6.46) in cui l’esponente γk = 2k.



6.4. ESTRAPOLAZIONE DI RICHARDSON 209

T20,1

T2,1 T1,2

T22,1 T2,2 T1,3

T23,1 T22,2 T2,3 T1,4

T24,1 T23,2 T22,3 T2,4 T1,5

...
...

. . .

Tabella 6.5: Tabella del metodo di Romberg

6.4.2 Una implementazione del metodo di Romberg

Il metodo di Romberg per la quadratura si applica usando la seguente ricetta: si costruisce
una tabella, T triangolare (inferiore), la cui prima colonna consiste dei valori approssimati
dell’integrale mediante formule composite dei trapezi costruite usando suddivisioni regolari
con N = 2m, m = 0, 1, 2, .... punti. Se indichiamo con Ti,1, i = 1, 2, . . . l’ elemento dell’
i-esima riga della prima colonna di T, che contiene il valore approssimato dell’integrale con
i passi hi = 2i−1, gli elementi delle successive colonne sono costruiti mediante la ricorrenza

Ti,k =
4k−1Ti,k−1 − Ti−1,k−1

4k−1 − 1
, k ≥ 2 , i ≥ k. (6.61)

Un esempio di tabella di Romberg è visualizzato in Tabella 6.5. Questa tecnica trova la sua
utilità nelle seguenti due proprietà

(a) TN,k è una formula di quadratura del tipo

TN,k =

N∑

j=1

Aj,Nf(xj,N) .

(b) Ciascuna delle formule in una data riga, come ad esempio la riga evidenziata in Tabella
6.5

T23,1, T22,2, T2,3, T1,4

o in generale

T2m,1, T2m−1,2, T2m−2,3, T2m−3,4, ....(∗)

è una formula con N = 2m + 1 punti e in ciascuna delle formule (*) i punti sono gli
stessi che in T2m,1.



210 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

Infine, vale il seguente risultato.

Teorema 21. Ciascuna formula T1,k, T2,k, T3,k, .... è una formula di grado di esattezza
2k − 1.

Ad esempio, se consideriamo la terza colonna di Tabella 6.5, essa rappresenta una
formula di quadratura esatta sui polinomi di grado 5 (ecco perchè integra perfettamente la
funzione x5).

function int_value=romberg(f,a,b,n)

%--------------------------------------------------

% Questo M-file implementa il metodo di Romberg

% per la quadratura numerica partendo dalla

% formula dei trapezi composta (mediante la

% formula (6.61)).

%--------------------------------------------------

% f: funzione d’integrazione

% n: numero livelli

% a,b: estremi intervallo d’integrazione

% int_value: valore dell’integrale

%--------------------------------------------

T=zeros(n,n);

%---------------

% Prima colonna

%---------------

for i=1:n,

m=2^(i-1); h=(b-a)/m;

x=linspace(a,b,m+1);

ff=f(x);

T(i,1)=(h/2)*(ff(1)+ff(end)+2*sum(ff(2:end-1)));

end;

%--------------------%

% Colonne successive %

%--------------------%

for k=2:n,

for i=k:n,

T(i,k)=(4^(k-1)*T(i,k-1)-T(i-1,k-1))/(4^(k-1)-1);

end;

end;

disp(’Tabella di Romberg’); T

int_value=T(n,n);

return



6.4. ESTRAPOLAZIONE DI RICHARDSON 211

6.4.3 I polinomi di Bernoulli

In questa sottosezione desideriamo richiamare alcune delle caratteristiche salienti dei poli-
nomi di Bernoulli.

Si parte dall’intervallo I = [0, 1] e per ogni x ∈ I i polinomi di Bernoulli sono definiti
dalle seguenti relazioni:

B0(x) = 1 , (6.62)

B1(x) = x− 1

2
, (6.63)

B′
k+1(x) = (k + 1)Bk(x), k = 1, 2, .... (6.64)

Le relazioni (6.63) e (6.64) consentono di determinare i polinomi di Bernoulli a meno di una
costante di integrazione. Per avere univocità si introducono le ulteriori condizioni

B2l+1(0) = 0 = B2l+1(1), l ≥ 1 . (6.65)

Si voglia ad esempio determinare B2(x). Dalle (6.63) e (6.64) si avrebbe B′
2(x) = 2x2 − 1.

Integrando B2(x) = x2 − x + c. Usando ancora le (6.63) e (6.64) si avrebbe B3(x) =

x3 − 3

2
x2 + 3cx+ d. Usando le condizioni al contorno (6.65) si ottiene d = 0, c = 1

6 .

Da quanto detto segue che i numeri di Bernoulli sono nulli per i polinomi di grado
dispari (ciò segue da (6.65)) e diversi da zero per quello di grado pari. I primi 4 numeri pari

di Bernoulli sono: B0 = 1, B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
.

Due proprietà facilmente verificabili sono:

1. (−1)kBk(1− x) = Bk(x), k ≥ 0;

2.

∫ 1

0
Bk(t)dt = 0, k > 1.

Per il grafico di alcuni polinomi di Bernoulli, vedasi Fig. 6.9.

