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Infroduzione

Queste pagine nascono come appunti del corso di Calcolo Numerico che il
sottoscritto ha tenuto dall’A.A. 2006-07, dapprima per il corso di laurea triennale
in Matematica Applicata e Informatica Multimediale della Facolta di Scienze
dell’'Universita degli Studi di Verona, poi presso le Facolta di Scienze Statistiche
e di Scienze MM. FF. e NN. dell'Universita degli Studi di Padova.

Al lettore e richiesta la familiarita con Matlab, MATrix LABoratory, o la sua
versione freeware GNU Octave (nel seguito citato semplicemente come Octave) di
cui si fa uso nel testo per scrivere pezzi di codici che implementano alcuni degli
algoritmi numerici, degli esempi ed esercizi proposti. Per chi desidera conoscere
Matlab, la sua sintassi e il suo utilizzo, rimandiamo ad esempio al libro [25]
oppure ai tanti manuali disponibili in rete, quali ad esempio

http://www.math.unipd.it/~demarchi/CorsoMatlab/dispense.pdf

www.ciaburro.it/matlab/matlab.pdf.

Per quanto riguarda GNU Octave, il manuale e disponibile on-line ed incluso
nel file di download disponibile al link

http://www.gnu.org/software/octave/.

Gli appunti sono organizzati in 6 capitoli, corrispondenti agli argomenti fon-
damentali trattati nel corso di Calcolo Numerico.

e Cap. 1: Aritmetica di macchina e analisi degli errori.
e Cap. 2: Ricerca di zeri di funzione.

e Cap. 3: Soluzione di sistemi lineari.

e Cap. 4: Autovalori di matrici.

e Cap. 5: Interpolazione e approssimazione.

e Cap. 6: Integrazione e derivazione.

In tutti i capitoli ¢’e una sezione di Esercizi proposti: si tratta di esercizi proposti
dall’autore nei vari appelli, compiti, compitini e laboratori. Per molti essi si pos-
sono trovare anche le soluzioni e, dove richiesto il codice Matlab, navigando alla
pagina web

http://www.math.unipd.it/~demarchi/didattica.html.

Vi sono poi alcune Appendici, il cui scopo e di integrare la trattazione dei vari
capitoli con la teoria mancante, delle applicazioni e delle indicazioni implementa-
tive, con l'obiettivo di completare la sensibilita numerica richiesta a chi si occupa
o ¢ interessato al calcolo numerico.

e Appendice A: Metodi iterativi ed equazione logistica
e Appendice B: Interpolazione: aspetti implementativi e applicazioni.
e Appendice C: Codici Matlab/Octave.
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Il testo non ha assolutamente la pretesa di essere sostitutivo di libri molto
piu completi e dettagliati disponibili in letteratura, come ad esempio i libri [1,
6, 7, 19, 24, 25, 26, 30], ma come traccia di riferimento per un corso di Cal-
colo Numerico di base, tipico dei corsi di laurea triennale. Pertanto l'invito e
di consultare anche i testi citati in bibliografia, sia per cultura personale, ma
soprattutto per un completamento della preparazione.

Ringrazio ancora una volta il prof. Marco Caliari dell'Universita di Verona,
per il prezioso contributo alla stesura dell’ Appendice B.

Come fatto nella prima edizione ringrazio sin d’ora coloro che mi segnaler-
anno sviste ed errori. Tutto cio per migliorare la trattazione e renderla piu
adeguata anche ai cambiamenti nell'insegnamento del Calcolo Numerico.

Stefano De Marchi
Dipartimento di Matematica
Universita di Padova.

Padova, gennaio 2016.
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Aritmetica di macchina e
analisi degli errori

In questo capitolo iniziale, metteremo per cosi dire le basi per comprendere la
filosofia sottostante al calcolo numerico. L'analisi degli errori ¢ fondamentale
per comprendere come evitarli, ma se non fosse possibile evitarli, come ridurli
almeno al minimo possibile.

Ma per comprendere quali sono i tipi d’errore di cui dobbiamo tenere conto,
prima di tutto dobbiamo capire come si rappresentano i numeri in un calcolatore.
Vedremo che la rappresentazione dei numeri ¢ una delle fonti principali d’errore
detti appunti errori di rappresentazione.

1.1 Rappresentazione dei numeri in un calcolatore

La notazione che maggiormente si usa nei calcolatori ¢ la notazione a virgola
mobile o in inglese floating-point . Se a € un numero, intero o reale, usando la
notazione a virgola mobile, lo possiamo scrivere come

a=pN?, (1.1)

dove p si chiama mantissa che € un numero reale, N € la base di numerazione
(solitamente N = 2, base binaria) e ¢ € un intero che si chiama esponente .
Osserviamo anzitutto che la notazione non e unica. Infatti

a=pN9=p NIt =p, NI

conp; = Npepy =p/N.
Se la mantissa p e tale che

1

— < <1

~ <[Pl

allora la rappresentazione (1.1) si dice normalizzata . Facciamo due esempi
e a = 115.78, la sua forma normalizzata & a = 0.11578 - 103.
e a = 0.0026, la sua forma normalizzata & a = 0.26 - 10~2.

Pertanto, fissata la base di numerazione N, per la rappresentazione di un nu-
mero a dovremo conoscere la coppia (p,q) (mantissa ed esponente). Nel caso
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[s] o T W ]

Tabella 1.1: Rappresentazione dei numeri in un calcolatore

a =0, (p,q) = (0,0). In generale si usa la seguente rappresentazione dove s in-
dica il bit riservato al segno del numero e che assume valori s = 0 se il segno &
+ e s = 1 quando il segno & —; ¢ lo spazio per ’esponente e |p| lo spazio per la
mantissa normalizzata.

Definizione 1. Sichiama numero macchina un numero tale che p e q sono rapp-
resentabili esattamente negli spazi riservati.

Se ad esempio, lo spazio per |p| &€ formato da ¢ cifre, i numeri macchina sono
tutti quelli che hanno la mantissa normalizzata con non piu di ¢ cifre. Per
I’esponente valgono le disuguaglianze

m<q<M

dove il minimo m < 0 e il massimo M > 0 dipendono da calcolatore a calcolatore.
Posto ¢* = ¢ — m > 0 allora
0<q¢g*<M-m.

Parleremo poi di singola precisione se la rappresentazione di Tabella 1.1 & su
32bits (essendo 1byte=8bits essa equivale a 4 bytes) (cfr. Tabella 1.2), di doppia
precisione quando la rappresentazione di Tabella 1.1 & su 64bits (8 bytes) (cfr.
Tabella 1.3).

s i[> ¢ ol Bl w]

Tabella 1.2: Rappresentazione in singola precisone: i numeretti indicano i bits
d’inizio e fine delle parti corrispondenti al segno, esponente e mantissa.

’1S1‘2 q 12‘13 |p| 64‘

Tabella 1.3: Rappresentazione in doppia precisone: i numeretti, come in Tabella
1.2 indicano i bits d’inizio e fine delle parti.

Nel caso di singola precisione, essendoci 8 bits riservati all’esponente, allora

28 — 1 = 255 sara il massimo numero rappresentabile. Da cui, essendo 0 < ¢* <
255 dalla relazione ¢* = ¢ — m avremo che —127 < ¢ < 128.
—— ~—

m M
Lo standard ANSI/IEEE 754-1985 (modificato nel 1989 e ufficialmente detto
IEC 60559:1989, binary floating-point arithmetic for microprocessor systems) usa
la rappresentazione

a=(-1)%1l.asas...aap41...)27.
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In questo caso la mantissa ha ¢ cifre con la prima cifra sempre uguale ad 1 (che
non viene rappresentata). Ci6 spiega perche abbiamo scritto asas...aayq .. ..

Il campo dell’esponente serve a rappresentare sia esponenti positivi che neg-
ativi. Si usa inoltre in bias (scostamento) appunto per avere esponenti ¢* sempre
positivi. Ad esempio ¢* = 200 indica 'esponente 200 — 127 = 73.

Riassumiamo in tabella le cose salienti di questa rappresentazione sia nel
caso di singola che doppia precisione.

singola doppia
# bit 32 (4 bytes) 64 (8 bytes)
segno s 1 bit 1 bit
spazio mantissa 23 53
spazio esponente 8 11
bias 127 (011....1) | 1023 (011....1)
max q 127 1023
min q -126 -1022

Tabella 1.4: Occupazione dei registri di memoria nelle due fondamentali rappre-
sentazioni floating-points

Nel caso di singola precisione avremo allora

e s . . s 9-126 o, 19—38
e il piu piccolo numero floating point rappresentabile & 1.00....0 -2 10

mantissa

Nota: l'esponente con tutte le cifre 0 (zero) si usa solo per indicare lo 0

0| 0...... 01 | 0..0
————
—126+127=1

Tabella 1.5: Il pit piccolo numero floating point rappresentabile in singola preci-
sione

oppure 'underflow.

. .\ . . . ~ . 127 —
e il piu grande numero floating point rappresentabile & 1.11...1 -2 (14

mantissa

1—2723). 2127 ~ 1038 Nota: 'esponente 255 si usa solo per 'overflow.

0] 1...... 10 | 1...1
—
127+127=254

Tabella 1.6: Il pit grande numero floating point rappresentabile in singola pre-
cisione

Similmente nel caso di doppia precisione
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il piu piccol floati i ilee 1.00...... Q1022 —
e il piu piccolo numero floating point rappresentabile & 1.00 0

1423 cifre
271022 ~ 107308
il piv floati i ilee 1.11...... 121023 —
e 1l pi1u grande numero oatlng pomt rappresentabl ee

1+52 cifre
(1 + 1— 2752) . 21023 ~ 10308

ESEMPIO 1. Supponiamo di volere rappresentare in singola precisione il numero
decimale a = 43.6875 nello standard ANSI/TEEE 754-1985.

(i) Dapprima dovremo trasformare il numero, senza segno, in forma binaria. La
parte intera, 43, diventa, 4379 = 1010115. La parte frazionaria 0.6875;9 =
10115. Complessivamente 43.687519 = 101011.10115.

(ii) Successivamente spostiamo la virgola verso sinistra, lasciando solo un 1 alla
sinistra: 1.010111011 - 2° .

La mantissa viene quindi riempita con zeri a destra, fino a completare i 23 bit.
Il numero che si ottiene ¢ 1.01011101100000000000000.

(iii) L’esponente ¢ 5, ma dobbiamo convertirlo in forma binaria e adattarlo allo
standard. Per la singola precisione, dobbiamo aggiungere 127 (detto anche
bias) , ovvero 5+ 127 = 1329 = 100001005.

ESEMPIO 2. Nella rappresentazione floating point secondo lo standard IEEE 754-
1985 su 32 bits, abbiamo s = 1, ¢ = 10000111 e [p| = 1101100---0. Si richiede di
23 cifre
calcolare il corrispondente valore decimale.
Soluzione. Osserviamo che ¢ = (10000111)s = 13519. Quindi

a=(—1)"217"12"1 |p| = —1-2'371271110110...0
= —2°1.1101100...0 = (—111011000), =
—(28 427 420 1 2% 4 23) ) = —472.

ESEMPIO 3. Desideriamo trasformare il numero in base 10, —3.6, in base 2. Soluzione.
Sostanzialmente dobbiamo trasformare in binario la parte intera 3 e la parte decimale
0.6.

1. (=3)10 = (—=11)2 . che si ottiene con divisioni consecutive per 2 e prendendone
i resti.

2. Per la parte decimale si moltiplica per 2 finché la parte decimale della molti-
plicazione risula essere uguale a 0. Nel nostro caso 0.6 * 2 = 1.2 che ha cifra
binaria 1 e decimale 0.2 che riporto nella prossima moltiplicazione. 0.2%2 = 0.4
cha ha parte binaria 0 e decimale 0.4 che uso per prossima moltiplicazione.
0.4 %2 = 0.8 (0 cifra binaria e 0.8 decimale), 0.8 * 2 = 1.6 (1 binaria, 0.6 deci-
male). La prossima moltiplicazione ci fa ripartire dall’inizio. Pertanto il numero
(0.6)10 ¢ il numero periodico (1001)s.
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Riassumendo (—3.6)19 = —11.1001....2° = —1.11001....2.

Analogamente risolvere queste trasformazioni da base decimale a base binaria
a) (723375)10 :( ? )2
b) (—131.50)10 = ( 7 )2

Al link http://babbage.cs.qc.edu/IEEE-754/Decimal.html, il lettore inter-
essato, trovera un’interessante interfaccia che consente di trasformare numeri
decimali in numeri binari (ed esadecimali) proprio nello standard IEEE 784.

Come ultima nota, lo standard & attualmente sotto revisione (IEEE 754r) e i
lavori di revisione, il cui termine era previsto per 'anno 2005, non sono ancora
stati conclusi. Per maggiori informazioni, si rimanda al link
http://it.wikipedia.org/wiki/IEEE _754.

1.2 Analisi degli errori

Nel caso di un sistema floating-point in base NV con mantissa a cui sono riservate
t posizioni o cifre, tutti i numeri che nella rappresentazione normalizzata hanno
piu di ¢ cifre (con esponente m < ¢ < M) dovranno venire approssimati. Come?
Ci sono sostanzialmente due tipi di approssimazione a cui corrispondono anche
analoghi errori di rappresentazione.

(a) troncamento: della mantissa p del numero, si prendono solo ¢ cifre, le altre
dalla ¢t + 1-esima in poi non si considerano. Ad esempio se p = 0.7243591,
N =10et =5, allora p = 0.72435.

(b) arrotondamento: alla cifra t-esima della mantissa p viene aggiunta la quan-
tita 0.5 e poi si opera come in (a). Nell’ esempio di prima, alla quinta cifra
di p = 0.7243591, che & 5, si somma 0.5 che diventa 6, cosicché p = 0.72436.

Tra le due tecniche, troncamento e arrotondamento, qual & quella che consente
di commettere un errore inferiore?

Dato un numero ¢ = pN? indichiamo con @ = pN? una sua approssimazione.
Osserviamo che le mantisse p dei numeri macchina 1/N < p < 1 non hanno piu
di ¢ cifre e la distanza tra due mantisse consecutive p;, p» & proprio N ¢, da cui
|p — p1| < Nt (analogamente per py). Vediamo cosa accade degli errori nei casi
di troncamento(a) e di arrotondamento (b).

(a)
la—a| =|(p—p)N? < NI™*

essendo p e p consecutive.

(b) .
ja—al = |(p—§)|NT < SN~

essendo p e j consecutive ma nel caso di arrotondamento [p — p| < SN~
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Segue che lapprossimazione per arrotondamento ¢ da preferirsi! Infine, per
quanto rigurdano i corrispondenti errori relativi si ha:

(a)

|U,—a| < Z\]l—t7

lal

poiché, essendo N?7! < |a| < N9 e dal fatto che |a — a|/|a| < N?7!/N971, si
ottiene la maggiorazione di cui sopra.

(b) )
|a_a| < lNl—t.
la| 7 2
A questo punto vale la seguente definizione
Definizione 2. Il numero .
eps = 5]\714 , 1.2)

st chiama precisione macchina.

In pratica, la precisione macchina, rappresenta quella costante caratteristica
di ogni aritmetica (arrotondata) floating-point ed € la massima precisione con
cui vengono effettuati i calcoli su quella particolare macchina. Detto altrimenti,
eps e il piu piccolo numero che sommato a 1 (o ad un generico numero a) da un
numero maggiore di 1 (o del numero a). Pertanto un algoritmo, scritto in codice
Matlab/Octave, per il calcolo di eps con N = 2 in doppia precisione & il seguente:

e=1; k=0;

while (e+1 > 1)

e=e/2; k=k+1;

end
e=2%e {é necessario perché si era diviso per 2}
k-1 {da l'esponente}

Tabella 1.7: Calcolo della precisione macchina in base 2

dove il contatore k serve a ricordare il numero di divisioni e indica pure
Pesponente della rappresentazione del numero eps. La moltiplicazione finale &
necessaria perché dopo che il test & stato verificato, e avrebbe un valore meta del
valore vero. Se ora facciamo eseguire il codice, otterremo il seguente risultato

e 2.2204e-016
k = 52

infatti e = 2752, Vale la pena ricordare che in Matlab/Octave esiste la costante
predefinita eps il cui valore & appunto 2.2204e-016.
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Sia ora x un numero che rappresenta un valore esatto. Indichiamo con Z una
sua rappresentazione sul calcolatore. Allora

E, = |z—z%,

E, = |Z=%|, z#0
X

E, = ||, ##0,
T

definiscono il modulo dell’errore assoluto, dell’errore relativo su x e dell’errore
relativo su Z, rispettivamente.
In particolare avremo che E, < e. Infatti

N

EN*f SN < SN g (1.3)

N =

1
I <7NQ*t:
o—dl <1

1

poiché |z| < NY| essendo |p| < 1. La relazione ci dice come un’approssimazione
si ottenga dal valore esatto a meno di un errore di rappresentazione. Questo
errore, si dice errore inerente 0 ineliminabile poiché esso dipende dalla rapp-
resentazione (finita) dei numeri su un calcolatore.

Quanto detto vale ovviamente se la esponente di z, ¢, risulta m < ¢ < M. In
particolare:

e Il piu grande numero reale rappresentabile come numero macchina, e quello
in cui tutte le ¢ cifre usate per la rappresentazione risultano essere uguali
a N — 1 e con esponente pari ad M, ovvero il numero

a]V[:(l—N_t)-Njw.

Ricordando, che in un calcolatore con aritmetica in doppia precisione M =
1024, per cui (1 — N=t) - NM = (1 + 1 — 2752). 21023 — (] _ 2-53) . 91024
1.7977 - 10%°8, In Matlab/Octave questo valore & restituito dalla variabile
realmax.

e Il piu piccolo numero reale rappresentabile come numero macchina, e quello
in cui tutte le ¢ cifre risultano essere uguali a 0 eccetto la prima che vale 1
e con esponente pari ad m, ovvero il numero

p— Nm—l _ 2—1022
m = = .

Ricordando, che in un calcolatore con aritmetica in doppia precisione m =
—1021, per cui N~ ! ~ 2.2251 - 1073%%, In Matlab/Octave questo valore &
restituito dalla variabile realmin. Ad essere precisi, in Octave 3.2.3 si puo
arrivare a calcolare 27197 mentre 27197 risulta 0 (zero).
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1.3 Operazioni con numeri macchina

Se indichiamo con con fl(a) = a 'operazione di arrotondamento e con @, ©, © e ©
le corrispondenti operazioni aritmetiche fatta sui numeri macchina, valgono per
esse le seguenti regole

a®b = fl(a+b)=(a+b)(1+e)
acb = fl(a—>b)=(a—>b)(1+e)
a®b = fl(a-b)=(a-b)(1+es)
aob = fl(a/b) = (a/b)(1+e)

con |¢;| < eps.

La domanda da porsi & se per queste operazioni macchina valgono le stesse
regole che per le corrispondenti operazioni aritmetiche. La risposta & in generale
negativa.

ESEMPIO 4. Consideriamo la somma di due numeri floating-point. Infatti a ®b=a
se 0 < |b| < |a

Facciamo vedere un esempio che anche per numeri macchina si possono pre-
sentare dei problemi.

ESEMPIO 5. Siano a = pyN® e b = poN%. Consideriamo a @ b. 1l risultato sara
overflow (esponente maggiore di M) se ¢ > 0,2 < 0 e ¢ — g2 > M oppure
underflow (esponente minore di m) se ¢1 <0, g2 > 0e g — g2 < m.

A conferma ulteriore dei problemi che si possono verificare lavorando con nu-
meri macchina, diamo alcuni semplici esercizi.

ESERCIZIO 1. Calcolare lespressioni a + (b+ c) e (a + b) + c dove a = 1.0e + 308,
b=1.1e+ 308 e c=—1.001le + 308.

1 -1
ESERCIZIO 2. Sia x = 1.0e — 15. Calcolare %

inaccurata?

. Percheé l’espressione &

ESERCIZIO 3. Si consideri il polinomio
f(z) =27 — 728 + 212° — 352* + 3523 — 212% + Tz — 1.

Lo si valuti su 401 punti equispaziati per v € [1 —2-107%1+2-1078]. Si plotti
quindi il grafico (x, f(z)) e il grafico di (z,p(z)) con p(z) = (x — 1)7, sugli stessi
punti. Se ne discutano i risultati.

Uno dei problemi che maggiormente si presentano negli algoritmi numerici &
la cancellazione numerica che in sostanza e la perdita di cifre significative.

Anzitutto comprendiamo che cosa sono le cifre significative di un numero. Ad
esempio 13020.0 ha cifre significative 1302 mentre 0.0534 ha cifre significative 534.

Se due numeri sono quasi uguali, dove uguali s'intende a meno della pre-
cisione macchina, allora & possibile il verificarsi della cancellazione numerica.
Vediamo alcuni esempi.
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ESEMPIO 6. Consideriamo i numeri a = pyN? con p; = 0.147554326 ¢ b = pa N9
con po = 0.147251742 ¢ N = 10. In aritmetica a ¢ = 6 cifre significative, avremo
P = 0.147554 e gy = 0.147252. Ora a — b = (p1 — p2) N9 = (p1 — p2)103 = 0.302584.
Ma (p1 © p2)10® = 0.302000 con la perdita delle cifre significative 584.

S . . e* —1 .
ESEMPIO 7. Consideriamo il calcolo della funzione f(z) = in un punto xg.
0 il
La funzione data si puo anche vedere come la serie Z - Pertanto si possono
7!
i=1
usare due algoritmi per il calcolo di f(xg)
ALGORITMO 1 ALGORITMO 2
if x0==0 y=exp(x0) ;
f=1; if y==1,
else f=1;
f=(exp(x0)-1)/x0; else
end f=(y-1)/log(y);
end

Nel caso in cui |z| < 1 (cio¢ molto vicino a 0, usando i due algoritmi otterremo i
seguenti risulati

o ALG.1 ALG. 2
l.e—5 | 1.000005 1.000005
le—6 | 1.0036499 1.0000005

l.e—15| 1.1102... | 1.000....000 (15 zeri)
l.e—16 0 1

Pertanto PALGORITMO 2 ¢ piu stabile (chiariremo meglio pitt avanti il concetto
di stabilita di un algoritmo numerico). Infatti, nell’ipotesi di singola precisione, la
risposta esatta sarebbe 1.00000005. Se infatti consideriamo fI((e” —1)/x) ~ 1.3245....
mentre fI((e” —1)/(log(e®)) ~ 1.00000006 che & la risposta corretta.

Cosa fare per evitare la cancellazione numerica? Una prima risposta e
di trovare un’espressione piu stabile, ovvero tale da non far aumentare gli errori
introdotti dalla formulazione del problema.

Ad esempio, si voglia valutare vz + 6 — /= per § — 0. Razionalizzando si

Vo+0o+x
con l'espressione originale.

Un altro esempio e il calcolo di cos(x + ¢) — cos(x) sempre per 6 — 0. Qui
possiamo evitare i problemi di cancellazione usando la formula di prostaferesi
della differenza di coseni: cos(x + §) — cos(z) = —2sin(6/2) sin(z + §/2).

Come ultimo esempio, consideriamo di valutare f(x) = z(x —v2? — 1) quando
x — +oo. Infatti per un tale valore 22 — 1 ~ z. Pertanto, sempre razionaliz-

x
zando possiamo scrivere f(r) = ——————— evitando i soliti problemi di insta-
Va2 —1+uz

ottiene dove si evitano i problemi di cancellazione che si avrebbero

bilita dovuti alla cancellazione.
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1.4 Stabilita e condizionamento

Iniziamo subito con la definizione di stabilita di un metodo numerico.

Definizione 3. Un metodo numerico (formula, algoritmo) si dice stabile se non
propaga gli errori. Altrimenti si dice instabile.

La stabilita & quindi un concetto legato al metodo risolutivo ovvero al cor-
rispondente algoritmo. Lo scopo dell’analisi di stabilita ¢ di capire come avviene
la propagazione degli errori. Se questa e controllata, cioe non li fa crescere, allora
il metodo sara stabile. Uno dei problemi connessi all’instabilita e la cancellazione
numerica, proprio come evidenziato nei due esempi successivi.

ESEMPIO 8. Desideriamo risolvere I’equazione az? + bx + ¢ = 0. Se a # 0, le radici

—b 4+ Vb? — dac . . . .
SONo T2 = S ve— Dove si manifesta la cancellazione numerica?
a

e In 21 quando Vb2 —4ac =~ b
e in x5 quando —v/b? — 4ac =~ b.

Come ovviare a questi problemi? Nel primo caso, prima si calcola x5 dove il prob-
lema della cancellazione non sussiste quindi, usando le relazioni tra le radici z; e
xo di un’equazione di secondo grado, otteniamo x; = ¢/(ax2). In maniera analoga
opereremo nel secondo caso: prima calcolo z; quindi xe = ¢/(axy).

ESEMPIO 9. Data f(z) = 22 si voglia calcolare f’(z) per x = x. Ora, ricorrendo
alla definizione di derivata come

i L@+~ f(@)

er r = xg
h—0 h b ’

ma per h — 0 potrebbero insorgere problemi di cancellazione. Cosa che si ovvia
ricorrendo alla relazione f’(z) = 2z che verra quindi valutata per z = x.

Riassumendo, la stabilita e legata al metodo risolutivo e I'instabilita & dovuta
essenzialemente agli errori algoritmici legati alle operazioni da effettuarsi du-
rante I'esecuzione dell’algoritmo. Ma non dimentichiamo gli errori di rappresen-
tazione (che sono errori inevitabili).

Laltro aspetto da tenere presente nell’analisi & quello che definiremo come
condizionamento del problema numerico. Questo aspetto & legato alla definizione
del problema, matematicamente una funzione dei dati del problema.

Definizione 4. Un problema si dice ben condizionato se a piccole perturbazioni
(relative) sui dati in ingresso corrispondono perturbazioni (relative) dello stesso
ordine in uscita. In caso contrario il problema si dice mal condizionato.

Per misurare il condizionamento si introduce il cosidetto numero di condizion-
amento

r
C = 7 (1.4)
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dove r indica la percentuale d’errore sul risultato rispetto alla percentuale d’errore
sul dato d. Pertanto, usando questo indice, un problema sara ben condizionato
quando C' & piccolo (vedremo piu oltre in che senso) altrimenti sara mal con-
dizionato. Vediamo un esempio.

ESEMPIO 10. Il sistema

r+y=2
10012 + 1000y = 2001

ha soluzione (z,y) = (1,1). Siano

11 2
A< 1001 1000 > b(2001 )

Ora, perturbiamo l'elemento a1 della matrice A di 0.01, ovvero consideriamo la

matrice
001 O
N

Se risolviamo il sistema A;x = b otteniamo la soluzione (z,y) = (—1/9,1901/900).
Pertanto, per calcolare il numero di condizionamento (1.4), dobbiamo vedere chi sono
i rapporti, r/d, su ogni componente del vettore soluzione:

(g)r _1- (1—1/9) 11 (g)y _1- (19;)1/900) FRTT.

da cui, complessivamente in percentuale, C' = 111%. Quindi, un errore di 1072 sul
dato A (misurato in qualunque norma matriciale) si € riversato con un errore di circa
10? sul risultato. II problema & quindi mal condizionato.

Consideriamo la valutazione di una funzione f : R — R in un punto xy. Pren-
diamo ora una perturbazione x( + h. Le quantita r e d richieste in (1.4), in questo

caso sono
xo+h—xz0 h Tif(ﬂfoJrh)*f(xo)

d= B - z0 N f(xo) 7
da cui flxo +h) — f(xo)
B 0 — J(xo Zo
C(f.h) = h f(xo)
Al tendere di i — 0,
. ! 0
i [CCF )| = O (Fw0)| = | (wo) - 0

Questo esempio ci dice che il numero di condizionamento tende ad un limite che

in modulo vale
Zo

f (o)

che viene detto fattore d’amplificazione d’errore. Se C(f,zo) < 1 diremo che
il problema & ben condizionato altrimenti verra detto malcondizionato.

C(f.20)] = ‘f’(ro) -
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Come applicazione di quest’analisi, consideriamo f(z) = /1 — z. Ora f'(x) =
xr

‘ 2(1-2)

che ha problemi quando = ~ 1. Ad esempio se x = 0.999 e h = 10~° allora

1 (x+h) —V1-x
" v1i—=xz

da cui |5| ~ 501.67. Anche passando al limite per h — 0 le cose non migliorano. II
problema & malcondizionato e cio & dovuto al fatto che il fattore d’amplificazione
richiede il calcolo della derivata. Questo ci dice anche che il calcolo della derivata
e un problema, in genere, malcondizionato.

C(f(x) =

~ —0.00503

d=h/z=1.001-1075,

1.5 1l calcolo di =

Per il calcolo di 7 esistono alcuni importanti algoritmi non tutti convergenti per
motivi di instabilita. Di seguito diamo cenno di 5 algoritmi tra i piu importanti.
Di essi diamo anche un pseudo-algoritmo che € un’utile base di partenza per una
successiva implementazione in un linguaggio di programmazione.

1. Algoritmo di Archimede. Mediante questo algoritmo, 7 & approssimato con
larea del poligono regolare di 2" lati inscritto nella circonferenza di raggio
1 (che ha area uguale a 7).
Indicando con b; il numero di lati dell’i-esimo poligono regolare iscritto, con
. m . . . N < .
s; = sin ( 5) e con A; la corrispondente area, ’algoritmo si puo cosi descri-

vere:
Algoritmo
bl = 2; S1 = 1
for i=2:n
1—\/1—s
Ai=bi_18i-1, 8; = SR
bi = 2b;_1
end for

La formula risulta instabile come si vede dall’andamento dell’errore visual-
izzato in Figura 1.1.

