

a mia moglie Cristina, a mia figlia Silvia
e all’indimenticabile papà Bruno

Queste pagine nascono come appunti del corso di Calcolo Numerico che il
sottoscritto ha tenuto dall’A.A. 2006-07, dapprima per il corso di laurea triennale
in Matematica Applicata e Informatica Multimediale della Facoltà di Scienze
dell’Università degli Studi di Verona, poi presso le Facoltà di Scienze Statistiche
e di Scienze MM. FF. e NN. dell’Università degli Studi di Padova.
Al lettore è richiesta la familiarità con Matlab, MATrix LABoratory, o la sua

versione freeware GNU Octave (nel seguito citato semplicemente come Octave) di
cui si fa uso nel testo per scrivere pezzi di codici che implementano alcuni degli
algoritmi numerici, degli esempi ed esercizi proposti. Per chi desidera conoscere
Matlab, la sua sintassi e il suo utilizzo, rimandiamo ad esempio al libro [25]
oppure ai tanti manuali disponibili in rete, quali ad esempio

http://www.math.unipd.it/∼demarchi/CorsoMatlab/dispense.pdf
www.ciaburro.it/matlab/matlab.pdf.
Per quanto riguarda GNU Octave, il manuale è disponibile on-line ed incluso

nel file di download disponibile al link
http://www.gnu.org/software/octave/.
Gli appunti sono organizzati in 6 capitoli, corrispondenti agli argomenti fon-

damentali trattati nel corso di Calcolo Numerico.

• Cap. 1: Aritmetica di macchina e analisi degli errori.
• Cap. 2: Ricerca di zeri di funzione.
• Cap. 3: Soluzione di sistemi lineari.
• Cap. 4: Autovalori di matrici.
• Cap. 5: Interpolazione e approssimazione.
• Cap. 6: Integrazione e derivazione.

In tutti i capitoli c’è una sezione di Esercizi proposti: si tratta di esercizi proposti
dall’autore nei vari appelli, compiti, compitini e laboratori. Per molti essi si pos-
sono trovare anche le soluzioni e, dove richiesto il codice Matlab, navigando alla
pagina web

http://www.math.unipd.it/∼demarchi/didattica.html.
Vi sono poi alcune Appendici, il cui scopo è di integrare la trattazione dei vari

capitoli con la teoria mancante, delle applicazioni e delle indicazioni implementa-
tive, con l’obiettivo di completare la sensibilità numerica richiesta a chi si occupa
o è interessato al calcolo numerico.

• Appendice A: Metodi iterativi ed equazione logistica
• Appendice B: Interpolazione: aspetti implementativi e applicazioni.
• Appendice C: Codici Matlab/Octave.

r it nd eoIn uz o

Il testo non ha assolutamente la pretesa di essere sostitutivo di libri molto
più completi e dettagliati disponibili in letteratura, come ad esempio i libri [1,
6, 7, 19, 24, 25, 26, 30], ma come traccia di riferimento per un corso di Cal-
colo Numerico di base, tipico dei corsi di laurea triennale. Pertanto l’invito è
di consultare anche i testi citati in bibliografia, sia per cultura personale, ma
soprattutto per un completamento della preparazione.

Ringrazio ancora una volta il prof. Marco Caliari dell’Università di Verona,
per il prezioso contributo alla stesura dell’ Appendice B.

Come fatto nella prima edizione ringrazio sin d’ora coloro che mi segnaler-
anno sviste ed errori. Tutto ciò per migliorare la trattazione e renderla più
adeguata anche ai cambiamenti nell’insegnamento del Calcolo Numerico.

Stefano De Marchi
Dipartimento di Matematica

Università di Padova.

Padova, gennaio 2016.

6 Appunti di Calcolo Numerico con codici in Matlab/Octave

Indice dei Capitoli

1 Aritmetica di macchina e analisi degli errori 17

1.1 Rappresentazione dei numeri in un calcolatore 17
1.2 Analisi degli errori . 21
1.3 Operazioni con numeri macchina . 24
1.4 Stabilità e condizionamento . 26
1.5 Il calcolo di π . 28
1.6 Esercizi proposti . 32

2 Ricerca di zeri di funzione 35

2.1 Ricerca di zeri di funzione . 35
2.2 Metodo di bisezione . 36
2.3 Iterazione di punto fisso . 37
2.4 Il metodo di Newton o delle tangenti 42

2.4.1 Varianti del metodo di Newton 48
2.5 Accelerazione di Aitken . 50
2.6 Calcolo delle radici di polinomi algebrici 52

2.6.1 Schema di Hörner . 53
2.7 Esercizi proposti . 54

3 Soluzione di sistemi lineari 59

3.1 Cose basilari sulle matrici . 59
3.1.1 Operazioni aritmetiche con le matrici 59
3.1.2 Determinante e autovalori . 64

3.2 Norme di vettore e di matrice . 66
3.3 Soluzione di sistemi lineari: generalità 69

3.3.1 Condizionamento del problema 69
3.4 Metodi diretti . 72

3.4.1 Il Metodo di Eliminazione di Gauss (MEG) 72
3.4.2 Metodo di Gauss e fattorizzazione LU di matrici 77
3.4.3 Matrici elementari di Gauss 79
3.4.4 Il metodo di Cholesky . 81
3.4.5 Algoritmo di Thomas per matrici tridiagonali 82
3.4.6 Raffinamento iterativo . 83

3.5 Calcolo dell’inversa di una matrice: cenni 84
3.6 Metodi iterativi . 86

3.6.1 I metodi di Jacobi e Gauss-Seidel 89
3.6.2 Il metodo SOR o di rilassamento 93

3.7 Metodi del gradiente: cenni . 96
3.7.1 Il metodo del gradiente coniugato 97

3.8 Sistemi sovra e sottodeterminati . 99

3.8.1 Fattorizzazione QR di matrici 101
3.9 Soluzione di sistemi non lineari con il metodo di Newton 103
3.10 Esercizi proposti . 104

4 Autovalori di matrici 111
4.1 Autovalori di matrici . 111
4.2 Il metodo delle potenze . 116

4.2.1 Convergenza . 117
4.3 Il metodo delle potenze inverse . 119

4.3.1 Il metodo delle potenze inverse con shift 119
4.3.2 Metodo delle potenze e metodo di Bernoulli 119

4.4 Il metodo QR . 120
4.4.1 Il metodo QR con shift . 122

4.5 Autovalori di matrici simmetriche 124
4.5.1 Il metodo delle successioni di Sturm 124
4.5.2 Il metodo di Jacobi . 126

4.6 Esercizi proposti . 128

5 Interpolazione e approssimazione 131
5.1 Interpolazione polinomiale . 132
5.2 Forma di Lagrange dell’interpolante 134

5.2.1 Analisi dell’errore d’interpolazione 137
5.3 Errore d’interpolazione e fenomeno di Runge 138

5.3.1 La costante di Lebesgue . 142
5.3.2 Stabilità dell’interpolazione polinomiale 143

5.4 Polinomio interpolante in forma di Newton 144
5.4.1 Differenze divise e loro proprietà 145
5.4.2 Algoritmo delle differenze divise 146
5.4.3 Formula di Hermite-Genocchi per le differenze divise 147

5.5 Interpolazione di Hermite . 149
5.6 Algoritmo di Neville . 151
5.7 Interpolazione polinomiale a tratti: cenni 152
5.8 Esercizi proposti . 153
5.9 Funzioni Spline . 156

5.9.1 B-splines . 156
5.9.2 Interpolazione . 158
5.9.3 Interpolazione con splines cubiche 160
5.9.4 Teorema del campionamento di Shannon e smoothing spline 164

5.10 Polinomio d’approssimazione di Bernstein 165
5.10.1 Curve B-splines e di Bézier 166
5.10.2 Algoritmo di De Casteljau . 167

5.11 Minimi quadrati discreti e decomposizione SVD 170
5.11.1 Equivalenza tra sistema dei minimi quadrati e decompozione

SVD . 171
5.11.2 SVD in Matlab/Octave . 174
5.11.3 Esercizi proposti . 179

8 Appunti di Calcolo Numerico con codici in Matlab/Octave

5.12 Interpolazione trigonometrica e FFT 180
5.12.1 Algoritmo FFT . 182

6 Integrazione 185

6.0.2 Formule di tipo interpolatorio 185
6.0.3 Formule di Newton-Côtes . 187
6.0.4 Stima dell’errore di quadratura 189
6.0.5 Formule composite o generalizzate 192
6.0.6 Routine adattativa per la quadratura: applicazione al metodo

di Simpson e dei trapezi . 194
6.1 Polinomi ortogonali . 197
6.2 Formule di quadratura gaussiane . 199
6.3 Esercizi proposti . 203

Bibliografia

Indice an tali ico 2

9Indice dei Capitoli

6.4 Derivazione . 208
6.4.1 Un esempio . 210
6.4.2 Metodi di Eulero . 211

6.5 Estrapolazione di Richardson . 213
6.5.1 Applicazione alla quadratura numerica 216
6.5.2 Una implementazione del metodo di Romberg 219
6.5.3 I polinomi di Bernoulli . 220
6.5.4 Algoritmo di Neville . 221

A Metodi iterativi ed equazione logistica 223
A.1 Modello lineare di Malthus . 223
A.2 Il modello non lineare di Verhulst . 224

A.2.1 Isometrie, dilatazioni e contrazioni 226
A.2.2 Semplici esempi di processi iterativi 228

A.3 Modello lineare di Volterra . 231
A.3.1 Interazione tra 2 popolazioni: modello lineare di Volterra . . 231

A.4 Modello non lineare di Lotka-Volterra 233

B Interpolazione: aspetti implementativi e applicazioni 239
B.1 Richiami sull’interpolazione polinomiale 239

B.1.1 Interpolazione di Lagrange 239
B.1.2 Sistema di Vandermonde . 240
B.1.3 Interpolazione di Newton . 240
B.1.4 Interpolazione polinomiale a tratti 241
B.1.5 Strutture in Matlab/Octave 242
B.1.6 Splines cubiche . 242
B.1.7 Compressione di dati . 246
B.1.8 Esercizi proposti . 246

C Codici Matlab/Octave 249

257

15

Elenco delle Figure

1.1 Calcolo di π con l’algorimo di Archimede 29
1.2 Calcolo di π con l’algorimo di Viéte 30
1.3 Calcolo di π con la formula di Wallis 30
1.4 Calcolo di π con la formula dell’arcotangente 31
1.5 Calcolo di π con la formula dell’arcoseno 32

2.1 Interpretazione geometrica della condizione 4 del Teorema 4 nell’ipotesi
di funzione è concava in [a, b] . 44

2.2 La funzione dell’Esempio 13 in [0.9, 1] con α = 2. 47

3.1 Raggio spettrale di H(ω) con n = 10, ottenuto con la funzione
SOROmegaZero.m. Il valore ottimale calcolato è ω0 = 1.5727. 95

3.2 Convergenza a zig-zag del metodo del gradiente 98
3.3 Riflessione di vettore x rispetto all’iperpiano π 101

4.1 Cerchi di Gerschgorin della matrice A dell’ Esempio 28: sopra i
cerchi riga e sotto quelli colonna. 114

4.2 Cerchi riga di Gerschgorin della matrice A dell’ Esempio 29. 115

5.1 Funzione e polinomio d’interpolazione dell’Esempio 35 134
5.2 Grafico di alcuni polinomi elementari di Lagrange. 135
5.3 La parabola dell’Esempio 38. 139
5.4 Funzione di Runge e polinomio d’interpolazione su nodi equispaziati

e di Chebyshev. 140
5.5 10 punti di Chebyshev. 141
5.6 10 punti di Chebyshev (o) e Chebyshev estesi (*) in [−1, 1]. 144
5.7 Funzione dell’Esempio 40 . 145
5.8 Funzione seno (linea punteggiata) e la sua interpolante lineare a

tratti (linea continua) . 153
5.9 Bsplines di ordine 3 (quadratiche). 158
5.10 Bsplines quadratiche costruite con la funzione bspline.m sulla se-

quenza equispaziata x=linspace(1,10,10) 158
5.11 BSpline quadratiche costruite sulla sequenza xi = linspace(-5,5,11)

con aggiunta di nodi multipli, con molteplicità pari all’ordine, agli
estremi. 160

5.12 Spline cubica interpolante su nodi ”ad hoc” a (sx) e nodi equis-
paziati (dx) . 161

5.13 Polinomi elementari di Bernstein di grado 3 166
5.14 f(x) = x(x − 1), x ∈ [0, 1] approssimata con un polinomio di Bern-

stein di grado 20 . 167

12 Appunti di Calcolo Numerico con codici in Matlab/Octave

5.15 Costruzione di una curva di Bézier di grado 3 con l’algoritmo di De
Casteljau. 169

5.16 Dati da approssimare con il metodo dei minimi quadrati 174
5.17 Approssimazione ai minimi quadrati 176

6.1 Regola dei trapezi per il calcolo di
∫ 2

1/2

sin (x) dx. 188

6.2 Grafico della funzione errore, erf . 191
6.3 Confronto tra la formula dei trapezi e dei trapezi composita per il

calcolo di
∫ 2

0.5
sin (x) dx. 193

6.4 Integrazione con Simpson composito 195
6.5 Integrazione con Simpson adattativo 196
6.6 Integrazione con il metodo dei trapezi adattativo. I punti utilizzati

sono oltre 2000, molti di più di quelli richiesti dalla stima a pri-
ori (6.21), ma distribuiti non uniformemente ma dove la funzione
oscilla di maggiormente. 197

6.7 Grafico che illustra l’errore relativo compiuto dal metodo 1 (dif-
ferenze in avanti), in rosso, col + e dal metodo 2 (differenze finite
centrali) in nero con o, nell’approssimare exp(1). 210

6.8 Tableau dello schema di Richardson per m = 3, con Ti,0 = T (hi). . . 216
6.9 Alcuni polinomi di Bernoulli. 221

A.1 Thomas Malthus . 224
A.2 La progressione di Malthus a partire da una popolazione iniziale

di 100 individui per diversi valori di g. 225
A.3 Pierre Verhlust . 225
A.4 La trasformazione lineare della parabola T (x) ≥ 0 in [0, 1] 226
A.5 Iterazione del processo di Verhulst che origina il ben noto dia-

gramma di biforcazione . 227
A.6 Renato Caccioppoli . 228
A.7 Rappresentazione di un processo iterativo. 229
A.8 Processi iterativi per diversi valori di m. 230
A.9 Processo convergente . 230
A.10 Processo divergente . 231
A.11 Processo di Verhulst convergente con x0 = 0.1, κ = 3. 232
A.12 Processo di Verhulst convergente con x0 = 0.1, κ = 3.9 233
A.13 Processo di Verhulst divergente con x0 = 0.1, κ = 4.1 234
A.14Qui x0 = 10, y0 = 20 e a = b = 0.1, c = 0.01, d = 0 234
A.15 Valori scelti: x0 = 10, y0 = 20 e a = −0.01, b = 0.2 c = 0.1, d =

−0.0001 . 235
A.16 Valori scelti: x0 = 10, y0 = 20 e a = −0.1, b = 1.0 c = −0.1, d = 0.1 . 235
A.17 Valori scelti: x0 = 10, y0 = 20 e a = 0.01, b = 0.02 c = −0.01, d =

−0.2 . 236
A.18 Alfred J. Lotka (1880-1949)(sx) e Vito Volterra (1860-1940)(dx) . . . 236
A.19 Valori scelti: x0 = 2000, y0 = 600, a = 0.1, b = 0.00008333333, c =

0.00004, d = 0.04. 237

13Elenco delle Figure

1 Newton, Eulero e Lagrange . 259
2 Gauss, Hörner e Cauchy . 259
3 Chebyshev, Runge e Kutta . 260
4 Neville, Aitken e Golub . 260

Elenco delle Tabelle

1.1 Rappresentazione dei numeri in un calcolatore 18
1.2 Rappresentazione in singola precisone: i numeretti indicano i bits

d’inizio e fine delle parti corrispondenti al segno, esponente e man-
tissa. 18

1.3 Rappresentazione in doppia precisone: i numeretti, come in Tabella
1.2 indicano i bits d’inizio e fine delle parti. 18

1.4 Occupazione dei registri di memoria nelle due fondamentali rapp-
resentazioni floating-points . 19

1.5 Il più piccolo numero floating point rappresentabile in singola pre-
cisione . 19

1.6 Il più grande numero floating point rappresentabile in singola pre-
cisione . 19

1.7 Calcolo della precisione macchina in base 2 22

2.1 Algoritmo di bisezione . 36
2.2 Confonto di una successione di punto fisso e di Δ2 di Aitken 52
2.3 Algoritmo di Hörner per la valutazione di un polinomio pn(x) nel

punti ζ. 53

3.1 Numero di condizionamento in norma 2 della matrice di Hilbert . . 70

5.1 Confronti dei valori della costante di Lebesgue per punti di Cheb-
syshev e della funzione σ(n) . 143

5.2 Differenze divise della funzione x2 + 1 145
5.3 Tabella delle differenze divise per un punto ripetuto k + 1 volte . . 149
5.4 Tabella delle differenze divise per l’interpolazione di Hermite . . . 150
5.5 Schema di Neville, per n = 3. 152

6.1 Formule di N-C per n = 1, . . . , 6. Per n = 1 si ha la formula del
trapezi, per n = 2 la formula di (Cavalieri-)Simpson e per n = 3 si
parla di formula dei 3/8. 190

6.2 Pesi di formule chiuse di N-C con n = 8 192
6.3 Nodi e pesi per le formule di Gauss-Legendre con n = 1, 2, 3, 4 . . . 201
6.4 Nodi e pesi per le formule di Gauss-Legendre-Lobatto con n =

1, 2, 3, 4. 202
6.5 Tabella del metodo di Romberg . 220

A.1 Tabella di confronto tra le iterazioni di Malthus e Verhlust 227

B.1 Matrice di Vandermonde. 240
B.2 Spline cubica naturale. 244

1
Aritmetica di macchina e

analisi degli errori

In questo capitolo iniziale, metteremo per cosı̀ dire le basi per comprendere la
filosofia sottostante al calcolo numerico. L’analisi degli errori è fondamentale
per comprendere come evitarli, ma se non fosse possibile evitarli, come ridurli
almeno al minimo possibile.
Ma per comprendere quali sono i tipi d’errore di cui dobbiamo tenere conto,

prima di tutto dobbiamo capire come si rappresentano i numeri in un calcolatore.
Vedremo che la rappresentazione dei numeri è una delle fonti principali d’errore
detti appunti errori di rappresentazione.

1.1 Rappresentazione dei numeri in un calcolatore

La notazione che maggiormente si usa nei calcolatori è la notazione a virgola
mobile o in inglese floating-point . Se a è un numero, intero o reale, usando la
notazione a virgola mobile, lo possiamo scrivere come

a = pN q , (1.1)

dove p si chiama mantissa che è un numero reale, N è la base di numerazione

(solitamente N = 2, base binaria) e q è un intero che si chiama esponente .
Osserviamo anzitutto che la notazione non è unica. Infatti

a = pN q = p1N
q−1 = p2N

q+1

con p1 = Np e p2 = p/N .
Se la mantissa p è tale che

1

N
< |p| < 1

allora la rappresentazione (1.1) si dice normalizzata . Facciamo due esempi

• a = 115.78, la sua forma normalizzata è a = 0.11578 · 103.
• a = 0.0026, la sua forma normalizzata è a = 0.26 · 10−2.

Pertanto, fissata la base di numerazione N , per la rappresentazione di un nu-
mero a dovremo conoscere la coppia (p, q) (mantissa ed esponente). Nel caso

s q |p|

Tabella 1.1: Rappresentazione dei numeri in un calcolatore

a = 0, (p, q) = (0, 0). In generale si usa la seguente rappresentazione dove s in-
dica il bit riservato al segno del numero e che assume valori s = 0 se il segno è
+ e s = 1 quando il segno è −; q lo spazio per l’esponente e |p| lo spazio per la
mantissa normalizzata.

Definizione 1. Si chiama numero macchina un numero tale che p e q sono rapp-
resentabili esattamente negli spazi riservati.

Se ad esempio, lo spazio per |p| è formato da t cifre, i numeri macchina sono
tutti quelli che hanno la mantissa normalizzata con non più di t cifre. Per
l’esponente valgono le disuguaglianze

m ≤ q ≤M

dove il minimo m < 0 e il massimoM > 0 dipendono da calcolatore a calcolatore.
Posto q∗ = q −m ≥ 0 allora

0 ≤ q∗ ≤M −m .

Parleremo poi di singola precisione se la rappresentazione di Tabella 1.1 è su
32bits (essendo 1byte=8bits essa equivale a 4 bytes) (cfr. Tabella 1.2), di doppia
precisione quando la rappresentazione di Tabella 1.1 è su 64bits (8 bytes) (cfr.
Tabella 1.3).

1 s 1 2 q 9 10 |p| 32

Tabella 1.2: Rappresentazione in singola precisone: i numeretti indicano i bits
d’inizio e fine delle parti corrispondenti al segno, esponente e mantissa.

1 s 1 2 q 12 13 |p| 64

Tabella 1.3: Rappresentazione in doppia precisone: i numeretti, come in Tabella
1.2 indicano i bits d’inizio e fine delle parti.

Nel caso di singola precisione, essendoci 8 bits riservati all’esponente, allora
28 − 1 = 255 sarà il massimo numero rappresentabile. Da cui, essendo 0 ≤ q∗ ≤
255 dalla relazione q∗ = q −m avremo che −127︸ ︷︷ ︸

m

≤ q ≤ 128︸︷︷︸
M

.

Lo standard ANSI/IEEE 754-1985 (modificato nel 1989 e ufficialmente detto
IEC 60559:1989, binary floating-point arithmetic for microprocessor systems) usa
la rappresentazione

a = (−1)s(1.a2a3 . . . atat+1 . . .) 2
q .

18 Appunti di Calcolo Numerico con codici in Matlab/Octave

In questo caso la mantissa ha t cifre con la prima cifra sempre uguale ad 1 (che
non viene rappresentata). Ció spiega perchè abbiamo scritto a2a3 . . . atat+1
Il campo dell’esponente serve a rappresentare sia esponenti positivi che neg-

ativi. Si usa inoltre in bias (scostamento) appunto per avere esponenti q∗ sempre
positivi. Ad esempio q∗ = 200 indica l’esponente 200− 127 = 73.
Riassumiamo in tabella le cose salienti di questa rappresentazione sia nel

caso di singola che doppia precisione.

singola doppia
bit 32 (4 bytes) 64 (8 bytes)
segno s 1 bit 1 bit

spazio mantissa 23 53
spazio esponente 8 11

bias 127 (011....1) 1023 (011....1)
max q 127 1023
min q -126 -1022

Tabella 1.4: Occupazione dei registri di memoria nelle due fondamentali rappre-
sentazioni floating-points

Nel caso di singola precisione avremo allora

• il più piccolo numero floating point rappresentabile è 1.00....0︸ ︷︷ ︸
mantissa

·2−126 ≈ 10−38

Nota: l’esponente con tutte le cifre 0 (zero) si usa solo per indicare lo 0

0 0 01︸ ︷︷ ︸
−126+127=1

0...0

Tabella 1.5: Il più piccolo numero floating point rappresentabile in singola preci-
sione

oppure l’underflow.

• il più grande numero floating point rappresentabile è 1.11...1︸ ︷︷ ︸
mantissa

·2127 = (1 +

1− 2−23) · 2127 ≈ 1038 Nota: l’esponente 255 si usa solo per l’overflow.

0 1 10︸ ︷︷ ︸
127+127=254

1...1

Tabella 1.6: Il più grande numero floating point rappresentabile in singola pre-
cisione

Similmente nel caso di doppia precisione

191 - Aritmetica di macchina e analisi degli errori

• il più piccolo numero floating point rappresentabile è 1.00 0︸ ︷︷ ︸
1+23 cifre

·2−1022 =

2−1022 ≈ 10−308

• il più grande numero floating point rappresentabile è 1.11 1︸ ︷︷ ︸
1+52 cifre

·21023 =

(1 + 1− 2−52) · 21023 ≈ 10308

ESEMPIO 1. Supponiamo di volere rappresentare in singola precisione il numero
decimale a = 43.6875 nello standard ANSI/IEEE 754-1985.

(i) Dapprima dovremo trasformare il numero, senza segno, in forma binaria. La
parte intera, 43, diventa, 4310 = 1010112. La parte frazionaria 0.687510 =
10112. Complessivamente 43.687510 = 101011.10112.

(ii) Successivamente spostiamo la virgola verso sinistra, lasciando solo un 1 alla
sinistra: 1.010111011 · 25 .
La mantissa viene quindi riempita con zeri a destra, fino a completare i 23 bit.
Il numero che si ottiene è 1.01011101100000000000000.

(iii) L’esponente è 5, ma dobbiamo convertirlo in forma binaria e adattarlo allo
standard. Per la singola precisione, dobbiamo aggiungere 127 (detto anche
bias) , ovvero 5 + 127 = 13210 = 100001002.

ESEMPIO 2. Nella rappresentazione floating point secondo lo standard IEEE 754-
1985 su 32 bits, abbiamo s = 1, q = 10000111 e |p| = 1101100 · · · 0︸ ︷︷ ︸

23 cifre

. Si richiede di

calcolare il corrispondente valore decimale.
Soluzione. Osserviamo che q = (10000111)2 = 13510. Quindi

a = (−1)s 2q−1271.|p| = −1 · 2135−127 1.110110...0

= −28 1.1101100...0 = (−111011000)2 =

= −(28 + 27 + 26 + 24 + 23)10 = −472 .

ESEMPIO 3. Desideriamo trasformare il numero in base 10, −3.6, in base 2. Soluzione.
Sostanzialmente dobbiamo trasformare in binario la parte intera 3 e la parte decimale
0.6.

1. (−3)10 = (−11)2 . che si ottiene con divisioni consecutive per 2 e prendendone
i resti.

2. Per la parte decimale si moltiplica per 2 finché la parte decimale della molti-
plicazione risula essere uguale a 0. Nel nostro caso 0.6 ∗ 2 = 1.2 che ha cifra
binaria 1 e decimale 0.2 che riporto nella prossima moltiplicazione. 0.2∗2 = 0.4
cha ha parte binaria 0 e decimale 0.4 che uso per prossima moltiplicazione.
0.4 ∗ 2 = 0.8 (0 cifra binaria e 0.8 decimale), 0.8 ∗ 2 = 1.6 (1 binaria, 0.6 deci-
male). La prossima moltiplicazione ci fa ripartire dall’inizio. Pertanto il numero
(0.6)10 é il numero periodico (1001)2.

20 Appunti di Calcolo Numerico con codici in Matlab/Octave

Riassumendo (−3.6)10 = −11.1001.... 20 = −1.11001....21.
Analogamente risolvere queste trasformazioni da base decimale a base binaria
a) (−23.375)10 = (?)2
b) (−131.50)10 = (?)2
c) (0.6875)10 = (?)2 .

Al link http://babbage.cs.qc.edu/IEEE-754/Decimal.html, il lettore inter-
essato, troverà un’interessante interfaccia che consente di trasformare numeri
decimali in numeri binari (ed esadecimali) proprio nello standard IEEE 784.
Come ultima nota, lo standard è attualmente sotto revisione (IEEE 754r) e i

lavori di revisione, il cui termine era previsto per l’anno 2005, non sono ancora
stati conclusi. Per maggiori informazioni, si rimanda al link
http://it.wikipedia.org/wiki/IEEE 754.

1.2 Analisi degli errori

Nel caso di un sistema floating-point in base N con mantissa a cui sono riservate
t posizioni o cifre, tutti i numeri che nella rappresentazione normalizzata hanno
più di t cifre (con esponente m ≤ q ≤ M) dovranno venire approssimati. Come?
Ci sono sostanzialmente due tipi di approssimazione a cui corrispondono anche
analoghi errori di rappresentazione.

(a) troncamento: della mantissa p del numero, si prendono solo t cifre, le altre
dalla t + 1-esima in poi non si considerano. Ad esempio se p = 0.7243591,
N = 10 e t = 5, allora p̃ = 0.72435.

(b) arrotondamento: alla cifra t-esima della mantissa p viene aggiunta la quan-
tità 0.5 e poi si opera come in (a). Nell’ esempio di prima, alla quinta cifra
di p = 0.7243591, che è 5, si somma 0.5 che diventa 6, cosicché p̃ = 0.72436.

Tra le due tecniche, troncamento e arrotondamento, qual è quella che consente
di commettere un errore inferiore?
Dato un numero a = pNq indichiamo con ã = p̃Nq una sua approssimazione.

Osserviamo che le mantisse p̃ dei numeri macchina 1/N ≤ p̃ < 1 non hanno più
di t cifre e la distanza tra due mantisse consecutive p1, p2 è proprio N−t, da cui
|p − p1| < N−t (analogamente per p2). Vediamo cosa accade degli errori nei casi
di troncamento(a) e di arrotondamento (b).

(a)
|a− ã| = |(p− p̃)|Nq < Nq−t

essendo p e p̃ consecutive.

(b)
|a− ã| = |(p− p̃)|Nq ≤ 1

2
Nq−t

essendo p e p̃ consecutive ma nel caso di arrotondamento |p− p̃| ≤ 1
2N

−t.

211 - Aritmetica di macchina e analisi degli errori

Segue che l’approssimazione per arrotondamento è da preferirsi! Infine, per
quanto rigurdano i corrispondenti errori relativi si ha:

(a)
|a− ã|
|a| < N1−t ,

poiché, essendo N q−1 < |a| < Nq e dal fatto che |a − ã|/|a| < Nq−t/N q−1, si
ottiene la maggiorazione di cui sopra.

(b)
|a− ã|
|a| ≤ 1

2
N1−t .

A questo punto vale la seguente definizione

Definizione 2. Il numero
eps =

1

2
N1−t , (1.2)

si chiama precisione macchina.

In pratica, la precisione macchina, rappresenta quella costante caratteristica
di ogni aritmetica (arrotondata) floating-point ed è la massima precisione con
cui vengono effettuati i calcoli su quella particolare macchina. Detto altrimenti,
eps è il più piccolo numero che sommato a 1 (o ad un generico numero a) dà un
numero maggiore di 1 (o del numero a). Pertanto un algoritmo, scritto in codice
Matlab/Octave, per il calcolo di eps con N = 2 in doppia precisione è il seguente:

e=1; k=0;
while (e+1 > 1)
e=e/2; k=k+1;
end

e=2*e {è necessario perché si era diviso per 2}
k-1 {da l’esponente}

Tabella 1.7: Calcolo della precisione macchina in base 2

dove il contatore k serve a ricordare il numero di divisioni e indica pure
l’esponente della rappresentazione del numero eps. La moltiplicazione finale è
necessaria perché dopo che il test è stato verificato, e avrebbe un valore metà del
valore vero. Se ora facciamo eseguire il codice, otterremo il seguente risultato

e = 2.2204e-016

k = 52

infatti e = 2−52. Vale la pena ricordare che in Matlab/Octave esiste la costante
predefinita eps il cui valore è appunto 2.2204e-016.

22 Appunti di Calcolo Numerico con codici in Matlab/Octave

Sia ora x un numero che rappresenta un valore esatto. Indichiamo con x̃ una
sua rappresentazione sul calcolatore. Allora

Ea := |x− x̃| ,

Erx :=

∣∣∣∣x− x̃

x

∣∣∣∣ , x �= 0

Erx̃ :=

∣∣∣∣ x̃− x

x̃

∣∣∣∣ , x̃ �= 0 ,

definiscono il modulo dell’errore assoluto, dell’errore relativo su x e dell’errore
relativo su x̃, rispettivamente.
In particolare avremo che Erx ≤ ε. Infatti

|x− x̃| ≤ 1

2
Nq−t =

N

2
N−t ·Nq−1 ≤ 1

2
N1−t︸ ︷︷ ︸
ε

|x| (1.3)

poiché |x| < Nq| essendo |p| < 1. La relazione ci dice come un’approssimazione
si ottenga dal valore esatto a meno di un errore di rappresentazione. Questo
errore, si dice errore inerente o ineliminabile poiché esso dipende dalla rapp-
resentazione (finita) dei numeri su un calcolatore.
Quanto detto vale ovviamente se la esponente di x, q, risulta m ≤ q ≤ M . In

particolare:

• Il più grande numero reale rappresentabile come numero macchina, è quello
in cui tutte le t cifre usate per la rappresentazione risultano essere uguali
a N − 1 e con esponente pari adM , ovvero il numero

aM = (1−N−t) ·NM .

Ricordando, che in un calcolatore con aritmetica in doppia precisione M =
1024, per cui (1 − N−t) · NM = (1 + 1 − 2−52) · 21023 = (1 − 2−53) · 21024 ≈
1.7977 · 10308. In Matlab/Octave questo valore è restituito dalla variabile
realmax.

• Il più piccolo numero reale rappresentabile come numero macchina, è quello
in cui tutte le t cifre risultano essere uguali a 0 eccetto la prima che vale 1
e con esponente pari ad m, ovvero il numero

am = Nm−1 = 2−1022 .

Ricordando, che in un calcolatore con aritmetica in doppia precisione m =
−1021, per cui Nm−1 ≈ 2.2251 · 10−308. In Matlab/Octave questo valore è
restituito dalla variabile realmin. Ad essere precisi, in Octave 3.2.3 si può
arrivare a calcolare 2−1074 mentre 2−1075 risulta 0 (zero).

231 - Aritmetica di macchina e analisi degli errori

1.3 Operazioni con numeri macchina

Se indichiamo con con fl(a) = ã l’operazione di arrotondamento e con ⊕,
, � e �
le corrispondenti operazioni aritmetiche fatta sui numeri macchina, valgono per
esse le seguenti regole

ã⊕ b̃ = fl(ã+ b̃) = (ã+ b̃)(1 + ε1)

ã
 b̃ = fl(ã− b̃) = (ã− b̃)(1 + ε2)

ã� b̃ = fl(ã · b̃) = (ã · b̃)(1 + ε3)

ã� b̃ = fl(ã/b̃) = (ã/b̃)(1 + ε4)

con |εi| < eps.
La domanda da porsi è se per queste operazioni macchina valgono le stesse

regole che per le corrispondenti operazioni aritmetiche. La risposta è in generale
negativa.

ESEMPIO 4. Consideriamo la somma di due numeri floating-point. Infatti ã⊕ b̃ = ã
se 0 < |b̃|
 |ã|
Facciamo vedere un esempio che anche per numeri macchina si possono pre-

sentare dei problemi.

ESEMPIO 5. Siano a = p1N
q1 e b = p2N

q2 . Consideriamo a � b. Il risultato sarà
overflow (esponente maggiore di M) se q1 > 0, q2 < 0 e q1 − q2 > M oppure
underflow (esponente minore di m) se q1 < 0, q2 > 0 e q1 − q2 < m.

A conferma ulteriore dei problemi che si possono verificare lavorando con nu-
meri macchina, diamo alcuni semplici esercizi.

ESERCIZIO 1. Calcolare l’espressioni a+ (b+ c) e (a+ b) + c dove a = 1.0e+ 308,
b = 1.1e+ 308 e c = −1.001e+ 308.

ESERCIZIO 2. Sia x = 1.0e − 15. Calcolare
(1 + x)− 1

x
. Perchè l’espressione è

inaccurata?

ESERCIZIO 3. Si consideri il polinomio

f(x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1 .

Lo si valuti su 401 punti equispaziati per x ∈ [1 − 2 · 10−8, 1 + 2 · 10−8]. Si plotti
quindi il grafico (x, f(x)) e il grafico di (x, p(x)) con p(x) = (x − 1)7, sugli stessi
punti. Se ne discutano i risultati.

Uno dei problemi che maggiormente si presentano negli algoritmi numerici è
la cancellazione numerica che in sostanza è la perdita di cifre significative.
Anzitutto comprendiamo che cosa sono le cifre significative di un numero. Ad

esempio 13020.0 ha cifre significative 1302mentre 0.0534 ha cifre significative 534.
Se due numeri sono quasi uguali, dove uguali s’intende a meno della pre-

cisione macchina, allora è possibile il verificarsi della cancellazione numerica.
Vediamo alcuni esempi.

24 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESEMPIO 6. Consideriamo i numeri a = p1N
q con p1 = 0.147554326 e b = p2N

q

con p2 = 0.147251742 e N = 10. In aritmetica a t = 6 cifre significative, avremo
p̃1 = 0.147554 e p̃2 = 0.147252. Ora a− b = (p1 − p2)N

q = (p1 − p2)10
3 = 0.302584.

Ma (p̃1
 p̃2)10
3 = 0.302000 con la perdita delle cifre significative 584.

ESEMPIO 7. Consideriamo il calcolo della funzione f(x) =
ex − 1

x
in un punto x0.

La funzione data si può anche vedere come la serie
∞∑
i=1

xi−1

i!
. Pertanto si possono

usare due algoritmi per il calcolo di f(x0)

ALGORITMO 1 ALGORITMO 2

if x0==0 y=exp(x0);

f=1; if y==1,

else f=1;

f=(exp(x0)-1)/x0; else

end f=(y-1)/log(y);

end

Nel caso in cui |x|
 1 (cioè molto vicino a 0, usando i due algoritmi otterremo i
seguenti risulati

x0 ALG.1 ALG. 2
1.e− 5 1.000005 1.000005
1.e− 6 1.0036499 1.0000005

...
...

...
1.e− 15 1.1102... 1.000....000 (15 zeri)

1.e− 16 0 1

Pertanto l’ALGORITMO 2 è più stabile (chiariremo meglio più avanti il concetto
di stabilità di un algoritmo numerico). Infatti, nell’ipotesi di singola precisione, la
risposta esatta sarebbe 1.00000005. Se infatti consideriamo fl((ex−1)/x) ≈ 1.3245....
mentre fl((ex − 1)/(log(ex)) ≈ 1.00000006 che è la risposta corretta.

Cosa fare per evitare la cancellazione numerica? Una prima risposta è
di trovare un’espressione più stabile, ovvero tale da non far aumentare gli errori
introdotti dalla formulazione del problema.
Ad esempio, si voglia valutare

√
x+ δ − √x per δ → 0. Razionalizzando si

ottiene
δ√

x+ δ +
√
x
dove si evitano i problemi di cancellazione che si avrebbero

con l’espressione originale.
Un altro esempio è il calcolo di cos(x + δ) − cos(x) sempre per δ → 0. Qui

possiamo evitare i problemi di cancellazione usando la formula di prostaferesi
della differenza di coseni: cos(x+ δ)− cos(x) = −2 sin(δ/2) sin(x+ δ/2).
Come ultimo esempio, consideriamo di valutare f(x) = x(x−√x2 − 1) quando

x → +∞. Infatti per un tale valore √x2 − 1 ≈ x. Pertanto, sempre razionaliz-
zando possiamo scrivere f(x) =

x√
x2 − 1 + x

evitando i soliti problemi di insta-

bilità dovuti alla cancellazione.

251 - Aritmetica di macchina e analisi degli errori

1.4 Stabilità e condizionamento

Iniziamo subito con la definizione di stabilità di un metodo numerico.

Definizione 3. Un metodo numerico (formula, algoritmo) si dice stabile se non
propaga gli errori. Altrimenti si dice instabile.

La stabilità è quindi un concetto legato al metodo risolutivo ovvero al cor-
rispondente algoritmo. Lo scopo dell’analisi di stabilità è di capire come avviene
la propagazione degli errori. Se questa è controllata, cioè non li fa crescere, allora
il metodo sarà stabile. Uno dei problemi connessi all’instabilità è la cancellazione
numerica, proprio come evidenziato nei due esempi successivi.

ESEMPIO 8. Desideriamo risolvere l’equazione ax2 + bx+ c = 0. Se a �= 0, le radici

sono x1,2 =
−b±√b2 − 4ac

2a
. Dove si manifesta la cancellazione numerica?

• In x1 quando
√
b2 − 4ac ≈ b

• in x2 quando −√b2 − 4ac ≈ b.

Come ovviare a questi problemi? Nel primo caso, prima si calcola x2 dove il prob-
lema della cancellazione non sussiste quindi, usando le relazioni tra le radici x1 e
x2 di un’equazione di secondo grado, otteniamo x1 = c/(ax2). In maniera analoga
opereremo nel secondo caso: prima calcolo x1 quindi x2 = c/(ax1).

ESEMPIO 9. Data f(x) = x2 si voglia calcolare f ′(x) per x = x0. Ora, ricorrendo
alla definizione di derivata come

lim
h→0

f(x+ h)− f(x)

h
per x = x0 ,

ma per h → 0 potrebbero insorgere problemi di cancellazione. Cosa che si ovvia
ricorrendo alla relazione f ′(x) = 2x che verrà quindi valutata per x = x0.

Riassumendo, la stabilità è legata al metodo risolutivo e l’instabilità è dovuta
essenzialemente agli errori algoritmici legati alle operazioni da effettuarsi du-
rante l’esecuzione dell’algoritmo. Ma non dimentichiamo gli errori di rappresen-
tazione (che sono errori inevitabili).
L’altro aspetto da tenere presente nell’analisi è quello che definiremo come

condizionamento del problema numerico. Questo aspetto è legato alla definizione
del problema, matematicamente una funzione dei dati del problema.

Definizione 4. Un problema si dice ben condizionato se a piccole perturbazioni
(relative) sui dati in ingresso corrispondono perturbazioni (relative) dello stesso
ordine in uscita. In caso contrario il problema si dice mal condizionato.

Per misurare il condizionamento si introduce il cosidetto numero di condizion-
amento

C =
r

d
, (1.4)

26 Appunti di Calcolo Numerico con codici in Matlab/Octave

dove r indica la percentuale d’errore sul risultato rispetto alla percentuale d’errore
sul dato d. Pertanto, usando questo indice, un problema sarà ben condizionato
quando C è piccolo (vedremo più oltre in che senso) altrimenti sarà mal con-
dizionato. Vediamo un esempio.

ESEMPIO 10. Il sistema {
x+ y = 2
1001x+ 1000y = 2001

ha soluzione (x, y) = (1, 1). Siano

A =

(
1 1

1001 1000

)
, b =

(
2

2001

)
.

Ora, perturbiamo l’elemento a1,1 della matrice A di 0.01, ovvero consideriamo la
matrice

A1 = A+

(
0.01 0
0 0

)
.

Se risolviamo il sistema A1x = b otteniamo la soluzione (x, y) = (−1/9, 1901/900).
Pertanto, per calcolare il numero di condizionamento (1.4), dobbiamo vedere chi sono
i rapporti, r/d, su ogni componente del vettore soluzione:(r

d

)
x
=

1− (−1/9)
1

= 1.1̄,
(r
d

)
y
=

1− (1901/900)

1
= −1.112̄

da cui, complessivamente in percentuale, C = 111%. Quindi, un errore di 10−2 sul
dato A (misurato in qualunque norma matriciale) si è riversato con un errore di circa
102 sul risultato. Il problema è quindi mal condizionato.

Consideriamo la valutazione di una funzione f : R→ R in un punto x0. Pren-
diamo ora una perturbazione x0+h. Le quantità r e d richieste in (1.4), in questo
caso sono

d =
x0 + h− x0

x0
=

h

x0
; r =

f(x0 + h)− f(x0)

f(x0)
,

da cui
C(f, h) :=

f(x0 + h)− f(x0)

h

x0

f(x0)
.

Al tendere di h→ 0,

lim
h→0

|C(f, h)| = |C(f, x0)| =
∣∣∣∣f ′(x0) · x0

f(x0)

∣∣∣∣ .
Questo esempio ci dice che il numero di condizionamento tende ad un limite che
in modulo vale

|C(f, x0)| =
∣∣∣∣f ′(x0) · x0

f(x0)

∣∣∣∣ ,
che viene detto fattore d’amplificazione d’errore. Se C(f, x0) < 1 diremo che
il problema è ben condizionato altrimenti verrà detto malcondizionato.

271 - Aritmetica di macchina e analisi degli errori

Come applicazione di quest’analisi, consideriamo f(x) =
√
1− x. Ora f ′(x) =

− 1
2
√
1−x

e quindi

C(f(x)) =

∣∣∣∣ x

2(1− x)

∣∣∣∣
che ha problemi quando x ≈ 1. Ad esempio se x = 0.999 e h = 10−5 allora

d = h/x = 1.001 · 10−5, r =

√
1− (x+ h)−√1− x√

1− x
≈ −0.00503

da cui
∣∣ r
d

∣∣ ≈ 501.67. Anche passando al limite per h→ 0 le cose non migliorano. Il
problema è malcondizionato e ciò è dovuto al fatto che il fattore d’amplificazione
richiede il calcolo della derivata. Questo ci dice anche che il calcolo della derivata
è un problema, in genere, malcondizionato.

1.5 Il calcolo di π

Per il calcolo di π esistono alcuni importanti algoritmi non tutti convergenti per
motivi di instabilità. Di seguito diamo cenno di 5 algoritmi tra i più importanti.
Di essi diamo anche un pseudo-algoritmo che è un’utile base di partenza per una
successiva implementazione in un linguaggio di programmazione.

1. Algoritmo di Archimede. Mediante questo algoritmo, π è approssimato con
l’area del poligono regolare di 2n lati inscritto nella circonferenza di raggio
1 (che ha area uguale a π).
Indicando con bi il numero di lati dell’i-esimo poligono regolare iscritto, con
si = sin

(π
2i

)
e con Ai la corrispondente area, l’algoritmo si può cosı̀ descri-

vere:

Algoritmo
b1 = 2; s1 = 1
for i=2:n

Ai = bi−1si−1, si =

√
1−
√

1−s2i−1

2
bi = 2bi−1

end for

La formula risulta instabile come si vede dall’andamento dell’errore visual-
izzato in Figura 1.1.

2. Algoritmo di Viète. Mediante questo algoritmo, π è approssimato con il
semi-perimetro del poligono regolare di 2n lati inscritto nella circonferenza
di raggio 1.
Indicando con

ci = cos
(π
2i

)
e pi il corrispondente semiperimetro, l’algoritmo si descrivere come segue:

28 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 1.1: Calcolo di π con l’algorimo di Archimede

Algoritmo
c1 = 0; p1 = 2
for i=2:n

ci =
√

1+ci−1

2

pi =
pi−1

ci
end for

L’idea di Viéte risulta migliore per il calcolo di π. Infatti, come visualizzato
in Figura 1.2, l’errore assoluto tende alla precisione macchina già con 20−30
iterazioni.

3. Algoritmo di Wallis. Qui π è approssimato con la formula:

π

2
=

2

1

2

3

4

3

4

5
· · · 2n

2n− 1

2n

2n+ 1
· · · n ≥ 1 .

Indicando con pi la produttoria al passo i, l’algoritmo si descrivere come
segue:

Algoritmo
p0 = 2;
for i=1:n,

pi = pi−1
4i2

4i2−1 ;

end for

291 - Aritmetica di macchina e analisi degli errori

Figura 1.2: Calcolo di π con l’algorimo di Viéte

La formula converge molto lentamente, come visualizzato dall’andamento
dell’errore in Figura 1.3.

Figura 1.3: Calcolo di π con la formula di Wallis

30 Appunti di Calcolo Numerico con codici in Matlab/Octave

4. π = 4 arctan(1). Usando l’espansione di Taylor di arctan(1), π è approssi-
mato con la formula:

arctan(1) = 4

(
1− 1

3
+

1

5
− 1

7
· · ·
)
.

Indicando con qi la somma al passo i, l’algoritmo si può descrivere come
segue:

Algoritmo
q1 = 1;
for i=2:n

qi = qi−1 +
(−1)i−1

2i−1

end for

π = 4qn

L’algoritmo converge lentamente come visualizzato dall’andamento dell’errore
in Figura 1.4

Figura 1.4: Calcolo di π con la formula dell’arcotangente

5. π = 6 arcsin(12). Come nel caso dell’ arctan, π è approssimato con la seguente
formula che si ottiene ancora una volta espandendo in serie di Taylor l’
arcsin(12):

arcsin

(
1

2

)
= 6

(
1

2
+

1

2

1

3

1

23
+

1

2

3

4

1

5

1

25
+ · · ·

)
.

Indicando con qi la somma al passo i e ti il “punto” corrente, l’algoritmo si
descrivere come segue:

311 - Aritmetica di macchina e analisi degli errori

Algoritmo
q1 = 0; t1 = 1

2
for i=1:n-1

qi+1 = qi +
ti

2i−1 ; ti+1 = ti(2i−1)
8i

end for

π = 6qn

L’approssimasione con l’arcsin risulta essere davvero buona, come si osserva
dall’andamento dell’errore assoluto visualizzato in Figura 1.5 per n = 30.

Figura 1.5: Calcolo di π con la formula dell’arcoseno

1.6 Esercizi proposti

ESERCIZIO 4. Calcolare a2 − b2 con a = 1.4 · 10154 e b = 1.3 · 10154. Cosa si
nota? Come risolvere il problema in modo stabile?

ESERCIZIO 5. Sia x = 8.88178419700125 · 10−16. Si calcoli l’espressione

(1 + x)− 1

x
.

Perchè il risultato è meno accurato che prendendo x = 8.0 · 10−16?

32 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESERCIZIO 6. Sia

Sn(x) = 1 + x+ x2/2 + x3/3! + · · ·+ xn/n!

la troncata n-esima di exp(x). Si prenda x = −10 e si calcoli per n =
1, 2, . . . , 80 l’errore relativo

|Sn(x)− exp(x)|
exp(x)

Cosa si osserva? Perchè ciò accade?

ESERCIZIO 7. Si prenda x = 1.005, il calcolo di q7(x) = (x − 1)7 produce il
risultato 7.8125 ·10−17 mentre quello di p7(x) = x7−7x6+21x5−35x4+35x3−
21x2 + 7x− 1 da come risultato −8.88178419700125 · 10−16. Perchè?

ESERCIZIO 8. Implementare queste operazioni:
a=4/3; b=a-1; c=b+b+b; e=1-c.

Qual è il risultato dell’operazione? Altri valori di a darebbero lo stesso risul-
tato?

ESERCIZIO 9. Siano x = 5 e y = 5 − η con x − y = η. L’errore relativo della
differenza è

εx−y =
fl(x− y)− (x− y)

x− y
,

dove fl(x− y) è la differenza dei 2 numeri x e y, in aritmetica floating point.
Ovvero

fl(x− y) = (x− y)(1 + eps),

con eps la funzione Matlab/Octave che restituisce la precisione macchina.
Calcolare εx−y al diminuire di η e riportare su una tabella i valori η, εx−y e
la percentuale εx−y ∗ 100.

ESERCIZIO 10. Si consideri la ricorrenza

z2 = 2 ,

zn+1 =
√
2

zn√
1 +
√

1− 41−n z2n

;n ≥ 2

che converge a π quando n → ∞. Scrivere un M-file che implementa la ri-
correnza precedente e inoltre visualizza in scala logaritmica al variare di n
l’errore relativo |π−zn|

π .
La formula ricorrente è stabile?

ESERCIZIO 11. Si consideri la ricorrenza

I0 =
1

e
(e− 1) =

1

e

∫ 1

0

x0exdx ,

In+1 = 1− (n+ 1)In =
1

e

∫ 1

0

xn+1exdx ;n ≥ 0

331 - Aritmetica di macchina e analisi degli errori

sapendo che In → 0 per n → ∞, si scriva un M-file che calcola I40. La ri-
correnza è stabile? Come è possibile stabilizzarla? Sugg. Si può procedere
mediante stabilizzazione all’indietro. Ovvero posto n=40, si calcola

vn =
1

e

∫ 1

0

xnexdx ,

vi−1 = (1− vi)/i, i = n, n− 1, . . . , 2

Per il calcolo di vn usare la funzione Matlab/Octave quadl, usando la chia-
mata quadl(’f’,0,1,[],n).

ESERCIZIO 12. Si consideri la ricorrenza

I0 = log

(
6

5

)
, (1.5)

Ik =
1

k
− 5 Ik−1 k = 1, 2, . . . n , (1.6)

che in teoria dovrebbe convergere a

In =

∫ 1

0

xn

x+ 5
dx ,

mentre che cosa possiamo dire circa la convergenza della ricorrenza (1.6)?

ESERCIZIO 13. Si consideri l’equazione ax2 + bx + c = 0 con a = 1.e − 8,
b = 2 e c = 1.e− 6 le cui radici, in modulo, sono |x1| = 2.0e+8, |x2| = 5.0e− 7.
Quale delle due radici pone problemi di calcolo con la formula risolutiva delle
equazioni di secondo grado?

ESERCIZIO 14. Si consideri la serie del coseno

cosx = 1− x2/2! + x4/4!− x6/6! + x8/8!− · · · .

Valutare cos(1) il cui valore, arrotondato a 2 decimali, è 0.540. Quanti termini
della serie sono necessari per approssimare cos(1) con errore assoluto ≈ 1.7 ·
10−3?

ESERCIZIO 15. Sia R=realmax. Calcolare in maniera stabile l’espressione
(R2 − 1)/R. Quale tra le seguenti espressioni è calcolabile senza overflow o
underflow?

1. (R− 1)(R+ 1)/R 2. R− 1/R 3. (R−1)
R (R+ 1).

34 Appunti di Calcolo Numerico con codici in Matlab/Octave

2
Ricerca di zeri di funzione

Sin dalla scuola media superiore sappiamo che, dato un polinomo di grado n,
pn(x) = a0 + a1x+ · · ·+ anx

n, esistono delle formule esplicite di calcolo delle sue
radici, solo per n ≤ 4, mentre per n ≥ 5 non esistono formule generali che ci
consentono di determinarne gli zeri in un numero finito di operazioni. A maggior
ragione questo vale nel caso in cui si vogliano determinare le soluzioni di f(x) =
0, per una generica funzione f .
Queste considerazioni introduttive ci inducono a dire che la ricerca di soluzioni

di f(x) = 0 si potrà fare solo con tecniche di tipo iterativo ovvero con la ricerca
basata su delle iterazioni di un certo algoritmo.

2.1 Ricerca di zeri di funzione

La ricerca di zeri di funzione è un problema frequente nel calcolo scientifico. Fac-
ciamo un paio di esempi

1. Dinamica della popolazioni. Consideriamo il seguente modello preda preda-
tore (si veda anche l’Appendice A), che modellizza l’evoluzione di una de-
terminata popolazione di cellule, di batteri, di animali ecc... mediante
l’equazione

x+ =
rx2

1 +
(
x
c

)2 , r > 0, c > 0 (2.1)

L’equazione (2.1) dice che la popolazione ”successiva” x+ cresce secondo
una legge non lineare dipendente dai parametri r, c che indicano le risorse
disponibili (e sono costanti fisse del problema). Scrivendola nella forma
x+ = g(x) (con ovvio significato), ci si potrebbe chiedere se esiste un val-
ore x∗ tale che x∗ = g(x∗). Questa è la tipica formulazione del problema
di punto fisso dell’equazione (2.1) corrispondente allo zero della funzione
f(x) = x− g(x).

2. Capitalizzazione composta a tasso fisso. Sia C il capitale che si investe
all’inizio di ogni anno su un fondo d’investimento o pensionistico. Il mon-
tante dopo il primo anno èM1 = C+Cx = C(1+x). Dopo n anni ilmontante
Mn dato dalla somma dei montanti Mi, i = 1, . . . , n, ottenuti in regime di
capitalizzazione composta, è

Mn = C (1 + x) + C (1 + x)2 + · · ·+ C (1 + x)n = C

n∑
i=1

(1 + x)i . (2.2)

con x che indica il tasso fisso d’investimento (x ∈ (0, 1)). Se desiderassimo
calcolare il tasso medio x∗ di rendita del piano d’ investimento, chiamando
con f(x) = Mn − C

∑n
i=1(1 + x)i, il problema consisterà nella ricerca dello

zero della funzione f .

Passiamo ora a descrivere i più comuni metodi iterativi per la ricerca di zeri di
funzione.

2.2 Metodo di bisezione

Sia f ∈ C[a, b] t.c. f(a)f(b) < 0. Sappiamo allora che esiste almeno uno zero
di f in (a, b). In particolare se f fosse strettamente crescente (o decrescente) in
(a, b) allora lo zero sarebbe unico. Ad esempio f(x) = x2 − x − 1 è strettamente
crescente per x ∈ [3/2, 2] e strettamente decrescente in [−1,−1/2]: infatti ha due
radici x1,2 =

1±√5

2
.

Per semplicità ci limiteremo al caso in cui (a, b) contiene un solo zero di f ,
che chiameremo α. Altrimenti contrarremo l’intervallo d’interesse fino a con-
tenere un solo zero..
L’algoritmo di calcolo si può descrivere come in Tabella 2.1.

Passo iniziale k = 0; a0 = a; b0 = b; I0 = [a0, b0] .

Iterazione {Si determina Ik =
1

2
Ik−1, k ≥ 1. }

1. xk−1 =
ak−1 + bk−1

2
.

2. Se |f(xk−1)| < tol (∗) allora α = xk−1; tt {radice! stop!}
altrimenti se

f(ak−1)f(xk−1) < 0 allora ak = ak−1, bk = xk−1 ,
altrimenti, ak = xk−1, bk = bk−1 .

3. xk =
ak + bk

2
, k = k + 1.

Ritorna al passo 2.

(*) tol serve a verificare quando f(xk−1) ≈ 0.

Tabella 2.1: Algoritmo di bisezione

Facciamo vedere che il metodo di bisezione, nelle ipotesi che l’intervallo con-
tenga una sola radice, converge all’unica radice α di f nell’intervallo [a, b].

Dim. Assumiamo f(a) < 0 < f(b). Vogliamo far vedere che il metodo genera
una successione {xk} che converge verso α. Infatti, le successioni {ak} e {bk} sono
tali che

a0 ≤ a1 ≤ · · · ≤ an ≤ · · · ≤ bn ≤ · · · ≤ b0

36 Appunti di Calcolo Numerico con codici in Matlab/Octave

ovvero {ak} monotona crescente e {bk} monotona decrescente. Sappiamo quindi
che lim

k→∞
ak = α− e lim

k→∞
bk = α+ con α− ≤ α+ ∈ (a, b). Ora,

α+ − α− = lim
k→∞

(bk − ak) = lim
k→∞

(b− a)

2k
= 0 .

Pertanto α+ = α− = α.
Ma f , per ipotesi, è continua e quindi lim

k→∞
f(ak) = lim

k→∞
f(bk) = f(α). Inoltre,

dal teorema del confronto limk→∞ f(ak) ≤ 0 e limk→∞ f(bk) ≥ 0 da cui segue
0 ≤ f(α) ≤ 0. Ció consente di concludere che f(α) = 0. �
Poiché |Ik| = |bk − ak| = 1

2k
|I0| con I0 = b − a, allora l’errore assoluto ek al

passo k soddisfa alla disuguaglianza

|ek| = |xk − α| < 1

2
|Ik| = 1

2k+1
|b− a| .

Chiedendo che |ek| < ε, possiamo determinare a priori il numero minimo di
iterazioni per ridurre l’errore a meno di ε

kmin > log2

(|b− a|
ε

)
− 1 . (2.3)

La funzion Matlab/Octave, bisezione in Appendice C, implementa il metodo di
bisezione (richiede la definizione della funzione fun di cui si cerca lo zero).