6.4.4 Algoritmo di Neville

L’algoritmo di Neville consente di valutare il polinomio interpolante mediante una succes-
sione di interpolazioni lineari di polinomi di grado via via crescente.

Sia Sn = {(xi, yi), i = 0, 1, ..., n} un insieme di punti in R
2 Nella sua forma originale

l’algoritmo funziona come segue:

(a) Fase di inizializzazione
Pi,0 = yi, i = 0, 1, ..., n .



212 CAPITOLO 6. DERIVAZIONE ED INTEGRAZIONE

B2

B3

B4

B5

B6

0 0.5 1

0

0.2
Polinomi di Bernoulli

Figura 6.9: Alcuni polinomi di Bernoulli.

(b) Passo iterativo

Pi,k = λi,k(x)Pi,k−1 + µi,k(x)Pi−1,k−1, k = 1, ..., n i = 0, 1, ..., n − k ;

dove λi,k(x) =
xi+k − x
xi+k − xi

e µi,k(x) =
x− xi

xi+k − xi
.

Alla fine P0,n conterrà il valore in x del polinomio di interpolazione di grado n su Sn.

Il polinomio interpolante ottenuto con lo schema di Neville, può scriversi nella forma

Pi,k(x) =
i+k∑

j=i

lkj,i(x)yj

dove i polinomi di grado k, lkj,i(x), sono i polinomi elementari di Lagrange.

Tale algoritmo si può applicare allo schema di Romberg pur di prendere x = 0 e xi = h2
i

nonché prendendo i = 0, 1, 2, ... e k = 1, ..., i nel passo iterativo.



Appendice A

Metodi iterativi ed equazione
logistica

A.1 Malthus e Verhlust

Iniziamo questa prima appendice ricordando due tra i più noti e semplici modelli di evoluzione
di una popolazione.

A.1.1 Modello lineare di Malthus

Il Rev.do Thomas (Robert) Malthus (?/2/1766- 23/12/1834), curato inglese ad Albury
(vicino ad Oxford), nel suo saggio ”An Essay on the Principle of Population” pubblicato
nel 1798, ipotizzò che una popolazione che non ha scambi con l’esterno cresce sempre più
dei propri mezzi di sussistenza.

Figura A.1: Thomas Malthus

Aveva delle visioni pessimistiche sia come demografo che come economista. Predisse

213



214 APPENDICE A. METODI ITERATIVI ED EQUAZIONE LOGISTICA

che la crescita di una popolazione matematicamente è una crescita geometrica, ovvero il
tasso di crescita è lineare.

Se pertanto x0 è il numero di individui iniziali, allora dopo un certo tempo la popolazione
sarà x1 = x0 + g x0, con g ∈ R che è detto fattore di crescita (o growth rate). Allora
x1 = (1 + g)x0, x2 = (1 + g)x1 = (1 + g)[(1 + g)x0] = (1 + g)2x0

e al passo k

xk = (1 + g)kx0 g ∈ R (A.1)

che è una progressione geometrica di ragione 1 + g.

Domanda: come varia la popolazione? Risposta: in funzione di g e del valore iniziale
x0.

Studiamo la successione (o progressione) geometrica (A.1). Essa converge se e solo
se |1 + g| < 1 per ogni popolazione iniziale x0. Pertanto, si ha convergenza quando
−2 < g < 0. Se −2 < g ≤ −1 allora −1 < 1 + g < 0 cosicché xk sarà negativo per k
dispari e positivo altrimenti. Ovvero non sapremo dire nulla. Se g = −1, 1+ g = 0 e quindi
xk = 0, ∀k. Infine, quando −1 < g < 0, 1 + g < 1 per cui xk < x0: la popolazione si
estingue!

Ci sono due altri casi da considerare:

• g = 0. In tal caso la popolazione rimane inalterata xk = x0, ∀k.

• Divergenza quando g > 0. Infatti, se 1 + g > 1 che implica xk > xk−1 > · · · > x0:
la popolazione cresce esponenzialmente.

Esempio 45. Come esempio, consideriamo la popolazione iniziale x0 = 100 e consideriamo
10 iterazioni, k = 0, 1, ..., 10. L’evoluzione sarà come in Figura A.2

A.1.2 Il modello non lineare di Verhulst

Pierre Verhulst (Brussels, 28/10/1804-15/2/1849) era un matematico che si interessò di
biologia e in particolare della legge di crescita di una popolazione.

Nel 1838 in Verhulst, P. F. Notice sur la loi que la population pursuit dans son accroissement,

Corresp. Math. Phys. 10:113-121, propose un nuovo modello di crescita della popolazione,
assumendo non più una crescita costante ma con fattore di crescita di tipo lineare g(x) =
−ax + b, a > 0. Partendo da una popolazione iniziale x0, la (A.1) al passo k si scriverà
come

xk+1 = xk + g(xk)xk = −ax2
k + (1 + b)xk . (A.2)

L’equazione (A.2) ha senso se a > −1 e 0 ≤ x ≤ 1+b
a (perchè la popolazione deve essere



A.1. MALTHUS E VERHLUST 215

Figura A.2: La progressione di Malthus a partire da una popolazione iniziale di 100
individui per diversi valori di g.