2. Algoritmo di Viete. Mediante questo algoritmo, = & approssimato con il
semi-perimetro del poligono regolare di 2" lati inscritto nella circonferenza

C; i

e p; il corrispondente semiperimetro, ’algoritmo si descrivere come segue:

Indicando con
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2 Errore azsoluto nel calcolo di ©con algoritmo di Anchimeds per n=40
10 T T T T T T T

Figura 1.1: Calcolo di 7 con I’algorimo di Archimede

Algoritmo
c1=0;pr =2
for i=2:n

[1t+ci—a
C; = B}

. — Pi-1
bi ci
end for

Lidea di Viéte risulta migliore per il calcolo di 7. Infatti, come visualizzato
in Figura 1.2, I'errore assoluto tende alla precisione macchina gia con 20—30
iterazioni.

3. Algoritmo di Wallis. Qui w & approssimato con la formula:

T 22 44 2n 2n

= . e om>1.
2 1335 2n—12n+1

Indicando con p; la produttoria al passo ¢, 'algoritmo si descrivere come
segue:

Algoritmo

Po = 2;
for i=1:n,

)
pi szeléfz%l;
end for
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. Ermore azsoluto nel calcolo di @ con algoritmo di Viete per n=40
10 T T T T T

Figura 1.2: Calcolo di 7 con I’algorimo di Viéte
La formula converge molto lentamente, come visualizzato dal’andamento
dell’errore in Figura 1.3.

i Ermore assoluto nel calcolo di mcon algoritmo di Wallis per n=100
10 T T T T

0 20 40 a0 =1 100 120

Figura 1.3: Calcolo di 7 con la formula di Wallis
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4. 7 = 4 arctan(1). Usando l'espansione di Taylor di arctan(1), = & approssi-
mato con la formula:
1 1 1
t¢ N=4(1- = — — — e .
arctan(1) ( 3 + T )

Indicando con ¢; la somma al passo ¢, 'algoritmo si puo descrivere come
segue:

Algoritmo
@ =1
for i=2:n

qyi—1
qi = qi—1 + ( 2?,1

end for
™= 4q",

Lalgoritmo converge lentamente come visualizzato dal’andamento dell’errore
in Figura 1.4

Errore assoluto nel calcolo di @ con & formula dellarcty per n=100

Figura 1.4: Calcolo di 7 con la formula dell’arcotangente

5. m =6 arcsin(%). Come nel caso dell’ arctan, 7 & approssimato con la seguente
formula che si ottiene ancora una volta espandendo in serie di Taylor I’

arcsin(1):
arcsin 1 =6 1+11i+1§1i+
2) T\2 2328 2452 :

2
Indicando con ¢; la somma al passo i e ¢; il “punto” corrente, 'algoritmo si
descrivere come segue:
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Algoritmo
@ =0;t1=3
for i=1:n-1
Giv1 = G + 575 tip1 = %
end for
T = 6gn

L'approssimasione con Parcsin risulta essere davvero buona, come si osserva
dal’andamento dell’errore assoluto visualizzato in Figura 1.5 per n = 30.

. Errore assoluto nel calcolo di @ con la formula dellacsin per n=30
10 T T T T T

Figura 1.5: Calcolo di 7 con la formula dell’arcoseno

1.6 Esercizi proposti

ESERCIZIO 4. Calcolare a> —b%> con a = 1.4-10"%* e b = 1.3 - 10'%*. Cosa si
nota? Come risolvere il problema in modo stabile?

ESERCIZIO 5. Sia x = 8.88178419700125 - 10~ 16, Si calcoli l’'espressione

(1+ac)—1.

Perche il risultato & meno accurato che prendendo x = 8.0 - 107162
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ESERCIZIO 6. Sia
Sp(x)=1+x+2%/242%/31 4+ + 2™ /n!

la troncata n-esima di exp(x). Si prenda x = —10 e si calcoli per n =
1,2,...,80 lerrore relativo

|y (x) — exp(x)|
exp(x)
Cosa si osserva? Perche cio accade?

ESERCIZIO 7. Si prenda x = 1.005, il calcolo di q;(x) = (x — 1)7 produce il
risultato 7.8125-10717 mentre quello di p;(x) = 27 — 725+ 2125 — 352* 4 3523 —
2122 + 7x — 1 da come risultato —8.88178419700125 - 10716, Perche?

ESERCIZIO 8. Implementare queste operazioni:

a=4/3; b=a-1; c=b+b+b; e=1-c.
Qual é il risultato dell’operazione? Altri valori di a darebbero lo stesso risul-
tato?

ESERCIZIO 9. Sianox =5ey =05 —mncon x —y =n. Lerrore relativo della
differenza é
_ Sz —y) —(z—y)
€x—y = )
r—y
dove fl(x — y) é la differenza dei 2 numeri x e y, in aritmetica floating point.
Ovvero

fllz—y) = (z —y)(1 + eps),
con eps la funzione Matlab /Octave che restituisce la precisione macchina.
Calcolare e,_, al diminuire di 1 e riportare su una tabella i valori 1), €;_, e
la percentuale €, _, * 100.

ESERCIZIO 10. Si consideri la ricorrenza
zZ9 = 2 ,

Zn41 = \/5 - ,TLZQ
\/1+ 142

che converge a ™ quando n — oo. Scrivere un M-file che implementa la ri-
correnza precedente e inoltre visualizza in scala logaritmica al variare di n
lerrore relativo @

La formula ricorrente é stabile?

ESERCIZIO 11. Si consideri la ricorrenza

1 1t
Iy = ,(6_1):,/ e”dx
& € Jo

1 7t
Inyi = 1—(n+1)I,= f/ " e®dr :n >0
€ Jo
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sapendo che I, — 0 per n — oo, si scriva un M-file che calcola 14. La ri-
correnza ¢é stabile? Come ¢ possibile stabilizzarla? Sugg. Si puo procedere
mediante stabilizzazione all’indietro. Ovvero posto n=40, si calcola

1 1
vy = f/ x"edr |
€ Jo

viep = (1—=w)/i, i=nn—1,...,2

Per il calcolo di v, usare la funzione Matlab /Octave quadl, usando la chia-
mata quadl (°£?,0,1, [1,n).

ESERCIZIO 12. Si consideri la ricorrenza

6
1

Ik — E_5Ik_1 ]{3:1,2,...7’L, (1~6)

che in teoria dovrebbe convergere a

1 n
I, :/ z dx,
0o T+

mentre che cosa possiamo dire circa la convergenza della ricorrenza (1.6)?

ESERCIZIO 13. Si consideri l'equazione ax? + bx +c = 0 con a = l.e — §,
b=2ec=1.e—6lecuiradict, in modulo, sono |xi| =2.0e+ 8, |xs] =5.0e —T.
Quale delle due radici pone problemi di calcolo con la formula risolutiva delle
equazioni di secondo grado?

ESERCIZIO 14. Si consideri la serie del coseno
cosz =1—a%/2! + /4 — 25/6! + 28/81 — ... .

Valutare cos( 1) il cui valore, arrotondato a 2 decimali, e 0.540. Quanti termini

della serie sono necessari per approssimare cos(1) con errore assoluto ~ 1.7 -
10732

ESERCIZIO 15. Sia R=realmax. Calcolare in maniera stabile ’espressione
(R? — 1)/R. Quale tra le seguenti espressioni ¢ calcolabile senza overflow o
underflow?

(R—1)(R+1)/R [2.]R-1/R ED(R +1).




Ricerca di zeri di funzione

Sin dalla scuola media superiore sappiamo che, dato un polinomo di grado n,
pn(x) = ap + a1z + - - - + a,x", esistono delle formule esplicite di calcolo delle sue
radici, solo per n < 4, mentre per n > 5 non esistono formule generali che ci
consentono di determinarne gli zeri in un numero finito di operazioni. A maggior
ragione questo vale nel caso in cui si vogliano determinare le soluzioni di f(z) =
0, per una generica funzione f.

Queste considerazioni introduttive ci inducono a dire che la ricerca di soluzioni
di f(x) = 0 si potra fare solo con tecniche di tipo iterativo ovvero con la ricerca
basata su delle iterazioni di un certo algoritmo.

2.1 Ricerca di zeri di funzione

La ricerca di zeri di funzione & un problema frequente nel calcolo scientifico. Fac-
ciamo un paio di esempi

1. Dinamica della popolazioni. Consideriamo il seguente modello preda preda-
tore (si veda anche I’Appendice A), che modellizza 'evoluzione di una de-
terminata popolazione di cellule, di batteri, di animali ecc... mediante
lequazione

2
+ rr

1 (n)Y

Lequazione (2.1) dice che la popolazione "successiva” x+ cresce secondo
una legge non lineare dipendente dai parametri r, ¢ che indicano le risorse
disponibili (e sono costanti fisse del problema). Scrivendola nella forma
xT = g(x) (con ovvio significato), ci si potrebbe chiedere se esiste un val-
ore z* tale che * = g(z*). Questa e la tipica formulazione del problema
di punto fisso dell’equazione (2.1) corrispondente allo zero della funzione

f(@) =z —g(x).

2. Capitalizzazione composta a tasso fisso. Sia C il capitale che si investe
all’inizio di ogni anno su un fondo d’investimento o pensionistico. Il mon-
tante dopo il primo anno & M; = C+Cxz = C(1+x). Dopo n anni il montante
M,, dato dalla somma dei montanti M;, i = 1,...,n, ottenuti in regime di
capitalizzazione composta, €

r>0,¢>0 (2.1)

M,=C(1+a2)+C(1+z)’+ - +C1+a)"=C> (1+2). (22
=1
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con z che indica il tasso fisso d’investimento (z € (0,1)). Se desiderassimo
calcolare il tasso medio z* di rendita del piano d’ investimento, chiamando
con f(z) = M, —C I (1+ )", il problema consistera nella ricerca dello
zero della funzione f.

Passiamo ora a descrivere i pitt comuni metodi iterativi per la ricerca di zeri di
funzione.

2.2 Metodo di bisezione

Sia f € Cla,b] t.c. f(a)f(b) < 0. Sappiamo allora che esiste almeno uno zero
di f in (a,b). In particolare se f fosse strettamente crescente (o decrescente) in
(a,b) allora lo zero sarebbe unico. Ad esempio f(z) = 22 — z — 1 & strettamente
crescente per x € [3/2,2] e strettamente decrescente in [—1, —1/2]: infatti ha due

1++5

radici T12 = 5 .

Per semplicita ci limiteremo al caso in cui (a,b) contiene un solo zero di f,
che chiameremo «. Altrimenti contrarremo l'intervallo d’interesse fino a con-
tenere un solo zero..

Lialgoritmo di calcolo si puo descrivere come in Tabella 2.1.

Passo iniziale k& =0;a9=a; by ="0b; Iy = [aog,bo].
. . 1
Iterazione {Si determina I; = ilk_l’ k>1.}

_ by
1. zp_q = M1t 01

2
2. Se |f(zp_1)| < tol (*) allora o = xj_1; tt {radice! stop!}
altrimenti se
flag—1)f(zr—1) < 0alloraap = ar—1, by = Tp—1,
altrimenti, ar = xp_1, b, = br_1 .

b
3.zk:“’“; Eoh=kt 1.

Ritorna al passo 2.

(*) tol serve a verificare quando f(zy_1) =~ 0.

Tabella 2.1: Algoritmo di bisezione

Facciamo vedere che il metodo di bisezione, nelle ipotesi che I'intervallo con-
tenga una sola radice, converge all’'unica radice « di f nell'intervallo [a, b].

Dim. Assumiamo f(a) < 0 < f(b). Vogliamo far vedere che il metodo genera
una successione {z}} che converge verso a. Infatti, le successioni {a;} e {b;} sono
tali che

ap<ar <o <ap < <by <o < by
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ovvero {aj;} monotona crescente e {b,} monotona decrescente. Sappiamo quindi

che lim ay =a~ e lim by = a™ con a™ < at € (a,b). Ora,
k—o0 k—o0
+ - 1 I B (b B a’) .
e =B tema) =y T =0
Pertanto o™ = a™ = «.

Ma f, per ipotesi, € continua e quindi klim flag) = klim f(br) = f(«). Inoltre,
— 00 — 00

dal teorema del confronto limy o, f(ax) < 0 e limg_, f(br) > 0 da cui segue
0 < f(a) < 0. Cié consente di concludere che f(«) =0. O

Poiché |I;,| = |by — ax| = ¢ |lo| con Iy = b — a, allora 'errore assoluto e, al
passo k soddisfa alla disuguaglianza

1 1
ex] = ok — ] < 51T = 5o lb—al.
Chiedendo che |e;| < €, possiamo determinare a priori il numero minimo di
iterazioni per ridurre ’errore a meno di ¢

Femin > log, (b Z “) 1. (2.3)

La funzion Matlab/Octave, bisezione in Appendice C, implementa il metodo di
bisezione (richiede la definizione della funzione fun di cui si cerca lo zero).

Osservazioni.

e Il metodo non garantisce una riduzione progressiva dell’errore ma solo un
dimezzamento dell’ampiezza dell'intervallo dove sta a.

e Il metodo non tiene conto del reale andamento della funzione f su Iy =
[ag, bo] = [a,b]. Se, Iy & simmetrico rispetto «, basterebbe un solo passo per
determinare la radice. Invece, 'algoritmo nella sua formulazione originale,
non & in grado di verificarlo essendoci gli inevitabili errori di rappresen-
tazione e algoritmici.

e Infine, se f € una retta il metodo richiedera piu di un passo per trovare la
radice. Vedremo che, ad esempio con il metodo di Newton (cfr. Sezione 2.4),
nel caso in cui la funzione sia una retta lo zero si determinera, come giusto
che sia, con una sola iterazione.

2.3 Iterazione di punto fisso

Lidea del metodo e di trasformare il problema originale, che consiste nel cercare
gli zeri di f risolvendo f(z) = 0, in un problema di punto fisso © = g(x) la cui
soluzione ¢ la stessa del problema originale.

1. Il primo passo & la trasformazione di f(x) = 0 in un problema di punto fisso
x = g(z), con g derivabile in I, e t.c. @« = g(«) se e solo se f(a) = 0.
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2. Dato un valore iniziale x costruiamo il metodo iterativo xy.1 = g(z), k =
0,1,... che generera la successione {x}} che convergera verso un punto £ =
.

Per inciso, la funzione g(x) viene detta funzione d’iterazione del metodo itera-
tivo.
La trasformazione di f(z) = 0in « = g(x) non e unica. Infatti, se consideriamo

. . . — 4
z* —3 = 0, la possiamo trasformare in z = 2! + = — 3, oppure in z = 3+22=2 ¢ an-

corainx = ¢ % In generale esistono infiniti modi di ottenere una formulazione
di punto fisso.
Laltro problema, una volta ottenuta la forma = = g(z), & di chiederci se tutte

le funzioni d’iterazione g(xz) vanno ugualmente bene. La risposta & negativa in
generale. Vale il seguente Teorema

Teorema 1. Supponiamo che g(|a,b]) C [a,b] e che esista un L < 1t.c.
lg(1) — g(w2)| < Llay —wal, Yar, a2 € [a,8]. (2.4)

Allora esiste un unico punto fisso « della funzione d’iterazione g. Inoltre la suc-
cessione {xy } >0, o fissato, converge ad .

Dim. Consideriamo la funzione ¢(z) = g(x)—x. Dalle ipotesi ¢(a) = g(a)—a >
0e ¢(b) = g(b) —b < 0. Pertanto esiste almeno uno zero all'interno di [a,b] Se
esistessero due zeri, siano «; e as, allora per (2.4)

|y — ag| = [g(a1) — g(az)| < L]y — as| < |ag — s

ovvero assurdo.
Per concludere facciamo vedere che la successione {x}} converge ad a. Infatti,

0 < [ars1 — af = |glar) — g(@)] < Llex —af < --- < L¥ag —af .

Ovvero per ogni k > 0
|z — af <Lk
w0 — o

)

Passando al limite si conclude. O

Osservazione. Il Teorema appena enunciato dice che se la ¢ € una contrazione
allora essa ammette un solo punto fisso. Questo & sostanzialmente il Teorema
delle contrazioni di Banach-Caccioppoli (vedasi Teorema 32 in Appendice A).

Nel caso in cui ¢ sia derivabile vale il seguente Teorema che ci assicura una
condizione necessaria e sufficiente per la convergenza.

Teorema 2. (Ostrowski) Se g(x) e derivabile in I, ed esiste un numero p < 1
t.c

lg'(@)| <p, V zely; (2.5)
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allora g(x) ha un unico punto fisso a. Inoltre la successione generata dal metodo
Zr+1 = g(x) converge ad « per ogni scelta di xy € I,. Infine si ha

=g (a)]. (2.6)

Dim. La dimostrazione segue dal fatto che g € una contrazione e quindi si
ragiona come nel teorema delle contrazioni. [

Da (2.6) deduciamo che le iterazioni di punto fisso convergono almeno linear-
mente. Infatti per k£ > k, k sufficientemente grande, 'errore e, 1 = ;11 —a halo
stesso comportamento di quello al passo & a meno di una costante |¢'(a)| < p < 1.

Definizione 5. Sia {z;} una successione convergente a o. Consideriamo l’errore
assoluto in modulo al passo k, |e;| = |z, — «|. Se esiste un reale p > 1 e una
costante reale positiva v < +oo t.c.

lim [ex1] = lim [2e1 = o] =7, (2.7)
k—oo |eg|P k—oco |xg — P

allora la successione {1} ha ordine di convergenza p.
e Sep=1e0 <~ < 1parleremo di convergenza lineare.
e Se p=1e~ =1 parleremo di convergenza sublineare.
e Nel casoin cui 1 < p < 2 si dice che la convergenza é superlineare.

e Se p = 2 parleremo di convergenza quadratica; se p = 3 di convergenza
cubica e cosi via.

Come conseguenza della precedente definizione, il metodo di iterazione fun-
zionale z;1 = g(x;) ha ordine di convergenza p se vale la (2.7).

Un modo pratico, di determinare un valore approssimato dell’ordine di con-
vergenza p, che deriva dalla definizione (2.7), ¢ il seguente. Osservando che

. |zk 41 —
1 —_— = 0
o e —ap 7
siricava
1 —al -1 I -
p= lim 8 k41 —af —logy . loglrsr —af 2.8)
k—00 log |zi — k—oo log|zy — «f

Naturalmente se, come spesso accade, non si conosce la radice «, si puoo con-
siderare, in (2.8) invece di «, una sua approssimazione x,, con m piu grande di
k+1.

ESEMPIO 11. Consideriamo la funzione d’iterazione g(z) = z(2 — qx), ¢ > 0.

(a) Quali sono i punti fissi di g(z).
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(b) Per il metodo xp11 = g(xx), k > 0, determinare l'intervallo I, di convergenza
della radice positiva a.

(¢) Calcolare I'ordine di convergenza del metodo iterativo di cui al punto precedente.
Soluzione.
(a) Risolvendo x = (2 — qx) si ottengono le soluzioni 1 =0 e 25 = 1/¢ > 0.

(b) L’intervallo di convergenza I,, con o = 1/q si ottiene chiedendo che |¢'(1/q)| < 1.
Ora risolvendo |¢'(z)| < 1, ovvero |2(1 — ¢qz)| < 1, si ha
1 oy 3
—<r< —.
2q 2q
Questo intervallo contiene la radice o = 1/q e inoltre ¢'(1/q) = 0 < 1 e quindi,
come richiesto dalla Proposizione 2, il metodo converge alla radice positiva per

103
(¢) Calcoliamo 'ordine di convergenza verificando per quali p il limite

i [F#(2 — k) —al

k00 |z — afp

risulta finito. Per p = 1 non & finito perche il numeratore si comporta come
22 e il denomiatore come x. Invece per p = 2, numeratore e denominatore si
comportano come x2 e quindi il limite sara finito. Pertanto il metodo converge
con ordine 2.

SO0

L'esempio appena svolto ci consente di specializzare il concetto di ordine di
convergenza di un metodo iterativo.

Teorema 3. Se la funzione d’iterazione e derivabile almeno p volte con continuita
in I,, con o un punto fisso semplice di g(x) per cui

g(a)=g"(a)=--=g" V() =0, g"(a)#0,
allora il metodo d’iterazione ha ordine di convergenza p.

Dim.. Infatti, usando 'espansione di Taylor di g in un intorno « con resto in
forma di Lagrange

(r — )Pt

(z —a)”

97O

4. .+g(p—1)(a)

_ / o / (1‘ — a)2
9(z) = g(a)+g'(a)(z—a)+g"/(a) —;

2
Per ipotesi g**) (o) =0, k=0,...,p — 1, quindi

[ — o] _ lg? ()
a0~ P

£0.
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Questo conclude la dimostrazione. [J.

Tornando all’esempio precedente punto (c), notiamo che ¢’(1/¢q) = 0 mentre
g"(1/q) = —2q # 0 che come dimostrato ha ordine di convergenza quadratico.

Naturalmente, questo ha senso se conosciamo la radice «.
Test d’arresto

1. Test sulla differenza tra due iterate successive. Il metodo iterativo contin-
uera la ricerca della soluzione finche |25 — 2| < e. Infatti

Tt — a = g(zy) — g(@) = ¢'(&)(vx — a), & € [a,x4] . (2.9)
Essendo xp 1 — a = w311 — xp + 2, — « otteniamo

x —a—é(m — Tpy1)
R EYICY A

Pertanto, se ¢'(z) ~ 0, = € I,, in particolare per x = &, allora I'errore viene
stimato abbastanza accuratamente dalla differenze delle iterate successive.
Invece, se ¢'(x) ~ 1 il fattore 1/(1 — ¢’(§x)) — oo, pertanto la stima non sara
una buona stima.

2. Test sulla differenza “relativa” tra due iterate successive. Il test che faremo
ora e

|[xpr1 — x| < €|lzpi] -

3. Test sul valore della funzione. 1l test consiste nel verificare se |f(xy)| <
e. Purtroppo questo test non funziona quando la funzione & piatta su I,
facendo fermare le iterazioni troppo lontano dal valore della soluzione. Un
esempio: la funzione f(z) = (2'° — 10)/z nell'intorno sinistro della radice
positiva o ~ 1.26 & molto piatta e usando il test in esame partendo da z( €
I, = [1,2] usando anche una tolleranza alta come ¢ = 1.ec — 2, ci arresteremo
dopo migliaia di iterazioni.

L'esempio proposto al punto 3, ci suggerisce le seguenti considerazioni.

e Nei test di arresto & necessario inserire anche un controllo sul numero mas-
simo di iterazioni, k < kmax.

e Il test che ci dara “maggiore sicurezza” & quindi la combinazione del test
sull’errore relativo e il controllo sul numero di passi. Pertanto il metodo
iterativo continuera a cercare la radice finche

(|ep41 — k] > €lrpya]) & (b < kmaz) . (2.10)

altrimenti se una delle due condizioni non sara verificata ci si arrestera.
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La funzione Matlab/Octave MetIterazioneFunz.m, in Appendice C, implementa
un metodo di iterazione funzionale la cui funzione d’iterazione descritta in un
altro M-file g, richiede in input il valore iniziale x0, la tolleranza tol e il numero
massimo d’iterazioni kmax, e restituisce la soluzione in x0, niter, numero di iter-
azioni fatte e un flag per la convergenza. Se c’e convergenza flag=1 altrimenti
flag=0.

Esercizio. Trovare un metodo di iterazione funzionale convergente alla radice di
10
z- = 10.

2.4 1l metodo di Newton o delle tangenti

Supponiamo che [ sia derivabile su [a, b]. Pertanto possiamo considerare 'equazione
della tangente di f in xy,

y(z) = f(og) + (x — 2x) f (2x) - (2.11)

Come punto ;1 prendiamo il punto in cui la retta tangente interseca ’asse delle
ascisse. In pratica dobbiamo risolvere y(x) = 0.
Imponendo questa condizione in (2.11), otteniamo la formula del metodo di
Newton
f (@)

Th+1 = Tk — Filan)

(2.12)

purche f'(xy) #0, k> 0.
Facciamo ora un paio di osservazioni.

1. Il metodo di Newton consiste nel sostituire localmente f(z) con la retta
tangente. Infatti

flrgr) = flan) + (@rer — ze) [ (@r) + O((wrg1 — 21)?)

da cui, imponendo che f(x;1) = 0 e trascurando i termini di ordine superi-
ore al primo, otteniamo la (2.12). Questo ci dice che la (2.12) &€ un modo per
approssimare f in zjy.

2. Se f(z) = ap + a1z (f & una retta), allora il metodo di Newton converge in
una sola iterazione. Infatti
ap + a1x ag

r1 =g — —— = .
a a1

OO

Facciamo ora vedere che se 2y e preso “ sufficientemente” vicino alla radice
a, con f'(a) # 0 (ovvero « radice semplice), allora il metodo converge almeno
quadraticamente e si ha

- rp—a_ f(a)
i (z, — )2 2f'(a)’

(2.13)
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da cui, se f”(«) # 0, allora il metodo converge quadraticamente altrimenti con
ordine maggiore di due.
Dimostriamo la (2.13).

(a—x1)?

0=fla) = flax)+ f(vp)(—ap) + 1), €€ ()

2

o f(l’k) - (a B xk)Q "
- f'(xp) +a—x+ 21 (z1) (6
_ )2
= xkxk+1+azk+(§f/(;:§

s (&)
2f"(xk)

si conclude dividendo per (z; — a)?, portando a primo membro e passando al
limite. O

Il seguente teorema ci da delle condizioni per la convergenza globale del metodo
di Newton.

A3

= a— T4+ (o —xg)

Teorema 4. Sia f € C*[a,b] con [a,b] chiuso e limitato, inoltre
1. f(a)f(b) <0
2. f'(x) #0, z € la,b)
3. f"(x) > 0oppure f"(z) <0, Yz € [a,b]

f(a)
f'(a)

4. <b—-ae

f(b) _
f,(b)‘ <b-—a.

Allora il metodo di Newton converge all’ unica soluzione « € [a,b] per ogni xzy €
[a, b].

Osservazione. Lultima ipotesi del Teorema ci assicura che la tangente agli
estremi a e b interseca I'asse x all'interno di [a, b].

Dim. Supponiamo, come visualizzato in figura 2.1, che f' > 0, f” < 0O e
f(a) <0, f(b) > 0 (ovvero nell’ipotesi di esistenza di un unico zero « in |[a, b)).

Siaa < 2y < ace, ovviamente, f(zg) < 0= f(«a). Alloraz; = zo—f(zo)/f (x0) >
2o. Proviamo per induzione che 2, < ave xp 1 > x%.

Per k = 0 e vera. Sia vera per k e proviamola per k + 1.

—fa) = fla) = flzr) = (@ —2p) f' (&), 2x <& < a.
Ma, f”(x) <0, che implica che f’ & decrescente. Quindi f/(£x) < f'(xx). Allora,
—flzr) < (o—aw)f'(zx)
f (k)

TR TR )

Segue che f(zr+1) < f(a) =0 e anche che x; 2 > x4 come richiesto.

<zt (a—z) = .
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a=x, o b

Figura 2.1: Interpretazione geometrica della condizione 4 del Teorema 4
nell'ipotesi di funzione & concava in [a, b]

In conclusione, la successione {x;} € monotona e limitata superiormente e
quindi convergente: limy ..o 2 = . O

Se « € zero multiplo, con molteplicita m > 1 il metodo di Newton converge
linearmente. Vediamolo su un semplice esempio.

ESEMPIO 12. f(z) = 2%. 1l metodo di Newton costruisce la successione

(L’% Tk
Tyl = T — —— = —
2xk 2
L’errore corrispondente soddisfa la successione e y1 = 5 che ci dice appunto che il

metodo converge linearmente.
Se si considerasse la successione

2

T
Ik+1:f£kf27k:0
2xy,

il metodo converge immediatamente alla radice doppia o = 0.

<

L'esempio ci suggerisce come modificare il metodo di Newton affinche sia man-
tenuta la convergenza quadratica anche in presenza di zeri con molteplicita m >
1.

Lk+1 = T — M ]{/((Zk];))’ f/(xk) 7& 07 k 2 0. (214)

La successione generata con l'iterazione (2.14) converge quadraticamente alla
radice multipla « alla luce della seguente osservazione: il metodo di Newton é un

metodo di iterazione funzionale con funzione d’iterazione g(x) = = — ]{;((Z)).
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Facciamo vedere che, nel caso in cui la radice « ha molteplicita m, per man-
tenere 'ordine di convergenza quadratico, dobbiamo considerare la funzione d’ite-
razione

_ f(x)
g(x)=a — mf’(x) . (2.15)
Infatti, poiché possiamo scrivere f(z) = (v — a)™h(z) con hP)(a) # 0, p =
0,...,me
B (¢ — a) h(a)

9(@) = e @ — (@)

, N h(x) d
dove ¢(x) = W Pertanto /(o) = 1 —1/m # 0 se m > 1. E facile

a questo punto verificare che se prendiamo g(z) = =z — m f(z)/f'(z), come in
(2.15), allora ¢'(a)) = 0 che ci garantisce ancora convergenza almeno quadratica
del metodo di Newton anche per zeri con multeplicita m > 1.