Osservazioni.

• Il metodo non garantisce una riduzione progressiva dell’errore ma solo un
dimezzamento dell’ampiezza dell’intervallo dove sta α.

• Il metodo non tiene conto del reale andamento della funzione f su I0 =
[a0, b0] = [a, b]. Se, I0 è simmetrico rispetto α, basterebbe un solo passo per
determinare la radice. Invece, l’algoritmo nella sua formulazione originale,
non è in grado di verificarlo essendoci gli inevitabili errori di rappresen-
tazione e algoritmici.

• Infine, se f è una retta il metodo richiederà più di un passo per trovare la
radice. Vedremo che, ad esempio con il metodo di Newton (cfr. Sezione 2.4),
nel caso in cui la funzione sia una retta lo zero si determinerà, come giusto
che sia, con una sola iterazione.

2.3 Iterazione di punto fisso

L’idea del metodo è di trasformare il problema originale, che consiste nel cercare
gli zeri di f risolvendo f(x) = 0, in un problema di punto fisso x = g(x) la cui
soluzione è la stessa del problema originale.

1. Il primo passo è la trasformazione di f(x) = 0 in un problema di punto fisso
x = g(x), con g derivabile in Iα e t.c. α = g(α) se e solo se f(α) = 0.

372 - Ricerca di zeri di funzione

2. Dato un valore iniziale x0 costruiamo il metodo iterativo xk+1 = g(xk), k =
0, 1, . . . che genererà la successione {xk} che convergerà verso un punto ξ =
α.

Per inciso, la funzione g(x) viene detta funzione d’iterazione del metodo itera-
tivo.
La trasformazione di f(x) = 0 in x = g(x) non è unica. Infatti, se consideriamo

x4− 3 = 0, la possiamo trasformare in x = x4+x− 3, oppure in x = 3+5x−x4

5 o an-

cora in x = 3

√
3
x . In generale esistono infiniti modi di ottenere una formulazione

di punto fisso.
L’altro problema, una volta ottenuta la forma x = g(x), è di chiederci se tutte

le funzioni d’iterazione g(x) vanno ugualmente bene. La risposta è negativa in
generale. Vale il seguente Teorema

Teorema 1. Supponiamo che g([a, b]) ⊂ [a, b] e che esista un L < 1 t.c.

|g(x1)− g(x2)| ≤ L |x1 − x2|, ∀x1, x2 ∈ [a, b] . (2.4)

Allora esiste un unico punto fisso α della funzione d’iterazione g. Inoltre la suc-
cessione {xk}k≥0, x0 fissato, converge ad α.

Dim. Consideriamo la funzione φ(x) = g(x)−x. Dalle ipotesi φ(a) = g(a)−a ≥
0 e φ(b) = g(b) − b ≤ 0. Pertanto esiste almeno uno zero all’interno di [a, b] Se
esistessero due zeri, siano α1 e α2, allora per (2.4)

|α1 − α2| = |g(α1)− g(α2)| ≤ L|α1 − α2| < |α1 − α2|

ovvero assurdo.
Per concludere facciamo vedere che la successione {xk} converge ad α. Infatti,

0 ≤ |xk+1 − α| = |g(xk)− g(α)| ≤ L|xk − α| ≤ · · · ≤ Lk+1|x0 − α| .

Ovvero per ogni k ≥ 0
|xk − α|
|x0 − α| ≤ Lk ,

Passando al limite si conclude. �

Osservazione. Il Teorema appena enunciato dice che se la g è una contrazione
allora essa ammette un solo punto fisso. Questo è sostanzialmente il Teorema
delle contrazioni di Banach-Caccioppoli (vedasi Teorema in Appendice A).

Nel caso in cui g sia derivabile vale il seguente Teorema che ci assicura una
condizione necessaria e sufficiente per la convergenza.

Teorema 2. (Ostrowski) Se g(x) è derivabile in Iα ed esiste un numero μ < 1
t.c.

|g′(x)| ≤ μ, ∀ x ∈ Iα ; (2.5)

38 Appunti di Calcolo Numerico con codici in Matlab/Octave

23

allora g(x) ha un unico punto fisso α. Inoltre la successione generata dal metodo
xk+1 = g(xk) converge ad α per ogni scelta di x0 ∈ Iα. Infine si ha

lim
k→∞

|xk+1 − α|
|xk − α| = |g′(α)| . (2.6)

Dim. La dimostrazione segue dal fatto che g è una contrazione e quindi si
ragiona come nel teorema delle contrazioni. �

Da (2.6) deduciamo che le iterazioni di punto fisso convergono almeno linear-
mente. Infatti per k > k̄, k̄ sufficientemente grande, l’errore ek+1 = xk+1−α ha lo
stesso comportamento di quello al passo k a meno di una costante |g′(α)| ≤ μ < 1.

Definizione 5. Sia {xk} una successione convergente a α. Consideriamo l’errore
assoluto in modulo al passo k, |ek| = |xk − α|. Se esiste un reale p ≥ 1 e una
costante reale positiva γ < +∞ t.c.

lim
k→∞

|ek+1|
|ek|p = lim

k→∞
|xk+1 − α|
|xk − α|p = γ , (2.7)

allora la successione {xk} ha ordine di convergenza p.

• Se p = 1 e 0 < γ < 1 parleremo di convergenza lineare.

• Se p = 1 e γ = 1 parleremo di convergenza sublineare.

• Nel caso in cui 1 < p < 2 si dice che la convergenza è superlineare.

• Se p = 2 parleremo di convergenza quadratica; se p = 3 di convergenza
cubica e cosı̀ via.

Come conseguenza della precedente definizione, il metodo di iterazione fun-
zionale xk+1 = g(xk) ha ordine di convergenza p se vale la (2.7).
Un modo pratico, di determinare un valore approssimato dell’ordine di con-

vergenza p, che deriva dalla definizione (2.7), è il seguente. Osservando che

lim
k→∞

|xk+1 − α|
|xk − α|p = γ �= 0

si ricava

p = lim
k→∞

log |xk+1 − α| − log γ

log |xk − α| ≈ lim
k→∞

log |xk+1 − α|
log |xk − α| . (2.8)

Naturalmente se, come spesso accade, non si conosce la radice α, si puoò con-
siderare, in (2.8) invece di α, una sua approssimazione xm con m più grande di
k + 1.

ESEMPIO 11. Consideriamo la funzione d’iterazione g(x) = x(2− qx), q > 0.

(a) Quali sono i punti fissi di g(x).

392 - Ricerca di zeri di funzione

(b) Per il metodo xk+1 = g(xk), k ≥ 0, determinare l’intervallo Iα di convergenza
della radice positiva α.

(c) Calcolare l’ordine di convergenza del metodo iterativo di cui al punto precedente.

Soluzione.

(a) Risolvendo x = x(2− qx) si ottengono le soluzioni x1 = 0 e x2 = 1/q > 0.

(b) L’intervallo di convergenza Iα con α = 1/q si ottiene chiedendo che |g′(1/q)| < 1.
Ora risolvendo |g′(x)| < 1, ovvero |2(1− qx)| < 1, si ha

1

2q
< x <

3

2q
.

Questo intervallo contiene la radice α = 1/q e inoltre g′(1/q) = 0 < 1 e quindi,
come richiesto dalla Proposizione 2, il metodo converge alla radice positiva per

x ∈
(

1
2q ,

3
2q

)
.

(c) Calcoliamo l’ordine di convergenza verificando per quali p il limite

lim
k→∞

|xk(2− q xk)− α|
|xk − α|p

risulta finito. Per p = 1 non è finito perchè il numeratore si comporta come
x2 e il denomiatore come x. Invece per p = 2, numeratore e denominatore si
comportano come x2 e quindi il limite sarà finito. Pertanto il metodo converge
con ordine 2.

� � �
L’esempio appena svolto ci consente di specializzare il concetto di ordine di

convergenza di un metodo iterativo.

Teorema 3. Se la funzione d’iterazione è derivabile almeno p volte con continuità
in Iα, con α un punto fisso semplice di g(x) per cui

g′(α) = g′′(α) = · · · = g(p−1)(α) = 0, g(p)(α) �= 0 ,

allora il metodo d’iterazione ha ordine di convergenza p.

Dim.. Infatti, usando l’espansione di Taylor di g in un intorno α con resto in
forma di Lagrange

g(x) = g(α)+g′(α)(x−α)+g′′(α) (x− α)2

2!
+· · ·+g(p−1)(α)

(x− α)p−1

(p− 1)!
+g(p)(ξ)

(x− α)p

p!
.

Per ipotesi g(k)(α) = 0, k = 0, . . . , p− 1, quindi

|xn+1 − α|
|(xn − α)p| =

|g(p)(ξ)|
p!

�= 0 .

40 Appunti di Calcolo Numerico con codici in Matlab/Octave

Questo conclude la dimostrazione. �.

Tornando all’esempio precedente punto (c), notiamo che g′(1/q) = 0mentre
g′′(1/q) = −2q �= 0 che come dimostrato ha ordine di convergenza quadratico.

Naturalmente, questo ha senso se conosciamo la radice α.
Test d’arresto

1. Test sulla differenza tra due iterate successive. Il metodo iterativo contin-
uerà la ricerca della soluzione finchè |xk+1 − xk| < ε. Infatti

xk+1 − α = g(xk)− g(α) = g′(ξk)(xk − α), ξk ∈ [α, xk] . (2.9)

Essendo xk+1 − α = xk+1 − xk + xk − α otteniamo

xk − α =
1

1− g′(ξk)
(xk − xk+1) .

Pertanto, se g′(x) ≈ 0, x ∈ Iα, in particolare per x = ξk, allora l’errore viene
stimato abbastanza accuratamente dalla differenze delle iterate successive.
Invece, se g′(x) ≈ 1 il fattore 1/(1− g′(ξk))→∞, pertanto la stima non sarà
una buona stima.

2. Test sulla differenza ”relativa” tra due iterate successive. Il test che faremo
ora è

|xk+1 − xk| < ε|xk+1| .

3. Test sul valore della funzione. Il test consiste nel verificare se |f(xk)| <
ε. Purtroppo questo test non funziona quando la funzione è piatta su Iα,
facendo fermare le iterazioni troppo lontano dal valore della soluzione. Un
esempio: la funzione f(x) = (x10 − 10)/x nell’intorno sinistro della radice
positiva α ≈ 1.26 è molto piatta e usando il test in esame partendo da x0 ∈
Iα = [1, 2] usando anche una tolleranza alta come ε = 1.e−2, ci arresteremo
dopo migliaia di iterazioni.

L’esempio proposto al punto 3, ci suggerisce le seguenti considerazioni.

• Nei test di arresto è necessario inserire anche un controllo sul numero mas-
simo di iterazioni, k ≤ kmax.

• Il test che ci darà “maggiore sicurezza” è quindi la combinazione del test
sull’errore relativo e il controllo sul numero di passi. Pertanto il metodo
iterativo continuerà a cercare la radice finchè

(|xk+1 − xk| ≥ ε|xk+1|) & (k ≤ kmax) . (2.10)

altrimenti se una delle due condizioni non sarà verificata ci si arresterà.

412 - Ricerca di zeri di funzione

La funzione Matlab/Octave MetIterazioneFunz.m, in Appendice C, implementa
un metodo di iterazione funzionale la cui funzione d’iterazione descritta in un
altro M-file g, richiede in input il valore iniziale x0, la tolleranza tol e il numero
massimo d’iterazioni kmax, e restituisce la soluzione in x0, niter, numero di iter-
azioni fatte e un flag per la convergenza. Se c’è convergenza flag=1 altrimenti
flag=0.

Esercizio. Trovare un metodo di iterazione funzionale convergente alla radice di
x10 = 10.

2.4 Il metodo di Newton o delle tangenti

Supponiamo che f sia derivabile su [a, b]. Pertanto possiamo considerare l’equazione
della tangente di f in xk

y(x) = f(xk) + (x− xk)f
′(xk) . (2.11)

Come punto xk+1 prendiamo il punto in cui la retta tangente interseca l’asse delle
ascisse. In pratica dobbiamo risolvere y(x) = 0.
Imponendo questa condizione in (2.11), otteniamo la formula del metodo di

Newton
xk+1 = xk − f(xk)

f ′(xk)
, (2.12)

purchè f ′(xk) �= 0, k ≥ 0.
Facciamo ora un paio di osservazioni.

1. Il metodo di Newton consiste nel sostituire localmente f(x) con la retta
tangente. Infatti

f(xk+1) = f(xk) + (xk+1 − xk)f
′(xk) +O((xk+1 − xk)

2) ,

da cui, imponendo che f(xk+1) = 0 e trascurando i termini di ordine superi-
ore al primo, otteniamo la (2.12). Questo ci dice che la (2.12) è un modo per
approssimare f in xk+1.

2. Se f(x) = a0 + a1x (f è una retta), allora il metodo di Newton converge in
una sola iterazione. Infatti

x1 = x0 − a0 + a1x

a1
= −a0

a1
.

��
Facciamo ora vedere che se x0 è preso “ sufficientemente” vicino alla radice

α, con f ′(α) �= 0 (ovvero α radice semplice), allora il metodo converge almeno
quadraticamente e si ha

lim
k→∞

xk+1 − α

(xk − α)2
=

f ′′(α)
2f ′(α)

, (2.13)

42 Appunti di Calcolo Numerico con codici in Matlab/Octave

da cui, se f ′′(α) �= 0, allora il metodo converge quadraticamente altrimenti con
ordine maggiore di due.
Dimostriamo la (2.13).

0 = f(α) = f(xk) + f ′(xk)(α− xk) +
(α− xk)

2

2
f ′′(ξ), ξ ∈ (xk, α)

=
f(xk)

f ′(xk)
+ α− xk +

(α− xk)
2

2f ′(xk)
f ′′(ξ)

= xk − xk+1 + α− xk +
(α− xk)

2

2f ′(xk)
f ′′(ξ)

= α− xk+1 + (α− xk)
2 f ′′(ξ)
2f ′(xk)

si conclude dividendo per (xk − α)2, portando a primo membro e passando al
limite. �
Il seguente teorema ci da delle condizioni per la convergenza globale del metodo

di Newton.

Teorema 4. Sia f ∈ C2[a, b] con [a,b] chiuso e limitato, inoltre

1. f(a)f(b) < 0

2. f ′(x) �= 0, x ∈ [a, b]

3. f ′′(x) ≥ 0 oppure f ′′(x) ≤ 0, ∀x ∈ [a, b]

4.
∣∣∣ f(a)f ′(a)

∣∣∣ < b− a e
∣∣∣ f(b)f ′(b)

∣∣∣ < b− a.

Allora il metodo di Newton converge all’ unica soluzione α ∈ [a, b] per ogni x0 ∈
[a, b].

Osservazione. L’ultima ipotesi del Teorema ci assicura che la tangente agli
estremi a e b interseca l’asse x all’interno di [a, b].

Dim. Supponiamo, come visualizzato in figura 2.1, che f ′ > 0, f ′′ ≤ 0 e
f(a) < 0, f(b) > 0 (ovvero nell’ipotesi di esistenza di un unico zero α in [a, b]).
Sia a ≤ x0 < α e, ovviamente, f(x0) ≤ 0 = f(α). Allora x1 = x0−f(x0)/f

′(x0) ≥
x0. Proviamo per induzione che xk ≤ α e xk+1 ≥ xk.
Per k = 0 è vera. Sia vera per k e proviamola per k + 1.

−f(xk) = f(α)− f(xk) = (α− xk)f
′(ξk), xk ≤ ξk ≤ α .

Ma, f ′′(x) ≤ 0, che implica che f ′ è decrescente. Quindi f ′(ξk) ≤ f ′(xk). Allora,

−f(xk) ≤ (α− xk)f
′(xk)

xk+1 = xk − f(xk)

f ′(xk)
≤ xk + (α− xk) = α .

Segue che f(xk+1) ≤ f(α) = 0 e anche che xk+2 ≥ xk+1 come richiesto.

432 - Ricerca di zeri di funzione

Figura 2.1: Interpretazione geometrica della condizione 4 del Teorema 4
nell’ipotesi di funzione è concava in [a, b]

In conclusione, la successione {xk} è monotona e limitata superiormente e
quindi convergente: limk→∞ xk = α . �

Se α è zero multiplo, con molteplicità m > 1 il metodo di Newton converge
linearmente. Vediamolo su un semplice esempio.

ESEMPIO 12. f(x) = x2. Il metodo di Newton costruisce la successione

xk+1 = xk − x2
k

2xk
=

xk
2

.

L’errore corrispondente soddisfa la successione ek+1 = ek
2 che ci dice appunto che il

metodo converge linearmente.
Se si considerasse la successione

xk+1 = xk − 2
x2
k

2xk
= 0

il metodo converge immediatamente alla radice doppia α = 0.

�
L’esempio ci suggerisce come modificare il metodo di Newton affinchè sia man-
tenuta la convergenza quadratica anche in presenza di zeri con molteplicità m >
1.

xk+1 = xk −m
f(xk)

f ′(xk)
, f ′(xk) �= 0, k ≥ 0 . (2.14)

La successione generata con l’iterazione (2.14) converge quadraticamente alla
radice multipla α alla luce della seguente osservazione: il metodo di Newton è un
metodo di iterazione funzionale con funzione d’iterazione g(x) = x− f(x)

f ′(x) .

44 Appunti di Calcolo Numerico con codici in Matlab/Octave

Facciamo vedere che, nel caso in cui la radice α ha molteplicità m, per man-
tenere l’ordine di convergenza quadratico, dobbiamo considerare la funzione d’ite
razione

g(x) = x−m
f(x)

f ′(x)
. (2.15)

Infatti, poichè possiamo scrivere f(x) = (x − α)mh(x) con h(p)(α) �= 0, p =
0, . . . ,m e

g(x) = x− (x− α)h(x)

mh(x) + (x− α)h′(x)

g′(x) = 1− h(x)

mh(x) + (x− α)h′(x)
− (x− α)

d

dx
ψ(x)

dove ψ(x) = h(x)
mh(x)+(x−α)h′(x) . Pertanto g′(α) = 1 − 1/m �= 0 se m > 1. È facile

a questo punto verificare che se prendiamo g(x) = x − mf(x)/f ′(x), come in
(2.15), allora g′(α) = 0 che ci garantisce ancora convergenza almeno quadratica
del metodo di Newton anche per zeri con multeplicità m > 1.

Se non conosciamo la molteplicità della radice, considereremo invece di f(x)
la funzione φ(x) = f(x)/f ′(x) e applicheremo il metodo di Newton a questa fun-
zione costruendo la successione

xk+1 = xk − φ(xk)

φ′(xk)
.

L’unico inconveniente di questa tecnica è che si deve calcolare la derivata seconda
della funzione f . Alternativamente, si può stimare il valore della molteplicità con
una successione

mk =
xk−1 − xk−2

2xk−1 − xk − xk−2
(2.16)

come descritto in [26, §6.2.2]. Infatti, visto che la successione {xk} converge
(linearmente) alla radice α allora

lim
k→∞

xk − xk−1

xk−1 − xk−2
= lim

k→∞
g(xk−1)− g(xk−2)

xk−1 − xk−2
= g′(α) = 1− 1

m
,

da cui
lim
k→∞

1

1− xk−xk−1

xk−1−xk−2

= m.

Vediamo ora un paio di esempi (didattici ma importanti).

1. f(x) = x2 − q, x > 0, q ∈ R+. Il problema ha soluzione x =
√
q. La

successione del metodo di Newton è

xk+1 =
1

2
(xk +

q

xk
) ,

-

452 - Ricerca di zeri di funzione

che altro non è che il metodo babilonese o di Erone che calcola√q usando
le operazioni elementari. Poiché f ′ > 0, f ′′ > 0 per x > 0, allora per il
Teorema 4, per ogni 0 < a <

√
q < b la successione converge a √q.

Nel caso f(x) = xn − q, q > 0, n > 0,

xk+1 = xk(1− 1

n
) +

q

n
x1−n
k

consente di calcolare la radice n-esima del numero reale positivo q.

2. f(x) = 1
x − c. Il problema equivale quindi a calcolare l’inverso di c. Sup-

poniamo, per semplicità che c > 0. La successione del metodo di Newton
è

xk+1 = xk(2− cxk)

che consente di calcolare il reciproco senza divisioni! Ora, per applicare il
Teorema 4, osservo che essendo f ′ < 0 e f ′′ > 0 (ricorda che x > 0) dovrò
trovare c, il con a < 1/c < b, tale che

f(b)

f ′(b)
= b(bc− 1) < b− a ⇐⇒ 1−√1− ac

c
< b <

1 +
√
1− ac

c

Pertanto, se a > 0 il metodo di Newton converge pur di prendere
1

2c
< x0 <

3

2c
.

Concludiamo con un uleriore esempio.

ESEMPIO 13. Data la funzione

fα(x) =
sin(αx)

αx+ 2
log(αx), α �= 0 ,

(a) dire quali sono gli zeri di fα(x) risolvendo analiticamente fα(x) = 0;

(b) per α = 2, si calcoli lo zero x∗ = 1/α mediante il metodo di Newton a meno di
tol = 1.e− 6.

Anzitutto la funzione è definita per x �= −2/α. Ma la condizione sull’esistenza del
logaritmo, richiede che αx > 0 che implica che α e x siano concordi in segno. Pertanto,
il suo campo di esistenza è R \ {−2/α}. Gli zeri si ottengono dalle equazioni e
disequazioni

sin(αx) = 0 ,

log(αx) = 0 ,

α x > 0 .

che hanno soluzioni x = kπ
α , k ∈ Z, x = 1/α e αx > 0 . In x = 0 la funzione è

definita per continuità e vale 0.
Ad esempio, per α = 2, lo zero richiesto è x∗ = 1/2. Usando il metodo di

Newton, sapendo che f ′
α(x) =

sin(αx)

x(αx+ 2)
+ α

[
cos(αx)(αx+ 2)− sin(αx)

(αx+ 2)2

]
, con il

codice seguente Matlab/Octave:

46 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 2.2: La funzione dell’Esempio 13 in [0.9, 1] con α = 2.

kmax=100; tol=1.e-6;

x0=3/(2*a);

iter(1)=x0;

[y,yd]=fun1(x0,a);

x1=x0-y/yd;

k=1;

iter(k+1)=x1;

while abs(x1-x0)> tol*abs(x1) & k <=kmax

x0=x1;

[y,yd]=fun1(x0,a);

x1=x0-y/yd;

iter(k+1)=x1;

k=k+1;

end

disp(’La soluzione cercata e’’ ’); x1

%---file che valuta la funzione e la sua derivata ----

function [y,yd]=fun1(x,a)

Ax=a*x+2; Sx=sin(a*x);

y=Sx./Ax.*log(a*x);

yd=Sx./(Ax.*x)+a*(cos(a*x).*Ax-Sx)./(Ax.^2);

return

in 12 iterazioni si calcola la soluzione richiesta.

��

472 - Ricerca di zeri di funzione

2.4.1 Varianti del metodo di Newton
Descriviamo brevemente alcune varianti del metodo di Newton note in letter-
atura con altri nomi.

Metodo delle corde

Consiste nel considerare costante, uguale ad un certo valore c, la derivata prima
della funzione f . Si ottiene pertanto il metodo delle corde

xk+1 = xk − f(xk)

c
, c ∈ R\{0}. (2.17)

Per la ricerca del valore ottimale per c, si deve tener conto del fatto che il metodo
è un metodo d’iterazione funzionale con funzione d’iterazione g(x) = x − f(x)/c.
Pertanto c si sceglie cosicché

|g′(x)| =
∣∣∣∣1− f ′(x)

c

∣∣∣∣ < 1 ,

in un intorno Iα = [α − δ, α + δ] della soluzione α. Pertanto, per la convergenza
del metodo delle corde dovremo verificare le seguenti condizioni:

f ′(x) �= 0, x ∈ Iα,

0 < f ′(x)/c < 2 .

Dalla seconda condizione, indicando conM = maxx∈Iα |f ′(x)| si deduce che per la
convergenza dobbiamo richiedere che |c| > M/2 e anche che c f ′(x) > 0.
Se c �= f ′(α) allora il metodo ha convergenza lineare, quando c = f ′(α) il

metodo è almeno del primo ordine.

Metodo delle secanti

L’idea è quello di approssimare f ′(xk), che appare nel metodo di Newton, con il

rapporto incrementale
f(xk)− f(xk−1)

xk − xk−1
. Si ottiene

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
, k = 1, 2, ... (2.18)

con f(xk−1) �= f(xk). Pertanto il metodo richiede la conoscenza di due valori
iniziali, x0, x1. Al passo k, il nuovo valore xk+1 è l’intersezione della secante,
ovvero la retta per i punti (xk−1, f(xk−1)) e (xk, f(xk)), con l’asse delle ascisse.
Il metodo delle secanti converge, sotto le stesse ipotesi del metodo di Newton,

con ordine di convergenza

p =
1 +

√
5

2
≈ 1.618 ,

48 Appunti di Calcolo Numerico con codici in Matlab/Octave

che equivale ad una convergenza superlineare. Ma, l’importanza del metodo
delle secanti stà principalmente nel costo computazionale: il metodo richiede
solo il calcolo di f(xk) mentre il metodo di Newton richiede i valori di f(xk)
e di f ′(xk). Nel caso di funzioni la cui espressione è ”complicata”, il calcolo
della derivata può essere costoso dal punto di vista della complessità. Pertanto
il metodo delle secanti, pur avendo una convergenza superlineare, rappresenta
sempre una valida alternativa al metodo di Newton.
Nel valutare, se usare il metodo delle secanti o di Newton, si dovrebbe consid-

erare la loro efficienza computazionale che indica se è più costoso calcolare la
derivata o il rapporto incrementale senza tralasciare il fatto che il calcolo della
derivata di una funzione è comunque un problema mal-condizionato.
Osserviamo che in [2] viene chiamato metodo delle secanti il metodo iterativo

xk+1 = xk − f(xk)
xk − c

f(xk)− f(c)
, k = 1, 2, ... (2.19)

con c ∈ [a, b], che corrisponde ad usare una secante sempre con la stessa pen-
denza. In questo caso, la convergenza è di tipo lineare. Se c è scelto cosicché
f(c)/(c− α) ha lo stesso segno di f ′(α) ed inoltre∣∣∣∣ f(c)c− α

∣∣∣∣ > 1

2
|f ′(α)|

allora la corrispondente funzione d’iterazione è tale che |g′(x)| < 1 e quindi il
metodo converge.

Il metodo di Steffensen

Il metodo costruisce la sequenza

xk+1 = xk − f(xk)

g(xk)
, (2.20)

g(xk) =
f(xk + f(xk))− f(xk)

f(xk)
. (2.21)

Posto βk = f(xk), si ha

g(xk) =
f(xk + βk)− f(xk)

f(xk)
= f ′(xk)

(
1− 1

2
hkf

′′(xk) +O(β2
k)

)
con hk = −f(xk)/f ′(xk) che è la correzione di Newton.
Osservando che per la funzione s(x) = 1/(1 − x) si può scrivere come s(x) =

1 + x+O(x2), pertanto la (2.20) diventa

xk+1 = xk + hk(1 +
hk
2
f ′′(xk) +O(β2

k)) . (2.22)

Da cui, per l’errore ek = xk − α, osservando che

hk = −ek + 1

2
e2k

f ′′(ξ)
f ′(xk)

492 - Ricerca di zeri di funzione

(si ottiene dal fatto che hk = (xk − α) +
(xk − α)2

2

f ′′(ξk)
f ′(xk)

)

otteniamo
lim
k→∞

ek+1

e2k
=

f ′′(α)
2f ′(α)

(1 + f ′(α)) .

In conclusione il metodo di Steffensen è un metodo di ordine 2.

2.5 Accelerazione di Aitken

Il metodo consente di accelerare una sequenza ottenuta a partire da successioni
di punto fisso xk+1 = g(xk), k ≥ 0.
Se {xk} converge linearmente allo zero α, allora possiamo dire che esiste un

η (da determinarsi) tale che

g(xk)− α = η(xk − α) . (2.23)

Il metodo si propone di definire una “nuova” successione che migliori la succes-
sione ottenuta con il metodo di partenza. Dalla (2.23) otteniamo

α =
g(xk)− ηxk

1− η
=

g(xk)− ηxk + xk − xk
1− η

ovvero

α = xk +
g(xk)− xk

1− η
. (2.24)

Come possiamo determinare η? Lo approssimiamo con la successione

ηk =
g(g(xk))− g(xk)

g(xk)− xk
. (2.25)

Lemma 1. Se la successione xk+1 = g(xk) converge ad α allora

lim
k→+∞

ηk = g′(α) .

Dim. Osserviamo che xk+1 = g(xk) e xk+2 = g(g(xk)). Da (2.25)

ηk =
xk+2 − xk+1

xk+1 − xk
=

xk+2 − α− (xk+1 − α)

xk+1 − α− (xk − α)
=

=

xk+2−α
xk+1−α − 1

1− xk−α
xk+1−α

.

Passando al limite, ricordando che per ipotesi la successione converge ovvero che
lim

k→+∞
xk+1 − α

xk − α
= g′(α), otteniamo l’asserto

lim
k→+∞

ηk =
g′(α)− 1

1− 1
g′(α)

= g′(α) .

50 Appunti di Calcolo Numerico con codici in Matlab/Octave

In definitiva {ηk} approssima η. �

Usando (2.24) e (2.25) otteniamo la “nuova successione”

x̂k+1 = xk − (g(xk)− xk)
2

g(g(xk))− 2g(xk) + xk
, k ≥ 0 (2.26)

detta formula di estrapolazione di Aitken o anche metodo di Steffensen. La
(2.26) si può considerare una iterazione di punto fisso con funzione d’iterazione

gΔ(x) =
x g(g(x))− (g(x))2

g(g(x))− 2g(x) + x
.

�
Osservazione. Il Δ a pedice nella gΔ è dovuto alla seguente osservazione. Os-
serviamo che la successione di Aitken si può riscrivere come

x̂k+1 = xk − (xk+1 − xk)
2

xk+2 − 2xk+1 + xk
, (2.27)

dove appare evidente la presenza dell’operatore differenze in avanti, Δ. Δ è
un operatore lineare che si definisce come

Δx = (x+ h)− x, h > 0

PertantoΔxk = xk+1−xk, Δ2 xk = Δ(Δxk) = Δxk+1−Δxk = xk+2−2xk+1+xk.
In definitiva la successione di Aitken (2.27), usando l’operatore Δ, diventa

x̂k+1 = xk − (Δxk)
2

Δ2 xk
. (2.28)

Talvolta, per indicare il metodo di accelerazione di Aitken, si usa la notazione Δ2

di Aitken.
�

Tornando alla gΔ(x), notiamo che è indeterminata per x = α. Infatti, ricordando
che g(α) = α e g(g(α)) = α otteniamo gΔ(α) = α2−α2

α−2α+α = 0
0 . Se g è derivabile e

g′(α) �= 1 allora applicando de l’ Hôpital limx→α gΔ(x) = α. Pertanto, in x = α,
gΔ(x) è estendibile per continuità e gΔ(α) = α.
Se g(x) = x− f(x) allora g′(α) = 1 se e solo se α ha molteplicità 2. Anche per

questa particolare g, si verifica che gΔ(α) = α ovvero ha gli stessi punti fissi di
g. Possiamo quindi considerare l’iterazione di punto fisso xk+1 = g(xk), g(x) =
x− f(x). Vale il seguente risultato.

Proposizione 1. Sia g(x) = x − f(x) e α radice di f . Se f è sufficientemente
regolare la successione xk+1 = g(xk) ha le seguenti proprietà.

(i) se le iterazioni di punto fisso convergono linearmente ad una radice semplice
di f allora Δ2 di Aitken converge quadraticamente alla stessa radice.

512 - Ricerca di zeri di funzione

(ii) se le iterazioni di punto fisso convergono con ordine p ≥ 2 ad una radice
semplice di f allora Δ2 di Aitken converge alla stessa radice con ordine
2p− 1.

(iii) se le iterazioni di punto fisso convergono linearmente ad una radice multipla
di molteplicità m ≥ 2 di f allora Δ2 di Aitken converge linearmente alla
stessa radice con fattore asintotico 1− 1/m.

Inoltre, nel caso p = 1 con α radice semplice di f , il metodo di Aitken converge
anche se le corrispondenti iterazioni di punto fisso non convergono.

ESEMPIO 14. La funzione tan(x) = 3
2x − 1

10 ha la radice α = 0.205921695. Se

la determiniamo con il metodo iterativo xk+1 = 2
0.1 + tan(xk)

3
partendo da x0 = 0

otteniamo una successione linearmente convergente ad α (infatti g′(α) ≈ 0.45636 < 1).
In Tabella 2.2 facciamo vedere la differente velocità di convergenza usando anche la
successione del metodo di accelerazione Δ2 di Aitken.

k xk x̂k (Aitken)
0 0 0
...

...
...

2 0.111 0.2024
...

...
...

5 0.1751 0.2053

Tabella 2.2: Confonto di una successione di punto fisso e di Δ2 di Aitken

Una possibile implemetazione del metodo di accelerazione di Aitken, in Mat-
lab/Octave, è descritta nella funzione �Aitken.m nell’Appendice C.

2.6 Calcolo delle radici di polinomi algebrici

Indicheremo con

pn(x) =
n∑

k=0

akx
k, ak ∈ R

un poliomio algebrico di grado n. Per la ricerca delle radici reali e/o complesse
di pn(x) ricordiamo anzitutto due risultati utili a comprendere la difficoltà del
problema.

• Regola dei segni di Cartesio. Dato pn(x), indichiamo con s il numero di
cambiamenti di segno nell’insieme dei coefficienti {ak} e con p il numero
delle radici reali positive ognuna contata con la propria molteplicità. Allora
p ≤ s e s− p è un numero pari.

52 Appunti di Calcolo Numerico con codici in Matlab/Octave

• Regola di Cauchy. Tutti gli zeri di pn(x) sono inclusi nel cerchio Ω ⊂ C

Ω = {z ∈ C : |z| ≤ 1 + γ}, γ = max
0≤k≤n−1

∣∣∣∣akan
∣∣∣∣

Vediamo ora un paio di esempi esplicativi che ci dicono come la regola di
Cauchy ci dia una localizzazione troppo approssimativa.

1. Sia p3(x) = x3 − 3x + 2 (che si può fattorizzare (x − 1)2(x + 2)). Questo
polinomio ha s = 2, p = 2 quindi la regola di Cartesio vale in quanto 2 ≤ 2 e
2−2 = 0 è pari. Pe Cauchy abbiamo che il cerchio di raggio 1+γ = 1+3 = 4
contiene le radici.

2. Sia p6(x) = x6−2x5+5x4−6x3+2x2+8x−8 le cui radici sono ±1, ±2i, 1± i.
Abbiamo una sola radice positiva: p = 1. Il numero dei cambi di segno è
s = 5. Anche qui le due regole di Cartesio e Cauchy sono ancora vere. In
particolare per Cauchy avremo che γ = 8!

2.6.1 Schema di Hörner
Lo schema consente di valutare efficientemente un polinomio in un punto. Parti-
amo con un esempio esplicativo. Per valutare il polinomio p2(x) = a0+a1x+a2x

2

in un punto ζ richiederebbe 2 addizioni e 2 moltiplicazioni. Se lo riscrivessimo
nella forma equivalente p2(x) = a0 +x(a1 + a2x), per valutarlo in ζ occorerebbero
2 addizioni e 2 moltiplicazioni.
Nel caso generale, la valutazione in ζ di pn(x) = a0+a1x+· · ·+anx

n richiederebbe
n somme e 2n− 1 moltiplicazioni. Usando la riscrittura

pn(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + anx)))

serviranno solo n somme e n moltiplicazioni.
L’algoritmo di Hörner per valutare pn(x) nel punto ζ si può cosı̀ descrivere.

bn = an ;
for k=n-1:-1:0,
bk = ak + bk+1ζ
end for
Alla fine b0 = pn(ζ).

Tabella 2.3: Algoritmo di Hörner per la valutazione di un polinomio pn(x) nel
punti ζ.

L’algoritmo di Hörner è anche detto di divisione sintetica. Infatti, consid-
eriamo il polinomio

qn−1(x; ζ) = b1 + b2x+ · · ·+ bnx
n−1

532 - Ricerca di zeri di funzione

i cui coefficienti sono i coefficienti bk calcolati con l’algoritmo di Hörner e che
dipendono da ζ, allora possiamo scrivere

pn(x) = (x− ζ)qn−1(x; ζ) + b0

con b0 che è il resto della divisione di pn(x) per x − ζ. Per Ruffini sappiamo che
b0 = pn(ζ) e quindi b0 = 0 quando ζ è una radice di pn(x). Pertanto, quando
pn(ζ) = 0 possiamo scrivere

pn(x) = (x− ζ)qn−1(x; ζ) .

Per determinare le rimanenti radici di pn(x) dobbiamo risolvere l’equazione
qn−1(x; ζ) = 0. Per fare questo opereremo per deflazione come descriveremo nel
prossimo algoritmo che dovremo eseguire per ogni valore di k da n fino a 1
(ovvero k=n:-1:1).

Algoritmo 1.

(i) trova una radice ζk di pk con un metodo di ricerca radici (es. Newton);

(ii) calcola il polinomio quoziente qk−1(x; ζk) usando lo schema di Hörner;

(iii) poni pk−1 = qk−1 e vai a (i).

Metodo di Newton-Hörner

È il metodo di Newton associato allo schema di deflazione: calcola la radice ζk di
pk(x). Osservo anzitutto che se pn(x) = (x− ζ)qn−1(x) allora

p′n(x) = qn−1(x; ζ) + (x− ζ)q′n−1(x; ζ)

Da cui
p′n(ζ) = qn−1(ζ; ζ) .

Pertanto il metodo di Newton-Hörner per approssimare la j-esima radice ζj , j =

1, . . . , n di pn, consiste, a partire da una approssimazione iniziale ζ
(0)
j , nel costru-

ire la successione

ζ
(k+1)
j = ζ

(k)
j − pn(ζ

(k)
j)

qn−1(ζ
(k)
j ; ζ

(k)
j)

.

Poi, ricordando che pn(x) = (x − ζj)qn−1(x) si sfrutta la deflazione per approssi-
mare uno zero di qn−1 finchè determineremo tutte le radici.

54 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESERCIZIO 16. Data la funzione f(x) = coshx + sinx − γ, per γ = 1, 2, 3 si
individui graficamente un intervallo contenente uno zero ξ ≥ 0 e lo si calcoli
con il metodo di bisezione con tol = 1.e − 10. Calcolare anche il numero
di iterazioni necessarie sia a priori che a posteriori. Fare anche il grafico
dell’errore relativo da cui si evince che la convergenza è lineare.

ESERCIZIO 17. Un oggetto si trova fermo su un piano la cui inclinazione
varia con velocità costante ω. Dopo t secondi la posizione del questo oggetto è

s(t, ω) =
g

2ω2
(sinh(ωt)− sin(ωt))

dove g = 9.81m/sec2 è l’accelerazione di gravità. Supponiamo che il corpo si
sia mosso di 1 metro in 1 secondo. Si ricavi il valore corrispondente di ω con
accuratezza 1.e−5, mediante un metodo di iterazione funzionale convergente!
(Sugg: si deve trovare una funzione di iterazione la cui derivata prima risulta
in modulo minore di 1 nell’intorno dello zero...).

ESERCIZIO 18. Si consideri la funzione f(x) = x2 − sin(πx) e−x.

1. Individuare un metodo di iterazione funzionale convergente linearmente
alla radice positiva, α, di f(x).

2. Individuare un metodo di iterazione funzionale convergente quadrati-
camente alla radice β = 0, di f(x).

In tutti i casi usare tol = 1.e− 6 e calcolare l’errore assoluto.

ESERCIZIO 19. 1. Si consideri la funzione f(x) = x2− log(x2+2) di cui si
vogliamo trovare gli zeri.

• Individuare le due radici reali di f(x) = 0 e i corrispondenti inter-
valli separatori (che denoteremo con Iα1 e Iα2).

• Si costruiscano due metodi convergenti di iterazione funzionale, le
cui funzioni di iterazione sono gi(x), i = 1, 2. Determinare per cias-
cuno di essi il numero di iterazioni necessarie, l’ordine di conver-
genza e il fattore asintotico d’errore. Usare 50 come numero mas-
simo di iterazioni e un opportuno test d’arresto con tol = 1.e− 5

2. Data la funzione f(x) = x2 − 2x − log(x), si studi la convergenza del
metodo delle secanti applicato all’equazione f(x) = 0.

Ricordo che la formula del metodo delle secanti è

x(k+1) = x(k) − f(x(k))
x(k) − x(k−1)

f(x(k))− f(x(k−1))
, k ≥ 1 .

Si fornisca anche il plot della sequenza {xi} alle due radici reali di f .
Si scelga tol = 1.e− 5. Rifare quindi l’esercizio con il metodo di Newton
(o delle tangenti).

2.7 Esercizi proposti

552 - Ricerca di zeri di funzione

ESERCIZIO 20. Si consideri il metodo d’iterazione funzionale

xi+1 = xi + e1−xi − 1 .

Provare, dapprima teoricamente e quindi numericamente usando tol =
1.e− 9, che questo procedimento converge all’unico punto fisso della funzione
d’iterazione. Calcolarne anche l’ordine di convergenza.

ESERCIZIO 21. Si consideri la funzione f(x) = (x2 − 1)p log(x), p ≥ 1, x > 0
che ha in α = 1 una radice multipla di molteplicità m = p + 1. Nei casi
p = 2, 4, 6, si determini α con i due seguenti metodi a meno di tol = 1.e − 8
partendo da x0 = 0.8.

1.

xk+1 = xk −mk
f(xk)

f ′(xk)
, k ≥ 2 con mk =

xk−1 − xk−2

2xk−1 − xk − xk−2
. (2.29)

2.
xk+1 = xk −m

f(xk)

f ′(xk)
.

Per ciascun metodo si determini il numero di iterazioni necessarie. Nel caso
del primo metodo si faccia vedere che la formula per mk in (2.29) fornisce
anche una stima della molteplicità di α.

ESERCIZIO 22. Si consideri l’equazione x = e−x.

• Individuato un intervallo che contiene la radice, usando l’iterazione

xn+1 =
e−xn + xn

2
, n ≥ 0 (2.30)

si determini la radice α dell’equazione data con tol = 1.e− 6.

• Si prenda ora l’iterazione

xn+1 =
ωe−xn + xn

1 + ω
, n ≥ 0, ω �= 0, ω �= −1 , (2.31)

Determinata α, graficamente si dica per quali valori di ω l’iterazione
(2.31) converge più rapidamente di (2.30) (Sugg. si calcoli in α la
derivata della funzione d’iterazione (2.31))

• Qual è il valore ottimale di ω?

ESERCIZIO 23. Si considerino le funzioni f1(x) = log(2/(3 − x)) e f2(x) =
x3 − 3 .

• Mediante il metodo di Newton determinare l’unica intersezione x� di
f1(x) = f2(x) calcolando anche il numero di iterazioni.

56 Appunti di Calcolo Numerico con codici in Matlab/Octave

• Visualizzare in scala semilogaritmica l’andamento dell’errore relativo
usando la soglia tol = 1.e− 9.

ESERCIZIO 24. Si considerino le funzioni f1(x) = log(2|x|) e f2(x) = 1− k x,
k reale.

1. Aiutandosi con la grafica, dire quante soluzioni reali hanno le due fun-
zioni per i seguenti valori k1 = 2e−2 − 0.1, k2 = k1 + 0.3 e k3 = 0.

2. Si consideri quindi k = 1. Studiare la convergenza dei seguenti metodi
di iterazione funzionale all’unica radice α

(i)
xi+1 = 1− log(2|xi|) ,

(ii)
xi+1 =

1

2
exp (1− xi) .

ESERCIZIO 25. Si consideri la funzione f(x) = x3−3 ex+3 di cui si vogliamo
trovare gli zeri.

• Individuare le due radici reali di f(x) = 0 e i corrispondenti intervalli
separatori (che denoteremo con Iα1

e Iα2
) e verificare che α1 < α2 = 0.

• Si determini α1 con il metodo delle secanti. Usare un opportuno test
d’arresto con tol = 1.e− 8.

• facoltativo: individuare un metodo di iterazione funzionale conver-
gente ad α1.

ESERCIZIO 26. Si consideri la funzione

f(x) = 1.74 log(10
√
x)− 4

10
− 1√

x
.

• Trovare l’intervallo [a, b] che contiene l’unica radice α di f(x).

• Costruire un metodo d’iterazione funzionale convergente in [a, b] alla
radice α. Usare tol = 1.e− 6.

ESERCIZIO 27. Dato il polinomio p3(x) = x3 − 2x2 + 1. Si dica quale tra le
seguenti 3 funzioni d’iterazione, per calcolare la radice ξ = 1, converge con
ordine almeno quadratico: g1(x) = x − p′3(x), g2(x) = p3(x) − x e g3(x) =
p3(x) + x.

ESERCIZIO 28. Si consideri lo schema iterativo

xk+1 = xk + e1−xk − 1 , k ≥ 0 .

Qual è l’unico punto fisso α della funzione d’iterazione data e qual è il cor-
rispondente ordine p di convergenza?

572 - Ricerca di zeri di funzione

ESERCIZIO 29. Data la funzione f(x) = ex − x3 + 2 che in [2, 5/2] ha una
radice α ≈ 2.27. Si dica quale tra le seguenti 3 funzioni d’iterazione converge
con ordine almeno quadratico partendo da x0 = 2: g1(x) = log(x3−2), g2(x) =
f(x) + x e g3(x) = −(f(x)/f ′(x)− x).

ESERCIZIO 30. La funzione f(x) = x3 − 2−
√
x+1 ha un’unico zero reale. Cal-

colare tale zero con un errore minore di 0.25. Trovare quindi un metodo di
punto fisso convergente allo zero.

58 Appunti di Calcolo Numerico con codici in Matlab/Octave

3
Soluzione di sistemi lineari

Prima di addentrarci nello studio dei metodi numerici, è doveroso introdurre le
matrici e alcune strutture particolari di matrici nonchè alcuni concetti fonda-
mentali quali la norma vettoriale e matriciale e il numero di condizionamento di
una matrice.

3.1 Cose basilari sulle matrici

Le definizioni che qui forniamo sono relative a matrici a valori reali ma valgono
similmente nel caso complesso con alcune piccole variazioni.
Una matrice (di numeri reali) è una tabella di m × n numeri disposti su m

righe e n colonne. I numeri che compaiono nella tabella si chiamano elementi
(della matrice). La loro individuazione avviene attraverso la loro posizione di
riga e colonna. Ad esempio

A =

⎡
⎣ 1 2 4 8 6

0 −5 16 −9 0.3
3 25 6 3 0.5

⎤
⎦

è una mtrice 3 × 5. L’elemento 16 essendo posizionato sulla seconda riga e terza
colonna, verrà indicato con a23.
In generale una matrice A avente m righe ed n si indicherà con

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1j · · · a1n
a21 a22 · · · a2j · · · a2n
· · · · · · · · · · · · · · · · · ·
ai1 ai2 · · · aij · · · ain
· · · · · · · · · · · · · · · · · ·
am1 am2 · · · amj · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Il numero di righe o di colonne viene detto ordine o dimensione della matrice. Nel
caso in cui m = n si dice che la matrice è quadrata di ordine n altrimenti sarà
detta rettangolare.

3.1.1 Operazioni aritmetiche con le matrici
• Somma di matrici. Siano A e B due matrici quadrate di ordine n o in
generale dello stesso tipo m × n. Indicando con C la matrice risultato

dell’operazione, si ha:

Cij = (A+B)ij = Aij +Bij .

Esempio. ⎡
⎣ 1 3 2

1 0 0
1 2 2

⎤
⎦ +

⎡
⎣ 0 0 5

7 5 0
2 1 1

⎤
⎦ =

⎡
⎣ 1 3 7

8 5 0
3 3 3

⎤
⎦ .

• Prodotto per uno scalare. Sia A una matrice quadrata di ordine n o ret-
tangolare m× n. Preso un α ∈ R si ha

(αA)ij = αAij .

Esempio.

2

⎡
⎢⎢⎣

1 3 4
0 1 5

−1 7 −8
1 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 6 8
0 2 10

−2 14 −16
2 0 0

⎤
⎥⎥⎦ .

• Prodotto di matrici. La regola fondamentale è che il prodotto di matrici
si fa righe per colonne. Pertanto perchè abbia senso richiederemo che il
numero di colonne della prima matrice sia uguale al numero di righe della
seconda matrice.

Se A e B sono matrici quadrate di ordine n il prodotto è sempre possibile.
Invece se A e B sono rettangolari il numero delle colonne di A deve coin-
cidere con quello delle righe di B. As esempio, se A è n×p e B è p×m allora
C = A×B avrà dimensione n×m. Pertanto,

Cij =

p∑
k=1

(Aik Bkj) .

In Matlab/Octave basta scrivere A*B.

Esempio. ⎡
⎣ 1 3 2

0 0 1
1 2 2

⎤
⎦ ·
⎡
⎣ 2 1

4 1
0 1

⎤
⎦ =

⎡
⎣ 14 6

0 1
9 5

⎤
⎦ .

Elenchiamo le principali proprietà dell’ operazione di somma e prodotto con
matrici.

1. A+0 = 0+A = A ovvero la matrice formata da tutti zeri è l’elemento neutro
della somma.

2. A+ (−A) = 0, ovvero esiste l’opposto di A che è la matrice −A.
3. (A+B) + C = A+ (B + C), ovvero la somma è associativa.

60 Appunti di Calcolo Numerico con codici in Matlab/Octave

4. A+ B = B + A: la somma è commutativa. Purtroppo questa proprietà non
vale per il prodotto: il prodotto di matrici non è commutativo.

[
1 2
4 −1

]
·
[

5 0
0 1

]
=

[
5 2
20 −1

]
,

mentre [
5 0
0 1

]
·
[

1 2
4 −1

]
=

[
5 10
4 −1

]
.

5. (AB)C = A(BC): associatività del prodotto di matrici.

6. C(A + B) = CA + CB: distributività del prodotto rispetto alla somma di
matrici.

Ci sono poi, alcune operazioni sulle matrici, tipiche dell’algebra delle matrici.

• Somma diretta di matrici. Siano A e B due matrici non necessariamente
quadrate, la loro somma diretta, che si indica con A⊕B è

A⊕B =

[
A 0
0 B

]
.

Esempio.

[
1 3 2
2 3 1

]
⊕
⎡
⎣ 2 1

4 1
0 1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

1 3 2 0 0
2 3 1 0 0
0 0 0 2 1
0 0 0 4 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

In generale

k⊕
i=1

Ai = A1 ⊕A2 ⊕ · · · ⊕Ak = diag(A1, . . . , Ak) .

In Matlab/Octave esiste la funzione blkdiag che permette di calcolare la
somma diretta di matrici.

• Prodotto diretto di matrici. Siano A, m × n e B, p × q (in generale
due matrici non necessariamente quadrate), il loro prodotto diretto, che si
indica con A⊗B è

A⊗B =

⎡
⎢⎢⎢⎣

a11B · · · a1nB
a21B · · · a2nB
...

...
am1B · · · amnB

⎤
⎥⎥⎥⎦ .

La matrice C = A⊗B ha quindi dimensione mp× nq.

613 - Soluzione di sistemi lineari

Esempio.

[
1 2
3 0

]
⊗
⎡
⎣ 0 3

2 1
0 1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 3 0 6
2 1 4 2
0 1 0 2
0 9 0 0
6 3 0 0
0 3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

• Esponenziale di matrici quadrate. Sia A, n × n, l’esponenziale di A si
definisce come la serie di Taylor infinita

eA =

∞∑
k=0

Ak

k!
. (3.1)

Nel caso banale in cui A sia 1 × 1 la serie coincide con l’usuale funzione
esponenziale scalare. L’ esponenziale di matrice viene usata soprattutto
nel contesto della soluzione di sistemi di equazioni differenziali ordinarie.
In Matlab/Octave la funzione expm consente di calcolare l’esponenziale di
matrice mediante un’approssimazione di Padè. Quest’ultima consiste in
un’approssimazione polinomiale razionale di matrici dell’espansione di Tay-
lor (3.1) (cfr. [18, 23]).

Alcune strutture speciali sono le seguenti

• A è detta diagonale se⎛
⎜⎜⎜⎝

a1,1 0
0 a2,2
...

. . .
0 an,n

⎞
⎟⎟⎟⎠ , ai,j = 0, i �= j .

In Matlab/Octave esiste la funzione diag, se applicata ad una matrice resti-
tuisce il vettore della diagonale altrimenti se applicata ad un vettore resti-
tuisce una matrice diagonale.

• A è detta triangolare superiore se⎛
⎜⎜⎜⎝

x · · · · · · x
x · · · x

0
. . .

...
x

⎞
⎟⎟⎟⎠ , ai,j = 0, i > j .

In Matlab/Octave per estrarre la parte triangolare superiore di una matrice
si usa triu.

62 Appunti di Calcolo Numerico con codici in Matlab/Octave

• A è detta triangolare inferiore se⎛
⎜⎜⎜⎜⎝

x

x
. . . 0

... · · · . . .
x · · · · · · x

⎞
⎟⎟⎟⎟⎠ , ai,j = 0, i < j .

In Matlab/Octave per estrarre la parte triangolare inferiore di una matrice
si usa tril.

• A è detta tridiagonale se⎛
⎜⎜⎜⎜⎜⎜⎝

x x 0
x x x

.
. x

0 x x

⎞
⎟⎟⎟⎟⎟⎟⎠ , ai,j = 0, |i− j| > 1 .

Si dirà che una matrice è a banda con banda di ampiezza 2s + 1 se gli ele-
menti nulli sono quelli i cui indici soddisfano la disuguaglianza |i− j| > s.

Ad esempio, in Matlab/Octave per costruire una matrice tridiagonale A con
diagonale principale il vettore a (di dimensione n) e sottodiagonale e sovra-
diaganole i vettori b, c (di dimensione n − 1) rispettivamente, si usa il co-
mando A=diag(a)+diag(b,-1)+diag(c,1).

• A è detta avere la forma di matrice di Hessenberg superiore se⎛
⎜⎜⎜⎜⎜⎜⎝

x x x · · · x
x x x · · · x

0
.

...
...

.
...

0 · · · 0 x x

⎞
⎟⎟⎟⎟⎟⎟⎠ , ai,j = 0, i > j + 1 .

Si dirà poi che A ha la forma di Hessenberg inferiore se ai,j = 0, j > i+1 .

In Matlab/Octave H=hess(A), consente di estrarre la sottomatrice di Hes-
senberg superiore di figura.

• A si dice a blocchi se i suoi elementi sono a loro volta delle matrici. Ad
esempio una matrice a blocchi 2× 2 si indica come segue

A =

(
A11 A12

A21 A22

)
.

• Trasposta di una matrice

633 - Soluzione di sistemi lineari

La matrice trasposta di A, denotata con AT è tale che (A)Tij = Aji. La
trasposizione gode delle seguenti proprietà.

(AT)T = A, (cA)T = cAT , (A+B)T = BT +AT , (AB)T = BTAT .

Se A e B sono due matrici a blocchi, i cui blocchi hanno la stessa dimen-
sione, la somma A + B equivale alla matrice i cui elementi sono la somma
dei rispettivi blocchi. Sempre nel caso di matrici a blocchi 2× 2 avremo

A+B =

(
A11 +B11 A12 +B12

A21 +B21 A22 +B22

)
.

L’operazione di trasposizione si applica anche a matrici a blocchi. Ad esem-
pio

AT =

⎛
⎝ AT

11 AT
21

AT
12 AT

22

⎞
⎠ .

Se AT = A allora A è detta simmetrica. Quando AT = −A, A è detta
antisimmetrica.

Osserviamo che la matrice trasposta esiste sia nel caso di matrici quadrate
che rettangolari. In Matlab/Octave la trasposta di A si ottiene col comando
A’.

• Inversa di una matrice

La matrice inversa di una matrice quadrata A di ordine n, che si indica con
A−1, è tale che AA−1 = A−1 A = I. Valgono operazioni simili alla trasposta.
Se A e B sono quadrate di ordine n allora (AB)−1 = B−1A−1.

Nel caso di matrici rettangolari, non si può definire l’inversa nel modo in cui
siamo abituati, ma come vedremo più oltre nel contesto della soluzione di
sistemi lineari sovra o sotto-determinati, si parlerà di inversa generalizzata
o pseudo inversa di Moore-Penrose (vedi sezione 3.8).

Definizione 6. Data A, diremo che B è simile ad A se esiste una matrice invert-
ibile P tale che

P−1AP = B .

3.1.2 Determinante e autovalori
Ad ogni matrice quadrata A di ordine n, possiamo associare un numero detto de-
terminante che denoteremo con det(A) oppure |A|. Se indichiamo conM l’algebra
delle matrici quadrate di ordine n, allora il determinante det è una funzione da
M a valori nei reali:

det : M→ R

A→ det(A)

64 Appunti di Calcolo Numerico con codici in Matlab/Octave

Per il calcolo del determinante ci si può avvalere della regola di Laplace

det(A) =

⎧⎨
⎩

a11 n = 1

∑n
j=1 Ãi,jai,j , i = 1, ..., n n > 1

(3.2)

con Ãi,j = (−1)i+jdet(Ai,j) doveAi,j è la matrice ottenuta sopprimendo la i-esima
riga e la j-esima colonna.

Definizione 7. Un autovalore di una matrice A, è un numero λ ∈ C per cui
esiste un vettore x non nullo per cui vale l’uguaglianza

λx = Ax . (3.3)

Il vettore x �= 0 viene detto autovalore di A associato all’autovalore λ.

Il numero λ è soluzione dell’equazione caratteristica

pA(λ) = det(A− λI) = 0 ,

con pA(λ) che si chiama polinomio caratteristico della matrice A. Valgono
inoltre le relazioni

det(A) =
n∏
i=1

λi ,

tr(A) =
n∑
i=1

λi =

n∑
i=1

ai,i ,

dove tr indica la traccia di A. Queste due uguaglianze si dimostrano facilmente
osservando che il polinomio caratteristico pA(λ) è un polinomio monico di grado
n della forma

pA(λ) = (−1)nλn + (−1)n−1

(
n∑
i=1

aii

)
λn−1 + · · ·+ det(A) .

Ricordando le relazioni tra le radici di un polinomio e i suoi coefficienti, si con-
clude.
In Matlab/Octave esistono le funzioni det e trace con ovvio significato.

Definizione 8. Una matrice simmetrica si dice definita positiva se per ogni
vettore x �= 0 la forma quadratica xT Ax risulta essere maggiore di zero in senso
stretto. Se xT Ax ≥ 0 la matrice si dice semidefinita positiva.

Proposizione 2. Se A è simmetrica definita positiva allora

(i) |Ak| > 0, ∀ k = 1, ..., n, cioè i minori principali di testa (incluso il determi-
nante) sono positivi.

(ii) ai,i > 0.

653 - Soluzione di sistemi lineari

(iii) |a2i,j | < ai,iaj,j , i �= j , ovvero l’elemento più grande sta sulla diagonale
principale.