sempre ≥ 0). Il modello è equivalente alla mappa quadratica

T : R
+ −→ R

+

x→ T (x) = −ax2 + (1 + b)x .
(A.3)

Consideriamo la trasformazione lineare x = (1+b)
a y, che mappa l’intervallo [0, (1 + b)/a],

dove la parabola di (A.3) è T (x) ≥ 0 in [0, 1]. Otteniamo

T̃ (y) = −a
(

1 + b

a

)2

y2 + (1 + b) ·
(

1 + b

a

)

y (A.4)

Figura A.3: Pierre Verhlust



216 APPENDICE A. METODI ITERATIVI ED EQUAZIONE LOGISTICA

Semplificando
T̃ (y) = −κy2 + κy (A.5)

avendo posto κ = (1+b)2

a , vedi Fig. A.4.

Figura A.4: La trasformazione lineare della parabola T (x) ≥ 0 in [0, 1]

Possiamo allora studiare la mappa discreta

xk+1 = −κx2
k + κxk , 0 < κ ≤ 4. (A.6)

Il processo iterativo (A.6) si chiama processo logistico discreto. Pertanto, partendo
da un x0 ∈ (0, 1], scelto un valore di κ ∈ (0, 4], itereremo la mappa (A.6) un certo numero
di volte, ottenendo un punto del cosidetto diagramma di Verhulst.

Riassumendo, indichiamo in tabella A.1, le differenze tra i due approcci.

A.1.3 Isometrie, dilatazioni e contrazioni

In entrambi i procedimenti di Malthus e Verhulst, partendo da un x0 e da una funzione T :
R→ R si è generata una successione di valori {xn}n≥0 tale che xn+1 = T (xn), n = 0, 1, ....
Consideriamo allora la successione

xn+1 = T (xn), n = 0, 1, 2, ... (A.7)



A.1. MALTHUS E VERHLUST 217

Figura A.5: Iterazione del processo di Verhulst che origina il ben noto diagramma di
biforcazione

Malthus: lineare Verhulst: non lineare

fattore di crescita costante g lineare g(x) = ax+ b

processo

{
x0 start
xn+1 = (1 + g)xn

{
x0 start
xn+1 = −kx2

n + kxn k = (1 + b)2/a

trasformazione T (x) = (1 + g)x T (x) = −kx2 + kx

Tabella A.1: Tabella di confronto tra le iterazioni di Malthus e Verhlust

essa sarà detta

• una isometria se

|T (xn+1)− T (xn)| = |xn+1 − xn|, ∀n ∈ N (A.8)

• una dilatazione se

|T (xn+1)− T (xn)| > |xn+1 − xn|, ∀n ∈ N (A.9)

• oppure una contrazione se

|T (xn+1)− T (xn)| < κ |xn+1 − xn|, ∀n ∈ N, κ ∈ [0, 1) (A.10)

Vale il seguente Teorema del punto fisso di (Banach-)Caccioppoli



218 APPENDICE A. METODI ITERATIVI ED EQUAZIONE LOGISTICA

Teorema 22. Ogni contrazione T : R→ R ammette un unico punto fisso,

x⋆ = T (x⋆).

Partendo da un fissato x0 il processo

xn+1 = T (xn) , n = 0, 1, 2, ...

è un’approssimazione di x⋆ che migliora ad ogni passo, cioè

|xn+1 − x⋆| < |xn − x⋆|, n = 0, 1, 2, ...

Il punto x⋆ è detto appunto punto fisso della contrazione T .

Figura A.6: Renato Caccioppoli

Se T è una contrazione, allora esiste un κ ∈ [0, 1) tale che

|T (xn+1)− T (xn)| < κ |xn+1 − xn|, ∀n ∈ N, (A.11)

ovvero
|T (xn+1)− T (xn)|
|xn+1 − xn|

< 1 . (A.12)

La disuguaglianza (A.12) ci dice che il ”rapporto incrementale” è sempre minore di 1.
Quando |xn+1−xn| ≤ ǫ allora il rapporto incrementale approssima la derivata di T in xn.

A.1.4 Esempi di processi iterativi

1. Processo di traslazione: T (x) = x + a. Le progressioni aritmetiche, come la
capitalizzazione semplice degli interessi, sono processi di traslazione. Sono processi
isometrici.

2. Processo omotetico: T (x) = mx.

• |m| < 1, è una contrazione.

• |m| > 1,è una dilatazione.



A.1. MALTHUS E VERHLUST 219

• |m| = 1, è una isometria (identità se m = 1 e simmetria rispetto l’origine se
m = −1).

Le progressioni geometriche, quali la capitalizzazione composta degli interessi, sono
processi omotetici.

Rappresentazione grafica di processi iterativi

1. In un riferimento cartesiano ortogonale, tracciamo il grafico della trasformazione T
(linea blu) e della funzione identica y = x (linea verde).

Figura A.7: Rappresentazione di un processo iterativo.