Se non conosciamo la molteplicita della radice, considereremo invece di f(z)
la funzione ¢(z) = f(x)/f'(x) e applicheremo il metodo di Newton a questa fun-
zione costruendo la successione

o(xk)

Tr4+1 = Tk — (b/(xk) .

L'unico inconveniente di questa tecnica e che si deve calcolare la derivata seconda
della funzione f. Alternativamente, si puo stimare il valore della molteplicita con
una successione

LTp—1 — Tk—2

— (2.16)
201 — T — T2

mp

come descritto in [26, §6.2.2]. Infatti, visto che la successione {z;} converge
(linearmente) alla radice « allora

X Tp — Th—1 . LTk—1) — g\ Tk—2 1
hmi:hmg( ) g( ):g’(a)zlf—,
k—o00 Tp—1 — Tl—2 k—o0 Tl—1 — Tk—2 m
da cui
. 1
lim —— =m.
k—oo ] — Zk—Th-1

Th—1—Tk—2
Vediamo ora un paio di esempi (didattici ma importanti).

1. f(z) = 2> —¢q, = > 0, ¢ € Ry. Il problema ha soluzione z = ,/g. La
successione del metodo di Newton e
1 q
$k+1—§( k—i-x—k),
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che altro non & che il metodo babilonese o di Erone che calcola ,/q usando
le operazioni elementari. Poiché f/ > 0, f” > 0 per x > 0, allora per il
Teorema 4, per ogni 0 < a < /g < b la successione converge a ,/g.

Nel caso f(z) =2 —¢q, ¢ >0, n >0,

1 q 1-
Tpp1 = axp(l— =)+ =, "
i a n) n"*

consente di calcolare la radice n-esima del numero reale positivo q.

2. f(z) = = — c. 1l problema equivale quindi a calcolare I'inverso di c. Sup-
poniamo, per semplicita che ¢ > 0. La successione del metodo di Newton
e
Lh41 = l‘k(2 — CLL'k)
che consente di calcolare il reciproco senza divisioni! Ora, per applicare il
Teorema 4, osservo che essendo /' < 0 e f” > 0 (ricorda che x > 0) dovro
trovare ¢, il con a < 1/c < b, tale che

/(0 =bbc—1)<b—a < Tovlzae o 14vi-ac
1(b) c c

Pertanto, se a > 0 il metodo di Newton converge pur di prendere % <z <
3
%"

Concludiamo con un uleriore esempio.

ESEMPIO 13. Data la funzione
sin(ax)

fal@) = ax + 2

(a) dire quali sono gli zeri di f,(x) risolvendo analiticamente f,(x) = 0;

log(az), a #0,

(b) per a = 2, si calcoli lo zero z* = 1/« mediante il metodo di Newton a meno di
tol = 1.e — 6.

Anzitutto la funzione ¢ definita per  # —2/a. Ma la condizione sull’esistenza del
logaritmo, richiede che ax > 0 che implica che a e & siano concordi in segno. Pertanto,
il suo campo di esistenza ¢ R\ {—2/a}. Gli zeri si ottengono dalle equazioni e
disequazioni

sinfaz) = 0,
log(axz) = 0,
ax > 0.

che hanno soluzioni z = ka”, keZ,x =1/aeax>0. Inz =0 la funzione &
definita per continuita e vale 0.

Ad esempio, per a« = 2, lo zero richiesto & z* = 1/2. Usando il metodo di
sin(ax) cos(ax)(ax + 2) — sin(ax)

x(ax + 2) (ax + 2)2

Newton, sapendo che f/ (z) = , con il

codice seguente Matlab/Octave:
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sin{2x] logi 2x)| 2x+2)
0.5 T

-1 -05 [¥] a5 1

Figura 2.2: La funzione dell’Esempio 13 in [0.9, 1] con « = 2.

kmax=100; tol=1.e-6;
x0=3/(2*a) ;
iter(1)=x0;
[y,yd]l=funl(x0,a);
x1=x0-y/yd;
k=1;
iter (k+1)=x1;
while abs(x1-x0)> tol*abs(x1l) & k <=kmax
x0=x1;
[y,ydl=funl(x0,a);
x1=x0-y/yd;
iter (k+1)=x1;
k=k+1;
end
disp(’La soluzione cercata e’’ ’); x1
%---file che valuta la funzione e la sua derivata ---—-
function [y,yd]l=funl(x,a)
Ax=axx+2; Sx=sin(a*x);
y=Sx./Ax.*log(a*x) ;
yd=Sx./(Ax.*x)+a*(cos(a*x) .*Ax-Sx) ./ (Ax."2);
return

in 12 iterazioni si calcola la soluzione richiesta.

OO
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2.4.1 Varianti del metodo di Newton

Descriviamo brevemente alcune varianti del metodo di Newton note in letter-
atura con altri nomi.

Metodo delle corde

Consiste nel considerare costante, uguale ad un certo valore ¢, la derivata prima
della funzione f. Si ottiene pertanto il metodo delle corde

f(zr)

, ceR\{0}. (2.17)

Th41 = T —

Per la ricerca del valore ottimale per c, si deve tener conto del fatto che il metodo
€ un metodo d’iterazione funzionale con funzione d’iterazione g(z) = = — f(x)/c.
Pertanto c si sceglie cosicché

f'(x)

c

|g’<x>|=\1— \<1,

in un intorno I, = [o — §, o + 0] della soluzione «. Pertanto, per la convergenza
del metodo delle corde dovremo verificare le seguenti condizioni:

fx)y # 0, ze€l,,
0< fl(z)/c<2.

Dalla seconda condizione, indicando con M = max,cr, |f/(2)| si deduce che per la
convergenza dobbiamo richiedere che |¢| > M/2 e anche che ¢ f/'(z) > 0.

Se ¢ # f'(«) allora il metodo ha convergenza lineare, quando ¢ = f/(«) il
metodo & almeno del primo ordine.

Metodo delle secanti

Lidea e quello di approssimare f’(xj), che appare nel metodo di Newton, con il
f(zr) — flp—1)

Tk — Tk—1

rapporto incrementale . Si ottiene

Tk — Tg—1

flar) = flap-1)’

con f(xr—1) # f(xp). Pertanto il metodo richiede la conoscenza di due valori
iniziali, zg, z;. Al passo k, il nuovo valore ;. & l'intersezione della secante,
ovvero la retta per i punti (zy_1, f(zr-1)) e (vg, f(zx)), con I'asse delle ascisse.

Il metodo delle secanti converge, sotto le stesse ipotesi del metodo di Newton,
con ordine di convergenza

Tht1 = T — f(Ik) k= ]., 2, (218)

1++5
p:

~ 1.618
2 )
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che equivale ad una convergenza superlineare. Ma, I'importanza del metodo
delle secanti sta principalmente nel costo computazionale: il metodo richiede
solo il calcolo di f(x)) mentre il metodo di Newton richiede i valori di f(zy)
e di f'(zr). Nel caso di funzioni la cui espressione e “complicata”, il calcolo
della derivata puo essere costoso dal punto di vista della complessita. Pertanto
il metodo delle secanti, pur avendo una convergenza superlineare, rappresenta
sempre una valida alternativa al metodo di Newton.

Nel valutare, se usare il metodo delle secanti o di Newton, si dovrebbe consid-
erare la loro efficienza computazionale che indica se & piu costoso calcolare la
derivata o il rapporto incrementale senza tralasciare il fatto che il calcolo della
derivata di una funzione € comunque un problema mal-condizionato.

Osserviamo che in [2] viene chiamato metodo delle secanti il metodo iterativo

T —C
Fan) —f@ "

con ¢ € [a,b], che corrisponde ad usare una secante sempre con la stessa pen-
denza. In questo caso, la convergenza ¢ di tipo lineare. Se c & scelto cosicché
f(e)/(c — «) halo stesso segno di f'(«) ed inoltre

1)

C—

Tpr1 =2k — f(zg) =1,2,.. (2.19)

> 21(0)]

allora la corrispondente funzione d’iterazione e tale che |¢/(z)] < 1 e quindi il
metodo converge.

Il metodo di Steffensen

Il metodo costruisce la sequenza

_ o S

Tpt1 = Tk ERE (2.20)
[z + f(xr)) — fog)

glxr) = ) . (2.21)

Posto 8 = f(xx), si ha

f(@e + Br) — flzw)
flxr)
con hy, = —f(xy)/f'(x)) che & la correzione di Newton.

Osservando che per la funzione s(z) = 1/(1 — ) si puo scrivere come s(z) =
1+ z + O(2?), pertanto la (2.20) diventa

o) = = fan) (1 ghuf (o) + O3 )

h
Thi1 = T+ he(1 + ?kf"(a:k) +0(82)) . (2.22)
Da cui, per l'errore e, = x;, — a, osservando che
1 1"
hk = —ep + *62 f (f)

2" f/(an)
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(z1 — @) [ (&)

(si ottiene dal fatto che hy = (x — ) + 3 e )
otteniamo (@)
R o ’
dm = = @)

In conclusione il metodo di Steffensen & un metodo di ordine 2.

2.5 Accelerazione di Aitken

Il metodo consente di accelerare una sequenza ottenuta a partire da successioni
di punto fisso z411 = g(xx), k> 0.

Se {z} converge linearmente allo zero «, allora possiamo dire che esiste un
7 (da determinarsi) tale che

g(zg) —a=n(zp —a) . (2.23)

Il metodo si propone di definire una “nuova” successione che migliori la succes-
sione ottenuta con il metodo di partenza. Dalla (2.23) otteniamo

~g(xk) —mzr  g(zk) —nTK + T — T

1—nm 1—nm

ovvero

o=+ 9(:”1’“)7_“ . (2.24)
-1

Come possiamo determinare 1? Lo approssimiamo con la successione

_ 9lg(zr)) = g(zx) (2.25)
g(ax) —

Lemma 1. Se la successione xy1 = g(xy) converge ad « allora

lim n =g'(a) .

k—+oo

Dim. Osserviamo che z;1 = g(x) e 212 = g(g(xx)). Da (2.25)

- Thyo — Tpy1  Tpyo — @ — (Tpgp1 — @)
p = — —
Tpt1 — Th Tpa1 — a — () — @)
Tr42—Q o
Tr41—Q
1 . T —CQ
Th4+1—Q

Passando al limite, ricordando che per ipotesi la successione converge ovvero che
T4+l — &

lim = ¢'(a), otteniamo I'asserto
k—+oco T —
. g'(a) -1 ’
1 = = .
Jm =T =4¢'(a)
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In definitiva {7} approssima n. O

Usando (2.24) e (2.25) otteniamo la “nuova successione”

(9(zx) — xx)?
9(g(xr)) — 2g(xy) + o’

k>0 (2.26)

Tpy1 = T —

detta formula di estrapolazione di Aitkenoanchemetodo di Steffensen. La
(2.26) si puo considerare una iterazione di punto fisso con funzione d’iterazione

zg(g(x)) — (g(x))?
g(g9(x)) —2g9(x) + 2

o

ga(x) =

Osservazione. Il A a pedice nella go € dovuto alla seguente osservazione. Os-
serviamo che la successione di Aitken si puo riscrivere come

(xk+1 - xk)Q (227)

Tpy1 = xp —
N Tpto — 2Tpg1 + Tk

dove appare evidente la presenza dell’'operatore differenze in avanti, A. A e
un operatore lineare che si definisce come

Arx=(x+h)—z, h>0

Pertanto Az, = Tht1— Tk, A? Tk = A(A l’k) = Al’k+1 —Azx, = Th42 *2331@-&-1 + T,
In definitiva la successione di Aitken (2.27), usando 'operatore A, diventa

(A l'k)2 '

AT (2.28)

Tpy1 = T —

Talvolta, per indicare il metodo di accelerazione di Aitken, si usa la notazione A2
di Aitken.
o

Tornando alla ga (z), notiamo che é indeterminata per « = «. Infatti, ricordando
che g(a) = a e g(g(a)) = « otteniamo ga(a) = ;i;‘fa = 2. Se g & derivabile e
g'(a) # 1 allora applicando de I’ Hépital lim,_,, ga(z) = a. Pertanto, in z = «,
ga(x) & estendibile per continuita e ga(a) = a.

Se g(x) = x — f(x) allora ¢’(a)) = 1 se e solo se o ha molteplicita 2. Anche per
questa particolare g, si verifica che ga(a) = a ovvero ha gli stessi punti fissi di
g. Possiamo quindi considerare l'iterazione di punto fisso x;+1 = g(x), g(z) =
x — f(x). Vale il seguente risultato.

Proposizione 1. Sia g(z) =  — f(z) e a radice di f. Se [ e sufficientemente
regolare la successione xi1 = g(xy) ha le seguenti proprieta.

(i) seleiterazioni di punto fisso convergono linearmente ad una radice semplice
di f allora A? di Aitken converge quadraticamente alla stessa radice.
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(i) se le iterazioni di punto fisso convergono con ordine p > 2 ad una radice
semplice di f allora A% di Aitken converge alla stessa radice con ordine
2p — 1.

(iii) se le iterazioni di punto fisso convergono linearmente ad una radice multipla
di molteplicitc. m > 2 di f allora A? di Aitken converge linearmente alla
stessa radice con fattore asintotico 1 — 1/m.

Inoltre, nel caso p = 1 con « radice semplice di f, il metodo di Aitken converge
anche se le corrispondenti iterazioni di punto fisso non convergono.

ESEMPIO 14. La funzione tan(z) = 3z — {5 ha la radice o = 0.205921695. Se

0.1 + tan(xy)

la determiniamo con il metodo iterativo zy1 = 2 partendo da xy = 0

otteniamo una successione linearmente convergente ad « (infatti ¢’(«) &~ 0.45636 < 1).
In Tabella 2.2 facciamo vedere la differente velocita di convergenza usando anche la
successione del metodo di accelerazione A? di Aitken.

-

T I (Aitken)
0 0 0

2] 0111 0.2024

5| 0.1751 0.2053

Tabella 2.2: Confonto di una successione di punto fisso e di A? di Aitken

Una possibile implemetazione del metodo di accelerazione di Aitken, in Mat-
lab/Octave, & descritta nella funzione Aitken.m nell’Appendice C.

2.6 Calcolo delle radici di polinomi algebrici

Indicheremo con

n
() = Zakxk, ap € R
k=0

un poliomio algebrico di grado n. Per la ricerca delle radici reali e/o complesse
di p,(z) ricordiamo anzitutto due risultati utili a comprendere la difficolta del
problema.

e Regola dei segni di Cartesio. Dato p,(z), indichiamo con s il numero di
cambiamenti di segno nell'insieme dei coefficienti {ax} e con p il numero
delle radici reali positive ognuna contata con la propria molteplicita. Allora
p < ses— peunnumero pari.
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e Regola di Cauchy. Tutti gli zeri di p,(x) sono inclusi nel cerchio Q@ C C

a

Q={z€C: |z2| <1479}, 7= max
Qn

0<k<n-—1

Vediamo ora un paio di esempi esplicativi che ci dicono come la regola di
Cauchy ci dia una localizzazione troppo approssimativa.

1. Sia p3(x) = 23 — 3z + 2 (che si puod fattorizzare (z — 1)?(z + 2)). Questo
polinomio ha s = 2, p = 2 quindi la regola di Cartesio vale in quanto 2 < 2 e
2 —2 = 0 e pari. Pe Cauchy abbiamo che il cerchio di raggio1+~v=1+3 =4
contiene le radici.

2. Siapg(z) = 2% — 225+ 52 — 62° + 22% + 82 — 8 le cui radici sono +1, +2i, 1+34.
Abbiamo una sola radice positiva: p = 1. Il numero dei cambi di segno &
s = 5. Anche qui le due regole di Cartesio e Cauchy sono ancora vere. In
particolare per Cauchy avremo che v = 8!

2.6.1 Schema di Horner

Lo schema consente di valutare efficientemente un polinomio in un punto. Parti-
amo con un esempio esplicativo. Per valutare il polinomio ps(x) = ag + a1z + asz?
in un punto ¢ richiederebbe 2 addizioni e 2 moltiplicazioni. Se lo riscrivessimo
nella forma equivalente p2(x) = ag + 2 (a1 + azz), per valutarlo in ¢ occorerebbero
2 addizioni e 2 moltiplicazioni.

Nel caso generale, la valutazione in ¢ di p,, (z) = ap+a1z+- - -+a, 2" richiederebbe
n somme e 2n — 1 moltiplicazioni. Usando la riscrittura

pn(x) = ag + xz(a1 +xz(ag + -+ + x(ap—1 + apx)))

serviranno solo n somme e n moltiplicazioni.
Lalgoritmo di Horner per valutare p, (z) nel punto ¢ si puo cosi descrivere.

bn = Qn;

for k=n-1:-1:0,

b = aj + br41¢
end for

Alla fine by = p,,(().

Tabella 2.3: Algoritmo di Horner per la valutazione di un polinomio p, (z) nel
punti ¢.

Lalgoritmo di Horner & anche detto di divisione sintetica. Infatti, consid-
eriamo il polinomio

Gn-1(x;¢) =by + by + -+ + bzt
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i cui coefficienti sono i coefficienti b, calcolati con l'algoritmo di Horner e che
dipendono da ¢, allora possiamo scrivere

pn(x) = (1‘ - C)q”—l(x§ C) + bo

con by che e il resto della divisione di p,(x) per x — ¢. Per Ruffini sappiamo che
bo = pn(¢) e quindi by = 0 quando ¢ & una radice di p,(z). Pertanto, quando
pn(¢) = 0 possiamo scrivere

() = (2 = Q)qn-1(z;C) -

Per determinare le rimanenti radici di p,,(x) dobbiamo risolvere 'equazione
Gn-1(2;¢) =0. Per fare questo opereremo per deflazione come descriveremo nel
prossimo algoritmo che dovremo eseguire per ogni valore di & da n fino a 1
(ovvero k=n:-1:1).

Algoritmo 1.

(i) trova una radice (j di pg con un metodo di ricerca radici (es. Newton);

(ii) calcola il polinomio quoziente qx—1(x; (k) usando lo schema di Horner;

(iil) poni pg—1 = qx—1 € vai a (i).

Metodo di Newton-Horner

E il metodo di Newton associato allo schema di deflazione: calcola la radice (. di
pr(z). Osservo anzitutto che se p,(z) = (x — {)¢,—1(x) allora

p’/n(x) - Qn—l(x; C) + ('T - C)q'/n—l(x; C)

Da cui
P (C) = gn-1(¢;0) -

Pertanto il metodo di Newton-Hoérner per approssimare la j-esima radice ¢;, j =

1,...,n dipy,, consiste, a partire da una approssimazione iniziale ¢ 7( ), nel costru-
ire la successione

k
C(k+1) _ C(k) B pn(C](- ))
' T (Vi)

Poi, ricordando che p,(z) = (z — {j)gn—1() si sfrutta la deflazione per approssi-
mare uno zero di ¢, finche determineremo tutte le radici.



2 - Ricerca di zeri di funzione 55

2.7 Esercizi proposti

ESERCIZIO 16. Data la funzione f(x) = cosha + sinz — ~, per v = 1,2,3 st
individui graficamente un intervallo contenente uno zero & > 0 e lo si calcoli
con il metodo di bisezione con tol = l.e — 10. Calcolare anche il numero
di iterazioni necessarie sia a priori che a posteriori. Fare anche il grafico
dell’errore relativo da cul si evince che la convergenza é lineare.

ESERCIZIO 17. Un oggetto si trova fermo su un piano la cui inclinazione
varia con velocita costante w. Dopo t secondi la posizione del questo oggetto é
g9 . .

s(t,w) = %2 (sinh(wt) — sin(wt))
dove g = 9.81m/sec? é laccelerazione di gravita. Supponiamo che il corpo si
sia mosso di 1 metro in 1 secondo. Si ricavi il valore corrispondente di w con
accuratezza 1.e —5, mediante un metodo di iterazione funzionale convergente!
(Sugg: si deve trovare una funzione di iterazione la cui derivata prima risulta

in modulo minore di 1 nell’intorno dello zero...).

ESERCIZIO 18. Si consideri la funzione f(x) = 2 — sin(nz)e~*.

1. Individuare un metodo di iterazione funzionale convergente linearmente
alla radice positiva, o, di f(x).

2. Individuare un metodo di iterazione funzionale convergente quadrati-
camente alla radice 5 =0, di f(z).

In tutti i casi usare tol = 1.e — 6 e calcolare l’errore assoluto.

ESERCIZIO 19. 1. Siconsideri la funzione f(x) = 2% —log(x® +2) di cui si
vogliamo trovare gli zeri.

e Individuare le due radici reali di f(x) = 0 e i corrispondenti inter-
valli separatori (che denoteremo con I, e 1,,).

e Si costruiscano due metodi convergenti di iterazione funzionale, le
cui funzioni di iterazione sono g;(x), i = 1,2. Determinare per cias-
cuno di essi il numero di iterazioni necessarie, l'ordine di conver-
genza e il fattore asintotico d’errore. Usare 50 come numero mas-
simo di iterazioni e un opportuno test d’arresto con tol = 1l.e — 5

2. Data la funzione f(x) = x? — 2z — log(x), si studi la convergenza del
metodo delle secanti applicato all’equazione f(z) = 0.

Ricordo che la formula del metodo delle secanti é

k k—1
D) o) gty T =D k>1.

f@®) = flat=0) " =

Si fornisca anche il plot della sequenza {x;} alle due radici reali di f.
Si scelga tol = 1.e — 5. Rifare quindi lesercizio con il metodo di Newton
(o delle tangenti).
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ESERCIZIO 20. Si consideri il metodo d’iterazione funzionale
Tiy1 = X4 —|—e1’”“ —1.

Provare, dapprima teoricamente e quindi numericamente usando tol =
l.e — 9, che questo procedimento converge all’'unico punto fisso della funzione
d’iterazione. Calcolarne anche l'ordine di convergenza.

ESERCIZIO 21. Si consideri la funzione f(z) = (2?> — 1)Plog(x), p>1, > 0
che ha in o = 1 una radice multipla di molteplicita m = p + 1. Nei casi
p = 2,4,6, si determini « con i due seguenti metodi a meno di tol = l.e — 8
partendo da xo = 0.8.

1

F@) h S0 con my= LTI (999)
f(xy) 2T — T — Tp—2

Th+1 = L — Mg

f(xr)

LTht1 =X — M .
N [ (k)

Per ciascun metodo si determini il numero di iterazioni necessarie. Nel caso
del primo metodo si faccia vedere che la formula per m; in (2.29) fornisce
anche una stima della molteplicita di o.

ESERCIZIO 22. Si consideri l'equazione x = e~ *.
e Individuato un intervallo che contiene la radice, usando l'iterazione

e 4+ x,

5 , n>0 (2.30)

LTn+1 =

st determini la radice « dell’equazione data con tol = 1.e — 6.
e Si prenda ora literazione

we T 4,

> -1 2.31
1+w ) n_O,w;éO,wsﬁ ) ( 3)

Tn4+1 =

Determinata «, graficamente si dica per quali valori di w lUiterazione
(2.31) converge piu rapidamente di (2.30) (Sugg. si calcoli in a la
derivata della funzione d’iterazione (2.31) )

e Qual ¢ il valore ottimale di w?

ESERCIZIO 23. Si considerino le funzioni fi(z) = log(2/(3 — z)) e fao(x) =
3 —3.

o Mediante il metodo di Newton determinare l'unica intersezione z* di
fi1(z) = fa(x) calcolando anche il numero di iterazioni.
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e Visualizzare in scala semilogaritmica l'andamento dell’errore relativo
usando la soglia tol = 1.e — 9.

ESERCIZIO 24. Si considerino le funzioni fi(x) =log(2|z|) e fa(x) =1 -k,
k reale.

1. Aiutandosi con la grafica, dire quante soluzioni reali hanno le due fun-
zioni per i seguenti valori ki =22 — 0.1, ko = k1 +0.3e ks = 0.

2. Si consideri quindi k = 1. Studiare la convergenza dei seguenti metodi
di iterazione funzionale all’'unica radice o

(i)
Tit+1 = 1-— 10g(2|l‘1|) y
(ii)
1
Titl = 5 exp (1 —a;) .
ESERCIZIO 25. Si consideri la funzione f(x) = x® —3e® +3 di cui si vogliamo

trovare gli zeri.

e Individuare le due radici reali di f(x) = 0 e i corrispondenti intervalli
separatori (che denoteremo con 1, e 1,,) e verificare che oy < ay = 0.

e Si determini «y con il metodo delle secanti. Usare un opportuno test
d’arresto con tol = 1.e — 8.

e facoltativo: individuare un metodo di iterazione funzionale conver-
gente ad .

ESERCIZIO 26. Si consideri la funzione
F(r) = 174 10g(10 /) — = — —
z) = 1.74 log %)~ 1o Nk

e Trovare lintervallo [a, b] che contiene l'unica radice o di f(x).

e Costruire un metodo d’iterazione funzionale convergente in [a,b] alla
radice a. Usare tol = 1.e — 6.

ESERCIZIO 27. Dato il polinomio p3(z) = 23 — 222 + 1. Si dica quale tra le
seguenti 3 funzioni d’iterazione, per calcolare la radice & = 1, converge con
ordine almeno quadratico: gi(z) = x — ph(x), g2(x) = ps(x) —z e gs(z) =
ps(x) + .

ESERCIZIO 28. Si consideri lo schema iterativo
Tpo1 =ax +e7% — 1, k>0.

Qual é l'unico punto fisso a della funzione d’iterazione data e qual é il cor-
rispondente ordine p di convergenza?

57
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ESERCIZIO 29. Data la funzione f(x) = e® — 2% + 2 che in [2,5/2] ha una
radice o ~ 2.27. Si dica quale tra le seguenti 3 funzioni d’iterazione converge
con ordine almeno quadratico partendo da xo = 2: g1(z) = log(x® —2), go(2) =

f@) +zegs(z) = —(f(2)/f'(z) — ).

ESERCIZIO 30. La funzione f(x) = 2® — 2=V**! ha un’unico zero reale. Cal-
colare tale zero con un errore minore di 0.25. Trovare quindi un metodo di
punto fisso convergente allo zero.




Soluzione di sistemi lineari

Prima di addentrarci nello studio dei metodi numerici, &€ doveroso introdurre le
matrici e alcune strutture particolari di matrici nonche alcuni concetti fonda-
mentali quali la norma vettoriale e matriciale e il numero di condizionamento di
una matrice.

3.1 Cose basilari sulle matrici

Le definizioni che qui forniamo sono relative a matrici a valori reali ma valgono
similmente nel caso complesso con alcune piccole variazioni.

Una matrice (di numeri reali) € una tabella di m x n numeri disposti su m
righe e n colonne. I numeri che compaiono nella tabella si chiamano elementi
(della matrice). La loro individuazione avviene attraverso la loro posizione di
riga e colonna. Ad esempio

1 2 4 8 6
A=]10 -5 16 -9 0.3
3 2 6 3 05

€ una mtrice 3 x 5. L'elemento 16 essendo posizionato sulla seconda riga e terza
colonna, verra indicato con ass.
In generale una matrice A avente m righe ed n si indichera con

ai @12 Al o Qln

a1 Az - 424 RN 5 7%)
A=

a1 a2 o Gy Tt Qin

am1  Am2 Amy Amn

Il numero di righe o di colonne viene detto ordine o dimensione della matrice. Nel
caso in cui m = n si dice che la matrice e quadrata di ordine n altrimenti sara
detta rettangolare.

3.1.1 Operazioni aritmetiche con le matrici

e Somma di matrici. Siano A e B due matrici quadrate di ordine n o in
generale dello stesso tipo m x n. Indicando con C' la matrice risultato
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dell’operazione, si ha:
Cij = (A + B)Z‘j = Aij + Bij .

Esempio.

e Prodotto per uno scalare. Sia A una matrice quadrata di ordine n o ret-
tangolare m x n. Preso un o € R si ha

(Oé A)i]‘ = aAij .

Esempio.
1 3 4 2 6 8
9 01 5| _ 0 2 10
-1 7 =8 -2 14 -16
0 0 2 0 0

e Prodotto di matrici. La regola fondamentale e che il prodotto di matrici
si fa righe per colonne. Pertanto perche abbia senso richiederemo che il
numero di colonne della prima matrice sia uguale al numero di righe della
seconda matrice.

Se A e B sono matrici quadrate di ordine n il prodotto &€ sempre possibile.
Invece se A e B sono rettangolari il numero delle colonne di A deve coin-
cidere con quello delle righe di B. As esempio, se Aeén xpe B e pxm allora
C = A x B avra dimensione n x m. Pertanto,

In Matlab/Octave basta scrivere A*B.

Esempio.

Elenchiamo le principali proprieta dell’ operazione di somma e prodotto con
matrici.

1. A+0=0+A = Aovvero la matrice formata da tutti zeri & '’elemento neutro
della somma.

2. A+ (—A) =0, ovvero esiste 'opposto di A che & la matrice —A.

3. (A+B)+C=A+ (B+ (), ovvero la somma & associativa.
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4. A+ B = B+ A: la somma & commutativa. Purtroppo questa proprieta non
vale per il prodotto: il prodotto di matrici non é commutativo.

IR
BIREE R

5. (AB)C = A(BC): associativita del prodotto di matrici.

mentre

6. C(A+ B) = CA + CB: distributivita del prodotto rispetto alla somma di
matrici.

Ci sono poi, alcune operazioni sulle matrici, tipiche dell’algebra delle matrici.

e Somma diretta di matrici. Siano A e B due matrici non necessariamente
quadrate, la loro somma diretta, che si indica con A ® B &

A 0

sop-[4 0]
Esempio.