(iv) Gli autovalori di A sono tutti positivi. Infatti se λ è un autovalore, dalla
definizione di una matrice simmetrica e definita positiva otteniamo la dis-
uguaglianza

0 < xT Ax = λxT x

da cui si conclude essendo xT x =
∑n

i=1 x
2
i > 0 per ogni vettore x non nullo.

Nota: non vale il viceversa della proprietà (iv).

3.2 Norme di vettore e di matrice

Per ogni vettore x ∈ R
n, possiamo definire la norma come una funzione

‖ · ‖ : Rn → R+ ,

avente le seguenti proprietà:

1. ‖x‖ > 0, ∀ x �= 0, ‖x‖ = 0 ⇔ x = 0

2. ‖c x‖ = |c|‖x‖, ∀ c ∈ R

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ R
n (disuguaglianza triangolare).

Una proprietà importante è che in uno spazio vettoriale di dimensione finita
tutte le norme vettoriali sono equivalenti. Ovvero per ogni coppia di norme ‖ · ‖(1)
e ‖ · ‖(2) esistono due costanti positive m eM t.c.

m‖x‖(2) ≤ ‖x‖(1) ≤M‖x‖(2), ∀ x ∈ R
n . (3.4)

Gli esempi di norme vettoriali più usate sono:

(a) ‖x‖∞ = max
1≤i≤n

|xi| (norma infinito)

(b) ‖x‖1 =
∑

1≤i≤n

|xi| (norma 1)

(c) ‖x‖2 =

⎛
⎝ ∑

1≤i≤n

|xi|2
⎞
⎠1/2

=
√
xT x (norma 2 o norma euclidea)

(d) ‖x‖p =

⎛
⎝ ∑

1≤i≤n

|xi|p
⎞
⎠1/p

, p ≥ 1 (norma p)

In Matlab/Octave, queste norme si determinano usando la funzione norm(x,*),
dove * potrà assumere i valori 1,2,inf,p. Per default norm(x) è la norma 2.

Se A ∈ R
n×n, la sua norma è ancora una funzione ‖ · ‖ : R

n×n → R+, che
soddisfa le seguenti proprietà

66 Appunti di Calcolo Numerico con codici in Matlab/Octave

1. ‖A‖ > 0, ∀ A �= 0 ; ‖A‖ = 0 ⇐⇒ A = 0

2. ‖cA‖ = |c|‖A‖, ∀ c ∈ R

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖, ∀ A,B ∈ R
n×n (disuguaglianza triangolare).

4. ‖AB‖ ≤ ‖A‖ ‖B‖, ∀ A,B ∈ R
n×n

L’ultima proprietà è caratteristica della norma di matrice. Anche per le norme di
matrici vale un’equivalenza simile alla (3.4). Gli esempi di norme matriciali più
usate sono:

(a) ‖A‖∞ = max
1≤i≤n

n∑
j=1

|ai,j | (norma infinito o norma per righe)

(b) ‖A‖1 = max
1≤j≤n

n∑
i=1

|ai,j | (norma 1 o norma per colonne)

(c) ‖A‖F =

⎛
⎝ ∑

1≤i≤n

∑
1≤j≤n

|ai,j |2
⎞
⎠1/2

=
√
tr(AAT) , (norma di Frobenius)

(d) ‖A‖2 =
√
ρ(ATA) (norma 2 o norma euclidea o norma spettrale)

Osserviamo che la norma euclidea si chiama anche norma spettrale poiché ρ(A) =
max1≤i≤n |λi|, con λi i-esimo autovalore di A, si chiama raggio spettrale della
matrice A. Inoltre, se A è simmetrica ‖A‖2 = ρ(A) altrimenti ‖A‖2 = σ1(A), con
σ1(A) il più grande valore singolare della matrice A (per la definizione di valori
singolari di una matrice rimandiamo al capitolo successivo). Infatti, nel caso in
cui A = AT per il generico autovalore avremo: λ(AAT) = λ(A2) = λ2(A) e dunque
ρ(A) = ‖A‖2. Pertanto nel caso di matrici simmetrice il raggio spettrale è una
norma.

Definizione 9. Data una norma di matrice e una vettoriale, diremo che esse
sono compatibili o consistenti se

‖Ax‖ ≤ ‖A‖‖x‖, ∀ A ∈ R
n×n, x ∈ R

n .

Ad ogni norma di vettore possiamo associare una norma di matrice nel seguente
modo

‖A‖ := sup
x
=0

‖Ax‖
‖x‖ = sup

‖x‖=1

‖Ax‖ (3.5)

Questa viene detta norma naturale o norma indotta. Ne consegue che ‖Ax‖ ≤
‖A‖‖x‖, ovvero che una norma indotta è anche compatibile. Come esempio, è
facile verificare ricorrendo alla definizione che per la matrice identica

‖I‖ = max
‖x‖=1

‖Ix‖ = 1

673 - Soluzione di sistemi lineari

e che le norme 1, 2,∞ sono norme naturali indotte dalle corrispondenti norme
vettoriali. L’unica norma matriciale che non è naturale è quella di Frobenius.
Infatti ‖I‖F =

√
n.

Infine è interessante ricordare la seguente proprietà:

Proposizione 3. Per ogni norma compatibile con la corrispondente norma vet-
toriale, si ha

ρ(A) ≤ ‖A‖ .
Dim. Sia λ autovalore di A associato all’autovettore v �= 0. Avremo

|λ|‖v‖ = ‖λv‖ = ‖Av‖ ≤ ‖A‖ ‖v‖

da cui ρ(A) := max1≤i≤n |λi| ≤ ‖A‖. �

68 Appunti di Calcolo Numerico con codici in Matlab/Octave

3.3 Soluzione di sistemi lineari: generalità

Data A ∈ R
n×n e il vettore b ∈ R

n il problema consiste nel determinare il vettore
x ∈ R

n soluzione del sistema lineare

Ax = b . (3.6)

Anzitutto la soluzione di (3.6) esiste se e solo se la matrice A è invertibile, che
significa che det(A) �= 0. Se A è invertibile sappiamo che grazie alla regola di
Cramer le componenti del vettore soluzione x sono

xi =
det(Ai)

det(A)
,

con Ai che è la matrice ottenuta da A sostituendo la colonna i-esima con il ter-
mine noto b.
In pratica con la regola di Cramer si calcolano n+1 determinanti. Considerato

che il calcolo di un determinante (con la regola di Laplace) costaO(n3) operazioni,
allora determinare la soluzione del sistema con Cramer costa O(n4) operazioni.
Pensando di doverla applicare a sistemi di grandi dimensioni, ad esempio n >
100, il metodo diventa via via inapplicabile dal punto di vista del tempo di calcolo.

3.3.1 Condizionamento del problema
Analizziamo due situazioni: perturbazione del termine noto e perturbazione si-
multanea della matrice e del termine noto.

1. Sia δb la quantità di cui perturbiamo il termine noto b. Questa pertur-
bazione si ripercuoterà sulla soluzione cosicchè invece di x otterremo la
soluzione x+ δx. Vogliamo vedere come δx può essere legato a δb. Pertanto,
da

A(x+ δx) = b+ δb

ricordando che Ax = b, otteniamo il sistema Aδx = δb. Ora,

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖ ‖δb‖ ,

ma ‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖, pertanto
‖δx‖
‖A‖‖x‖ ≤ ‖A

−1‖‖δb‖‖b‖ .

Per l’errore relativo abbiamo infine la maggiorazione

‖δx‖
‖x‖ ≤ ‖A‖‖A

−1‖‖δb‖‖b‖ . (3.7)

Definendo poi κ(A) = ‖A‖‖A−1‖ come il numero di condizionamento della
matrice A, possiamo dedurre da (3.7) che il rapporto tra l’errore relativo

693 - Soluzione di sistemi lineari

sulla soluzione e quello sul termine noto è maggiorato dal numero di con-
dizionamento della matrice. Più la matrice sarà malcondizionata e peggiore
sarà la maggiorazione e quindi la perturbazione indotta sulla soluzione.
κ(A) è quindi un fattore di amplificazione dell’errore.

In Matlab la funzione cond(A,p) consente di calcolare il numero di con-
dizionamento diA in norma p = 1, 2,∞. In Octave esiste il comando cond(A)
che calcola il numero di condizionamento della matrice A in norma 2.

Facciamo notare che in alcuni testi, invece di κ(A), si trovano le notazioni
μ(A) o ν(A).

2. Se perturbiamo anche la matrice A di una quantità δA, si può dimostrare
che per l’errore relativo vale la maggiorazione

‖δx‖
‖x‖ ≤

κ(A)

1− κ(A)‖δA‖
‖A‖

(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)
. (3.8)

Nel caso in cui ‖δA‖ ≤ 1

2‖A−1‖ , in (3.8) si ha

κ(A)

1− κ(A)‖δA‖
‖A‖

≤ 2κ(A) .

Come dicevamo il numero di condizionamento diA dà indicazioni sull’amplificazione
dell’errore relativo sulla soluzione. Osservando che κ(A) ≥ 1 (assume il valore 1
quando A è la matrice identica), allora più piccolo sarà κ(A) e meglio condizion-
ato risulterà il problema della soluzione di un sistema lineare.
Diamo solo un paio di esempi che quantificano il concetto di matrice malcon-

dizionata.

1. Matrice di Hilbert, H.

È una matrice simmetrica di ordine n i cui elementi sono Hi,j = 1/(i + j −
1), 1 ≤ i, j ≤ n.

Si dimostra che κ2(H) ≈ e3.5n. Alcuni valori di κ2(H), sono riportati in
Tabella 3.1.

n 2 6 10
κ2(H) 19.3 1.5 107 1.6 1013

Tabella 3.1: Numero di condizionamento in norma 2 della matrice di Hilbert

In Matlab/Octave esiste la funzione hilb(n) che consente di definire la ma-
trice di Hilbert di ordine n.

2. Matrice di Vandermonde, V.

70 Appunti di Calcolo Numerico con codici in Matlab/Octave

È la matrice associata al problema d’interpolazione polinomiale su n punti
(distinti) x1, · · · , xn. La matrice di Vandermonde di ordine n è

V =

⎛
⎜⎜⎜⎝

1 1 . . . 1
1 x1 . . . xn−1

1
...

...
1 xn . . . xn−1

n

⎞
⎟⎟⎟⎠ .

Si dimostra che per punti distinti xi �= xj , det(V) =
∏

i
=j(xi − xj) �= 0 .
Circa il numero di condizionamento κ∞(V) vale la pena ricordare il risul-
tato di Gautschi e Inglese [14]. Sia X = {xi} di cardinalità n, l’insieme dei
nodi d’interpolazione. Se xi > 0 allora κ∞(X) ≥ (n − 1)2(n−1). Invece, se i
nodi sono simmetrici rispetto l’origine si hanno i seguenti limiti inferiori:

κ∞(X) ≥ (n− 2)2
(n−2)

2 se n pari

κ∞(X) ≥ (n− 3)2
(n−3)

2 se n dispari .

Anche per la matrice di Vandermonde esiste una funzione Matlab/Octave
che si invoca come V=vander(x) dove x è un vettore e la matrice V è tale che
Vi,j = xn−j

i .

A completamento ricordiamo che Matlab contiene una galleria di matrici test nel
cosidetto Matrix Computational Toolbox (MCT) di Nick Higham

www.maths.manchester.ac.uk/∼higham/mctoolbox/.
Per ottenere la lista di tutte le matrici test disponibili basta usare il comando

[out1,out2,...]=gallery(matname,opt1,opt2,...)

713 - Soluzione di sistemi lineari

3.4 Metodi diretti

Si tratta di metodi numerici che consentono di determinare la soluzione del sis-
tema lineare, teoricamente in un numero finito di passi. Putroppo a causa degli
inevitabili errori di rappresentazione e algoritmici, i metodi necessitano di al-
cune strategie implementative. I metodi diretti che studieremo in questo testo
sono: il metodo di eliminazione di Gauss che dimostreremo essere equivalente
alla fattorizzazione LU di A, il metodo di Cholesky che si applica quando A è
simmetrica e l’algoritmo di Thomas per matrici tridiagonali.

3.4.1 Il Metodo di Eliminazione di Gauss (MEG)
Dato il sistema Ax = b il metodo di Gauss consiste di due passi principali:

(i) eliminazione;

(ii) sostituzione all’indietro.

L’obiettivo del passo di eliminazione è di trasformare la matrice A in forma di
matrice triangolare superiore allo scopo di ricavere la soluzione del sistema me-
diante appunto la sostituzione all’indietro (ovvero determinando dapprima xn e
via via tutte le altre componenti del vettore x).
Dato il sistema ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a11x1 + a12x2 + · · · +a1nxn = b1
a21x1 + a22x2 + · · · +a2nxn = b2
...

... =
...

an1x1 + an2x2 + · · · +annxn = bn

(3.9)

che indicheremo più compattamente con A(1)x = b(1), dove l’apice ci ricorda il
passo di eliminazione, avendo posto A(1) = A. Ora se a(1)11 �= 0 la prima equazione
può essere usata per ricavare x1 e sostituirlo nelle rimanenti equazioni ottenendo
un nuovo sistema A(2)x = b(2) che avrà un solo elemento non nullo nella prima
colonna ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a
(2)
1,1x1 +a

(2)
1,2x2 + · · · +a

(2)
1,nxn = b

(2)
1

0 +a
(2)
2,2x2 + · · · +a

(2)
2,nxn = b

(2)
2

...
...

... =
...

0 +a
(2)
n,2x2 + · · · +a

(2)
n,nxn = b

(2)
n

(3.10)

In pratica per passare da A(1) ad A(2) si individua dapprima il moltiplicatore

mi,1 =
a
(1)
i,1

a
(1)
1,1

, i = 2, . . . , n

di modo che gli elementi di A(2) e b(2) saranno

72 Appunti di Calcolo Numerico con codici in Matlab/Octave

a
(2)
i,j =

⎧⎪⎨
⎪⎩

a
(1)
i,j i = 1

a
(1)
i,j −mi,1a

(1)
1,j i > 1

b
(2)
i =

⎧⎪⎨
⎪⎩

b
(1)
i i = 1

b
(1)
i −mi,1b

(1)
1 i > 1

Se a(2)2,2 �= 0 si può continuare con la seconda colonna e cosı̀ via.

Pertanto per 1 ≤ k ≤ n− 1, se a(k)k,k �= 0 avremo

mi,k =
a
(k)
i,k

a
(k)
k,k

, i = k + 1, . . . , n

e

a
(k+1)
i,j =

⎧⎪⎨
⎪⎩

a
(k)
i,j i ≤ k

a
(k)
i,j −mi,ka

(k)
k,j i = k + 1, . . . , n j = i, ..., n

b
(k+1)
i =

⎧⎪⎨
⎪⎩

b
(k)
i i ≤ k

b
(k)
i −mi,kb

(k)
k i = k + 1, . . . n

Alla fine il sistema A(n)x = b(n) avrà la matrice A(n) che sarà triangolare
superiore ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a
(n)
1,1x1 +a

(n)
1,2x2 + · · · +a

(n)
1,nxn = b

(n)
1

+a
(n)
2,2x2 + · · · +a

(n)
2,nxn = b

(n)
2

. . .
...

a
(n)
n,nxn = b

(n)
n

(3.11)

A questo punto si può applicare la sostituzione all’indietro e determinare il
vettore soluzione. Infatti se

a
(n)
i,i �= 0, i = 1, . . . , n , (3.12)

allora

xn = b(n)n /a(n)n,n (3.13)

xi =
1

a
(n)
i,i

⎧⎨
⎩b

(n)
i −

n∑
j=i+1

a
(n)
i,j xj

⎫⎬
⎭ , i = n− 1, . . . , 1 . (3.14)

733 - Soluzione di sistemi lineari

Algoritmo di eliminazione e di sostituzione all’indietro

I due passi del metodo di eliminazione di Gauss si possono discrivere da un punto
di vista algoritmico, usando sempre la sintassi Matlab/Octave, come segue.

Algoritmo 2. Eliminazione

for i=1:n-1,

for j=i+1:n,

m=a(j,i)/a(i,i);

a(j,:)=a(j,:)-m*a(i,:);

b(j)=b(j)-m*b(i);

end

end

Dal punto di vista della complessità, al passo i-esimo di eliminazione il costo,
in termini di moltiplicazioni e divisioni, è

(n− i)︸ ︷︷ ︸
ciclo su j

(n− i+ 1)︸ ︷︷ ︸
ciclo su k

+ (n− i)︸ ︷︷ ︸
ciclo su j per i bj

= (n− i)(n− i+ 2) ,

Pertanto, per i tre cicli for, la complessità totale sarà

n−1∑
i=1

(n− i)(n− i+ 2) =

n−1∑
i=1

(n2 + 2n− 2(n+ 1)i+ i2) . (3.15)

Ricordando le identità

n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
(3.16)

sostituendo in (3.15) (con n− 1 al posto di n) otteniamo

n−1∑
i=1

(n2+2n−2(n+1)i+ i2) = n2−n+
2n3 − 3n2 + n

6
=

n3

3
+

n2

2
− 5n

6
≈ O

(
n3

3

)
.

(3.17)
Pertanto la complessità dell’algoritmo di eliminazione, in termini di operazioni
di moltiplicazione, è n3/3 .
Per la sostituzione all’indietro possiamo usare questo codice.

Algoritmo 3. Sostituzione all’indietro

for i=n:-1:1,

sum=a(i,:)*x

x(i)=(b(i)-sum)/a(i,i);

end

74 Appunti di Calcolo Numerico con codici in Matlab/Octave

Anche per la sostituzione all’indietro facciamo il calcolo della complessità.
Come è facile vedere, per costruire sum si fanno n− i moltiplicazioni. Pertanto la
complessità totale è

n∑
i=1

(n− i) =
n(n− 1)

2
.

La complessità totale del metodo di Gauss si ottiene sommando la complessità
dell’algoritmo di elminazione e quella dell’algoritmo di sostituzione

n3

3
+

n2

2
− 5n

6
+

n(n− 1)

2
=

n3

3
+ n2 − 4n

3
.

In conclusione, l’algoritmo di Gauss richiede O(n3/3) operazioni.

ESEMPIO 15.

A := A(1) =

⎛
⎝ 11 4 −6
−7 17 9
−1 −4 6

⎞
⎠ , b = b(1) =

⎛
⎝ 9

19
1

⎞
⎠ ,

• Primo passo. I moltiplicatori sono m2,1 = −7/11, m3,1 = −1/11.

A(2) =

⎛
⎜⎜⎜⎜⎝

11 4 −6

0 215
11

57
11

0 − 40
11

60
11

⎞
⎟⎟⎟⎟⎠ , b(2) =

⎛
⎜⎜⎜⎜⎝

9

272
11

20
11

⎞
⎟⎟⎟⎟⎠ ,

• Secondo passo. Il moltiplicatore è m3,2 = −8/43.

A(3) =

⎛
⎜⎜⎜⎜⎝

11 4 −6

0 215
11

57
11

0 0 276
43

⎞
⎟⎟⎟⎟⎠ , b(3) =

⎛
⎜⎜⎜⎜⎝

9

272
11

276
43

⎞
⎟⎟⎟⎟⎠ ,

Con la sostituzione all’indietro troveremo che la soluzione è x = (1, 1, 1)T .

Strategia del pivot

L’ipotesi su cui si basa il MEG è che al passo k gli elementi diagonali siano in
modulo diversi da zero, ovvero |a(k)k,k| �= 0. Ma se accade che a

(k)
k,k ≈ 0, si può

applicare la stategia del pivot parziale per righe consistente nel ricercare nelle
righe k+1, . . . , n (quelle sotto la diagonale) l’elemento in modulo più grande. Sia
r l’indice di riga corrispondente, quindi si scambierà la riga r con la riga k (sia
nella matrice che nel termine noto).
In Matlab/Octave la ricerca dell’elemento più grande in modulo nella colonna

k-esima, sotto la diagonale principale e il corrispondente scambio della riga r con
quella k, si realizza come segue:

753 - Soluzione di sistemi lineari

[M,r]=max(abs(a(k+1:n,k)));

t=a(k,:); a(k,:)=a(r,:); a(r,:)=t

Con questa strategia si ha una riduzione dell’ errore algoritmo e quindi maggiore
stabilità. Infatti, detto

|a(k)r,k | = max
k≤i≤n

|a(k)i,k | ,

gli elementi di A(k+1) saranno tali che

|a(k+1)
i,j | = |a(k)i,j −mi,ka

(k)
k,j | ≤ |a(k)i,j |+ |a(k)k,j | . (3.18)

La disuguaglianza deriva dal fatto che per costruzione |mi,k| ≤ 1. Detto poi
a
(k)
M = max1≤i,j≤n |a(k)i,j | , da (3.18) otteniamo

a
(n)
M ≤ 2a

(n−1)
M ≤ 22a

(n−2)
M ≤ · · · ≤ 2n−1a

(1)
M . (3.19)

Pertanto la strategia del pivot parziale per righe garantisce maggiore stabilità al
MEG. È da osservare che la maggiorazione (3.19) non è quasi mai raggiunta.
Vediamo come è possibile implementare la tecnica del pivot parziale per righe,

facendo uso di un vettore p che memorizza solo gli scambi di righe. All’inizio
pi = i, i = 1, ..., n. Il significato di pi è il seguente: ai,j è memorizzato nella
posizione di indice di riga pi e colonna j (e bi nella posizione indicata da pi).
Quando si scambia la riga k con la riga r, si scambia pk e pr cosicchè l’indice di
riga che contiene il pivot è pr.

ESEMPIO 16. Mettiamo in un’unica matrice, la matrice dei coefficienti, il vettore
colonna del termine noto e il vettore degli scambi, come segue:⎛

⎝ 2 3 −1 5 1
4 4 −3 3 2
−2 3 −1 1 3

⎞
⎠ ,

• Primo passo. L’elemento pivot che vale 4, si trova in riga 2. Pertanto scambier-
emo p2 e p1 e l’indice del pivot sarà 2. Otteniamo i moltiplicatori m(1) = 1/2 e
m(2) = −1/2 e la nuova matrice⎛

⎝ 0 1 1/2 7/2 2
4 4 −3 3 1
0 5 −5/2 5/2 3

⎞
⎠ ,

• Secondo passo. L’elemento pivot, che vale 5, si trova in riga 3. Pertanto
dobbiamo scambiare p2 e p3. Il moltiplicatore è m = 1/5. Abbiamo allora⎛

⎝ 0 0 1 3 2
4 4 −3 3 3
0 5 −5/2 5/2 1

⎞
⎠ ,

76 Appunti di Calcolo Numerico con codici in Matlab/Octave

A questo punto, per applicare la sostituzione all’indietro, partiremo da p3 = 1 ovvero
dalla prima riga ricavando x3 = 3. Poi si passa a p2 = 3, quindi alla terza riga,
ricavando x2 dall’equazione 5x2 − 15/2 = 5/2 che ci dà x2 = 2. Infine essendo p1 = 2
dalla seconda equazione determineremo x1 che, dopo aver risolto 4x1 + 8− 9 = 3 mi
darà x1 = 1. È facile provare che il vettore x = (1, 2, 3)T è la soluzione del sistema
lineare.

La tecnica del pivoting parziale si può applicare in alternativa alle colonne
ottenendo il cosidetto pivot parziale per colonne.
Se invece la ricerca del massimo la facciamo su tutta la sottomatrice A(k+1 :

n, k + 1 : n), ovvero quella di indici di riga e colonna compresi tra k + 1 e n,
allora parleremo di pivoting totale . In questo caso se r e s sono gl’indici di riga
e colonna corrispondenti nella matrice A(k), allora dovremo scambiare la riga k
con la riga r e la colonna k con la colonna s.

3.4.2 Metodo di Gauss e fattorizzazione LU di matrici
Faremo vedere che il MEG altro non è che la fattorizzazione della matrice del
sistema A = LU con L triangolare inferiore con elementi diagonali tutti uguali
a 1 e U triangolare superiore. Ma prima di tutto enunciamo il teorema che ci
garantisce quando è attuabile la fattorizzazione LU di una matrice quadrata A.

Teorema 5. Sia A una matrice quadrata di ordine n e siano Ak, k = 1, . . . , n le
sottomatrici principali di testa. Ovvero

A1 = (a11), A2 =

(
a11 a12
a21 a22

)

Ak =

⎛
⎜⎝ a11 · · · a1k

...
. . .

...
ak1 akk

⎞
⎟⎠

cosicché An = A. Se |Ak| �= 0, k = 1, ..., n allora esiste unica la fattorizzazione di
A nella forma LU , con L triangolare inferiore con elementi diagonali uguali a 1 e
U triangolare superiore. Altrimenti esiste una matrice di permutazione P (i cui
elementi sono 0 e 1) tale che PA = LU .

Facciamo un paio di esempi che ci consentono di capire meglio il Teorema 5.

ESEMPIO 17.
La matrice

A =

⎛
⎝ 1 2 −1
−1 −1 2
1 1 2

⎞
⎠ ,

soddisfa le ipotesi del Teorema 5. Si vede facilmente che A può fattorizzarsi come

A =

⎛
⎝ 1 0 0
−1 1 0
1 −1 1

⎞
⎠
⎛
⎝ 1 2 −1

0 1 1
0 0 4

⎞
⎠ .

773 - Soluzione di sistemi lineari

ESEMPIO 18. La matrice

B =

⎛
⎝ 1 2 −1
−1 −2 0
1 1 2

⎞
⎠

non soddisfa le ipotesi del Teorema 5. Infatti

det(B2) = det

(
1 2
−1 −2

)
= 0 .

Però scambiando la seconda e terza riga mediante la matrice di permutazione

P =

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠

allora avremo

PB =

⎛
⎝ 1 2 −1

1 1 2
−1 −2 0

⎞
⎠ =

⎛
⎝ 1 0 0

1 1 0
−1 0 1

⎞
⎠
⎛
⎝ 1 2 −1

0 −1 3
0 0 −1

⎞
⎠ .

È facile far vedere che si sarebbe ottenuta un’altra fattorizzazione se avessimo usato
un’altra matrice di permutazione

P1 =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠

ovvero scambiando la prima e la terza riga di B.

Ricordiamo che in Matlab/Octave esiste la funzione lu la cui chiamata com-
pleta si fa scrivendo il comando [L,U,P] = lu(A), con ovvio significato delle ma-
trici coinvolte. Se effettuassimo invece la chiamata [L,U]=lu(A), la matrice L

potrà non essere triangolare inferiore ma L=P*M con M triangolare inferiore e P

matrice di permutazione che serve al pivoting per righe di A. Ad esempio, se
A=hilb(4), il comando [L,U]=lu(A) restituisce

L =

1.0000 0 0 0

0.5000 1.0000 1.0000 0

0.3333 1.0000 0 0

0.2500 0.9000 -0.6000 1.0000

U =

1.0000 0.5000 0.3333 0.2500

0 0.0833 0.0889 0.0833

0 0 -0.0056 -0.0083

0 0 0 0.0004

78 Appunti di Calcolo Numerico con codici in Matlab/Octave

mentre [L,U,P]=lu(A)

L =

1.0000 0 0 0

0.3333 1.0000 0 0

0.5000 1.0000 1.0000 0

0.2500 0.9000 -0.6000 1.0000

U =

1.0000 0.5000 0.3333 0.2500

0 0.0833 0.0889 0.0833

0 0 -0.0056 -0.0083

0 0 0 0.0004

P =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

con L triangolare inferiore con elementi diagonali 1.

3.4.3 Matrici elementari di Gauss
In questa breve sottosezione facciamo vedere chi sono realmente le matrici L e U
della fattorizzazione LU . Il generico passo di eliminazione è infatti equivalente
alla premoltiplicazione per la matriceMk = I−mk e

T
k dove I è la matrice identica

e

mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

mk+1,k

mk+2,k

...
mn,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ek =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

← k

con mi,k = a
(k)
i,k /a

(k)
k,k. Pertanto la k-esima matrice elementare di Gauss è

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . . 0

1
0 −mk+1,k

...
. . .

−mn,k 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.20)

Quindi dopo gli n− 1 passi di eliminazione

Mn−1 · · ·M2 M1 A = A(n) .

793 - Soluzione di sistemi lineari

Ecco che le matrici L e U non sono altro che

L = (Mn−1 · · ·M1)
−1 = M−1

1 · · ·M−1
n−1 ;U = A(n) . (3.21)

È facile provare che

M−1
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . . 0

1
0 mk+1,k

...
. . .

mn,k 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

da cui

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
m2,1 1
...

. . .
...

...
. . .

mn,1 · · · mn,n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Infine nel caso generale in cui siano richieste ad ogni passo delle matrici di per-
mutazione, ovvero

(Mn−1Pn−1) · · · (M1P1)A = U

posto P = Pn−1 · · ·P1 otterremo

L = P (Mn−1 Pn−1 · · ·M1 P1)
−1

.

Osservazioni

• Nota la fattorizzazione LU di una matrice A o, più in generale, la fattoriz-
zazione LU = PA, la soluzione del sistema lineare Ax = b si farà risolvendo
due sistemi triangolori Lz = Pb Ux = z.

La soluzione di un sistema triangolare costa O(n2). Complessivamente,
come visto nella sezione precedente, la soluzione di un sistema lineare con
il MEG o equivalentemente la fattorizzazione LU della matrice A, costa
O
(
n3

3

)
.

• Grazie alla fattorizzazione LU di A possiamo anche calcolare il determi-
nante di A. Infatti, |A| = |LU | = |L| |U | = ∏n

i=1 ui,i essendo |L| = 1. Questo
vale anche nel caso PA = LU , essendo il determinante di una matrice di
permutazione ±1.

80 Appunti di Calcolo Numerico con codici in Matlab/Octave

3.4.4 Il metodo di Cholesky
Si applica quando la matriceA è simmetrica definita positiva. Vista la simmetria,
A si potrà fattorizzare nella forma

A = HHT , H =

⎛
⎜⎜⎜⎜⎝

h1,1

...
. . . 0

...
. . .

hn,1 · · · hn,n

⎞
⎟⎟⎟⎟⎠ , hi,i > 0 .

Come determiniamo la matrice H? Basta fare il prodotto HHT e identificare gli
elementi corrispondenti. Le formule (compatte) per calcolare gli elementi di H
sono

h1,1 =
√
a1,1

hi,j =
1

hj,j

(
ai,j −

j−1∑
k=1

hi,khj,k

)
, i = 2, . . . , n ; j = 1, . . . , n

hi,i =

√√√√ai,i −
i−1∑
k=1

h2
i,k .

Una possibile implementazione della fattorizzazione di Cholesky è nella fun-
zione Matlab, cholesky.m qui sotto riportata.

function h=cholesky(a)

%-----------------------------------

% input

% a=matrice iniziale (simm. def. +)

%

% output

% h, matrice tale che h*h’=a

%-----------------------------------

n=size(a); h(1,1)=sqrt(a(1,1));

for i=2:n,

for j=1:i-1,

s=h(i,1:j-1)*h(j,1:j-1);

h(i,j)=1/h(j,j)*(a(i,j)-s);

end

h(i,i)=sqrt(a(i,i)-sum(h(i,1:i-1)^2));

end

Grazie alla simmetria di A si verifica facilmente che

1. la complessità è metà del MEG ovvero O(n3/6);

813 - Soluzione di sistemi lineari

2. la matrice H può essere memorizzata nella stessa area di memoria di A
invece che allocare memoria aggiuntiva.

Infine, in Matlab/Octave la fattorizzazione di Cholesky si ottiene usando il
comando H=chol(A).

3.4.5 Algoritmo di Thomas per matrici tridiagonali
Si consideri la matrice tridiagonale

A =

⎛
⎜⎜⎜⎜⎝

a1 c1 0

b2 a2
. . .

. . . cn−1

0 bn an

⎞
⎟⎟⎟⎟⎠

Se la fattorizzazione LU di A esiste, allora L e U sono due matrici bidiagonali
(inferiore e superiore, rispettivamente) della forma

L =

⎛
⎜⎜⎜⎝

1 0
β2 1

.
0 βn 1

⎞
⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝

α1 c1 0

α2
. . .
. . . cn−1

0 αn

⎞
⎟⎟⎟⎟⎠ .

I coefficienti incogniti si determinano imponendo l’uguaglianza LU = A, medi-
ante il seguente Algoritmo di Thomas

α1 = a1, βi =
bi

αi−1
, αi = ai − βici−1, i = 2, ..., n .

Data una matrice (sparsa) A, il comando Matlab/Octave spdiags(A), che gen-
eralizza diag, viene usato in 5 modi differenti.

1. B = spdiags(A): estrae tutte le diagonali non nulle di una matrice A, m×n.
B è una matrice min(m,n)× p le cui colonne sono le p diagonali non nulle di
A.

2. [B,d] = spdiags(A): restituisce un vettore d, length(d)=p, le cui compo-
nenti intere specificano le diagonali di A.

3. B = spdiags(A,d): estrae le diagonali specificate da d.

4. A = spdiags(B,d,A): rimpiazza le diagonali specificate da d con le colonne
di B. L’ output è in formato sparso.

5. A = spdiags(B,d,m,n): crea una matrice sparsam×n prendendo le colonne
di B e ponendole lungo le diagonali specificate da d.

82 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESERCIZIO 31. Come esercizio, si chiede di costruire una matrice tridiagonale
T con i comandi Matlab/Octave

>> b=ones(10,1); a=2*b; c=3*b;

>> T=spdiags([b a c],-1:1,10,10);

Risolvere quindi il sistema T*x=d con l’algoritmo di Thomas, con d scelto cosicché
si abbia x=ones(10,1). Quante operazioni si risparmiano rispetto alla fattoriz-
zazione classica LU fatta con Gauss?

3.4.6 Raffinamento iterativo
Sia x̂ la soluzione del sistema Ax = b calcolata mediante l’algoritmo di Gauss,
MEG. Il raffinamento iterativo detto anche metodo post-iterativo consiste dei
3 seguenti passi

1. calcola r = b−Ax̂;

2. risolvi il sistema Ad = r usando per A la fattorizzazione LU usata per
risolvere Ax = b;

3. poni y = x̂+ d

ripeti finché
‖d‖
‖y‖ > tol

dove tol è una prefissata tolleranza. Ovvero ci si arresterà quando l’errore rela-
tivo rispetto alla soluzione y risulta essere minore o uguale a tol.

Nota: di solito (cioè in assenza di errori di arrotondamento) bastano 1-2 iter-
azioni per convergere. Il metodo serve come stabilizzatore del MEG.
Una funzione Matlab/Octave che implementa l’algoritmo del raffinamento

iterativo si può scrivere come segue.

function y=RafIter(x,L,U,tol)

%--

% Inputs:

% x = soluzione con MEG

% L, U = matrici della fattorizzazione LU di A

% tol = tolleranza

%

% Output:

% y = soluzione ‘‘raffinata’’

%--

kmax=20; % numero massimo d’iterazioni

A=L*U;

b=A*x; % determino il termine noto

833 - Soluzione di sistemi lineari

r=b-A*x; % residuo iniziale

% Risolvo il sistema Ad=r, sapendo che A=LU

z=L\r; d=U\z; y=x+d;

k=1; %contatore delle iterazioni

while (norm(d)/norm(y)> tol & k<=kmax)

x=y; r=b-A*x; z=L\r; d=U\z;

y=x+d; k=k+1;

end

3.5 Calcolo dell’inversa di una matrice: cenni

Un metodo semplice e immediato di calcolo dell’inversa di una matrice A non
singolare è questo: risolvi gli n sistemi non omogenei

Axi = ei, i = 1, ..., n , (3.22)

con xi vettore che rappresenta la i-esima colonna della matrice inversa e ei il
vettore di tutti zeri eccetto che per la i-esima componente che vale 1. Purtroppo
questa tecnica è molto costosa: O(n4).

Ma il calcolo di A−1 può essere fatto più semplicemente usando la fattoriz-
zazione A = LU e si ha A−1 = U−1L−1. Detta Y = L−1, da L possiamo ricavare
Y chiedendo che LY = Y L = I mediante le formule⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lj,jyj,j = 1

lj+1,jyj,j + lj+1,j+1yj+1,j = 0

...

ln,jyj,j + ln,j+1yj+1,j + · · ·+ ln,nyn,j = 0

valide per j = 1, . . . , n. Ora ricordando che L ha elementi diagonali unitari, dalle
relazioni precedenti possiamo ricavare i valori di Y come segue

y=eye(n); %inizializzo con la matrice identita’

for j=1:n-1,

for i=j+1:n,

s=l(i,1:j-1)*y(1:j-1,j)

y(i,j)=-s;

end

end

In maniera analoga si procede per il calcolo di Z = U−1.

Un metodo piú efficiente è il seguente (cfr. Du Croz J., Higham N. IMA J. Nu-
mer. Anal. 12:1-19, 1992). Esso risolve l’equazione UXL = I, supponendo X

84 Appunti di Calcolo Numerico con codici in Matlab/Octave

parzialmente nota ad ogni step. L’idea é di partizionare le matrici X,L e U come
segue:

U =

(
u1,1 uT1,2
0 UT

2,2

)
X =

(
x1,1 xT1,2
x2,1 XT

2,2

)
L =

(
1 0T

l2,1 LT
2,2

)

dove i blocchi (1,1) sono scalari e la sottomatrice X2,2 si assume già nota. Quindi
il resto di X si calcola risolvendo le equazioni:

x2,1 = −XT
2,2l2,1

xT1,2 = −uT1,2XT
2,2/u1,1

x1,1 = 1
u1,1

− xT1,2l2,1

.

In maniera algoritmica, usando notazioni Matlab/Octave, si può sintetizzare
come segue, facendo attenzione al fatto che il bloccoX(k+1 : n, k+1 : n) si assume
già noto. All’inizio dovremo conoscere l’elemento xn,n che si può determinare
dall’equazione UXL = I.

for k=n-1:-1:1,

X(k+1:n,k)=-X(k+1:n,k+1:n)*L(k+1:n,k)

X(k,k+1:n)=-U(k,k+1:n)*X(k+1:n,k+1:n)/U(k,k)

X(k,k)=1/U(k,k)-X(k,k+1:n)*L(k+1:n,k)

end;

ESERCIZIO 32. Scrivere degli scripts Matlab che implementano i metodi su
descritti. Come matrice A si consideri la matrice ottenuta usando la funzione
gfpp del Toolbox The Matrix Computational Toolbox (MCT) di N. Higham
(www.maths.manchester.ac.uk/∼higham/mctoolbox/). La funzione può essere
usata con la sintassi A=gfpp(n) generando una matrice il cui fattore di crescita
degli elementi è 2n−1, come per l’eliminazione gaussiana con pivoting parziale per
righe e/o colonne.

• Verificare che la matrice gfpp(n) dà un fattore di crescita per MEG con
pivoting parziale pari a 2n−1.

• Sempre nel MCT Toolbox, esiste la funzione gep che data una matrice,
anche rettangolare, applica l’eliminazione gaussiana con pivoting parziale
o completo, restituisce , tra le altre informazioni, la fattorizzazione LU e
il fattore di crescita dei suoi elementi. Far vedere che se si usa la matrice
gep(gfpp(n),’c’) il fattore di crescita risulta uguale a 2.

Informazioni sul MCT si possono anche leggere nel report [17].

853 - Soluzione di sistemi lineari

3.6 Metodi iterativi

La filosofia di questi metodi sta nell’approssimare la soluzione del sistema lin-
eare Ax = b con una successione di vettori {xk, k ≥ 0}, a partire da un vettore
iniziale x0 ∈ R

n, con l’obiettivo che converga verso la soluzione x del sistema.
A differenza dei metodi diretti, in questi metodi non si altera la struttura della
matrice e pertanto sono utilizzati prevalentemente quando la matrice è sparsa.
La matrice A di ordine n, che supponiamo sia non singolare, si può decom-

porre come
A = M −N

con la richiesta che det(M) �= 0 e facilmente invertibile. Pertanto

Mx−Nx = b (3.23)
Mx = Nx+ b (3.24)

x = M−1Nx+M−1b (3.25)

da cui, ponendo P = M−1N e q = M−1b, la soluzione di Ax = b è ricondotta al
sistema x = Px+ q. Scelto x(0), costruiremo la successione

x(i+1) = Px(i) + q, i = 0, 1, . . . (3.26)

Definizione 10. La successione {x(i)} si dirà convergente al vettore x, e si scrive

lim
i→∞

x(i) = x ,

se per i→∞ le componenti di x(i) convergono verso le corrispondenti componenti
di x.

La (3.26) rappresenta un metodo iterativo per la soluzione di Ax = b, con P
che si chiama matrice d’iterazione.

Definizione 11. Un metodo iterativo si dice convergente, se per ogni vettore
iniziale x(0) la successione {x(i)} è convergente.

ESEMPIO 19. Siano

P =

⎛
⎝ 1

2 0 0
0 1

2 0
0 0 2

⎞
⎠ , q = 0, con x = 0 .

Partendo da x(0) = (1, 0, 0)T costruiremo la successione

x(1) = P · x(0) =

⎛
⎝ 1

2 0 0
0 1

2 0
0 0 2

⎞
⎠
⎛
⎝ 1

0
0

⎞
⎠ =

⎛
⎝ 1

2
0
0

⎞
⎠

x(2) = P · x(1) = P 2 · x(0)

⎛
⎝ 1

22 0 0
0 1

22 0
0 0 22

⎞
⎠
⎛
⎝ 1

0
0

⎞
⎠ =

⎛
⎝ 1

22

0
0

⎞
⎠

86 Appunti di Calcolo Numerico con codici in Matlab/Octave

e continuando otterremo

x(i) =

⎛
⎝ 1

2i

0
0

⎞
⎠ .

Pertanto per i → ∞ la successione converge verso x. Si verifica facilmente che par-

tendo da x(0) = (0, 1, 1)T si avrebbe x(i) =

(
0,

1

2i
, 2i
)T

e quindi una successione

divergente.

A questo punto dobbiamo chiarire sotto quali condizioni il metodo iterativo
risulta essere convergente.

Teorema 6. Condizione necessaria per la convergenza è che esista una norma
matrice indotta ‖ · ‖ per la quale risulta ‖P‖ < 1.

Dim. Sia ek = x(k) − x l’errore al passo k. Abbiamo

ek = x(k) − x = Px(k−1) − q − Px+ q = P (x(k−1) − x) = Pek−1, k = 1, 2,

Ma Pek−1 = · · · = P k−1e(0). Da cui

‖ek‖ ≤ ‖P k‖‖e0‖ ≤ ‖P‖k ‖e0‖ .

Se quindi ‖P‖ < 1, allora limk→∞ ‖P‖k = 0 e anche ‖ek‖ → 0 ∀ k . Per la conti-
nuità della norma concludiamo che limk→∞ ek = 0 da cui l’asserto. �

Ricordando che vale
ρ(P) ≤ ‖P‖,

per ogni norma indotta, la condizione necessaria e sufficiente per la convergenza
di un metodo iterativo è contenuta nel seguente teorema.

Teorema 7. Sia P di ordine n. Allora

lim
k→∞

P k = 0 ⇐⇒ ρ(P) < 1 .

��
Prima di passare ai metodi, concludiamo questa parte sulle generalità dicendo
quando numericamente consideriamo convergente un metodo iterativo. Fissata
una tolleranza ε e indicato un numero massimo d’iterazioni kmax, il test d’arresto
che valuteremo sarà

‖x(k) − x(k−1)‖ ≤ ε‖x(k)‖ ∨ k > kmax

ovvero xk sarà una buona approssimazione di x quando l’errore relativo è sotto
una prefissata tolleranza. Ma il metodo si arresta anche quando k > kmax. In
quest’ultimo caso molto probabilmente avremo fallito e onde evitare che si iteri
all’infinito è buona norma inserire questo ulteriore controllo.

873 - Soluzione di sistemi lineari

Ma possiamo anche fare le seguenti considerazioni. I metodi iterativi, per la
soluzione di un sistema lineare Ax = b, teoricamente richiedono un numero in-
finito di iterazioni. Nella pratica ciò non è ragionevole poiché invece che x ci si
accontenta di una sua approssimazione x̃ o più concretamente di xk, l’iterata ad
un certo passo k del metodo, per la quale l’errore sia inferiore ad una prescelta
tolleranza ε. Ma l’errore è a sua volta una quantità incognita perchè dipende
dalla soluzione esatta. Nella pratica ci si rifà a degli stimatori dell’errore a pos-
teriori.

(a) Un primo stimatore è il residuo ad ogni iterazione

rk = b−Axk .

In tal caso ci arresteremo in corrispondenza a quel kmin tale che

‖rkmin‖ ≤ ε‖b‖ . (3.27)

Infatti, ricordando che Ax = b, la (3.27) altro non è che il test sull’errore
relativo poiché ∥∥∥∥x− xk

x

∥∥∥∥ =
∥∥∥∥Ax−Axk

Ax

∥∥∥∥ .

Quindi, l’errore relativo

‖x− xkmin‖
‖x‖ =

‖A−1(b−Axkmin)‖
‖x‖ ≤ ‖A−1‖‖rkmin‖

‖x‖ ≤ εκ(A) ,

dove l’ultimo passaggio si ottiene dalla (3.27) e ricordando che

‖b‖
‖x‖ ≤ ‖A‖ .

Perció, il controllo sul residuo ha senso solo se κ(A), il numero di condizion-
amento della matrice A, è ragionevolmente piccolo.

(b) Alternativamente si può calcolare il cosidetto incremento δk = x(k+1)− x(k).
In tal caso il metodo si arresterà al passo kmin per cui

‖δkmin‖ ≤ ε‖b‖ .

Nel caso in cui la matrice di iterazione P (non la matrice del sistema!) è
simmetrica e definita positiva, posto ek = xk − x, in norma euclidea si avrà

‖ek‖ = ‖ek+1 − δk‖ ≤ ‖P‖‖ek‖+ ‖δk‖ = ρ(P)‖ek‖+ ‖δk‖ .
Per la convergenza, ρ(P) < 1, avremo alla fine

‖ek‖ ≤ 1

1− ρ(P)
‖δk‖ . (3.28)

Nota: se P non è simmetrica e definita positiva si arriva alla stessa conclu-
sione con ‖P‖ al posto di ρ(P).
In conclusione: il controllo sull’incremento è un buon stimatore quanto più
ρ(P)
 1.

88 Appunti di Calcolo Numerico con codici in Matlab/Octave

3.6.1 I metodi di Jacobi e Gauss-Seidel
Anzitutto facciamo alcune posizioni. Data la matrice quadrata A indichiamo con
D la matrice dei valori diagonali di A, ovvero di = ai,i e con B e C le matrici
triangolari inferiori e superiori rispettivamente ottenute nel seguente modo

bi,j =

{ −ai,j i > j
0 i ≤ j

ci,j =

{
0 i ≥ j
−ai,j i < j

,

con A = D − (B + C).

Nel metodo di Jacobi le matriciM e N prima definite sono

M = D, N = B + C .

Pertanto se ai,i �= 0, ∀i, allora M è non singolare. La matrice di iterazione di
Jacobi è

J = M−1N = D−1(B + C) .

Il metodo iterativo di Jacobi si può allora scrivere in termini vettoriali come

x(k) = Jx(k−1) +D−1b, k ≥ 1 , (3.29)

o per componenti come

x
(k)
i =

1

ai,i

⎧⎨
⎩−

n∑
j=1,j
=i

ai,jx
(k−1)
j + bi

⎫⎬
⎭ , i = 1, . . . , n. (3.30)

Nota

J =

⎛
⎜⎜⎜⎜⎝

0 −a1,2

a1,1
. . . −a1,n

a1,1

−a2,1

a2,2
0 . . . −a2,n

a2,2

. . .
− an,1

an,n
0

⎞
⎟⎟⎟⎟⎠ .

Nel metodo di Gauss-Seidel, o semplicemente G-S, le matriciM e N prima def-
inite sono

M = D −B, N = C .

La matrice di iterazione di Gauss-Seidel è

G = M−1N = (D −B)−1C .

Osserviamo che

x(k) = (D −B)−1Cx(k−1) + (D −B)−1b

(D −B)x(k) = Cx(k−1) + b

Dx(k) = Bx(k) + Cx(k−1) + b

893 - Soluzione di sistemi lineari

da cui otteniamo che, in termini vettoriali, il metodo di G-S si può scrivere come

x(k) = D−1Bx(k) +D−1Cx(k−1) +D−1b, k ≥ 1 , (3.31)

o per componenti come

x
(k)
i =

1

ai,i

⎧⎨
⎩−

i−1∑
j=1

ai,jx
(k)
j −

n∑
j=i+1

ai,jx
(k−1)
j + bi

⎫⎬
⎭ , i = 1, . . . , n. (3.32)

Dalle equazioni (3.29) e (3.31) si comprende perchè il metodo di Jacobi viene
anche detto degli spostamenti simultanei mentre quello di G-S degli spostamenti
successivi. Ma il vantaggio di G-S rispetto a Jacobi sta soprattutto nel poter
memorizzare le componenti di x(k) nella stessa area di memoria di x(k−1).

Prima di discutere delle condizioni sotto le quali i metodi di Jacobi e G-S
convergono, premettiamo alcune definizioni.

Definizione 12. Una matrice A si dice diagonalmente dominante per righe (o
anche a predominanza diagonale per righe) se

|ai,i| ≥
n∑

j=1,j
=i

|ai,j | (3.33)

ed esiste un indice s per cui la disuguaglianza vale in senso stretto. La matrice si
dice invece diagonalmente dominante in senso stretto per righe (o a predomi-
nanza diagonale stretta per righe) se la (3.33) vale per ogni i = 1, ..., n.

Analoga definizione vale per colonne.

Definizione 13. Un grafo orientato si dice fortemente connesso se per ogni
1 ≤ i, j ≤ n, i �= j esiste un cammino orientato che parte da pi ed arriva a pj (con
pi, pj nodi del grafo).

Data una matrice A, il grafo ad essa associato si ottiene definendo tanti nodi
pi quanti il numero n (dimensione della matrice) con archi corrispondenti agli
elementi non nulli di A. Ovvero, se ai,j �= 0 allora si disegnerà un arco che va da
pi a pj .

Definizione 14. Una matrice A si dice riducibile se e solo se il suo grafo ori-
entatato non è fortemente connesso, altrimenti si dice irriducibile.

ESEMPIO 20. La matrice

A =

⎛
⎜⎜⎝

1 0 −1 0
2 3 −2 1
−1 0 −2 0
1 −1 1 4

⎞
⎟⎟⎠

ha il grafo che non è fortemente connesso. Infatti non esiste un arco orientato che va
da p1 a p4.

90 Appunti di Calcolo Numerico con codici in Matlab/Octave

Vale il seguente Teorema.

Teorema 8. Sia A = M − N la decomposizione di A che, nel caso di Jacobi
equivale ad M = D, N = B +C, mentre nel caso di G-S, M = D −B e N = C. Se
una delle seguenti ipotesi è verificata

(a) A è strettamente diagonalmente dominante per righe o per colonne;

(b) A è diagonalmente dominante e irriducibile;

allora ρ(M−1N) < 1 e quindi i metodi di Jacobi o di G-S sono convergenti.

Proposizione 4.Se vale (a) allora il metodo di Jacobi converge ,ovvero l’associata
matrice PJ è convergente.

Dim. Dobbiamo provare che ρ(PJ) < 1 con PJ = D−1(B+C)matrice d’iterazione
di Jacobi. Dapprima osserviamo che, essendo A diagonalmente dominante in
senso stretto, non ha elementi diagonali nulli. Siano λ e x un generico autoval-

ore e il corrispondente autovettore di PJ , ovvero, per componenti,
n∑

j=1

pi,jxj =

λxi, i = 1, . . . , n. Possiamo assumere che max
1≤i≤n

|xi| = 1. Sia k l’indice in cui

viene assunto il massimo. Avremo

|λ| =
∣∣∣∣∣∣

n∑
j
=k,j=1

pk,jxj

∣∣∣∣∣∣ ≤
n∑

j=1,j
=k

∣∣∣∣ ai,jak,k

∣∣∣∣ < 1

e vista la generalità di λ si conclude che ρ(PJ) < 1. �
Osservazione. La proprietà (a) non implica che PJ è non singolare. Come

esempio, consideriamo la matrice

A =

⎡
⎣ 3 1 1

0 3 0
−1 −1 −3

⎤
⎦ .

L’associata matrice di Jacobi

J =

⎡
⎣ 0 −1/3 −1/3

0 0 0
−1/3 −1/3 0

⎤
⎦ ,

ha un autovalore nullo e quindi determinante nullo.

Vale anche il seguente risultato.

Teorema 9. Sia A tridiagonale di dimensione n con ai,i �= 0, i = 1, . . . , n. Al-
lora i metodi di Jacobi e di Gauss-Seidel sono o entrambi convergenti o entrambi
divergenti. Se convergono, Gauss-Seidel converge più velocemente di Jacobi e si
ha

ρ(PGS) = ρ2(PJ) .

913 - Soluzione di sistemi lineari

ESEMPIO 21. La matrice

A =

⎛
⎜⎜⎝

4 −1 1 1
0 −4 −1 1

−1 −1 4 1
1 −1 0 4

⎞
⎟⎟⎠

ha il grafo che è fortemente connesso essendo diagonalmente dominante in senso
stretto per colonne. Le matrici d’iterazione di Jacobi (J) e G-S (G) sono

J = −1

4

⎛
⎜⎜⎝

0 −1 1 1
0 0 1 −1

−1 −1 0 1
1 −1 0 0

⎞
⎟⎟⎠ , G =

1

16

⎛
⎜⎜⎝

0 4 −4 −4
0 0 −4 4
0 1 −2 −4
0 −1 0 2

⎞
⎟⎟⎠ .

È facile vedere che ρ(J) ≈ 0.4 < 1 come pure ρ(G) ≈ 0.18 < 1. Pertanto sia il metodo
di Jacobi che di G-S convergono. Si noti inoltre che ρ(G) < ρ(J) il che conferma che
se entrambi convergono, G-S converge più velocemente.

Nel prossimo esempio facciamo vedere che se A non è strettamente diagonale-
mente dominante, ma solo diagonalmente dominante, non è detto che il metodo
di Jacobi e di G-S siano convergenti.

ESEMPIO 22. La matrice

A =

⎛
⎜⎜⎝
−4 −1 1 1
0 −4 0 −4
1 1 4 1
0 −4 0 4

⎞
⎟⎟⎠

È facile vedere che ρ(J) = ρ(G) = 1, pertanto sia il metodo di Jacobi che di G-S non
convergono.

Infine un esempio di matrice diagonalmente dominante con grafo stretta-
mente connesso

ESEMPIO 23. Data

A =

⎛
⎜⎜⎝

1 −1 0 0
0 1 1 0
0 0 −1 1

−1 0 0 −3

⎞
⎟⎟⎠

che è diagonalmente dominante (non in senso stretto) con grafo fortemente connesso.
La matrice di Jacobi è

J =

⎛
⎜⎜⎝

0 1 0 0
0 0 −1 0
0 0 0 1

−1
3 0 0 0

⎞
⎟⎟⎠

che risulta essere convergente avendo cerchi di Gerschgorin centrati nell’origine con
raggi ≤ 1. Gli autovalori sono infatti {±0.76, 0± 0.76i}.

92 Appunti di Calcolo Numerico con codici in Matlab/Octave

Il codice Matlab/Octave, jacobi.m in Appendice C è una implementazione del
metodo di Jacobi, mentre GuassSeidel.m è il codice per il metodo di G-S. Il codice
GaussRil.m, è più generale e può essere utilizzato anche per il metodo SOR che
viene presentato nel prossimo paragrafo. Infatti, come faremo vedere, il metodo
di G-S è un particolare metodo di rilassamento.

3.6.2 Il metodo SOR o di rilassamento
La filosofia di questo metodo sta nel determinare un parametro ω di accelerazione
della convergenza del metodo di G-S. Partiamo considerando l’uguaglianza

ωAx = ωb, ω �= 0, ω ∈ R .

Usando il fatto che vale ωA = M − N , ricordando lo splitting A = D − B − C e
osservando che ω(D−B −C) +D−D = M −N , una scelta per le matriciM e N
è la seguente

M = D − ωB , N = (1− ω)D + ω C .

Come si vede immediatamente, quando ω = 1 , il predetto splitting equivale al
metodo di G-S.
Se det(M) �= 0 allora ricaviamo il metodo

x(k) = (D − ωB)−1 [(1− ω)D + ωC]x(k−1) + ω(D − ωB)−1b , k = 0, 1, . . . (3.34)

con matrice d’iterazione, dipendente da ω, data da

H(ω) = (D − ωB)−1 [(1− ω)D + ωC] . (3.35)

Dalla (3.34) ricaviamo

Dx(k) − ωBx(k) = (1− ω)Dx(k−1) + ωCx(k−1) + ωb ,

x(k) = (1− ω)x(k−1) + ωD(−1)
[
Bx(k) + Cx(k−1) + b

]
,

che per componenti diventa

x
(k)
i = (1− ω)x

(k−1)
i + ω

⎡
⎣bi − i−1∑

j=1

ai,j
ai,i

x(k) −
n∑

j=i+1

ai,j
ai,i

x(k−1)

⎤
⎦ , i = 1, ..., n . (3.36)

Facciamo notare come il termine dentro parentesi quadre rappresenti la soluzione
al passo k ottenuta con il metodo di G-S. Pertanto la componente i-esima calco-
lata con il metodo SOR si può scrivere

x
(k)
i = (1− ω)x

(k−1)
i + ωx

(k)
i,GS

che, come prima osservato, coincide con il metodo di G-S per ω = 1. Il parametro
ω serve ad accelerare la convergenza del metodo del metodo iterativo di G-S.

933 - Soluzione di sistemi lineari

Teorema 10. Condizione necessaria per la convergenza del metodo SOR è che

0 < ω < 2 . (3.37)

1. Se A è simmetrica definita positiva e ω soddisfa la (3.37) allora SOR con-
verge, ovvero la condizione è anche sufficiente.

2. Se A è tridiagonale, vale la (3.37) e gli autovalori della matrice d’iterazione
di Jacobi, J , sono reali e t.c. ρ(J) < 1, allora esiste uno e uno solo ω0 t.c.

ρ(H(ω0)) = min
0<ω<2

ρ(H(ω)) , (3.38)

il cui valore è
ω0 =

2

1 +
√

1− ρ2(J)
. (3.39)

Facciamo solamente vedere che richiedere che 0 < ω < 2 implica ρ(H(ω)) < 1.
Infatti,

det(H(ω)) = det(D − ωB)−1det((1− ω)D + ωC))

=
(1− ω)n (

∏n
i=1 dii)∏n

i=1 dii
= (1− ω)n .

Ma det(H(ω)) =
∏n

i=1 λi, il che implica che il prodotto degli autovalori è (1−ω)n.
Esisterà quindi almeno un autovalore il cui modulo ≥ |1 − ω|. Siccome, per la
convergenza, deve risultare che |1 − ω| < 1 si ottiene la condizione richiesta,
0 < ω < 2.

Se 0 < ω < 1 il metodo si dice di sottorilassamento mentre se 1 < ω < 2 il
metodo si dice di sovrarilassamento. Facciamo inoltre notare, che quando ω = 0,
H(ω) = I e ρ(H(ω)) = 1.