2. Fissato un punto iniziale x0, costruiamo la sua immagine x1 = T (x0) sull’asse delle
ordinate. Per simulare il procedimento di retroazione, riportiamo in ascissa il valore
x1 attraverso la funzione identica y = x. Costruiamo l’immagine x2 = T (x1) del
punto x1 e riportiamo il suo valore in ascissa e procediamo iterativamente. Nel primo
fotogramma della figura seguente è illustrato un processo shift, nel secondo e nel terzo
due processi omotetici di contrazione con attrattore nullo. Il quarto fotogramma
rappresenta infine un processo espansivo.

Esempio 46. Esempi di un processo iterativo convergente Fig. A.9 e di processo iterativo
divergente Fig. A.10. Infine alcune iterazioni di Verhulst per diversi valori di κ si trovano
nelle figure Fig. A.11-A.13.



220 APPENDICE A. METODI ITERATIVI ED EQUAZIONE LOGISTICA

Figura A.8: Processi iterativi per diversi valori di m

Figura A.9: Processo convergente



A.1. MALTHUS E VERHLUST 221

Figura A.10: Processo divergente

Figura A.11: Processo di Verhulst convergente con x0 = 0.1, κ = 3.



222 APPENDICE A. METODI ITERATIVI ED EQUAZIONE LOGISTICA

Figura A.12: Processo di Verhulst convergente con x0 = 0.1, κ = 3.9

Figura A.13: Processo di Verhulst divergente con x0 = 0.1, κ = 4.1



Appendice B

Aspetti implementativi
dell’interpolazione polinomiale

B.1 Richiami sull’interpolazione polinomiale

Data una funzione f : [a, b] → R e un insieme {xi}ni=1 ⊂ [a, b], sia pn−1f(x) il polinomio di
grado n− 1 interpolatore di f nei punti xi (cioè pn−1f(xi) = f(xi). Chiameremo i punti xi

nodi di interpolazione (o, più semplicemente, nodi). Un generico punto x̄ ∈ [a, b] in cui si
valuta Ln−1f sarà chiamato nodo target (o, più semplicemente, target).

I n nodi di Chebyshev sono gli zeri del polinomio di Chebyshev di grado n Tn(x) =

cos(n arccos(x)). Dunque, xj+1 = cos
(

jπ+ π
2

n

)

, j = 0, . . . , n − 1. Si chiamano n nodi di

Chebyshev estesi (o di Chebyshev–Lobatto) i nodi x̄j+1 = cos
(

jπ
n−1

)

, j = 0, . . . , n − 1.

Tali nodi appartengono all’intervallo [−1, 1]. I nodi di Chebyshev relativi ad un intervallo
generico [a, b] si ottengono semplicemente per traslazione e scalatura.

B.1.1 Interpolazione di Lagrange

Dato un insieme di n coppie di interpolazione {(xi, yi)}ni=1, il polinomio elementare di La-
grange i-esimo (di grado n− 1) è

Li(x) =

n∏

j=1
j 6=i

(x− xj)

xi − xj
.

L’algoritmo per il calcolo dei polinomi di Lagrange su vettori (colonna) target x è riportato
in Tabella B.1.

223



224APPENDICE B. ASPETTI IMPLEMENTATIVI DELL’INTERPOLAZIONE POLINOMIALE

function y = lagrange(i,x,nodi)

%

% y = lagrange(i,x,nodi)

%

n = length(nodi);

m = length(x);

y = prod(repmat(x,1,n-1)-repmat(nodi([1:i-1,i+1:n]),m,1),2)/...

prod(nodi(i)-nodi([1:i-1,i+1:n]));

Tabella B.1: Polinomio elementare di Lagrange.

Il polinomio di interpolazione si scrive dunque

pn−1(x) =

n∑

i=1

yiLi(x) .

B.1.2 Sistema di Vandermonde

Dato il polinomio

pn−1(x) = a1x
n−1 + a2x

n−2 + . . .+ an−1x+ an

e n coppie di interpolazione {(xi, yi)}ni=1, il corrispondente sistema di Vandermonde si scrive










xn−1
1 xn−2

1 . . . x1 1

xn−1
2 xn−2

2 . . . x2 1
...

... . . .
...

...

xn−1
n−1 xn−2

n−1 . . . xn−1 1
xn−1

n xn−2
n . . . xn 1



















a1

a2
...

an−1

an










=










y1

y2
...

yn−1

yn










(B.1)

L’implementazione dell’algoritmo per il calcolodella matrice di Vandermonde è riportata in
Tabella B.2. Alternativamente, si può usare la function di Matlab/Octave vander.

function V = vandermonde(nodi)

%

% V = vandermonde(nodi)

%

n = length(nodi);

V = repmat(nodi’,1,n).^repmat([n-1:-1:0],n,1);

Tabella B.2: Matrice di Vandermonde.



B.1. RICHIAMI SULL’INTERPOLAZIONE POLINOMIALE 225

B.1.3 Interpolazione di Newton

Data una funzione f , definiamo le differenze divise nel seguente modo:

f [x] = f(x)

f [x1, x] =
f [x]− f [x1]

x− x1

. . . = . . .

f [x1, x2, . . . , xk−1, xk, x] =
f [x1, x2, . . . , xk−1, x]− f [x1, x2, . . . , xk−1, xk]

x− xk

L’algoritmo per il calcolo delle differenze divise è riportato in Tabella B.3.

function d = diffdiv(nodi,valori)

%

% d = diffdiv(nodi,valori)

%

n = length(nodi);

for i = 1:n

d(i) = valori(i);

for j = 1:i-1

d(i) = (d(i)-d(j))/(nodi(i)-nodi(j));

end

end

Tabella B.3: Differenze divise.