132 00

2 1 23100

[;2?}@ 4 1|1 =100 0 21

0 1 0 0 0 4 1

000 01

In generale

k
PAi=4040 A =diag(Ay, ..., Ax) .

i=1

In Matlab/Octave esiste la funzione blkdiag che permette di calcolare la
somma diretta di matrici.

e Prodotto diretto di matrici. Siano A, m x n e B, p x ¢ (in generale
due matrici non necessariamente quadrate), il loro prodotto diretto, che si
indica con A ® B e

anB -+ a1,B

(121B e (lgnB
AR B = . .

amlB R amnB

La matrice C = A ® B ha quindi dimensione mp X ngq.
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Esempio.

5]

o N O
o= W
I
OO o NN O
W W O == W
OO O OO
O OO NN

e Esponenziale di matrici quadrate. Sia A, n x n, esponenziale di A si
definisce come la serie di Taylor infinita

A - Ak
e :kzﬁ' (3.1
=0

Nel caso banale in cui A sia 1 x 1 la serie coincide con l'usuale funzione
esponenziale scalare. LI esponenziale di matrice viene usata soprattutto
nel contesto della soluzione di sistemi di equazioni differenziali ordinarie.
In Matlab/Octave la funzione expm consente di calcolare I'esponenziale di
matrice mediante un’approssimazione di Pade. Quest’ultima consiste in
un’approssimazione polinomiale razionale di matrici dell’espansione di Tay-
lor (3.1) (cfr. [18, 23]).

Alcune strutture speciali sono le seguenti

e A e detta diagonale se

ay.1 0
0 as 2

) ai,j:07 L#J
0 Gn,n

In Matlab/Octave esiste la funzione diag, se applicata ad una matrice resti-
tuisce il vettore della diagonale altrimenti se applicata ad un vettore resti-
tuisce una matrice diagonale.

e A e detta triangolare superiore se

,amz(), 1> 7.
0
x

In Matlab/Octave per estrarre la parte triangolare superiore di una matrice
si usa triu.
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e A e detta triangolare inferiore se
x
x .0 o
, a5 =0,1<7.

€T ce “en €T

In Matlab/Octave per estrarre la parte triangolare inferiore di una matrice
si usa tril.

e A e detta tridiagonale se

r T 0
r T x
s ai’j:(), |i—j|>1.
x
0 x x

Si dira che una matrice € a banda con banda di ampiezza 2s + 1 se gli ele-
menti nulli sono quelli i cui indici soddisfano la disuguaglianza |i — j| > s.

Ad esempio, in Matlab/Octave per costruire una matrice tridiagonale A con
diagonale principale il vettore a (di dimensione n) e sottodiagonale e sovra-
diaganole i vettori b, c (di dimensione n — 1) rispettivamente, si usa il co-
mando A=diag(a)+diag(b,-1)+diag(c,1).

e A e detta avere la forma di matrice di Hessenberg superiore se

s ai,j:O, Z>]+1
0 --- 0 T T

Si dira poi che A ha la forma di Hessenberg inferioresea;; =0, j >i+1.

In Matlab/Octave H=hess(A), consente di estrarre la sottomatrice di Hes-
senberg superiore di figura.

e A si dice a blocchi se i suoi elementi sono a loro volta delle matrici. Ad
esempio una matrice a blocchi 2 x 2 si indica come segue

A A
A= .
( A1 Ago >

e Trasposta di una matrice
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La matrice trasposta di A4, denotata con A’ & tale che (4)Z, = A;;. La

i
trasposizione gode delle seguenti proprieta.
(AT)T = A, (cA)" = AT, (A+ B)T = BT + A", (AB)” = BT A" .

Se A e B sono due matrici a blocchi, i cui blocchi hanno la stessa dimen-
sione, la somma A + B equivale alla matrice i cui elementi sono la somma
dei rispettivi blocchi. Sempre nel caso di matrici a blocchi 2 x 2 avremo
A1+ Bi1 Ap+ Bia
A+ B = .
( Ag1 + Bar Agz + Bao

Loperazione di trasposizione si applica anche a matrici a blocchi. Ad esem-

pio

Af AL
AT =
Afy Ad
Se AT = A allora A & detta simmetrica. Quando AT = —A, A & detta

antisimmetrica.

Osserviamo che la matrice trasposta esiste sia nel caso di matrici quadrate
che rettangolari. In Matlab/Octave la trasposta di A si ottiene col comando
A’

Inversa di una matrice

La matrice inversa di una matrice quadrata A di ordine n, che si indica con
A~! etaleche AA~! = A~! A = I. Valgono operazioni simili alla trasposta.
Se A e B sono quadrate di ordine n allora (AB)~! = B~1A~1,

Nel caso di matrici rettangolari, non si puo definire I'inversa nel modo in cui
siamo abituati, ma come vedremo piu oltre nel contesto della soluzione di
sistemi lineari sovra o sotto-determinati, si parlera di inversa generalizzata
o pseudo inversa di Moore-Penrose (vedi sezione 3.8).

Definizione 6. Data A, diremo che B e simile ad A se esiste una matrice invert-
ibile P tale che

P 'AP=1B.

3.1.2 Determinante e autovalori

Ad ogni matrice quadrata A di ordine n, possiamo associare un numero detto de-
terminante che denoteremo con det(A) oppure |A|. Se indichiamo con M 1’algebra
delle matrici quadrate di ordine n, allora il determinante det & una funzione da
M a valori nei reali:

det : M—=R
A — det(A)
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Per il calcolo del determinante ci si puo avvalere della regola di Laplace

ai n=1
det(A) — ) (3.2)
i Aigaig, i=1,..n n>1

con A, j = (—1)"*7det(A; ;) dove A, ; & la matrice ottenuta sopprimendo la i-esima
riga e la j-esima colonna.

Definizione 7. Un autovalore di una matrice A, é un numero \ € C per cui
esiste un vettore x non nullo per cui vale l'uguaglianza

Ax = Ax. (3.3)
Il vettore x #+ 0 viene detto autovalore di A associato all’autovalore ).
Il numero )\ & soluzione dell’equazione caratteristica
pa(A) =det(A—A) =0,

con pu () che si chiama polinomio caratteristico della matrice A. Valgono
inoltre le relazioni

det(4) = [N,
1=1

tr(4) = i)\iZiai,m
i=1 i=1

dove trindica la traccia di A. Queste due uguaglianze si dimostrano facilmente
osservando che il polinomio caratteristico p4(\) &€ un polinomio monico di grado
n della forma

pa(N) = (—1)"A" 4 (—1)"! (Z a,»i) A" 4 det(A).

Ricordando le relazioni tra le radici di un polinomio e i suoi coefficienti, si con-
clude.
In Matlab/Octave esistono le funzioni det e trace con ovvio significato.

Definizione 8. Una matrice simmetrica si dice definita positiva se per ogni
vettore x # 0 la forma quadratica 7 A x risulta essere maggiore di zero in senso
stretto. Se x7 Ax > 0 la matrice si dice semidefinita positiva.

Proposizione 2. Se A ¢ simmetrica definita positiva allora

(1) |Ag| > 0, V k =1,...,n, cioe i minori principali di testa (incluso il determi-
nante) sono positivi.

(ll) (7%} > 0.
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(iii) |a7 ;| < aiqa;;, i # j , ovvero lelemento pit grande sta sulla diagonale
principale.

(iv) Gli autovalori di A sono tutti positivi. Infatti se A é un autovalore, dalla
definizione di una matrice simmetrica e definita positiva otteniamo la dis-
uguaglianza

0<alT Az =XzT2

da cui si conclude essendo z* x = Y| x? > 0 per ogni vettore x non nullo.

Nota: non vale il viceversa della proprieta (iv).

3.2 Norme di vettore e di matrice

Per ogni vettore 2 € R™, possiamo definire la norma come una funzione
-1 R™ = Ry,
avente le seguenti proprieta:
1 |z]| >0, Yz #0, ||| =0 & =0
2. [lexl| = c[l|=]], VceR
3. lz+yll < llz| + |lyll, Vz,y € R" (disuguaglianza triangolare).

Una proprieta importante & che in uno spazio vettoriale di dimensione finita
tutte le norme vettoriali sono equivalenti. Ovvero per ogni coppia di norme || - ||V
e | - ||® esistono due costanti positive m e M t.c.

ml|z||® < ||lz[|V < M||z|®, V2 eR". (3.4)
Gli esempi di norme vettoriali piu usate sono:

(a) ||z]|o = max |z;| (norma infinito)
1<i<n

®) |z[ = Z |z;| (norma 1)
1<i<n
1/2
© [zl2 = Z |z = vaT z (norma 2 o norma euclidea)
1<i<n
1/p
(d) ||z, = Z |;|P , p>1(norma p)
1<i<n

In Matlab/Octave, queste norme si determinano usando la funzione norm(x, *),
dove * potra assumere i valori 1,2, inf,p. Per default norm(x) & la norma 2.

Se A € R™*" la sua norma & ancora una funzione || - || : R**" — R, che
soddisfa le seguenti proprieta
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L ||A] >0, VA#O0;||A[|=0 <= A=0
2. |lcAll = [ell|A]l, YeeR

w

. JA+ B| <A+ ||B|, VA, B e R"" (disuguaglianza triangolare).

N

- ABI < lA[I1B], VA, B € R™"

Llultima proprieta é caratteristica della norma di matrice. Anche per le norme di
matrici vale un’equivalenza simile alla (3.4). Gli esempi di norme matriciali piu
usate sono:
n
(a) |Alleo = max Z |a; ;| (norma infinito o norma per righe)
Sign £
n

(b) ||A]l; = max Z |a; ;| (norma 1 o norma per colonne)
1<j<n &

1/2

() ||AllF = Z Z lai ;|? = /tr(A A7), (norma di Frobenius)

1<i<n 1<j<n

(d) ||All2 = 4/p(AT A) (norma 2 o norma euclidea o norma spettrale)

Osserviamo che la norma euclidea si chiama anche norma spettrale poiché p(A) =
maxi<i<n |Ai[, con )\; i-esimo autovalore di A, si chiama raggio spettrale della
matrice A. Inoltre, se A & simmetrica || Al = p(A) altrimenti ||Aljs = 01(A), con
o1(A) il piu grande valore singolare della matrice A (per la definizione di valori
singolari di una matrice rimandiamo al capitolo successivo). Infatti, nel caso in
cui A = AT per il generico autovalore avremo: \(4A A7) = \(42%) = A2(A) e dunque
p(A) = ||A|2. Pertanto nel caso di matrici simmetrice il raggio spettrale & una
norma.

Definizione 9. Data una norma di matrice e una vettoriale, diremo che esse
sono compatibili o consistenti se

[Az| < [|Alllz], VA €R"™™, zeR".

Ad ogni norma di vettore possiamo associare una norma di matrice nel seguente
modo N
x
|All == supu = sup |Ax|| (3.5)
e#0 [zl je=1

Questa viene detta norma naturale o norma indotta. Ne consegue che ||Az| <
[lA]|||x]|, ovvero che una norma indotta e anche compatibile. Come esempio, &
facile verificare ricorrendo alla definizione che per la matrice identica

(]| = max |[Iz]| =1
2| =1
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e che le norme 1,2,00 sono norme naturali indotte dalle corrispondenti norme
vettoriali. L'unica norma matriciale che non & naturale & quella di Frobenius.
Infatti ||I||p = /1.

Infine ¢ interessante ricordare la seguente proprieta:

Proposizione 3. Per ogni norma compatibile con la corrispondente norma vet-
toriale, si ha
p(A) < |IA]].

Dim. Sia )\ autovalore di A associato all’autovettore v # 0. Avremo
IMIv]l = lIav]l = [[Av] < [LA[[[Iv]]

da cui p(A) = maxi<i<n |)\L| < HAH O
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3.3 Soluzione di sistemi lineari: generalita

Data A € R"*" e il vettore b € R™ il problema consiste nel determinare il vettore
x € R™ soluzione del sistema lineare

Ax =b. (3.6)

Anzitutto la soluzione di (3.6) esiste se e solo se la matrice A & invertibile, che
significa che det(A) # 0. Se A é invertibile sappiamo che grazie alla regola di
Cramer le componenti del vettore soluzione x sono

 det(4,)
YT det(A)

con A; che e la matrice ottenuta da A sostituendo la colonna i-esima con il ter-
mine noto b.

In pratica con la regola di Cramer si calcolano n+1 determinanti. Considerato
che il calcolo di un determinante (con la regola di Laplace) costa O(n?) operazioni,
allora determinare la soluzione del sistema con Cramer costa O(n?*) operazioni.
Pensando di doverla applicare a sistemi di grandi dimensioni, ad esempio n >
100, il metodo diventa via via inapplicabile dal punto di vista del tempo di calcolo.

3.3.1 Condizionamento del problema

Analizziamo due situazioni: perturbazione del termine noto e perturbazione si-
multanea della matrice e del termine noto.

1. Sia 0b la quantita di cui perturbiamo il termine noto b. Questa pertur-
bazione si ripercuotera sulla soluzione cosicche invece di x otterremo la

soluzione x + 0x. Vogliamo vedere come dx puo essere legato a §b. Pertanto,
da
A(x +dx) =b+ b

ricordando che Ax = b, otteniamo il sistema Adx = 6b. Ora,

loz]| = [[ A= bl < |A~ ]| l|ab]l,

ma [[b]| = [[Az|| < [ A]l [|=]|, pertanto
Al M= I

Per l’errore relativo abbiamo infine la maggiorazione

16zl
el —

Definendo poi x(A) = ||Al|||A7!|| come il numero di condizionamento della
matrice A, possiamo dedurre da (3.7) che il rapporto tra I'errore relativo

|9b]|

(3.7)
oIl -

< [lapy A~y doel
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sulla soluzione e quello sul termine noto & maggiorato dal numero di con-
dizionamento della matrice. Piu la matrice sara malcondizionata e peggiore
sara la maggiorazione e quindi la perturbazione indotta sulla soluzione.
k(A) & quindi un fattore di amplificazione dell’errore.

In Matlab la funzione cond(A,p) consente di calcolare il numero di con-
dizionamento di A in norma p = 1, 2, co. In Octave esiste il comando cond (A)
che calcola il numero di condizionamento della matrice A in norma 2.

Facciamo notare che in alcuni testi, invece di x(A), si trovano le notazioni
w(A) ov(A).

2. Se perturbiamo anche la matrice A di una quantita 6 A, si puo dimostrare
che per l'errore relativo vale la maggiorazione

19zl K(A) (IM ||5b>
< + . (3.8)
lzl = 1— K(A)'T 1Al ol

1
Nel caso in cui [|0A4| < AT’ in (3.8) si ha

K(A)

1—r(A) gl

< 2k(A).

Come dicevamo il numero di condizionamento di A da indicazioni sull’amplificazione
dell’errore relativo sulla soluzione. Osservando che x(A) > 1 (assume il valore 1
quando A é la matrice identica), allora piu piccolo sara k(A) e meglio condizion-
ato risultera il problema della soluzione di un sistema lineare.

Diamo solo un paio di esempi che quantificano il concetto di matrice malcon-
dizionata.

1. Matrice di Hilbert, H.

E una matrice simmetrica di ordine n i cui elementi sono H; i =1/(t+j—
1), 1<i,j<n.

Si dimostra che ry(H) ~ €35

Tabella 3.1.

. Alcuni valori di k2(H), sono riportati in

n 2 6 10
ko(H) [ 19.3 [ 1.5107 | 1.6103

Tabella 3.1: Numero di condizionamento in norma 2 della matrice di Hilbert

In Matlab/Octave esiste la funzione hilb(n) che consente di definire la ma-
trice di Hilbert di ordine n.

2. Matrice di Vandermonde, V.
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E la matrice associata al problema d’interpolazione polinomiale su n punti

(distinti) x4, - - , x,,. La matrice di Vandermonde di ordine n &
1 1 1
1 z x’ll_l
V f—
1 =z, zn-t

Si dimostra che per punti distinti x; # x;, det(V) = [],;(z; —z;) # 0.

Circa il numero di condizionamento s (V') vale la pena ricordare il risul-
tato di Gautschi e Inglese [14]. Sia X = {x;} di cardinalita n, I'insieme dei
nodi d’interpolazione. Se z; > 0 allora k.. (X) > (n — 1)2(*=1, Invece, se i
nodi sono simmetrici rispetto 'origine si hanno i seguenti limiti inferiori:

se n pari

se n dispari .

Anche per la matrice di Vandermonde esiste una funzione Matlab/Octave

che si invoca come V=vander (x) dove x € un vettore e la matrice V e tale che

Vij = 7.

A completamento ricordiamo che Matlab contiene una galleria di matrici test nel

cosidetto Matrix Computational Toolbox (MCT) di Nick Higham
www.maths.manchester.ac.uk/~higham/mctoolbox/.

Per ottenere la lista di tutte le matrici test disponibili basta usare il comando

[outl,out2,...]=gallery(matname,optl,opt2,...)
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3.4 Metodi diretti

Si tratta di metodi numerici che consentono di determinare la soluzione del sis-
tema lineare, teoricamente in un numero finito di passi. Putroppo a causa degli
inevitabili errori di rappresentazione e algoritmici, i metodi necessitano di al-
cune strategie implementative. I metodi diretti che studieremo in questo testo
sono: il metodo di eliminazione di Gauss che dimostreremo essere equivalente
alla fattorizzazione LU di A, il metodo di Cholesky che si applica quando A &
simmetrica e I'algoritmo di Thomas per matrici tridiagonali.

3.4.1 Il Metodo di Eliminazione di Gauss (MEG)

Dato il sistema Az = b il metodo di Gauss consiste di due passi principali:
(1) eliminazione;
(ii) sostituzione all'indietro.

Lobiettivo del passo di eliminazione e di trasformare la matrice A in forma di
matrice triangolare superiore allo scopo di ricavere la soluzione del sistema me-
diante appunto la sostituzione all’indietro (ovvero determinando dapprima z,, e
via via tutte le altre componenti del vettore x).

Dato il sistema

anxy +axe + - Faipr, = b
211 + A2 + -+ FaopT, = b

(3.9)
Ap1T1 + ApoTo + - - - +apntn, = bn

che indicheremo pit1 compattamente con Az = b(1), dove I'apice ci ricorda il
passo di eliminazione, avendo posto A(") = A. Ora se a§11> # (0 la prima equazione
puo essere usata per ricavare x; e sostituirlo nelle rimanenti equazioni ottenendo
un nuovo sistema A®z = b(®) che avra un solo elemento non nullo nella prima
colonna

oG +alles b baD, = oD
(2) (2) A )]
0 +ayoxo+ - 4ay,x, = b
' 2,202 ' 2, .2 (3.10)
0 _ﬂ'_a"(jéxz + - +a,’(,L2,21xn — bgf)

In pratica per passare da A" ad A si individua dapprima il moltiplicatore

a;
m;1 = 1)’

a1

1=2,....1

di modo che gli elementi di A e b saranno
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oV -
(2) o T
a;; =
aE}} mzyla&) 1>1
b(l) i=1
p® -1

b(l) — miylbgl) 7> 1

7

2 Lo . .
Se a; % # 0 si puo continuare con la seconda colonna e cosi via.

Pertantoper 1 < k<n—1, se a,(f,l # 0 avremo

(k)
mip = (k)7 i=k+1,...,n
e
agkj) 1<k
(k+1) ’
e o) k) -
a; ;= mikay; i=k+1,....,n j=1i,...,n
ko) i<k
b(k+1) _ o

bz(‘k) _mi’kbg“) i=k+1,...n

Alla fine il sistema Az = b avra la matrice A" che sara triangolare
superiore

ag":bl)xl +a§-72)x2 _|_ . _’_agjtrzxn — bg’n)
(n) (n) (n)
+as 42 + - +as ,tn, = b
2252 2 : (3.11)
o = B

A questo punto si puo applicare la sostituzione all’indietro e determinare il
vettore soluzione. Infatti se

aV #£0, i=1,...n, (3.12)

allora
Tn = /ann (3.13)
£, = p™ — Zad L i=n—1,...,1. (3.14)

2,1 Jj=i+1
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Algoritmo di eliminazione e di sostituzione all’indietro

I due passi del metodo di eliminazione di Gauss si possono discrivere da un punto
di vista algoritmico, usando sempre la sintassi Matlab/Octave, come segue.

Algoritmo 2. Eliminazione

for i=1:n-1,
for j=i+l:n,
m=a(j,i)/a(i,i);
a(j,:)=a(j,:)-m*xa(i,:);
b(j)=b(j)-m*b(i);
end
end

Dal punto di vista della complessita, al passo i-esimo di eliminazione il costo,
in termini di moltiplicazioni e divisioni, &

(n—i) (n—i1+1) + (n—1) = (n—-i)(n—1i+2),
—— —— ——
ciclosuj ciclo suk ciclo su j periv,

Pertanto, per i tre cicli for, la complessita totale sara

n—1 n—1
dn—i)n—i+2)=> (n®+2n—2n+1)i+i%). (3.15)
i=1 i=1
Ricordando le identita
" n(n+1) L, nn+1)2n+1)
= - = .1
;2 5 , ;z 5 (3.16)

sostituendo in (3.15) (con n — 1 al posto di n) otteniamo

n—1
2 3__3 2 3 2 5 3
>t 2+ )i ) = wons IEIEN L B so(T).
(3.17)

Pertanto la complessita dell’algoritmo di eliminazione, in termini di operazioni
di moltiplicazione, & n3/3 .
Per la sostituzione all’indietro possiamo usare questo codice.

Algoritmo 3. Sostituzione all’indietro

for i=n:-1:1,
sum=a (i, :)*x
x(1)=(b(i)-sum)/a(i,i);
end
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Anche per la sostituzione all'indietro facciamo il calcolo della complessita.
Come é facile vedere, per costruire sum si fanno n — ¢ moltiplicazioni. Pertanto la

complessita totale e
n

L n(n—1)
Z(n—z)—T.

i=1

La complessita totale del metodo di Gauss si ottiene sommando la complessita
dell’algoritmo di elminazione e quella dell’algoritmo di sostituzione

n® n? Bn nn-1) nd 5 4n
i
3 2 6 2 3 3

In conclusione, I'algoritmo di Gauss richiede O(n?/3) operazioni.

EsEMmPIO 15.
11 4 -6 9
A=AV= -7 17 9 |, b=0P=| 19 |,
-1 -4 6 1
e Primo passo. I moltiplicatori sono mg 1 = —7/11, ms = —1/11.
11 4 —6 9
2 21 7 2 272
AB — | g 2 s | @ | 2 |
40 60 20
0 -9 1 i)
e Secondo passo. Il moltiplicatore ¢ mg o = —8/43.
11 4 —6 9
3 215 57 3 272
A®) = 0 11 11 ) ) = 11 )
276 276
0 0 3 =

Con la sostituzione all'indietro troveremo che la soluzione & x = (1,1,1)7.

Strategia del pivot

Lipotesi su cui si basa il MEG e che al passo & gli elementi diagonali siano in
modulo diversi da zero, ovvero \agf,)c\ # 0. Ma se accade che agf,l ~ 0, si puo
applicare la stategia del pivot parziale per righe consistente nel ricercare nelle
righe k+1,...,n (quelle sotto la diagonale) ’elemento in modulo piu grande. Sia
r I'indice di riga corrispondente, quindi si scambiera la riga » con la riga k (sia
nella matrice che nel termine noto).

In Matlab/Octave la ricerca dell’elemento piu grande in modulo nella colonna
k-esima, sotto la diagonale principale e il corrispondente scambio della riga r con

quella k, si realizza come segue:
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[M,r]=max(abs(a(k+1:n,k)));
t=a(k,:); a(k,:)=a(r,:); alr,:)=t

Con questa strategia si ha una riduzione dell’ errore algoritmo e quindi maggiore
stabilita. Infatti, detto

(k) _ (k)
|a, 1| = k%?gxn |ai7k| )

gli elementi di A**1) saranno tali che

jal V] = [af) —miral)] < [af)] + [a)] (3.18)

La disuguaglianza deriva dal fatto che per costruzione |m; ;| < 1. Detto poi
ag\];) = maxi<; j<n |aka)\ , da (3.18) otteniamo

ag\z) < ZaSC}_l) < 22a§\2_2) <o < 2”71(15\,11) . (3.19)

Pertanto la strategia del pivot parziale per righe garantisce maggiore stabilita al
MEG. E da osservare che la maggiorazione (3.19) non e quasi mai raggiunta.

Vediamo come ¢ possibile implementare la tecnica del pivot parziale per righe,
facendo uso di un vettore p che memorizza solo gli scambi di righe. All'inizio
pi =1, i =1,..,n Il significato di p; & il seguente: a;; é memorizzato nella
posizione di indice di riga p; e colonna j (e b; nella posizione indicata da p;).
Quando si scambia la riga k con la riga r, si scambia p;, e p, cosicche I'indice di
riga che contiene il pivot & p,.

ESEMPIO 16. Mettiamo in un’unica matrice, la matrice dei coefficienti, il vettore
colonna del termine noto e il vettore degli scambi, come segue:

2 3 -1|5]1
4 4 -3[3|2 |,
—2 3 -1/1/|3

e Primo passo. L’elemento pivot che vale 4, si trova in riga 2. Pertanto scambier-
emo ps e p1 e lindice del pivot sara 2. Otteniamo i moltiplicatori m() = 1/2 e

m® = —1/2 e la nuova matrice
01 1/2 |7/2|2
4 4 -3 3|1 |,
0 5 —=5/2(5/2|3

e Secondo passo. L’elemento pivot, che vale 5, si trova in riga 3. Pertanto
dobbiamo scambiare ps e p3. Il moltiplicatore & m = 1/5. Abbiamo allora
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A questo punto, per applicare la sostituzione all’indietro, partiremo da p3 = 1 ovvero
dalla prima riga ricavando z3 = 3. Poi si passa a p, = 3, quindi alla terza riga,
ricavando xo dall’equazione 5xo — 15/2 = 5/2 che ci da 25 = 2. Infine essendo p; = 2
dalla seconda equazione determineremo x; che, dopo aver risolto 4z; +8 —9 = 3 mi
dard 2; = 1. E facile provare che il vettore z = (1,2,3)T & la soluzione del sistema
lineare.

La tecnica del pivoting parziale si puo applicare in alternativa alle colonne
ottenendo il cosidetto pivot parziale per colonne.

Se invece la ricerca del massimo la facciamo su tutta la sottomatrice A(k+1 :
n, k+ 1 : n), ovvero quella di indici di riga e colonna compresi tra k£ + 1 e n,
allora parleremo di pivoting totale . In questo caso se r e s sono gl'indici di riga
e colonna corrispondenti nella matrice A¥), allora dovremo scambiare la riga k
con la riga r e la colonna k con la colonna s.

3.4.2 Metodo di Gauss e fattorizzazione LU di matrici

Faremo vedere che il MEG altro non & che la fattorizzazione della matrice del
sistema A = LU con L triangolare inferiore con elementi diagonali tutti uguali
a 1 e U triangolare superiore. Ma prima di tutto enunciamo il teorema che ci
garantisce quando e attuabile la fattorizzazione LU di una matrice quadrata A.

Teorema 5. Sia A una matrice quadrata di ordine n e siano Ay, k=1,...,nle
sottomatrici principali di testa. Ouvero

Ay = (), Ay — ( a1l a2 )

a1 A22
a11 a1k
Ak- = .
ak1 Gkk

cosicché A, = A. Se |A;| #0, k=1,...,nallora esiste unica la fattorizzazione di
A nella forma LU, con L triangolare inferiore con elementi diagonali ugualia 1 e
U triangolare superiore. Altrimenti esiste una matrice di permutazione P (i cul
elementi sono 0 e 1) tale che PA = LU.

Facciamo un paio di esempi che ci consentono di capire meglio il Teorema 5.

ESEmPIO 17.
La matrice
1 2 -1
A= -1 -1 2 ,
1 1 2
soddisfa le ipotesi del Teorema 5. Si vede facilmente che A puo fattorizzarsi come
1 0 O 1 2 -1
A= -1 1 0 01 1
1 -1 1 00 4
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ESEMPIO 18. La matrice
B = -1 -2 0
non soddisfa le ipotesi del Teorema 5. Infatti

1 2
det(Bs3) = det ( 1 9 ) =0.

Pero scambiando la seconda e terza riga mediante la matrice di permutazione

1 0 0
P = 0 0 1
0 1 0
allora avremo
1 2 -1 1 0 0 1 2 -1
PB = 1 1 2 = 1 1 0 0o -1 3
-1 -2 0 -1 0 1 0 0 -1

E facile far vedere che si sarebbe ottenuta un’altra fattorizzazione se avessimo usato
un’altra matrice di permutazione

P =

_ o O
o = O

1
0
0

ovvero scambiando la prima e la terza riga di B.