ESEMPIO 24. Sia

A = (ai,j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 i = j

−1 |i− j| = 1

0 altrimenti

Quando n = 4, si verifica che ρ(J) ≈ 0.901 ed essendo tridiagonale simmetrica possi-
amo determinare ω0, ottenendo il valore ω0 ≈ 1.4 e ρ(H(ω0)) ≈ 0.4.

Il grafico dell’andamento del raggio spettrale al variare di ω, relativamente
all’ Esempio 24 ma con n = 10, è visibile in Figura 3.1.
In generale, per determinare ω0, nel caso di una matrice tridiagonale simmet-

rica, diagonalmente dominante, possiamo avvalerci del codice SOROmegaZero.m in
Appendice C.

94 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 3.1: Raggio spettrale di H(ω) con n = 10, ottenuto con la funzione
SOROmegaZero.m. Il valore ottimale calcolato è ω0 = 1.5727.

Per comprendere meglio la “filosofia” del metodo SOR, suggeriamo di se-
guito un paio di esercizi dei quali si chiede di scrivere i corrispondenti scripts
Matlab/Octave.

ESERCIZIO 33. Si consideri il sistema lineare⎛
⎜⎜⎝

4 0 1 1
0 4 0 1
1 0 4 0
1 1 0 4

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
2
3
4

⎞
⎟⎟⎠ .

Si risolva il sistema con il metodo iterativo di Gauss-Seidel a partire dalla
soluzione iniziale (0, 0, 0, 0) con precisone di 1.0e − 6. Si determini inoltre il
fattore ottimale di rilassamento per il metodo SOR. Scrivere un M-file che
assolva a dette richieste, calcolando anche il numero di iterazioni effettuate.

Facoltativo: Determinare la soluzione con il metodo SOR, usando come
fattore quello ottimo di (sovra)rilassamento.

ESERCIZIO 34. Si consideri il sistema lineare⎛
⎝ 7 4 −7

4 5 −3
−7 −3 8

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠ =

⎛
⎝ 4

6
−2

⎞
⎠ .

Si determini sperimentalmente il fattore ottimale di rilassamento per il

953 - Soluzione di sistemi lineari

metodo SOR nel seguente modo a partire dal vettore iniziale (0, 0, 0). In prat-
ica si scelgano alcuni 0 < ωi < 2 e per ognuno di essi si eseguano 10-15
iterazioni. Quell’ ωi che stabilizza le soluzioni è da considerarsi quello ”ot-
timale” (si osservi che la soluzione del sistema è il vettore (1,1,1)). Perció
per sapere quale ω segliere si suggerisce di calcolare per ogni i norm([1; 1;

1]-x(ωi),inf), dove x(ωi) è la soluzione dopo 10-15 iterazioni dell’ SOR con
ωi.

Facoltativo: Sia A decomposta al solito come A = D−B −C e ricordando
che la matrice di iterazione del metodo SOR è:

Hω = (D − ωB)−1[(1− ω)D + ω C]

si disegni la funzione r :]0, 2[→ R, tale che r(ω) = ρ(Hω). Verificare quindi
se il valore empirico scelto è ”vicino” al valore ”ottimale” teorico. Scrivere un
M-file che assolva a dette richieste, calcolando anche il numero di iterazioni
effettuate.

3.7 Metodi del gradiente: cenni

Se la matrice A è simmetrica definita positiva, la soluzione di Ax = b equivale a
trovare il minimo x ∈ R

n della forma quadratica

Φ(x) =
1

2
xTAx− xT b . (3.40)

Infatti, essendo A simmetrica

∇Φ(x) =
1

2
(AT +A)x− b = Ax− b .

Pertanto se x è il minimo, si avrebbe ∇Φ(x) = 0 ovvero Ax = b. Vale anche il
viceversa. Se Ax = b

Φ(x) = Φ(y − x+ x) = Φ(x) +
1

2
(x− y)TA(x− y) > Φ(y) ,

per ogni y �= x, essendo A simmetrica definita positiva.
Come procedere per trovare il minimo di Φ? Mediante ilmetodo del gradiente.

• scegli x(0) ∈ R
n ;

• scegli opportune direzioni d(k) lungo le quali minimizzare Φ (si noti che la
direzione ottimale, che congiunge x(0) con x non è nota);

• determina la soluzione al passo k + 1 come

x(k+1) = x(k) + αkd
(k) , k ≥ 0

dove αk ∈ R indica la lunghezza del passo nelle direzione d(k).

96 Appunti di Calcolo Numerico con codici in Matlab/Octave

Dobbiamo determinare la direzione di discesa d(k) e αk.

(i) Quale direzione di discesa prendiamo? Quella di massima pendenza:

d(k) = −∇Φ(x(k)) = −(Ax(k) − b) = r(k) , (3.41)

ovvero il residuo al passo k.

(ii) Determiniamo αk come il minimo del polinomio di grado 2 in α, P (α) =
Φ(x(k) + αr(k)). Chiedendo che la derivata si annulli si ottiene

αk =
r(k)

T
r(k)

r(k)
T
Ar(k)

. (3.42)

A questo punto abbiamo tutti gl’ingrendienti per l’algoritmo del metodo del gra-
diente
Scelto x(0) ∈ R

n, per k = 0, 1, ... finchè si converge, esegui i seguenti passi

1. r(k) = b−Ax(k),

2. αk = r(k)T r(k)

r(k)TAr(k)

3. x(k+1) = x(k) + αkr
(k).

Vale anche il seguente risultato di convergenza.

Teorema 11. Se A è simmetrica definita positiva, il metodo del gradiente con-
verge per ogni scelta del vettore iniziale x(0). Definita la A-norma ‖x‖A = xT Ax,
allora in tale norma l’ errore verifica

‖e(k+1)‖A ≤
(
κ2(A)− 1

κ2(A) + 1

)k

‖e(0)‖A .

3.7.1 Il metodo del gradiente coniugato
Il metodo del gradiente ha il ”difetto” di convergere lentamente, poiché la conver-
genza è a zig-zag (vedi Figura 3.2). Questo fenomeno è dovuto alla richiesta che
le direzioni siano ortogonali, ovvero r(k+1)T r(k) = 0.
Con il metodo del gradiente coniugato, si chiede invece che le direzioni siano

A-ortogonali

d(k)
T
Ad(j) = 0, per, k �= j . (3.43)

Questa idea, in assenza di errori, consentirebbe di raggiungere la soluzione in un
numero di passi ≤ n.
Le cose da fare sono quindi le seguenti.

973 - Soluzione di sistemi lineari

Figura 3.2: Convergenza a zig-zag del metodo del gradiente

(i) Scegliere la direzione di discesa d(k+1). Essa non sarà più il residuo al passo
k + 1 ma tale che

d(k+1) = r(k+1) + βk d
(k) , βk ∈ R.

Per determinare βk chiederemo la A-ortogonalità delle direzioni

d(k)
T
Ad(k+1) = d(k)

T
A(r(k+1) + βk d

(k)) = 0,

la cui soluzione mi permette di determinare βk

βk = −d(k)
T
Ar(k+1)

d(k)
T
Ad(k)

. (3.44)

(ii) Scelta la direzione cercheremo, come per il metodo del gradiente, il minimo
di

P (α) = Φ(x(k) + αd(k))

=
1

2
(x(k) + αd(k))TA(x(k) + αd(k))− (x(k) + αd(k))T b .

Poiché P ′(α) = d(k)(Ax(k) − b) + αd(k)
T
Ad(k), il minimo richiesto sarà

αk =
d(k)

T
r(k)

d(k)
T
Ad(k)

. (3.45)

Ecco quindi l’algoritmo del gradiente coniugato.

Scelto x(0) ∈ R
n, sia d(0) = r(0), per k = 0, 1, ... finchè si converge, esegui i

seguenti passi

98 Appunti di Calcolo Numerico con codici in Matlab/Octave

1. αk = d(k)T r(k)

d(k)TAd(k)
= r(k)T r(k)

d(k)TAd(k)

2. x(k+1) = x(k) + αkd
(k).

3. r(k+1) = r(k) − αkAd(k).

4. βk = −d(k)TAr(k+1)

d(k)TAd(k)
= r(k+1)T r(k+1)

r(k)T r(k)

5. d(k+1) = r(k+1) + βk d
(k).

Inoltre, per la convergenza, vale il seguente teorema.

Teorema 12. Se A è simmetrica definita positiva, il metodo del gradiente coni-
ugato converge per ogni scelta del vettore iniziale x(0), in al piú n iterazioni. La
A-norma dell’ errore soddisfa

‖e(k+1)‖A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k

‖e(0)‖A .

La rapidità con cui il metodo del gradiente coinugato converge, dipende dal
numero di condizionamento della matrice del sistema A. Per questa ragione, si
utilizzano tecniche di precondizionamento della matrice, allo scopo di diminuirne
il numero di condizionamento. Di questo aspetto, importante ai fini computazion-
ali, non ci occupiamo in questa sede, poiché richiederebbe altre nozioni. Riman-
diamo invece alla lettura del bellissimo Technical Report [29], dove queste ed
altre questioni computazionali sono ben esplicitate.

3.8 Sistemi sovra e sottodeterminati

Quando parliamo di sistemi sovradeterminati pensiamo a sistemi lineari del tipo
Ax = b con matrice m× n, m > n (ovvero più equazioni che incognite). Se m < n
il sistema si dice sottodeterminato.
In generale un sistema sovradeterminato non ha soluzione, pertanto si cerca

la “migliore” soluzione nel senso che ora chiariremo. Dato b ∈ R
m, diremo che

x∗ ∈ R
n è la migliore soluzione del sistema sovradeterminato, in quanto mini-

mizza la norma 2 del residuo r = b−Ax. Detto altrimenti,

Φ(x∗) = ‖b−Ax∗‖22 ≤ min
x∈Rn

‖b−Ax‖22 = min
x∈Rn

Φ(x) . (3.46)

Definizione 15. Il vettore x∗, quando esiste, si dice soluzione ai minimiquadrati
del sistema Ax = b.

La soluzione ai minimi quadrati è caratterizzata dal seguente teorema.

Teorema 13. Sia A ∈ R
m×n, b ∈ R

m. Se x∗ soddisfa l’equazione

AT (b−Ax∗) = 0 (3.47)

allora per ogni y ∈ R
n si ha

‖b−Ax∗‖2 ≤ ‖b−Ay‖2 . (3.48)

993 - Soluzione di sistemi lineari

Dim. Indico con rx∗ = b−Ax∗ e ry = b−Ay. Ora,

ry = b−Ax∗ +Ax∗ −Ay = rx∗ +A(x∗ − y) ,

da cui

rTy ry = (rx∗ +A(x∗ − y))
T
(rx∗ +A(x∗ − y))

= rTx∗rx∗ + rTx∗A(x∗ − y) + (x∗ − y)TAT rx∗ + (x∗ − y)TATA(x∗ − y) .

Pertanto, usando la (3.47), otteniamo

‖ry‖22 = ‖rx∗‖22 + ‖A(x∗ − y)‖22 ≥ ‖rx∗‖22 .

Questo conclude la dimostrazione. �
Seguono due interessanti osservazioni.

1. Dalla (3.47) segue che per ogni vettore z ∈ R
n

(Az)T (b−Ax) = 0 ,

ovvero il residuo è ortogonale alla soluzione x ai minimi quadrati. Detto
altrimenti, il vettore z sta rg(A) = {y ∈ R

m, y = Ax, ∀x ∈ R
n }.

2. Sempre dalla (3.47), segue che la soluzione x∗ ai minimi quadrati è soluzione
delle equazioni normali

(AT A)x∗ = AT b . (3.49)

Circa il sistema (3.49), sapendo che la matrice A ha rango r = min{m,n}, se ha
rango pieno allora è non singolare e B = AT A è simmetrica, definita positiva.
Infatti, vale il seguente risultato.

Teorema 14. La matrice AT A è non singolare se e solo se le colonne di A sono
linearmente indipendenti.

Dim. Se le colonne di A sono linearmente indipendenti, preso x �= 0, Ax �= 0,
avremo

xT (ATA)x = (Ax)T (Ax) = ‖Ax‖22 > 0 .

Quindi ATA è definita positiva e det(ATA) > 0 ovvero ATA è non singolare.
Se le colonne sono linearmente dipendenti, allora ∀ z �= 0, Az = 0 ma anche

ATAz = 0 che implica che ATA è singolare. �
Sotto le ipotesi di questo teorema, allora esiste un’unica soluzione del sistema

(nel senso dei minimi quadrati) e il corrispondente sistema si può risolvere me-
diante la fattorizzazione di Cholesky di B.

Approfondimenti. A causa degli immancabili errori d’arrotondamento il
calcolo di ATA può introdurre la perdita di cifre significative con il risultato che
ATA non è più definita positiva. In alternativa invece della fattorizzazione di
Cholesky si usa la fattorizzazione QR di A.

Proposizione 5. Ogni matrice A ∈ R
m×n, m ≥ n si può scrivere unicamente

come A = QR con Q ortogonale quadrata di ordine m e R ∈ R
m×n triangolare

superiore con le righe di indice k > n+ 1 tutte nulle.

100 Appunti di Calcolo Numerico con codici in Matlab/Octave

3.8.1 Fattorizzazione QR di matrici
La fattorizzazione QR di una matrice si può realizzare tramite, ma non solo,
trasformazioni ortogonali di Householder. Si tratta di matrici di riflessione. In-
fatti, dalla Figura 3.3, è chiaro che il vettore x′, riflesso di x rispetto all’iperpiano
π, si ottiene come

x′ = x− 2vT xv

dove x è un versore ortogonale a π. Pertanto, se indichiamo con Qv la matrice
della trasformazione, che dipende dalla scelta di v, avremo

Qv = I − 2v vT . (3.50)

La matrice Qv si chiama matrice di Householder. È facile provare che Qv sod-

Figura 3.3: Riflessione di vettore x rispetto all’iperpiano π

disfa alle due seguenti proprietà

• Qv è simmetrica.

• Qv è ortogonale.

Si deduce quindi che Q2
v = I, ovvero che è una matrice involutiva.

La trasformazione di Householder può essere usata per riflettere un vettore
in modo tale che tutte le sue coordinate, eccetto una, siano zero. Per semplicità
di notazione, traslasciamo l’indice v nella definzione di Qv e scriveremo Q, per
indicare la matrice di Houselholder. Detto x un generico vettore di lunghezza
|α| (per questioni di stabilità si può assumere che α abbia lo stesso segno di x1),
detto e1 = (1, 0, . . . , 0)T , la matrice Qv si può allora costruire come segue

1. u = x− α e1

2. v = u
‖u‖2

3. Q = I − 2v vT .

1013 - Soluzione di sistemi lineari

Pertanto Qx = (α, 0, . . . , 0)T .
Questo modo di procedere, si può applicare ad una generica matrice rettango-

lare A, m×n allo scopo di trasformarla in forma triangolare superiore. Al primo
passo, costruiremo Q1 di Houselholder usando la prima colonna di A cosicché

Q1A =

⎡
⎢⎢⎢⎣

α1

0
... A′

0

⎤
⎥⎥⎥⎦ .

Questa modifica può essere ripetuta per la Amediante una matrice di Housh-
older Q2. Si noti che Q2 più piccola della Q1. Poiché vogliamo che sia reale per
operare su Q1 A invece di A′ abbiamo bisogno di espandere questa nella parte
superiore sinistra, riempiendola di 1, o in generale:

Qk =

[
Ik 0
0 Q′

k

]
.

Dopo p iterazioni, p = minm− 1, n avremo

R = QpQp−1 · · ·Q1 A

e Q = Q1 · · ·Qp è una matrice ortogonale (perchè prodotto di matrici ortogonali).
In definitiva A = QR rappresenta la fattorizzazione QR di A.

��
Se viene usata la fattorizzazione QR di A, la soluzione ai minimi quadrati di

A si può scrivere come
x∗ = R̃−1Q̃T b ,

dove R̃ ∈ R
n×n, Q̃ ∈ R

m×n con R̃ = R(1 : n, 1 : n) e Q̃ = Q(1 : m, 1 : n) e R̃ non
singolare.

ESEMPIO 25. Dati tre punti A,B,C sopra il livello del mare. Per misurare le rispettive
altezze sopra il mare, calcoliamo le altezze h1, h2, h3 tra altri punti D,E,F ed i punti
A,B,C, nonchè le altezze h4, h5, h6 tra i punti AB, BC e AC rispettivamente. I valori
trovati sono

h1 = 1, h2 = 2, h3 = 3 ;

h4 = 1, h5 = 2, h6 = 1 .

Pertanto, ciascuna misurazione da origine ad un sistema lineare che rappresenta la
relazione tra le altezze dei punti A,B,C, che indichiamo con xA, xB , xC⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

−1 1 0
0 −1 1

−1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
⎛
⎝ xA

xB
xC

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
1
2
1

⎞
⎟⎟⎟⎟⎟⎟⎠ .

102 Appunti di Calcolo Numerico con codici in Matlab/Octave

Le equazioni normali sono⎛
⎝ −3 −1 −1
−1 3 −1
−1 −1 3

⎞
⎠
⎛
⎝ xA

xB
xC

⎞
⎠ =

⎛
⎝ −1

1
6

⎞
⎠ .

Risolvendo, ad esempio con la fattorizzazione di Cholesky (ma anche MEG va bene
ugualmente) troviamo la soluzione

xA = 3, xB =
7

4
, xC =

5

4
,

con residuo
b−Ax =

(− 1
4 ,

1
4 , 0, 2

4 ,
3
4 , − 3

4

)T
che è ortogonale alle colonne di A.

3.9 Soluzione di sistemi non lineari con il metodo di
Newton

Un sistema non-lineare di n funzioni in n incognite, si può scrivere come il sis-
tema ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0
...
fn(x1, . . . , xn) = 0

(3.51)

dove fi : Rn → R, i = 1, ..., n sono funzioni non lineari.
Posto f = (f1, . . . , fn)

T , x = (x1, . . . , xn)
T e indicato con 0 lo zero di Rn, il sis-

tema (3.51) può riscriversi compattamente come f(x) = 0. Inoltre, se indichiamo
con

Jf (x) =

(
∂fi
∂xj

)n

i,j=1

la matrice jacobiana, allora possiamo risolvere il predetto sistema con il metodo
di Newton, che formuleremo come segue

risolvi Jf (x
(k))δx(k) = −f(x(k)), k = 0, 1, ... (3.52)

x(k+1) = x(k) + δx(k) . (3.53)

Il metodo consiste nel risolvere ad ogni passo il sistema lineare (3.52) con matrice
del sistema che è la matrice jacobiana.
Due semplici sistemi non lineari

ESEMPIO 26. ⎧⎨
⎩

x2
1 + x2

2 = 0
ex1 + ex2 = log(x3)
x1x2x3 = 5

1033 - Soluzione di sistemi lineari

ESEMPIO 27. {
x2
1 + x2

2 = 1
sin
(
πx1

2

)
+ x3

2 = 0

Per implementare in Matlab/Octave il metodo di Newton avremo bisogno di
una soluzione iniziale x0, due funzioni fun e jfun che definiscono la funzione f
e la matrice jacobiana Jf , rispettivamente. Come test d’arresto, come al solito,
cicleremo finchè

‖x(k+1) − x(k)‖ ≤ tol‖x(k)‖ ∨ k > kmax .

3.10 Esercizi proposti

ESERCIZIO 35. Per n = 2 : 50, si prendano i vettori

• x1=0:n;

• x2=0:1/n:1;

• x3=-0.5:1/n:0.5

Si faccia un plot comparativo usando semilogy, per comprendere il comporta-
mento dei numeri di condizionamento delle matrici di Vandermonde costruite
sui vettori x1, x2 e x3. Cosa si osserva?

ESERCIZIO 36. Si consideri il vettore v=[4 1 zeros(1,n)] e la matrice A =

toeplitz(v). Usando il comando find si trovino gli elementi diversi da zero
nei casi n = 4 : 10. Qual’è la formula del numero degli elementi non nulli di
A? La matrice può considerarsi sparsa?

ESERCIZIO 37. Si consideri il sistema Ax = b con A = toeplitz([4 1 0 0

0 0]) e b scelto cosicchè la soluzione esatta sia x = [2, 2, 2, 2, 2, 2]T . Lo si
risolva con l’ eliminazione di Gauss e con l’ algoritmo di Thomas per sistemi
tridiagonali. Nell’eliminazione gaussiana è necessario usare la strategia del
pivoting?

ESERCIZIO 38. Si consideri la matrice

A =

⎛
⎝ 1 α α

α 1 α
α α 1

⎞
⎠

Provare graficamente, nel piano (α, ρ(α)), che se 1
2 ≤ α < 1 il metodo di

Gauss-Seidel è convergente mentre quello di Jacobi non lo è.
Sia ora α = 2

3 e b = [1 − 1 3]′. Risolvere il sistema Ax = b con Gauss-
Seidel: calcolando anche il numero di iterazioni.

Trovare la soluzione anche con SOR con ω ∈ [1.2, 1.8]. Come varia il nu-
mero di iterazioni al variare di ω?

104 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESERCIZIO 39. Dato n ≥ 2 si considerino le matrici Ak, k = 1, ..., n − 1 di
dimensione n definite come segue:⎧⎨

⎩
aki,i = n
aki,j = −1 |i− j| = k
0 altrimenti

.

Sia inoltre b = ones(n, 1).
Si risolvano gli n− 1 sistemi lineari

Akx = b

con il metodo iterativo di Jacobi. La M-function che implementa il metodo
di Jacobi dovrà restituire la soluzione, il numero di iterazioni e il massimo
autovalore in modulo della matrice di iterazione di Jacobi.

Provare servendosi di alcuni grafici, che all’aumentare di k (la grandezza
della banda) il numero di iterazioni decresce fino a che k = floor((n + 1)/2)
per poi stabilizzarsi. Perchè?

Facoltativo: sia ora b = 1 : n e k = n− 1. Risolvere il sistema An−1x = b
sia con Jacobi che con Gauss-Seidel. Quale dei due metodi è più veloce?

ESERCIZIO 40. Data la matrice tridiagonale

A =

⎡
⎢⎢⎢⎢⎣

d −1
−1 d

. . .
. −1

−1 d

⎤
⎥⎥⎥⎥⎦ ,

con d ≥ 2, si risolva il sistema lineare Ax = b con b tale che x = (1, . . . , 1)T . Va-
lutando la norma euclidea della differenza tra due iterate successive, ovvero

δk+1 = ‖x(k+1) − x(k)‖
nei casi d = 2, 3 presentiamo in tabella alcune di tali differenze

d = 2 d = 3
...

...
456 7.2754e− 3 16 1.0229e− 4
457 7.2616e− 3 17 6.5117e− 5
458 7.2477e− 3 18 4.1563e− 5
459 7.2340e− 3 19 2.6593e− 5

• Si stimi in norma 2, il numero di iterazioni m necessarie nei casi d = 2
e d = 3 affinchè la differenza ‖xk+m − xk+m−1‖ ≤ 1.e − 9 partendo da
k = 458 e k = 18, rispettivamente. (Sugg.: È noto che

δk+1 ≤ Ckδk

1053 - Soluzione di sistemi lineari

con Ck la norma 2 della matrice d’iterazione al passo k. Usando i valori
tabulati, dapprima si determini un’ approssimazione di Ck nei due casi
d = 2 e d = 3 e quindi iterando ...)

• Scrivere inoltre un programma Matlab che risolve il sistema precedente
usando il metodo di Jacobi, prendendo come dati in ingresso d, n, b, tol,
senza allocare la matrice A e la matrice di iterazione di Jacobi, partendo
da x0 = 0. Lo si applichi nel caso d = 3, n = 10, b=ones(n,1) e tol =
1.e− 9.

ESERCIZIO 41. . Dati i sistemi lineari A1x = b e A2y = b con

A1 =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
2 13 18 23 28
3 18 50 62 74
4 23 62 126 148
5 28 74 148 255

⎤
⎥⎥⎥⎥⎦ A2 =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
0 3 4 5 6
0 0 5 6 7
0 0 0 7 8
0 0 0 0 9

⎤
⎥⎥⎥⎥⎦

e il termine noto
b = [15, 18, 18, 15, 9]T.

1. Risolvere i due sistemi con un opportuno metodo diretto.

2. Sia δb = rand(5, 1) ∗ 1.e− 3 una perturbazione del vettore b. Si risolvano
ora i due sistemi perturbati A1x = b + δb e A2y = b + δb. Confrontando
le nuove soluzioni con quelle ottenute al punto precedente, dire quale
sistema risulta meglio condizionato analizzando la quantità

‖Erel
x ‖2

‖Erel
b ‖2

,

dove Erel indica l’errore relativo.

Osservazione. A1 = AT
2 A2, quindi i numeri di condizionamento in

norma 2 di A1 e A2 saranno legati Inoltre questo garantisce che A1 è
simmetrica definita positiva per cui sarà possibile applicare il metodo....

ESERCIZIO 42. Si consideri la matrice

A =

⎛
⎝ −0.5 α 0.5

0.5 −0.5 α
α 0.5 −0.5

⎞
⎠ , α ∈ R. (3.54)

1. Individuare un intervallo Iα di valori di α in cui la matrice d’iterazione
del metodo di Gauss-Seidel è convergente. (Sugg.: calcolare al variare
di α il raggio spettrale usando eig e quindi).

106 Appunti di Calcolo Numerico con codici in Matlab/Octave

2. Preso α∗ ∈ Iα, risolvere il sistema Ax = b con b tale che x = [1, 1, 1]T ,
con il metodo di Gauss-Seidel con tol = 1.e − 6, determinando anche
il numero di iterazioni e come test di arresto sul residuo rk = b − Axk,
ovvero iterando finchè ‖rk‖ > tol‖b‖.

ESERCIZIO 43. Data la matrice

A = diag(ones(7, 1) ∗ 10) + diag(ones(6, 1) ∗ 3,+1) + diag(ones(6, 1) ∗ 3,−1)

e il termine noto
b = [1 2 3 4 5 6 7]T.

1. Dire perchè convergono i metodi di Jacobi e Gauss-Seidel.

2. Fissata la tolleranza τ = 1.e− 9 e sia P la matrice di iterazione tale che
‖P‖ < 1, allora risolvendo

‖P‖k
1− ‖P‖‖x

1 − x0‖ < τ

possiamo calcolare a priori il numero di iterazioni k necessarie per ot-
tenere una soluzione a meno di τ . Partendo dalla soluzione iniaziale
x0=0 e usando la norma infinito, ‖ ‖∞ determinare k sia per il metodo
di Jacobi che Gauss-Seidel.

3. Verificare sperimentalmente i risultati ottenuti applicando i metodi di
Jacobi e Gauss-Seidel, rispettivamente, alla soluzione del sistema Ax =
b.

ESERCIZIO 44. . Data la matrice A=pascal(5) di ordine n = 5,

1. Determinare M = max1≤i≤n{λi}, m = min1≤i≤n{λi} . Usare tol = 1.e−
6.

2. Studiare il metodo iterativo (di Richardson stazionario) dipendente
dal parametro reale θ ∈ [0, 1/2]

x(k+1) = x(k) − θ(Ax(k) + b) , k ≥ 0 . (3.55)

Si chiede di verificare graficamente per quali valori di θ il metodo con-
verge.

3. Sia θ∗ = min{0 ≤ θ ≤ 1/2} per cui il metodo iterativo converge. Siano
b ∈ R

n tale che x=ones(n,1) e x0=zeros(n,1). Risolvere quindi il sis-
tema Ax = b con il metodo iterativo (3.56).

1073 - Soluzione di sistemi lineari

ESERCIZIO 45. Data la matrice

A =

⎡
⎢⎢⎢⎢⎣

7 2 −2 0 0
−3 6 0 1 0
0 1/2 5 1/3 0
0 0 −3 5 1

−3 0 0 1 8

⎤
⎥⎥⎥⎥⎦

1. Senza calcolarlo, dire perchè det(A) > 0.

2. La matrice è irriducibile?

3. Si consideri ora il sistema lineare Ax = b la cui soluzione è x=ones(5,1).
Partendo da x(0) = [0, 0, 0, 0, 1]T e usando il metodo iterativo x(k+1) =
(A − θI)x(k) + θb con θ = 1/2, si determini x(1). Si calcolino le norme
‖x(1)‖1, ‖x(1)‖2 e ‖x(1)‖∞ (fornendo i risultati approssimati a 2 deci-
mali).

ESERCIZIO 46. Si consideri la matrice A ∈ R
10×10

A =

⎡
⎢⎢⎢⎢⎢⎣

5 −1
−1 5 −1

−1 5 −1
.

−1 5

⎤
⎥⎥⎥⎥⎥⎦ ,

e il vettore b = ones(10, 1).

1. Si dica (senza fare calcoli) se i metodi iterativi di Jacobi e Gauss-Seidel
convergono alla soluzione del sistema Ax = b.

2. Si consideri ora il metodo iterativo di Richardson stazionario per la
soluzione di Ax = b:

x(k+1) = (I − αA)x(k) + α b

dove α ∈ [0.01, 0.3] è un parametro di accelerazione. Si chiede di sti-
mare il parametro ottimale α∗ (quello per il cui il metodo di Richardson
converge più rapidamente).

3. Produrre un grafico comparativo dell’errore assoluto, in funzione
del numero delle iterazioni fatte, ottenuto con i metodi di Jacobi,
Gauss-Seidel e Richardson stazionario con parametro α∗. Usare:
x0 = zeros(10, 1), tol = 1.e− 6, nmax = 100.

ESERCIZIO 47. Si consideri la matrice di ordine n = 10, A =
pentadiag(−1,−1, 10,−1,−1) che possiamo decomporre in A=M+D+N con

D = diag([9, 9, ..., 9]), M = pentadiag(−1,−1, 1, 0, 0) e N=A-M-D.
Si considerino i seguenti schemi iterativi

108 Appunti di Calcolo Numerico con codici in Matlab/Octave

1. (M +D)x(k+1) = −Nx(k) + q ,

2. Dx(k+1) = −(M +N)x(k) + q ,

3. (M +N)x(k+1) = −Dx(k) + q .

Dire quali di essi è convergente analizzando il raggio spettrale delle matrici
d’iterazione.

Sia poi q=1:10. Si calcoli la soluzione del sistema Ax = q
con uno dei metodi convergenti, a partire dalla soluzione iniziale
x(0) =[ones(2,1);zeros(8,1)] a meno di tol = 1.e− 6.

ESERCIZIO 48. Si consideri la matrice di ordine n = 10, A =
pentadiag(−1,−1, α,−1,−1), con α ∈ [0.5, 1.5], che possiamo decomporre in
A = M+D+N con D = diag([α−1,, α−1]), M = pentadiag(−1,−1, 1, 0, 0)
e N = A−M −D.

1. Per quale valore α∗ il metodo iterativo (M + N)x(k+1) = −Dx(k) + q
risulta essere convergente più velocemente?

2. Sia poi q=1:10. Si calcoli la soluzione del sistema Ax = q a partire dalla
soluzione iniziale x(0) =[ones(5,1);zeros(5,1)] a meno di tol = 1.e−6.

ESERCIZIO 49. Data la matrice A=diag(1:n) di ordine n = 5,

(a) Studiare il metodo di Richardson stazionario

x(k+1) = (I − θA)x(k) + θ b , k ≥ 0 . (3.56)

al variare di θ ∈ [0, 2/3]. Si chiede di verificare graficamente per quali
valori di θ il metodo converge.

(b) Sia θ∗ tale che ρ(θ∗) = min{ρ(θ), 0 ≤ θ ≤ 2/3}. Siano b ∈ R
n cosicché

x=ones(n,1). Inoltre x0=zeros(n,1). Risolvere quindi il sistema Ax = b
con il metodo iterativo (3.56) a meno di tol = 1.e − 6 con test sull’errore
relativo.

(c) Ripetere i calcoli con n = 3, 10. Cosa si nota e cosa si può osservare? I
risultati cambiano se θ ∈ [0, 1]?

ESERCIZIO 50. • Risolvere il sistema non lineare{
f1(x1, x2) = x2

1 + x2
2 = 1

f2(x1, x2) = sin(πx1/2) + x3
2

con il metodo di Newton. Si usi una tolleranza pari a 10−6, un numero
massimo di iterazioni pari a 150 e un vettore iniziale x(0) = [1, 1]T .

1093 - Soluzione di sistemi lineari

• Si risolva lo stesso sistema non lineare usando sempre la matrice Jaco-
biana relativa al primo passo e aggiornando la matrice Jacobiana ogni
r iterazioni, ove r è il più piccolo numero di iterazioni che permette di
ottenere la soluzione con la tolleranza richiesta calcolando solo due volte
la matrice Jacobiana.

• Si risolva poi lo stesso sistema non lineare usando la function fsolve di
Matlab/Octave.

110 Appunti di Calcolo Numerico con codici in Matlab/Octave

4
Autovalori di matrici

4.1 Autovalori di matrici

Iniziamo introducendo alcune utili definizioni.

Definizione 16. Data una matrice quadrata A ∈ R
n×n, si chiama autovalore

di A, quel numero reale o complesso λ tale che per ogni vettore x �= 0 soddisfa
l’equazione

Ax = λx . (4.1)

Il vettore x viene detto autovettore associato all’autovalore λ. Osserviamo
che l’autovettore x non è unico. Infatti, se α ∈ R è un qualsiasi numero reale non
nullo, allora il vettore y = αx è ancora un autovettore associato all’autovalore λ.
Se l’autovettore x è noto, il corrispondente autovalore si può determinare us-

ando il quoziente di Rayleigh

λ =
xTAx

xTx
. (4.2)

Dalla definizione segue che λ è autovalore di A se è una radice del polinomio
caratteristico

pA(λ) = det(A− λ I) .

Infatti, l’equazione (4.1) è equivalente a

(A− λI)x = 0

ma essendo x �= 0 essa sarà soddisfatta se e solo se la matrice A − λI risulta
essere singolare. Inoltre, il polinomio caratterisco associato ad una matrice A di
ordine n, ha n radici reali e/o complesse. Se λ ∈ C è autovalore di A, anche λ̄ è
un autovalore complesso di A.
Premettiamo due utili risultati circa gli autovalori di matrici con struttura. Il

primo ci ricorda che le trasfomazioni per similitudine conservano gli autovalori.
Mentre il secondo ci ricorda che le matrici simmetriche hanno autovalori reali.

Proposizione 6. Matrici simili hanno gli stessi autovalori

Dim. Siano A e B simili, ovvero P−1AP = B, con P invertibile. Ora, se λ è
autovalore di A e x �= 0 è l’autovettore associato, allora

BP−1x = P−1Ax = λP−1x .

Quindi λ è autovalore di B con autovettore associato P−1x. �

Proposizione 7. Matrici simmetriche hanno autovalori reali.

Dim. Sia A = AT e per assurdo abbia un autovalore complesso λ = a+ ib, b �=
0. La matrice A− λI è singolare e lo è pure

B = (A− λI)(A− λ̄I) = (A− aI)2 + b2I .

Sia ora x autovettore (non nullo) di B relativo all’autovalore 0. Certamente vale

0 = xTBx = xT (A− aI)2 + b2xTx .

Posto y = (A− aI)x, poiché A è simmetrica, la relazione precedente diventa

yTy + b2xTx = 0

che non può essere essendo yTy ≥ 0, xTx > 0 e b2 > 0 �

��
Definizione 17. Una matrice A ∈ R

n×n è diagonalizzabile, se esiste una matrice
U ∈ R

n×n tale che
U−1AU = Λ , (4.3)

con Λ = diag(λ1, . . . , λn) e U che ha per colonne gli n autovettori di A (che formano
una base per R

n).

Nel caso di matrice rettangolare non parliamo di autovalori ma di valori
singolari. Vale il seguente risultato noto come decomposizione ai valori singo-
lari (o SVD).

Teorema 15. Sia A ∈ R
m×n. Allora esistono due matrici ortogonali U ∈ R

m×m

e V ∈ R
n×n tali che

UTAV = Σ , (4.4)

con Σ = diag(σ1, . . . , σp) ∈ R
m×n, p = min{m,n}, σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

I numeri σi sono i valori singolari di A di cui parleremo più oltre nella
sezione dedicata alla soluzione del problema del cosidetto data fitting e decompo-
sizione SVD, Sezione 5.11.
Infine c’è un interessante risultato di localizzazione degli autovalori di una

matrice.

Definizione 18. Data A di ordine n, i cerchi

C
(r)
i = {z ∈ C : |z − ai,i| ≤

n∑
j=1,j
=i

|ai,j | } , i = 1, . . . , n (4.5)

C
(c)
i = {z ∈ C : |z − ai,i| ≤

n∑
j=1,j
=i

|aj,i| } , i = 1, . . . , n (4.6)

sono cerchi riga e colonna e sono detti i cerchi di Gerschgorin associati alla
matrice A.

112 Appunti di Calcolo Numerico con codici in Matlab/Octave

Vale infatti il seguente Teorema

Teorema 16. (primo Teorema di Gerschgorin)
Gli autovalori di A appartengono alle regioni del piano complesso

R =
n⋃
i=1

C
(r)
i , C =

n⋃
i=1

C
(c)
i ,

unione dei cerchi riga e colonna rispettivamente. Pertanto essi appartengono an-
che alla loro intersezione R ∩ C.

A supporto di questo Teorema facciamo un esempio tratto da [24, p. 89].

ESEMPIO 28. Sia

A =

⎛
⎜⎜⎜⎜⎝

4 −1 1 0 0
1 3 −1 0 0
0 1 1 0 0
0 0 0 2 1
0 0 0 1 8

⎞
⎟⎟⎟⎟⎠

i cui autovalori sono λ1 = 5+
√
10, λ2 = λ3 = 3, λ4 = 2 e λ5 = 5−√10. I cerchi riga

sono

R1 = {z : |z − 4| ≤ 2}; R2 = {z : |z − 3| ≤ 2}; R3 = {z : |z − 1| ≤ 1},
R4 = {z : |z − 2| ≤ 1}; R5 = {z : |z − 8| ≤ 1} .

quelli colonna sono

C1 = {z : |z − 4| ≤ 1}; C2 = {z : |z − 3| ≤ 2}; C3 = {z : |z − 1| ≤ 2},
C4 = {z : |z − 2| ≤ 1}; C5 = {z : |z − 8| ≤ 1} .

I grafici dei corrispondenti cerchi di Gerschgorin sono riprodotti in Figura 4.2. È
facile osservare che gli autovalori stanno nell’insieme

R2 ∪R3 ∪R4 ∪R5

poiché R2 = C2, R4 ⊂ R2; C1, C4 ⊂ C2 e R5 = C5.

L’Esempio 28, ci suggerisce che se A è simmetrica allora le regioni R e C del
Teorema 16 coincidono ed essendo gli autovalori di matrici simmetriche reali, la
loro intersezione è formata dall’unione di intervalli dell’asse reale.
Un’applicazione del primo Teorema di Gerschgorin è la seguente

Proposizione 8. Se A è diagonalmente dominante in senso stretto allora è non
singolare.

Dim. La dimostrazione è ora facilitata dalla conoscenza dei cerchi di Ger-
schgorin. Infatti, se A è diagonalmente dominante in senso stretto vale la disug-
uaglianza

n∑
j=1,j
=i

∣∣∣∣ai,jai,i

∣∣∣∣ < 1 .

1134 - Autovalori di matrici

Figura 4.1: Cerchi di Gerschgorin della matrice A dell’ Esempio 28: sopra i
cerchi riga e sotto quelli colonna.

Ciò implica che
|z − ai,i|
|ai,i| =

n∑
j=1,j
=i

∣∣∣∣ai,jai,i

∣∣∣∣ < 1 , (4.7)

da cui
|z − ai,i| < |ai,i| .

La matrice A ha quindi cerchi di Gerschgorin che non passano mai per l’origine
e pertanto non potrà mai avere autovalori nulli. �
Gerschgorin diede anche un’altra caratterizzazione

Teorema 17. (secondo Teorema di Gerschgorin)

Se l’unione dei cerchi di Gerschgorin è formata da due sottinsiemi disgiunti
A1 e A2, ovvero per R (o C) si abbia

R = A1 ∪A2, A1 ∩A2 = ∅

con A1 formato da n1 cerchi e A2 da n2 con n1+n2 = n. Allora in A1 sono contenuti
n1 autovalori e in A2 i rimanenti n2.

114 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESEMPIO 29. Come esempio, consideriamo la matrice

A =

⎛
⎝ −1 1 0

1 6 1
1 −2 8

⎞
⎠

i cui cerchi sono come in figura

Figura 4.2: Cerchi riga di Gerschgorin della matrice A dell’ Esempio 29.

come si nota ci sono due sottinsiemi disgiunti e quindi un autovalore cadrà nel
cerchio di più a sinistra e due nell’insieme formato dagli altri due cerchi.

La funzione CerchiGerschgorin.m, in Appendice C, consente di costruire e
plottare i cerchi di Gerschgorin.
Infine, ricordando che ρ(A) ≤ ‖A‖ per ogni norma indotta, una sovrastima

dell’autovalore di modulo più grande è appunto ‖A‖.
Le domande più frequenti quando si ha a che fare con problemi di autovalori

sono le seguenti.

1. Quali autovalori desideriamo conoscere? Il più grande in modulo o il più
piccolo in modulo? E cosa si può dire dei corrispondenti autovettori?

2. E se volessimo determinare tutti gli autovalori e autovettori?

3. La struttura della matrice che ruolo gioca nei metodi di calcolo?

1154 - Autovalori di matrici

4.2 Il metodo delle potenze

Ilmetodo delle potenze permette di determinare l’autovalore di modulo massimo.
Supponiamo che gli autovalori di A possano essere ordinati come segue:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ,

con λ1 ben distinto dai rimanenti autovalori. Sia x1 l’autovettore corrispondente
a λ1.
Se gli autovettori di A sono linearmente indipendenti, λ1 e x1 si possono de-

terminare come segue

1. Dato il vettore iniziale x(0), poniamo y(0) = x(0)/‖x(0)‖.

2. Per k = 1, 2, ... calcolo

x(k) = Ay(k−1), y(k) =
x(k)

‖x(k)‖ , λ(k) = (y(k))T Ay(k) .

La procedura si arresta in corrispondenza al primo indice k tale che |λ(k) −
λ(k−1)| < ε|λ(k)|.
Il predetto metodo costruisce due successioni convergenti

lim
k→∞

y(k) = αx1 , lim
k→∞

λ(k) = λ1 .

Perchè si chiamametodo delle potenze? Basta osservare che y(k) = r(k)Aky(0),
cioè appaiono le potenze della matrice A, con

r(k) =

k∏
i=1

1

‖x(i)‖ .

Infatti,

• y(1) =
Ay(0)

‖x(1)‖ ;

• y(2) =
Ay(1)

‖x(2)‖ =
A2y(0)

‖x(1)‖‖x(2)‖ ;

• y(3) =
Ay(2)

‖x(3)‖ =
A3y(0)

‖x(1)‖‖x(2)‖‖x(3)‖ ;

•

La funzione MetPotenze.m, in Appendice C, implementa il metodo delle potenze.

116 Appunti di Calcolo Numerico con codici in Matlab/Octave

4.2.1 Convergenza
Gli autovettori x1, . . . , xn sono linearmente indipendenti, cosicché possiamo scri-
vere x(0) =

∑n
i=1 α1xi da cui

y(0) = β(0)
n∑
i=1

αixi, β
(0) = 1/‖x(0)‖ .

(i) Al primo passo

x(1) = Ay(0) = β(0)A

n∑
i=1

αixi = β(0)
n∑
i=1

αiλixi

y(1) = β(1)
n∑
i=1

αiλixi, β(1) =
(
‖x(0)‖‖x(1)‖

)−1

(ii) Al passo k

y(k) = β(k)
n∑
i=1

αiλ
k
i xi, β(k) =

(
k∏

i=0

‖x(i)‖
)−1

da cui

y(k) = λk1β
(k)

(
α1x1 +

n∑
i=2

αi

(
λi
λ1

)k

xi

)
,

Poiché
∣∣∣ λi

λ1

∣∣∣ < 1, i = 2, ..., n allora lim
k→∞

y(k) = x1 ovvero la successione dei vettori

y(k) converge alla direzione dell’autovettore x1 purchè α1 �= 0. Nel caso in cui
α1 = 0 e |λ2| > |λ3|, il processo dovrebbe convergere verso λ2. Però a causa degli
(inevitabili) errori di arrotondamento comporta la comparsa di una componente
nella direzione di x1 anche se questa non era presente nel vettore iniziale x(0),
quindi α1 �= 0 e il metodo converge ancora a λ1. Vediamo questo fatto nell’esempio
seguente.

ESEMPIO 30. Consideriamo la matrice

A =

⎡
⎢⎢⎣
−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

⎤
⎥⎥⎦

i cui autovalori (con 5 cifre decimali) sono −3.61903,−2.61803,−1.38197 e −0.38197.
Applicando il metodo delle potenze con vettore iniziale x(0) = [3, 4, 4, 3]T converge
al secondo autovalore più grande in modulo. Lo stesso accade partendo da x(0) =
[0, 0, 0, 0]T oppure x(0) = [1, 2, 2, 1]T perchè tale vettore ha componenti uguali lungo
xk2 e xk3 . Per evitare questo basterà considerare un vettore le cui componenti sono
scelte casualmente (random).

1174 - Autovalori di matrici

Quando però |λ2| ≈ |λ1|, la successione {λ(k)
1 } converge verso λ1 molto lenta-

mente e in tal caso il metodo viene usato come stima iniziale per il metodo delle
potenze inverse che vedremo oltre.
Inoltre, se la matrice A non è simmetrica, la convergenza all’autovalore di

modulo massimo è O
(∣∣∣∣λ2

λ1

∣∣∣∣k
)
. Quando A è simmetrica la convergenza rad-

doppia, ovvero é O
(∣∣∣λ2

λ1

∣∣∣2k).
Concludendo, il rapporto

∣∣∣∣λ2

λ1

∣∣∣∣ è importante ai fini della velocità di conver-
genza del metodo delle potenze. Il prossimo esempio ci fa capire proprio questo
fatto.

ESEMPIO 31. Si consideri la matrice

A1 =

⎛
⎝ −7 −9 9

11 13 −9
−16 −16 20

⎞
⎠

i cui autovalori sono λ1 = 20, λ2 = 4, λ3 = 2 con

∣∣∣∣λ2

λ1

∣∣∣∣ ≈ 0.2. Si può provare che

partendo dal vettore x(0) = [1, 1, 1]T con tol = 1.e − 6, il metodo delle potenze
(implementato nella funzione MetPotenze.m) converge a λ1 in 10 iterazioni.

Se consideriamo invece la matrice

A2 =

⎛
⎝ −4 −5 4

14 15 −5
−1 −1 11

⎞
⎠

che ha autovalori λ1 =
√
5+21
2 , λ2 =

√
5−21
2 , λ3 = 1. In tal caso

∣∣∣∣λ2

λ1

∣∣∣∣ ≈ 0.81 con la

conseguenza che il metodo, con gli stessi valori di tol e x(0), impiega 58 iterazioni per
determinare l’autovalore di modulo massimo.

ESERCIZIO 51. Si consideri, per α ∈ R, la famiglia di matrici

A =

⎛
⎜⎜⎝

α 2 3 10
5 12 10 7
9 7 6 13
4 16 18 0

⎞
⎟⎟⎠

Provare che se α = 30 il metodo converge all’autovalore di modulo massimo in 27
iterazioni, mentre se α = −30 il metodo richiede ben 1304 iterazioni partendo da
x(0) =ones(4,1) con tolleranza ε = 1.e− 10. Come mai questo fatto?

Per verificare l’esattezza dei calcoli, usare la funzione eig(A) di Matlab/Octave
che restituisce tutti gli autovalori di una matrice quadrata A. Come ulteriore con-
trollo determinare anche il residuo Ax1 − λ1x1.

118 Appunti di Calcolo Numerico con codici in Matlab/Octave

4.3 Il metodo delle potenze inverse

Per determinare l’autovalore di modulo minimo, basta ricordare che A−1 ha au-
tovalori che sono i reciprochi degli autovalori della matrice A. Infatti, se λ è
autovalore di A associato all’autovettore x, allora da Ax = λx deduciamo che
1

λ
x = A−1x. Ovvero 1/λ è autovalore di A−1 associato al vettore x.

Da un punto di vista implementativo, al passo k invece di definire x(k) =
A−1y(k−1) risolveremo, con uno dei metodi numerici visti al capitolo precedente,
il sistema

Ax(k) = y(k−1) .

Se fosse nota la fattorizzazione LU o quella di Cholesky (nel caso A sia simmet-
rica definita positiva), basterà ricordarla ed usarla ad ogni passo k.

ESERCIZIO 52. Si consideri la matrice dell’Esercizio 51, con gli stessi valori del
parametro α, determinare l’autovalore di modulo minimo λn mediante il metodo
delle potenze inverse (ovvero il metodo delle potenze applicato ad A−1). Usare
x(0) =ones(4,1) e tolleranza ε = 1.e− 10.

4.3.1 Il metodo delle potenze inverse con shift
Data una matrice quadrata A n × n, a coefficienti reali, i cui autovalori possono
essere ordinati come segue:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| .

Con il metodo delle potenze con shift è possibile cercare l’ autovalore di A, più
vicino ad numero η fissato. In pratica si tratta di applicare ilmetodo delle potenze
inverse per il calcolo dell’autovalore minimo λmin(Aη) della matrice Aη = A− η I.
L’autovalore cercato, dipendente da η, è λη = λmin(Aη) + η.
Per individuare un valore η da cui partire, si possono costruire i cerchi di

Gerschgorin, C(r)
i e C(c)

i , i = 1, ..., n (vedi (4.5) e (4.6)), associati alle righe e alle
colonne di A, rispettivamente (vedasi la funzione CerchiGerschgorin.m).

ESERCIZIO 53. Cercare l’/gli autovalore/i di A, con α = −30, più vicino/i al nu-
mero η = −15. In pratica si tratta di applicare il metodo delle potenze inverse per
il calcolo dell’autovalore minimo della matrice Aη = A− η I. Quindi l’autovalore
cercato sarà λη = λmin(Aη) + η.

Come cambia il numero delle iterazioni se prendiamo η = −17? Prendere
x(0) =ones(4,1) e tolleranza ε = 1.e− 10.

4.3.2 Metodo delle potenze e metodo di Bernoulli
Dato il polinomio

pn(x) =

n∑
i=0

aix
i, a0 an �= 0 ,

1194 - Autovalori di matrici

per determinare la radice ξ1 di modulomassimo si può usare ilmetodo di Bernoulli.
Tale metodo consiste nell’applicare ilmetodo delle potenze alla matrice (di Frobe-
nius), detta anche matrice companion

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
.

.
0 . . . 0 1
− a0

an
− a1

an
. . . −an−2

an
−an−1

an

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Per calcolare tutti i rimanenti autovalori si opera poi per deflazione, ovvero
applicando il metodo alle sottomatrici di ordine n−1, n−2, . . . , 1 che si ottengono
mediante trasformazioni per similitudine con matrici ortogonali (quali le matrici
di Householder).
Facciamo vedere su un semplice esempio come calcolare la radice più grande

in modulo, che chiameremo ξ1, e la successiva radice più grande in modulo ξ2.

ESEMPIO 32. Calcolare ξ1 per il polinomio

p6(x) = 13x6 − 364x5 + 2912x4 − 9984x3 + 16640x2 − 13312x+ 4096 ,

usando tolleranza tol = 1.e− 6.
Calcolare quindi (per deflazione) ξ2 la seconda radice più grande in modulo. Per

calcolare ξ2, si suggerisce dapprima di costruire la matrice P di Householder tale

PFPT =

(
ξ1 aT

0 F1

)

cosicchè Px1 = e1 con x1 autovettore associato a ξ1 (calcolato al passo 1) e e1 =
(1, 0, ..., 0)T . La matrice P si può costruire mediante il seguente codice Matlab:

% Costruisco la matrice di Householder P t.c. P*x1=(1,0,...,0)

x12=norm(x1,2); beta=1/(x12*(x12+abs(x1(1))));

v(1)=sign(x1(1))*(abs(x1(1))+x12); v(2:n)=x1(2:n);

P=eye(n)-beta*v’*v; % n = dimensione matrice

Pertanto, per calcolare ξ2 si applicherà il metodo delle potenze alla matrice F1.
Confrontare i risultati con la funzione roots(c), con c vettore dei coefficienti del

polinomio p6(x), aiutandosi anche con un grafico.
Una possibile implementazione in Matlab/Octave del metodo di Bernoulli, per cal-

colare tutte le radici della matrice di Frobenius è presentata nella funzione metBernoulli
in Appendice C.

4.4 Il metodo QR

Se si desiderano tutti gli autovalori di una matrice, bisogna ricorrere a tecniche
che consentono dapprima di ridurre la matrice ad una forma più semplice medi-

120 Appunti di Calcolo Numerico con codici in Matlab/Octave

ante trasformazioni per similitudine pervenendo a una forma triangolare supe-
riore o diagonale: il calcolo degli autovalori diventa cosı̀ notevolemente semplifi-
cato. Questa è la filosofia delle trasformazioni con matrici ortogonali di House-
holder o Givens. Su tale filosofia si basa infatti il metodo QR e le sue varianti.

Il metodo QR fa uso della fattorizzazione QR della matrice A. La fattoriz-
zazione QR di A consiste nel premoltiplicare A ad ogni passo k per una matrice
ortogonale, di Householder o Givens, cosicchè dopo n−1 passi (Un−1 · · ·U1)A = R,
con R triangolare superiore. La matrice Q richiesta è

Q = (Un−1 · · ·U1)
−1 = (Un−1 · · ·U1)

T .

Il metodo QR per autovalori si descrive come segue. Sia A ∈ R
n×n; data

Q(0) ∈ R
n×n ortogonale (cioè QTQ = I) e posto T (0) = (Q(0))TAQ(0), per k =

1, 2, . . . finché converge esegui

• mediante la fattorizzazione QR di A (ad esempio usando la funzione qr

di Matlab/Octave o una propria implementazione), determinare T (k−1) =
Q(k)R(k);

• quindi, porre T (k) = R(k)Q(k) = (Q(k))TT (k−1)Q(k).

Se A ha autovalori reali e distinti in modulo il metodo converge ad una ma-
trice triangolare superiore i cui autovalori stanno sulla diagonale principale. Nel
caso in cui gli autovalori non soddisfino la predetta condizione, la successione
converge verso una matrice con forma triangolare a blocchi, come si vede nel
prossimo esempio.

ESEMPIO 33. Data

A =

⎡
⎣ 0 0 2

1 0 1
0 1 1

⎤
⎦ .

Dopo 25 iterazioni del QR, si perviene alla matrice in forma ”quasi” triangolare (di
Hessenberg superiore)

T (25) =

⎡
⎣ 2 1.069 0.9258

0 −0.5 0.866
0 −0.866 −0.5

⎤
⎦ ,

i cui autovalori sono λ1 = 2 e λ2,3 che si determinano dal blocco[−0.5 0.866
−0.866 −0.5

]
,

che sono complessi coniugati λ2,3 = −0.5± 0.866 i.

Vale la seguente Proposizione

1214 - Autovalori di matrici

Proposizione 9. Data A ∈ R
n×n, esiste Q ∈ R

n×n ortogonale e una matrice
B ∈ R

n×n triangolare superiore a blocchi tale che

B = QTAQ =

⎛
⎜⎜⎜⎝

R1,1 R1,2 · · · R1,m

R2,2 · · · R2,m

. . .
...

0 Rm,m

⎞
⎟⎟⎟⎠ (4.8)

dove Ri,i, i = 1, ...,m è un blocco 2 × 2 con autovalori complessi coniugati o un
blocco 1×1 nel caso l’autovalore sia un numero reale. La somma delle dimensioni
dei blocchi Ri,i, i = 1, ...,m è pari ad n. Inoltre

Q = lim
k→∞

[
Q(0) · · · Q(k)

]
,

dove Q(k) è la k-esima matrice ortogonale generata al passo k della fattorizzazione
QR di A.

La matrice con blocchi Ri,j viene detta la decomposizione reale di Schur di A.

Poiché il metodo ha lo scopo di annullare gli elementi della parte triangolare
inferiore sotto la diagonale principale partendo dall’elemento in basso a sinistra,
un possibile test di arresto è che al passo k

n−1∑
i=1

∣∣∣T (k)
i+1,i

∣∣∣ < ε

ovvero che tutti gli elementi della sottodiagonale siano in modulo minori di una
prescelta tolleranza ε (vedasi più sotto).
La funzione Matlab/Octave MetQR (vedasi i Codici Matlab/Octave online) im-

plementa il metodoQR per la ricerca di autovalori, mentre la funzione ConvergenzaQR
verifica se il metodo QR converge, controllando che gli elementi della sottodiago-
nale siano tutti in modulo minori di una fissata tolleranza.

4.4.1 Il metodo QR con shift
Dalla Proposizione 9, abbiamo visto che il metodo QR converge, nel caso generale,
verso una matrice triangolare superiore a blocchi. Risolvendo quindi il problema
degli autovalori sui blocchi, si avranno tutti gli autovalori di A (vedasi l’Esempio
33).
Il metodo QR ha velocità che dipende dai rapporti |λi/λj |, i > j ed in parti-

colare dal numero max1≤i≤n−1

∣∣∣λi+1

λi

∣∣∣, più questo numero è vicino ad 1 e più lenta
sarà la convergenza, pocihé A ha ha autovalori vicini in modulo. In questi casi,
conviene applicare la tecnica di traslazione dello spettro, o tecnica dello shift, che
serve anche ad accelerare la convergenza.
Ilmetodo QR con singolo shift consiste nella seguente iterazione: data l’appros

simazione μ ∈ R di un autovalore λ di A, consideriamo la forma di Hessenberg di
A, ovvero T (0) = (Q(0))TAQ(0) (in Matlab/Octave si ottiene usando la funzione
hess.m).

-

122 Appunti di Calcolo Numerico con codici in Matlab/Octave

Quindi

• per k = 1, 2, . . . mediante la fattorizzazione QR di A (usare la funzione
Matlab/Octave qr), fattorizzare T (k−1) come segue: T (k−1) − μI = Q(k)R(k);

• porre T (k) = R(k)Q(k) + μI.

Osserviamo cheQ(k)T (k) = Q(k)R(k)Q(k)+μQ(k) = T (k−1)Q(k), ovvero T (k) e T (k−1)

sono simili e pertanto hanno gli stessi autovalori.
L’effetto dello shift sulla convergenza è il seguente. Supponiamo che A abbia

autovalori che possiamo ordinare

|λ1 − μ| ≥ |λ2 − μ| ≥ · · · |λn − μ|

si può provare che per 1 < i ≤ n, t(k)i,i−1 → 0 con velocità proporzionale a

∣∣∣∣ λi − μ

λi−1 − μ

∣∣∣∣k
estendendo cosı̀ lo stesso risultato di convergenza visto per il metodo QR anche
al QR con shift. Questo suggerisce, di scegliere per μ un valore che approssima
λn cosicchè

|λn − μ| < |λi − μ| , i = 1, . . . , n− 1 .