L’interpolazione nella forma di Newton si scrive dunque

L0f(x) = d1

w = (x− x1)

Lif(x) = Li−1f(x) + di+1w, i = 1, . . . , n− 1

w = w · (x− xi+1), i = 1, . . . , n− 1

ove

di = f [x1, . . . , xi] .

Il calcolo delle differenze divise e la costruzione del polinomio di interpolazione possono
essere fatti nel medesimo ciclo for.

Sfruttando la rappresentazione dell’errore

f(x)− Li−1f(x) =





i∏

j=1

(x− xj)



 f [x1, . . . , xi, x] ≈





i∏

j=1

(x− xj)



 f [x1, . . . , xi, xi+1]

(B.2)



226APPENDICE B. ASPETTI IMPLEMENTATIVI DELL’INTERPOLAZIONE POLINOMIALE

è possibile implementare un algoritmo per la formula di interpolazione di Newton adattativo,
che si interrompa cioè non appena la stima dell’errore è più piccola di una tolleranza fissata.

Dato il polinomio interpolatore nella forma di Newton

pn−1(x) = d1 + d2(x− x1) + . . .+ dn(x− x1) · . . . · (x− xn−1) ,

si vede che le differenze divise soddisfano il sistema lineare










0 . . . . . . 0 1
0 . . . 0 (x2 − x1) 1
...

. . .
. . .

...
...

0
∏n−2

j=1 (xn−1 − xj) . . . (xn−1 − x1) 1
∏n−1

j=1 (xn − xj) . . . . . . (xn − x1) 1



















dn

dn−1
...
d2

d1










=










f(x1)
f(x2)

...
f(xn−1)
f(xn)










(B.3)

B.1.4 Interpolazione polinomiale a tratti

Data una funzione f : [a, b]→ R e un’insieme {xi}ni=1 ⊂ [a, b] di nodi ordinati, consideriamo
l’interpolante polinomiale a tratti Lc

k−1f di grado k − 1. Su ogni intervallo hi = xi+1 − xi

essa coincide con il polinomio di grado k − 1

ai,1(x− xi)
k−1 + ai,2(x− xi)

k−2 + . . .+ ai,k−1(x− xi) + ai,k . (B.4)

Dunque, l’interpolante polinomiale a tratti è completamente nota una volta noti i nodi e i
coefficienti di ogni polinomio.

B.1.5 Strutture in Matlab/Octave

In Matlab/Octave è possibile definire delle strutture, cioè degli insiemi (non ordinati) di
oggetti. Per esempio, le istruzioni

S.a = 1;

S.b = [1,2];

generano la struttura S

S =

{

a = 1

b =



B.1. RICHIAMI SULL’INTERPOLAZIONE POLINOMIALE 227

1 2

}

L’interpolazione polinomiale a tratti è definita mediante una struttura solitamente chiamata
pp (piecewise polynomial), che contiene gli oggetti pp.x (vettore colonna dei nodi), pp.P
(matrice dei coefficienti), pp.n (numero di polinomi), pp.k (grado polinomiale aumentato
di uno) e pp.d (numero di valori assunti dai polinomi). La matrice P ha dimensione n× k
e, con riferimento a (B.4),

Pij = ai,j .

Nota una struttura pp, è possibile valutare il valore dell’interpolante in un generico target
x̄ con il comando ppval(pp,xbar).

B.1.6 Splines cubiche

Le splines cubiche sono implementate da Matlab/Octave con il comando spline che accetta
in input il vettore dei nodi e il vettore dei valori e restituisce la struttura associata. La spline
cubica costruita è nota come not-a-knot, ossia viene imposta la continuità della derivata
terza (generalemente discontinua) nei nodi x2 e xn−1. Lo stesso comando permette di
generare anche le splines vincolate: è sufficiente che il vettore dei valori abbia due elementi
in più rispetto al vettore dei nodi. Il primo e l’ultimo valore verranno usati per imporre il
valore della derivata alle estremità dell’intervallo.

Implementazione di splines cubiche naturali in Matlab/Octave

Con le notazioni usate fino ad ora, si può costruire una spline cubica S a partire dalla sua
derivata seconda nell’intervallo generico [xi, xi+1]

S′′
[xi,xi+1]

(x) =
mi+1 −mi

hi
(x− xi) +mi, i = 1, . . . , n− 1 (B.5)

ove mi = S′′(xi) sono incogniti, con m1 = mn = 0. Integrando due volte la (B.5), si ottiene

S′
[xi,xi+1]

(x) =
mi+1 −mi

2hi
(x− xi)

2 +mi(x− xi) + ai

S[xi,xi+1](x) =
mi+1 −mi

6hi
(x− xi)

3 +
mi

2
(x− xi)