Ricordiamo che in Matlab/Octave esiste la funzione 1u la cui chiamata com-
pleta si fa scrivendo il comando [L,U,P] = 1u(A), con ovvio significato delle ma-
trici coinvolte. Se effettuassimo invece la chiamata [L,U]=1u(A), la matrice L
potra non essere triangolare inferiore ma L=P*M con M triangolare inferiore e P
matrice di permutazione che serve al pivoting per righe di A. Ad esempio, se
A=hilb(4), il comando [L,U]=1u(A) restituisce

L =
1.0000 0 0 0
0.5000 1.0000 1.0000 0
0.3333 1.0000 0 0
0.2500 0.9000 -0.6000 1.0000
U =

1.0000 0.5000 0.3333 0.2500
0 0.0833 0.0889 0.0833
0 0 -0.0056 -0.0083
0 0 0 0.0004
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mentre [L,U,P]=1u(A)

L =
1.0000 0 0 0
0.3333 1.0000 0 0
0.5000 1.0000 1.0000 0
0.2500 0.9000 -0.6000 1.0000
U =
1.0000 0.5000 0.3333 0.2500
0 0.0833 0.0889 0.0833
0 0 -0.0056 -0.0083
0 0 0 0.0004
P =
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

con L triangolare inferiore con elementi diagonali 1.

3.4.3 Matrici elementari di Gauss

In questa breve sottosezione facciamo vedere chi sono realmente le matrici L e U
della fattorizzazione LU. Il generico passo di eliminazione & infatti equivalente
alla premoltiplicazione per la matrice M), = I —my el dove I & la matrice identica
e

0 0
m 1 — k
- k+1,k on =
MEk+2,k 0
Mp,k 0

con my i = ag‘ k) / afc ,1 Pertanto la k-esima matrice elementare di Gauss &

1
0
M, = ! (3.20)
oo —Mt1,k ’ '
My k 1

Quindi dopo gli n — 1 passi di eliminazione

My 1+ My My A= A™
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Ecco che le matrici L e U non sono altro che

L=(M,  ---M) P =M" M1 ,U=A", (3.21)

n—13

E facile provare che

1
0
1
M=
k 0 M1,k
My k 1
da cui
1 0

ma 1 1
L f

Mn1 e Mp n—1 1

Infine nel caso generale in cui siano richieste ad ogni passo delle matrici di per-
mutazione, ovvero

(Mn—lpn—l) o (Mlpl)A =U

posto P = P, --- P, otterremo
-1
L=P(M,_1Py1---M P) .
Osservazioni

e Nota la fattorizzazione LU di una matrice A o, piu in generale, la fattoriz-
zazione LU = PA, la soluzione del sistema lineare Az = b si fara risolvendo
due sistemi triangolori Lz = Pb Uz = z.

La soluzione di un sistema triangolare costa O(n?). Complessivamente,
come visto nella sezione precedente, la soluzione di un sistema lineare con
il MEG o equivalentemente la fattorizzazione LU della matrice A, costa

o(%).

e Grazie alla fattorizzazione LU di A possiamo anche calcolare il determi-
nante di A. Infatti, |A| = |[LU| = |L||U| =[]}, u;,; essendo |L| = 1. Questo
vale anche nel caso PA = LU, essendo il determinante di una matrice di
permutazione +1.
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3.4.4 Il metodo di Cholesky

Si applica quando la matrice A e simmetrica definita positiva. Vista la simmetria,
A si potra fattorizzare nella forma

hia

A=HHT, H=| -~ = C hi;>0.

)

hn,l hnn

)

Come determiniamo la matrice H? Basta fare il prodotto H H” e identificare gli
elementi corrispondenti. Le formule (compatte) per calcolare gli elementi di H
sono

Una possibile implementazione della fattorizzazione di Cholesky e nella fun-
zione Matlab, cholesky.m qui sotto riportata.

function h=cholesky(a)
S —
% input
% a=matrice iniziale (simm. def. +)
%
% output
% h, matrice tale che hxh’=a
S —
n=size(a); h(1,1)=sqrt(a(1,1));
for i=2:n,
for j=1:i-1,
s=h(i,1:j-1)*h(j,1:j-1);
h(i,j)=1/h(j,j)*(a(i,j)-s);
end
h(i,i)=sqrt(a(i,i)-sum(h(i,1:i-1)"2));

end

Grazie alla simmetria di A si verifica facilmente che

1. la complessita ¢ meta del MEG ovvero O(n3/6);
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2. la matrice H puo essere memorizzata nella stessa area di memoria di A
invece che allocare memoria aggiuntiva.

Infine, in Matlab/Octave la fattorizzazione di Cholesky si ottiene usando il
comando H=chol(A).

3.4.5 Algoritmo di Thomas per matrici tridiagonali

Si consideri la matrice tridiagonale

ayp C1 0
A= by as
Cp—1
0 b, an

Se la fattorizzazione LU di A esiste, allora L e U sono due matrici bidiagonali
(inferiore e superiore, rispettivamente) della forma

1 0 a1 C1 0
I B2 1 . o
- Cp—1
0 Prn 1 0 ap,

I coefficienti incogniti si determinano imponendo 'uguaglianza LU = A, medi-
ante il seguente Algoritmo di Thomas
b; .
ar=a1, Bi=—, ai=a;—fBici—1, i=2,.,n.
Q1
Data una matrice (sparsa) 4, il comando Matlab/Octave spdiags(A), che gen-
eralizza diag, viene usato in 5 modi differenti.

1 spdiags (A): estrae tutte le diagonali non nulle di una matrice A, mxn.

. B =
B & una matrice min(m, n) x p le cui colonne sono le p diagonali non nulle di
A.

2. [B,d] = spdiags(A): restituisce un vettore d, length(d)=p, le cui compo-
nenti intere specificano le diagonali di A.

3. B = spdiags(A,d): estrae le diagonali specificate da d.

4. A = spdiags(B,d,A): rimpiazza le diagonali specificate da d con le colonne
di B. LU output e in formato sparso.

5. A = spdiags(B,d,m,n): crea una matrice sparsa m xn prendendo le colonne
di B e ponendole lungo le diagonali specificate da d.
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ESERCIZIO 31. Come esercizio, si chiede di costruire una matrice tridiagonale
T con i comandi Matlab/Octave

>> b=ones(10,1); a=2*b; c=3*b;
>> T=spdiags([b a ¢],-1:1,10,10);

Risolvere quindi il sistema T*x=d con ’algoritmo di Thomas, con d scelto cosicché
si abbia x=ones(10,1). Quante operazioni si risparmiano rispetto alla fattoriz-
zazione classica LU fatta con Gauss?

3.4.6 Raffinamento iterativo

Sia & la soluzione del sistema Az = b calcolata mediante I'algoritmo di Gauss,
MEG. Il raffinamento iterativo detto anche metodo post-iterativo consiste dei
3 seguenti passi

1. calcolar =0 — AZ;

2. risolvi il sistema Ad = r usando per A la fattorizzazione LU usata per
risolvere Az = b;

3. poniy=2+d

ripeti finché

M>7fol

Iyl
dove tol e una prefissata tolleranza. Ovvero ci si arrestera quando I’errore rela-
tivo rispetto alla soluzione y risulta essere minore o uguale a tol.
Nota: di solito (cioé in assenza di errori di arrotondamento) bastano 1-2 iter-
azioni per convergere. Il metodo serve come stabilizzatore del MEG.
Una funzione Matlab/Octave che implementa I’algoritmo del raffinamento
iterativo si puo scrivere come segue.

function y=RafIter(x,L,U,tol)
A —

% Inputs:

% x = soluzione con MEG

% L, U = matrici della fattorizzazione LU di A
% tol = tolleranza

yA

% Output:

% y = soluzione ‘‘raffinata’’
R
kmax=20; % numero massimo d’iterazioni

A=LxU;
b=Axx; % determino il termine noto
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r=b-A*x; % residuo iniziale
% Risolvo il sistema Ad=r, sapendo che A=LU
z=L\r; d=U\z; y=x+d;
k=1; Yicontatore delle iterazioni
while (norm(d)/norm(y)> tol & k<=kmax)
x=y; r=b-Axx; z=L\r; d=U\z;
y=x+d; k=k+1;
end

3.5 Calcolo dell’inversa di una matrice: cenni

Un metodo semplice e immediato di calcolo dell'inversa di una matrice A non
singolare & questo: risolvi gli n sistemi non omogenei

Ax,=¢;, i=1,...n, (3.22)

con x; vettore che rappresenta la i-esima colonna della matrice inversa e ¢; il
vettore di tutti zeri eccetto che per la i-esima componente che vale 1. Purtroppo
questa tecnica & molto costosa: O(n?).

Ma il calcolo di A~! puod essere fatto pitt semplicemente usando la fattoriz-
zazione A = LU esiha A™! = U7'L~!. Detta Y = L™, da L possiamo ricavare
Y chiedendo che LY = YL = [ mediante le formule

ljjyig =1

1,595, + liv1,j+1Y541,5 = 0

bnjYjj + lnjt1Yit1y + +lanYn; =0

valide per j = 1,...,n. Ora ricordando che L ha elementi diagonali unitari, dalle
relazioni precedenti possiamo ricavare i valori di Y come segue

y=eye(n); %inizializzo con la matrice identita’
for j=1:n-1,
for i=j+1:n,
s=1(i,1:j-1)*y(1:j-1,3)
y(i,j)=-5s;
end
end

In maniera analoga si procede per il calcolo di Z = U~*.

Un metodo piu efficiente & il seguente (cfr. Du Croz J., Higham N. IMA J. Nu-
mer. Anal. 12:1-19, 1992). Esso risolve I'equazione UXL = I, supponendo X
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parzialmente nota ad ogni step. L'idea é di partizionare le matrici X,L e U come
segue:

T T T
(AN uj o X111 X192 1 0
U — ’ X —_ ’ L —
< o Ui, ) ( X210  X{ ) ( Ly Lj, )
dove i blocchi (1,1) sono scalari e la sottomatrice X5 5 si assume gia nota. Quindi
il resto di X si calcola risolvendo le equazioni:

_ T
a1 = —X5,5la1
T _ T yr
Ty = _111172X2T,2/U171 .
T11 = —Xjola1

U1, 1

In maniera algoritmica, usando notazioni Matlab/Octave, si puo sintetizzare
come segue, facendo attenzione al fatto che il blocco X (k+1 : n, k+1 : n) si assume
gia noto. All'inizio dovremo conoscere I'elemento z,,, che si pud determinare
dall’equazione UX L = I.

for k=n-1:-1:1,
X(k+1:n,k)=-X(k+1:n,k+1:n)*L(k+1:n,k)
X(k,k+1:n)=-U(k,k+1:n)*X(k+1:n,k+1:n)/U(k,k)
X(k,k)=1/UCk,k)-X (k,k+1:n) %L (k+1:n,k)

end;

ESERCIZIO 32. Scrivere degli scripts Matlab che implementano i metodi su
descritti. Come matrice A si consideri la matrice ottenuta usando la funzione
gipp del Toolbox The Matrix Computational Toolbox (MCT) di N. Higham
(www.maths.manchester.ac.uk/~higham/mctoolbox/). La funzione puod essere
usata con la sintassi A=gfpp(n) generando una matrice il cui fattore di crescita
degli elementi & 2”1, come per I’eliminazione gaussiana con pivoting parziale per
righe e/o colonne.

e Verificare che la matrice gfpp(n) da un fattore di crescita per MEG con
pivoting parziale pari a 2"~ !.

e Sempre nel MCT Toolbox, esiste la funzione gep che data una matrice,
anche rettangolare, applica I’eliminazione gaussiana con pivoting parziale
o completo, restituisce , tra le altre informazioni, la fattorizzazione LU e
il fattore di crescita dei suoi elementi. Far vedere che se si usa la matrice
gep(gfpp(n),’c?) il fattore di crescita risulta uguale a 2.

Informazioni sul MCT si possono anche leggere nel report [17].
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3.6 Metodi iterativi

La filosofia di questi metodi sta nell’approssimare la soluzione del sistema lin-
eare Ax = b con una successione di vettori {zy, k > 0}, a partire da un vettore
iniziale 7y € R™, con l'obiettivo che converga verso la soluzione = del sistema.
A differenza dei metodi diretti, in questi metodi non si altera la struttura della
matrice e pertanto sono utilizzati prevalentemente quando la matrice & sparsa.

La matrice A di ordine n, che supponiamo sia non singolare, si puo decom-
porre come

A=M—-N

con la richiesta che det()M) # 0 e facilmente invertibile. Pertanto

Mz — Nz =5b (3.23)
Mz = Nzxz+b (3.24)
x = M 'Nz+ M (3.25)

da cui, ponendo P = M~ 'N e ¢ = M ', la soluzione di Az = b & ricondotta al
sistema = = Pz + ¢. Scelto z(9), costruiremo la successione

20D = pe® 4 g i=0,1,... (3.26)
Definizione 10. La successione {x(V} si dira convergente al vettore , e si scrive

lim % =z,
i—00

se per i — oo le componenti di =" convergono verso le corrispondenti componenti
di .

La (3.26) rappresenta un metodo iterativo per la soluzione di Az = b, con P
che si chiama matrice d’iterazione.

Definizione 11. Un metodo iterativo si dice convergente, se per ogni vettore
iniziale (%) la successione {x()} & convergente.

ESEMPIO 19. Siano

£ 00
P = 0 % 0 |, g=0,conx=0.
0 0 2

Partendo da z(©) = (1,0,0)” costruiremo la successione

3 00 1 1
dW=pP.20=(0 1 o0 0 l=|0
00 2 0 0
% 0 0 1 o
2@ =pP.W=p2. O 0 L 0 0|=1(0
0 0 2? 0 0
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e continuando otterremo

2 = 0

Pertanto per ¢ — oo la successione converge verso . Si verifica facilmente che par-

T
. 1 .
tendo da z(® = (0,1,1)T si avrebbe @ = <0, 2i,21> e quindi una successione

divergente.

A questo punto dobbiamo chiarire sotto quali condizioni il metodo iterativo
risulta essere convergente.

Teorema 6. Condizione necessaria per la convergenza é che esista una norma
matrice indotta || - || per la quale risulta || P| < 1.

(k

Dim. Sia e* = 2(®) — z errore al passo k. Abbiamo

b =a®) —p =Pt g Pr4q= P(x(k_l) —x) = PeF 1l k=1,2, ...
Ma Pef~! = ... = PF~1¢(0), Da cui
el < [1P* [l < I1PI1* (1)) -

Se quindi || P|| < 1, allora lim;_,, ||P||* = 0 e anche ||¢*|| — 0 Vk. Per la conti-
nuita della norma concludiamo che limy,_, ., ¢* = 0 da cui I'asserto. O

Ricordando che vale
p(P) < ||P]],

per ogni norma indotta, la condizione necessaria e sufficiente per la convergenza
di un metodo iterativo & contenuta nel seguente teorema.

Teorema 7. Sia P di ordine n. Allora

lim P* =0 <= p(P)< 1.

k—oc0

OO

Prima di passare ai metodi, concludiamo questa parte sulle generalita dicendo
quando numericamente consideriamo convergente un metodo iterativo. Fissata
una tolleranza ¢ e indicato un numero massimo d’iterazioni kmax, il test d’arresto
che valuteremo sara

12 — =D < ellz®@| v k> kmaz

ovvero xjp sara una buona approssimazione di 2 quando I'errore relativo e sotto
una prefissata tolleranza. Ma il metodo si arresta anche quando & > kmaz. In
quest’ultimo caso molto probabilmente avremo fallito e onde evitare che si iteri
allinfinito € buona norma inserire questo ulteriore controllo.
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Ma possiamo anche fare le seguenti considerazioni. I metodi iterativi, per la
soluzione di un sistema lineare Ax = b, teoricamente richiedono un numero in-
finito di iterazioni. Nella pratica cio non e ragionevole poiché invece che x ci si
accontenta di una sua approssimazione # o pill concretamente di =¥, I'iterata ad
un certo passo k£ del metodo, per la quale I'errore sia inferiore ad una prescelta
tolleranza e¢. Ma l'errore ¢ a sua volta una quantita incognita perche dipende
dalla soluzione esatta. Nella pratica ci si rifa a degli stimatori dell’errore a pos-
teriort.

(a) Un primo stimatore é il residuo ad ogni iterazione
P =b— Az,
In tal caso ci arresteremo in corrispondenza a quel k,,;, tale che

| <ellb]l. (3.27)

||Tkmin

Infatti, ricordando che Az = b, la (3.27) altro non ¢ che il test sull’errore

relativo poiché

CB—xk

Ax

€T

B HA,@—A:U’“

Quindi, l'errore relativo

| _ AT — Aghme)|| AT [t

Hx — pkmin

| <er(A),

] ] ]

dove l'ultimo passaggio si ottiene dalla (3.27) e ricordando che
[[b]]
< [IA]l.-
[z

Percig, il controllo sul residuo ha senso solo se x(A), il numero di condizion-
amento della matrice A, & ragionevolmente piccolo.

(b) Alternativamente si puo calcolare il cosidetto incremento 6% = z(++1) — z(*),
In tal caso il metodo si arrestera al passo k,,;, per cui

[6% | < el[b]] -

Nel caso in cui la matrice di iterazione P (non la matrice del sistemal!) &
simmetrica e definita positiva, posto ¢ = z¥ — z, in norma euclidea si avra

le®]l = lle™* = 8™ < IPIe|l + 16" 1l = p(P)le"[l + [16°]].
Per la convergenza, p(P) < 1, avremo alla fine

1
le*] <

— 6% 3.28
< 7=l (3.28)

Nota: se P non e simmetrica e definita positiva si arriva alla stessa conclu-
sione con || P|| al posto di p(P).

In conclusione: il controllo sull'incremento &€ un buon stimatore quanto piu
p(P) <« 1.
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3.6.1 I metodi di Jacobi e Gauss-Seidel

Anzitutto facciamo alcune posizioni. Data la matrice quadrata A indichiamo con
D la matrice dei valori diagonali di A, ovvero d; = a,; e con B e C' le matrici
triangolari inferiori e superiori rispettivamente ottenute nel seguente modo

by — —Q; 1> S 0 1>
710 i<j T —ay i<j

conA=D— (B+0O).
Nel metodo di Jacobi le matrici M e N prima definite sono
M=D, N=B+C.

Pertanto se a;; # 0, Vi, allora M & non singolare. La matrice di iterazione di
Jacobi e
J=MN=DYB+C).

Il metodo iterativo di Jacobi si puo allora scrivere in termini vettoriali come

e = g2+~ 4L D7, k>1, (3.29)
0 per componenti come
a _ 1 ~ ey Lo
z; = ol Z i jT; +bp,i=1,...,n. (3.30)
g j=1j#i
Nota
0 . 1.
a1 Gt 321'711
J = 7(1212 0 R tl2',2
_Ana 0

QAn,n

Nel metodo di Gauss-Seidel, o semplicemente G-S, le matrici M e N prima def-
inite sono
M=D-B, N=C.

La matrice di iterazione di Gauss-Seidel &
G=M'N=(D-B)'C.
Osserviamo che

+® = (D-B)"'cz®* YV +(D-B)""
(D - B)z® = CaY 4
Dz® = Ba® 4 ox*=Y 4
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da cui otteniamo che, in termini vettoriali, il metodo di G-S si puo scrivere come
¢ = D7 Bz 4 D102V £ D7, k> 1, (3.31)

o0 per componenti come

i—1 n
1 _
xgk) = — E ai,jx;k) — E ai,jxyc D4 b p,i=1,...,n. (3.32)
=1

a:
el j=i+1

Dalle equazioni (3.29) e (3.31) si comprende perche il metodo di Jacobi viene
anche detto degli spostamenti simultanei mentre quello di G-S degli spostamenti
successivi. Ma il vantaggio di G-S rispetto a Jacobi sta soprattutto nel poter
memorizzare le componenti di z(*) nella stessa area di memoria di z(*~1).

Prima di discutere delle condizioni sotto le quali i metodi di Jacobi e G-S
convergono, premettiamo alcune definizioni.

Definizione 12. Una matrice A si dice diagonalmente dominante per righe (0
anche a predominanza diagonale per righe) se

n

la; | > Z la; ;1 (3.33)

J=1,j#i

ed esiste un indice s per cui la disuguaglianza vale in senso stretto. La matrice si
dice invece diagonalmente dominante in senso stretto per righe (o a predomi-
nanza diagonale stretta per righe) se la (3.33) vale per ogni i =1, ..., n.

Analoga definizione vale per colonne.

Definizione 13. Un grafo orientato si dice fortemente connesso se per ogni
1 <14,j <n, i # jesiste un cammino orientato che parte da p; ed arriva a p; (con
pi, p; nodi del grafo).

Data una matrice A, il grafo ad essa associato si ottiene definendo tanti nodi
p; quanti il numero n (dimensione della matrice) con archi corrispondenti agli
elementi non nulli di A. Ovvero, se a; ; # 0 allora si disegnera un arco che va da
pi apj.

Definizione 14. Una matrice A si dice riducibile se e solo se il suo grafo ori-
entatato non é fortemente connesso, altrimenti si dice irriducibile.

ESEMPIO 20. La matrice

1 0 -1 0
2 3 -2 1
A= —1 0 -2 0
1 -1 1 4

ha il grafo che non ¢ fortemente connesso. Infatti non esiste un arco orientato che va
da p1 a py.
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Vale il seguente Teorema.

Teorema 8. Sia A = M — N la decomposizione di A che, nel caso di Jacobi
equivale ad M = D, N = B + C, mentre nel caso di G-S, M = D — Be N = C. Se
una delle seguenti ipotesi é verificata

(a) A é strettamente diagonalmente dominante per righe o per colonne;
(b) A é diagonalmente dominante e irriducibile;
allora p(M~1N) < 1 e quindi i metodi di Jacobi o di G-S sono convergenti.

Proposizione 4. Se vale (a) allora il metodo di Jacobi converge ,ovvero l'associata
matrice Pj é convergente.

Dim. Dobbiamo provare che p(P;) < 1 con P; = D~!(B+C) matrice d’iterazione
di Jacobi. Dapprima osserviamo che, essendo A diagonalmente dominante in
senso stretto, non ha elementi diagonali nulli. Siano )\ e 2 un generico autoval-

ore e il corrispondente autovettore di P;, ovvero, per componenti, E DijTj =
j=1
Az, i =1,...,n. Possiamo assumere che max |z;| = 1. Sia k lindice in cui
1<i<n

viene assunto il massimo. Avremo

Al = Z Dk,jTi| < ' Z

J#k.g=1 j=1,j#k

A s
53 <1

Q. k

e vista la generalita di A si conclude che p(P;) < 1. O
Osservazione. La proprieta (a) non implica che P; e non singolare. Come
esempio, consideriamo la matrice

3 1 1
A= 0 3 0
-1 -1 -3

L’associata matrice di Jacobi

0 -1/3 —1/3
J=1| 0 0 o |,
~1/3 —1/3 0

ha un autovalore nullo e quindi determinante nullo.

Vale anche il seguente risultato.

Teorema 9. Sia A tridiagonale di dimensione n con a;; # 0, i =1,...,n. Al-
lora i metodi di Jacobi e di Gauss-Seidel sono o entrambi convergenti o entrambi
divergenti. Se convergono, Gauss-Seidel converge piu velocemente di Jacobi e si
ha

p(Pas) = p*(Py) .
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ESEMPIO 21. La matrice

4 -1 1
0 -4 -1 1
A= -1 -1 4 1
1 -1 0 4

ha il grafo che e fortemente connesso essendo diagonalmente dominante in senso
stretto per colonne. Le matrici d’iterazione di Jacobi (J) e G-S (G) sono

0 -1 1 1 0 4 —4 -4
1 0 0 1 —1 110 0 -4 4
‘]__1 -1 -1 0 1 ’G_Tﬁ 0 1 -2 —4
1 -1 0 0 0 -1 0 2

E facile vedere che p(.J) ~ 0.4 < 1 come pure p(G) ~ 0.18 < 1. Pertanto sia il metodo
di Jacobi che di G-S convergono. Si noti inoltre che p(G) < p(J) il che conferma che
se entrambi convergono, G-S converge piu velocemente.

Nel prossimo esempio facciamo vedere che se A non é strettamente diagonale-
mente dominante, ma solo diagonalmente dominante, non e detto che il metodo
di Jacobi e di G-S siano convergenti.

ESEMPIO 22. La matrice

-4 -1 1 1

0 -4 0 —4

A= 1 1 4 1
0 —4 0 4

E facile vedere che p(J) = p(G) = 1, pertanto sia il metodo di Jacobi che di G-S non
convergono.

Infine un esempio di matrice diagonalmente dominante con grafo stretta-
mente connesso

ESEMPIO 23. Data

1 -1 0 0

0 1 1 0

A= 0 0 -1 1
-1 0 0 -3

che & diagonalmente dominante (non in senso stretto) con grafo fortemente connesso.
La matrice di Jacobi ¢

01 00
00 -1 0
/= 00 01
- 0 00

che risulta essere convergente avendo cerchi di Gerschgorin centrati nell’origine con
raggi < 1. Gli autovalori sono infatti {£0.76,0 £+ 0.76i}.
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Il codice Matlab/Octave, jacobi.m in Appendice C & una implementazione del
metodo di Jacobi, mentre GuassSeidel.m € il codice per il metodo di G-S. Il codice
GaussRil.m, & piu generale e puo essere utilizzato anche per il metodo SOR che
viene presentato nel prossimo paragrafo. Infatti, come faremo vedere, il metodo
di G-S e un particolare metodo di rilassamento.

3.6.2 Il metodo SOR o di rilassamento

La filosofia di questo metodo sta nel determinare un parametro w di accelerazione
della convergenza del metodo di G-S. Partiamo considerando 'uguaglianza

wAr =wb, w#0, weR.

Usando il fatto che vale wA = M — N, ricordando lo splitting A = D — B —C e
osservando che w(D — B—C)+ D — D = M — N, una scelta per le matrici M e N
e la seguente

M=D-wB, N=(1-w)D+w(C .

Come si vede immediatamente, quando w = 1, il predetto splitting equivale al
metodo di G-S.
Se det(M) # 0 allora ricaviamo il metodo

2™ = (D —wB)™ (1 -w)D +wCz®* Y 4 w(D—-wB)™ b, k=0,1,... (3.34)
con matrice d’iterazione, dipendente da w, data da
H(w)=(D—-wB) ' [(1 -w)D +w(C] . (3.35)
Dalla (3.34) ricaviamo

Dz®™ —wBz® = (1 -w)Dz®*V 4 woz*—D 4 Wb,
™ = (1 -w)z* D 4 uph [Bx(k) + CaFY 4 b} ,

che per componenti diventa

i—1 n
(k) _ (1 _ )z®*D by — S Lot (k) _ Qg p =1y | 5= 3.36
x; (1—-w)z; +w |b; ; ai’ix j;l ai’iz ) e . (3.36)

Facciamo notare come il termine dentro parentesi quadre rappresenti la soluzione
al passo k ottenuta con il metodo di G-S. Pertanto la componente i-esima calco-
lata con il metodo SOR si puo scrivere

2 = (1 —w)a" ™V + wrlls

che, come prima osservato, coincide con il metodo di G-S per w = 1. Il parametro
w serve ad accelerare la convergenza del metodo del metodo iterativo di G-S.
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Teorema 10. Condizione necessaria per la convergenza del metodo SOR é che
0<w<2. (3.37)

1. Se A é simmetrica definita positiva e w soddisfa la (3.37) allora SOR con-
verge, ovvero la condizione é anche sufficiente.

2. Se Aé tridiagonale, vale la (3.37) e gli autovalori della matrice d’iterazione
di Jacobi, J, sono reali e t.c. p(J) < 1, allora esiste uno e uno solo wy t.c.

p(H(w0)) = min_ p(H(w))., (3.38)
il cui valore é )
wp= ————— (3.39)

1+ /1— 22(J)

Facciamo solamente vedere che richiedere che 0 < w < 2 implica p(H (w)) < 1.
Infatti,

det(H(w)) = det(D —wB) 'det((1—w)D +wC))
(1 B w)n (H;L:l d“) _ (1 o w)n
ITie, dii '

Ma det(H (w)) =[], \;, il che implica che il prodotto degli autovalori & (1 —w)™.
Esistera quindi almeno un autovalore il cui modulo > |1 — w|. Siccome, per la
convergenza, deve risultare che |1 — w| < 1 si ottiene la condizione richiesta,
0<w<2.

Se 0 < w < 11l metodo si dice di sottorilassamento mentre se 1 < w < 21l
metodo si dice di sovrarilassamento. Facciamo inoltre notare, che quando w = 0,
Hw)=1TIep(Hw)) =1.

ESEMPIO 24. Sia
2 =

A:(am-): -1 ‘Z*]‘:l

0 altrimenti

Quando n = 4, si verifica che p(J) = 0.901 ed essendo tridiagonale simmetrica possi-
amo determinare wy, ottenendo il valore wy ~ 1.4 e p(H(wp)) ~ 0.4.

Il grafico del’andamento del raggio spettrale al variare di w, relativamente
all’ Esempio 24 ma con n = 10, & visibile in Figura 3.1.

In generale, per determinare wy, nel caso di una matrice tridiagonale simmet-
rica, diagonalmente dominante, possiamo avvalerci del codice SOROmegaZero.m in
Appendice C.
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Raggio spettrale della matrice del metodo SOR
1 T T T T T

095

0.8

nasr

0.8

p(H)

075

0.7

0BG

058

Figura 3.1: Raggio spettrale di H(w) con n = 10, ottenuto con la funzione
SOROmegaZero.m. Il valore ottimale calcolato e wy = 1.5727.

Per comprendere meglio la “filosofia” del metodo SOR, suggeriamo di se-
guito un paio di esercizi dei quali si chiede di scrivere i corrispondenti scripts
Matlab/Octave.