Per tale scelta di μ, l’elemento t(k)n,n−1, generato dalla precedente iterazione, tende
rapidamente a zero al crescere di k. Se per caso μ fosse un autovalore della
matrice T (k), e anche di A, t(k)n,n−1 = 0 e t

(k)
n,n = μ. Questo suggerisce in ultima

istanza di scegliere
μ = t(k)n,n .

Con questa scelta, si dimostra, la convergenza del metodo è quadratica, nel senso
che se

t
(k)
n,n−1

‖T (0)‖2 = αk < 1, per qualche k ≥ 0

allora

t
(k+1)
n,n−1

‖T (0)‖2 = O(α2
k) .

Nel caso di matrice simmetrica, si dimostra (cf. [15]) che la convergenza è cubica.
Di questo fatto possiamo tenere conto durante l’esecuzione del metodo QR con

singolo shift, controllando il valore di |t(k)n,n−1| e ponendolo uguale a zero se risulta

|t(k)n,n−1| < ε
(
|t(k)n−1,n−1|+ |t(k)n,n|

)
ε ≈ eps. (4.9)

Questo sarà il test da usare nell’implementazione del metodo QR con shift. Se,
la matrice A è in forma di Hessenberg superiore, l’azzeramento di t(k)n,n−1 implica

1234 - Autovalori di matrici

che t
(k)
n,n sarà una buona approssimazione di λn. Quindi, noto λn la ricerca dei

rimanenti autovalori si farà sulla matrice T (k)(1 : n − 1, 1 : n − 1), riducendo di
volta in volta la dimensione del problema fino a determinare tutti gli autovalori
di A. In pratica una strategia di tipo deflattivo.
Il metodo QR con singolo shift è implementato nella funzione MetQRShift.

��
ESERCIZIO 54. Calcolare con il metodo QR tutti gli autovalori di A=[30 1 2 3;

4 15 -4 -2; -1 0 3 5; -3 5 0 -1];. Determinare anche il numero di iterazioni
fatte.

ESERCIZIO 55. Si consideri la matrice A (tratta da [26, pag. 178])

A =

⎛
⎜⎜⎜⎜⎝

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

⎞
⎟⎟⎟⎟⎠ ,

i cui autovalori (arrotondati a due decimali) sono λ1 = 65, λ2,3 = ±21.28 e
λ4,5 = ±13.13. Calcolare, se possibile, tutti gli autovalori sia con il metodo QR che
con il metodo QR con shift.

4.5 Autovalori di matrici simmetriche

Quando la matrice A ∈ R
n×n è tridiagonale simmetrica o simmetrica, per la

ricerca dei corrispondenti autovalori si usano ilmetodo delle successioni di Sturm
e il metodo di Jacobi, rispettivamente.

4.5.1 Il metodo delle successioni di Sturm
Sia A ∈ R

n×n tridiagonale simmetrica. Indichiamo con d e b i vettori diagonale
e extradiagonali (sopra e sotto la diagonale principale) di dimensioni n e n − 1,
rispettivamente.
Sia Ai il minore principale di ordine i di A. Posto p0(x) = 1, indichiamo con

pi(x) = det(Ai − xIi). Si ha

p1(x) = d1 − x; (4.10)
pi(x) = (di − x) pi−1(x)− b2i−1pi−2(x), i = 2, ..., n.

Alla fine pn(x) = det(A − xI). La successione {pi(x)} è detta una successione
di Sturm. Vale il seguente risultato (la cui dimostrazione si trova in [2, pagg.
345-346]).

124 Appunti di Calcolo Numerico con codici in Matlab/Octave

1. p0(x) non cambia segno;

2. se pi(x) = 0 allora pi−1(x)pi+1(x) < 0, per i = 1, 2, . . . , n − 1 ; (alternanza
degli zeri)

3. se pn(x) = 0 allora p′n(x)pn−1(x) < 0 (e quindi pn(x) ha tutti zeri di molteplicità
1).

Detto altrimenti, per i = 2, ..., n gli autovalori di Ai−1 separano quelli di Ai,
ovvero

λi(Ai) < λi−1(Ai−1) < λi−1(Ai) < · · · < λ2(Ai) < λ1(Ai−1) < λ1(Ai) . (4.11)

Inoltre, per ogni reale ν, definiamo

Sν = {p0(ν), p1(ν), . . . , pn(ν)} . (4.12)

Allora s(ν), il numero di cambiamenti di segno in Sν , indica il numero di auto-
valori di A strettamente minori di ν. Vale inoltre,

Teorema 19. Se pi(x), i = 0, 1, . . . , n è una successione di Sturm, il numero
s(b)− s(a) indica il numero di zeri di pn(x) appartenenti all’intervallo [a, b).

Da un punto di vista implementativo, per costruire A, noti i vettori d e b,
basta usare il comandoMatlab/Octave A=diag(d)+diag(b,1)+diag(b,-1). Quindi
si può procedere come segue:

• Scelgo un valore reale ν e costruisco l’insieme Sν . Qui bisogna implementare
le formule (4.10), ottenendo in output un array che contiene i numeri pi(ν),
i = 0, 1, ..., n.

• Determino il numero s(ν) che mi dirà, grazie alla (4.11), quanti autovalori
di A sono minori in senso stretto, di ν.

• Esiste un metodo, dettometodo di Givens, per determinare tutti gli autoval-
ori di una matrice A tridiagonale simmetrica. Poniamo b0 = bn = 0 allora
l’intervallo I = [α, β] con

α = min
1≤i≤n

(di − (|bi|+ |bi−1|)), β = max
1≤i≤n

(di + (|bi|+ |bi−1|)) , (4.13)

conterrà tutti gli autovalori diA (infatti α e β indicano gli estremi dell’intervallo
di Gerschgorin).
Una volta determinato I = [α, β], per determinare λi, l’i-esimo autovalore
di A, mediante il metodo di bisezione si opera come segue: si construiscono
le successioni a(i) e b(i) con a(0) = α, b(0) = β; quindi si calcola c(0) = (a(0) +
b(0))/2, grazie alla proprietà (4.11), se s(c(0)) > n − i allora b(1) = c(0)

altrimenti a(1) = c(0). Si continua finchè ad un passo k∗, |b(k∗) − a(k
∗)| ≤

tol(|a(k∗)|+ |b(k∗)|).
Procederemo poi in modo sistematico per calcolare tutti gli altri autovalori.

Teorema 18.

1254 - Autovalori di matrici

ESERCIZIO 56. Data la matrice tridiagonale avente diagonale principale il vet-
tore d=ones(1,n) e sopra e sotto diagonali il vettore b=-2*ones(1,n-1). Con n = 4,
calcolarne tutti gli autovalori usando il metodo di Givens delle successioni di
Sturm.

Per facilitare l’implemetazione presentiamo la funzione succSturm.m che costru-
isce le successione di Sturm e i suoi cambiamenti di segno.

function [p,cs]=succSturm(d,b,x)

%---

% Calcolo della successione di Sturm ’p’ in x

% a partire dai vettori d e b

% e dei corrispondenti cambiamenti di segno ’cs’

%---

n=length(d); p(1)=1; p(2)=d(1)-x; for i=2:n,

p(i+1)=(d(i)-x)*p(i)-b(i-1)^2*p(i-1);

end

cs=0; %contatore cambi di segno

s=0; %contatore dei segni costanti

for i=2:length(p),

if(p(i)*p(i-1)<=0),

cs=cs+1;

end

if(p(i)==0),

s=s+1;

end

end

cs=cs-s;

return

4.5.2 Il metodo di Jacobi

Il metodo, come detto, si applica a matrici simmetriche. Genera una successione
di matrici A(k) ortogonalmente simili ad A e convergenti verso una matrice diag-
onale i cui elementi sono gli autovalori di A.
Si parte da A(0) = A. Per k = 1, 2, . . . si fissa una coppia di interi p e q con

1 ≤ p < q ≤ n e si costruisce

A(k) = (Gpq)
T A(k−1)Gpq (4.14)

(ortogonalmente simile ad A) cosicchè

a
(k)
i,j = 0, se (i, j) = (p, q) .

126 Appunti di Calcolo Numerico con codici in Matlab/Octave

La matriceGpq è la matrice ortogonale di rotazione di Givens definita come segue

Gpq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
. . .

cos(θ) sin(θ)
. . .

− sin(θ) cos(θ)
. . .

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Siano c = cos(θ) e s = sin(θ). Allora, gli elementi di A(k) che variano rispetto a
quelli di A(k−1) per effetto della trasformazione (4.14) si ottengono risolvendo il
sistema[

a
(k)
pp a

(k)
pq

a
(k)
pq a

(k)
qq

]
=

[
c s
−s c

]T [
a
(k−1)
pp a

(k−1)
pq

a
(k−1)
pq a

(k−1)
qq

] [
c s
−s c

]
. (4.15)

Il nostro scopo è trovare l’angolo θ che consente al passo k di annullare gli ele-
menti extradiagonali di A(k−1) interessati dalla trasformazione. Ora, se a(k−1)

pq =

0, allora c = 1 e s = 0. Se invece a
(k−1)
pq �= 0, posto t = s/c = tan(θ), il sistema

(4.15) equivale alla soluzione dell’equazione

t2 + 2ηt− 1 = 0, con η =
a
(k−1)
qq − a

(k−1)
pp

2a
(k−1)
pq

. (4.16)

Nell’equazione precedente, se η ≥ 0 si sceglie la radice t = 1/(η +
√
1 + η2) altri-

menti t = −1/(−η +
√
1 + η2). Quindi c e s risultano

c =
1√

1 + t2
, s = ct .

La convergenza del metodo si verifica calcolando la seguente quantità, valida
per una generica matriceM

Φ(M) =

⎛
⎝ n∑

i,j=1,i
=j

m2
ij

⎞
⎠1/2

=

(
‖M‖2F −

n∑
i=1

m2
ii

)1/2

. (4.17)

Il metodo garantisce che Φ(A(k)) ≤ Φ(A(k−1)), ∀k. Infatti

Φ(A(k)) =

n∑
i,j=1

a2i,j −
n∑
i=1

a2i,i − 2|ap,q|

= Φ(A(k−1))− 2|ap,q| (4.18)

< Φ(A(k−1)) .

1274 - Autovalori di matrici

Una strategia ottimale di scelta degli indici p, q tale che Φ(A(k)) ≤ Φ(A(k−1)) sia
sempre verificata, è quella di scegliere l’elemento di A(k−1) tale che

|a(k−1)
p,q | = max

i
=j
|a(k−1)
i,j | .

Vale infatti il seguente

Teorema 20. La successione A(k) generata con il metodo di Jacobi è convergente
verso una matrice diagonale e si ha limk→∞ Φ(A(k)) = 0 .

Dim. Essendo ap,q un elemento non principale di massimo modulo di A(k),
risulta

a2p,q ≥
Φ(A(k−1))

n(n− 1)
.

Dalla (4.18),

Φ(A(k)) ≤ Φ(A(k−1))− 2
Φ(A(k−1))

n(n− 1)
= αΦ(A(k−1))

con α = 1− 2
n(n−1) < 1, n ≥ 2. Continuando,

Φ(A(k)) ≤ αk−1Φ(A(1))

da cui la conclusione. �
Una M-function che implementa il metodo di Jacobi, data A e una tolleranza

tol e che restituisce la matrice diagonale D degli autovalori, il numero di iter-
azioni effettuate e la quantità Φ(·), è la funzione symJacobi.

4.6 Esercizi proposti

ESERCIZIO 57. Data la matrice simmetrica.

A =

⎛
⎜⎜⎜⎜⎝

4 1 0 0 0
1 3 2 0 0
0 2 −1 −4 0
0 0 −4 6 2
0 0 0 2 5

⎞
⎟⎟⎟⎟⎠

1. Localizzare, mediante i cerchi di Gerschgorin, gli autovalori di A e dare
alcune stime ”a priori”.

2. Determinare tutti gli autovalori con il metodo più idoneo per la strut-
tura della matrice.

128 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESERCIZIO 58. Data la matrice simmetrica.

A =

⎛
⎜⎜⎝

4 1 1 0
1 3 2 3
1 2 −1 −2
0 3 −2 5

⎞
⎟⎟⎠

1. mediante il metodo delle potenze determinare l’autovalore di modulo
massimo M , con precisione tol = 1.e− 6;

2. mediante il metodo delle potenze inverse determinare l’autovalore di
modulo minimo m, con precisione tol = 1.e− 6;

3. si determinino infine gli altri due autovalori (interni a [−M,M].)

ESERCIZIO 59. Data la matrice A di ordine n = 5,

A =

⎛
⎜⎜⎜⎜⎝

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

⎞
⎟⎟⎟⎟⎠ ,

i cui autovalori (arrotondati a due decimali) sono λ1 = 65, λ2,3 = ±21.28
e λ4,5 = ±13.13. Calcolare tutti gli autovalori con il metodo QR con shift.
Costruire una tabella che riporti i valori della sequenza

ρk = 1 +
1

log ηk
log

|t(k)n,n−1|
|t(k−1)
n,n−1|

, k = 1, 2,

con ηk = |t(k)n,n−1|/‖T (0)‖2, T (0) = (Q(0))T AQ(0) e Q(0) (la prima delle ma-
trici ortogonali usati nella fattorizzazione QR di A) che faccia vedere che la
convergenza del metodo è quadratica.

ESERCIZIO 60. Si considerino le matrici

A1 =

⎛
⎝ −7 −9 9

11 13 −9
−16 −16 20

⎞
⎠ A2 =

⎛
⎝ −4 −5 4

14 15 −5
−1 −1 11

⎞
⎠ (4.19)

entrambe con autovalori reali e distinti.

1. Calcolare tutti gli autovalori di A1 e A2, mediante il metodo delle inverse
con shift (usare tol = 1.e− 6).

2. Si dica perchè il metodo delle potenze per il calcolo dell’autovalore di
modulo massimo ci impiega di più nel caso della matrice A2?

1294 - Autovalori di matrici

ESERCIZIO 61. Si consideri la matrice

A =

⎛
⎜⎜⎝

1
3

2
3 2 3

1 0 −1 2
0 0 − 5

3 − 2
3

0 0 1 0

⎞
⎟⎟⎠ . (4.20)

1. Perchè il metodo delle potenze non funziona per il calcolo dell’autovalore
di modulo massimo?

2. Calcolare l’autovalore di modulo massimo e il corrispondente autovet-
tore con il metodo delle potenze con shift.

ESERCIZIO 62. Data la matrice di Hilbert di ordine 4 (in Matlab hilb(4)), i
cui autovalori (arrotondati) sono λ1 = 1.5002, λ2 = 0.1691, λ3 = 0.0067, λ4 =
0.0001. Calcolare detti autovalori usando il metodo di Jacobi con una toller-
anza tol=1.e-15. In quante iterazioni converge il metodo? Calcolare an-
che ad ogni iterazione la quantità Φ(A(k)) per verificare che decresce. (Sugg.
Usare la funzione symJacobi.m (implementare le M-functions calcoloCeS e
calcoloProdottoGtDG)).

130 Appunti di Calcolo Numerico con codici in Matlab/Octave

5
Interpolazione e

approssimazione

Nelle applicazioni si conoscono solitamente dati provenienti da campionamenti
di una funzione f sui valori xi, i = 0, . . . , n, ovvero (xi, f(xi)) oppure dati sparsi
provenienti di misurazioni (xi, yi), i = 0, ..., n. Il problema dell’interpolazione con-
siste nel trovare una funzione f̃ tale da soddisfare le condizioni d’interpolazione

f̃(xi) = f(xi), oppure , f̃(xi) = yi . (5.1)

A seconda della forma di f̃ parleremo di interpolazione

• polinomiale, quando f̃(x) = pn(x) con pn(x) = a0+a1x+· · ·+anx
n ; polinomio

di grado ≤ n;

• polinomiale a tratti quando in ognuno dei sotto intervalli Ik = [xk, xk+1], k =
0, . . . , n − 1, f̃ coincide con un polinomio di fissato grado (generalmente di
grado basso, m = 2, 3). Nel caso in cui questo polinomio sia una spline

polinomiale parleremo d’interpolazione spline;

• trigonometrica quando f̃(x) = a−Me−iMx + · · · + aMeiMx, con M = n/2
se n pari oppure M = (n − 1)/2 se n è dispari. Infatti, ricordando che
eix = cos(ix) + i sin(ix), allora f̃(x) = c0

2 +
∑M

k=1 ck cos(kx) + bk sin(kx) che
come vedremo al paragrafo §5.10, ck e bk sono legati agli ak dalle relazioni

ck = ak + a−k

bk = i(ak − a−k) .

• razionale in tal caso f̃(x) = rm,n(x) =
pn(x)
qm(x) , con pn e qm polinomi di grado

n e m, rispettivamente (qm �= 0 su R).

Nel seguito concentremo l’attenzione sull’interpolazione polinomiale, polino-
miale a tratti, splines nonché trigonometrica.Non ci occuperemo dell’interpolazione
razionale, rimandando gl’interessati, ad esempio, alla monografia [30, vol.1, p. 45
e ss].

5.1 Interpolazione polinomiale

Il seguente Teorema dice che il problema dell’interpolazione polinomiale ha un’unica
soluzione se i punti d’interpolazione xi, su cui costruiremo il polinomio inter-
polante, sono distinti.

Teorema 21. Dati n + 1 punti (xi, yi), i = 0, ..., n con xi �= xj , i �= j, esiste un
unico polinomio di grado n, pn(x) = a0 + a1x+ · · ·+ anx

n per cui

pn(xi) = yi, i = 0, . . . , n (5.2)

Dim. Le condizioni (5.2) sono equivalenti al sistema lineare⎛
⎜⎜⎜⎝

1 x0 x2
0 . . . xn0

1 x1 x2
1 . . . xn1

...
...

1 xn x2
n . . . xnn

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

a0
a1
...
an

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

y0
y1
...
yn

⎞
⎟⎟⎟⎠ (5.3)

la cui matrice A altro non è che la matrice di Vandermonde per la quale vale

det(V) =
n∏

i,j=0, i<j

(xi − xj) . (5.4)

Seguendo [9, p. 24], per induzione su n, facciamo vedere che vale la relazione
(5.4).
Per n = 1, det(V) = x1 − x0. Sia n ≥ 2. Ora, det(V) può essere visto come

det(V (x0, . . . , xn)). Per valutare det(V) possiamo procedere come segue. Consid-
eriamo la funzione

det(V (x)) = det(V (x0, . . . , xn−1, x))

che è un polinomio di grado≤n che si annulla in x0, . . . , xn−1. Pertanto det(V(x))=
C(x − x0) · · · (x − xn−1) . Per calcolare la costante C basta sviluppare il determi-
nante rispetto all’ultima riga, ed essendo il coefficiente di xn uguale a

det(V (x0, . . . , xn−1))

si ottiene

det(V (x0, . . . , xn)) = det(V (x0, . . . , xn−1))(x− x0) · · · (x− xn−1) .

Sostituendo poi x con xn si conclude.
Pertanto il determinante di Vandermonde è diverso zero perchè xi �= xj , i �= j

e perció la soluzione esiste ed è unica. �

Una dimostrazione alternativa di unicità è la seguente. Per assurdo esistano
due polinomi d’interpolazione, pn e qn (quindi tali che pn(xi) = qn(xi) = yi). Allora
dn = pn − qn è un polinomio di grado ≤ n che si annulla negli n + 1 punti xi. Il
che implica che dn ≡ 0 ovvero pn = qn contraddicendo l’ipotesi che pn �= qn.

132 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESEMPIO 34. Si consideri la funzione di Runge

g(x) =
1

1 + x2
, x ∈ [−5, 5] (5.5)

Sugli n+ 1 punti equispaziati xi = −5 + ih, i = 0, 1, ..., n, h = 10/n si costruisca il
polinomio d’interpolazione di grado n, pn(x) = anx

n + an−1x
n−1 + . . .+ a1x+ a0. Si

tratta di risolvere il sistema lineare

V a = y

con a = (a0, a1, ..., an)
T , y = (g(x0), g(x1), ..., g(xn))

T e V la matrice di Vandermonde.
Ad esempio se n = 3, x0 = −5, x1 = −5 + 10/3 ≈ −1.667, x2 = −5 + 20/3 ≈
1.667, x3 = 5 il sistema diventa

V =

⎛
⎜⎜⎝

1 −5 25 −125
1 −1.667 2.779 −4.63
1 1.667 2.779 4.63
1 5 25 125

⎞
⎟⎟⎠
⎛
⎜⎜⎝

a0
a1
a2
a3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
26 ≈ 0.04

0.26
0.26
0.04

⎞
⎟⎟⎠ .

��
Il concetto di condizioni d’interpolazione può essere generalizzato, come ve-
diamo nel prossimo esempio, considerando non solo i valori della funzione nei
nodi ma altri valori.

ESEMPIO 35. Si consideri la funzione f(x) =
20

1 + x2
− 5 ex ristretta all’intervallo

[0, 1]. Determinare l’unico polinomio di secondo grado, p2(x) = a0 + a1x+ a2x
2 tale

che

p2(0) = f(0), p2(1) = f(1),

∫ 1

0

p2(x)dx =

∫ 1

0

f(x)dx .

Si tratta di risolvere il sistema lineare con matrice non singolare

A =

⎛
⎝ 1 0 0

1 1 1
1 1

2
1
3

⎞
⎠

e termine noto

b =

⎛
⎜⎜⎜⎜⎝

15
5(2− e)

∫ 1

0

f(t)dt

⎞
⎟⎟⎟⎟⎠

L’integrale definito è facilmente calcolabile analiticamente ottenendo 20 arctan(1) −
5(e−1) = 5π−5e+5 ≈ 7.1166 . Risolvendo il sistema si trovano i valori dei coefficienti
del polinomio. Il sistema lo possiamo risolvere anche numericamente con il MEG o
usando la funzione Matlab/Octave "\": otteniamo a0 = 15, a1 = −10.118; a2 =
−8.474. Il grafico della funzione e del polinomio sono visibili in Fig. 5.1.

1335 - Interpolazione e approssimazione

Figura 5.1: Funzione e polinomio d’interpolazione dell’Esempio 35

5.2 Forma di Lagrange dell’interpolante

Se il sistema (5.3) fosse del tipo Ia = y, con I matrice identità, a l’array dei
coefficienti incogniti e y l’array dei valori, la soluzione sarebbe immediata, ovvero
ai = yi, i = 0, . . . , n. Pertanto un’idea è di considerare una base polinomiale
b0(x), · · · , bn(x) che verifichi la proprietà bi(xi) = 1, bi(xj) = 0, j �= i. I polinomi
elementari di Lagrange sono la base cercata. Infatti, essi sono definiti a partire
dai punti d’interpolazione xi come segue

li(x) =

n∏
j=0,j
=i

x− xj
xi − xj

. (5.6)

I polinomi li, i = 0, . . . , n sono polinomi di grado n, valgono 1 quando x = xi e
0 altrimenti, cioè li(xj) = δi,j (vedasi Figura 5.2). Pertanto possiamo esprimere
il polinomio d’interpolazione pn(x), costruito sull’insieme (xi, f(xi)), i = 0, ..., n,
come

pn(x) =

n∑
i=0

li(x)f(xi) . (5.7)

Inoltre vale la seguente identità

n∑
i=0

li(x) = 1 ,

che altro non è che il polinomio d’interpolazione della funzione f(x) ≡ 1.

134 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 5.2: Grafico di alcuni polinomi elementari di Lagrange.

Posto ωn(x) =
n∏
i=0

(x− xi) è facile provare che

li(x) =
ωn(x)

(x− xi)ω′
n(xi)

.

Posto

wi =

n∏
j=0,j
=i

1

xi − xj
=

1

ω′
n(xi)

una forma alternativa del polinomio d’interpolazione è (cfr. [1, 3]):

pn(x) = ωn(x)

n∑
i=0

wif(xi)

(x− xi)
.

Con tale nuova forma, detta (prima) formula baricentrica, si ha il vantaggio che
se i coefficienti wi sono precalcolati, per valutare il polinomio pn(x), serviranno
O(n) flops (valutando ωn(x) e i pesi wi/(x− xi)) al posto di O(n2) flops necessarie
per valutare ciascun polinomio elementare di Lagrange.
Non solo. Se aggiungiamo un altro nodo, xn+1, allora i pesi diventeranno

w∗
i = wi/(xn+1 − xi), i = 0, . . . , n

wn+1 =
1∏n+1

i=0,i
=n+1(xn+1 − xi)
.

1355 - Interpolazione e approssimazione

Infine, se g(x) ≡ 1 allora g(x) = ωn(x)

n∑
j=0

wj

x− xj
. In definitiva, il polinomio

d’interpolazione diventa

pn(x) =

∑n
j=0

wj

x−xj
f(xj)∑n

j=0
wj

x−xj

, (5.8)

relazione detta seconda formula baricentrica. In questo caso le funzioni elemen-
tari di base, sono

bj(x) =

wj

x−xj∑n
j=0

wj

x−xj

j = 0, . . . , n .

Come osservazione finale, ricordando che i polinomi elementari li valgono 1
in xi e zero negli altri punti xj , j �= i, ma possono assumere valore maggiore di 1
in modulo, come si evince anche dalla Figura 5.2.

ESEMPIO 36. Consideriamo il caso n = 1. I punti che prendiamo sono (x0, f(x0)) e
(x1, f(x1)). Il corrispondente sistema di Vandermonde è(

1 x0

1 x1

)(
a0
a1

)
=

(
f(x0)
f(x1)

)
.

La matrice inversa è
1

x1 − x0

(
x1 −x0

−1 1

)
e pertanto avremo la soluzione(

a0
a1

)
=

1

x1 − x0

(
x1f(x0)− x0f(x1)
−f(x0) + f(x1)

)
.

Quindi il polinomio p1(x) è

p1(x) =
x1f(x0)− x0f(x1)

x1 − x0
+

f(x1)− f(x0)

x1 − x0
x

ed evidenziando f(x0), f(x1) possiamo anche riscriverlo in forma di Lagrange

p1(x) = f(x0)
x1 − x

x1 − x0
+ f(x1)

x− x0

x1 − x0

dove sono ben visibili i polinomi l0, l1.

Le funzioni Matlab/Octave lagrai.m e lagrai target.m in Appendice C, con-
sentono di calcolare l’i-esimo polinomio elementare di Lagrange nel punto x o su
un vettore di valori, rispettivamente.

Nel caso di nodi xi equispaziati , cioè xi − xi−1 = h ovvero xi = x0 + i h, i =
0, ..., n, i polinomi elementari assumono una forma particolarmente interessante
dal punto di vista implementativo.

136 Appunti di Calcolo Numerico con codici in Matlab/Octave

Con il cambio di variabile x(t) = x0 + t h, t = 0, . . . , n, li(x) sarà una funzione
di t, ovvero

li(t) =

n∏
j=0,j
=i

x0 + t h− x0 − j h

x0 + i h− x0 − j h
=

n∏
j=0,j
=i

t− j

i− j
.

Detta ora ωn+1(t) = t(t− 1) · · · (t− n), risulta
n∏

j=0,j
=i

(t− j) =
ωn+1(t)

t− i
, (5.9)

n∏
j=0,j
=i

(i− j) =

i−1∏
j=0

(i− j) ·
n∏

j=i+1

(i− j) = (−1)n−ii!(n− i)! , (5.10)

da cui

pn(t) =
ωn+1(t)

n!

n∑
i=0

(−1)n−i

(
n

i

)
yi

(t− i)
. (5.11)

Quando i nodi sono equispaziati, è facile verificare che per il calcolo di pn(t) sono
necessarie n2/2 addizioni e 4n moltiplicazioni.

ESERCIZIO 63. Costruire la funzione Matlab/Octave che calcola l’i-esimo poli-
nomio elementare di Lagrange su nodi equispaziati facendo uso delle formule
(5.9) e (5.10). Costruire quindi il polinomio interpolante mediante la (5.11).

5.2.1 Analisi dell’errore d’interpolazione
Sia f(x) definita su [a, b]. Detto pn(x) il polinomio d’interpolazione sugli n + 1
punti a due a due distinti x0, . . . , xn, indicheremo con

rn(x) = f(x)− pn(x)

la funzione errore per la quale si ha rn(xi) = 0, i = 0, ..., n.

Teorema 22. Se f ∈ Cn+1[a, b], allora

rn(x) = (x− x0) · · · (x− xn)
f (n+1)(ξ)

(n+ 1)!
, (5.12)

con ξ ∈ (a, b) e xi distinti.

Dim. Se x = xi, l’errore è nullo e quindi il risultato è ovvio.
Sia ora x �= xi, allora preso un qualsiasi t ∈ Ix (Ix il più piccolo intervallo che

contiene i punti x0, ..., xn, x) possiamo definire la funzione ausialiaria

g(t) = rn(t)− ωn(t)rn(x)

ωn(x)
.

Poiché f ∈ Cn+1(Ix) segue che g ∈ Cn+1(Ix) ed ha n+ 2 zeri distinti in Ix. Infatti
g(xi) = 0, i = 0, . . . , n e g(x) = 0. Allora per il teorema di Rolle, g′ ha n+ 1 zeri e
cosı̀ via finché g(n+1) ha un solo zero, che indichiamo con ξ.

1375 - Interpolazione e approssimazione

Ma r
(n+1)
n (t) = f (n+1)(t) e ω(n+1)

n = (n+ 1)! pertanto

g(n+1)(t) = f (n+1)(t)− (n+ 1)!

ωn(x)
rn(x) .

Quando valutiamo questa espressione in t = ξ otteniamo il risultato richiesto. �
ESEMPIO 37. Calcoliamo l’errore d’interpolazione lineare, ovvero per n = 1. Dal

Teorema 5.12, r1(x) = (x− x0)(x− x1)
f ′′(ξ)

2 , ξ ∈ (x0, x1). Ora,

max
x∈(x0,x1)

|(x− x0)(x− x1)| = (x0 − x1)
2

4
.

Se indichiamo con M2 = maxx∈(x0,x1) |f ′′(x)|, possiamo dare la seguente maggio-
razione

|r1(x)| ≤M2
(x0 − x1)

2

8
.

Ad esempio, per f(x) = tan(x), x ∈ [1.35, 1.36], sapendo che f ′′(x) =
2 sinx

cos3 x
,

troveremo |r1(x)| ≤ 0.24 · 10−2.

ESEMPIO 38. Per approssimare
√
x̄, dove x̄ non è un quadrato perfetto, possiamo

interpolare come segue. Siano x0, x1, x2 i quadrati perfetti più vicini ad x̄, dei quali
consideriamo le loro radici. Si tratta quindi di costruire il polinomio di grado 2, p2(x),
interpolante i dati (xi,

√
xi), i = 0, 1, 2. Allora

√
x̄ ≈ p2(x̄).

Se x̄ = 0.6, consideriamo i tre punti

(0.49,
√
0.49 = 0.7), (0.64,

√
0.64 = 0.8), (0.81,

√
0.81 = 0.9)

ed il relativo polinomio d’interpolazione p2(x). Il valore p2(0.6) ≈ 0.774 ci darà
un’approssimazione di

√
0.6 (vedi Figura 5.3).

Circa l’errore che commettiamo, si tratta di stimare l’errore in [0.49, 0.81]. Ora
essendo ω2(x) = (x−0.49)(x−0.64)(x−0.81), g(x) =

√
x t.c. g(3)(x) = 3

8
√
x5
, l’errore

in modulo è

|r2(x)| ≤ |ω3(x)| 3

3! 8
√

ξ5
, ξ ∈ [0.49, 0.81] .

Infine,

|r2(0.6)| ≤ 0.924 · 10−3

16
√
(0.49)5

≤ 0.35 · 10−3 .

5.3 Errore d’interpolazione e fenomeno di Runge

Se xi = xi−1 + h, i = 1, . . . , n, con x0 dato e h > 0, si può provare che∣∣∣∣∣
n∏
i=0

(x− xi)

∣∣∣∣∣ ≤ n!
hn+1

4
.

La dimostrazione, per induzione, procede come segue.

138 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 5.3: La parabola dell’Esempio 38.

• Per n = 1, abbiamo due punti x0, x1 distanti h. La funzione |(x−x0)(x−x1)|,
come visto nell’Esempio 37, è una parabola il cui massimo, nel vertice, vale
h2/4. Questo prova il passo iniziale dell’induzione.

• Sia vera per n+1 punti, x0, . . . , xn. Prendiamo un altro punto xn+1. Avremo

|
n+1∏
i=0

(x− xi)| = |
n∏
i=0

(x− xi)| · |x− xn+1| ≤︸︷︷︸
ind.

n!
hn+1

4
(n+ 1)h = (n+ 1)!

hn+2

4
.

Pertanto l’errore d’interpolazione, per punti equispaziati, si maggiora come segue:

max
x∈I

|rn(x)| ≤ max
x∈I

∣∣∣f (n+1)(x)
∣∣∣ hn+1

4(n+ 1)
. (5.13)

La disuguaglianza (5.13) ci dice che nonostante per h → 0, limh→0
hn+1

4(n+1) = 0

l’errore non è detto vada a zero. Ciò dipende dall’ordine di infinito della derivata
n+ 1-esima rispetto al fattore hn+1

4(n+1) . Vediamolo su un esempio.

ESEMPIO 39. Per costruire il polinomio di grado n = 2 interpolante f(x) = ex+1

in [0, 1] su nodi equispaziati, dovremo consderare i punti x0 = 0, x1 = 0.5, x1 = 1.
Pertanto l’errore d’interpolazione si maggiorerà come segue

R := max
x∈[0,1]

|r2(x)| ≤ h3

4 · 3 max
x∈[0,1]

(ex+1)(3) .

Se si fanno i conti, arrotondando a 2 cifre decimali, risulta che R ≤ 0.08.

��
Riconsideriamo l’Esempio 34, ovvero la funzione di Runge:

g(x) =
1

1 + x2
, x ∈ [−5, 5] (5.14)

1395 - Interpolazione e approssimazione

Sugli n+1 punti equispaziati xi = −5+ i h, i = 0, ..., n, h = 10/n consideriamo il
polinomio d’interpolazione di grado n. Runge osservò che nonostante g ∈ C∞(R),
l’errore g(x) − pn(x) tende a crescere con n. In particolare dimostrò che se |x| >
3.63 il polinomio si discosta sempre più dalla funzione oscillando enormemente.
In Figura 5.4 si vede la funzione di Runge e il suo polinomio d’interpolazione di
grado 10 su nodi equispaziati e nodi di Chebyshev (che descriveremo oltre).

Figura 5.4: Funzione di Runge e polinomio d’interpolazione su nodi equispaziati
e di Chebyshev.

• Prima domanda: come evitare il fenomeno di Runge?
Una prima risposta è quella di usare i punti di Chebyshev invece dei punti
equispaziati. In [−1, 1] i nodi di Chebyshev sono gli zeri del polinomio or-
togonale di Chebsyhev (di prima specie) di grado n, Tn(x) = cos(n arccosx).

140 Appunti di Calcolo Numerico con codici in Matlab/Octave

Infatti risolvendo Tn(x) = 0 si ha arccosx = (2k − 1) π
2n , k = 1, . . . , n, da cui

i punti

x
(C)
k = cos

(
2k − 1

n

π

2

)
, k = 1, . . . , n . (5.15)

– Si tratta di punti distinti ed interni all’intervallo [−1, 1].
– Osserviamo che, se invece di [−1, 1] consideriamo il generico intervallo
[a, b], allora applicando la trasformazione lineare che manda l’intervallo
[−1, 1] in [a, b] i punti corrispondenti sono

xk =
a+ b

2
+

b− a

2
x
(C)
k

dove x
(C)
k sono i nodi di Chebsyehv in [−1, 1]. In alcuni testi (vedasi

ad es. [25, p. 78]) si considerano come nodi di Chebyshev i punti di
Chebyshev-Lobatto, x(CL)

k = cos(kπ/n), k = 0, . . . , n, che includono
pure gli estremi dell’intervallo.

Da un punto di vista geometrico, i punti di Chebyshev sono le proiezioni
sull’intervallo [−1, 1] dei punti equispaziati sul semicerchio di diametro [−1, 1]
(vedasi Figura 5.5). Come si vede dal grafico, se prendiamo 2 punti a e b di
[−1, 1] ottenuti come proiezione di punti equispaziati sul semicerchio, vale
la relazione

| arccos(a)− arccos(b)| = |θa − θb| = cost .
Questo dice che i punti di Chebyshev hanno la distribuzione dell’arcocoseno.

Figura 5.5: 10 punti di Chebyshev.

1415 - Interpolazione e approssimazione

• Seconda domanda: perchè i punti di Chebyshev sono migliori di quelli
equispaziati?

Una prima risposta è grafica (vedasi Figura 5.4)... ma non basta! Nella
prossima sessione presenteremo una risposta matematicamente più for-
male basata sullo studio della costante di Lebesgue.

Osservazione. Oltre ai punti di Chebsyshev, esistono i punti di Fekete, che ven-
gono definiti come i punti che massimizzano il determinante di Vandermonde,
e le sequenze di Leja. Entrambi questi insiemi di nodi, hanno la distribuzione
asintotica dell’arcocoseno. Per maggiori dettagli sui punti di Fekete, loro pro-
prietà e aspetti computazionali si rimanda i recenti articoli [4, 5]. Per dettagli
sulle sequenze di Leja e le loro applicazioni si rimanda all’articolo [12] nonché
all’Appendice C.

5.3.1 La costante di Lebesgue
Indichiamo con X la matrice triangolare inferiore di dimensione infinita, i cui
elementi xi,j sono punti appartenenti all’intervallo [a, b]. Inoltre per ogni n ≥ 0,
la riga n-esima ha n + 1 elementi (corrispondenti ai punti su cui costruiremo
il polinomio d’interpolazione di grado n). Sia pfn(x) il polinomio di grado n che
interpola la funzione f usando gli n+ 1 nodi della n-esima riga di X.
Fissata X e la funzione f , indichiamo con

En,∞(X) = ‖f − pfn‖∞, n = 0, 1, (5.16)

l’errore in norma infinito tra f e il suo polinomio d’interpolazione. Indichiamo
con p∗n ∈ Pn il polinomio di migliore approssimazione uniforme di grado n di f
per il quale consideriamo

E∗
n = ‖f − p∗n‖∞ ≤ ‖f − qn‖∞, ∀ qn ∈ Pn . (5.17)

Teorema 23. Sia f ∈ C[a, b] e X come prima. Allora

En,∞(X) ≤ (1 + Λn(X))E∗
n, n = 0, 1, . . . (5.18)

con

Λn(X) = max
x∈[a,b]

n∑
i=0

|li(x)|

che si chiama costante di Lebesgue.

Osservazioni.

• Il polinomio di migliore approssimazione, se esiste, è unico (cfr. ad esempio
[9, 28]).

• È facile provare che Λn(X) ≥ 1.

142 Appunti di Calcolo Numerico con codici in Matlab/Octave

Dal Teorema 23, E∗
n dipende solo dalla regolarità di f e quindi è indipendente

dall’insieme dei punti d’interpolazione X, mentre non lo è Λn(X). Pertanto se
desideriamo diminuire l’errore d’interpolazione la scelta del vettore dei nodi è
fondamentale (per diminuire il valore di Λn). Si dimostra (vedi ad esempio [28])
che la crescita asintotica (ovvero per n→∞) della costante di Lebesgue per nodi
equispaziati Xe e nodi di Chebyshev Xc è :

Λn(Xe) ≈ 2n+1

n e loge n

Λn(Xc) ≈ 2

π
loge(n+ 1) .

In entrambi i casi per n → ∞ la costante di Lebesgue tende ad infinito, ma per
i nodi di Chebyshev la crescita è logaritmica invece che esponenziale. Inoltre,
è stato dimostrato da Bernstein (1918) che, per ogni n ≥ 1, Λn(Xc) ≤ σ(n) con
σ(n) = 2

π log(n+ 1) + 1 .
Per avere un’idea dell’andamento della costante di Lebesgue per punti di

Chebyshev, in Tabella 5.1 sono riportati alcuni valori di Λn(Xc) e di σ(n) (ar-
rotondati alla terza cifra decimale). I valori di Λn(Xc) sono stati calcolati con la
funzione CostLebesgue.m (vedi appendice C).

n Λn(Xc) σ(n)
2 1.189 1.699
5 1.828 2.141
10 2.232 2.527
15 2.412 2.765
20 2.477 2.938

Tabella 5.1: Confronti dei valori della costante di Lebesgue per punti di Chebsy-
shev e della funzione σ(n)

Come ultima osservazione, i nodi di Chebyshev sono nodi quasi-ottimali. In-
fatti, sempre in [28, pag. 101], si osserva che esiste un’insiemeX∗ di nodi ottimali
anche se il loro calcolo non è semplice. Ma, come provato da L. Brutman in SIAM
J. Numer. Anal. 15 (1978), l’insieme dei nodi di Chebsyhev estesi (o espansi),

T̂ =

{
x̂k =

x
(C)
k

cos(π/2n)
, k = 1, . . . , n

}

che si ottengono dai punti di Chebyshev tramite dilatazione (vedi Fig. 5.6), è
utile per tutti gli usi più frequenti e quindi essi possono essere considerati come
nodi “ottimali“ sull’intervallo.

5.3.2 Stabilità dell’interpolazione polinomiale
Dati (xi, f(xi)), i = 0, . . . , n, invece dei valori f(xi) consideriamo dei valori per-
turbati f̃(xi). Indichiamo con pf̃n il polinomio di grado n che interpola (xi, f̃(xi)),

1435 - Interpolazione e approssimazione

Figura 5.6: 10 punti di Chebyshev (o) e Chebyshev estesi (*) in [−1, 1].

0, . . . , n. Allora,

‖pfn − pf̃n‖∞ = max
x∈[a,b]

∣∣∣∣∣∣
n∑

j=0

lj(x)
(
f(xj)− f̃(xj)

)∣∣∣∣∣∣ (5.19)

≤ max
x∈[a,b]

n∑
j=0

|lj(x)| max
0≤i≤n

|f(xi)− f̃(xi)| . (5.20)

Essendo Λn(X) := maxx∈[a,b]

∑n
j=0 |lj(x)|, con X = {x0, . . . , xn}, la costante di

Lebesgue si può interpretare come il numero di condizionamento del problema
d’interpolazione polinomiale.

ESEMPIO 40. Consideriamo la funzione f(x) = sin(2πx), x ∈ [−1, 1] che desideriamo
interpolare su 22 nodi equispaziati. Consideriamo poi i valori perturbati f̃(xi) tali
che

δ := max
0≤i≤21

|f(xi)− f̃(xi)| ≈ 4.5 10−2 .

Costruiamo pf21 e pf̃21. Mediante la (5.20) otteniamo la stima Λ21 ≈ 4500. Ovvero
il problema è sensibile alle perturbazioni (che ritroviamo soprattutto nei punti di
massima oscillazione della funzione).

5.4 Polinomio interpolante in forma di Newton

Si può esprimere il polinomio di interpolazione di grado n della funzione f , pfn(x),
in forma di Newton:

pfn(x) = b0 + b1(x− x0) + b2(x− x0)(x− x1) + · · ·+ bn(x− x0) · · · (x− xn−1) ,

dove bi rappresenta la differenza divisa di ordine i della funzione f . Per com-
prendere come costruire sifatto polinomio, dobbiamo dapprima introdurre le dif-
ferenze divise di una funzione.

i =

144 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 5.7: Funzione dell’Esempio 40

5.4.1 Differenze divise e loro proprietà

Definizione 19. Dati n + 1 punti distinti x0, . . . , xn e i valori yi = f(xi), la
differenza divisa di ordine 0 della funzione f è f [xi] = f(xi), la differenza divisa

di ordine 1 è f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi
e ricorsivamente, la differenza di ordine

k è

f [xi, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi
. (5.21)

1. La differenza divisa di ordine k + 1 di un polinomio di grado k è identica-
mente nulla. Vediamolo su un esempio.

ESEMPIO 41. Consideriamo i punti {−1, 2, 3, 5} e f(x) = x2 + 1. La tabella
delle differenze divise è la seguente

xi yi ordine 1 ordine 2 ordine 3
-1 2
2 5 1
3 10 5 1
5 26 8 1 0

Tabella 5.2: Differenze divise della funzione x2 + 1

1455 - Interpolazione e approssimazione

2. La differenza divisa di ordine n, si esprime come

f [x0, . . . , xn] =

n∑
j=0

(−1)j f(xj)∏
i=0,i>j(xi − xj)

. (5.22)

Questa proprietà deriva dalla cosidetta forma determinantale delle differenze
divise. Se prendiamo infatti l’insieme di punti distintiX = {xi, i = 0, . . . , n}
e indichiamo con

QX(g0, . . . , gn) = (gj(xi))i,j=0,...,n

la matrice i cui elementi sono le valutazioni delle funzioni gj nei punti xi,
si ha

f [x0, . . . , xn] = detQX(1, x, . . . , xn−1, f)/detQX(1, x, . . . , xn−1, xn) . (5.23)

3. Le differenze divise sono invariati rispetto all’ordine dei nodi. Ovvero

f [x0, . . . , xk] = f [xi0 , . . . , xik] (5.24)

dove (i0, . . . , ik) è una qualsiasi permutazione di (0, . . . , k). Questa proprietà
è una diretta conseguenza della formula (5.22).

Di tutte le predette proprietà, il lettore curioso può trovare la dimostrazione ad
esempio in [2, pag. 384 e ss.].

Possiamo osservare che il polinomio

pfn(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xn](x− x0) · · · (x− xn−1) (5.25)

è interpolante la funzione f(x) nei punti xi: infatti pn(xi) = f(xi). Per l’unicità
del polinomio d’interpolazione possiamo dire che esso è il polinomio d’interpolazione!
La (5.25) è detta la forma di Newton del polinomio d’interpolazione che potremo

riscrivere più semplicemente come

pfn(x) = b0+ b1(x−x0)+ b2(x−x0)(x−x1)+ · · ·+ bn(x−x0) · · · (x−xn−1) , (5.26)

dove bi rappresenta la differenza divisa di ordine i della funzione f .

5.4.2 Algoritmo delle differenze divise
Per determinare i coefficienti bi, i = 0, ..., n in (5.26), l’algoritmo delle differenze
divise è descritto nella funzione DiffDivise.m (cfr. Appendice C).
Alla fine, il valore del polinomio pn in x, si determina con lo schema di Hörner:

p = bn; (5.27)
p = (x− xi)p+ bi, i = n− 1, ..., 0

146 Appunti di Calcolo Numerico con codici in Matlab/Octave

L’errore d’ interpolazione si può esprimere usando le differenze divise di or-
dine n+ 1 della funzione f . Ricordando che per l’errore vale

En(f) = f(x)− pfn(x) =

(
n∏
i=0

(x− xi)

)
f (n+1)(ξ)

(n+ 1)!
. (5.28)

facciamo ora vedere il legame esistente con le differenze divise. Vale il seguente
risultato:

Proposizione 10. Se f ∈ Cn+1(I), allora

f (n+1)(ξ)

(n+ 1)!
= f [x0, ..., xn, x] , (5.29)

con ξ punto che appartiene al più piccolo intervallo che contiene x0, . . . , xn, x.

Dim. Dati x0, . . . , xn e i valori corrispondenti della funzione f(xi), i = 0, ..., n,
indichiamo con pfn il polinomio d’interpolazione. Preso poi un punto x, diverso dai
punti xi, che consideriamo come un altro punto xn+1 d’interpolazione, costruiamo
pfn+1. Grazie alla formula di Newton dell’interpolante

pfn+1(t) = pfn(t) + (t− x0) · · · (t− xn)f [x0, . . . , xn, t] .

Per t = x, pfn+1(x) = f(x), da cui

En(x) = f(x)− pfn(x) = pfn+1(x)− pfn(x) (5.30)
= (x− x0) · · · (x− xn)f [x0, . . . , xn, x]

= ωn+1(x)f [x0, . . . , xn, x] .

Essendo f ∈ Cn+1(I) (poiché x è un punto d’interpolazione) e ricordando che

En(x) = (x− x0) · · · (x− xn)
f (n+1)(ξ)

(n+ 1)!
, (5.31)

dal confronto di (5.30) e (5.31) si conclude. �

��

5.4.3 Formula di Hermite-Genocchi per le differenze divise
Questa formula è interessante perchè permette di estendere la forma di Newton
dell’interpolante anche al caso di punti ripetuti.

Teorema 24. Siano dati n+ 1 punti distinti x0, x1, ..., xn e sia f ∈ Cn(I) con I il
più piccolo intervallo che li contiene. Allora

f [x0, x1..., xn] =

∫
τn

f (n)(x0t0 + · · ·+ xntn)dt1dt2 . . . dtn , (5.32)

1475 - Interpolazione e approssimazione

dove t0 = 1− (t1 + t2 + ...+ tn) e l’integrale è fatto sul simplesso

τn =

{
(t1, t2, . . . , tn) : ti ≥ 0,

n∑
i=1

ti ≤ 1

}
.

Dim. Come prima cosa, osserviamo che t0 ≥ 0 e
∑n

i=0 ti = 1.
La dimostrazione di (5.32) si fa per induzione su n.

1. Se n = 1, τ1 = [0, 1]. L’equazione (5.32) diventa

∫ 1

0

f ′(t0x0 + t1x1)dt1 =

∫ 1

0

f ′(x0 + t1(x1 − x0))dt1

=
1

x1 − x0
f(x0 + t1(x1 − x0))|t1=1

t1=0

=
f(x1)− f(x0)

x1 − x0
= f [x0, x1] .

2. Nel caso n = 2, τ2 è il triangolo di vertici (0, 0), (1, 0), (0, 1).∫
τ2

f ′′(t0x0 + t1x1 + t2x2)dt1dt2 =

=

∫ 1

0

∫ 1−t1

0

f ′′(x0 + t1(x1 − x0) + t2(x2 − x0))dt2dt1

=

∫ 1

0

1

x2 − x0
f ′(x0 + t1(x1 − x0) + t2(x2 − x0))|t2=1−t1

t2=0 dt1

=
1

x2 − x0

{∫ 1

0

f ′(x2 + t1(x1 − x2))dt1−

−
∫ 1

0

f ′(x0 + t1(x1 − x0))dt1

}
=

1

x2 − x0
{f [x1, x2]− f [x0, x1]} = f [x0, x1, x2] .

3. Nel caso generale si integrerà prima rispetto ad una variabile per ridurre
la dimensione, quindi per ipotesi induttiva si conclude.

Questo conclude la dimostrazione.

Nel caso in cui tutti punti ”collassano” in x0 (ciò ha senso poichè la funzione
f [x0, ..., xn] è continua nelle sue variabili) usando le proprietà delle differenze
divise avremo

f [x0, ..., x0︸ ︷︷ ︸
n+1 volte

] =

∫
τn

f (n)(x0)dt1 · · · dtn = f (n)(x0) · Voln(τn)

148 Appunti di Calcolo Numerico con codici in Matlab/Octave

ove Voln(τn) indica il volume n-dimensionale del simplesso τn. Ora, ricordando

la relazione Voln(τn) =
1

n!
si ottiene la formula

f [x0, . . . , x0︸ ︷︷ ︸
n+1 volte

] =
f (n)(x0)

n!
. (5.33)

La proprietà (5.33) possiamo applicarla nel seguente semplice esercizio.

ESERCIZIO 64. Stimare le differenze divise di ordine 3 della funzione f(x) =
√
1 + x2

sui punti {0, 1, 1, 2}, arrotondandone il risultato a 2 cifre decinmali.

OSSERVAZIONE. Se di una funzione f(x) si conoscono il valore in un punto
x0 e i valori delle derivate fino all’ordine k in x0, la tabella delle differenze divise

è la Tabella 5.3. dove f [x0, x0] = f ′(x0), f [x0, x0, x0] =
f ′′(x0)

2
e f [x0, . . . , x0︸ ︷︷ ︸

k+1 volte

] =

x0 f [x0] f [x0, x0] → f [x0, x0, x0] . . . f [x0, . . . , x0︸ ︷︷ ︸
k+1 volte

]

x0 f [x0] f [x0, x0] ↗
...

...
...

...
...

... f [x0, x0, x0]
x0 f [x0] f [x0, x0]

Tabella 5.3: Tabella delle differenze divise per un punto ripetuto k + 1 volte

f (k)(x0)

k!
. In questo caso quindi il polinomio d’interpolazione in forma Newton

coinciderà con la formula di Taylor.

5.5 Interpolazione di Hermite

Il polinomio osculatore di Hermite (dal latino, osculare che significa baciare) è
quel polinomio p2n+1(x), di grado 2n + 1 costruito usando n + 1 distinti xi, i =
0, ..., n che soddisfa le 2n+ 2 condizioni

p2n+1(xi) = f(xi), p′2n+1(xi) = f ′(xi) , i = 0, . . . , n . (5.34)

In forma di Lagrange, il polinomio osculatore di Hermite si scrive come segue:

p2n+1(x) =

n∑
i=0

ui(x)f(xi) +

n∑
i=0

vi(x)f
′(xi) (5.35)

1495 - Interpolazione e approssimazione

dove i polinomi ui(x) e vi(x) sono funzioni dei polinomi elementari di Lagrange,
ovvero

ui(x) = [1− l′i(xi)(x− xi)]l
2
i (x), (5.36)

vi(x) = (x− xi)l
2
i (x) . (5.37)

È facile verificare che i polinomi ui(x) e vi(x) hanno grado 2n+1 e per essi valgono
le condizioni

ui(xk) = δi,k,

vi(xk) = 0, u′
i(xk) = 0, ∀ k
v′i(xk) = δi,k .

Ne segue che il polinomio (5.35) ha grado ≤ 2n + 1 e soddisfa le condizioni
d’interpolazione (5.34).
Il polimomio (5.35) si può costruire anche in forma di Newton mediante la

seguente tabella delle differenze divise: dove f [xi, xi] = f ′(xi), i = 0, ..., n. Per

x0 f [x0]
f [x0, x0]

x0 f [x0] f [x0, x0, x1]

f [x0, x1]
. . .

x1 f [x1] f [x0, x1, x1]
f [x1, x1]

x1 f [x1]
...

... f [x0, x0, . . . , xn, xn]

...
...

...
... f [x0, x0, xn]

f [xn−1, xn]
xn f [xn] f [x0, xn, xn]

f [xn, xn]
xn f [xn]

Tabella 5.4: Tabella delle differenze divise per l’interpolazione di Hermite

suggerimenti implementativi del polinomio osculatore di Hermite in forma di
Newton, rimandiamo all’Esercizio 72.

Possiamo anche estendere la formula dell’errore d’interpolazione,(5.12) o (5.28),
al caso in cui il polinomio sia costruito su nodi non necessariamente distinti.

Teorema 25. Se f(x) ∈ Cn+1[a, b], esiste un punto ξ = ξ(x) ∈ (a, b) tale che

f [x0, x1, . . . , xn, x] =
f (n+1)(ξ)

(n+ 1)!
. (5.38)

150 Appunti di Calcolo Numerico con codici in Matlab/Octave

Se f(x) ∈ Cn+2[a, b], esiste un punto η = η(x) ∈ (a, b) tale che

d

dx
f [x0, x1, . . . , xn, x] =

f (n+2)(η)

(n+ 2)!
. (5.39)

Infine, se i punti x0, . . . , xn, x sono tutti coincidenti allora ξ = η = x.

Dim. Applicando il teorema della media integrale alla funzione f [x0, x1, . . . , xn, x]
espressa mediante la formula di Hermite-Genocchi, si ha

f [x0, x1, . . . , xn, x] = f (n+1)(ξ)

∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tn

0

dtn

da cui deriva immediatamente la (5.38). La (5.39) si ottiene in maniera analoga
osservando che

d

dx
f [x0, x1, . . . , xn, x] = f [x0, x1, . . . , xn, x, x] .

Questo conclude la dimostrazione. �

5.6 Algoritmo di Neville

Dati a, b, estremi dell’intervallo di interpolazione, n il numero dei nodi di interpo-
lazione, x,y array di dimensione n che contengono i nodi equispaziati e il valore
della funzione f = (f(x0), . . . , f(xn)) nei nodi equispaziati xi = a + (b − a) in , i =
0, ..., n. Posto yi = f(xi), indichiamo con x ∈ [a, b] il punto su cui valutare il
polinomio interpolante allora il polinomio interpolante in x è ottenuto con la
seguente formula iterativa, nota come schema d’interpolazione di Neville:

pi = yi, i = 0, . . . , n;

allora

p0,...,k(x) =
p1,...,k(x)(x− x0)− p0,...,k−1(x)(x− xk)

xk − x0
(5.40)

è il polinomio d’interpolazione su x0, . . . , xk. Pertanto alla fine, p0,1,...,n(x) rappre-
senterà il valore in x del polinomio d’interpolazione di grado n costruito mediante
l’uso dei punti (xi, yi).
Il vantaggio di questa tecnica, è che il polinomio d’interpolazione viene costru-

ito come una successione di polinomi di grado crescente, per cui il procedimento
si arresterà quando è raggiunto il grado richiesto.
In Tabella 5.5 riportiamo lo schema triangolare di Neville nel caso cubico.

Come si può facilmente verificare, i polinomi della prima riga p0,...,s, s = 0, . . . , 3
hanno grado crescente da 0 a 3.

1515 - Interpolazione e approssimazione

x0 y0 p0,1(x) p0,1,2(x) p0,1,2,3(x)
x1 y1 p1,2(x) p1,2,3(x)
x2 y2 p2,3(x)
x3 y3

Tabella 5.5: Schema di Neville, per n = 3.

ESERCIZIO 65. Si valuti il polinomio di Neville di grado 3 ≤ n ≤ 10, inter-
polante la funzione

f(x) =
sin(x)

(1 + ex)
, x ∈ [0, 2π],

su punti dell’intervallo e si determini anche l’errore d’interpolazione. Fare
il grafico della funzione, dell’interpolante di Neville e quello dell’errore al
variare di n.

5.7 Interpolazione polinomiale a tratti: cenni

L’idea sottostante a questa tecnica è di limitare il grado del polinomio di interpo-
lazione aumentando la flessibilità dell’interpolante.
Si parte da una suddivisione Δ =

⋃n
i=1 Ii, dove Ii è il generico sottointervallo

in cui si è suddiviso l’intervallo [a, b], e si opera un’approssimazione polinomi-
ale di grado basso su ogni sottointervallo Ii. Rispetto all’interpolazione (globale)
su tutto l’intervallo, pur perdendo in regolarità, questa tecnica migliora la de-
scrizione della funzione da approssimare.
È assai diffuso l’uso dell’ interpolazione lineare a tratti che genera una fun-

zione che si presenta come un segmento di retta su ogni sottointervallo e come
una spezzata sull’intero intervallo dove risulta continuama non necessariamente
derivabile. Dati i punti x0, . . . , xn (non necessarimente equispaziati) di I = [x0, xn]
e i valori f(xi), i = 0, . . . , n, indichiamo con Ii = [xi, xi+1] l’i-esimo intervallino.
Su ognuno degli n sotto-intervalli Ii, i = 0, ..., n − 1, iniziamo con l’approssimare
f con un polinomio lineare a tratti. Ovvero, su Ii, costruiamo

pf1,hi
(x) = f(xi) + (x− xi)

f(xi+1)− f(xi)

xi+1 − xi
, (5.41)

dove l’indice hi in pf1,hi
ci ricorda che gli intervallini non hanno tutti la stessa

ampiezza.
Posto H = max0≤i≤n−1 hi, vale il seguente risultato.