2 + ai(x− xi) + bi

ove le costanti ai e bi sono da determinare. Innanzitutto, richiedendo la proprietà di inter-
polazione, cioè S[xi,xi+1](xj) = f(xj), j = i, i+ 1, si ottiene

bi = f(xi),

ai =
f(xi+1)− f(xi)

hi
− (mi+1 −mi)

hi

6
−mi

hi

2
=

=
f(xi+1)− f(xi)

hi
−mi+1

hi

6
−mi

hi

3



228APPENDICE B. ASPETTI IMPLEMENTATIVI DELL’INTERPOLAZIONE POLINOMIALE

A questo punto, richiedendo la continuità della derivata prima, cioè S′
[xi−1,xi]

(xi) = S′
[xi,xi+1]

(xi)
per i = 2, . . . , n− 1, si ottiene

hi−1

6
mi−1 +

hi−1 + hi

3
mi +

hi

6
mi+1 =

f(xi+1)− f(xi)

hi
− f(xi)− f(xi−1)

hi−1
. (B.6)

Risulta chiaro che ci sono n− 2 equazioni e n incognite mi.

Splines cubiche naturali Si impone che il valore della derivata seconda agli estremi
dell’intervallo sia 0. Dunque m1 = mn = 0. Il sistema lineare (B.6) diventa allora













1 0 . . . . . . . . . 0
h1
6

h1+h2
3

h2
6 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 hn−2

6
hn−2+hn−1

3
hn−1

6
0 . . . . . . . . . 0 1

























m1

m2
...
...

mn−1

mn













=













d1

d2
...
...

dn−1

dn













con d1 = dn = 0 e di =
f(xi+1)−f(xi)

hi
− f(xi)−f(xi−1)

hi−1
, i = 2, . . . , n−1. L’algoritmo per il

calcolo della struttura associata ad una spline cubica naturale è riportato in Tabella
B.4.

Splines cubiche vincolate Si impongono due valori d′1 e d′2 per la derivata S′(x1) e
S′(xn), rispettivamente. Si ricava dunque

a1 = d′1
mn −mn−1

2hn−1
(xn − xn−1)

2 +mn−1(xn − xn−1) + an−1 = d′n

da cui
h1

3
m1 +

h1

6
m2 =

f(x2)− f(x1)

h1
− d′1

hn−1

6
mn−1 +

hn−1

3
mn = d′n −

f(xn)− f(xn−1)

hn−1

Il sistema lineare da risolvere diventa dunque













h1
3

h1
6 0 . . . . . . 0

h1
6

h1+h2
3

h2
6 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 hn−2

6
hn−2+hn−1

3
hn−1

6

0 . . . . . . 0 hn−1

6
hn−1

3

























m1

m2
...
...

mn−1

mn













=













d1

d2
...
...

dn−1

dn













con d1 = f(x2)−f(x1)
h1

− d′1 e dn = d′n − f(xn)−f(xn−1

hn−1
.



B.1. RICHIAMI SULL’INTERPOLAZIONE POLINOMIALE 229

function pp = splinenaturale(x,y)

%

% function pp = splinenaturale(x,y)

%

n = length(x);

x = x(:);

y = y(:);

h = x(2:n)-x(1:n-1);

d1 = h(2:n-2)/6;

d0 = (h(1:n-2)+h(2:n-1))/3;

rhs = (y(3:n)-y(2:n-1))./h(2:n-1)-(y(2:n-1)-y(1:n-2))./h(1:n-2);

S = diag(d1,-1)+diag(d0)+diag(d1,1);

m = zeros(n,1);

m(2:n-1) = S\rhs;

a = (y(2:n)-y(1:n-1))./h(1:n-1)-h(1:n-1).*(m(2:n)/6+m(1:n-1)/3);

b = y(1:n-1);

pp.x = x;

pp.P = [(m(2:n)-m(1:n-1))./(6*h),m(1:n-1)/2,a,b];

pp.k = 4;

pp.n = n-1;

pp.d = 1;

Tabella B.4: Spline cubica naturale.

Splines cubiche periodiche Si impone S′′(x1) = S′′(xn) e S′(x1) = S′(xn). Si ricava
dunque

m1 = mn

a1 =
mn −mn−1

2
hn−1 +mn−1hn−1 + an−1

da cui

m1 −mn = 0

h1

3
m1 +

h1

6
m2 +

hn−1

6
mn−1 +

hn−1

3
mn =

f(x2)− f(x1)

h1
− f(xn)− f(xn−1)

hn−1

Il sistema lineare da risolvere diventa dunque















1 0 . . . . . . . . . 0 −1
h1
6

h1+h2
3

h2
6 0 . . . . . . 0

0 h2
6

h2+h3
3

h3
6 0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . . . . 0 hn−2

6
hn−2+hn−1

3
hn−1

6
h1
3

h1
6 0 . . . 0 hn−1

6
hn−1

3






























m1

m2

m3
...
...

mn−1

mn















=















d1

d2

d3
...
...

dn−1

dn

















230APPENDICE B. ASPETTI IMPLEMENTATIVI DELL’INTERPOLAZIONE POLINOMIALE

con d1 = 0 e dn = f(x2)−f(x1)
h1

− f(xn)−f(xn−1)
hn−1

.