ESERCIZIO 33. Si consideri il sistema lineare

401 1 1 1
04 0 1 z || 2
1 040 x5 | | 3
110 4 24 4

Si risolva il sistema con il metodo iterativo di Gauss-Seidel a partire dalla
soluzione iniziale (0,0,0,0) con precisone di 1.0e — 6. Si determini inoltre il
fattore ottimale di rilassamento per il metodo SOR. Scrivere un M-file che
assolva a dette richieste, calcolando anche il numero di iterazioni effettuate.

Facoltativo: Determinare la soluzione con il metodo SOR, usando come
fattore quello ottimo di (sovra)rilassamento.

ESERCIZIO 34. Si consideri il sistema lineare

4 5 =3 Ty | = 6
-7 =3 8 I3 -2

Si determini sperimentalmente il fattore ottimale di rilassamento per il
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metodo SOR nel seguente modo a partire dal vettore iniziale (0,0,0). In prat-
ica si scelgano alcuni 0 < w; < 2 e per ognuno di essi si eseguano 10-15
iterazioni. Quell’ w; che stabilizza le soluzioni ¢ da considerarsi quello “ot-
timale” (si osservi che la soluzione del sistema ¢é il vettore (1,1,1)). Percié
per sapere quale w segliere si suggerisce di calcolare per ogni i norm([1; 1;
1]1-x(w;) ,inf), dove x(w;) & la soluzione dopo 10-15 iterazioni dell’ SOR con
Wj.

Facoltativo: Sia A decomposta al solito come A = D — B — C' e ricordando
che la matrice di iterazione del metodo SOR é:

H,=(D—-wB) (1 -w)D+wC]

si disegni la funzione r :)0,2[— R, tale che r(w) = p(H,). Verificare quindi
se il valore empirico scelto é “vicino” al valore “ottimale” teorico. Scrivere un
M-file che assolva a dette richieste, calcolando anche il numero di iterazioni
effettuate.

3.7 Metodi del gradiente: cenni
Se la matrice A & simmetrica definita positiva, la soluzione di Az = b equivale a
trovare il minimo x € R" della forma quadratica

O(z) = %:L'TA:L' — 27, (3.40)

Infatti, essendo A simmetrica
Vo(r) = %(AT + Az —b= Az —b.

Pertanto se x € il minimo, si avrebbe V®(z) = 0 ovvero Az = b. Vale anche il
viceversa. Se Ax = b

O(x)=P(y—az+x)=d(z) + %(x — T Az —y) > d(y),

per ogni y # z, essendo A simmetrica definita positiva.
Come procedere per trovare il minimo di ®? Mediante il metodo del gradiente.

o scegli z(¥) ¢ R" ;

e scegli opportune direzioni d*) lungo le quali minimizzare ® (si noti che la
direzione ottimale, che congiunge z(°) con z non & nota);

e determina la soluzione al passo k£ + 1 come
) = ) 4o d® k>0

dove oy, € R indica la lunghezza del passo nelle direzione d(*).
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Dobbiamo determinare la direzione di discesa d'*) e .
(i) Quale direzione di discesa prendiamo? Quella di massima pendenza:
d® = Vo () = —(Az® —p) = )| (3.41)
ovvero il residuo al passo k.

(ii) Determiniamo «j come il minimo del polinomio di grado 2 in «, P(a) =
®(z*) + ar(®)). Chiedendo che la derivata si annulli si ottiene

(k)T ()
= ——— . (3.42)
r0T A pk)

A questo punto abbiamo tutti gl'ingrendienti per 'algoritmo del metodo del gra-
diente

Scelto #(°) € R”, per k = 0,1, ... finché si converge, esegui i seguenti passi
1. ) =b— Az,

P T L(R)

2. ok = T

3. gkt = () 4 (k)
Vale anche il seguente risultato di convergenza.

Teorema 11. Se A ¢ simmetrica definita positiva, il metodo del gradiente con-
verge per ogni scelta del vettore iniziale =), Definita la A-norma ||z|[s = 27 Az,
allora in tale norma [’ errore verifica

k
(kD)) , < ra(4) —1 (0)
e+l < (25T ) 1

3.7.1 Il metodo del gradiente coniugato

Il metodo del gradiente ha il "difetto” di convergere lentamente, poiché la conver-
genza e a zig-zag (vedi Figura 3.2). Questo fenomeno & dovuto alla richiesta che
le direzioni siano ortogonali, ovvero 17 (k) — o,

Con il metodo del gradiente coniugato, si chiede invece che le direzioni siano
A-ortogonali

dMT 44D =0, per, k4. (3.43)
Questa idea, in assenza di errori, consentirebbe di raggiungere la soluzione in un

numero di passi < n.
Le cose da fare sono quindi le seguenti.



98 Appunti di Calcolo Numerico con codici in Matlab/Octave

Figura 3.2: Convergenza a zig-zag del metodo del gradiente

(i) Scegliere la direzione di discesa d**1). Essa non sara pit il residuo al passo
k + 1 ma tale che

d*HD = (D) g dR) g € R.
Per determinare f3; chiederemo la A-ortogonalita delle direzioni
d(k)TAd(kH) — d(k)TA(r(kJrl) + By d(k)) =0,
la cui soluzione mi permette di determinare 3;
)T gy (k+1)
B = —W . (3.44)

(i1) Scelta la direzione cercheremo, come per il metodo del gradiente, il minimo
di

Pla) = ®=® +ad®)
= %(l‘(k) + ad®TA(z® 4 ad®)) — (20 + ad®)Th.

Poiché P'(a) = d® (Az®) — b) + ad®™” Ad™, il minimo richiesto sara
A8 T (k)
h . (3.45)
dF) " Adk)
Ecco quindi lalgoritmo del gradiente coniugato.

Scelto (9 € R”, sia d© = () per k = 0,1,... finche si converge, esegui i
seguenti passi
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1 ap — d® T ® T
kT U™ T Aqm d®T Aq(k)

D) = g (R) g d(F),

C D) = (B) gy AdR),

dB)T gy t1) DT (k1)

AT Aqk) (k)T (k)

2

3

4. P =
5. dk+1) = pkt1) 4 gy k),

Inoltre, per la convergenza, vale il seguente teorema.

Teorema 12. Se A é simmetrica definita positiva, il metodo del gradiente coni-
ugato converge per ogni scelta del vettore iniziale (%), in al pit n iterazioni. La
A-norma dell’ errore soddisfa

k
Kko(A) —1
||e(k+l)HA <2 ( 2(A) ) ||e(0)||A,

\/HQ(A) +].

La rapidita con cui il metodo del gradiente coinugato converge, dipende dal
numero di condizionamento della matrice del sistema A. Per questa ragione, si
utilizzano tecniche di precondizionamento della matrice, allo scopo di diminuirne
il numero di condizionamento. Di questo aspetto, importante ai fini computazion-
ali, non ci occupiamo in questa sede, poiché richiederebbe altre nozioni. Riman-
diamo invece alla lettura del bellissimo Technical Report [29], dove queste ed
altre questioni computazionali sono ben esplicitate.

3.8 Sistemi sovra e sottodeterminati

Quando parliamo di sistemi sovradeterminati pensiamo a sistemi lineari del tipo
Ax = b con matrice m x n, m > n (ovvero piu equazioni che incognite). Se m <n
il sistema si dice sottodeterminato.

In generale un sistema sovradeterminato non ha soluzione, pertanto si cerca
la “migliore” soluzione nel senso che ora chiariremo. Dato b € R™, diremo che
x* € R™ e la migliore soluzione del sistema sovradeterminato, in quanto mini-
mizza la norma 2 del residuo r = b — Az. Detto altrimenti,

*) = ||b— Az*||3 < min ||b — Az||? = min &(z). .
®(z") = [lb— Az"|l2 < min [|b - Az|; = min &(z) (3.46)

Definizione 15. Il vettore x*, quando esiste, si dice soluzione aiminimi quadrati
del sistema Ax = b.

La soluzione ai minimi quadrati e caratterizzata dal seguente teorema.
Teorema 13. Sia A € R™*", b € R™. Se z* soddisfa l'equazione
AT(b— Az*) =0 (3.47)

allora per ogni y € R™ si ha

16— Aa* < |Ib— Aylls - (3.48)
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Dim. Indico con ry« =b— Az* er, =b— Ay. Ora,

ry =b— Az" + Azx* — Ay =1y + A" —y) ,

rary = (e + A@* =)' (ree + A(z" —y))
= rfwm* + TZ*A(:E* —y)+ (z" — y)TATrz* + (x* — y)TATA(m* —y).
Pertanto, usando la (3.47), otteniamo

3+ I1AGT = )lIE > [lra- 113 -

Iryll3 = lIre-

Questo conclude la dimostrazione. [
Seguono due interessanti osservazioni.

1. Dalla (3.47) segue che per ogni vettore z € R"”
(A2)T(b— Az) =0,

ovvero il residuo & ortogonale alla soluzione x ai minimi quadrati. Detto
altrimenti, il vettore z starg(A) = {y € R™, y = Az, Vo € R" }.

2. Sempre dalla (3.47), segue che la soluzione z* ai minimi quadrati e soluzione
delle equazioni normali

(AT A)z* = ATb . (3.49)

Circa il sistema (3.49), sapendo che la matrice A ha rango » = min{m,n}, se ha
rango pieno allora & non singolare e B = AT A & simmetrica, definita positiva.
Infatti, vale il seguente risultato.

Teorema 14. La matrice AT A énon singolare se e solo se le colonne di A sono
linearmente indipendenti.

Dim. Se le colonne di A sono linearmente indipendenti, preso = # 0, Az # 0,
avremo
2T (AT Az = (Az)" (Az) = ||Az||2 > 0.

Quindi AT A & definita positiva e det(A” A) > 0 ovvero AT A & non singolare.

Se le colonne sono linearmente dipendenti, allora Vz # 0, Az = 0 ma anche
AT Az = 0 che implica che AT A & singolare. (]

Sotto le ipotesi di questo teorema, allora esiste un’unica soluzione del sistema
(nel senso dei minimi quadrati) e il corrispondente sistema si puo risolvere me-
diante la fattorizzazione di Cholesky di B.

Approfondimenti. A causa degli immancabili errori d’arrotondamento il
calcolo di A” A puod introdurre la perdita di cifre significative con il risultato che
AT A non & piu definita positiva. In alternativa invece della fattorizzazione di
Cholesky si usa la fattorizzazione QR di A.

Proposizione 5. Ogni matrice A € R™*™ m > n si pud scrivere unicamente
come A = QR con @ ortogonale quadrata di ordine m e R € R™*" triangolare
superiore con le righe di indice k > n + 1 tutte nulle.
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3.8.1 Fattorizzazione QR di matrici

La fattorizzazione QR di una matrice si puo realizzare tramite, ma non solo,
trasformazioni ortogonali di Householder. Si tratta di matrici di riflessione. In-
fatti, dalla Figura 3.3, & chiaro che il vettore x’, riflesso di x rispetto all'iperpiano
7, si ottiene come

X =x-2vixv

dove x & un versore ortogonale a 7. Pertanto, se indichiamo con @, la matrice
della trasformazione, che dipende dalla scelta di v, avremo

Q,=1-2vv". (3.50)

La matrice Q, si chiama matrice di Householder. E facile provare che @, sod-

|x|cosa

Figura 3.3: Riflessione di vettore x rispetto alliperpiano «

disfa alle due seguenti proprieta
e (), & simmetrica.
e (), € ortogonale.

Si deduce quindi che Q? = I, ovvero che & una matrice involutiva.

La trasformazione di Householder puo essere usata per riflettere un vettore
in modo tale che tutte le sue coordinate, eccetto una, siano zero. Per semplicita
di notazione, traslasciamo l'indice v nella definzione di @), e scriveremo @, per
indicare la matrice di Houselholder. Detto x un generico vettore di lunghezza
|| (per questioni di stabilita si puo assumere che « abbia lo stesso segno di 1),
detto e; = (1,0,...,0)7, la matrice @, si pud allora costruire come segue

l.u=x—ae;

2. v= 4
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Pertanto Q@ x = (,0,...,0)7.

Questo modo di procedere, si puo applicare ad una generica matrice rettango-
lare A, m x n allo scopo di trasformarla in forma triangolare superiore. Al primo
passo, costruiremo (; di Houselholder usando la prima colonna di A cosicché

aq
0
Q1A= : v
0
Questa modifica puo essere ripetuta per la A mediante una matrice di Housh-
older Q5. Si noti che @, piu piccola della @;. Poiché vogliamo che sia reale per
operare su Q; A invece di A’ abbiamo bisogno di espandere questa nella parte
superiore sinistra, riempiendola di 1, o in generale:

I 0
Q’“:[Okczz}

Dopo p iterazioni, p = minm — 1, n avremo

R=QpQp-1---Q1A

e = Q1 ---Qp, & una matrice ortogonale (perche prodotto di matrici ortogonali).
In definitiva A = QR rappresenta la fattorizzazione QR di A.

OO

Se viene usata la fattorizzazione QR di A, la soluzione ai minimi quadrati di
A si puo scrivere come o
2t =R'Q"D,
dove R € R"*", Q e R™*" con R=R(1:n,1:n)e Q@ =Q(1:m,1:n)e Rnon
singolare.

ESEMPIO 25. Dati tre punti A,B,C sopra il livello del mare. Per misurare le rispettive
altezze sopra il mare, calcoliamo le altezze h, ho, hg tra altri punti D,E,F ed i punti
A.B,C, nonche le altezze hy, hs, hg tra i punti AB, BC e AC rispettivamente. I valori
trovati sono

hlz]., h2:2, h3:3,

hi=1, hs=2, hg=1.

Pertanto, ciascuna misurazione da origine ad un sistema lineare che rappresenta la
relazione tra le altezze dei punti A,B,C, che indichiamo con x4, x5, ¢

1 00 1
0 10 2
0 01 AN s
1 1 0 B =]
0 -1 1 te 2
1 01 1
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Le equazioni normali sono

-3 -1 -1 T A -1
-1 3 -1 rB = 1
-1 -1 3 ze 6

Risolvendo, ad esempio con la fattorizzazione di Cholesky (ma anche MEG va bene
ugualmente) troviamo la soluzione

7 5
xA:3amB:ZaxC217

con residuo

che & ortogonale alle colonne di A.

3.9 Soluzione di sistemi non lineari con il metodo di
Newton

Un sistema non-lineare di n funzioni in n incognite, si puo scrivere come il sis-

tema
fl(xl,...,xn) O
fg(.]?l,...,l‘n) =0

(3.51)

:fn(xh...,xn) =0

dove f; : R® -+ R, i = 1,...,n sono funzioni non lineari.
Posto f = (f1,...,fn)', x = (21,...,2,)" e indicato con 0 lo zero di R", il sis-
tema (3.51) puo riscriversi compattamente come f(x) = 0. Inoltre, se indichiamo

con "
(%)

ij=1

la matrice jacobiana, allora possiamo risolvere il predetto sistema con il metodo
di Newton, che formuleremo come segue

risolvi  Jp(x*))ox®) = —f(x(*), k=0,1,... (3.52)
x(B+D) — x (k) 4 5x (k) (3.53)

Il metodo consiste nel risolvere ad ogni passo il sistema lineare (3.52) con matrice
del sistema che & la matrice jacobiana.
Due semplici sistemi non lineari

ESEMPIO 26.
22+ 23=0
el + 2 = log(x3)
T1XoT3 = 5
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ESEMPIO 27.
2 +2i=1
{ bm(’%l) +a3=0
Per implementare in Matlab/Octave il metodo di Newton avremo bisogno di
una soluzione iniziale xq, due funzioni fun e jfun che definiscono la funzione f
e la matrice jacobiana .J¢, rispettivamente. Come test d’arresto, come al solito,
cicleremo finche

[x*H) — x B < tol||xM|| v k> kmaz .

3.10 Esercizi proposti

ESERCIZIO 35. Pern = 2: 50, si prendano i vettori
e x1=0:n;
e x2=0:1/n:1;
e x3=-0.5:1/n:0.5

Si faccia un plot comparativo usando semilogy, per comprendere il comporta-
mento dei numeri di condizionamento delle matrici di Vandermonde costruite
sui vettori x1, x2 e x3. Cosa si osserva?

ESERCIZIO 36. Si consideri il vettore v=[4 1 zeros(1,n)] e la matrice A =
toeplitz (v). Usando il comando find si trovino gli elementi diversi da zero
nei casi n = 4 : 10. Qual’e la formula del numero degli elementi non nulli di
A? La matrice puo considerarsi sparsa?

ESERCIZIO 37. Si consideri il sistema Ax = bcon A = toeplitz([4 1 0 0
0 0]) e b scelto cosicché la soluzione esatta sia x = [2,2,2,2,2,2]T. Lo si
risolva con I’ eliminazione di Gauss e con I’ algoritmo di Thomas per sistemi
tridiagonali. Nell’eliminazione gaussiana e necessario usare la strategia del
pivoting?

ESERCIZIO 38. Si consideri la matrice

A:

Qo

a
«
1
Provare graficamente, nel piano (a,p(a)), che se 3 < a < 1 il metodo di
Gauss-Seidel é convergente mentre quello di Jacobi non lo é.

Sia ora « = 2eb = [I —1 3]. Risolvere il sistema Az = b con Gauss-
Seidel: calcolando anche il numero di iterazioni.

Trovare la soluzione anche con SOR con w € [1.2,1.8]. Come varia il nu-
mero di iterazioni al variare di w?

o
1
o

a)
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ESERCIZIO 39. Dato n > 2 si considerino le matrici A, k = 1,....,.n—1di
dimensione n definite come segue:

Eo_
a;; =n

af;=—1 |i—jl=k
altrimenti

Sia inoltre b = ones(n, 1).
Si risolvano gli n — 1 sistemi lineari

AkX:b

con il metodo iterativo di Jacobi. La M-function che implementa il metodo
di Jacobi dovra restituire la soluzione, il numero di iterazioni e il massimo
autovalore in modulo della matrice di iterazione di Jacobi.

Provare servendosi di alcuni grafici, che all’aumentare di k (la grandezza
della banda) il numero di iterazioni decresce fino a che k = floor((n+ 1)/2)
per poi stabilizzarsi. Perché?

Facoltativo: sicaora b=1:nek =n — 1. Risolvere il sistema A,,_1x=Db
sia con Jacobi che con Gauss-Seidel. Quale dei due metodi é pit veloce?

ESERCIZIO 40. Data la matrice tridiagonale
d -1
A -1 d
.o =1
-1 d
con d > 2, si risolva il sistema lineare Ax = bcon btalechex = (1,...,1)T. Va-
lutando la norma euclidea della differenza tra due iterate successive, ovvero

Oy = [l —2®)|
nei casi d = 2,3 presentiamo in tabella alcune di tali differenze

d=2 d=3

456 7.2754e —3 16 1.0229e — 4
457 7.2616e —3 17 6.5117e —5
458 7.2477e —3 18 4.1563e — 5
459 7.2340e —3 19 2.6593e —5

e Si stimi in norma 2, il numero di iterazioni m necessarie nei casi d = 2
e d = 3 affincheé la differenza ||xF*™ — x*+m=1|| < 1.e — 9 partendo da
k = 458 e k = 18, rispettivamente. (Sugg.: E noto che

Oky1 < Crdy
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con Cy, la norma 2 della matrice d’iterazione al passo k. Usando i valori
tabulati, dapprima si determini un’ approssimazione di C), nei due casi
d=2ed=3equindiiterando ... )

e Scrivere inoltre un programma Matlab che risolve il sistema precedente
usando il metodo di Jacobi, prendendo come dati in ingresso d, n, b, tol,
senza allocare la matrice A e la matrice di iterazione di Jacobi, partendo
da x° = 0. Lo si applichi nel caso d = 3, n = 10, b=ones(n,1) e tol =
l.e —0.

ESERCIZIO 41. . Dati i sistemi lineari Ajx =be Asy = b con

1 2 3 4 5 1 2 3 4 5
2 13 18 23 28 0 3 45 6
A;=13 18 50 62 T4 Ay=10 0 5 6 7
4 23 62 126 148 0 0 0 7 8
5 28 74 148 255 0 00 09

e il termine noto
b=[15, 18, 18, 15, 9]".

1. Risolvere i due sistemi con un opportuno metodo diretto.

2. Sia b = rand(5,1) x 1.e — 3 una perturbazione del vettore b. Si risolvano
ora i due sistemi perturbati Ajx = b+ dbe Asy = b+ 0b. Confrontando
le nuove soluzioni con quelle ottenute al punto precedente, dire quale
sistema risulta meglio condizionato analizzando la quantita

[E2AP
1EG< 2

dove E™! indica Uerrore relativo.

Osservazione. Ay, = Al A,, quindi i numeri di condizionamento in
norma 2 di A; e Ay saranno legati ..... Inoltre questo garantisce che A, é
simmetrica definita positiva per cui sara possibile applicare il metodo....

ESERCIZIO 42. Si consideri la matrice

—0.5 « 0.5
A= 0.5 —-05 « , a€R. (3.54)
e 0.5 —0.5

1. Individuare un intervallo I, di valori di o in cui la matrice d’iterazione
del metodo di Gauss-Seidel é convergente. (Sugg.: calcolare al variare
di a il raggio spettrale usando eig e quindi .... ).
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2. Preso o* € I, risolvere il sistema Ax = b con b tale che x = [1,1,1]7,
con il metodo di Gauss-Seidel con tol = 1.e — 6, determinando anche
il numero di iterazioni e come test di arresto sul residuo r, = b — Axy,
ovvero iterando finche ||ry|| > tol||b]|.

ESERCIZIO 43. Data la matrice
A = diag(ones(7,1) * 10) + diag(ones(6,1) * 3,+1) 4+ diag(ones(6,1) * 3, —1)

e il termine noto
b=[1234567]".

1. Dire perche convergono i metodi di Jacobi e Gauss-Seidel.

2. Fissata la tolleranza 7 = 1.e — 9 e sia P la matrice di iterazione tale che
IP|| < 1, allora risolvendo

I1PI*
1 0

— ||z =2 <7

L—P|

possiamo calcolare a priori il numero di iterazioni k necessarie per ot-

tenere una soluzione a meno di 7. Partendo dalla soluzione iniaziale

x0=0 e usando la norma infinito, || ||, determinare k sia per il metodo
di Jacobi che Gauss-Seidel.

3. Verificare sperimentalmente i risultati ottenuti applicando i metodi di
Jacobi e Gauss-Seidel, rispettivamente, alla soluzione del sistema Ax =
b.

ESERCIZIO 44. . Data la matrice A=pascal(5) di ordine n =5,

1. Determinare M = maxij<i<np{\i}, m = minj<;<,{\;}. Usare tol = 1l.e —
6.

2. Studiare il metodo iterativo (di Richardson stazionario) dipendente
dal parametro reale 0 € [0,1/2]

2D = 20— 9(Az® 1), k>0. (3.55)

Si chiede di verificare graficamente per quali valori di 6 il metodo con-
verge.

3. Sia 6* = min{0 < 0 < 1/2} per cui il metodo iterativo converge. Siano
b € R™ tale che x=ones(n,1) e x0=zeros(n,1). Risolvere quindi il sis-
tema Ax = b con il metodo iterativo (3.56).
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ESERCIZIO 45. Data la matrice

702 -2 0
-3 6 0 1
A=| 0 1/2 5 1/3
0 0 -3 5
-3 0 0 1

o~ o OO

1. Senza calcolarlo, dire perche det(A) > 0.
2. La matrice é irriducibile?

3. Siconsideri ora il sistema lineare Ax = b la cui soluzione é x=ones(5,1).
Partendo da x°) = [0, 0, 0, 0, 1]7 e usando il metodo iterativo x*+1) =
(A —0Dx*®) 4 0b con 0 = 1/2, si determini xV). Si calcolino le norme
21, 2V)2 e |2V oo (fornendo i risultati approssimati a 2 deci-
mali).

ESERCIZIO 46. Si consideri la matrice A € R10x10

5 —1
-1 5 —1

e -1 5 -1
-1 5
e il vettore b = ones(10, 1).

1. Sidica (senza fare calcoli) se i metodi iterativi di Jacobi e Gauss-Seidel
convergono alla soluzione del sistema Ax = b.

2. Si consideri ora il metodo iterativo di Richardson stazionario per la
soluzione di Ax = b:

2D = (I —aA)z™ +ab

dove o € [0.01,0.3] & un parametro di accelerazione. Si chiede di sti-
mare il parametro ottimale o (quello per il cui il metodo di Richardson
converge piu rapidamente).

3. Produrre un grafico comparativo dell’errore assoluto, in funzione
del numero delle iterazioni fatte, ottenuto con i metodi di Jacobi,
Gauss-Seidel e Richardson stazionario con parametro «o*. Usare:
x0 = zeros(10,1), tol = 1.e — 6, nmax = 100.

ESERCIZIO 47. Si consideri la matrice di ordine n = 10, A =
pentadiag(—1,—1,10,—1,—1) che possiamo decomporre in A=M+D+N con

D = diag([9,9,...,9]), M = pentadiag(—1,—1,1,0,0) e N=A-M-D.

Si considerino i seguenti schemi iterativi
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1. (M4 D)zt = —Nz®) ¢
2. Dzt = (M + N)z® + ¢,
3. (M + N)zt+D) = — Dz 4 4.

Dire quali di essi é convergente analizzando il raggio spettrale delle matrici
d’iterazione.

Sia poi g=1:10. Si calcoli la soluzione del sistema Ax = g
con uno dei metodi convergenti, a partire dalla soluzione iniziale
2(0) =[ones(2,1) ;zeros(8,1)] a meno di tol = 1.e — 6.

ESERCIZIO 48. Si consideri la matrice di ordine n = 10, A =
pentadiag(—1,—1,a,—1,-1), con « € [0.5,1.5], che possiamo decomporre in
A=M+D+N con D =diag([a—1,.....,a—1]), M = pentadiag(—1,—1,1,0,0)
eN=A—M— D.

1. Per quale valore o* il metodo iterativo (M + N)z*t1) = —Dz() 1 ¢
risulta essere convergente piit velocemente?

2. Sia poi q=1:10. Si calcoli la soluzione del sistema A x = q a partire dalla
soluzione iniziale ©(°) =[ones(5,1) ;zeros(5,1)] a meno di tol = 1.e—6.

ESERCIZIO 49. Data la matrice A=diag(1:n) di ordine n =5,

(a) Studiare il metodo di Richardson stazionario

L+ — (I - GA)x(k) +0b, k>0. (3.56)

al variare di 6 € [0,2/3]. Si chiede di verificare graficamente per quali
valori di 0 il metodo converge.

(b) Sia 0* tale che p(6*) = min{p(0), 0 < 0 < 2/3}. Siano b € R" cosicché
x=ones (n, 1). Inoltre x0=zeros(n,1). Risolvere quindi il sistema Ax = b
con il metodo iterativo (3.56) a meno di tol = 1.e — 6 con test sull’errore
relativo.

(¢) Ripetere i calcoli con n = 3, 10. Cosa si nota e cosa si puod osservare? I
risultati cambiano se 6 € [0,1)?

ESERCIZIO 50. e Risolvere il sistema non lineare
{fl(xl,xg) =2l a5 =1

folay, xo) = sin(may /2) + ;vg

con il metodo di Newton. Si usi una tolleranza pari a 1075, un numero
massimo di iterazioni pari a 150 e un vettore iniziale +(©) = [1,1]”.
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e Si risolva lo stesso sistema non lineare usando sempre la matrice Jaco-
biana relativa al primo passo e aggiornando la matrice Jacobiana ogni
r iterazioni, ove r & il piu piccolo numero di iterazioni che permette di
ottenere la soluzione con la tolleranza richiesta calcolando solo due volte
la matrice Jacobiana.

e Si risolva poi lo stesso sistema non lineare usando la function fsolvedi
Matlab / Octave.




Autovalori di matrici

4.1 Autovalori di matrici

Iniziamo introducendo alcune utili definizioni.

Definizione 16. Data una matrice quadrata A € R™*"™, si chiama autovalore
di A, quel numero reale o complesso \ tale che per ogni vettore x # 0 soddisfa
lequazione

Ax = Az (4.1)

Il vettore x viene detto autovettore associato all’autovalore \. Osserviamo
che l'autovettore = non e unico. Infatti, se & € R & un qualsiasi numero reale non
nullo, allora il vettore y = ax € ancora un autovettore associato all’autovalore \.

Se l'autovettore x € noto, il corrispondente autovalore si puo determinare us-
ando il quoziente di Rayleigh

T Az

A=TE 42)

Dalla definizione segue che \ & autovalore di A se & una radice del polinomio
caratteristico
pa(A) =det(A—A\I).

Infatti, I’equazione (4.1) & equivalente a
(A=X)z =0

ma essendo = # 0 essa sara soddisfatta se e solo se la matrice A — A\I risulta
essere singolare. Inoltre, il polinomio caratterisco associato ad una matrice A di
ordine n, ha n radici reali e/o complesse. Se A\ € C & autovalore di A, anche \ &
un autovalore complesso di A.

Premettiamo due utili risultati circa gli autovalori di matrici con struttura. Il
primo ci ricorda che le trasfomazioni per similitudine conservano gli autovalori.
Mentre il secondo ci ricorda che le matrici simmetriche hanno autovalori reali.

Proposizione 6. Matrici simili hanno gli stessi autovalori

Dim. Siano A e B simili, ovvero P~'AP = B, con P invertibile. Ora, se ) &
autovalore di A e x # 0 & Pautovettore associato, allora

BP la =P Az = \P 2.

Quindi )\ & autovalore di B con autovettore associato P~ 'z. O
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Proposizione 7. Matrici simmetriche hanno autovalori reali.