Proposizione 11. Se f ∈ C2(I), allora

max
x∈I

|f(x)− pf1,H(x)| ≤ H2

8
max
x∈I

|f ′′(x)| . (5.42)

152 Appunti di Calcolo Numerico con codici in Matlab/Octave

La proposizione dice che se f è sufficientemente regolare allora il polinomio
lineare e continuo a tratti converge alla funzione con H → 0.
Facciamo notare come le funzioni fplot e plot di Matlab costruiscano proprio

l’interpolante lineare a tratti.

ESEMPIO 42. Consideriamo i valori della funzione sin nei punti equispaziati xi =
i, i = 0, ..., 10. Usando le seguenti istruzioni Matlab/Octave, facciamo vedere come
plot produca l’interpolante lineare a tratti (vedasi Figura 5.8).

x=1:10; y=sin(x);

xx=0:0.01:10; yy=sin(xx);

plot(x,y,’-’,xx,yy,’:r’)

Figura 5.8: Funzione seno (linea punteggiata) e la sua interpolante lineare a
tratti (linea continua)

La generalizzazione dell’interpolante lineare a tratti è l’interpolazione poli-
nomiale (continua) a tratti.

Definizione 20. s è un polinomio continuo a tratti in [a,b] di grado k se s ∈ C[a, b]
e se esistono dei punti ξi, i = 0, ..., n a = ξ0 < ξ1 < · · · < ξn = b cosicché s è un
polinomio di grado ≤ k su ciascun intervallino [ξi, ξi+1], i = 0, ..., n− 1 .

Nella sezione che segue introdurremo brevemente le funzioni splines polino-
miali che rappresentano tuttora uno degli strumenti più flessibili, sia in termini
di ordine di approssimazione che di efficienza computazionale, per l’approssimazione
sia di funzioni che di dati. In pratica le funzioni splines sono un ottimo compro-
messo per chi desidera un strumento matematico sufficientemente duttile, effi-
ciente e preciso per approssimare e/o interpolare.

1535 - Interpolazione e approssimazione

5.8 Esercizi proposti

ESERCIZIO 66. Si consideri la funzione

f(x) = log(2 + x) , x ∈ [−1, 1] .

Indichiamo con pn il polinomio di interpolazione di grado ≤ n costruito us-
ando i punti

xk = cos

(
2k + 1

2n
π

)
, k = 0, 1, ..., n

noti come punti di Chebysehv. Sotto tale ipotesi, è noto che l’errore di interpo-
lazione si può maggiorare come segue:

‖f − pn‖∞ ≤ ‖f (n+1)‖∞
(n+ 1)!

2−n . (5.43)

1. Nel caso n = 4, si determini una maggiorazione dell’errore usando la
(5.43).

2. Nel caso in cui il polinomio di interpolazione, sia invece scrivibile in
forma in Taylor come

tn(x) = f(0) +
f ′(0)
1!

x+
f ′′(0)
2!

x2 + · · ·+ f (n)(0)

n!
xn , (5.44)

l’errore nel generico punto x si esprime come

f(x)− tn(x) =
f (n+1)(ξ)

(n+ 1)!
xn+1 , −1 < ξ < 1 .

Determinare una maggiorazione di

‖f − t4‖∞ = max
−1≤x≤1

|f(x)− t4(x)| ,

e confrontare il risultato con quello ottenuto nel caso dei punti di Cheby-
shev.

3. Facoltativo: Plottare in un unico grafico, f(x), p4(x) e t4(x).

ESERCIZIO 67. Si consideri la funzione f(x) = x + ex +
20

1 + x2
− 5 ristretta

all’intervallo [−2, 2].
1. Determinare il polinomio d’interpolazione di grado 5 in forma di New-

ton sui nodi equispaziati xk = −2 + kh, k = 0, ..., 5.

2. Calcolare l’errore d’interpolazione in un generico punto x ∈ (−2, 2).

154 Appunti di Calcolo Numerico con codici in Matlab/Octave

3. Ripetere i calcoli usando i punti di Chebyshev.

ESERCIZIO 68. Calcolare la costante di Lebesgue sui punti equispaziati
{0, 0.5, 1}.
ESERCIZIO 69. Stimare le differenze divise di ordine 3 della funzione f(x) =√
2 + x2 nei punti {0, 1, 1, 2} (arrotondare il risultato a 2 cifre decimali).

ESERCIZIO 70. Si consideri la funzione f(x) =
20

1 + log(x2)
−5 sin(ex) ristretta

all’intervallo [1, 2]. Determinare l’unico polinomio (d’interpolazione) di sec-
ondo grado, p2(x) = a0 + a1x+ a2x

2 tale che

p2(1) = f(1), p2(2) = f(2),

∫ 2

1

p2(x)dx =

∫ 2

1

f(x)dx .

Per il calcolo dell’integrale della funzione usare la funzione quadl di Matlab,
con tolleranza di 1.e − 6. Fare quindi il grafico della funzione, del polinomio
e di ‖f − p2‖∞.

ESERCIZIO 71. Si consideri la funzione f(x) = cos(x3) (x − 2π) e−x, x ∈
[0, π]. Sperimentalmente si determini il grado del polinomio d’interpolazione,
costruito sui nodi di Chebsyhev in [0, π], che approssima f(x) in norma in-
finito a meno di tol = 1.e− 4.

ESERCIZIO 72. È noto che se f ∈ C1[a, b] e x0, ..., xn sono n+ 1 punti distinti
esiste un unico polinomio di grado 2n+ 1 che interpola f(x) e f ′(x) nei punti
xi. Tale polinomio è quello di Hermite

H2n+1(x) =

n∑
i=0

[
f(xi)Hn,i(x) + f ′(xi)Ĥn,i(x)

]
, (5.45)

con Hn,i(x) e Ĥn,i(x) polinomi di Hermite di grado n, definiti come

Hn,i(x) =
[
1− 2(x− xi)L

′
n,i(xi)

]
L2
n,i(x)

Ĥn,i(x) = (x− xi)L
2
n,i(x)

ove Ln,i(x) è l’i-esimo polinomio di Lagrange di grado n.
Implementare (5.45) è computazionalmente costoso. Si può alternativa-

mente usare lo schema di interpolazione nella forma di Newton nel seguente
modo. Si considerano i punti

{z0, z1, z2, z3, ..., z2n+1} = {x0, x0, x1, x1, ..., xn, xn}
e i corrispondenti valori della funzione f e della sua derivata prima f ′ nei
punti, cosicchè il polinomio H2n+1(x) si può scrivere nella forma equiva-
lente

H2n+1(x) = q0,0 + q1,1(x− x0) + q2,2(x− x0)
2 + q3,3(x− x0)

2(x− x1)(5.46)
+ q4,4(x− x0)

2(x− x1)
2 +

+ · · ·+ q2n+1,2n+1(x− x0)
2(x− x1)

2 · · · (x− xn−1)
2(x− xn) .

1555 - Interpolazione e approssimazione

Il problema è quindi ricondotto a determinare i coefficienti qi,i, come per
lo schema di interpolazione di Newton. In pratica q0,0 = f [z0], q1,1 = f [z0, z1]
ecc..

Sia Algoritmo 1 lo schema alle differenze divise che calcola i suddetti
coefficienti, restituendo l’array (q0,0, q1,1,, q2n+1,2n+1).

Scrivere un programma Matlab/Octave che implementa l’Algoritmo 1
e costruisce il polinomio di interpolazione di Hermite mediante (5.46). Si
consideri f(x) = sin(ex − 2), x ∈ [0, 2].

Produrre anche il grafico di f e del polinomio interpolante.
Qual è il massimo errore tra la funzione e l’interpolante? L’errore ha

analogie con l’errore d’interpolazione classico (solo sui dati)?

156 Appunti di Calcolo Numerico con codici in Matlab/Octave

5.9 Funzioni Spline

Per avere un quadro completo dell’argomento, che richiederebbe una trattazione
molto più estesa, rinviamo il lettore interessato alla fondamentale monografia di
Carl de Boor [10] oppure al più recente e compatto volume ad opera dell’autore
[11].

Definizione 21. Si dice che s è una funzione spline di grado k se oltre ad essere un
polinomio di grado k è Ck−1[a, b]. In tal caso i punti xi, i = 1, ..., n− 1 vengono detti
nodi (interni).

Notazione: S(k; x0, x1, ..., xn) è lo spazio lineare delle splines di grado k.

Una spline si può scrivere

s(x) =

k∑
j=0

cjx
j +

1

k!

n−1∑
j=1

dj(x− xj)
k
+, x ∈ [a, b]. (5.47)

La funzione (x− xj)
k
+ si chiama potenza troncata ed è definita come segue:

(x− xj)
k
+ =

{
(x− xj)

k x > xj
0 x ≤ xj

.

In (5.47) ci sono k + n parametri (cj e dj), ciò implica che lo spazio delle splines
di grado k ha dimensione n+ k.

ESEMPIO 43. Le splines cubiche, che sono anche le più usate, si ottengono per k =
3. Il comando Matlab/Octave spline costruisce proprio splines cubiche. Vedremo
nel paragrafo 5.9.3 come costruire splines cubiche interpolanti imponendo diverse
condizioni sui nodi di bordo.

Ordine di approssimazione: se f ∈ Ck+1[a, b] e se n (numero nodi) è variabile,
allora si prova che

min
s∈S(k;ξ0,ξ1,...,ξn)

‖f − s‖ = O(hk+1)

con h = max
1≤i≤n−1

|xi+1 − xi|.

5.9.1 B-splines
Sia {x1, x2, ..., xn} (o {xi}+∞

i=−∞) una sequenza finita (o infinita) crescente di nu-
meri reali (xi < xi+1), detti nodi che per ora assumiamo distinti.

Definizione 22. La i-esima B-Spline di ordine k, che si indica con B(x;xi, ..., xi+k)
(grado k − 1) è la k-esima differenza divisa della potenza troncata p(x; t) = (x −
t)k−1

+

B(x;xi, ..., xi+k) = (xi+k − xi)p[xi, ..., xi+k](x) ,

dove con p[·](x) si è indicata la k-esima differenza divisa costruita sui nodi xi, xi+1,
..., xi+k di p(x; ·) vista come funzione di x.

1575 - Interpolazione e approssimazione

Nota. Per capire meglio questa definizione, suggeriamo di costruirsi le B-
splines lineari, ovvero per k = 2.

Proposizione 12. Alcune proprietà delle B-Splines.

• Bi,k(x) = 0 se x �∈ (xi, xi+k].

• Bi,k > 0 nel suo supporto [xi, xi+k)

• ∀x ∈ R,
∑∞

i=−∞ Bi,k(x) = 1 o equivalentemente

∫
R

Bi,k(x)dx = 1 .

Le B-splines sono quindi a supporto compatto, positive e formano una par-
tizione dell’unità.

Relazione di ricorrenza. Si basa sulla regola di Steffensen per la differenza
divisa del prodotto di due funzioni f e g, nota come regola di Steffensen.

Proposizione 13. Siano f e g due funzioni sufficientemente differenziabili e i
punti x1 ≤ ... ≤ xn+1 siano dati. Allora

(f · g)[x1, ..., xn+1] =

n+1∑
j=1

f [x1, ..., xj]g[xj , ..., xn+1] (5.48)

Pertanto, se riscriviamo la funzione potenza p(x; t) = (x− t)k+ come il prodotto
delle funzioni f(x) = (x − t) e g(x) = (x − t)k−1

+ , possiamo applicare la regola
di Steffensen per ottenere la seguente relazione di ricorrenza (utile ai fini com-
putazionali!) per le B-splines

Bi,l(x) =

(
xi+l − x

xi+l − xi

)
Bi+1,l−1(x) +

(
x− xi

xi+l−1 − xi

)
Bi,l−1(x) . (5.49)

dove l indica l’ordine (=grado +1), i l’indice di intervallo. La relazione si in-
nesca a partire da Bi,1(x) = 1 se x ∈ [ξi, ξi+1].
In Figura 5.9, sono rappresentate le B-splines di ordine 3 (quadratiche). La

suddivisione su cui sono costruite ha il secondo nodo doppio e l’ultimo nodo con
molteplicità pari 3. Vedremo nel prossimo paragrafo che scegliendo i nodi multi-
pli, le B-splines e di conseguenza la risultante spline, diventano via via meno re-
golari. In particolare se il nodo ha molteplicità pari all’ordine, la B-spline diventa
discontinua, come in Fig. 5.9 nel caso della prima B-spline (dall’alto) costruita
sui nodi [4, 6, 6, 6]: infatti essa risulta discontinua in 6. La funzione ricorsiva
bspline.m in Appendice C, consente di calcolare la i-esima B-spline di ordine k,
data una partizione xi di nodi, nel generico punto x.

158 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 5.9: Bsplines di ordine 3 (quadratiche).

Figura 5.10: Bsplines quadratiche costruite con la funzione bspline.m sulla
sequenza equispaziata x=linspace(1,10,10)

5.9.2 Interpolazione

Sia f(x) una funzione nota sui punti t1, t2, ..., tm. Si desideri interpolarla per
mezzo di una spline S(x) di ordine n (grado n-1) con prescritti nodi interni x1, ..., xN−1.

1595 - Interpolazione e approssimazione

Inoltre t1 < t2 < ... < tm e

t1 < x1 < x2 < ... < xN−1 < tm .

I parametri da determinare sono

m = N + n− 1

che verranno determinati dalle condizioni d’interpolazione

S(tj) = f(tj), j = 1, ...,m . (∗∗)
Per l’unicità della soluzione è necessario chem = N+ n− 1 .
I. J. Schoenberg e A. Whitney nel 1953 (cfr. C. de Boor: I.J. Schoenberg: Se-

lected Papers, Vol 2. pp. 342-344) hanno dimostrato che esiste un’unica soluzione
del problema d’interpolazione se e solo se i nodi soddisfano le relazioni

t1 < x1 < tn+1

t2 < x2 < tn+2

...
...

tN−1 < xN−1 < tm

(5.50)

Osservazione. Non sono richieste informazioni circa le derivate finali. In tal
caso il problema d’interpolazione è trattato come un normale problema d’interpo
lazione polinomiale.
Possiamo scrivere S(x) =

∑m
i=1 ciBi(x) , dove Bi sono B-spline di ordine n con

nodi interni la sequenza x1, ..., xN−1. Perciò (**) diventa
m∑
i=1

ciBi(tj) = f(tj), j = 1, ...,m . (5.51)

ovvero, in forma matriciale, Ac = f
Costruiamo le B-splines Bi, i = 1, ...,m. A tale proposito, consideriamo 2n

nodi addizionali: x1−n, . . . , x0 ≤ t1; x1−n < x2−n < · · · < x0 .

tm ≥ xN , xN+1, ..., xN+n−1;

xN > xN+1 > · · · > xN+n−1 .

Nota. I 2n nodi addizionali possono essere presi coincidenti (come dimostrato
da Carrasso e Laurent in Information Processing 68, IFIP Congress, Edinburgh
1968, Ed. A.J.H Morell, pp. 86-89).
Per la proprietà delle B-splines di avere supporto minimo cioè

Bi,n(x) =

> 0 xi−n ≤ x < xi
↗
↘

= 0 altrimenti

si ha che la matrice A ha al più n elementi diversi da zero per ogni riga. Non
solo, tale matrice è anche stocastica (somma x righe = somma x colonne = 1)

-

160 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 5.11: BSpline quadratiche costruite sulla sequenza xi = linspace(-5,5,11)
con aggiunta di nodi multipli, con molteplicità pari all’ordine, agli estremi.

ESEMPIO 44. N = 6, n = 4 (spline cubiche) con nodi

a = t1 < t2 < x1 < t3 < x2 < x3 < t4 < t5 < t6 < x4 < t7 < t8 <

< x5 < t9 = b .

La matrice A (N + n− 1), 9× 9 sarà :

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×
× × × ×

× × × ×
× × × ×
× × × ×
× × × ×

× × × ×
× × × ×

×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5.9.3 Interpolazione con splines cubiche
Si consideri una funzione f(x) in un intervallo I = [a, b] della retta reale. Si
prenda una partizione di I (non necessariamente equispaziata)

a = x1 < x2 < ... < xn = b .

Facciamo vedere che il problema d’ interpolazione con una spline cubica è
equivalente alla soluzione di un sistema lineare A ·m = d con A matrice tridiag-
onale simmetrica, definita positiva e diagonalmente dominante.

1615 - Interpolazione e approssimazione

Figura 5.12: Spline cubica interpolante su nodi ”ad hoc” a (sx) e nodi equis-
paziati (dx)

Infatti, su ogni intervallino Ii = [xi, xi+1], i = 1, ..., n − 1 la spline è un poli-
nomio cubico, ovvero si(x) = a0,i + a1,ix+ a2,ix

2 + a3,ix
3. Per determinare univo-

camente la mia spline su I avremo bisogno di 4(n − 1) condizioni (tante quanti i
coefficienti incogniti). Ora, le condizioni d’interpolazione negli n punti xi

si(xi) = f(xi), si(xi+1) = f(xi+1), i = 1, ..., n , (5.52)

vanno a sommarsi alle 3(n− 2) condizioni di continuità C2 nei nodi interni:

si(xi+1) = si+1(xi+1) , i = 1, ..., n− 2 , (5.53)
s′i(xi+1) = s′i+1(xi+1) , i = 1, ..., n− 2 , (5.54)
s′′i (xi+1) = s′′i+1(xi+1) , i = 1, ..., n− 2 . (5.55)

In definitiva avremo n + 3(n − 2) = 4n − 6. Restano pertanto due condizioni da
assegnare per rendere univoca la determinazione dei coefficienti incogniti. Tra
le possibili scelte le più usate sono le seguenti.

162 Appunti di Calcolo Numerico con codici in Matlab/Octave

• s′′1(x1) = s′′n(xn) = 0, in tal caso la spline viene detta naturale;

• nel caso in cui siano noti i valori f ′(x1) e f ′(xn) s’imporranno le condizioni
s′1(x1) = f ′(x1) e s′n(xn) = f ′(xn), in tal caso la spline viene detta vincolata
o completa;

• nel caso in cui siano f(x) sia periodica di periodo xn − x1 = b − a, ovvero
f(x1) = f(xn) s’imporranno le condizioni s′1(x1) = s′n(xn) e s′′1(x1) = s′′n(xn),
in tal caso la spline viene detta periodica.

Indichiamo con m il vettore dei momenti (cfr. eq. (5.55))

mi = s′′i (xi), i = 1, ..., n− 1

mn = s′′n−1(xn) .

Questa scelta riduce il numero di equazioni necessarie a determinare la spline.
Infatti, s′′i (x), x ∈ [xi, xi+1] è un polinomio di grado al più 1, poiché

s′′i (x) = mi+1
x− xi
hi

−mi
x− xi+1

hi
(5.56)

dove hi = xi+1 − xi. Integrando due volte si ottiene

s′i(x) = mi+1
(x− xi)

2

2hi
−mi

(x− xi+1)
2

2hi
+ αi , (5.57)

si(x) = mi+1
(x− xi)

3

6hi
−mi

(x− xi+1)
3

6hi
+ αi(x− xi) + βi

e le costanti αi e βi vengono determinate imponendo le condizioni d’interpolazione
nei nodi. Ovvero

mi
h2
i

6
+ βi = f(xi)

mi+1
h2
i

6
+ αihi + βi = f(xi+1) .

Da cui ricaveremo βi, αi. In definitiva restano da determinare i momenti mi, i =
1, ..., n. Dalle (5.57) imponendo la continuità della derivata prima nei nodi in-
terni e sostituendo i valori di αi e αi−1 si ottiene il sistema tridiagonale di ordine
n− 2 nelle incognite m1, . . . ,mn

hi−1

6
mi−1+

hi−1 + hi
3

mi+
hi
6
mi+1 =

f(xi+1)− f(xi)

hi
−f(xi)− f(xi−1)

hi−1
, i = 2, ..., n−1 ,

(5.58)
I valori dim1 emn si determineranno imponendo le condizioni aggiuntive (5.53)-
(5.55).

Vediamo ora come costruire la spline cubica vincolata, ovvero la spline cubica
per la quale oltre ai valori della funzione f(x) nei nodi devono essere soddisfatte
le condizioni s′(a) = f ′(a) e s′(b) = f ′(b).

1635 - Interpolazione e approssimazione

Per facilitare l’implementazione siano x il vettore dei nodi della partizione,
y il vettorre dei valori della funzione, yi = f(xi), i siano dati i valori aggiuntivi
y′1 = f ′(a) e y′n = f ′(b). Pertanto l’algoritmo dovrà eseguire i seguenti passi.

1. Costruire la matrice A e il vettore d come segue.

• Costruire il vettore h, tale che hi = xi+1 − xi.
• Costruire il vettore d, tale che d1 = y2−y1

h1
−y′1, di = yi+1−yi

hi
− yi−yi−1

hi−1
, i =

2, ..., n− 1 e dn = y′n − yn−yn−1

hn−1
.

• Costruire la matrice A, tridiagonale simmetrica, tale che

A1,1 =
h1

3
, An,n =

hn−1

3

e

Ai,i+1 =
hi
6
, Ai,i−1 =

hi−1

6
, Ai,i =

(hi + hi−1)

3
, i = 2, ..., n− 1 .

Infine A1,2 = A2,1 e An,n−1 = An−1,n.

2. Risolvere il sistema Am = d.

3. Visualizzare i punti (xi, yi), i = 1, ..., n e la spline interpolante definita
nell’intervallo xi ≤ x < xi+1, i = 1, ..., n− 1 come segue:

s(x) =
(xi+1 − x)3mi + (x− xi)

3mi+1

6hi
+ C (xi+1 − x) +D (x− xi)

dove le costanti C,D sono date dalle formule seguenti: C = yi
hi
− himi

6 e
D = yi+1

hi
− himi+1

6 .

Infine, per la ricerca dell’intervallo a cui appartiene il generico punto x, si può
fare una ricerca binaria o sequenziale. Il seguente codice Matlab/Octave esegue
la ricerca sequenziale dell’indice j dell’intervallo a cui appartiene il punto x su
cui desideriamo valutare la spline

function j=search_int(x,d);

%---

% Cerca l’indice j dell’intervallo a cui appartiene

% il punto x su cui valutare la spline

%---

for i=1:length(d)-1,

if(x >= d(i) & x < d(i+1))

j=i;

break;

end;

if(x >= d(length(d)-1))

j=length(d)-1; break;

end;

end;

164 Appunti di Calcolo Numerico con codici in Matlab/Octave

Osservazione. Nel toolbox splines di Matlab/Octave, la funzione csapi, (la cui
chiamata si effettua come pp=csapi(x,y), consente di costruire la spline cubica,
nella forma definita nella struttura ppform pp, che soddisfa alle condizioni al
bordo dette ”not-a-knot”. Tali condizioni prevedono che nel primo nodo interno,
x2, e nell’ultimo interno xn−1, sia verificata la condizione

jump s(3)(x2) = 0 = jump s(3)(xn) ,

5.9.4 Teorema del campionamento di Shannon e smoothing
spline

Dato un segnale limitato in banda s(x) esso può essere ricostruito dai suoi cam-
pionamenti (Nyquist rate) sk mediante l’uso della funzione sinc ovvero sinus

cardinalis, sinc(x) =
sin(π x)

πx
(forma normalizzata) oppure sinc(x) =

sin(x)

x
(forma non normalizzata):

s(x) =
∑
k∈Z

sksinc(x− k) . (5.59)

Nota: sinc(0) = 1, sinc(k) = 0, k ∈ Z \ {0}. Nel caso discreto tale campiona-
mento dà stime poco accurate.

In alternativa, si possono usare splines cardinali e relative B-splines
cardinali. B-spline cardinali di ordine n si ottengono facendo la convoluzione n+
1 volte di β0(x) = 1, |x| < 1/2, β0(x) = 0.5, |x| = 1/2 e altrove 0. limn→∞ βn(x) =
sinc(x).

s(x) =
∑
k∈Z

skβ
n(x− k) .

Per le B-splines cardinali vale la relazione di ricorrenza

βn(x) =
x

n− 1
βn−1(x) +

n− x

n− 1
βn−1(x− 1) .

Tale scelta è più smooth e meno costosa computazionalmente.
Smoothing: è l’altro modo di fare data fitting con spline.

Problema 1. Siano dati i punti (xi, yi), i = 1, ..., n con yi = f(xi). Trovare la
funzione f che minimizza

n∑
i=1

(yi − f(xi))
2 + α

∫ xn

x1

(f (p)(x))2dx .

La risultante curva è un polinomio continuo a tratti di grado 2p − 1 Il primo
termine misura la vicinanza della funzione di fitting dai dati. Il secondo pe-
nalizza la curvatura della funzione e α il collegamento tra i due termini. Se
0 < α < ∞, Schoenberg provò che tale f è la spline naturale di grado 2p − 1. Se
α = 0, f=interpolante polinomiale;

Nota: i dati sono assunti del tipo segnale+rumore

yi = f(xi) + εi, εi ≈ N(0, σ2), i = 1, ..., n .

1655 - Interpolazione e approssimazione

5.10 Polinomio d’approssimazione di Bernstein

Si consideri l’intervallo [a, b] = [0, 1]. Sia inoltre k (grado) fissato. La base di
B-spline sulla sequenza di nodi

t0 = . . . = tk = 0, tk+1 = . . . = t2k+1 = 1 ,

Bi,k, i = 0, 1, ..., k sono polinomi di grado k su [0,1] che verificano la ricorrenza:

Bi,k(x) = xBi,k−1(x) + (1− x)Bi+1,k−1(x) , (5.60)

che è quella delle B-splines con le opportune modifiche. Sono detti polinomi di
Bernstein di grado k e si denotano con Bk

i (x) o βki (x).

Teorema 26. (Teorema di Weierstrass)
Sia f ∈ C[a, b]. Dato ε > 0 è sempre possibile trovare un polinomio pn(x) (di grado
sufficientemente grande) tale che

|f(x)− pn(x)| ≤ ε, ∀x ∈ [a, b] .

Definizione 23. Sia f definita su [0, 1]. Il polinomio approssimante di Bernstein
di grado n associato ad f è

Bn(f ;x) =

n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k .

Nota: Bn(f ; 0) = f(0), Bn(f ; 1) = f(1) (“quasi” interpolante) e

Bk,n(x) =

(
n

k

)
xk(1− x)n−k (5.61)

che sono i polinomi elementari di Bernstein.Circa la convergenza dell’approssimazione
di Bernstein, vale il seguente risultato (dovuto a Bernstein) (cfr. [22, p. 5]).

Teorema 27. Sia f(x) limitata in [0,1]. Allora

lim
n→∞Bn(f ;x) = f(x)

su ogni punto x ∈ [0, 1] dove f è continua. Se inoltre f ∈ C[0, 1] allora il limite vale
uniformemente.

Come corollario a questo teorema possiamo ri-ottenere il Teorema di Weier-
strass.

Corollario 1. Se f ∈ C[0, 1], allora per ogni ε > 0 e per n sufficientemente grande

|f(x)−Bn(f ;x)| ≤ ε ∀x ∈ [0, 1] .

Concludiamo con l’approssimazione con operatori di Bernstein

166 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 5.13: Polinomi elementari di Bernstein di grado 3

5.10.1 Curve B-splines e di Bézier

Sia t ∈ [α, β] ⊂ R il parametro di una curva parametrica e P0, P1, ..., Pn−1, n punti
del piano.

1. La curva B-spline di ordine m associata al poligono di controllo indi-
viduato dai punti Pi è la curva

S(t) =

n−1∑
i=0

PiBi,m(t), t ∈ [α, β] .

2. La curva di Bézier di grado n − 1 associata al poligono di controllo
individuato dai punti Pi è la curva

S(t) =

n−1∑
i=0

PiB
n−1
i (t), t ∈ [α, β] .

Bn−1
i (t): polinomi di Bernstein. Come per le funzioni spline, valgono

gli stessi algoritmi di valutazione, derivazione e “knot-insertion”. In par-
ticolare, l’algoritmo di valutazione viene chiamato di De Casteljau. Le
cose interessanti in questo “nuovo” contesto sono relative alle condizioni
di adiacenza tra curve di Bézier, che si esprimono come differenze finite “in
avanti” dei punti di controllo, agli algoritmi di suddivisione e al blossom-
ing. Tali curve sono però solo interpolanti agli estremi dell’intervallo (dei
parametri) e approssimano il “convex-hull” della curva. Esse sono invari-
anti per affinità, simmetriche e “variation-diminishing”.

1675 - Interpolazione e approssimazione

Figura 5.14: f(x) = x(x − 1), x ∈ [0, 1] approssimata con un polinomio di
Bernstein di grado 20

5.10.2 Algoritmo di De Casteljau

I polinomi di Bernstein hanno trovato applicazione nella geometria computazionale

e in particolare modo nella descrizione di curve e superfici di Bézier, che sono
funzioni polinomiali che si ottengono con ripetute interpolazioni lineari.
Consideriamo in questa sezione un algoritmo per la costruzione di curve diBezier
noto col nome di Algoritmo di De Casteljau (descritto ad esempio in [13]).

Algoritmo 4. Dato un insieme B = {P0, . . . , Pn} di punti del piano e t ∈ R

(usualmente t ∈ [0, 1]), il generico punto appartenente alla curva di Bézier si
determina con i seguenti passi:

1. {Passo di inizializzazione}
b
(0)
i (t) = Pi (5.62)

2. {Passo iterativo}
b
(r)
i (t) = (1− t)b

(r−1)
i (t) + tb

(r−1)
i+1 (t) r=1,...,n i=0,...,n−r (5.63)

La curva di Bézier calcolata con l’algoritmo 4 è quindi ottenuta con combi-
nazioni baricentriche ripetute. In Figura 5.15 è descritto il funzionamento
dell’algoritmo di De Casteljau.

168 Appunti di Calcolo Numerico con codici in Matlab/Octave

�
�
�
�
�
�
��

����������
�
�
�
�
�
�

�
�
�
�
�
��

������������

�������

�

�

�

�

�

�

�

�

�

�

b30

b0

b1

b2

b3

b10

b11

b12

b20

b21

Figura 5.15: Costruzione di una curva di Bézier di grado 3 con l’algoritmo di De
Casteljau.

Proposizione 14. I punti b(r)i (t) possono essere espressi in termini di polinomi
di Bernstein Br

j di grado r risultando

b
(r)
i (t) =

r∑
j=0

Pi+jB
r
j (t) i = 0, ..., n− r (5.64)

Dim. Induzione su r.

b
(r)
i (t)

(5.63)
= (1− t)b

(r−1)
i (t) + tb

(r−1)
i+1 (t)

(5.64)
= (1− t)

i+r−1∑
j=i

PjB
r−1
j−i (t) + t

i+r∑
j=i

PjB
r−1
j−i−1(t)

Usiamo il fatto che Br
j (t) = 0 se j �∈ {0, ..., n}. Riordinando gli indici otteniamo

(1− t)
i+r∑
j=i

PjB
r−1
j−i (t) + t

i+r∑
j=i

PjB
r−1
j−i−1(t) =

i+r∑
j=i

Pj

⎡
⎢⎢⎣(1− t)Br−1

j−i (t) + tBr−1
j−i−1(t)︸ ︷︷ ︸

Br
j−i(t)

⎤
⎥⎥⎦ =

i+r∑
j=i

PjB
r
j−i(t)

Questo conclude la dimostrazione

Usando l’algoritmo di De Casteljau e la geometria sottostante possiamo de-
durre delle proprietà possedute dalle curve di Bézier. Di queste ricordiamo
l’invarianza per affinità, l’interpolazione nei punti estremi dell’intervallo
di approssimazione, la proprietà di convex hull1, la simmetria e come per i
polinomi di Bernstein la caratteristica capacità mimica della curva.

1Si definisce convex hull l’insieme formato dalle combinazioni convesse di un insieme di punti (di
uno spazio euclideo) detto il poligono di controllo.

1695 - Interpolazione e approssimazione

Un codice per costruire una curva di Bézier è il seguente

function bb=Bezier(Px,Py,t)

%--

% Dati i vettori Px e Py (ascisse e

% ordinate del poligono di controllo rispettivamente)

% e il vettore t dei parametri (di lunghezza m),

% la funzione costruisce la curva di Bezier

% e la salva nella matrice bb (di dimensione 2 x m)

%--

n=length(Px);m=length(t); b=[Px; Py];

for k=1:m

for r=2:n,

for i=1:n-r+1,

b(:,i)=(1-t(k))*b(:,i)+t(k)*b(:,i+1);

end

end

bb(:,k)=b(:,1);

end

170 Appunti di Calcolo Numerico con codici in Matlab/Octave

5.11 Minimi quadrati discreti e decomposizione SVD

In corrispondenza a punti (nodi) xi e ai valori yi, i = 0, . . . ,m provenienti, ad
esempio, da misurazioni sperimentali, il problema dei minimi quadrati discreti
consiste nell’approssimare tali valori con una funzione

sn(x) =

n∑
i=0

ciϕi(x) , n
 m (5.65)

ovvero una combinazione lineare di n+1 funzioni linearmente indipendenti {ϕi},
possibilmente facili da costruire. Per determinare sn si chiederà che risulti min-
imo il residuo (quadratico)

E(sn) =

m∑
i=0

(sn(xi)− yi)
2 (5.66)

La scelta delle ϕi viene dettata di solito da informazioni note sulla distribuzione
dei dati o semplicemente dall’analisi grafica della loro distribuzione. Una scelta
semplice è di prendere ϕi(x) = xi, i = 0, . . . , n. In tal caso il problema si riconduce
alla costruizione di un polinomio di approssimazione.

Dati m + 1 punti (xi, yi), i = 0, ...,m, ci si propone di trovare un polinomio
di grado n ≤ m (possibilmente n
 m) t.c. siano minime le deviazioni (errori)
(p(xi)− fi)

2, i = 0, ...,m.

La soluzione si ricerca minimizzando il seguente funzionale quadratico rispetto
a tutti i polinomi p di grado m

E(p) =
m∑
i=0

(p(xi)− yi)
2 =

m∑
i=0

{a0 + a1xi + · · ·+ anx
n
i − yi}2 . (5.67)

In effetti, il funzionale E(p) dipendente dai coefficienti del polinomio p, cioè
a0, . . . , an, pertanto potremo scrivere E(a0, . . . , an) per evidenziare tale dipen-
denza. Essendo un funzionale quadratico, il minimo lo si ricerca tra i punti che
annullano le derivate parziali rispetto ai coefficienti. Vale infatti il seguente Teo-
rema

Teorema 28. Condizione necessaria affinchè si raggiunga il minimo è che

∂E

∂aj
= 0, j = 0, . . . , n . (5.68)

Questo da origine al sistema

m∑
i=0

{a0 + a1xi + · · ·+ anx
n
i − yi}xji = 0, j = 0, ..., n ,

1715 - Interpolazione e approssimazione

che in forma matriciale diventa⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
i=0

x0
i

m∑
i=0

xi · · ·
m∑
i=0

xni

m∑
i=0

xi

m∑
i=0

x2
i · · ·

m∑
i=0

xn+1
i

...
...

...
m∑
i=0

xni

m∑
i=0

xn+1
i · · ·

m∑
i=0

x2n
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a0
a1
...
an

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
i=0

x0
i yi

m∑
i=0

xiyi

...
m∑
i=0

xni yi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.69)

Il sistema (5.69) rappresenta le cosidette equazioni normali e si può scri-
vere compattamente come

Ba = f ,

con B matrice simmetrica e semidefinita positiva di ordine (n + 1) di elementi

bij =

m∑
i=0

xi+j−2
i e z vettore colonna zi =

m∑
j=0

xi−1
j yj oppure, come vederemo più

oltre, ricorrendo alla decomposizione SV D della matrice rettangolare A i cui ele-
menti sono ai,j = xj−1

i , i = 1, ...,m+ 1, j = 1, ..., n+ 1.
Il seguente teorema garantisce l’esistenza e unicità della soluzione del prob-

lema dei minimi quadrati.

Teorema 29. Se i punti x0, ..., xm sono distinti e n ≤ m allora esiste ed è unico
il polinomio p, deg(p) ≤ n tale che E(p) è minimo. I coefficienti a0, . . . , an sono
determinati dalla soluzione del sistema (5.69).

5.11.1 Equivalenza tra sistema dei minimi quadrati e de-
compozione SVD

Sia A una matrice rettangolare m × n, m ≥ n che rappresenta la matrice di
un problema di approssimazione dell’ insieme di valori X = {(xi, yi), i = 1, ...,m}
con polinomi di grado ≤ n− 1, ovvero

n∑
i=1

aix
i−1
j = yj , j = 1, ...,m . (5.70)

Sappiamo che ATA è n × n simmetrica e semidefinita positiva. Usando, ad es-
empio, il metodo di Jacobi per il calcolo di tutti gli autovalori di ATA possiamo
determinare una matrice ortogonale U e una matrice diagonale D tale che

UT (ATA)U = D . (5.71)

Ora, essendo D = diag(λ1, . . . , λn), le cui componenti sono gli autovalori di ATA
in ordine decrescente. Se qualche λi risultasse un numero negativo (di modulo
molto piccolo), lo si può considerare zero, poiché gli autovalori di ATA sono tutti

172 Appunti di Calcolo Numerico con codici in Matlab/Octave

positivi a meno di errori di arrotondamento dovuti al metodo di calcolo (premoli-
plicazione di A per la sua trasposta) e alla precisone usata.

Da (5.71), posto B = AU (m× n), si ha che

BTB = D . (5.72)

Il che implica che le colonne di B sono ortogonali.
Usando invece la fattorizzazione QR della matrice rettangolare B, determiner-

emo una matrice ortogonale V tale che

V TB = R (5.73)

con R che è zero sotto la diagonale principale. Inoltre, la matrice R è tale che

RTR = BTV TV B = BTB = D ;

Questo fatto ci suggerisce che le colonne di R sono ortogonali. Inoltre, se per
qualche i si ha λi = 0 allora è facile verificare che la corrispondente colonna di R
sarà zero.
Poiché R è triangolare superiore ed è ortogonale, allora essa risulta essere

zero anche sopra la diagonale principale. In definitiva R è diagonale ed ha la
stessa forma della matrice F della decomposizione SVD di A (ricordiamo che
V TAU = F) cioè

R =

⎛
⎜⎜⎜⎝

μ1 0 0 0 0
0 μ2 0 0 0
...

. . .
0 · · · 0 μn

⎞
⎟⎟⎟⎠ (5.74)

Ora avremo che R = F con μi =
√
λi.

In (5.73), essendo B = AU , si ha che la decomposizione SVD richiesta è:

V TAU = R .

Riassumendo, potremo dire che il vantaggio e lo svantaggio di questo approc-
cio sono rispettivamente

1. vantaggio: semplicità di implementazione del metodo, una volta risolto il
problema della ricerca degli autovalori di ATA;

2. svantaggio: si deve fare il prodotto ATA che come noto può portare ad una
perdita di informazioni ed ad un aumento del numero di condizionamento
di A.

Un esempio

Si vuole determinare la funzione che approssima, nel senso dei minimi quadrati i
punti {(xi, yi), 1 ≤ i ≤ m}, con un polinomio cubico p3(x) = a1+a2x+a3x

2+a4x
3.

Questo è quello che in inglese si chiama “data fitting”.

1735 - Interpolazione e approssimazione

Per determinare i coefficienti ai, i = 1, ..., 4 minimizzeremo, invece dell’errore,
l’errore quadratico medio

E(a1, a2, a3, a4) =

⎛
⎝ 1

m

m∑
j=1

(yj − p3(xj))
2

⎞
⎠

1
2

.

Osserviamo che minimizzare E o E2 è la stessa cosa. Ora, poichè E2 è una fun-
zione convessa, il minimo lo ricercheremo chiedendo che ∂E2

∂ai
= 0, i = 1, 2, 3, 4.

Ciò dà luogo ad un sistema lineare Aa = y con A, m × 4 e i vettori a, y che sono
4× 1 e m× 1, rispettivamente.
Vediamo il tutto in un caso concreto.

Si considerino i punti:

t=0:.05:1.0;

y=[.486; .866; .944;

1.144; 1.103; 1.202;

1.166; 1.191; 1.124;

1.095; 1.122; 1.102;

1.099; 1.017; 1.111;

1.117; 1.152; 1.265;

1.380; 1.575; 1.857];

Figura 5.16: Dati da approssimare con il metodo dei minimi quadrati

174 Appunti di Calcolo Numerico con codici in Matlab/Octave

Una possibile implementazione in Matlab/Octave della decomposizione SVD
di una matrice A, applicata al problema dei minimi quadrati per data fitting, è
come segue.

function [x]=SVD_MinQuad(t,n)

%---------------------------------------

% t=vettore dei punti

% n=grado del polinomio d’approssimazione

%

% x=soluzione del sistema con SVD

%--

m=length(t);

for i=1:m,

a(i,:)=t(i).^(0:n);

end;

[u,d]=eig(a’*a);

b=a*u;

[v,r]=qr(b);

z=inv(r’*r)*r’*(v’*y);

disp(’Soluzione con la decomposizione SVD di A ’);

x=u*z

Eseguendo il codice ecco i risultati.

>> Soluzione con la decomposizione SVD di A

0.5747

4.7259

-11.1282

7.6687

5.11.2 SVD in Matlab/Octave
In questa sottosessione, facciamo vedere come usare Matlab/Octave per deter-
minare la decomposizione SVD (Singular Value Decomposition) di una matrice.
Tale decomposizione, fattorizza una matrice A ∈ R

n×m (anche rettangolare) nel
prodotto

A = USV T , U ∈ R
n×n, S ∈ R

n×m, V ∈ R
m×m

Gli elementi nella “diagonale” di S sono chiamati valori singolari di A. Tutti gli
altri elementi di S sono nulli. Le matrici U e V sono ortogonali, cioè UTU = In
e V TV = Im, ove In e Im indicano le matrici identità di ordine n e m, rispetti-
vamente. Il comando svd calcola appunto la decomposizione SVD. Vediamo un
esempio.

>> A=[1,2,1;1,3,1;0,1,1;1,1,1]

1755 - Interpolazione e approssimazione

Figura 5.17: Approssimazione ai minimi quadrati

A =

1 2 1

1 3 1

0 1 1

1 1 1

>> [U,S,V]=svd(A)

U =

-0.5346 0.1091 -0.1889 -0.8165

-0.7186 -0.5603 -0.0547 0.4082

-0.2738 0.2608 0.9258 0.0000

-0.3505 0.7786 -0.3230 0.4082

S =

4.5732 0 0

0 0.7952 0

0 0 0.6736
0 0 0

176 Appunti di Calcolo Numerico con codici in Matlab/Octave

V =

-0.3507 0.4117 -0.8411

-0.8417 -0.5323 0.0903

-0.4105 0.7397 0.5332

A partire dai fattori U , S e V è possibile calcolare, ancora, la soluzione ai minimi
quadrati di un sistema sovradeterminato

>> b=[1;2;0;1]

b =

1

2

0

1

>> d=U’*b

d =

-2.3223

-0.2329

-0.6213

0.4082

>> s=diag(S)

s =

4.5732

0.7952

0.6736

>> y=d(1:length(s))./s

y =

-0.5078

-0.2929

-0.9224

>> x=V*y

1775 - Interpolazione e approssimazione

x =

0.8333

0.5000

-0.5000

In maniera analoga, è possibile calcolare la soluzione ai minimi quadrati di un
sistema quadrato singolare.

>> A=[1,2,1;1,2,1;0,1,0]

A =

1 2 1

1 2 1

0 1 0

>> b=[1;2;0]

b =

1

2

0

>> [U,S,V]=svd(A)

U =

-0.6873 -0.1664 -0.7071

-0.6873 -0.1664 0.7071

-0.2353 0.9719 0

S =

3.5616 0 0

0 0.5616 0

0 0 0

V =

-0.3859 -0.5925 -0.7071

-0.8379 0.5458 0

-0.3859 -0.5925 0.7071

178 Appunti di Calcolo Numerico con codici in Matlab/Octave

Il terzo valore singolare vale 0 e dunque non è possibile calcolare y3 = d3/s3.
Basta però porre y3 = 0. Si può fare automaticamente con il comando find:

>> d=U’*b

d =

-2.0618

-0.4991

0.7071

>> s=diag(S)

s =

3.5616

0.5616

0

>> y=zeros(size(d))

y =

0

0

0

>> index=find(s~=0)

index =

1

2

>> y(index)=d(index)./s(index)

y =

-0.5789

-0.8888

0

>> x=V*y

x =

0.7500
-0.0000

0.7500

1795 - Interpolazione e approssimazione

Nota bene: si procede in maniera del tutto analoga per sistemi sottodeterminati
(sia quadrati che rettangolari), nel caso in cui si desideri la soluzione di norma
euclidea minima, piuttosto che quella con il maggior numero di zeri. Analoga-
mente quando si desideri la soluzione ai minimi quadrati di norma euclidea min-
ima di sistemi singolari.

5.11.3 Esercizi proposti
ESERCIZIO 73. (Appello del 21/6/06). Si considerino i valori di tabella

xi 1 2.5 3 5 6.5 8 9.3
yi 4 2 3 3.5 3.9 7 5.3

1. determinare il polinomio Pm, di grado m = 3 approssimante le coppie di
valori (xi, yi) nel senso dei minimi quadrati discreti.

2. Si giustifichi il fatto che per m = 6 il polinomio è interpolante.

3. Si consideri il punto x̄ = 4 e come valore corrispondente ȳ, quello dell’interpolante
lineare sull’intervallo [3,5]. Sia ora |Pm(x̄) − ȳ| l’errore assoluto in x̄. Far
vedere che per m = 2 l’errore è minimo.

180 Appunti di Calcolo Numerico con codici in Matlab/Octave

5.12 Interpolazione trigonometrica e FFT

Definizione 24. Una funzione della forma

tM (x) =

M∑
k=0

(ak cos(kx) + bk sin(kx)) , (5.75)

si chiama un polinomio trigonometrico di grado M .

Se f : [0, 2π] → C è una funzione periodica di periodo 2π (f(0) = f(2π)), se
si desidera interpolarla negli n + 1 nodi equispaziati xj = 2πj

n , j = 0, . . . , n con
tM (x) chiederemo che siano soddisfatte le condizioni

tM (xj) = f(xj), j = 0, . . . , n . (5.76)

Anzitutto osserviamo che tM (x) si può scrivere come segue

• se n è pari eM = n/2

tM (x) =
a0
2

+
M∑
k=1

(ak cos(kx) + bk sin(kx)) ; (5.77)

• se n è dispari eM = (n− 1)/2

tM (x) =
a0
2

+
M∑
k=1

(ak cos(kx) + bk sin(kx)) + aM+1 cos((M + 1)x) . (5.78)

Ricordando l’identità eix = cosx+ i sinx dimostriamo ora la seguente

Proposizione 15.

tM (x) =

M∑
k=−M

ckeikx ; (5.79)

con {
ak = ck + c−k

bk = i(ck − c−k), k = 0, . . . ,M .
(5.80)

Dim. Infatti,
M∑

k=−M

ckeikx =

M∑
k=−M

ck(cos(kx) + i sin(kx)) =

=

M∑
k=1

ck(cos(kx) + i sin(kx)) +

M∑
k=1

c−k(cos(kx)− i sin(kx)) + c0

se n è pari è facile verificare che valgono le (5.80), mentre se n è dispari, osser-

vando che tM (x) =

(M+1)∑
k=−(M+1)

ckeikx, si ha che i ck, k = 0, ...,M sono come in (5.80)

e cM+1 = c−(M+1) = aM+1/2. �

1815 - Interpolazione e approssimazione

Alla luce della precedente Proposizione, possiamo scrivere tM (x) compatta-
mente come segue

tM (x) =

(M+s)∑
k=−(M+s)

ckeikx

con s = 0 quando n è pari e s = 1 quando n dispari.
Ritorniamo al problema dell’interpolazione trigonometrica, le condizioni di

interpolazione (5.76) si riscrivono come segue

(M+s)∑
k=−(M+s)

ckeikxj = f(xj) , j = 0, . . . , n . (5.81)

Moltiplichiamo in (5.81) a sinistra e destra per e−imxj , 0 ≤ m ≤ n e sommiamo
su j. Otteniamo

n∑
j=0

⎛
⎝ (M+s)∑

k=−(M+s)

cke−imxjeikxj

⎞
⎠ =

n∑
j=0

e−imxjf(xj) . (5.82)

Introdotta la matrice quadrata T , con tj,k = eik jh, 0 ≤ j ≤ n, k = −M −
s, . . . ,M+s, le relazioni (5.82) portano quindi alla soluzione di un sistema lineare
Tc = f con con c = {ck}, f = {f(xj)}. Pertanto per trovare i coefficienti incogniti
ck si dovrà fare un prodotto matrice-vettore che costa, in questo caso, (n+1)2. Per
ottenere un algoritmo più veloce, iniziamo provando una importante proprietà
delle funzioni esponenziali coinvolte.

Lemma 2. Le funzioni
{
eipxj

}
, 0 ≤ p ≤ n formano un sistema ortogonale, ovvero

n∑
j=0

e−imxjeikxj = (n+ 1)δk,m, 0 ≤ m ≤ n .

Dim. Infatti, osservando che la somma è
∑n

j=0 e
ijh(k−m) con xj = j h, h =

2π/(n+ 1).

(i) Per k = m è verificata: la somma si riduce
∑n

j=0 1 = n+ 1.

(ii) Per k �= m osserviamo che

n∑
j=0

eixj(k−m) =
1− (eih(k−m)

)n+1

1− eih(k−m)

con numeratore che è uguale a zero poiché
(
eih(k−m)

)n+1

= ei(n+1)h(k−m) =

cos(2π(k −m)) + i sin(2π(k −m)) = 1. Pertanto anche quando k �= m vale la
somma. �.

182 Appunti di Calcolo Numerico con codici in Matlab/Octave

Alla luce del precedente Lemma, possiamo concludere che

ck =
1

n+ 1

n∑
j=0

e−i kxjf(xj) , k = −(M + s), . . . ,M + s . (5.83)

In analogia con le serie di Fourier, i coefficienti ck sono detti trasformata discreta

di Fourier (o DFT) . Ricordiamo infatti, che i coefficienti della serie di Fourier
continua sono

γk =
1

2π

∫ 2π

0

e−ikxf(x)dx, k ∈ N .

Da un punto di vista computazionale, il calcolo di ogni coefficiente ck in (5.83),
richiede (n+1) operazioni moltiplicative. Basta infatti osservare che ck, nel caso
M = n

2 , è il prodotto scalare dei vettori f = [f(x0), . . . , f(xn)] e e = [ei
n
2 jh, . . . , e−i n

2 jh]
che hanno lunghezza n+1. Complessivamente, per il calcolo di tutti i coefficienti
il costo è O(n2).
Ma è possibile calcolare tutti i ck in modo più efficiente mediante l’algoritmo

noto in inglese col nome di Fast Fourier Transform o FFT.

5.12.1 Algoritmo FFT
Dato l’insieme X = {x0, . . . , xn} con m = 2r, r > 1, poniamo ωm = e

2πi
m cosicché

l’equivalente di ck per l’insieme X, è

dk =
1

m

n∑
j=0

ω−jk
m xj , k = 0, ...,m− 1 .

Posto quindi p = 2, q = 2r−1 (cosicchè pq = m)

dk =
1

p

p−1∑
l=0

ω−kl
m

(
1

q

q−1∑
s=0

ω−ks
q xl+ps

)
.

Posto quindi

e
(l)
k =

1

q

q−1∑
s=0

ω−ks
q xl+ps, l = 0, ..., p− 1 , k = 0, . . . ,m− 1 , (5.84)

allora

dk =
1

p

p−1∑
l=0

ω−kl
m e

(l)
k , k = 0, . . . ,m− 1 . (5.85)

Complessità. Iniziamo con l’osservare che, in (5.84), e(l)k+q = e
(l)
k perchè ω−q

q =

1. Pertanto, per ogni l, calcoleremo solo i coefficienti e(l)0 , . . . , e
(l)
q−1 che sono una

trasformata dei valori xl, xl+p, . . . , xl+p(q−1). Il costo di {e(l)k } è quindi quello di p
trasformate discrete di ordine q. Ora, calcolando preventivamente e(l)k , il calcolo

1835 - Interpolazione e approssimazione

di dk in (5.85), richiederà mp moltiplicazioni. Essendo m = 2r, il calcolo di dk
richiede 2m moltiplicazioni più il costo di valutare due trasformate discrete di
ordine q = 2r−1. Continuando, la complessità totale è:

2m+2
(
2 · m

2

)
+22

(
2 · m

22

)
+· · ·+2r

(
2 · m

2r

)
=

r∑
k=1

2m = 2mr = 2m log2(m) < m2 .

Per maggiori dettagli vedasi [1, pag.181 e ss.].
La funzione myFFT.m, in Appendice C, presenta un’implementazione della

FFT.

184 Appunti di Calcolo Numerico con codici in Matlab/Octave

6
Integrazione

Si desideri calcolare l’integrale definito∫ b

a

f(x)dx .

I motivi che inducono a calcolare numericamente un integrale sono svariati: ad
esempio nel caso in cui non si conosca una primitiva di f(x), oppure f(x) sia nota
solo in alcuni punti o ancora f(x) è valutabile su ogni valore di x ma solo me-
diante una routine automatica. In tutti questi casi, si preferiscono le cosidette
formule di quadratura. In pratica una formula di quadratura è una approssi-
mazione dell’integrale che fa uso dei valori della funzione in alcuni punti

∫ b

a

f(x)dx ≈
n∑
i=0

wif(xi) , (6.1)

dove xi sono detti nodi di quadratura e i coefficienti wi sono detto pesi della
formula di quadratura.
Nel seguito ci limiteremo allo studio di integrali definiti del tipo∫ b

a

ω(x)f(x)dx

dove ω(x) è una funzione positiva su [a, b] detta funzione peso. Le formule di
quadratura che considereremo saranno di tipo interpolatorio costruite sia su nodi
equispaziati che su nodi coincidenti con gli zeri dei polinomi ortogonali rispetto
all’intervallo [a, b] e alla funzione peso ω(x).

6.0.2 Formule di tipo interpolatorio
Assegnati i punti distinti x0, . . . , xn dell’intervallo [a, b] e pn(x) =

∑n
i=0 li(x)f(xi)

il polinomio d’interpolazione di grado n che interpola f nei punti xi ed Enf il
corrispondente errore d’interpolazione. Allora, grazie alla proprietà di linearità
dell’integrale

∫ b

a

ω(x)f(x)dx =

n∑
i=0

(∫ b

a

ω(x) li(x)dx

)
f(xi) +

∫ b

a

ω(x)Enf(x)dx . (6.2)

Posto quindi

wi =

∫ b

a

ω(x) li(x)dx, Rnf =

∫ b

a

ω(x)Enf(x)dx ,

allora ∫ b

a

ω(x) f(x)dx =

n∑
i=0

wif(xi) +Rnf . (6.3)

Le formule di quadratura della forma (6.3) si dicono interpolatorie perchè si
basano sul polinomio d’interpolazione della funzione f .

Definizione 25. Una formula di quadratura di tipo interpolatorio si dice esatta
con ordine (o grado) di esattezza n se integra esattamente i polinomi di grado
n.

La definizione appena data afferma che se f(x) ∈ Pn allora Enf(x) = 0 e
pertanto anche Rn f = 0. Non solo, se f(x) = 1, x, x2, . . . , xn e la formula (6.3) è
esatta di ordine n, allora possiamo scrivere⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w0 + · · · + wn =

∫ b

a

ω(x)x0dx

w0x0 + · · · + wnxn =

∫ b

a

ω(x)xdx

...
...

...

w0x
n
0 + · · · + wnx

n
n =

∫ b

a

ω(x)xndx

(6.4)

dove gli integrali
∫ b

a

ω(x)xk, k = 0, . . . , n si chiamanomomenti . Il sistema (6.4) è

un sistema di ordine n+1 con matrice di Vandermonde che è non singolare poiché
xi �= xj . Pertanto il sistema può essere utilizzato per determinare univocamente
i pesi wi, i = 0, . . . , n. L’unicità dei pesi di quadratura ci assicura anche che
non esistono altre formule per i pesi che producono formule di tipo interpolatorio
(6.1).
Osserviamo subito che essendo la matrice di Vandermonde malcondizionata,

dovremmo aspettarci che per n→∞ le formule di tipo interpolatorio siano insta-
bili. Vedremo in seguito come evitare questi problemi d’instabilità delle formule
di tipo interpolatorio.

Definizione 26. La formula di quadratura di tipo interpolatorio (6.1) si dice
convergente se

lim
n→∞

n∑
i=0

wif(xi) =

∫ b

a

ω(x)f(x)dx . (6.5)

Si può dimostrare (cfr. [6]) che se f ∈ C[a, b] si ha convergenza se
n∑
i=0

|wi| ≤ C (6.6)

186 Appunti di Calcolo Numerico con codici in Matlab/Octave

con C una costante indipendente da n. Ovvero si ha convergenza quando i pesi
sono limitati in modulo. Se inoltre f ∈ Ck[a, b] si ha anche che

|Rn f | ≤ A

nk
, (6.7)

con A costante positiva. Pertanto più f è regolare e più veloce è la convergenza.

6.0.3 Formule di Newton-Côtes
Le formule di quadratura di Newton-Côtes, di seguito useremo N-C, sono carat-
terizzate dalla scelta di nodi equispaziati: xi = a+ ih, h = (b− a)/n. Sono di due
tipi

• formule chiuse: quelle per cui x0 = a, xn = b e xi = x0 + ih, i = 1, . . . , n− 1
con h = (b− a)/n, n ≥ 0;

• formule aperte: quelle per cui x0 = a + h, xn = b − h e xi = x0 + ih, i =
1, . . . , n− 1, h = (b− a)/(n+ 2), n ≥ 0.;

I pesi di quadratura wi delle formule di N-C hanno la caratteristica di dipendere
solo da n e h ma non dall’intervallo di quadratura. Infatti, nel caso di formule
chiuse e con ω(x) = 1, posto x = a+ th, 0 ≤ t ≤ n, i pesi diventano

wi =

∫ b

a

li(x)dx = h

∫ n

0

n∏
j=0,j
=i

t− j

i− j
dt . (6.8)

Posti

αi =

∫ n

0

n∏
j=0,j
=i

t− j

i− j
dt, i = 0, . . . , n , (6.9)

che dipendono solo da i e n ma non dai nodi xi, allora la formula di quadratura
diventa

In(f) = h

n∑
i=0

αif(xi) .

Pertanto, i “nuovi” pesi αi si possono tabulare una volta per tutte usando la (6.9).
Osservando che αi = αn−i, potremo limitarci a calcolarne solo la metà.
I pesi αi sono noti col nome di numeri di Côtes. Infine, mediante la proprietà

dei polinomi di Lagrange di formare una partizione dell’unità, otteniamo la re-

lazione
n∑
i=0

αi = n.