Splines cubiche not-a-knot Si impone la continuità della derivata terza in x2 e xn−1. Si
ricava dunque

m2 −m1

h1
=
m3 −m2

h2

mn−1 −mn−2

hn−2
=
mn −mn−1

hn−1

da cui
1

h1
m1 −

(
1

h1
+

1

h2

)

m2 +
1

h2
m3 = 0

1

hn−2
mn−2 −

(
1

hn−2
+

1

hn−1

)

mn−1 +
1

hn−1
mn = 0

Il sistema lineare da risolvere diventa dunque














1
h1
− 1

h1
− 1

h2
− 1

h2
0 . . . 0

h1
6

h1+h2
3

h2
6 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 . . . 0 hn−2

6
hn−2+hn−1

3
hn−1

6
0 . . . 0 1

hn−2
− 1

hn−2
− 1

hn−1

1
hn−1


























m1

m2
...
...

mn−1

mn













=













d1

d2
...
...

dn−1

dn













con d1 = dn = 0.

Rappresentazione dell’errore

Supponiamo di usare un metodo di interpolazione polinomiale a tratti di grado k − 1 in
un intervallo [a, b] e consideriamo due diverse discretizzazioni, rispettivamente con n1 e n2

nodi, con intervalli di lunghezza media h1 = (b − a)/(n1 − 1) e h2 = (b − a)/(n2 − 1). Gli
errori di approssimazione saranno verosimilmente err1 = Chk

1 e err2 = Chk
2 . Si ha dunque

err2
err1

=

(
h2

h1

)k

da cui

log err2 − log err1 = k(log h2 − log h1) = −k(log(n2 − 1)− log(n1 − 1)) .

Dunque, rappresentando in un grafico logaritmico-logaritmico l’errore in dipendenza dal
numero di nodi, la pendenza della retta corrisponde al grado di approssimazione del metodo,
cambiato di segno.



B.1. RICHIAMI SULL’INTERPOLAZIONE POLINOMIALE 231

B.1.7 Compressione di dati

Supponiamo di avere un insieme molto grande di coppie di nodi/valori {(xi, yi)}Ni=1 e di non
conoscere la funzione che associa il valore al nodo corrispondente. Ci poniamo il problema
di comprimere i dati, ossia memorizzare il minor numero di coefficienti pur mantenendo un
sufficiente grado di accuratezza. Una prima idea potrebbe essere quella di selezionare alcuni
dei nodi, diciamo n, e di costruire la spline cubica su quei nodi. Il costo di memorizzazione,
oltre ai nodi, sarebbe dunque pari a 4(n− 1). Rimarrebbe il problema di scegliere i nodi da
memorizzare, visto che non si suppone siano equispaziati.

Si potrebbe ridurre il costo di memorizzazione (a n) usando un unico polinomio inter-
polatore: rimarrebbe il problema della scelta dei nodi e, probabilmente, si aggiungerebbe
un problema di mal condizionamento sempre dovuto alla scelta dei nodi.

Un’idea che combina le tecniche discusse è la seguente: si usa una interpolazione a
tratti (anche lineare) per ricostruire i valori della funzione sconosciuta in corrispondenza
di n nodi di Chebyshev. Si usa poi un unico polinomio interpolatore su quei nodi. Il
rapporto di compressione è 2N/n, considerando che non è necessario memorizzare i nodi di
Chebyshev, ma solo i coefficienti del polinomio interpolatore (e trascurando i due estremi
dell’intervallo).

B.1.8 Esercizi proposti

Esercizio 63. Si implementi una function y = lagrange(i,x,nodi) che valuta il poli-
nomio di Lagrange i-esimo nel vettore x.

Esercizio 64. Si implementi una function y = interplagrange(nodi,valori,x) per la
formula di interpolazione nella forma di Lagrange.

Esercizio 65. Si testi l’interpolazione nella forma di Lagrange della funzione di Runge
nell’intervallo [−5, 5] su nodi equispaziati. Si prendano rispettivamente n = 11, 21, 31, 41, 51
nodi di interpolazione e si valuti l’interpolante su 5(n − 1) + 1 nodi target equispaziati. Si
producano delle figure mettendo in evidenza i nodi di interpolazione, la funzione di Runge
e l’interpolante.

Esercizio 66. Si implementi una function y = chebyshev(n) per il calcolo dei nodi di
Chebyshev nell’intervallo [−1, 1].

Esercizio 67. Si ripeta l’esercizio 65 usando nodi di interpolazione di Chebyshev anziché
nodi equispaziati.

Esercizio 68. Si implementi una function V = vandermonde(nodi) per il calcolo della
matrice di Vandermonde definita in (B.1).

Esercizio 69. Si implementi una function y = interpvandermonde(nodi,valori,x) per
la formula di interpolazione mediante matrice di Vandermonde. Si spieghino i risultati
ottenuti.



232APPENDICE B. ASPETTI IMPLEMENTATIVI DELL’INTERPOLAZIONE POLINOMIALE

Esercizio 70. Si ripeta l’esercizio 65, usando la formula di interpolazione mediante ma-
trice di Vandermonde. Si usi il metodo di Hörner implementato nel Capitolo ??, Tabella
?? per la valutazione del polinomio.