Dim. Sia A = A7 e per assurdo abbia un autovalore complesso A\ = a +ib, b #
0. La matrice A — \I e singolare e lo & pure

B=(A-X)(A—-X)=(A—al)*+V’I.
Sia ora x autovettore (non nullo) di B relativo all’autovalore 0. Certamente vale
0=x"Bx=x"(A-al)? +b*x"x.
Posto y = (A — al)x, poiché A & simmetrica, la relazione precedente diventa
yly +0°xTx =0
che non pud essere essendo y’y >0, x"x >0eb?> >0 O
00

Definizione 17. Una matrice A € R"*" ¢ diagonalizzabile, se esiste una matrice
U € R"™" tale che
U TAU = A, (4.3)

con A =diag(\i,...,\,) e U che ha per colonne gli n autovettori di A (che formano
una base per R").

Nel caso di matrice rettangolare non parliamo di autovalori ma di valori

singolari. Vale il seguente risultato noto come decomposizione ai valori singo-
lari (o SVD).

Teorema 15. Sia A € R™*". Allora esistono due matrici ortogonali U € R™*™
eV € R" " tali che
UTAV =%, (4.4)

con ¥ =diag(oi,...,0p) € R™*", p=min{m,n}, o1 > o9 > --- >0, > 0.

I numeri o; sono i valori singolari di A di cui parleremo piu oltre nella
sezione dedicata alla soluzione del problema del cosidetto data fitting e decompo-
sizione SVD, Sezione 5.11.

Infine ¢’@ un interessante risultato di localizzazione degli autovalori di una
matrice.

Definizione 18. Data A di ordine n, i cerchi

n

O ={zeC: lz—al< Y lagl}i=1,....n (4.5)
=15

CZ-(C):{ZE(C: |z —a; | < Z la; il },i=1,...,n (4.6)
=15

sono cerchi riga e colonna e sono detti i cerchi di Gerschgorin associati alla
matrice A.
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Vale infatti il seguente Teorema

Teorema 16. (primo Teorema di Gerschgorin)
Gli autovalori di A appartengono alle regioni del piano complesso

R= 00}”, C= Lnjq.(c),
i=1 i=1

unione dei cerchi riga e colonna rispettivamente. Pertanto essi appartengono an-
che alla loro intersezione RN C.

A supporto di questo Teorema facciamo un esempio tratto da [24, p. 89].

ESEMPIO 28. Sia

4 -1 1 0 0
1 3 -1 0 0
A=1 0 1 1 0 0
0 0 0 2 1
0 0 0 1 8
i cui autovalori sono A\; =5++1v10, Ao = A3 =3, Ay =2 e A5 =5 —+/10. I cerchi riga
sono
Ry = {z:]z2—-4|<2}yRe={z: [z=3|<2}; Rs3={z: |z —1] <1},
Ry, = {z:]z=2|<1} Rs={z: |z—8| <1}.
quelli colonna sono
Cy = {z: |z2=4 <1} Co={z: [z=3|<2}; C5={z: |z —1| <2},
Cy = {z:|z2=-2|<1}1Cs={z: |z—-8] <1}.

I grafici dei corrispondenti cerchi di Gerschgorin sono riprodotti in Figura 4.2. B
facile osservare che gli autovalori stanno nell’insieme

RoUR3sUR4U Ry
pOiChé Ry = CQ, R4 C RQ; Cl,C4 CcCye R5 = C5.

L'Esempio 28, ci suggerisce che se A & simmetrica allora le regioni R e C' del
Teorema 16 coincidono ed essendo gli autovalori di matrici simmetriche reali, la
loro intersezione & formata dall’'unione di intervalli dell’asse reale.

Un’applicazione del primo Teorema di Gerschgorin & la seguente

Proposizione 8. Se A ¢ diagonalmente dominante in senso stretto allora é non
singolare.

Dim. La dimostrazione é ora facilitata dalla conoscenza dei cerchi di Ger-
schgorin. Infatti, se A & diagonalmente dominante in senso stretto vale la disug-
uaglianza

n

>

j=1,j#i

w
AP

(7%
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Cerchiriga

-1 v} 1 2 3 4 5 [ T 8 a

Cerchicolonna

Figura 4.1: Cerchi di Gerschgorin della matrice A dell’ Esempio 28: sopra i
cerchi riga e sotto quelli colonna.

Cio implica che

n

|2 — @il _ Z

il AT

@i,j

<1, (4.7

Qg
da cui
|z —a; ] <laiil.

La matrice A ha quindi cerchi di Gerschgorin che non passano mai per l'origine
e pertanto non potra mai avere autovalori nulli. [
Gerschgorin diede anche un’altra caratterizzazione

Teorema 17. (secondo Teorema di Gerschgorin)
Se l'unione dei cerchi di Gerschgorin é formata da due sottinsiemi disgiunti
Ay e Ay, ovvero per R (o C) si abbia

R:A1UA2, A10A2:®

con Aq formato da n, cerchie As da ny con ni+ng = n. Allora in A, sono contenuti
n1 autovalori e in A, i rimanenti ns.
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ESEMPIO 29. Come esempio, consideriamo la matrice

-1 1 0
A= 1 6 1
1 -2 8

i cui cerchi sono come in figura

Figura 4.2: Cerchi riga di Gerschgorin della matrice A dell’ Esempio 29.

come si nota ci sono due sottinsiemi disgiunti e quindi un autovalore cadra nel
cerchio di piu a sinistra e due nell’insieme formato dagli altri due cerchi.

La funzione CerchiGerschgorin.m, in Appendice C, consente di costruire e
plottare i cerchi di Gerschgorin.

Infine, ricordando che p(A) < ||A|| per ogni norma indotta, una sovrastima
dell’autovalore di modulo piu grande & appunto || A||.

Le domande piu frequenti quando si ha a che fare con problemi di autovalori
sono le seguenti.

1. Quali autovalori desideriamo conoscere? Il piu grande in modulo o il piu
piccolo in modulo? E cosa si puo dire dei corrispondenti autovettori?

2. E se volessimo determinare tutti gli autovalori e autovettori?

3. La struttura della matrice che ruolo gioca nei metodi di calcolo?
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4.2 1l metodo delle potenze

I1 metodo delle potenze permette di determinare 'autovalore di modulo massimo.
Supponiamo che gli autovalori di A possano essere ordinati come segue:

M| > Aol = [As] = -+ > [Aa]

con )\ ben distinto dai rimanenti autovalori. Sia x; 'autovettore corrispondente
a )\1 .

Se gli autovettori di A sono linearmente indipendenti, \; e x; si possono de-
terminare come segue

1. Dato il vettore iniziale x(?), poniamo y(® = x(© /||x(©)|.

2. Per k= 1,2, ... calcolo

- <)
x(®) = Ayh=1) (k) _ T AB) — (yUNT 4y (k)

La procedura si arresta in corrispondenza al primo indice % tale che |\(*)
AED] < e A®),
Il predetto metodo costruisce due successioni convergenti

lim y(k) =axy, lim AR = Al
k—o00 k—o00

Perche si chiama metodo delle potenze? Basta osservare che y*) = r(k) Aky/(0)
cioeé appaiono le potenze della matrice A, con

e H ||x

Infatti,
o (1) — Ay
T e
.y = Ay - A%y ©
@) Oz
.« = Ay A3y ‘
[z~ TeO @ [[l=®]

La funzione MetPotenze.m, in Appendice C, implementa il metodo delle potenze.
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4.2.1 Convergenza

Gli autovettori x4, ..., z, sono linearmente indipendenti, cosicché possiamo scri-
vere (0 =>""  ajz; da cui

y! = g0 Zaﬂ?i, BO =1/[|lz]].
i=1

(i) Al primo passo

R N B(O)Azaiﬁci =p© Z QAT

i=1 i=1

n -1
gD = DY ez, Y = (OO
i=1

(i) Al passo k

n k -1
J = 503 arka, B = (H ||z:<“||>
1=1

1=0

da cui
(k) _ \k (k) S A\
Yy =AY 041961-5-;0% (>\1> Ti |,
Poiché ;\—1’ <1,i=2,...,n allora klim y(k') = x1 ovvero la successione dei vettori
— 00

y*®) converge alla direzione dell’autovettore z; purche a; # 0. Nel caso in cui
ap = 0 e |A2| > |As], il processo dovrebbe convergere verso ;. Pero a causa degli
(inevitabili) errori di arrotondamento comporta la comparsa di una componente
nella direzione di z; anche se questa non era presente nel vettore iniziale (%),
quindi «; # 0 e il metodo converge ancora a \;. Vediamo questo fatto nell’esempio
seguente.

ESEMPIO 30. Consideriamo la matrice

—_ N = O
N = OO

1
-2

1 —

0

SO =N

i cui autovalori (con 5 cifre decimali) sono —3.61903, —2.61803, —1.38197 ¢ —0.38197.
Applicando il metodo delle potenze con vettore iniziale z(9) = [3,4,4,3]T converge
al secondo autovalore pit grande in modulo. Lo stesso accade partendo da z(®) =
[0,0,0,0] oppure z(®) = [1,2,2,1]7 perche tale vettore ha componenti uguali lungo
x5 e zk. Per evitare questo basterd considerare un vettore le cui componenti sono
scelte casualmente (random).
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N . k
Quando pero |\2| = ||, la successione {)é )} converge verso \; molto lenta-
mente e in tal caso il metodo viene usato come stima iniziale per il metodo delle
potenze inverse che vedremo oltre.

Inoltre, se la matrice A non & simmetrica, la convergenza all’autovalore di
k

. R A2 . .
modulo massimo & O ™ Quando A é simmetrica la convergenza rad-
1
) L |2k
doppia, ovvero é O 52 .

A
Concludendo, il rapporto )\2' é importante ai fini della velocita di conver-
1

genza del metodo delle potenze. Il prossimo esempio ci fa capire proprio questo
fatto.

ESEMPIO 31. Si consideri la matrice

-7 =9 9
Al = 11 13 -9
—16 —-16 20
. . A2 L
i cui autovalori sono \; = 20, Ay = 4,A3 = 2 con " ~ 0.2. Si puo provare che
1
partendo dal vettore 2(®) = [1,1,1]7 con tol = l.e — 6, il metodo delle potenze

(implementato nella funzione MetPotenze.m) converge a A; in 10 iterazioni.
Se consideriamo invece la matrice

—4 -5 4
Ay = 14 15 -5
-1 -1 11
A
che ha autovalori A\ = \/5321,)\2 = ﬁ;21,A3 = 1. In tal caso |22| ~ 0.81 con la
1

conseguenza che il metodo, con gli stessi valori di tol e (%), impiega 58 iterazioni per
determinare 'autovalore di modulo massimo.

ESERCIZIO 51. Si consideri, per o € R, la famiglia di matrici

a 2 3 10

5 12 10 7
A= 9 7 6 13

4 16 18 0

Provare che se o = 30 il metodo converge all’autovalore di modulo massimo in 27
iterazioni, mentre se o = —30 il metodo richiede ben 1304 iterazioni partendo da
1) =ones (4,1) con tolleranza e = 1.e — 10. Come mai questo fatto?

Per verificare Uesattezza dei calcoli, usare la funzione eig(A) di Matlab / Octave
che restituisce tutti gli autovalori di una matrice quadrata A. Come ulteriore con-
trollo determinare anche il residuo Ax; — \1x;.
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4.3 Il metodo delle potenze inverse

Per determinare 'autovalore di modulo minimo, basta ricordare che A~! ha au-
tovalori che sono i reciprochi degli autovalori della matrice A. Infatti, se \ &
autovalore di A associato all’autovettore x, allora da Ax = Az deduciamo che

1
3= A~'2. Ovvero 1/) & autovalore di A~! associato al vettore .

Da un punto di vista implementativo, al passo k invece di definire z(*) =
A~ 1y(k=1) rigolveremo, con uno dei metodi numerici visti al capitolo precedente,

il sistema
Apk) — y(kfl) )

Se fosse nota la fattorizzazione LU o quella di Cholesky (nel caso A sia simmet-
rica definita positiva), bastera ricordarla ed usarla ad ogni passo .

ESERCIZIO 52. Si consideri la matrice dell’Esercizio 51, con gli stessi valori del
parametro «, determinare lautovalore di modulo minimo )\, mediante il metodo
delle potenze inverse (ovvero il metodo delle potenze applicato ad A~'). Usare
2(0) =ones (4,1) e tolleranza ¢ = 1.e — 10.

4.3.1 Il metodo delle potenze inverse con shift

Data una matrice quadrata A n x n, a coefficienti reali, i cui autovalori possono
essere ordinati come segue:

Al > A2l > [Ag] > > A

Con il metodo delle potenze con shift & possibile cercare I’ autovalore di A, piu
vicino ad numero 7 fissato. In pratica si tratta di applicare il metodo delle potenze
inverse per il calcolo dell’autovalore minimo \,,;,,(A4,) della matrice A, = A—n1.
Lautovalore cercato, dipendente da 7, & A;, = Anin(Ay) + 1.

Per individuare un valore 7 da cui partire, si possono costruire i cerchi di
Gerschgorin, Ci(") e Ci(c), i=1,..,n (vedi (4.5) e (4.6)), associati alle righe e alle
colonne di A, rispettivamente (vedasi la funzione CerchiGerschgorin.m).

ESERcCIZIO 53. Cercare I’/ gli autovalore/i di A, con o = —30, pit vicino/i al nu-
mero nn = —15. In pratica si tratta di applicare il metodo delle potenze inverse per
il calcolo dell’autovalore minimo della matrice A, = A —n 1. Quindi l'autovalore
cercato sara A\, = Apin(Ay) + 1.

Come cambia il numero delle iterazioni se prendiamo n = —17¢2 Prendere
2(9) =ones(4,1) e tolleranza ¢ = 1.e — 10.

4.3.2 Metodo delle potenze e metodo di Bernoulli

Dato il polinomio

n
pu(z) =Y aix’, agan #0,
=0
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per determinare la radice &; di modulo massimo si puo usare il metodo di Bernoulli.
Tale metodo consiste nell’applicare il metodo delle potenze alla matrice (di Frobe-
nius), detta anche matrice companion

0 1 0 0
F= . .
0 . 0 1
__ Qo __ a1 _ Gn-—2 _Gn-1
Qn Qn e An An,

Per calcolare tutti i rimanenti autovalori si opera poi per deflazione, ovvero
applicando il metodo alle sottomatrici di ordine n—1, n—2, ..., 1 che si ottengono
mediante trasformazioni per similitudine con matrici ortogonali (quali le matrici
di Householder).

Facciamo vedere su un semplice esempio come calcolare la radice piu grande
in modulo, che chiameremo &;, e la successiva radice piu grande in modulo &.

ESEMPIO 32. Calcolare & per il polinomio
pe(z) = 132°% — 3642° + 29122* — 998423 + 1664022 — 13312 + 4096 ,

usando tolleranza tol = 1.e — 6.
Calcolare quindi (per deflazione) & la seconda radice pitt grande in modulo. Per
calcolare &o, si suggerisce dapprima di costruire la matrice P di Householder tale

T
r_ (& a
PFP —(0 F1)

cosicche Px; = e; con x1 autovettore associato a & (calcolato al passo 1) e e =
(1,0,...,0)”. La matrice P si pud costruire mediante il seguente codice Matlab:

% Costruisco la matrice di Householder P t.c. P*x1=(1,0,...,0)
x12=norm(x1,2); beta=1/(x12*%(x12+abs(x1(1)) ));
v(1)=sign(x1(1))*(abs(x1(1))+x12); v(2:n)=x1(2:n);
P=eye(n)-beta*v’*v; % n = dimensione matrice

Pertanto, per calcolare &5 si applichera il metodo delle potenze alla matrice F.

Confrontare i risultati con la funzione roots(c), con c vettore dei coefficienti del
polinomio pg(x), aiutandosi anche con un grafico.

Una possibile implementazione in Matlab/Octave del metodo di Bernoulli, per cal-
colare tutte le radici della matrice di Frobenius ¢ presentata nella funzione metBernoulli
in Appendice C.

4.4 1l metodo QR

Se si desiderano tutti gli autovalori di una matrice, bisogna ricorrere a tecniche
che consentono dapprima di ridurre la matrice ad una forma piu semplice medi-
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ante trasformazioni per similitudine pervenendo a una forma triangolare supe-
riore o diagonale: il calcolo degli autovalori diventa cosi notevolemente semplifi-
cato. Questa e la filosofia delle trasformazioni con matrici ortogonali di House-
holder o Givens. Su tale filosofia si basa infatti il metodo QR e le sue varianti.

Il metodo QR fa uso della fattorizzazione QR della matrice A. La fattoriz-
zazione QR di A consiste nel premoltiplicare A ad ogni passo k per una matrice
ortogonale, di Householder o Givens, cosicche dopo n—1 passi (U,,—1 ---U1)A = R,
con R triangolare superiore. La matrice () richiesta &

Q=Upr-- ) =Upy---U)".

Il metodo @R per autovalori si descrive come segue. Sia A € R"*"; data
Q® ¢ R™" ortogonale (cioe QTQ = I) e posto T(© = (Q)TAQ®), per k =
1,2,... finché converge esegui

e mediante la fattorizzazione QR di A (ad esempio usando la funzione qr
di Matlab/Octave o una propria implementazione), determinare 7(*~1) =
QW Rk,

e quindi, porre 7*) = RFIQK) = (QR))T (k=D Qk),

Se A ha autovalori reali e distinti in modulo il metodo converge ad una ma-
trice triangolare superiore i cui autovalori stanno sulla diagonale principale. Nel
caso in cui gli autovalori non soddisfino la predetta condizione, la successione
converge verso una matrice con forma triangolare a blocchi, come si vede nel
prossimo esempio.

ESEMPIO 33. Data

A:

o = O

0 2
0 1
11
Dopo 25 iterazioni del QR, si perviene alla matrice in forma ”quasi” triangolare (di
Hessenberg superiore)

2 1.069 0.9258

7 =0 -05 0866 |,
0 —0.866 —0.5

i cui autovalori sono A\ = 2 e Az 3 che si determinano dal blocco

—-0.5 0.866
—-0.866 —0.5 |’
che sono complessi coniugati Ag 3 = —0.5 4 0.866 7.

Vale la seguente Proposizione
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Proposizione 9. Data A € R"*", esiste () € R"*" ortogonale e una matrice
B € R" ™ triangolare superiore a blocchi tale che

Ri1 Rip Ry

T RZ 2 R2,m
B=Q"AQ = (4.8)

0 Rom

dove R;;, i = 1,...,m e un blocco 2 x 2 con autovalori complessi coniugati o un
blocco 1 x 1 nel caso lautovalore sia un numero reale. La somma delle dimensioni
dei blocchi R; ;, i =1,...,m é pari ad n. Inoltre

Q= lim [Qm) Q(k)} 7

k—o0

dove Q¥) ¢ la k-esima matrice ortogonale generata al passo k della fattorizzazione
Qr di A.

La matrice con blocchi R; ; viene detta la decomposizione reale di Schur di A.

Poiché il metodo ha lo scopo di annullare gli elementi della parte triangolare
inferiore sotto la diagonale principale partendo dall’elemento in basso a sinistra,
un possibile test di arresto e che al passo &

n—1

(k)
Z Tijh | <e
1=1

ovvero che tutti gli elementi della sottodiagonale siano in modulo minori di una
prescelta tolleranza e (vedasi piu sotto).

La funzione Matlab/Octave MetQR (vedasi i Codici Matlab/Octave online) im-
plementa il metodo QR per la ricerca di autovalori, mentre la funzione ConvergenzaQR
verifica se il metodo QR converge, controllando che gli elementi della sottodiago-
nale siano tutti in modulo minori di una fissata tolleranza.

4.4.1 Il metodo QR con shift

Dalla Proposizione 9, abbiamo visto che il metodo QR converge, nel caso generale,
verso una matrice triangolare superiore a blocchi. Risolvendo quindi il problema
degli autovalori sui blocchi, si avranno tutti gli autovalori di A (vedasi I’Esempio
33).

Il metodo QR ha velocita che dipende dai rapporti |\;/)\;|, i > j ed in parti-

, piu questo numero € vicino ad 1 e piu lenta

colare dal numero maxi<;<,—1 ‘ ’\j\fl
sara la convergenza, pocihé A ha ha autovalori vicini in modulo. In questi casi,
conviene applicare la tecnica di traslazione dello spettro, o tecnica dello shift, che
serve anche ad accelerare la convergenza.

Il metodo QR con singolo shift consiste nella seguente iterazione: data I'appros-
simazione x4 € R di un autovalore )\ di A, consideriamo la forma di Hessenberg di
A, ovvero T = (Q®)TAQ® (in Matlab/Octave si ottiene usando la funzione

hess.m).
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Quindi

e per k£ = 1,2,... mediante la fattorizzazione QR di A (usare la funzione
Matlab/Octave qr), fattorizzare 7*~1) come segue: T+~ — I = Q) R(*);

e porre T®) = RMQF) 4 4],

Osserviamo che QW) T*) = Q¥ RF Q) 4 ;%) = T(k=1QK) oyvero T™*) e T(k—1)
sono simili e pertanto hanno gli stessi autovalori.

Leffetto dello shift sulla convergenza ¢ il seguente. Supponiamo che A abbia
autovalori che possiamo ordinare

A=l = A2 = pl = [ A — gl
si puo provare che per 1 <i < n, tﬁ’?_l — 0 con velocita proporzionale a
k
‘ Ai — b
Ni—1 — j

estendendo cosi lo stesso risultato di convergenza visto per il metodo QR anche
al QR con shift. Questo suggerisce, di scegliere per 1 un valore che approssima
A, cosicche

A — | <[Ni—pl, i=1,...,n—1.

Per tale scelta di i, 'elemento tfjf;_l, generato dalla precedente iterazione, tende

rapidamente a zero al crescere di k. Se per caso p fosse un autovalore della
matrice T(®), e anche di A, tgle_l =0e t% = p. Questo suggerisce in ultima
istanza di scegliere

p=td.

Con questa scelta, si dimostra, la convergenza del metodo & quadratica, nel senso
che se
4 (k)

nn—1

17O, =y <1, per qualche k>0

allora

t(k+1)

n,n—1 2
: =0(ay) .
o, ~ 9
Nel caso di matrice simmetrica, si dimostra (cf. [15]) che la convergenza e cubica.

Di questo fatto possiamo tenere conto durante ’esecuzione del metodo @R con
singolo shift, controllando il valore di |t(k) | e ponendolo uguale a zero se risulta

n,n—1

65l < € (102 o]+ 15

n,n—1 n—1n—1

) ¢ ~ eps. (4.9)

Questo sara il test da usare nell'implementazione del metodo QR con shift. Se,

k)

la matrice A e in forma di Hessenberg superiore, I'azzeramento di tﬁL ;_, implica
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che tslk 21 sara una buona approssimazione di )\,. Quindi, noto A\, la ricerca dei
rimanenti autovalori si fara sulla matrice 7(*)(1 : n — 1,1 : n — 1), riducendo di
volta in volta la dimensione del problema fino a determinare tutti gli autovalori
di A. In pratica una strategia di tipo deflattivo.

Il metodo QR con singolo shift € implementato nella funzione MetQRShift.

OO

ESERCIZIO 54. Calcolare con il metodo QR tutti gli autovalori di A=[30 1 2 3;
4 15 -4 -2; -1 0 3 5; -3 5 0 -1];. Determinare anche il numero di iterazioni
fatte.

ESERCIZIO 55. Si consideri la matrice A (tratta da [26, pag. 178])

17 24 1 8 15

23 5 7 14 16
A=]4 6 13 20 22 |,

10 12 19 21 3

11 18 25 2 9

i cui autovalori (arrotondati a due decimali ) sono A\; = 65, A3 = £21.28 ¢
A15 = £13.13. Calcolare, se possibile, tutti gli autovalori sia con il metodo QR che
con il metodo QR con shift.

4.5 Autovalori di matrici simmetriche

N

Quando la matrice A € R"*" ¢ tridiagonale simmetrica o simmetrica, per la
ricerca dei corrispondenti autovalori si usano il metodo delle successioni di Sturm
e il metodo di Jacobi, rispettivamente.

4.5.1 Il metodo delle successioni di Sturm

Sia A € R"*" tridiagonale simmetrica. Indichiamo con d e b i vettori diagonale
e extradiagonali (sopra e sotto la diagonale principale) di dimensioni n e n — 1,
rispettivamente.

Sia A; il minore principale di ordine i di A. Posto py(x) = 1, indichiamo con
pi(l‘) = det(Ai — ,’E[l) Si ha

pi(z) = di—xz (4.10)
pi(x) = (di —x)pi—1(x) — bf_lpq;_Q(:zr), 1=2,...,n.

Alla fine p,(z) = det(A — 2I). La successione {p;(z)} & detta una successione
di Sturm. Vale il seguente risultato (la cui dimostrazione si trova in [2, pagg.
345-346]).
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Teorema 18.
1. po(x) non cambia segno;

2. se pi(x) = 0 allora p;—1(x)p;11(x) < 0, per i = 1,2,....,n — 1; (alternanza
degli zeri)

3. sep,(x) = 0allora p,,(z)pn—1(x) < 0 (e quindi p,(x) ha tutti zeri di molteplicita
D.

Detto altrimenti, per i = 2, ..., n gli autovalori di A;_; separano quelli di 4,,
ovvero

)\Z(A’L) < /\1;1(141;1) < )\1;1(141‘) < < )\2(142) < )\1(141‘,1) < )\1(Al) (4.11)
Inoltre, per ogni reale v, definiamo

Sy =A{po();p1(¥); -, pn(V)} - (4.12)

Allora s(v), il numero di cambiamenti di segno in S,, indica il numero di auto-
valori di A strettamente minori di v. Vale inoltre,

Teorema 19. Se p;(z), i = 0,1,...,n é una successione di Sturm, il numero
s(b) — s(a) indica il numero di zeri di p,(x) appartenenti all’intervallo [a,b).

Da un punto di vista implementativo, per costruire A, noti i vettori d e b,
basta usare il comando Matlab/Octave A=diag(d)+diag(b,1)+diag(b,-1). Quindi
si puo procedere come segue:

e Scelgo un valore reale v e costruisco 'insieme S,,. Qui bisogna implementare
le formule (4.10), ottenendo in output un array che contiene i numeri p;(v),
i=0,1,..n.

e Determino il numero s(v) che mi dira, grazie alla (4.11), quanti autovalori
di A sono minori in senso stretto, di v.

e Esiste un metodo, detto metodo di Givens, per determinare tutti gli autoval-
ori di una matrice A tridiagonale simmetrica. Poniamo by = b,, = 0 allora
lintervallo I = [«, 5] con

o= 1I§nii£n(di = (|bi| + [bi-1])), B = lléliagn(di + (bil + [bi-al)) ,  (4.13)
conterra tutti gli autovalori di A (infatti « e 8 indicano gli estremi dell'intervallo
di Gerschgorin).

Una volta determinato I = [a, 3], per determinare )\;, Ii-esimo autovalore
di A, mediante il metodo di bisezione si opera come segue: si construiscono
le successioni a” e b con a(?) = a, b(®) = B; quindi si calcola ¢(?) = (a(®) +
b(0)/2, grazie alla proprieta (4.11), se s(c(?)) > n — i allora b(!) = ¢(©)
altrimenti «(!) = ¢(*). Si continua finché ad un passo k*, [b*") — a*")| <
tol(Ja®)| 4 [pT))).

Procederemo poi in modo sistematico per calcolare tutti gli altri autovalori.
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ESERCIZIO 56. Data la matrice tridiagonale avente diagonale principale il vet-
tore d=ones (1,n) e sopra e sotto diagonali il vettore b=—2*ones(1,n-1). Con n = 4,
calcolarne tutti gli autovalori usando il metodo di Givens delle successioni di
Sturm.

Per facilitare 'implemetazione presentiamo la funzione succSturm.m che costru-
isce le successione di Sturm e i suoi cambiamenti di segno.

function [p,cs]=succSturm(d,b,x)
Y
% Calcolo della successione di Sturm ’p’ in x
% a partire dai vettori d e b
% e dei corrispondenti cambiamenti di segno ’cs’
.
n=length(d); p(1)=1; p(2)=d(1)-x; for i=2:m,

p(i+1)=(A(1)-x)*p(1)-b(i-1) "2*p(i-1);
end
cs=0; Ycontatore cambi di segno
s=0; YJcontatore dei segni costanti
for i=2:length(p),

if (p(i)*p(i-1)<=0),

cs=cs+1;
end
if (p(1)==0),
s=s+1;

end
end

cs=cs-s;
return

4.5.2 1l metodo di Jacobi

Il metodo, come detto, si applica a matrici simmetriche. Genera una successione
di matrici A®) ortogonalmente simili ad A e convergenti verso una matrice diag-
onale i cui elementi sono gli autovalori di A.