Anche nel caso di formule aperte possiamo calcolare i pesi αi. Essendo x0 =
a+ h, xn = b− h e xk = a+ (k + 1)h, k = 1, . . . , n, si ha

αi =

∫ n+1

−1

n∏
j=0,j
=i

t− j

i− j
dt, i = 0, . . . , n . (6.10)

1876 - Integrazione

Nel caso particolare in cui n = 0, essendo l0(x) = 1, da (6.10) si ha α0 = 2.

ESEMPIO 45. Calcoliamo i coefficienti αi per le formule di N-C chiuse con n = 1, 2.

• Caso n = 1. Essendo x0 = a, x1 = b, e b− a = h, allora

α0 =

∫ 1

0

(1− t)dt =
1

2
, α1 = α0 .

La formula di quadratura corrispondente è la ben nota formula dei trapezi

ovvero

I1(f) =
h

2
[f(a) + f(b)] . (6.11)

In Figura 6.1, facciamo vedere come si comporta la formula per il calcolo di∫ 2

1/2

sin (x) dx. L’area evidenziata in colore è il valore approssimato ottenuto

con la formula dei trapezi. L’errore commesso è rappresentato dalla “differenza”
di area tra il grafico della funzione e l’area colorata.

• Per n = 2, useremo i punti x0 = a, x1 = a+b
2 e x2 = b. Pertanto

α0 =

∫ 2

0

1

2
(t− 1)(t− 2)dt =

1

3
, α1 =

∫ 2

0

t(2− t)dt =
4

3
, α2 = α0 .

Da cui si ottiene la formula di (Cavalieri-)Simpson

I2(f) =
h

3
[f(x0) + 4f(x1) + f(x2)] . (6.12)

Figura 6.1: Regola dei trapezi per il calcolo di
∫ 2

1/2

sin (x) dx.

188 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESERCIZIO 74. Costruire una formula di quadratura di N-C a 3 punti di tipo
aperto nota come formula di Milne:∫ 2h

−2h

f(x)dx ≈ w1f(−h) + w2f(0) + w3f(h) .

Sugg. Determinare i pesi wi chiedendo l’esattezza su 1, x, x2.

6.0.4 Stima dell’errore di quadratura
Sia f ∈ Ck[a, b]. Sotto queste ipotesi di regolarità della funzione, vale il seguente
risultato (la cui dimostrazione si trova ad esempio in [2, p. 721]).

Proposizione 16. Al solito h = b−a
n . Allora

Rn(f) =

∫ b

a

f(x)dx− In(f) = γnh
k+1 f

(k)(ξ)

k!
, ξ ∈ (a, b) , (6.13)

con
per n pari k = n+ 2 γn =

∫ n

0

tπn(t)dt

per n dispari k = n+ 1 γn =

∫ n

0

πn(t)dt

dove πn(t) = t(t− 1) · · · (t− n).

Riprendiamo l’esempio precedente.

• Per n = 1 ed essendo n dispari e k = 2, pertanto γ1 =
∫ 1

0
t(t − 1)dt = −1/6.

Da cui l’errore di quadratura per la formula dei trapezi è:

R1(f) = −h3

6

f (2)(ξ)

2!
= −h3

12
f (2)(ξ), ξ ∈ (a, b) . (6.14)

• Con n = 2, k = 4 e γ2 =
∫ 2

0
t2(t − 1)(t − 2) = −4/15. La funzione f viene

approssimata con un polinomio di secondo grado ottenendo la formula di
Simpson (6.12). Per l’errore, grazie alla Proposizione 16, otteniamo errore
di quadratura per la formula di Simpson

R2(f) = − 1

90
h5f (4)(ξ), ξ ∈ (a, b) . (6.15)

L’esame dell’errore di quadratura indica due situazioni

1. quando n è pari, le formule di N-C sono esatte per i polinomi di grado n+1;

2. quando n è dispari, esse sono esatte per polinomi di grado n.

1896 - Integrazione

n α0 α1 α2 α3 errore

1
1

2
− 1

12
h3f (2)(ξ)

2
1

3

4

3
− 1

90
h5f (4)(ξ)

3
3

8

9

8
− 3

80
h5f (4)(ξ)

4
14

45

64

45

24

45
− 8

945
h7 f (6)(ξ)

5
95

288

375

288

250

288
− 275

12096
h7 f (6)(ξ)

6
41

140

216

140

27

140

272

140
− 9

1400
h9 f (8)(ξ)

Tabella 6.1: Formule di N-C per n = 1, . . . , 6. Per n = 1 si ha la formula del
trapezi, per n = 2 la formula di (Cavalieri-)Simpson e per n = 3 si parla di
formula dei 3/8.

Pertanto, ai fini dell’errore, sono preferibili le formule per n pari, ovvero con n+1
punti d’interpolazione.
Riassumiamo questi risultati in Tabella 6.1, per valori di n = 1, . . . , 6.

ESEMPIO 46. Vogliamo calcolare

I =

∫ 1

0

e−x2

dx ,

con un errore minore o uguale a tol = 0.5 · 10−3. L’integrale dato si può esprimere
analiticamente mediante la funzione errore, erf (implementata con il nome erf

anche in Matlab/Octave)

erf(x) =
2√
π

∫ x

0

e−t2dt ,

il cui grafico è riportato in Figura 6.2 ottenendo

I =

√
π

2
erf(1) ≈ 0.747 .

Mediante le formule date nella Proposizione 16, si tratta di trovare n cosicché
l’errore sia ≤ tol.

190 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 6.2: Grafico della funzione errore, erf

• Partiamo con n = 1. Abbiamo bisogno di maxx∈[0,1] |f ′′(x)|. Essendo f ′′(x) =
2(2x2−1)e−x2

, che è strettamente crescente in [0, 1] e per x = 0 (assume il valore
minimo) vale−2 mentre per x = 1 vale 2/e < 1. Pertanto maxx∈[0,1] |f ′′(x)| = 2.

Calcoliamo γ2 =
∫ 1

0
t(t− 1)dt = − 1

6 e quindi, la stima richiesta, ricordando che
ora h = 1, k = n+ 1 perchè n è dispari, sarà

|R1| ≤ 2 · 12
6 · 2 ≈ 0.1667̄ > tol .

Dobbiamo aumentare n.

• Prendiamo n = 2. Ragionando come prima, abbiamo ora bisogno di

max
x∈[0,1]

|f (4)(x)| = max
x∈[0,1]

|4(4x3 − 12x2 + 3)e−x2 | = 12 .

Ricordando che ora h = 1/2, n = 2, ricaviamo la stima

|R2| ≤
(
1

2

)5

· 12 · 1

90
=

2

2880
≈ 4. · 10−3 > tol .

• Infine prendiamo n = 4. Ragionando allo stesso modo, dobbiamo ora calcolare

max
x∈[0,1]

|f (6)(x)| = max
x∈[0,1]

|8(8x6 − 60x4 + 90x2 − 15)e−x2 | = 120 .

Ricordando che ora h = 1/4, n = 4 (pari), ricaviamo la stima richiesta

|R4| ≤ 1

16128
≈ 6. · 10−5<tol .

1916 - Integrazione

6.0.5 Formule composite o generalizzate
Estendendo la Tabella 6.1 fino a n = 8, si può verificare che alcuni dei pesi wi

risultano negativi (in Tabella 6.2 sono riportati proprio i valori dei αi, i = 0, . . . , 4
per le formule di N-C chiuse). Essendo alcuni di essi negativi, ciò può dar luogo

n α0 α1 α2 α3 α4

8 3956
14175

23552
14175 − 3712

14175
41984
14175 −18160

14175

Tabella 6.2: Pesi di formule chiuse di N-C con n = 8

ad instabilità dovuta a cancellazione numerica, rendendo pertanto le formule
inutilizzabili per gradi elevati.
Una prima alternativa alle formule di N-C classiche, sono quelle composite o

generalizzate.
A tal proposito, consideriamo l’intervallo [a, b] che suddividiamo in N sottoin-

tervalli mediante i punti equispaziati xk, k = 0, . . . , N (con x0 = a e xN = b).
Grazie alla additività dell’integrale possiamo scrivere

∫ b

a

f(x)dx =

∫ x1

x0

f(x)dx+

∫ x2

x1

f(x)dx+ · · ·+
∫ xN

xN−1

f(x)dx =

N−1∑
k=0

∫ xk+1

xk

f(x)dx .

(6.16)
In ciascuno dei sottointervalli Ik = [xk, xk+1] applichiamo ora una formula di N-C
di grado n. Indicato con Ink (f) il valore dell’integrale di f sul k-esimo intervallino
Ik, allora

I(f) =
N−1∑
k=0

Ink (f) .

I due casi di nostro interesse sono per n = 1 e n = 2 che corrispondono alla
formula dei trapezi composita detta anche formula trapezoidale e alla formula
di Simpson composita, rispettivamente.

1. Per n = 1, su ogni sotto intervallo Ik = [xk, xk+1] si usa la formula dei
trapezi, ovvero∫ xk+1

xk

f(x)dx ≈ h

2
[f(xk) + f(xk+1)] h =

b− a

N
.

Mettendo assieme tutti gli integrali avremo la formula trapezoidale∫ b

a

f(x)dx ≈ h

2
[f(a) + f(x1)] +

h

2
[f(x1) + f(x2)] + · · ·+ h

2
[f(xN−1) + f(xN)]

=
h

2
[f(a) + 2f(x1) + 2f(x2) + · · ·+ 2f(xN−1) + f(b)] . (6.17)

192 Appunti di Calcolo Numerico con codici in Matlab/Octave

2. Per n = 2, su ogni intervallino Ik = [xk, xk+1] si usa la formula di Simpson.
Ovvero,

∫ xk+1

xk

f(x)dx ≈ h

3
[f(xk) + +4f(x′

k) + f(xk+1)] x′
k =

xk + xk+1

2
, h =

b− a

2N
.

Osservando che su ogni sotto intervallo Ik abbiamo introdotto il punto medio
x′
k, il che equivale a considerare i punti da zk, k = 0, . . . , 2N . La formula

generalizzata di Simpson è quindi la seguente:

∫ b

a

f(x)dx ≈ h

3
[f(a) + 4f(z1) + 2f(z2) + 4f(z3) + · · ·+ 4f(z2N−1) + f(b)]

(6.18)
dove al solito a = z0 e b = z2N .
L’osservazione precedente sul numero dei punti si può assumere a priori e
dato N si considereranno sempre 2N + 1 punti.

Come semplice esempio, in Figura 6.3 facciamo vedere come si comporta la
formula trapezoidale rispetto a quella classica. È interessante vedere la dif-
ferenza d’errore tra le due formule.

Figura 6.3: Confronto tra la formula dei trapezi e dei trapezi composita per il
calcolo di

∫ 2

0.5
sin (x) dx.

Vediamo ora come si comporta l’errore di quadratura composita.
Supponiamo che f ∈ Cs[a, b], sapendo che l’errore nel k-esimo intervallino è

r(k)n = γn h
s+1 f

(s)(ξk)

s!
, ξk ∈ (xk, xk+1), h =

b− a

N
,

allora l’errore totale sarà

Rn(f) =

N−1∑
k=0

r(k)n =

N−1∑
k=0

γn h
s+1 f

(s)(ξk)

s!
= γn

hs+1

s!

N−1∑
k=0

f (s)(ξk) . (6.19)

1936 - Integrazione

Si dimostra che vale la seguente uguaglianza

Rn(f) = γn
N f (s)(ξ)

s!
hs+1 = γn(b− a)s+1 f

(s)(ξ)

s!Ns
ξ ∈ (a, b) . (6.20)

Nei due casi precedentemente studiati, trapezi e Simpson compositi, valgono le
seguenti formule d’errore:

R1(f) = − (b− a)3

12N2
f ′′(ξ) , (6.21)

R2(f) = − (b− a)5

2880N4
f (4)(ξ) . (6.22)

Infine, grazie alla (6.20), ricordando che N dipende da n, se f ∈ Cs[a, b] allora
lim

N→∞
|RN (f)| = 0. Ovvero, fissato ε > 0, possiamo trovare N tale che |RN+1| < ε.

ESEMPIO 47. Riprendiamo l’Esempio 46. Vogliamo approssimare

∫ 1

0

e−x2

dx a meno

di tol = 0.5 10−3 con le formule composite dei trapezi e di Simpson.

• Trapezi composito. Sapendo che maxx∈[0,1] |f (2)(x)| = 2, si ha |R1(f)| ≤
1/(6N2) . Pertanto, affinché |R1(f)| < tol, dovremo chiedere che N ≥ 19,
ovvero dovremo prendere 20 punti equispaziati.

• Simpson composito. Sapendo che maxx∈[0,1] |f (4)(x)| = 12, si ha |R2(f)| ≤
12/(2880N4) . Pertanto, affinché |R2(f)| < tol, dovremo chiedere che N ≥ 2,
ovvero dovremo prendere 5 punti equispaziati.

6.0.6 Routine adattativa per la quadratura: applicazione
al metodo di Simpson e dei trapezi

L’idea delle routine adattative è di usare punti di integrazione dove “serve”,
ovvero dove la funzione ha maggiori oscillazioni o discontinuità. La tecnica adat-
tativa ha lo scopo di variare la posizione dei nodi secondo il comportamento locale
della funzione integranda, avendo cosı̀ un risparmio sul numero di valutazioni
della funzione integranda.

In appendice C si trova la funzione simp ada.m (che implementa la routine

adattativa di Simpson per il calcolo di
∫ b

a

f(x)dx . Come input l’utente fornirà

gli estremi di integrazione a, b, la tolleranza epss e gli verrà richiesto di passare
un parametro di dilatazione della tolleranza allo scopo di rendere la stima sui
sottointervalli più conservativa possibile, al fine di verificare la disuguaglianza

|
∫ b

a

f(x)dx− Ĩ(f)| ≤ ε ;

ove Ĩ(f) è l’approssimazione dell’integrale calcolata con una formula di quadratura
composita.

194 Appunti di Calcolo Numerico con codici in Matlab/Octave

In output si otterranno il valore approssimato dell’integrale, nella variabile
integral e il numero di valutazioni della funzione integranda in nv.
Le Figure 6.4 e 6.5 mostrano la differenza tra la routine classica e quella

adattativa applicate al calcolo numerico di

∫ 3

1

100

x2
sin(

10

x
)dx

con precisione ε = 1.e − 5. Dall’output ottenuto, il numero di valutazioni con il
metodo classico è di 256 contro le 161 con la routine adattativa (avendo usato un
fattore di dilatazione 15). Infine l’errore calcolato è di 2.43 · 10−6 con il metodo
classico contro 4.17 · 10−7 con il metodo adattativo.

Figura 6.4: Integrazione con Simpson composito

Alternativamente una funzione Matlab che calcola adattativamente un inte-
grale definito usando il metodo trapezoidale è la seguente. Si parte considerando
una formula base su 3 punti e stimando l’errore usando l’estrapolazione di Richard-
son (vedi sessione 6.4 per dettagli), che sostanzialmente equivale ad usare la
formula di Simpson sugli stessi punti.
Detto

Ĩ(i) =
hi
4

{
f(xi−1) + 2f(

xi + xi−1

2
) + f(xi)

}
,

l’integrale approssimato con la formula trapezoidale su [xi−1, xi] con hi = xi −
xi−1. Allora

ei =

∫ xi

xi−1

f(x)dx− Ĩ(i) ≈ hi
12

{
−f(xi−1) + 2f(

xi + xi−1

2
)− f(xi)

}
.

1956 - Integrazione

Figura 6.5: Integrazione con Simpson adattativo

Pertanto, se l’errore ei verifica

ei ≤ ε

b− a
hi

(cosicchè quello totale risulta essere ≤ ε) allora si conclude altrimenti si procede
alla nuova suddivisione.
La function Matlab/Octave trap ada.m, in Appendice C, fa proprio questo.

In Figura 6.6 si visualizza l’applicazione della routine adattativa trapezoidale
appena descritta al calcolo di

∫ 3

−3

sin(x)

(1 + ex)
dx

con tolleranza ε = 1.e− 4. In output il valore approssimato dell’integrale è nella
variabile I, l’errore approssimato in errest e nel vettore x i punti usati per il
calcolo.

Osservazione. Il repository
http://www.mathworks.com/matlabcentral/fileexchange/

che raccoglie il software di scambio degli utenti Matlab, si trova il package
adaptQuad di Matthias Conrad e Nils Papenberg che contiene due routine
iterative per la quadratura adattativa usando sia Simpsons che Lobatto. Per
maggiori informazioni si rinvia al Technical Report [8].

196 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 6.6: Integrazione con il metodo dei trapezi adattativo. I punti utilizzati
sono oltre 2000, molti di più di quelli richiesti dalla stima a priori (6.21), ma
distribuiti non uniformemente ma dove la funzione oscilla di maggiormente.

6.1 Polinomi ortogonali

Prima di introdurre le formule di quadratura gaussiane, facciamo dei richiami
sui polinomi ortogonali.

Definizione 27. Un insieme infinito di polinomi {p0, p1, . . . , pn, . . .} tali che

pn(x) = an,0x
n + an,1x

n−1 + · · ·+ an,n ,

è detto ortogonale in [a,b] rispetto ad una funzione peso ω(x) non negativa, se
valgono le relazioni ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ b

a

ω(x)pn(x)pm(x)dx = 0 m �= n

∫ b

a

ω(x)(pn(x))
2dx > 0 m = n .

Di solito si indica hn =

∫ b

a

ω(x)(pn(x))
2dx > 0.

Alcune importanti proprietà dei polinomi ortogonali sono le seguenti.

(a) La funzione peso non negativa ω(x) e l’intervallo [a, b] definiscono univoca-
mente l’insieme dei polinomi {pn}.

(b) Per ogni n ≥ 1, pn(x) ha esattamente n zeri reali, distinti ed interni ad [a, b].
Inoltre gli zeri di pn(x) separano quelli di pn−1(x) (tra 2 zeri di pn si trova
uno ed uno solo zero di pn−1).

1976 - Integrazione

(c) Ogni sistema di polinomi ortogonali {pn}, soddisfa ad una relazione di ri-
correnza a 3 termini

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x), n = 1, 2, . . . (6.23)

dove Cn > 0 e

An =
an+1,0

an,0
(6.24)

Bn = An

(
an+1,1

an+1,0
− an,1

an,0

)
, (6.25)

Cn =
An

An−1

hn
hn−1

= An
an+1,2

an+1,1
, (6.26)

Elenchiamo qui di seguito i polinomi ortogonali che per noi rivestono maggior
interesse.

Tn : Polinomi di Chebyshev di prima specie. Sono definiti su [−1, 1], ω(x) =
(1− x2)−1/2 e per essi vale la ricorrenza T0(x) = 1, T1(x) = x e

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1 . (6.27)

Infatti, ricordando che Tn(x) = cos(n arccosx) n = 0, 1, . . . e la relazione

cos[(n+ 1)θ] + cos[(n− 1)θ] = 2 cos θ cos(nθ)

posto θ = cos x si riottiene la (6.27).
Facciamo anche vedere che

Tn(x) = 2n−1xn + · · · (6.28)

Infatti, essendo T2(x) = 2x2−1, T3(x) = 4x3−3x = 23−1x3−3x, per induzione
si ottiene la (6.28).
Infine, gli zeri del polinomio di Chebyshev di prima specie di grado n, che
sono stati introdotti al capitolo dell’ interpolazione polinomiale, sono i punti
di Chebyshev

xk = cos

(
2k − 1

2n
π

)
, k = 1, ..., n .

Un: Polinomi di Chebyshev di seconda specie. Sono definiti su [−1, 1], ω(x) =
(1− x2)1/2 e per essi vale la ricorrenza U0(x) = 1, U1(x) = 2x e

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 1 .

Pn: Polinomi di Legendre. Sono definiti su [−1, 1], ω(x) = 1 e per essi vale la
ricorrenza P0(x) = 1, P1(x) = x e

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x), n ≥ 1 .

In questo caso possiamo anche facilmente calcolare an,0 = (2n)!
2n(n!)2 e hn =

2/(2n+ 1).

198 Appunti di Calcolo Numerico con codici in Matlab/Octave

Ln: Polinomi di Laguerre. Sono definiti su [0,+∞), ω(x) = e−x e per essi vale
la ricorrenza L0(x) = 1, L1(x) = 1− x e

Ln+1(x) =
2n+ 1− x

n+ 1
Ln(x)− n

n+ 1
Ln−1(x), n ≥ 1 .

Anche in questo caso possiamo calcolare an,0 = (−1)n

n! e hn = 1.

Hn: Polinomi di Hermite. Sono definiti su (−∞,+∞), ω(x) = e−x2

e per essi
vale la ricorrenza H0(x) = 1, H1(x) = 2x e

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1 .

In questo caso an,0 = 2n e hn = 2nn!
√
π.

Vale la pena osservare che in [−1, 1] i polinomi ortogonali di Legendre e di Cheb-
syshev sono un caso particolare di una famiglia più generale e associata alla
funzione peso ω(x) = (1 − x)α(1 + x)β , α, β > −1, detti polinomi di Jacobi,
Pα,β
n (x). Posto γ = α+ β, per essi vale la ricorrenza

Pα,β
n+1(x) =

(2n+ 1 + γ)[(α2 − β2) + (2n+ γ + 2)(2n+ γ)x]

2(n+ 1)(n+ γ + 1)(2n+ γ)
Pα,β
n (x) +

2(n+ α)(n+ β)(2n+ γ + 2)

2(n+ 1)(n+ γ + 1)(2n+ γ)
Pα,β
n−1(x), n ≥ 1 .

Pertanto, per α = β = 0 otteniamo i polinomi di Legendre, per α = β = −1/2
otteniamo i polinomi di Chebyshev di prima specie e per α = β = 1/2 otteniamo i
polinomi di Chebyshev di seconda specie.

��

6.2 Formule di quadratura gaussiane

Dato l’intervallo [a, b] e la funzione peso ω(x), siano xi, i = 1, . . . , n gli zeri del
corrispondente polinomio ortogonale di grado n. Allora possiamo scrivere∫ b

a

ω(x)f(x)dx ≈
n∑
i=1

Aif(xi) (6.29)

dove i pesi Ai dipendono dalla particolare formula di quadratura gaussiana.

Prima di dare alcune espressioni esplicite dei pesi di quadratura, enunciamo un
risultato fondamentale per la quadratura gaussiana (la cui dimostrazione si può
trovare, ad esempio, in [26]).

1996 - Integrazione

Teorema 30. Siano x1, . . . , xn gli zeri del polinomio ortogonale di grado n rispetto
all’intervallo [a, b] e alla funzione peso ω(x). Supponiamo che i pesi Ai siano stati
determinati cosicché ∫ b

a

ω(x)f(x)dx =

n∑
i=1

Aif(xi) +Rn(f) , (6.30)

è esatta per i polinomi di grado ≤ n− 1. Allora la formula (6.30) è esatta per tutti
i polinomi di grado ≤ 2n− 1.

Un’ulteriore caratteristica delle formule di quadratura gaussiane, che è uno
dei motivi per i quali sono preferite rispetto a quelle di N-C, è che i pesi Ai sono

positivi. Infatti vale la rappresentazione

Ai =
1

(P ′
n(xi))

2

∫ b

a

ω(x)

[
Pn(x)

x− xi

]2
dx i = 1, . . . , n , (6.31)

dove Pn indica il polinomio ortogonale di grado n relativo all’intervallo [a, b] e
alla funzione peso ω(x). Da questa relazione segue che

∫ b
a
ω(x)dx =

∑n
i=1 Ai =∑n

i=1 |Ai|, pertanto si ha convergenza delle formule al valore dell’integrale. Per-
tanto nel caso [−1, 1], ω(x) = 1, si ha

∑n
i=1 Ai = 2.

• [a, b] = [−1, 1], ω(x) = (1−x2)−1/2, la corrispondente formula di quadratura
si dice di Gauss-Chebyshev di prima specie, GC1. I pesi sono

A
(GC1)
i =

π

n
, ∀ i

la cui somma è π. I nodi, che sono gli zeri di Chebyshev, sono

x
(GC1)
i = cos

(
2i− 1

2n
π

)
i = 1, ..., n .

La (6.29) diventa∫ 1

−1

f(x)
1√

1− x2
dx ≈ π

n

n∑
i=1

f

(
cos

(
2i− 1

2n
π

))
.

• Sempre in [−1, 1] ma con ω(x) = (1 − x2)1/2: la corrispondente formula
di quadratura si dice di Gauss-Chebyshev di seconda specie, GC2. I pesi
sono

A
(GC2)
i =

π

n+ 1

(
sin

(
iπ

n+ 1

))2

, i = 1, . . . , n .

Essendo
n∑
i=1

(
sin

(
iπ

n+ 1

))2

=
n+ 1

2

otteniamo il risultato richiesto
n∑
i=1

A
(GC2)
i =

π

2
.

200 Appunti di Calcolo Numerico con codici in Matlab/Octave

I nodi, che sono gli zeri dei polinomi di Chebyshev di seconda specie, sono

x
(GC2)
i = cos

(
i

n+ 1
π

)
i = 1, ..., n .

La (6.29) diventa∫ 1

−1

f(x)
√

1− x2dx ≈ π

n+ 1

n∑
i=1

(
sin

(
i

n+ 1
π

))2

f

(
cos

(
i

n+ 1
π

))
.

• Sempre in [−1, 1]ma con ω(x) = 1: la corrispondente formula di quadratura
si dice di Gauss-Legendre. I pesi sono

Ai =
2

(1− x2
i)
(
P ′
n+1(xi)

)2 , i = 0, . . . , n .

Riassumiamo nella Tabella 6.3, per n = 1, . . . , 4, i valori dei nodi (zeri) del
polinomio di Legendre e dei corrispondenti pesi. Si noti che sono indicati
n + 1 nodi, poiché per un dato n calcoliamo i = 0, . . . , n nodi e pesi. Ad es-
empio, per n = 1, significa che stiamo considerando il polinomio di grado
2, che ha appunto zeri ±3−1/2. Per i pesi sono indicati, per simmetria, solo
quelli con i = 0, . . . , #n2 $. Sempre relativamente alla formula di quadratura

n xi Ai

1 ± 1√
3

1

2 ±
√
15
5 , 0

5
9 ,

8
9

3 ± 1
35

√
525− 70

√
30 , ± 1

35

√
525 + 70

√
30 1

36 (18 +
√
30), 1

36 (18−
√
30)

4 0,± 1
21

√
245− 14

√
70,± 1

21

√
245 + 14

√
70 128

225 ,
1

900 (322 + 13
√
70), 1

900 (322− 13
√
70)

Tabella 6.3: Nodi e pesi per le formule di Gauss-Legendre con n = 1, 2, 3, 4

di Gauss-Legendre, osserviamo che talvolta conviene includere anche gli es-
tremi dell’intervallo, ovvero −1, 1. Si parla allora di formule di quadratura
di Gauss-Legendre-Lobatto. Ora, i nodi x0 = −1 e xn = 1 sono fissati, gli
altri n−1 sono scelti come gli zeri di P ′

n(x) ottenendo per i pesi l’espressione

Ai =
2

n(n+ 1)

1

(Pn(xi))2
, i = 0, ..., n .

Pertanto, il grado di esattezza delle formule di Gauss-Legendre-Lobatto
sarà 2n−1. In Tabella 6.4 ricordiamo chi sono i nodi e i pesi per le formule di
Gauss-Legendre-Lobatto con n = 1, 2, 3, 4. Un altro interessante esempio è

2016 - Integrazione

n xi Ai

1 ±1 1

2 ±1, 0 1
3 ,

4
3

3 ±1 , ±
√
5
5

1
6 ,

5
6

4 ±1, ±
√
21
7 , 0 1

10 ,
49
90 ,

32
45

Tabella 6.4: Nodi e pesi per le formule di Gauss-Legendre-Lobatto con n =
1, 2, 3, 4.

fornito dalle formule di Gauss-Chebyshev-Lobatto, in cui ω(x) = 1/
√
1− x2,

delle quali i nodi ed i pesi sono come segue

xi = cos

(
π i

n

)
,

Ai =
π

n di
, d0 = dn = 2, di = 1, 1 ≤ i ≤ n− 1 .

Infine, per quanto riguarda l’errore di quadratura con formule di Gauss-
Legendre (GL) e Gauss-Legendre-Lobatto (GLL), ricordiamo le seguenti for-
mule che per essere applicate richiedono una certa regolarità della funzione
integranda (cfr. [25]).

I(f)− IGL(f) =
22n+3((n+ 1)!)4

(2n+ 3)((2n+ 2)!)3
f (2n+2)(ξ) , ξ ∈ (−1, 1). (6.32)

I(f)− IGLL(f) = −22n+1n3(n+ 1)((n− 1)!)4

(2n+ 1)((2n)!)3
f (2n)(ξ) , ξ ∈ (−1, 1). (6.33)

Due considerazioni conclusive.

1. Le formule gaussiane in [−1, 1] sono estendibili ad un generico intervallo
[a, b] con l’opportuna trasformazione lineare sia sui nodi che sui pesi.

2. In Matlab/Octave la funzione quadl implementa la formula di quadratura
di Gauss-Lobatto. Si chiama con quadl(fun,a,b): in questo caso la toller-
anza di default è 1.e−3 e fun può essere definita sia su un altro M-file di tipo
funzione o mediante fun=inline(’ ’). Per usare una tolleranza definita
dall’utente, tol utente, si userà la chiamata quadl(fun,a,b,tol utente).

Infine, facciamo un esempio di una formula composita gaussiana (a 2 punti).
Essa generalizza infatti la formula di Gauss a 2 punti per il calcolo di∫ 1

−1

g(t)dt ≈
1∑

i=0

Aig(ti)

202 Appunti di Calcolo Numerico con codici in Matlab/Octave

con Ai = 1, i = 0, 1 e t0 = −1/√3 e t1 = −t0.
La costruzione viene fatta come segue. Partendo da una suddivisione equis-

paziata consideriamo, invece dei punti xk−1 e xk, i punti

yk−1 = xk−1 +
h

2

(
1− 1√

3

)
, yk = xk−1 +

h

2

(
1 +

1√
3

)
.

La formula di quadratura di Gauss composita ed il relativo errore assoluto sono:

• Formula di Gauss composita e relativo errore.

IcG(f) =
h

2

n∑
k=1

(f(yk−1) + f(yk)) ,

I(f)− IcG(f) =
b− a

4320
h4f (4)(ξ) , ξ ∈ (a, b),

dove al solito h = (b− a)/n.

ESERCIZIO 75. Si calcoli numericamente∫ 2π

0

xe−x cos 2xdx =
3(e−2π − 1)− 10πe−2π

25
≈ −0.12212260462 ,

mediante le 3 formule composite dei trapezi, di Simpson e di Gauss, per n = 7. Si
determini anche l’errore assoluto. Se invece si prendesse n = 10, come cambierebbe
l’approssimazione?

UnM-file che può essere usato per implementare simultaneamente le formule
composite dei trapezi, di Simpson e di Gauss dell’esercizio precedente, è descritto
in Appendice C. Per il suo utilizzo è necessario definire la funzione integranda
funQ.m.

6.3 Esercizi proposti

ESERCIZIO 76. Calcolare numericamente∫ 1

−1

(1 + x2)
√
1− x2 dx

usando il metodo di Simpson composito. Quanti punti sono necessari affinchè
l’errore assoluto sia < 1.e − 4? Come valore esatto, considerare il valore
dell’integrale ottenuto con quadl a meno di 1.e− 6.

2036 - Integrazione

ESERCIZIO 77. Trovare α1 e x2 cosicché la formula di quadratura∫ 1

0

f(x)dx ≈ α1f

(
2

5

)
+

1

6
f(x2)

sia esatta sui polinomi di primo grado generati da {1, 1− x}.
ESERCIZIO 78. Data la formula di quadratura∫ 1

−1

f(x)dx ≈ α1f(−1) + α2f(0) + α3f(1/2) .

Trovare i coefficienti αi cosicché abbia grado di esattezza 2.

ESERCIZIO 79. Si calcoli un’approssimazione di

I =

∫ 2

−1

(
5

2
x4 − 15

2
x3 + 2

)
dx

con le formule di Newton-Côtes di tipo chiuso con n ≤ 4. Ricordiamo che le
formule di Newton-Côtes di tipo chiuso hanno la forma seguente

In+1(f) = κ · h ·
n∑

j=0

cjf(xj)

dove h = (b − a)/n, xj = a + jh, j = 0, . . . , n e i coefficienti si ricavano della
tabella seguente

n κ c0 c1 c2 c3 c4 c5

1 1/2 1 1
2 1/3 1 4 1
3 3/8 1 3 3 1
4 2/45 7 32 12 32 7
5 5/288 19 75 50 50 75 19

Calcolare anche l’errore assoluto commesso rispetto al valore dell’integrale.

ESERCIZIO 80. Un corpo in caduta libera all’equatore, subisce una devi-
azione dalla verticale dovuta all’ accelerazione di Coriolis. Supponendo che
al tempo t = 0 il corpo sia fermo (cioe‘ x(0)=0, v(0)=0 e a(0)=0) e che la sua
accelerazione di Coriolis sia nota solo negli istanti di tempo di Tabella, si
determini lo spostamento dalla verticale dovuto a tale accelerazione dopo
t = 100 sec..

In tabella elenchiamo al variare del tempo t, i valori dell’accelerazione
a(t):

204 Appunti di Calcolo Numerico con codici in Matlab/Octave

t | 10 15 30 40 50 70 100

a |.0144 .0216 .0432 .0576 .072 .1008 .1439

Mediante integrazione dell’accelerazione, il suggerimento è quindi di cal-
colare la velocità v(t) negli istanti di tempo indicati usando la formula di
quadratura dei trapezi composita e integrando nuovamente calcolare la devi-
azione x(t) (sempre integrando numericamente con i trapezi compositi) negli
stessi istanti di tempo. Essendo

a =
dv(t)

dt
=

d2x(t)

dt2

v(T) =

∫ T

0

dv(t)

dt
dt = v(T)− v(0) (6.34)

x(T) =

∫ T

0

dx(t)

dt
dt = x(T)− x(0) (6.35)

Applicando all’equazione (6.34), la formula di quadratura composita dei
trapezi, si avrebbe

v(0) = 0

v(10) =
10

2
(0.0144 + 0);

v(15) = v(10) +
5

2
(0.0144 + 0.0216);

ecc...

Applicando ancora all’equazione (6.35), la formula di quadratura composita
dei trapezi, si avrebbe

x(0) = 0

x(10) =
10

2
(v(10) + v(0));

x(15) = x(10) +
5

2
(v(10) + v(15));

ecc...

• Quale sarebbe la distanza percorsa dal corpo dopo t = 100 sec (suppo-
nendo non ci sia attrito)? Sugg. 1 L’energia potenziale si trasforma in
cinetica, quindi Sugg. 2 oppure per la seconda legge della dinamica

m g = m
d2x

dt2

e integrando due volte si conclude.

2056 - Integrazione

ESERCIZIO 81. Si consideri il seguente integrale definito∫ 5π

1
π

sin

(
1

x

)
dx .

1. Dire a priori quanti punti sono necessari, sia col metodo dei trapezi
composito che con il metodo di Simpson composito, per il calcolo
dell’integrale a meno di tol = 1.e − 4. Si suggerisce di costruire una
funzione funQ che valuta sia f(x) = sin(1/x) che le derivate f (2) e f (4).

2. Calcolare quindi l’integrale con il metodo di Simpson composito usando
il numero minimo di nodi richiesto al punto precedente. Qual è l’errore
assoluto commesso? Come valore esatto usare quello ottenuto con quadl

con tolleranza tol = 1.e − 4. Che conclusione si può trarre osservando
l’errore di approssimazione?

3. Calcolare l’integrale con il metodo di Simpson composito usando i punti
xi = (i + 1)/π, i = 0, ..., 4 e xi = (i − 4)π, i = 5, . . . , 9. (Sugg. Applicare
Simpson composito ai due insiemi di punti sommandone poi il valore
che si ottiene con Simpson nell’intervallo [5/π, π]...)

ESERCIZIO 82. Si consideri il seguente integrale definito∫ − 1
π

−π

sin

(
1

x2

)
dx .

1. Dire a priori, analizzando la formula dell’errore, quanti punti sono nec-
essari per il calcolo del precedente integrale con il metodo dei trapezi
composito a meno di tol = 1.e− 3.

2. Calcolare quindi l’integrale con il metodo di trapezi composito usando
20 punti equispaziati tra −π e −5/π e 50 punti equispaziati tra −5/π
e −1/π. Qual è l’errore assoluto commesso? Usare come valore esatto
quello ottenuto con la funzione quadl con la stessa tolleranza.

ESERCIZIO 83. Calcolare numericamente∫ 1

−1

√
|x3 − 0.7| dx

usando il metodo dei trapezi composito su 10 sottointervalli di [-1,1]. Con-
frontare poi i risultati con la funzione quadl di Matlab usando come toller-
anza 1.e− 6.

ESERCIZIO 84. L’integrale di f(x) = x
2 e− x

2 cos(x) su [−1, 1] si può approssi-
mare con la formula di Gauss-Legendre∫ 1

−1

f(x)dx ≈
n∑
i=1

wif(zi) . (6.36)

Il vettore dei nodi z e dei pesi w si possono determinare con la M-function:

206 Appunti di Calcolo Numerico con codici in Matlab/Octave

function [z,w]=zwlegendre(n)

% This function computes nodes z and weights

% w of the Gauss-Legendre quadrature formula.

%---

% Input:

% n = number of quadrature nodes

%Outputs:

% z = column vector of the nodes

% w = column vector of the weights

%---

if n<=1

z=[0]; w=[2];

return

end

A=zeros(n); k=[1:n-1];

v=k./(sqrt(4*(k.^2)-1));

A=A+diag(v,1)+diag(v,-1);

[w,z]=eig(A);

nm2=sqrt(diag(w’*w));

w=(2*w(1,:)’.^2)./nm2;

z=diag(z);

Si chiede di calcolare l’integrale (6.36) con la formula di Gauss-Legendre
costruita prendendo n = 2i, i = 0, 1, ..., imax = 8 punti a meno di tol =
1.e − 9. In pratica ci si arresterà quando n > 28 oppure l’errore in modulo
diventa minore di tol, assumendo come valore esatto quello che si ottiene con
la funzione quadl).

ESERCIZIO 85. Assegnati i punti x0 = 0, x1 = 1
2 , x2 = 1 e la funzione f(x) =

1

1 + x2

1. Determinare il polinomio p2(x) in forma di Lagrange che interpola f(x)
nei punti assegnati e se ne plottino i rispettivi grafici

2. Dare una maggiorazione dell’errore d’interpolazione di f(x) con p2(x)

3. Approssimare
∫ 1

0

f(x)dx con
∫ 1

0

p2(x)dx e calcolarne l’errore assoluto.

4. Quanti punti si dovrebbero considerare per avere un errore ≤ 10−4 con
il metodo di Simpson composito?

ESERCIZIO 86. Usando la formula dell’errore per la regola dei trapezi com-
posita

R1(f) = − (b− a)3

12N2
f (2)(ξ)

trovare, per il calcolo di
∫ 3

1
1
x dx = ln(3), il numero minimo di sottointervalli

N per cui l’ errore R1(f) sia minore di tol = 10−2 .

2076 - Integrazione

6.4 Derivazione

Sia f ∈ C1[a, b]. Come possiamo approssimare f ′(x̂) in un generico punto x̂ ∈
[a, b]? Vediamo tre approssimazioni utili in molti casi di nostro interesse.

1. Differenze finite in avanti: Δa.
Ricordando che se f è derivabile in x̂ allora

f ′(x̂) = lim
h→0

f(x̂+ h)− f(x̂)

h
,

allora una prima approssimazione di f ′(x̂) si ottiene usando il rapporto in-
crementale:

f ′(x̂) ≈ f(x̂+ h)− f(x̂)

h
:= Δaf(x̂) (6.37)

Se f ∈ C2[a, b] avremo

f(x̂+ h) = f(x̂) + hf ′(x̂) +
h2

2
f ′′(ξx̂) ,

con ξx̂ ∈ (x̂, x̂+ h). Pertanto per l’errore avremo l’espressione

f ′(x̂)−Δaf(x̂) = −h

2
f ′′(ξx̂) , (6.38)

che tende a zero come h. In praticaΔa f(x̂) fornisce un’approssimazione del
primo ordine della derivata di f in x̂.

2. Differenze finite all’ indietro: Δi.
Come prima, una prima approssimazione di f ′(x̂) si ottiene usando il rap-
porto incrementale relativamente al punto x̂− h:

f ′(x̂) ≈ f(x̂)− f(x̂− h)

h
:= Δi f(x̂) (6.39)

Se f ∈ C2[a, b] avremo

f(x̂− h) = f(x̂)− h f ′(x̂) +
h2

2
f ′′(ηx̂) ,

con ηx̂ ∈ (x̂ − h, x̂). Pertanto per l’errore avremo un’espressione simile alle
differenze finite in avanti

f ′(x̂)−Δi f(x̂) =
h

2
f ′′(ηx̂) , (6.40)

che tende a zero come h. In praticaΔi f(x̂) fornisce anch’esso un’approssima
zione del primo ordine della derivata di f in x̂.

208 Appunti di Calcolo Numerico con codici in Matlab/Octave

-

3. Differenze finite centrali: δ.
Una approssimazione migliore di f ′(x̂) si ottiene usando i valori di f in x̂−h
e x̂+ h come segue:

f ′(x̂) ≈ f(x̂+ h)− f(x̂− h)

2h
:= δ f(x̂) (6.41)

Infatti, se f ∈ C3[a, b]

f(x̂+ h) = f(x̂) + h f ′(x̂) +
h2

2!
f ′′(x̂) +

h3

3!
f (3)(ξx̂) ,

con ξx̂ ∈ (x̂, x̂+ h)

f(x̂− h) = f(x̂)− h f ′(x̂) +
h2

2!
f ′′(x̂) +

h3

3!
f (3)(ηx̂) ,

con ηx̂ ∈ (x̂ − h, x̂). Sommando membro a membro e dividendo per 2h otte-
niamo

f(x̂+ h)− f(x̂− h)

2h
= f ′(x̂) +

h2

12

(
f (3)(ξx̂) + f (3)(ηx̂)

)
.

Pertanto l’errore assume l’espressione

f ′(x̂)− δ f(x̂) = −h2

12

(
f (3)(ξx̂) + f (3)(ηx̂)

)
, (6.42)

che tende a zero come h2. Osserviamo anche che al tendere di h → 0
anche ξx̂) e ηx̂) tenderanno allo stesso valore. In pratica δ f(x̂) fornisce
un’approssimazione del secondo ordine della derivata di f in x̂.

Data una suddivisione regolare dell’intervallo [a, b], ovvero i punti xk = a +
kh, k = 0, . . . , n con xn = b, da un punto di vista implementativo le formule
Δa si possono applicare per ogni punto eccetto il punto b; le formuleΔi si possono
applicare per ogni punto eccetto il punto amentre le formule centrali δ si possono
applicare per ogni punto interno dell’intervallo.
Nel caso delle differenze centrali, nei punti x0 e xn si usano invece le seguenti

approssimzioni
1

2h
[−3f(x0) + 4f(x1)− f(x2)] in x0 (6.43)

1

2h
[3f(xn)− 4f(xn−1) + f(xn−2)] in xn , (6.44)

che si ottengono calcolando in x0 (rispettivamente in xn) la derivata prima del
polinomio d’interpolazione di grado 2 della funzione f .
Infatti, il polinomio di secondo grado relativo ad x0, si può costruire usando i

punti x0, x1, x2 ottenendo

p2(x) = f(x0)l0(x) + f(x1)l1(x) + f(x2)l2(x)

dove, al solito, li(x) =
2∏

j=0,j
=i

(x− xj)

(xi − xj)
. Derivandolo e valutandolo in x0, sapendo

che x1 = x0 + h e x2 = x0 + 2h, si ottiene la (6.43).

2096 - Integrazione

Figura 6.7: Grafico che illustra l’errore relativo compiuto dal metodo 1 (dif-
ferenze in avanti), in rosso, col + e dal metodo 2 (differenze finite centrali) in
nero con o, nell’approssimare exp(1).

6.4.1 Un esempio

Vediamo come si comportano le approssimazioni alle differenze finite in avanti
e alle differenze finite centrali nel calcolo della derivata prima della funzione
f(x) = exp(x) nel punto x = 1. Essendo f ′(x) = exp(x), il valore da approssimare
è quindi exp(1).
Scriviamo quindi un codice Matlab/Octave che confronta i due metodi sopraci-

tati per valori del passo h della forma h = 2−k, k = 1, . . . , 50 e ne determina anche
l’errore relativo commesso. Il codice si trova nel file mydiff.m in Appendice C.
I grafici di Figura 6.7, mostrano come entrambi i metodi siano instabili. Quando

il passo h è troppo piccolo, l’approssimazione di entrambe peggiora invece di
migliorare. Nel grafico in scala semi-logaritmica, la curva in rosso coi ′ − +′

rappresenta il primo metodo, quella in nero indicata con ′ − o′ il secondo. Os-
serviamo che tra i due metodi il secondo sembra avere comunque performance
migliori.
Vediamo di giustificare questo fatto analizzando l’errore. Infatti, come di-

mostrato, l’ errore assoluto con differenze finite in avanti Δa è del tipo

E1 =
|h| |f (2)(ξ)|

2
, ξ ∈ I(x, x0)

210 Appunti di Calcolo Numerico con codici in Matlab/Octave

mentre con le differenze finite centrali δ è

E2 =
|h|2| f (3)(ξ1) + f (3)(ξ2)|

12
, ξ1, ξ2 ∈ I(x0 + h, x0 − h)

dove I(s, t) è il più piccolo intervallo aperto contenente s e t.
Nel nostro caso essendo f (n)(x) = exp(x) per ogni n ∈ N, e poiché per x ≈ 1 si

ha exp(x) ≈ exp(1) deduciamo

E1 ≈ |h| exp(1)
2

(6.45)

E2 ≈ |h|2 exp(1)
6

(6.46)

Per esercizio verificare se sono buone approssimazioni dell’errore le stime (6.45)
e (6.46).

6.4.2 Metodi di Eulero
In questa breve sottosezione, vediamo come applicare le formule per approssi-
mare la derivata prima alla soluzione di equazioni differenziali del primo ordine.

Consideriamo il problema di Cauchy{
y′(t) = f(t, y(t))
y(t0) = y0 ,

(6.47)

con f : I × R → R, t0 ∈ I. Dato l’intervallo I = [t0, T], T < ∞, prendiamo un
passo h = (T − t0)/N , con N ≥ 1 che indica il numero dei sottointervalli in cui
suddivideremo I, e i punti tn, 0 ≤ n ≤ N . Sia poi yn il valore approssimato
della soluzione y(tn), ovvero yn ≈ y(tn), ottenuto con un metodo discreto per
approssimare y′(t)
Se usiamo il rapporto incrementale in avanti Δa

y′(tn) ≈ yn+1 − yn
h

, (6.48)

dove yn+1 = y(tn+1) e yn = y(tn). Sostituendo in (6.47), otteniamo la formula del
metodo di Eulero esplicito (EE)

yn+1 = yn + h fn , n = 0, 1, . . . , N − 1 (6.49)

dove abbiamo usato la notazione fn = f(tn, yn).
Se invece dell’approssimazione (6.48) usiamo il rapporto incrementale Δi

y′(tn+1) =
yn+1 − yn

h
(6.50)

oppure
y′(tn) =

yn − yn−1

h
(6.51)

2116 - Integrazione

otterremo il metodo di Eulero implicito (EI) (o all’indietro)

yn+1 = yn + h fn+1 , n = 0, 1, . . . , N − 1 (6.52)

dove fn+1 = f(tn+1, yn+1).
Pertanto, poiché y0 è nota, l’insieme dei valori y1, . . . , yN rappresentano la

soluzione numerica del nostro problema.

ESEMPIO 48. Crescita di una popolazione. Sia y(t) una popolazione di batteri
(ma questo esempio si può generalizzare al caso di una popolazione di persone) posta
in un ambiente limitato, ovvero dove non possono vivere più di B batteri. Sapendo
che y0
 B. Sia C > 0 il fattore di crescita, allora la velocità di cambiamento dei
batteri al tempo t sarà proporzionale al numero dei batteri presistrenti al tempo t, ma
limiata dal fatto che non possono vivere più di B batteri. L’equazione differenziale
corrispondente, detta equazione logistica , è

d y(t)

dt
= Cy(t)

(
1− y(t)

B

)
, (6.53)

che è un’equazione del primo ordine la cui soluzione ci da il numero di batteri presenti
al tempo t.

Se approssimiamo la derivata con il metodo di Eulero esplicito (6.49) essa diventa

yn+1 = yn + Chyn(1− yn/B) n ≥ 0 .

Con Eulero implicito (6.52) essa diventa

yn+1 = yn + Chyn+1(1− yn+1/B) n ≥ 0 .

In quest’ultimo caso, appare evidente, che usando un metodo implicito per il calcolo
della soluzione al passo tn+1, si dovrà risolvere, ad ogni passo, un’equazione non
lineare. Nonostante i metodi impliciti siano più costosi essi però sono più stabili
(vedi, ad esempio, [25, 26]).

212 Appunti di Calcolo Numerico con codici in Matlab/Octave

6.5 Estrapolazione di Richardson

In questa sezione presentiamo la tecnica di estrapolazione di Richardson che rap-
presenta uno degli strumenti più interessanti per l’accelerazione di successioni,
ovvero il loro calcolo ”veloce”, e che trova applicazione anche alla quadratura
numerica.
Uno degli ingredienti su cui si basa la tecnica di Richardson è la formula di

sommazione di Eulero-Maclaurin che a sua volta si basa sui numeri di Bernoulli
ovvero il valore in zero dei polinomi di Bernoulli di grado pari.
Presenteremo quindi lo schema di (estrapolazione) di Romberg come appli-

cazione della tecnica di Richardson alla quadratura numerica. A sua volta, la tec-
nica di Romberg si può pensare come l’algoritmo di Neville per la valutazione in
0 del polinomio di interpolazione i cui nodi non sono altro che i passi al quadrato
da cui si parte per raffinare la formula di quadratura (ovvero per aumentarne
l’ordine di convergenza).

Molti dei metodi numerici, quali quelli per l’interpolazione e la quadratura, si
basano sulle informazioni di una certa funzione su un insieme di valori che
dipende da un passo h �= 0.
Ad ogni h �= 0 posssiamo far corrispondere il valore T (h) di un funzionale lin-

eare e continuo (che rappresenta il processo numerico) che ammette un’espansione
asintotica in termini di potenze di h:

T (h) = τ0+τ1h
γ1+τ2h

γ2+. . .+τmhγm+αm+1(h)h
γm+1 , 0 < γ1 < γ2 < · · · < γm+1 ,

(6.54)
con τi, i = 0, . . . ,m indipendenti da h, |αm+1(h)| ≤ A (ovvero limitata) e γi non
tutti numeri interi. Chiederemo inoltre che τ0 = lim

h→0
T (h) ovvero, τ0 rappresenta

la soluzione del problema considerato.
Presentiamo ora due semplici esempi di funzionali lineari che si possono rap-

presentare nella forma (6.54).

ESEMPIO 49. Sia
T (h) =

f(x+ h)− f(x− h)

2h

l’operatore alle differenze finite centrali. È noto che T (h) ≈ f ′(x). Se f ∈
C2m+3[x − a, x + a], m ≥ 0 e |h| ≤ |a|, allora dall’espansione di Taylor possiamo
riscrivere T (h) come segue:

T (h) =
1

2h

{
f(x) + f ′(x)h+ f (2)(x)

h2

2!
+ . . .+

h2m+3

(2m+ 3)!
[f (2m+3)(x) + o(1)]

}
−

− 1

2h

{
f(x) − f ′(x)h+ f (2)(x)

h2

2!
+ . . .+ (−1)2m+3 h2m+3

(2m+ 3)!
[f (2m+3)(x) + o(1)]

}
=

= τ0 + τ1h
2 + . . .+ τmh

2m + αm+1(h)h
2m+2 , (6.55)

dove τ0 = f ′(x), τk =
f (2k+1)(x)

(2k + 1)!
, k = 1, . . . ,m+ 1 e αm+1(h) = τm+1 + o(1)1.

1Con il simbolo o(1) si intende indicare una quantità che ha ordine di infinitesimo di una costante.

2136 - Integrazione

ESEMPIO 50. Sia
T (h) =

f(x+ h)− f(x)

h

l’operatore alle differenze finite in avanti. Operando come prima si ha

T (h) = τ0 + τ1h+ τ2h
2 . . .+ τmhm + αm+1(h)h

m+1 , (6.56)

dove τk =
f (k+1)(x)

(k + 1)!
, k = 0, 1, . . . ,m+ 1 e αm+1(h) = τm+1 + o(1).

Infine, come già osservato alla sezione 6.4, l’operatore alle differenze finite
centrali è una approssimazione migliore dell’operatore alle difference finite in
avanti, poiché la sua espansione asintotica contiene solo potenze pari di h (cfr.
(6.55) e (6.56)).

La domanda d’obbligo, a questo punto, è la seguente: come possiamo costruire
un metodo generale di estrapolazione?

Dato unmetodo di discretizzazione, scegliamo una sequenza di passi, {hi, i=0, 1,...},
tali che h0 > h1 > h2 > . . . > 0, e calcoliamo T (hi), i = 0, 1, 2, Fissato poi un
indice k, per i ≤ k costruiamo i polinomi

T̃i,k(h) = b0 + b1h
γ1 + ...+ bkh

γk (6.57)

tali da soddisfare le condizioni d’interpolazione

T̃i,k(hj) = T (hj), j = i− k, i− k + 1, . . . , i .

Consideriamo quindi i valori
Ti,k = T̃i,k(0)

come approssimazione di τ0.2
Ci limiteremo al caso in cui γk = k γ.

Poniamo, z = hγ e zj = hγj , j = 0, 1, ...,m, cosicché

T̃i,k(h) = b0 + b1z + b2z
2 + ...+ bkz

k := Pi,k(z) .

Proviamo un risultato che sostanzialmente afferma che il valore estrapolato
Ti,k altro non è che il valore in z = 0 del polinomio di interpolazione di grado k
sui nodi zj , j = i− k, ..., i che assume il valore T (hj).

Proposizione 17. In z = 0,

Ti,k := Pi,k(0)
Lagrange

=

i∑
j=i−k

c
(i)
k,jPi,k(zj) =

i∑
j=i−k

c
(i)
k,jT (hj) (6.58)

2Talvolta ai polinomi (6.57) si preferiscono funzioni razionali.

214 Appunti di Calcolo Numerico con codici in Matlab/Octave

dove

c
(i)
k,j =

i∏
s �= j

s = i− k

zs
zs − zj

sono i polinomi elementari di Lagrange, tali che

i∑
j=i−k

c
(i)
k,jz

p
j =

⎧⎨
⎩

1 p = 0
0 p = 1, ..., k
(−1)kzi−kzi−k+1 · · · zi p = k + 1

(6.59)

Dim. Osserviamo che i coefficienti c(i)k,j dipendono solo da zj . Consideriamo
i monomi zp, p = 0, 1, ..., k. Riscriviamoli come polinomi di interpolazione di
Lagrange

zp =

i∑
j=i−k

zpj ·
i∏

s �= j
s = i− k

z − zs
zj − zs

p = 0, 1, ..., k .

Da cui, per z = 0 si ottengono le prime due uguaglianze in (6.59).

Infine, osserviamo che

zk+1 =

i∑
j=i−k

zk+1
j ·

i∏
s �= j

s = i− k

z − zs
zj − zs

+

i∏
s=i−k

(z − zs) . (6.60)

Infatti, poiché zk+1 sta sia a sinistra che a destra della (6.60), il polinomio dif-
ferenza

zk+1 − (membro destro in (6.60)) ∈ Pk

e si annulla nei k+1 punti zs, s = i− k, ..., i. Cioè esso si annulla identicamente.
Ciò prova la validità della (6.60).
Sostituendo z = 0, si ottiene la terza delle (6.59). �

Siamo in grado di usare l’espansione (6.58). Pertanto, per k < m

Ti,k =

i∑
j=i−k

c
(i)
k,jT (hj) =

i∑
j=i−k

c
(i)
k,j

[
τ0 + τ1zj + τ2z

2
j + . . .+ τkz

k
j + zk+1

j (τk+1 +O(hj))
]
,

(6.61)
e per k = m

Ti,m =

i∑
j=i−m

c
(i)
m,jT (hj) =

i∑
j=i−m

c
(i)
m,j

[
τ0 + τ1zj + τ2z

2
j + . . .+ τmzmj + zm+1

j αm+1(hj)
]
.

(6.62)

2156 - Integrazione

Se i passi hj sono tali che hj = h0b
j , 0 < b < 1, ovvero formano una successione

geometrica di ragione b, o in generale hj+1

hj
≤ b < 1, ∀ j, si può dimostrare che

esiste una costante Ck dipendente solo da b tale che
i∑

j=i−k

|c(i)k,j |zk+1
j ≤ Ckzi−kzi−k+1 · · · zi . (6.63)

Dalle relazioni (6.59) e (6.63) segue che

Ti,k = τ0 + (−1)kzi−kzi−k+1 · · · zi(τk+1 +O(hi−k)), k < m ; (6.64)

e
|Ti,m − τ0| ≤Mm+1Cmzi−mzi−m+1 · · · zi , (6.65)

se |αm+1(hj)| ≤Mm+1, per j ≥ 0.

Concludendo, per k fissato e i→∞
|Ti,k − τ0| = O(zk+1

i−k) = O(h
(k+1)γ
i−k) . (6.66)

Rappresentando il tutto su un “tableau”, come in Figura 6.8, potremo dire che
Ti,k, ovvero l’ i-esimo elemento della (k + 1)-esima colonna, converge a τ0 con
ordine (k + 1)γ.

Figura 6.8: Tableau dello schema di Richardson per m = 3, con Ti,0 = T (hi).

6.5.1 Applicazione alla quadratura numerica

Sia f ∈ C2m+2[a, b] e si desideri calcolare
∫ b

a

f(t)dt su una partizione uniforme,

xi = a+ ih, i = 0, 1, ..., n, h = (b− a)/n, n ≥ 1.

216 Appunti di Calcolo Numerico con codici in Matlab/Octave

Regola trapezoidale

Se si fa uso della formula trapezoidale, è noto che

T (h) = h

(
f(a)

2
+ f(a+ h) + . . .+ f(b− h) +

f(b)

2

)
.

Per tale funzionale vale la formula di sommazione di Eulero-Maclaurin:

T (h) =

∫ b

a

f(t)dt+

m∑
l=1

B2lh
2l

(2l)!

(
f (2l−1)(b)− f (2l−1)(a)

)
+h2m+2 B2m+2

(2m+ 2)!
(b−a)f (2m+2)(ξ) ,

(6.67)
con a < ξ < b . La formula precedente ci da una espressione esplicita dell’errore
che si commette approssimando l’integrale di f su [a, b] mediante la formula
trapezoidale. I coefficienti Bk sono i numeri di Bernoulli che sono definiti come il
valore in 0 dei polinomi di Bernoulli di grado k, con k pari (si veda la sottosezione
6.5.3 per alcuni cenni sui polinomi di Bernoulli).
Alla luce di quanto detto, la formula trapezoidale (6.67) si può riscrivere come

T (h) = τ0 + τ1h
2 + . . .+ τmh2m + αm+1h

2m+2 , (6.68)

dove

τ0 =

∫ b

a

f(t)dt

τk =
B2k

(2k)!