Esercizio 71. Si implementi una function y = interpnewton(nodi,valori,x) per il
calcolo del polinomio di interpolazione nella forma di Newton.

Esercizio 72. Si ripeta l’esercizio 65, usando la formula di interpolazione di Newton.

Esercizio 73. Si modifichi l’implementazione dell’interpolazione nella forma di Newton,
in modo da prevedere come parametro opzionale di input la tolleranza per l’errore (in norma
infinito) di interpolazione, stimato come in (B.2). Nel caso la tolleranza non sia raggiunta,
l’algoritmo si interrompe all’ultimo nodo di interpolazione. La function deve fornire in
uscita il numero di iterazioni e la stima dell’errore.

Esercizio 74. Si considerino n = 21 nodi di interpolazione equispaziati nell’intervallo
[−5, 5]. Si interpoli in forma di Newton la funzione y = cos(x) sull’insieme di nodi target
{−2, 0, 1} per diverse tolleranze e, successivamente, sull’insieme di nodi target {−2π, π}.
Si spieghino i risultati ottenuti.

Esercizio 75. Si calcolino i numeri di condizionamento della matrice di Vandermonde
(B.1) e della matrice dei coefficienti dell’interpolazione di Newton, da ordine 2 a 20 (con-
siderando nodi equispaziati in [−1, 1] e se ne produca un grafico semilogaritmico nelle ordi-
nate. Si discutano i risultati.

Esercizio 76. Si implementi una function pp = lintrat(x,y) per l’interpolazione lineare
a tratti.

Esercizio 77. Si verifichi, mediante un grafico logaritmico-logaritmico, il grado di ap-
prossimazione (errore in norma infinito) delle splines cubiche naturali per la funzione di
Runge. Si considerino un numero di nodi di interpolazione equispaziati nell’intervallo [−5, 5]
da n = 11 a n = 91 e 102 nodi target equispaziati.

Esercizio 78. Si ripeta l’esercizio precedente con l’interpolazione lineare a tratti.

Esercizio 79. Data la struttura associata ad una spline cubica, si ricavi la corrispondente
struttura per la derivata seconda.

Esercizio 80. Si ripeta l’esercizio 77, confrontando però la derivata seconda della funzione
di Runge e la derivata seconda della spline cubica not-a-knot associata.

Esercizio 81. Si considerino le coppie {(xi, yi)} ove gli xi sono N = 1001 nodi equis-
paziati nell’intervallo [0, 2π] e yi = sin(xi). Mediante il procedimento descritto in § B.1.7
(interpolazione lineare a tratti e interpolazione su nodi di Chebyshev estesi), si determini il
minimo grado n necessario per comprimere i dati con un errore in norma infinito inferiore
a 10−5. Si determini poi l’errore in corrispondenza del rapporto di compressione 286. In-
fine, si giustifichi la stagnazione dell’errore di approssimazione per grado di interpolazione
maggiore di 10.



Bibliografia

[1] K. E. Atkinson, An Introduction to Numerical Analysis, Second Edition, Wiley, New
York, 1989.

[2] R. Bevilacqua, D. Bini, M. Capovani e O. Menchi Metodi Numerici, Zanichelli, 1992.

[3] V. Comincioli, Analisi numerica: metodi, modelli, applicazioni. E-book, Apogeo, 2005.

[4] V. Comincioli, Analisi numerica. Complementi e problemi, McGraw-Hill Companies,
1991.

[5] P. J. Davis, Interpolation & Approximation, Dover Publications Inc., New York, 1975.

[6] C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.

[7] S. De Marchi, Funzioni splines univariate, Forum Ed. Udinese, Seconda ed., 2001 (con
floppy).

[8] G. Farin, Curves and Surfaces for CAGD: A Practical Guide, Third Edition, Academic
Press, San Diego, 1993.

[9] G. Golub, Charles F. Van Loan Matrix computation, The Johns Hopkins University
Press, Terza Edizione, 1996.

[10] D. Greenspan, V. Casulli Numerical Analysis for Applied Mathematics, Science and
Engineering, Addison-Wesley, 1988.

[11] E. Isaacson, H. Bishop Keller, Analysis of Numerical Methods, John Wiley & Sons,
New York, 1966.

[12] G. G. Lorentz, Bernstein Polynomials, Chelsea Publishing Company, New York, 1986.

[13] G. Monegato Elementi di Calcolo Numerico, Levrotto&Bella, Torino, 1995.

[14] A. Quarteroni, F. Saleri Introduzione al Calcolo Scientifico, Esercizi e problemi risolti
in Matlab, Terza Ed., Springer-Verlag, Milano, 2006.

[15] A. Quarteroni, R. Sacco e F. Saleri Matematica Numerica, Seconda Ed., Springer-
Verlag, Milano, 2004.

233



234 BIBLIOGRAFIA

[16] T. J. Rivlin, An Introduction to the Approximation of Functions, Dover Publications
Inc., New York, 1969.

[17] J. Stoer, Bulirsch Introduction to Numerical Analysis Ed. Springer-Verlag, Berlin,
1980.