(
f (2k−1)(b)− f (2k−1)(a)

)
, k = 1, . . . ,m

αm+1(h) =
B2m+2

(2m+ 2)!
(b− a)f (2m+2)(ξ(h)) a < ξ(h) < b .

Poiché f (2m+2) ∈ C[a, b], allora esiste una costante L tale che |f (2m+2)(x)| ≤ L,
uniformemente in x. Ció implica che ∃Mm+1 tale che

|αm+1(h)| ≤Mm+1, ∀ h =
b− a

n
, n > 0 . (6.69)

La disequazione (6.69) ci dice che il termine di errore dell’espansione asintotica
(6.68) tende a zero come h → 0. Infine, detta espansione approssima τ0 come un
polinomio in h2, al tendere a zero di h.

Metodo di Romberg

Per il calcolo di τ0 si può procedere come segue:

1. h0 = b− a, h1 =
h0

n1
, . . . ,hm =

h0

nm
, con n1, . . . , nm > 0, m > 0.

2. In corrispondenza determino

Ti,0 = T (hi) , i = 0, 1, . . . ,m ;

dove T (h) è il funzionale (6.68).

2176 - Integrazione

3. Sia
T̃m,m(h) = a0 + a1h

2 + · · ·+ amh2m ;

tale che T̃m,m(hi) = T (hi), i = 0, 1, . . . ,m. Il polinomio T̃m,m altro non è che
il polinomio di interpolazione di Ti,0.

4. Sia T̃m,m(0) il valore estrapolato di τ0.

Su queste idee si basa il metodo di Romberg. Le scelte dei passi hi e dei polinomi
T̃i,k sono fatte come segue:

• hi =
b− a

2i
, i ≥ 0.

• Per calcolare T̃m,m(0) (ovvero il valore estrapolato di τ0) si usa l’algoritmo
di Neville (vedi sottosezione 6.5.4). Per 1 ≤ i ≤ k ≤ m sia T̃i,k il polinomio
di grado k in h2 tale che:

T̃i,k(hj) = T (hj), j = i− k, . . . , i

T̃i,k(0) = Ti,k .

A partire da k = 1, l’algoritmo di Neville consente di determinare Ti,k dai
valori di Ti,k−1 e Ti−1,k−1, usando la formula

Ti,k = Ti,k−1 +
Ti,k−1 − Ti−1,k−1[

hi−k

hi

]2
− 1

, 1 ≤ k ≤ i ≤ m . (6.70)

La formula (6.70) è l’algoritmo di Neville con xi = h2
i (valutato in x = 0).

Per capire meglio il funzionamento del metodo facciamo un’esempio.

ESEMPIO 51. Calcoliamo

I =

∫ 1

0

x5dx .

Il valore esatto dell’ integrale è I = 1
6 . Prendiamo h0 = 1, h1 = 2−1, h2 = 2−2.

Calcoliamo mediante la formula trapezoidale i valori T0,0 = 0.5 corrispondente a h2
0,

T1,0 = 0.265625 ≈ 17
64 corrispondente a h2

1 e T2,0 = 0.192383 ≈ 197
1024 corrispondente a

h2
2. Usiamo la (6.70) per calcolare T1,1 e T2,1. Un ulteriore applicazione della (6.70)

consente di determinare T2,2 = 0.1666667 ≈ 1
6 .

Una prima importante proprietà dello schema di Romberg è che ogni Ti,k del
tableau costruito con la (6.70) (vedi Figura 6.8) rappresenta una regola di inte-
grazione lineare, ovvero

Ti,k = α0f(a) + α1f(a+ hi) + · · ·+ αni−1f(b− hi) + αni
f(b) .

Proposizione 18. Per i = k alcune formule Tk,k rappresentano formule di
quadratura di tipo Newton-Cotes. In particolare

218 Appunti di Calcolo Numerico con codici in Matlab/Octave

• T0,0 è la formula dei trapezi (Ti,0 formule dei trapezi composte);

• T1,1 è la formula di Simpson, (Ti,1 formule di Simpson composte);

• T2,2 è la formula di Milne.

T3,3 non è una formula di N-C.

Dim. Facilmente si prova che

T0,0 =
b− a

2
(f(a) + f(b)) , (formula dei trapezi)

T1,0 =
b− a

22
(f(a) + 2f(

a+ b

2
) + f(b)) .

Da cui, mediante l’algoritmo di Neville

T1,1 = T1,0 +
T1,0 − T0,0

3
=

4

3
T1,0 − 1

3
T0,0 .

Sviluppando

T1,1 =
b− a

2

(
1

3
f(a) +

4

3
f

(
a+ b

2

)
+

1

3
f(b)

)
,

che è la ben nota formula di Simpson.
Le rimanenti affermazioni si lasciano per esercizio. �

Come ultima osservazione, il metodo di Romberg è un metodo di estrapo-
lazione di Richardson della formula (6.54) in cui l’esponente γk = 2k.

6.5.2 Una implementazione del metodo di Romberg
Il metodo di Romberg per la quadratura si applica usando la seguente ricetta: si
costruisce una tabella, T triangolare (inferiore), la cui prima colonna consiste dei
valori approssimati dell’integrale mediante formule composite dei trapezi costru-
ite usando suddivisioni regolari con N = 2m, m = 0, 1, 2,, (ovvero suddivisioni
con 2m+1 punti). Se indichiamo con Ti,1, i = 1, 2, . . . l’ elemento dell’ i-esima riga
della prima colonna di T, che contiene il valore approssimato dell’integrale con
i passi hi = 2−i, ovvero 2i + 1 punti, gli elementi delle successive colonne sono
costruiti mediante la ricorrenza

Ti,k =
4kTi,k−1 − Ti−1,k−1

4k − 1
, i = k, . . . ,m , k = 0, . . . ,m , . (6.71)

Un esempio di tabella di Romberg è visualizzato in Tabella 6.5. Questa tecnica
trova la sua utilità nelle seguenti due proprietà

(a) TN,k è una formula di quadratura del tipo

TN,k =

N∑
j=1

Aj,Nf(xj,N) .

2196 - Integrazione

T20,0

T2,0 T20,1

T22,0 T21,1 T20,2

T23,0 T22,1 T21,2 T20,3

T24,0 T23,1 T22,2 T2,3 T1,4

...
...

. . .

Tabella 6.5: Tabella del metodo di Romberg

(b) Ciascuna delle formule in una data riga, come ad esempio la riga evidenzi-
ata in Tabella 6.5

T23,0, T22,1, T21,2, T20,3

o in generale
T2m,0, T2m−1,1, T2m−2,2, T2m−3,3,(∗)

è una formula con N = 2m + 1 punti e in ciascuna delle formule (*) i punti
sono gli stessi che in T2m,0.

Infine, vale il seguente risultato.

Teorema 31. Ciascuna formula T1,k, T2,k, T3,k, è una formula di grado di
esattezza 2k − 1.

Ad esempio, se consideriamo la terza colonna di Tabella 6.5, essa rappresenta
una formula di quadratura esatta sui polinomi di grado 5 (ecco perchè integra
perfettamente la funzione x5).

6.5.3 I polinomi di Bernoulli
In questa sottosezione desideriamo richiamare alcune delle caratteristiche salienti
dei polinomi di Bernoulli.
Si parte dall’intervallo I = [0, 1] e per ogni x ∈ I i polinomi di Bernoulli sono

definiti dalle seguenti relazioni:

B0(x) = 1 , (6.72)

B1(x) = x− 1

2
, (6.73)

B′
k+1(x) = (k + 1)Bk(x), k = 1, 2, (6.74)

Le relazioni (6.73) e (6.74) consentono di determinare i polinomi di Bernoulli
a meno di una costante di integrazione. Per avere univocità si introducono le

220 Appunti di Calcolo Numerico con codici in Matlab/Octave

ulteriori condizioni
B2l+1(0) = 0 = B2l+1(1), l ≥ 1 . (6.75)

Si voglia ad esempio determinare B2(x). Dalle (6.73) e (6.74) si avrebbe B′
2(x) =

2x− 1. Integrando B2(x) = x2− x+ c. Usando ancora le (6.73) e (6.74) si avrebbe

B3(x) = x3 − 3

2
x2 + 3cx + d. Usando le condizioni al contorno (6.75) si ottiene

d = 0, c = 1
6 .

Da quanto detto segue che i numeri di Bernoulli sono nulli per i polinomi di
grado dispari (ciò segue da (6.75)) e diversi da zero per quello di grado pari. I

primi 4 numeri pari di Bernoulli sono: B0 = 1, B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
.

Due proprietà facilmente verificabili sono:

1. (−1)kBk(1− x) = Bk(x), k ≥ 0;

2.
∫ 1

0

Bk(t)dt = 0, k > 1.

Figura 6.9: Alcuni polinomi di Bernoulli.

Per il grafico di alcuni polinomi di Bernoulli, vedasi Fig. 6.9.

6.5.4 Algoritmo di Neville
L’algoritmo di Neville consente di valutare il polinomio interpolante mediante
una successione di interpolazioni lineari di polinomi di grado via via crescente.
Sia Sn = {(xi, yi), i = 0, 1, ..., n} un insieme di punti in R

2 Nella sua forma
originale l’algoritmo funziona come segue:

2216 - Integrazione

(a) Fase di inizializzazione

Pi,0 = yi, i = 0, 1, ..., n .

(b) Passo iterativo

Pi,k =
x− xi−k

xi − xi−k
Pi,k−1 +

xi − x

xi − xi−k
Pi−1,k−1 ,

Pi,k = Pi,k−1 +
Pi,k−1 − Pi−1,k−1

x−xi−k

x−xi
− 1

, i = 1, ..., n k = i, ..., n .

Al termine del processo Pn,n conterrà il valore in x del polinomio di interpo-
lazione di grado n su Sn.

function [n]=neville(x,y,t)

% --

% Valuta in t il polinomio di interpolazione di

% grado length(x)-1, mediante l’algoritmo di Neville

% facendo uso di un solo vettore p

%---

n=length(x); p=y;

for i=2:n,

for k=i:n,

p(k)=(p(k)*(t-x(k-i+1))-p(k-1)*(t-x(k)))/(x(k)-x(k-i+1));

end

end

n=p(n);

Il polinomio interpolante ottenuto con l’algoritmo di Neville, può scriversi
nella forma

Pi,k(x) =
i+k∑
j=i

lkj,i(x)yj

dove i polinomi di grado k, lkj,i(x), sono i polinomi elementari di Lagrange.
Tale algoritmo si può applicare allo schema di Romberg pur di prendere x = 0

e xi = h2
i nonché prendendo i = 0, 1, 2, ... e k = 1, ..., i nel passo iterativo.

222 Appunti di Calcolo Numerico con codici in Matlab/Octave

A
Metodi iterativi ed

equazione logistica

Questa Appendice ha lo scopo di far capire come i modelli di evoluzione di una
popolazione, siano studiabili come metodi iterativi per la ricerca di zeri di fun-
zione. Si tratta di successioni il cui valore corrente dipende da quello prece-
dente tramite una funzione di iterazione, che rappresenta l’evoluzione della popo-
lazione.
Iniziamo ricordando dapprima due tra i più noti e semplici modelli di evoluzione
di una popolazione: ilmodello lineare di Malthus e quello quadratico di Verhulst.
Poi studieremo brevemente il modello lineare discreto (del modello differenziale)
di Volterra, applicato all’evoluzione di due popolazioni concorrenti, e la sua con-
troparte non lineare noto come modello di Lotka-Volterra.

A.1 Modello lineare di Malthus

Il Rev.do Thomas (Robert) Malthus (?/2/1766- 23/12/1834), curato inglese ad Al-
bury (vicino ad Oxford), nel suo saggio ”An Essay on the Principle of Population”
pubblicato nel 1798, ipotizzò che una popolazione che non ha scambi con l’esterno
cresce sempre più dei propri mezzi di sussistenza.
Aveva delle visioni pessimistiche sia come demografo che come economista.

Predisse che la crescita di una popolazione matematicamente è una crescita geo-
metrica, ovvero il tasso di crescita è lineare.
Se pertanto x0 è il numero di individui iniziali, allora dopo un certo tempo la

popolazione sarà x1 = x0 + g x0, con g ∈ R che è detto fattore di crescita (o
growth rate). Allora x1 = (1+g)x0, x2 = (1+g)x1 = (1+g)[(1+g)x0] = (1+g)2x0

e al passo k
xk = (1 + g)kx0 g ∈ R (A.1)

che è una progressione geometrica di ragione 1 + g.
Domanda: come varia la popolazione? Risposta: in funzione di g e del valore

iniziale x0.
Studiamo la successione (o progressione) geometrica (A.1). Essa converge se e

solo se |1+ g| < 1 per ogni popolazione iniziale x0. Pertanto, si ha convergenza
quando −2 < g < 0. Se −2 < g ≤ −1 allora −1 < 1 + g < 0 cosicché xk sarà
negativo per k dispari e positivo altrimenti. Ovvero non sapremo dire nulla. Se

Figura A.1: Thomas Malthus

g = −1, 1 + g = 0 e quindi xk = 0, ∀k. Infine, quando −1 < g < 0, 1 + g < 1 per
cui xk < x0: la popolazione si estingue!

Ci sono due altri casi da considerare:

• g = 0. In tal caso la popolazione rimane inalterata xk = x0, ∀k.
• Divergenza quando g > 0. Infatti, se 1 + g > 1 che implica xk > xk−1 >
· · · > x0: la popolazione cresce esponenzialmente.

ESEMPIO 52. Come esempio, consideriamo la popolazione iniziale x0 = 100 e
consideriamo 10 iterazioni, k = 0, 1, ..., 10. L’evoluzione sarà come in Figura A.2

A.2 Il modello non lineare di Verhulst

Pierre Verhulst (Brussels, 28/10/1804-15/2/1849) era un matematico che si inter-
essò di biologia e in particolare della legge di crescita di una popolazione.
Nel 1838 in Verhulst, P. F. Notice sur la loi que la population pursuit dans son ac-

croissement, Corresp. Math. Phys. 10:113-121, propose un nuovo modello di crescita
della popolazione, assumendo non più una crescita costante ma con fattore di
crescita di tipo lineare g(x) = −ax + b, a > 0. Partendo da una popolazione
iniziale x0, la (A.1) al passo k, si scriverà come

xk+1 = xk + g(xk)xk = −ax2
k + (1 + b)xk . (A.2)

L’equazione (A.2) ha senso se a > −1 e 0 ≤ x ≤ 1+b
a (perchè la popolazione deve

essere sempre ≥ 0). Il modello è equivalente alla mappa quadratica

T : R+ −→ R
+

x→ T (x) = −ax2 + (1 + b)x .
(A.3)

224 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura A.2: La progressione di Malthus a partire da una popolazione iniziale di
100 individui per diversi valori di g.

Figura A.3: Pierre Verhlust

Consideriamo la trasformazione lineare x = (1+b)
a y, che mappa l’intervallo [0, (1+

b)/a], dove la parabola di (A.3) è T (x) ≥ 0 in [0, 1]. Otteniamo

T̃ (y) = −a
(
1 + b

a

)2

y2 + (1 + b) ·
(
1 + b

a

)
y (A.4)

Semplificando
T̃ (y) = −κy2 + κy (A.5)

avendo posto κ = (1+b)2

a , vedi Fig. A.4.

225A. Metodi iterativi ed equazione logistica

Figura A.4: La trasformazione lineare della parabola T (x) ≥ 0 in [0, 1]

Possiamo allora studiare la mappa discreta

xk+1 = −κx2
k + κxk , 0 < κ ≤ 4. (A.6)

Il processo iterativo (A.6) si chiama processo logistico discreto. Pertanto,
partendo da un x0 ∈ (0, 1], scelto un valore di κ ∈ (0, 4], itereremo la mappa
(A.6) un certo numero di volte, ottenendo un punto del cosidetto diagramma di
Verhulst.
Riassumendo, indichiamo in tabella A.1, le differenze tra i due approcci.

A.2.1 Isometrie, dilatazioni e contrazioni
In entrambi i procedimenti di Malthus e Verhulst, partendo da un x0 e da una
funzione T : R → R si è generata una successione di valori {xn}n≥0 tale che
xn+1 = T (xn), n = 0, 1, . . . Consideriamo allora la successione

xn+1 = T (xn), n = 0, 1, 2, . . . (A.7)

226 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura A.5: Iterazione del processo di Verhulst che origina il ben noto dia-
gramma di biforcazione

Malthus: lineare Verhulst: non lineare
fattore di crescita costante g lineare g(x) = ax+ b

processo
{

x0

xn+1 = (1 + g)xn

⎧⎨
⎩

x0

xn+1 = −kx2
n + kxn

k = (1 + b)2/a
trasformazione T (x) = (1 + g)x T (x) = −kx2 + kx

Tabella A.1: Tabella di confronto tra le iterazioni di Malthus e Verhlust

essa sarà detta

• una isometria se

|T (xn+1)− T (xn)| = |xn+1 − xn|, ∀n ∈ N (A.8)

• una dilatazione se

|T (xn+1)− T (xn)| > |xn+1 − xn|, ∀n ∈ N (A.9)

• oppure una contrazione se

|T (xn+1)− T (xn)| < κ |xn+1 − xn|, ∀n ∈ N, κ ∈ [0, 1) (A.10)

Vale il seguente Teorema del punto fisso di (Banach-)Caccioppoli

227A. Metodi iterativi ed equazione logistica

Teorema 32. Ogni contrazione T : R→ R ammette un unico punto fisso,

x� = T (x�).

Partendo da un fissato x0 il processo

xn+1 = T (xn) , n = 0, 1, 2, ...

è un’approssimazione di x� che migliora ad ogni passo, cioè

|xn+1 − x�| < |xn − x�|, n = 0, 1, 2, ...

Il punto x� è detto appunto punto fisso della contrazione T .

Figura A.6: Renato Caccioppoli

Se T è una contrazione, allora esiste un κ ∈ [0, 1) tale che

|T (xn+1)− T (xn)| < κ |xn+1 − xn|, ∀n ∈ N, (A.11)

ovvero |T (xn+1)− T (xn)|
|xn+1 − xn| < 1 . (A.12)

La disuguaglianza (A.12) ci dice che il ”rapporto incrementale” è sempre mi-
nore di 1. Quando |xn+1 − xn| ≤ ε allora il rapporto incrementale approssima
la derivata di T in xn.

A.2.2 Semplici esempi di processi iterativi
1. Processo di traslazione: T (x) = x+ a. Le progressioni aritmetiche, come
la capitalizzazione semplice degli interessi, sono processi di traslazione.
Sono processi isometrici.

228 Appunti di Calcolo Numerico con codici in Matlab/Octave

2. Processo omotetico: T (x) = mx.

• |m| < 1, è una contrazione.
• |m| > 1,è una dilatazione.
• |m| = 1, è una isometria (identità se m = 1 e simmetria rispetto
l’origine se m = −1).

Le progressioni geometriche, quali la capitalizzazione composta degli inter-
essi, sono esempi di processi omotetici.

La rappresentazione grafica dei processi iterativi si ottiene seguendo questa ”ricetta”

1. In un riferimento cartesiano ortogonale, tracciamo il grafico della trasfor-
mazione T e della funzione identica y = x, come evidenziato in A.7.

Figura A.7: Rappresentazione di un processo iterativo.

2. Fissato quindi un punto iniziale x0, costruiamo la sua immagine x1 = T (x0)
sull’asse delle ordinate. Per simulare il procedimento di retroazione, ripor-
tiamo in ascissa il valore x1 attraverso la funzione identica y = x. Calco-
liamo quindi x2 = T (x1) e riportiamo il suo valore in ascissa. Procediamo
iterativamente per calcolare xk+1 = T (xk).

In Figura A.8 il primo fotogramma illustra un processo shift; nel secondo e
nel terzo due processi omotetici di contrazione con attrattore nullo. Il quarto
fotogramma rappresenta infine un processo espansivo.

ESEMPIO 53. Esempi di un processo iterativo convergente Fig. A.9 e di processo
iterativo divergente Fig. A.10. Infine alcune iterazioni di Verhulst per diversi valori
di κ si trovano nelle Figure A.11-A.13.

229A. Metodi iterativi ed equazione logistica

Figura A.8: Processi iterativi per diversi valori di m.

Figura A.9: Processo convergente

230 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura A.10: Processo divergente

A.3 Modello lineare di Volterra

A.3.1 Interazione tra 2 popolazioni: modello lineare di Volterra
Si suppone che il tasso di crescita delle 2 popolazioni sia proporzionale e costante
al numero di individui di ciascuna (nonché diverso per le 2 popolazioni).

xn+1 − xn = a xn + b yn =⇒ xn+1 = (1+ a)xn + byn (A.13)
yn+1 − yn = c xn + d yn =⇒ yn+1 = cxn + (1+ d)yn (A.14)

con xn, yn gli individui al passo n.
Equivalentemente(

xn+1

yn+1

)
=

(
1 + a b
c 1 + d

)(
xn
yn

)

T : R2 −→ R
2, T (X) = X ′ := A ·X

con A matrice dei coefficienti e X = [x y]′.
Consideriamo come Esempio Figura A.14
Cerchiamo di chiarire il significato dei coefficienti cooperazione: a e d (di

ciascuna popolazione, rispetto se stessa) sono negativi, ciascuna specie - da sola
- si estinguerebbe (contrazione). Ma sono positivi i coefficienti di crescita b e
c (di ciascuna popolazione, rispetto all’altra), la presenza dell’altra specie può
rallentare o addirittura inibire il processo di estinzione.

231A. Metodi iterativi ed equazione logistica

Figura A.11: Processo di Verhulst convergente con x0 = 0.1, κ = 3.

segno dei coeff. evoluzione del sistema
a, b, c, d
− + + − cooperazione
+ − − + competizione
+ + − − prede-predatori

competizione: il segno dei coefficienti di crescita è l’opposto del caso della
cooperazione. Ciascuna specie esploderebbe (crescita) se non ci fosse l’altra ad
inibire tale processo. La competizione fa sı̀ che una delle due specie si estingue e
l’altra esplode, come mostrato nella prossima figura.

preda-predatore: il segno dei coefficienti di crescita a, b è positivo mentre
quelli della seconda specie, c, d sono negativi. Si possono interpretare le due
specie come una popolazione di prede x ed una di predatori y, da cui il nome di
modello preda-predatore.

232 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura A.12: Processo di Verhulst convergente con x0 = 0.1, κ = 3.9

A.4 Modello non lineare di Lotka-Volterra

In analogia a quanto fatto nel caso unidimensionale (nel passare da Malthus a
Verhulst):

dx/dt = x(a− by) (A.15)
dy/dt = −y(c − dx) (A.16)

xn+1 − xn = (a− byn)xn (A.17)
yn+1 − yn = (c xn − d) yn (A.18)

con xn, yn gli individui al passo n, a, b, c, d > 0.
Pertanto, partendo dalle popolazioni iniziali x0, y0 otteniamo il sistema non

lineare

xn+1 = (a+ 1)xn − bxnyn (A.19)
yn+1 = c xnyn + (1− d) yn (A.20)

dove

233A. Metodi iterativi ed equazione logistica

Figura A.13: Processo di Verhulst divergente con x0 = 0.1, κ = 4.1

Figura A.14: Qui x0 = 10, y0 = 20 e a = b = 0.1, c = 0.01, d = 0 .

• la prima equazione è quella della popolazione delle prede (che si assume
abbiano una riserva di cibo illimitata);

• la seconda equazione è quella della popolazione dei predatori.

234 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura A.15: Valori scelti: x0 = 10, y0 = 20 e a = −0.01, b = 0.2 c = 0.1, d =
−0.0001 .

Figura A.16: Valori scelti: x0 = 10, y0 = 20 e a = −0.1, b = 1.0 c = −0.1, d = 0.1

In Figura A.19 presentiamo un esempio di evoluzione mediante lo schema non
lineare di Lotka-Volterra.

235A. Metodi iterativi ed equazione logistica

Figura A.17: Valori scelti: x0 = 10, y0 = 20 e a = 0.01, b = 0.02 c = −0.01, d =
−0.2

Figura A.18: Alfred J. Lotka (1880-1949)(sx) e Vito Volterra (1860-1940)(dx)

236 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura A.19: Valori scelti: x0 = 2000, y0 = 600, a = 0.1, b = 0.00008333333, c =
0.00004, d = 0.04.

237A. Metodi iterativi ed equazione logistica

B
Interpolazione: aspetti

implementativi e
applicazioni

Questa appendice è stata scritta insieme al Prof. Marco Caliari dell’Università
di Verona a cui va il mio personale ringraziamento.

B.1 Richiami sull’interpolazione polinomiale

Data una funzione f : [a, b] → R e un insieme {xi}ni=1 ⊂ [a, b], sia pn−1f(x) il
polinomio di grado n − 1 interpolatore di f nei punti xi (cioè pn−1f(xi) = f(xi).
Chiameremo i punti xi nodi di interpolazione (o, più semplicemente, nodi). Un
generico punto x̄ ∈ [a, b] in cui si valuta Ln−1f sarà chiamato nodo target (o, più
semplicemente, target).

I n nodi di Chebyshev sono gli zeri del polinomio di Chebyshev di grado n Tn(x) =

cos(n arccos(x)) (vedasi anche §5.1). Dunque, xj+1 = cos
(
jπ+π

2

n

)
, j = 0, . . . , n− 1.

Si chiamano n nodi di Chebyshev estesi (o di Chebyshev–Lobatto) i nodi x̄j+1 =

cos
(

jπ
n−1

)
, j = 0, . . . , n − 1. Tali nodi appartengono all’intervallo [−1, 1]. I nodi

di Chebyshev relativi ad un intervallo generico [a, b] si ottengono semplicemente
per traslazione e scalatura.

B.1.1 Interpolazione di Lagrange
Dato un insieme di n coppie di interpolazione {(xi, yi)}ni=1, il polinomio elementare
di Lagrange i-esimo (di grado n− 1) è

Li(x) =

n∏
j=1

j
=i

(x− xj)

xi − xj
.

Il codice Matlab/Octave per il calcolo dei polinomi di Lagrange su vettori (colonna)
di punti target x è riportato nella funzione lagrai target.m di Appendice E .

Il polinomio di interpolazione si scrive dunque

pn−1(x) =

n∑
i=1

yiLi(x) .

B.1.2 Sistema di Vandermonde
Dato il polinomio

pn−1(x) = a1x
n−1 + a2x

n−2 + . . .+ an−1x+ an

e n coppie di interpolazione {(xi, yi)}ni=1, il corrispondente sistema di Vander-
monde si scrive⎛

⎜⎜⎜⎜⎜⎝
xn−1
1 xn−2

1 . . . x1 1
xn−1
2 xn−2

2 . . . x2 1
...

... . . .
...

...
xn−1
n−1 xn−2

n−1 . . . xn−1 1
xn−1
n xn−2

n . . . xn 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a1
a2
...

an−1

an

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

y1
y2
...

yn−1

yn

⎞
⎟⎟⎟⎟⎟⎠ (B.1)

Il calcolo della matrice di Vandermonde si può fare con il codice Matlab/Octave
in Tabella B.1. oppure usando la funzione Matlab/Octave vander.

function V = vandermonde(nodi)

%

% V = vandermonde(nodi)

%

n = length(nodi);

V = repmat(nodi’,1,n).^repmat([n-1:-1:0],n,1);

Tabella B.1: Matrice di Vandermonde.

B.1.3 Interpolazione di Newton
Data una funzione f , definiamo le differenze divise nel seguente modo:

f [x] = f(x)

f [x1, x] =
f [x]− f [x1]

x− x1

. . . = . . .

f [x1, x2, . . . , xk−1, xk, x] =
f [x1, x2, . . . , xk−1, x]− f [x1, x2, . . . , xk−1, xk]

x− xk

Per il calcolo delle differenze divise ci possiamo avvalere della funzione DiffDivise
di Appendice E.

240 Appunti di Calcolo Numerico con codici in Matlab/Octave

Il polinomio d’interpolazione nella forma di Newton si scrive quindi

p0f(x) = d1

w = (x− x1)

pif(x) = pi−1f(x) + di+1w, i = 1, . . . , n− 1

w = w · (x− xi+1), i = 1, . . . , n− 1

ove
di = f [x1, . . . , xi] .

Il calcolo delle differenze divise e la costruzione del polinomio di interpolazione
possono essere fatti nel medesimo ciclo for.
Sfruttando la rappresentazione dell’errore

f(x)−pi−1f(x) =

⎛
⎝ i∏

j=1

(x− xj)

⎞
⎠ f [x1, . . . , xi, x] ≈

⎛
⎝ i∏

j=1

(x− xj)

⎞
⎠ f [x1, . . . , xi, xi+1]

(B.2)
è possibile implementare un algoritmo per la formula di interpolazione di New-
ton adattativo, che si interrompa cioè non appena la stima dell’errore è più pic-
cola di una fissata tolleranza.
Dato il polinomio interpolatore nella forma di Newton

pn−1(x) = d1 + d2(x− x1) + . . .+ dn(x− x1) · . . . · (x− xn−1) ,

si vede che le differenze divise soddisfano il sistema lineare⎛
⎜⎜⎜⎜⎜⎝

0 0 1
0 . . . 0 (x2 − x1) 1
...

.
...

...
0

∏n−2
j=1 (xn−1 − xj) . . . (xn−1 − x1) 1∏n−1

j=1 (xn − xj) (xn − x1) 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

dn
dn−1

...
d2
d1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

f(x1)
f(x2)
...

f(xn−1)
f(xn)

⎞
⎟⎟⎟⎟⎟⎠

(B.3)

B.1.4 Interpolazione polinomiale a tratti

Data una funzione f : [a, b] → R e un’insieme {xi}ni=1 ⊂ [a, b] di nodi ordinati,
consideriamo l’interpolante polinomiale a tratti Lc

k−1f di grado k − 1. Su ogni
intervallo hi = xi+1 − xi essa coincide con il polinomio di grado k − 1

ai,1(x− xi)
k−1 + ai,2(x− xi)

k−2 + . . .+ ai,k−1(x− xi) + ai,k . (B.4)

Dunque, l’interpolante polinomiale a tratti è completamente nota una volta noti
i nodi e i coefficienti di ogni polinomio.

241B. Interpolazione: aspetti implementativi e applicazioni

B.1.5 Strutture in Matlab/Octave

In Matlab/Octave è possibile definire delle strutture, cioè degli insiemi (non ordi-
nati) di oggetti. Per esempio, le istruzioni

S.a = 1;

S.b = [1,2];

generano la struttura S

S =

{

a = 1

b =

1 2

}

L’interpolazione polinomiale a tratti è definita mediante una struttura solita-
mente chiamata pp (piecewise polynomial), che contiene gli oggetti pp.x (vettore
colonna dei nodi), pp.P (matrice dei coefficienti), pp.n (numero di polinomi), pp.k
(grado polinomiale aumentato di uno) e pp.d (numero di valori assunti dai poli-
nomi). La matrice P ha dimensione n× k e, con riferimento a (B.4),

Pij = ai,j .

Nota una struttura pp, è possibile valutare il valore dell’interpolante in un gener-
ico target x̄ con il comando ppval(pp,xbar).

B.1.6 Splines cubiche

Le splines cubiche sono implementate da Matlab/Octave con il comando spline
che accetta in input il vettore dei nodi e il vettore dei valori e restituisce la strut-
tura associata. La spline cubica costruita è nota come not-a-knot, ossia viene
imposta la continuità della derivata terza (generalemente discontinua) nei nodi
x2 e xn−1. Lo stesso comando permette di generare anche le splines vincolate: è
sufficiente che il vettore dei valori abbia due elementi in più rispetto al vettore
dei nodi. Il primo e l’ultimo valore verranno usati per imporre il valore della
derivata alle estremità dell’intervallo.

Implementazione di splines cubiche naturali in Matlab/Octave

Con le notazioni usate fino ad ora, si può costruire una spline cubica S a partire
dalla sua derivata seconda nell’intervallo generico [xi, xi+1]

S′′
[xi,xi+1]

(x) =
mi+1 −mi

hi
(x− xi) +mi, i = 1, . . . , n− 1 (B.5)

242 Appunti di Calcolo Numerico con codici in Matlab/Octave

ove mi = S′′(xi) sono incogniti, con m1 = mn = 0. Integrando due volte la (B.5),
si ottiene

S′
[xi,xi+1]

(x) =
mi+1 −mi

2hi
(x− xi)

2 +mi(x− xi) + ai

S[xi,xi+1](x) =
mi+1 −mi

6hi
(x− xi)

3 +
mi

2
(x− xi)

2 + ai(x− xi) + bi

ove le costanti ai e bi sono da determinare. Innanzitutto, richiedendo la proprietà
di interpolazione, cioè S[xi,xi+1](xj) = f(xj), j = i, i+ 1, si ottiene

bi = f(xi),

ai =
f(xi+1)− f(xi)

hi
− (mi+1 −mi)

hi
6
−mi

hi
2

=

=
f(xi+1)− f(xi)

hi
−mi+1

hi
6
−mi

hi
3

A questo punto, richiedendo la continuità della derivata prima, cioè S′
[xi−1,xi]

(xi) =

S′
[xi,xi+1]

(xi) per i = 2, . . . , n− 1, si ottiene

hi−1

6
mi−1 +

hi−1 + hi
3

mi +
hi
6
mi+1 =

f(xi+1)− f(xi)

hi
− f(xi)− f(xi−1)

hi−1
. (B.6)

Risulta chiaro che ci sono n− 2 equazioni e n incognite mi.

Splines cubiche naturali Si impone che il valore della derivata seconda agli
estremi dell’intervallo sia 0. Dunque m1 = mn = 0. Il sistema lineare (B.6)
diventa allora⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
h1

6
h1+h2

3
h2

6 0 . . . 0

0
.

...
...

. 0

0 . . . 0 hn−2

6
hn−2+hn−1

3
hn−1

6
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1

m2

...

...
mn−1

mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
d2
...
...

dn−1

dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

con d1 = dn = 0 e di =
f(xi+1)−f(xi)

hi
− f(xi)−f(xi−1)

hi−1
, i = 2, . . . , n−1. L’algoritmo

per il calcolo della struttura associata ad una spline cubica naturale è ri-
portato in Tabella B.2.

Splines cubiche vincolate Si impongono due valori d′1 e d′2 per la derivata
S′(x1) e S′(xn), rispettivamente. Si ricava dunque

a1 = d′1
mn −mn−1

2hn−1
(xn − xn−1)

2 +mn−1(xn − xn−1) + an−1 = d′n

243B. Interpolazione: aspetti implementativi e applicazioni

function pp = splinenaturale(x,y)

%

% function pp = splinenaturale(x,y)

%

n = length(x);

x = x(:);

y = y(:);

h = x(2:n)-x(1:n-1);

d1 = h(2:n-2)/6;

d0 = (h(1:n-2)+h(2:n-1))/3;

rhs = (y(3:n)-y(2:n-1))./h(2:n-1)-(y(2:n-1)-y(1:n-2))./h(1:n-2);

S = diag(d1,-1)+diag(d0)+diag(d1,1);

m = zeros(n,1);

m(2:n-1) = S\rhs;

a = (y(2:n)-y(1:n-1))./h(1:n-1)-h(1:n-1).*(m(2:n)/6+m(1:n-1)/3);

b = y(1:n-1);

pp.x = x;

pp.P = [(m(2:n)-m(1:n-1))./(6*h),m(1:n-1)/2,a,b];

pp.k = 4;

pp.n = n-1;

pp.d = 1;

Tabella B.2: Spline cubica naturale.

da cui
h1

3
m1 +

h1

6
m2 =

f(x2)− f(x1)

h1
− d′1

hn−1

6
mn−1 +

hn−1

3
mn = d′n −

f(xn)− f(xn−1)

hn−1

Il sistema lineare da risolvere diventa dunque

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

3
h1

6 0 0
h1

6
h1+h2

3
h2

6 0 . . . 0

0
.

...
...

. 0

0 . . . 0 hn−2

6
hn−2+hn−1

3
hn−1

6

0 0 hn−1

6
hn−1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1

m2

...

...
mn−1

mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
d2
...
...

dn−1

dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

con d1 = f(x2)−f(x1)
h1

− d′1 e dn = d′n − f(xn)−f(xn−1

hn−1
.

244 Appunti di Calcolo Numerico con codici in Matlab/Octave

ricava dunque
m1 = mn

a1 =
mn −mn−1

2
hn−1 +mn−1hn−1 + an−1

da cui
m1 −mn = 0

h1

3
m1 +

h1

6
m2 +

hn−1

6
mn−1 +

hn−1

3
mn =

f(x2)− f(x1)

h1
− f(xn)− f(xn−1)

hn−1

Il sistema lineare da risolvere diventa dunque⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1
h1

6
h1+h2

3
h2

6 0 0

0 h2

6
h2+h3

3
h3

6 0 . . . 0
...

.
...

...
.

...
0 0 hn−2

6
hn−2+hn−1

3
hn−1

6
h1

3
h1

6 0 . . . 0 hn−1

6
hn−1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1

m2

m3

...

...
mn−1

mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
d2
d3
...
...

dn−1

dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

con d1 = 0 e dn = f(x2)−f(x1)
h1

− f(xn)−f(xn−1)
hn−1

.

Splines cubiche not-a-knot Si impone la continuità della derivata terza in x2

e xn−1. Si ricava dunque

m2 −m1

h1
=

m3 −m2

h2

mn−1 −mn−2

hn−2
=

mn −mn−1

hn−1

da cui
1

h1
m1 −

(
1

h1
+

1

h2

)
m2 +

1

h2
m3 = 0

1

hn−2
mn−2 −

(
1

hn−2
+

1

hn−1

)
mn−1 +

1

hn−1
mn = 0

Il sistema lineare da risolvere diventa dunque⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
h1

− 1
h1
− 1

h2
− 1

h2
0 . . . 0

h1

6
h1+h2

3
h2

6 0 . . . 0

0
.

...
...

. 0

0 . . . 0 hn−2

6
hn−2+hn−1

3
hn−1

6
0 . . . 0 1

hn−2
− 1

hn−2
− 1

hn−1

1
hn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1

m2

...

...
mn−1

mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
d2
...
...

dn−1

dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

con d1 = dn = 0.

245B. Interpolazione: aspetti implementativi e applicazioni

Splines cubiche periodiche Si impone S′′(x1) = S′′(xn) e S′(x1) = S′(xn). Si

Rappresentazione dell’errore

Supponiamo di usare un metodo di interpolazione polinomiale a tratti di grado
k − 1 in un intervallo [a, b] e consideriamo due diverse discretizzazioni, rispetti-
vamente con n1 e n2 nodi, con intervalli di lunghezza media h1 = (b− a)/(n1 − 1)
e h2 = (b − a)/(n2 − 1). Gli errori di approssimazione saranno verosimilmente
err1 = Chk1 e err2 = Chk2 . Si ha dunque

err2
err1

=

(
h2

h1

)k

da cui

log err2 − log err1 = k(log h2 − log h1) = −k(log(n2 − 1)− log(n1 − 1)) .

Dunque, rappresentando in un grafico logaritmico-logaritmico l’errore in dipen-
denza dal numero di nodi, la pendenza della retta corrisponde al grado di ap-
prossimazione del metodo, cambiato di segno.

B.1.7 Compressione di dati
Supponiamo di avere un insiememolto grande di coppie di nodi/valori {(xi, yi)}Ni=1

e di non conoscere la funzione che associa il valore al nodo corrispondente. Ci
poniamo il problema di comprimere i dati, ossia memorizzare il minor numero di
coefficienti pur mantenendo un sufficiente grado di accuratezza. Una prima idea
potrebbe essere quella di selezionare alcuni dei nodi, diciamo n, e di costruire
la spline cubica su quei nodi. Il costo di memorizzazione, oltre ai nodi, sarebbe
dunque pari a 4(n − 1). Rimarrebbe il problema di scegliere i nodi da memoriz-
zare, visto che non si suppone siano equispaziati.
Si potrebbe ridurre il costo di memorizzazione (a n) usando un unico polinomio

interpolatore: rimarrebbe il problema della scelta dei nodi e, probabilmente, si
aggiungerebbe un problema di mal condizionamento sempre dovuto alla scelta
dei nodi.
Un’idea che combina le tecniche discusse è la seguente: si usa una interpo-

lazione a tratti (anche lineare) per ricostruire i valori della funzione sconosciuta
in corrispondenza di n nodi di Chebyshev. Si usa poi un unico polinomio interpo-
latore su quei nodi. Il rapporto di compressione è 2N/n, considerando che non è
necessario memorizzare i nodi di Chebyshev, ma solo i coefficienti del polinomio
interpolatore (e trascurando i due estremi dell’intervallo).

B.1.8 Esercizi proposti

ESERCIZIO 87. Si implementi una function y =

interplagrange(nodi,valori,x) per la formula di interpolazione nella
forma di Lagrange.

246 Appunti di Calcolo Numerico con codici in Matlab/Octave

ESERCIZIO 88. Si testi l’interpolazione nella forma di Lagrange della fun-
zione di Runge nell’intervallo [−5, 5] su nodi equispaziati. Si prendano rispet-
tivamente n = 11, 21, 31, 41, 51 nodi di interpolazione e si valuti l’interpolante
su 5(n − 1) + 1 nodi target equispaziati. Si producano delle figure mettendo
in evidenza i nodi di interpolazione, la funzione di Runge e l’interpolante.

ESERCIZIO 89. Si implementi una function y = chebyshev(n) per il calcolo
dei nodi di Chebyshev nell’intervallo [−1, 1].
ESERCIZIO 90. Si ripeta l’esercizio 88 usando nodi di interpolazione di
Chebyshev anziché nodi equispaziati.

ESERCIZIO 91. Si implementi una function V = vandermonde(nodi) per il
calcolo della matrice di Vandermonde definita in (B.1).

ESERCIZIO 92. Si implementi una function y =

interpvandermonde(nodi,valori,x) per la formula di interpolazione
mediante matrice di Vandermonde. Si spieghino i risultati ottenuti.

ESERCIZIO 93. Si ripeta l’esercizio 88, usando la formula di interpolazione
mediante matrice di Vandermonde. Si usi il metodo di Hörner (vedasi Sezione
2.6.1, tabella 2.3) per la valutazione del polinomio.

ESERCIZIO 94. Si implementi una function y =

interpnewton(nodi,valori,x) per il calcolo del polinomio di interpolazione
nella forma di Newton.

ESERCIZIO 95. Si ripeta l’esercizio 88, usando la formula di interpolazione
di Newton.

ESERCIZIO 96. Si modifichi l’implementazione dell’interpolazione nella
forma di Newton, in modo da prevedere come parametro opzionale di input
la tolleranza per l’errore (in norma infinito) di interpolazione, stimato come
in (B.2). Nel caso la tolleranza non sia raggiunta, l’algoritmo si interrompe
all’ultimo nodo di interpolazione. La function deve fornire in uscita il numero
di iterazioni e la stima dell’errore.

ESERCIZIO 97. Si considerino n = 21 nodi di interpolazione equispaziati
nell’intervallo [−5, 5]. Si interpoli in forma di Newton la funzione y = cos(x)
sull’insieme di nodi target {−2, 0, 1} per diverse tolleranze e, successivamente,
sull’insieme di nodi target {−2π, π}. Si spieghino i risultati ottenuti.

ESERCIZIO 98. Si calcolino i numeri di condizionamento della matrice di
Vandermonde (B.1) e della matrice dei coefficienti dell’interpolazione di New-
ton, da ordine 2 a 20 (considerando nodi equispaziati in [−1, 1] e se ne produca
un grafico semilogaritmico nelle ordinate. Si discutano i risultati.

ESERCIZIO 99. Si implementi una function pp = lintrat(x,y) per
l’interpolazione lineare a tratti.

247B. Interpolazione: aspetti implementativi e applicazioni

ESERCIZIO 100. Si verifichi, mediante un grafico logaritmico-logaritmico,
il grado di approssimazione (errore in norma infinito) delle splines cubiche
naturali per la funzione di Runge. Si considerino un numero di nodi di in-
terpolazione equispaziati nell’intervallo [−5, 5] da n = 11 a n = 91 e 102 nodi
target equispaziati.

ESERCIZIO 101. Si ripeta l’esercizio precedente con l’interpolazione lineare
a tratti.

ESERCIZIO 102. Data la struttura associata ad una spline cubica, si ricavi
la corrispondente struttura per la derivata seconda.

ESERCIZIO 103. Si ripeta l’esercizio 100, confrontando però la derivata sec-
onda della funzione di Runge e la derivata seconda della spline cubica not-a-
knot associata.

ESERCIZIO 104. Si considerino le coppie {(xi, yi)} ove gli xi sono N = 1001
nodi equispaziati nell’intervallo [0, 2π] e yi = sin(xi). Mediante il procedi-
mento descritto in § B.1.7 (interpolazione lineare a tratti e interpolazione su
nodi di Chebyshev estesi), si determini il minimo grado n necessario per com-
primere i dati con un errore in norma infinito inferiore a 10−5. Si determini
poi l’errore in corrispondenza del rapporto di compressione 286. Infine, si
giustifichi la stagnazione dell’errore di approssimazione per grado di interpo-
lazione maggiore di 10.

248 Appunti di Calcolo Numerico con codici in Matlab/Octave

C
Codici Matlab/Octave

I codici relativi alle funzioni citate dalla presente trattazione, sono scaricabili al
link

http://www.math.unipd.it/∼demarchi/CN2006-07/CodiciMatlab.pdf
I codici sono parte integrante del presente libro. Invitiamo il lettore a farne il
download.

249

C
Indice analitico

Analisi degli errori, 17
Analisi errori

Condizionamento, 26
errore algoritmico, 26
Errore assoluto, 23
Errore inerente, 23
Metodo stabile o instabile, 26
Numero di condizionamento, 26
Problema ben(mal) condizionato, 26
Stabilità, 26

Appendice A, 219
Modello lineare di Malthus, 219
Modello lineare di Volterra, 227
competizione, 228
cooperazione, 227
preda-predatore, 228

Modello non lineare di Lotka-Volterra, 229
Modello non lineare di Verhulst, 220
diagramma di biforcazione, 222

Teorema di (Banach)-Cacciopoli, 223
Appendice B, 234, 235
Appendice C, 245
Aritmetica di macchina, 17

arrotondamento, 21
base di numerazione, 17
bias, 20
Calcolo di ε, 22
Cancellazione numerica, 24
Errore relativo, 23
esponente, 17
mantissa, 17
notazione floating-point, 17
notazione in virgola mobile, 17
numero macchina, 18
precisione macchina, 22
rappresentazione normalizzata, 17

troncamento, 21
Autovalori di matrici, 111

autovalore, 111
autovettore, 111
cerchi di Gerschgorin, 112
metodo delle potenze, 116
convergenza, 117

Metodo QR
decomposizione reale di Schur, 122

polinomio caratteristico, 111
quoziente di Rayleigh, 111

Calcolo di π, 28
Algoritmo di Archimede per π, 28
Algoritmo di Viète per π, 28
Algoritmo di Wallis per π, 29

Calcolo di autovalori di matrici
Autovalori di matrici simmetrice, 124
metodi di Jacobi, 126
Successione di Sturm, 124

matrice di Householder, 120
Metodo delle potenze
metodo di Bernoulli, 119

Metodo delle potenze inverse, 119
shift, 119

Metodo QR, 120
shift, 122

valori singolari, 112
Contenuto dei Capitoli, 10

Decomposizione SVD, 170

Fast Fourier Transform (FFT), 180
Algoritmo, 182
Complessità, 182
polinomio trigonometrico, 180
trasformata discreta di Fourier (DFT), 182

Funzione erf, 190

GNU Octave, 5

Integrazione, 208
Estrapolazione di Richardson, 208
Algoritmo di Neville, 216

formula di sommazione di Eulero-Maclaurin, 212
Formule composite o generalizzate, 192
Formula generalizzata di Simpson, 193

252 Appunti di Calcolo Numerico con codici in Matlab/Octave

Formula trapezoidale, 192
Formule di Newton-Côtes, 187
Formula dei trapezi, 188
Formula di (Cavalieri-)Simpson, 188
Formule aperte, 187
Formule chiuse, 187
Numeri di Côtes, 187
Stime d’errore, 189

Formule di tipo interpolatorio, 185
Ordine di esattezza, 186
Momenti, 186

Formule gaussiane, 199
di Gauss-Chebyshev di prima specie, 200
di Gauss-Chebyshev di seconda specie, 200
di Gauss-Legendre, 201
di Gauss-Legendre-Lobatto, 201
errore di quadratura, 202

Metodo di Romberg, 212
Implementazione, 214

Nodi di quadratura, 185
Pesi di quadratura, 185
polinomi di Bernoulli, 215
Polinomi ortogonali, 197
di Chebyshev di prima specie, 198
di Chebyshev di seconda specie, 198
di Hermite, 199
di Jacobi, 199
di Laguerre, 199
di Legendre, 198
Proprietà, 197

Routine adattativa per la quadratura, 194
Integrazione , 185
Interpolazione, 131

polinomiale, 131
a tratti, 152
algorimo di Neville, 151
condizioni d’interpolazione, 133
Costante di Lebesgue, 142
differenze divise, 145
distribuzione dell’ arcocoseno, 141
errore d’interpolazione, 137
errore d’interpolazione lineare, 138
fenomeno di Runge, 138
forma di Hermite, 149
forma di Lagrange, 134
forma di Newton, 144

253Indice analitico

funzione di Runge, 133, 139
nodi di Chebyshev estesi, 143
nodi equispaziati, 136
polinomi elementari di Lagrange, 134
polinomio di migliore approssimazione uniforme, 142
prima formula baricentrica, 135
punti di Chebyshev, 140
punti di Chebyshev-Lobatto, 141
punti di Fekete, 142
punti di Leja, 142
seconda formula baricentrica, 136
Teorema esistenza e unicità, 132
Vandermonde, 132

polinomiale a tratti, 131
razionale, 131
trigonometrica, 131

Introduzione alla seconda edizione, 5

Lista delle figure, 13
Lista delle tabelle, 15

Matlab, 5
Matrice a blocchi, 63
Matrice di Hessenberg superiore, 63
Matrice di permutazione, 77
Matrice diagonale, 62
Matrice inversa, 64
Matrice simmetrica definita positiva, 65
Matrice trasposta, 63
Matrice triangolare inferiore, 63
Matrice triangolare superiore, 62
Matrice tridiagonale, 63
Minimi quadrati discreti, 170

decomposizione SVD, 172
equazioni normali, 171
funzionale quadratico, 170
residuo quadratico, 170
SVD in Matlab/Octave, 174

realmax, 23
realmin, 23

Soluzione di sistemi lineari, 59
Algoritmo di Thomas per matrici tridiagonali, 82
Cenni al calcolo dell’inversa, 84
Condizionamento del problema, 69
Numero di condizionamento, 69

254 Appunti di Calcolo Numerico con codici in Matlab/Octave

Cose basilari sulle matrici, 59
Determinante e autovalori di matrici, 64
Fattorizzazione QR di matrici, 101
Matrice di Hilbert, 70
Matrice di Vandermonde, 70
Stime crescita del numero di condizionamento, 71

Metodi di Jacobi e Gauss-Seidel, 89
Metodo Cholesky, 81
metodo del gradiente, 96
metodo del gradiente coniugato, 97
metodo del gradiente coniugato: algoritmo, 98
metodo del gradiente: algoritmo, 97
Metodo di Eliminazione di Gauss, 72
Algoritmo di eliminazione, 74
Complessità, 75
Fattorizzazione LU, 77
Matrici elementari di Gauss, 79
Sostituzione all’indietro, 74
Strategia del pivot parziale, 75
Strategia del pivot totale, 77

Metodo di rilassamento SOR, 93
sottrilassamento, 94
sovrarilassamento, 94

Norme di vettore e di matrice, 66
Norma 1, 66
Norma euclidea, 66
Norma infinito, 66
Norma p, 66

Operazioni aritmetiche con le matrici, 59
Raffinamento iterativo, 83
Sistemi sovra e sottodeterminati, 99

Soluzione di sistemi non lineari con il metodo di Newton, 103
Splines, 169

B-splines, 156
nodi multipli, 157
proprietà, 157
Regola di Steffensen, 157
supporto minimo, 159

curve B-splines e di Bézier, 166
Algoritmo di De Casteljau, 167
poligono di controllo, 166

interpolazione, 159
condizioni di Carrasso e Laurent, 159
splines cubiche, 160
splines cubiche naturali, 162
splines cubiche periodiche, 162

255Indice analitico

splines cubiche vincolate, 162
nodi, 156
ordine di approssimazione, 156
Polinomi elementari di Bernstein, 166
Polinomio approssimante di Bernstein, 165
potenza troncata, 156
smoothing spline, 164
Teorema del campionamento di Shannon, 164
funzione sinc, 164
Nyquist rate, 164

Tecnica di Richardson, 217

Zeri di funzione, 35
Accelerazione di Aitken, 50
Algoritmo di bisezione, 36
Calcolo di radici di polinomi
Deflazione, 52
Metodo di Newton-Hörner, 54

capitalizzazione composta, 35
Iterazione di punto fisso, 37
Ordine di convergenza, 39
Teorema delle contrazioni, 38
Teorema di Ostrowski, 38
Test d’arresto, 41

Metodo delle corde, 48
Metodo delle secanti, 48
Ordine di convergenza, 48

Metodo di bisezione, 36
Metodo di Newton, 42
Radici multiple, 44
Teorema di convergenza, 43

Metodo di Steffensen, 49
modello preda-predatore, 35
Schema di Hörner, 53

256 Appunti di Calcolo Numerico con codici in Matlab/Octave

Bibliografia

[1] K. E. Atkinson, An Introduction to Numerical Analysis, Second Edition, Wi-
ley, New York, 1989.

[2] R. Bevilacqua, D. Bini, M. Capovani e O. MenchiMetodi Numerici, Zanichelli,
1992.

[3] J.-P. Berrut, Lloyd N. Trefethen, Barycentric Lagrange Interpolation, SIAM
Rev. 46(3) (2004), pp. 501-517.

[4] L. Bos, S. De Marchi, A. Sommariva e M. Vianello, Computing multivariate
Fekete and Leja points by numerical linear algebra, SIAM J. Num. Anal. Vol.
48(5) (2010), pp. 1984-1999.

[5] L. Bos, S. De Marchi, A. Sommariva e M. Vianello,Weakly Admissible Meshes
and Discrete Extremal Sets, Numer. Math. Theor. Meth. Appl. Vol. 4(1) (2011),
pp. 1-12

[6] V. Comincioli, Analisi numerica: metodi, modelli, applicazioni. E-book, Apo-
geo, 2005.

[7] V. Comincioli, Analisi numerica. Complementi e problemi, McGraw-Hill Com-
panies, 1991.

[8] M. Conrad e N. Papenberg, Iterative Adaptive Simpsons and Lobatto Quadra-
ture in Matlab, TR-2008-012 Mathematics and Computer Science, Emory Uni-
versity, 2008.

[9] P. J. Davis, Interpolation & Approximation, Dover Publications Inc., New
York, 1975.

[10] C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.

[11] S. De Marchi, Funzioni splines univariate, Forum Ed. Udinese, Seconda ed.,
2001 (con floppy).

[12] S. De Marchi, On Leja sequences: some results and applications Appl. Math.
Comput. 152(3) (2004), 621-647

[13] G. Farin, Curves and Surfaces for CAGD: A Practical Guide, Third Edition,
Academic Press, San Diego, 1993.

[14] Gautschi, W., Inglese, G., Lower bounds for the condition numbers of Van-
dermonde matrices, Numer. Math., 52(3) (1988), pp. 241-250.

[15] G. Golub, Charles F. Van LoanMatrix computation, The Johns Hopkins Uni-
versity Press, Terza Edizione, 1996.

[16] D. Greenspan, V. Casulli Numerical Analysis for Applied Mathematics, Sci-
ence and Engineering, Addison-Wesley, 1988.

[17] Higham, N. J., The Matrix Computation Toolbox for MATLAB, University
of Manchester, Numerical Analysis Report No. 410, (2002).

[18] Higham, N. J., The Scaling and Squaring Method for the Matrix Exponen-
tial Revisited, SIAM J. Matrix Anal. Appl., 26(4) (2005), pp. 1179-1193.

[19] E. Isaacson, H. Bishop Keller, Analysis of Numerical Methods, John Wiley
& Sons, New York, 1966.

[20] J. Lambert, Numerical methods for Ordinary Differential Equations, Weley,
1991.

[21] Lax, P. D. e Richtmyer, R. D. Survey of the stability of linear finite difference
equations. Comm. Pure Appl. Math. 9 (1956), 267–293.

[22] G. G. Lorentz, Bernstein Polynomials, Chelsea Publishing Company, New
York, 1986.

[23] Moler, C. B. and C. F. Van Loan, Nineteen Dubious Ways to Compute the
Exponential of a Matrix, SIAM Review 20, 1978, pp. 801-836.

[24] G. Monegato Elementi di Calcolo Numerico, Levrotto&Bella, Torino, 1995.

[25] A. Quarteroni, F. Saleri Introduzione al Calcolo Scientifico, Esercizi e prob-
lemi risolti in Matlab, Terza Ed., Springer-Verlag, Milano, 2006.

[26] A. Quarteroni, R. Sacco e F. Saleri Matematica Numerica, Seconda Ed.,
Springer-Verlag, Milano, 2004.

[27] R. D. Richtmyer e K. W. Morton, Difference Methods fo Initial-value Prob-
lems, Wiley-Interscience, 1967.

[28] T. J. Rivlin, An Introduction to the Approximation of Functions, Dover Pub-
lications Inc., New York, 1969.

[29] J. R. Schewchuk, An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain, CMU-CS-94-125, Carnegie Mellon University (1994).

[30] J. Stoer, Bulirsch Introduction to Numerical Analysis Ed. Springer-Verlag,
Berlin, 1980.

258 Appunti di Calcolo Numerico con codici in Matlab/Octave

Ritratti e foto di alcuni matematici che hanno contribuito
allo sviluppo del calcolo numerico

(1.1) Isaac Newton: 1643-1727 (1.2) Leonhard Euler: 1707-
1783

(1.3) Joseph-Louis Lagrange:
1736-1813

Figura 1: Newton, Eulero e Lagrange

(2.1) Carl Friedrich Gauss:
1777-1855

(2.2) William Hörner : 1786-
1837

(2.3) Augustin-Louis Cauchy:
1789-1857

Figura 2: Gauss, Hörner e Cauchy

(3.1) Pafnutij Lv́ovic Čebyšëv:
1821-1894

(3.2) Carl David Tolmé Runge:
1856-1927

(3.3) Martin Wilhelm Kutta:
1867-1944

Figura 3: Chebyshev, Runge e Kutta

(4.1) Eric Harold Neville:
1889-1961

(4.2) Alexander Craig Aitken:
1895-1967

(4.3) Gene Howard Golub: 1932-
2007

Figura 4: Neville, Aitken e Golub