Si parte da A©) = A. Per k = 1,2, ... si fissa una coppia di interi p e ¢ con
1 < p < q<nesicostruisce

AW = (G, T A% DG, (4.14)
(ortogonalmente simile ad A) cosicche

" _

i, se (Zv.]) - (paq)
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La matrice G, € la matrice ortogonale di rotazione di Givens definita come segue

1 0
cos(6) sin(6)

— sin(0) ' cos(6)

L 0 L]
Siano ¢ = cos(f) e s = sin(f). Allora, gli elementi di A*) che variano rispetto a
quelli di A%~ per effetto della trasformazione (4.14) si ottengono risolvendo il
sistema

k k T k—1 k—1
Clz()p) az(,q) _ |: C S :| al(,p ) az(,q ) |: C S :| ) (415)
*) (k) s ROSRIN(ES e e

Il nostro scopo & trovare 'angolo 6 che consente al passo k& di annullare gli ele-
menti extradiagonali di A*~1) interessati dalla trasformazione. Ora, se abr *) =
0, allora ¢ = 1 e s = 0. Se invece agffl) # 0, posto t = s/c = tan(6), il sistema

(4.15) equivale alla soluzione dell’equazione

Q=D =)

t? 4+ 20t —1=0, con n:%. (4.16)
2gk—1)

rq

Nell’equazione precedente, se > 0 si sceglie la radice ¢t = 1/(n + /1 + n?) altri-

menti t = —1/(—n+ /1 +n?). Quindi c e s risultano
1 .
V12

La convergenza del metodo si verifica calcolando la seguente quantita, valida
per una generica matrice M

1/2
n

n 1/2
son— | 3w (nM%zmz—) O wm
=1

ij=1,i#j

I1 metodo garantisce che ®(A*)) < &(AF-1) VEk. Infatti

n n
q)(A(k)) = Z azz,j - Z azz,i —2lap,q
j i=1

i,j=1
d(A*=DY —9)a, | (4.18)
< d(AFYy .
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Una strategia ottimale di scelta degli indici p, ¢ tale che ®(A™*)) < &(A*~1) sia
sempre verificata, & quella di scegliere I'’elemento di A*~1 tale che

(k—1)| '

(k—1)) _
lap 1= rgéaj?qai,j

Vale infatti il seguente

Teorema 20. La successione A¥) generata con il metodo di Jacobi é convergente
verso una matrice diagonale e si ha limj,_, o, ®(A*)) = 0.

Dim. Essendo a,, un elemento non principale di massimo modulo di A,
risulta
2 (AL

Up.q = n(n—1) "

Dalla (4.18),

(k—1)
—2(I>(A ) =ad

(AT < AT — 276

(A=)

cona=1-— ﬁ <1, n > 2. Continuando,

B(AM) < aF1p(AW)

da cui la conclusione. [J

Una M-function che implementa il metodo di Jacobi, data A e una tolleranza
tol e che restituisce la matrice diagonale D degli autovalori, il numero di iter-
azioni effettuate e la quantita ®(-), & la funzione symJacobi.

4.6 Esercizi proposti

ESERCIZIO 57. Data la matrice simmetrica.

4 1 0 0 0
1 3 2 0 0
A=10 2 -1 -4 0
00 —4 6 2
0 0 O 2 5

1. Localizzare, mediante i cerchi di Gerschgorin, gli autovalori di A e dare
alcune stime “a priori”.

2. Determinare tutti gli autovalori con il metodo pit idoneo per la strut-
tura della matrice.
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ESERCIZIO 58. Data la matrice simmetrica.

4 1 1 0

1 3 2 3
A= 1 2 -1 =2

0 3 -2 5

1. mediante il metodo delle potenze determinare l'autovalore di modulo
massimo M, con precisione tol = 1.e — 6;

2. mediante il metodo delle potenze inverse determinare Uautovalore di
modulo minimo m, con precisione tol = 1.e — 6;

3. si determinino infine gli altri due autovalori (interni a [— M, M].)
ESERCIZIO 59. Data la matrice A di ordine n =5,

17 24 1 8 15

23 5 7 14 16
A= 4 6 13 20 22 |,

10 12 19 21 3

11 18 25 2 9

i cui autovalori (arrotondati a due decimali ) sono Ay = 65, Ao 3 = £21.28
e A\ 5 = £13.13. Calcolare tutti gli autovalori con il metodo QR con shift.
Costruire una tabella che riporti i valori della sequenza

|t(k)

1 n,n—1
=1 : k=1,2,...
Pk + IOg T 0og |t(k71)1|’ s 4y

n,n—

con ny, = \t;lfzhl\/HT(O)Hz TO = (QNT AQ® e Q) (la prima delle ma-
trici ortogonali usati nella fattorizzazione QR di A) che faccia vedere che la
convergenza del metodo é quadratica.

ESERCIZIO 60. Si considerino le matrici

-7 -9 9 -4 =5 4
A = 11 13 -9 Ay = 14 15 -5 (4.19)
—-16 —-16 20 -1 -1 11

entrambe con autovalori reali e distinti.

1. Calcolare tutti gli autovalori di A, e Ay, mediante il metodo delle inverse
con shift (usare tol = 1.e — 6).

2. Si dica perché il metodo delle potenze per il calcolo dell’autovalore di
modulo massimo ci impiega di pit nel caso della matrice A5?
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ESERCIZIO 61. Si consideri la matrice

(4.20)

S O Wi

O O OoOwn
|

= WO = DO

oOwWIN N W

1. Perche il metodo delle potenze non funziona per il calcolo dell’autovalore
di modulo massimo?

2. Calcolare lautovalore di modulo massimo e il corrispondente autovet-
tore con il metodo delle potenze con shift.

ESERCIZIO 62. Data la matrice di Hilbert di ordine 4 (in Matlab hilb(4)), i
cui autovalori (arrotondati) sono A1 = 1.5002, Ay = 0.1691, A3 = 0.0067, \y =
0.0001. Calcolare detti autovalori usando il metodo di Jacobi con una toller-
anza tol=1.e-15. In quante iterazioni converge il metodo? Calcolare an-
che ad ogni iterazione la quantita ®(A*)) per verificare che decresce. (Sugg.
Usare la funzione symJacobi.m (implementare le M-functions calcoloCeS e
calcoloProdottoGtDG)).




Inferpolazione e
approssimazione

Nelle applicazioni si conoscono solitamente dati provenienti da campionamenti
di una funzione f sui valori z;,i = 0,...,n, ovvero (x;, f(x;)) oppure dati sparsi
provenienti di misurazioni (z;,y;),? = 0, ..., n. Il problema dell'interpolazione con-
siste nel trovare una funzione f tale da soddisfare le condizioni d’interpolazione

f(zi) = f(@:), oppure, f(zi) =y; . (5.1)
A seconda della forma di f parleremo di interpolazione

e polinomiale, quando f(z) = p,(x) con p, (z) = ag+a,z+- - -+a,z" ; polinomio
di grado < n;

e polinomiale a tratti quando in ognuno dei sotto intervalli I}, = [zk, zp11], k =
0,...,n —1, f coincide con un polinomio di fissato grado (generalmente di
grado basso, m = 2,3). Nel caso in cui questo polinomio sia una spline
polinomiale parleremo d’interpolazione spline;

e trigonometrica quando f(z) = a_pe ™M* 4 ... 4 apeM* con M = n/2
se n pari oppure M = (n — 1)/2 se n & dispari. Infatti, ricordando che
¢ = cos(ix) + isin(iz), allora f(z) = L+ Ziuzl cx cos(kx) + by sin(kz) che
come vedremo al paragrafo §5.10, ¢ e b, sono legati agli a; dalle relazioni

C, = ap+a_g

bk — i(ak—a,k).

e razionale in tal caso f () = rpn(z) = f; (("2)), con p,, € g, polinomi di grado
n e m, rispettivamente (¢, # 0 su R).

Nel seguito concentremo I'attenzione sull’interpolazione polinomiale, polino-
miale a tratti, splines nonché trigonometrica.Non ci occuperemo dell’interpolazione
razionale, rimandando gl'interessati, ad esempio, alla monografia [30, vol.1, p. 45
e ss].
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5.1 Interpolazione polinomiale

Il seguente Teorema dice che il problema dell’interpolazione polinomiale ha un’unica
soluzione se i punti d’interpolazione z;, su cui costruiremo il polinomio inter-
polante, sono distinti.

Teorema 21. Dati n+ 1 punti (x;,y;), ¢ = 0,...,n con z; # x;, i # j, esiste un
unico polinomio di grado n, p,(xz) = ag + a1z + - - - + a,z™ per cui

pn(zi) =y, i=0,...,n (5.2)

Dim. Le condizioni (5.2) sono equivalenti al sistema lineare

1 To LU(Q) . l’g ag Yo
1 oz 2% ... ah a Y1
' -1 (5.3)
1 x, x% T, ay, Un
la cui matrice A altro non e che la matrice di Vandermonde per la quale vale
det(V)= [ (zi—2)). (5.4)

4,7=0, 1<j

Seguendo [9, p. 24], per induzione su n, facciamo vedere che vale la relazione
(5.4).

Per n = 1, det(V) = x; — xp. Sia n > 2. Ora, det(V) puo essere visto come
det(V(xo,...,x,)). Per valutare det(V') possiamo procedere come segue. Consid-
eriamo la funzione

det(V(z)) = det(V(zo, ..., 2n_1,2))

che & un polinomio di grado < n che si annulla in zy, . .., ,, 1. Pertanto det(V(x))=
C(x —xp)- -+ (x — x,—1) . Per calcolare la costante C basta sviluppare il determi-
nante rispetto all’'ultima riga, ed essendo il coefficiente di 2™ uguale a

det(V(zo,...,2n-1))
si ottiene
det(V(zo,...,zn)) = det(V(zo, ..., zn-1))(x —x0) - (x — Zpn—1) .

Sostituendo poi x con x,, si conclude.
Pertanto il determinante di Vandermonde & diverso zero perche z; # x;,i # j
e percio la soluzione esiste ed € unica. [J

Una dimostrazione alternativa di unicita e la seguente. Per assurdo esistano
due polinomi d’interpolazione, p,, e ¢, (quindi tali che p,, (z;) = ¢, (z;) = y;). Allora
d,, = pn — ¢, € un polinomio di grado < n che si annulla negli » + 1 punti ;. 1l
che implica che d,, = 0 ovvero p,, = ¢, contraddicendo I'ipotesi che p,, # q,.



5 - Interpolazione e approssimazione 133

ESEMPIO 34. Si consideri la funzione di Runge

1

9(x)
Sugli n + 1 punti equispaziati @; = —5+ih, i =0,1,...,n, h = 10/n si costruisca il
polinomio d’interpolazione di grado n, p,(z) = a,2™ + @y, 12"t + ... + a1z +ag. Si
tratta di risolvere il sistema lineare

Va=y
cona = (ag,ai,...,an), y = (g(x0),g(x1), ..., g(z,))" e V la matrice di Vandermonde.

Ad esempio se n = 3, g = =5, 21 = =5+ 10/3 = —1.667, 25 = —5 4 20/3 =~
1.667, x3 = 5 il sistema diventa

1 -5 25 —-125 ao 76 ~ 0.04
vo | 1 -1667 2779 —4.63 ar | _ 0.26
| 1 1667 2779 4.63 ag | 0.26
15 25 125 as 0.04
o0

Il concetto di condizioni d’interpolazione puo essere generalizzato, come ve-
diamo nel prossimo esempio, considerando non solo i valori della funzione nei
nodi ma altri valori.

ESEMPIO 35. Si consideri la funzione f(z) = % — 5e” ristretta all’intervallo
x

[0,1]. Determinare I'unico polinomio di secondo grado, pa(r) = ag + ayz + azx? tale
che
1 1
p2(0) = F(0), pa(1) = F(1), [ paw)do= [ fla)de.
0 0
Si tratta di risolvere il sistema lineare con matrice non singolare

1 0 0
A= 1 1 1
11
L 5 3
e termine noto
15
5(2 —e)

b

: [

L’integrale definito ¢ facilmente calcolabile analiticamente ottenendo 20 arctan(l) —
5(e—1) = 5m—be+5 =~ 7.1166 . Risolvendo il sistema si trovano i valori dei coefficienti
del polinomio. II sistema lo possiamo risolvere anche numericamente con il MEG o
usando la funzione Matlab/Octave "\": otteniamo ag = 15, a3 = —10.118;a2 =
—8.474. Tl grafico della funzione e del polinomio sono visibili in Fig. 5.1.
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Folinamio
14 . Funzione |-

Figura 5.1: Funzione e polinomio d’interpolazione del’Esempio 35

5.2 Forma di Lagrange dell’interpolante

Se il sistema (5.3) fosse del tipo Ja = y, con I matrice identita, a 'array dei
coefficienti incogniti e y ’array dei valori, la soluzione sarebbe immediata, ovvero
a; = vy;, 1 = 0,...,n. Pertanto un’idea e di considerare una base polinomiale
bo(x),- -+ ,by(x) che verifichi la proprieta b;(z;) = 1, b;(z;) =0, j # i. I polinomi
elementari di Lagrange sono la base cercata. Infatti, essi sono definiti a partire
dai punti d’interpolazione z; come segue

n

X — X
li(x) = — . 5.6
(z) '7]'[_ o (5.6)
Jj=0,j#i
I polinomi /;, ¢ = 0,...,n sono polinomi di grado n, valgono 1 quando z = z; e

0 altrimenti, cioe I;(z;) = J, ; (vedasi Figura 5.2). Pertanto possiamo esprimere
il polinomio d’interpolazione p,,(x), costruito sull’insieme (z;, f(z;)), i = 0,...,n,
come

palx) = Li(x)f(xs) . (5.7)
1=0

Inoltre vale la seguente identita

> (@) =1,

=0

che altro non é che il polinomio d’interpolazione della funzione f(z) = 1.
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Folinomi di Lagrange di grada § su nodi equispaziati
15 T T T T T T

05k

1 I I I
-1 -na 0.6 -0.4 -0z [a] 0z 0.4 0e 08 1

Figura 5.2: Grafico di alcuni polinomi elementari di Lagrange.

Posto w, (z) = H(a: — x;) & facile provare che
i=0

Posto

i=0

Con tale nuova forma, detta (prima) formula baricentrica, si ha il vantaggio che
se 1 coefficienti w; sono precalcolati, per valutare il polinomio p, (x), serviranno
O(n) flops (valutando w,,(z) e i pesi w;/(z — x;)) al posto di O(n?) flops necessarie
per valutare ciascun polinomio elementare di Lagrange.

Non solo. Se aggiungiamo un altro nodo, =, 1, allora i pesi diventeranno

w = wi/(Xpi1—xi), 1=0,...,n
1

Wn+1 — 1 .
H?:O,i;én-&-l(x"Jrl - ‘rl)
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Infine, se g(z) = 1 allora g(x) = wn(m)z

In definitiva, il polinomio

d’interpolazione diventa

pu(T) = i—w (5.8)

relazione detta seconda formula baricentrica. In questo caso le funzioni elemen-

tari di base, sono
'll)j

X—X, .
bj(z) = 7211 w— J=0,...,n.
j:O x—acj
Come osservazione finale, ricordando che i polinomi elementari /; valgono 1
in z; e zero negli altri punti z;, j # i, ma possono assumere valore maggiore di 1
in modulo, come si evince anche dalla Figura 5.2.

ESEMPIO 36. Consideriamo il caso n = 1. I punti che prendiamo sono (zo, f(z¢)) e
(1, f(z1)). 11 corrispondente sistema di Vandermonde ¢

(1) ()= ()
()

e pertanto avremo la soluzione

(o) (e ™)

Quindi il polinomio p () &

La matrice inversa ¢

r1 f(w0) — w0 f(71) n flxy) — f(xo)x

T — To €Tl — o

pi(z) =
ed evidenziando f(z), f(x1) possiamo anche riscriverlo in forma di Lagrange

1 — T Xr — X

p1(z) = f(zo) + f(w1)

T1 — o 1 — o
dove sono ben visibili i polinomi Iy, l;.

Le funzioni Matlab/Octave lagrai.m e lagrai target.m in Appendice C, con-
sentono di calcolare I'i-esimo polinomio elementare di Lagrange nel punto = o su
un vettore di valori, rispettivamente.

Nel caso di nodi z; equispaziati , cioé x; — 2,1 = h ovvero x; = g +ih, i =
0,...,n, 1 polinomi elementari assumono una forma particolarmente interessante
dal punto di vista implementativo.
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Con il cambio di variabile z(t) = o +th, t =0,...,n, l;(x) sara una funzione

di ¢, ovvero
n

(1) = ﬁ xo+th—xo—jh _ 11 t—j

xo+ih—xg—7jh

j=0,j#i jmogi b
Detta ora w,,11(t) =t(t — 1) --- (t — n), risulta
n . ¢
1T (tfj):wt%l(i)? (5.9)
J=0,5#i
n i—1 n )
II G-n=TJ6-5 [[ G- =D il(n -1, (5.10)
j=0,j#i =0 j=it1
da cui
_ wn+1(t) = =i Yi
pa(t) = = g( 1) <Z> Tk (5.11)

Quando i nodi sono equispaziati, e facile verificare che per il calcolo di p, () sono
necessarie n°/2 addizioni e 4n moltiplicazioni.

ESERCIZIO 63. Costruire la funzione Matlab /Octave che calcola l’i-esimo poli-
nomio elementare di Lagrange su nodi equispaziati facendo uso delle formule
(5.9) e (5.10). Costruire quindi il polinomio interpolante mediante la (5.11).

5.2.1 Analisi dell’errore d’interpolazione

Sia f(z) definita su [a,b]. Detto p,(x) il polinomio d’interpolazione sugli n + 1
punti a due a due distinti z, ..., z,, indicheremo con

r(z) = f(z) — pu(x)
la funzione errore per la quale si ha r,(xz;) =0, i =0, ..., n.

Teorema 22. Se f € C""[a,b], allora

(n+1)
rn(x):(w_xo)'“(x—xn)f( N 3

m s (5.12)

con ¢ € (a,b) e x; distinti.

Dim. Se x = x;, 'errore e nullo e quindi il risultato e ovvio.
Sia ora x # x;, allora preso un qualsiasi ¢t € I, (I, il piu piccolo intervallo che
contiene i punti zy, ..., z,,, ) possiamo definire la funzione ausialiaria

B Wi ()7 ()
wp(z)

g(t) = rn(t)

Poiché f € C"*1(1,) segue che g € C""1(I,) ed ha n + 2 zeri distinti in I,.. Infatti
g(z;) =0,i=0,...,neg(x) =0. Allora per il teorema di Rolle, ¢’ han + 1 zeri e
cosi via finché ¢("*1) ha un solo zero, che indichiamo con ¢.
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Ma r () = fFHD () e w(" ™ = (n + 1)! pertanto

(n+1)!
wn ()

Quando valutiamo questa espressione in ¢t = £ otteniamo il risultato richiesto. [

g I(t) = frO() —

rn(x).

ESEMPIO 37. Calcoliamo V'errore d’interpolazione lineare, ovvero per n = 1. Dal
Teorema 5.12, r1(z) = (z — z0)(x — 21) L 2('5), ¢ € (xp,21). Ora,

- 2
max |(z — z0)(z — 21| = FO= T
x€(xo,21) 4

Se indichiamo con My = maXge(zy,2,) |f”(7)], possiamo dare la seguente maggio-
razione

Ty — x1)>
8

Ad esempio, per f(z) = tan(z), x € [1.35,1.36], sapendo che f"(z) =
troveremo |rq(z)| < 0.24-1072.

ra(2)] < My

2sinx

cos3 x

ESEMPIO 38. Per approssimare v/Z, dove Z non ¢ un quadrato perfetto, possiamo
interpolare come segue. Siano xg,x1,xs i quadrati perfetti piu vicini ad z, dei quali
consideriamo le loro radici. Si tratta quindi di costruire il polinomio di grado 2, pa(z),
interpolante i dati (2, /7;), i = 0,1,2. Allora V/Z ~ ps(Z).

Se = 0.6, consideriamo i tre punti

(0.49,4/0.49 = 0.7), (0.64,/0.64 = 0.8), (0.81,/0.81 = 0.9)

ed il relativo polinomio d’interpolazione po(x). Il valore ps(0.6) =~ 0.774 c¢i dara
un’approssimazione di v/0.6 (vedi Figura 5.3).

Circa l'errore che commettiamo, si tratta di stimare l’errore in [0.49, O 81]. Ora
essendo wy(z) = (2—0.49)(z—0.64)(x —0.81), g(z) = vz t.c. g®(z) = \ﬁ’ lerrore

in modulo &

r w , £€10.49,0.81
Ira(@)] < [ws(a mf ¢ )
Infine,
0.924-1073
75(0.6)| < ——— < 0.35-107
164/(0.49)5

5.3 Errore d’interpolazione e fenomeno di Runge

Sex;, =x;_1+h, i=1,...,n,con xydato e h > 0, si puo provare che
L hn+1
H(:C —x;)| <n!
i=0

La dimostrazione, per induzione, procede come segue.
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0.05 T T T T T T T T
oal
(0.81,0.9)

0asr-

0.8

I ! I I I L I I
0.45 05 0.55 08 0.65 07 075 LIR= 088 02

Figura 5.3: La parabola del’Esempio 38.

e Per n = 1, abbiamo due punti z, z; distanti h. La funzione |(x —z¢)(z —21)|,
come visto nel’Esempio 37, &€ una parabola il cui massimo, nel vertice, vale
h? /4. Questo prova il passo iniziale dell’induzione.

e Siavera per n+1 punti, zg, ..., z,. Prendiamo un altro punto x,,.,. Avremo
n+l1 n n+1 hn+2
|H}(m—miﬂ:|g(x—mi)|~|x—wn+1\ < n! (n+1)h=(n+1)! 1

ind.

Pertanto I'errore d’interpolazione, per punti equispaziati, si maggiora come segue:

hn+1

< (n+1) ‘ C— :
ma @) < ma| 100 gy 619
La disuguaglianza (5.13) ci dice che nonostante per h — 0, limy_.g 4’(":7111) =0

Perrore non ¢ detto vada a zero. Cio dipende dall’ordine di infinito della derivata
hn+1

n + l-esima rispetto al fattore TTEVE Vediamolo su un esempio.

ESEMPIO 39. Per costruire il polinomio di grado n = 2 interpolante f(z) = e**!
in [0, 1] su nodi equispaziati, dovremo consderare i punti zp = 0, 1 = 0.5, 1 = 1.
Pertanto errore d’interpolazione si maggiorera come segue

h? z+11(3)

R = < —
ax [ra(2)| < 3 max (e

Se si fanno i conti, arrotondando a 2 cifre decimali, risulta che R < 0.08.

0
Riconsideriamo I’'Esempio 34, ovvero la funzione di Runge:

1

g(z)
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Sugli n + 1 punti equispaziati x;

—5+ih, i =0,...,n, h=10/n consideriamo il

polinomio d’interpolazione di grado n. Runge osservo che nonostante g € C*(R),
Perrore g(z) — p,(x) tende a crescere con n. In particolare dimostro che se |z| >
3.63 il polinomio si discosta sempre piu dalla funzione oscillando enormemente.
In Figura 5.4 si vede la funzione di Runge e il suo polinomio d’interpolazione di
grado 10 su nodi equispaziati e nodi di Chebyshev (che descriveremo oltre).

1.2

Ez=mpic di Aunge. Palinomic d'inferpalazions di grado &

0.8

Q.8F

0.4

0.2

=]

funzione

— — — Pal. su nodi eq.

nodi equis.

Pal. su nodi Gheb.

nodi Cheb.

Ezempic di Runge. Polinomio d'interpolazions di grade 10

15

0.5

] funzione

i — — — Paol. su nodi g,

! 2 nodiequis.

Pal. su nodi Gheab.
| nodi Sheb.

Figura 5.4: Funzione di Runge e polinomio d’interpolazione su nodi equispaziati

e di Chebyshevw.

e Prima domanda: come evitare il fenomeno di Runge?

Una prima risposta e quella di usare i punti di Chebyshev invece dei punti
equispaziati. In [—1,1] i nodi di Chebyshev sono gli zeri del polinomio or-
togonale di Chebsyhev (di prima specie) di grado n, T),(x) = cos(n arccos x).
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Infatti risolvendo 7),(x) = 0 si ha arccosz = (2k — 1)5-, k= 1,...,n, da cui
i punti
2k —1
x,(cc):cos( 7T), k=1,...,n. (5.15)
n 2

- Si tratta di punti distinti ed interni all'intervallo [—1, 1].

- Osserviamo che, se invece di [—1, 1] consideriamo il generico intervallo
[a, b], allora applicando la trasformazione lineare che manda I'intervallo
[-1,1] in [a, b] i punti corrispondenti sono

T =

a+b b—a (©)

2 T3 Tk
dove :z:,(gc) sono i nodi di Chebsyehv in [—1,1]. In alcuni testi (vedasi
ad es. [25, p. 78]) si considerano come nodi di Chebyshev i punti di
Chebyshev-Lobatto, m,iCL) = cos(km/n), k = 0,...,n, che includono
pure gli estremi dell’intervallo.

Da un punto di vista geometrico, i punti di Chebyshev sono le proiezioni
sull'intervallo [—1, 1] dei punti equispaziati sul semicerchio di diametro [—1, 1]
(vedasi Figura 5.5). Come si vede dal grafico, se prendiamo 2 punti a e b di
[—1, 1] ottenuti come proiezione di punti equispaziati sul semicerchio, vale
la relazione

| arccos(a) — arccos(b)| = |0, — 6| = cost.

Questo dice che i punti di Chebyshev hanno la distribuzione dell’arcocoseno.

Puriti di Chebsyhew
T

L L L L L L
-08 -0.6 -04 0.2 o 02 04 0E 0.8 1

Figura 5.5: 10 punti di Chebyshev.
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e Seconda domanda: perche i punti di Chebyshev sono migliori di quelli
equispaziati?

Una prima risposta e grafica (vedasi Figura 5.4)... ma non basta! Nella
prossima sessione presenteremo una risposta matematicamente piu for-
male basata sullo studio della costante di Lebesgue.

Osservazione. Oltre ai punti di Chebsyshev, esistono i punti di Fekete, che ven-
gono definiti come i punti che massimizzano il determinante di Vandermonde,
e le sequenze di Leja. Entrambi questi insiemi di nodi, hanno la distribuzione
asintotica dell’arcocoseno. Per maggiori dettagli sui punti di Fekete, loro pro-
prieta e aspetti computazionali si rimanda i recenti articoli [4, 5]. Per dettagli
sulle sequenze di Leja e le loro applicazioni si rimanda all’articolo [12] nonché
all’Appendice C.

5.3.1 La costante di Lebesgue

Indichiamo con X la matrice triangolare inferiore di dimensione infinita, i cui
elementi z; ; sono punti appartenenti all’intervallo [a, b]. Inoltre per ogni n > 0,
la riga n-esima ha n + 1 elementi (corrispondenti ai punti su cui costruiremo
il polinomio d’interpolazione di grado n). Sia p/(x) il polinomio di grado n che
interpola la funzione f usando gli n + 1 nodi della n-esima riga di X.

Fissata X e la funzione f, indichiamo con

EpoolX) = If =Pl lloc, n=0,1,.... (5.16)

Perrore in norma infinito tra f e il suo polinomio d’interpolazione. Indichiamo
con p! € P, il polinomio di migliore approssimazione uniforme di grado n di f
per il quale consideriamo

E,=f—pnlle <IIf = nlloo, V@n € Py (5.17)
Teorema 23. Sia [ € Cla,b] e X come prima. Allora
EpnooX) <1+ A (X)E;, n=0,1,... (5.18)

con

n
A (X) = l;
n(X) mrél[i?é] ; |li(z)|
che si chiama costante di Lebesgue.
Osservazioni.

e Il polinomio di migliore approssimazione, se esiste, € unico (cfr. ad esempio
[9, 28]).

o E facile provare che A, (X) > 1.
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Dal Teorema 23, £ dipende solo dalla regolarita di f e quindi e indipendente
dall’insieme dei punti d’interpolazione X, mentre non lo &€ A, (X). Pertanto se
desideriamo diminuire l'errore d’interpolazione la scelta del vettore dei nodi &
fondamentale (per diminuire il valore di A,). Si dimostra (vedi ad esempio [28])
che la crescita asintotica (ovvero per n — oo) della costante di Lebesgue per nodi
equispaziati X, e nodi di Chebyshev X, e :

2n+1

A'I’L Xe TN
(Xe) ne log, n

2
Ap(Xe) = - log.(n+1) .

In entrambi i casi per n — oo la costante di Lebesgue tende ad infinito, ma per
i nodi di Chebyshev la crescita e logaritmica invece che esponenziale. Inoltre,
é stato dimostrato da Bernstein (1918) che, per ogni n > 1, A,,(X.) < o(n) con
o(n)=2log(n+1)+1.

Per avere un’idea dell’andamento della costante di Lebesgue per punti di
Chebyshev, in Tabella 5.1 sono riportati alcuni valori di A, (X.) e di o(n) (ar-
rotondati alla terza cifra decimale). I valori di A,,(X.) sono stati calcolati con la
funzione CostLebesgue.m (vedi appendice C).

n | A (X)) | o(n)

2 | 1.189 | 1.699
5 1828 | 2141
10 | 2.232 2.527
15 | 2.412 2.765
20 | 2.477 2.938

Tabella 5.1: Confronti dei valori della costante di Lebesgue per punti di Chebsy-
shev e della funzione o(n)

Come ultima osservazione, i nodi di Chebyshev sono nodi quasi-ottimali. In-
fatti, sempre in [28, pag. 101], si osserva che esiste un’insieme X* di nodi ottimali
anche se il loro calcolo non & semplice. Ma, come provato da L. Brutman in STAM
J. Numer. Anal. 15 (1978), I'insieme dei nodi di Chebsyhev estesi (o espansi),

A ©)
T=<2py=—"—, k=1,...
T cos(m/2n)’ et

che si ottengono dai punti di Chebyshev tramite dilatazione (vedi Fig. 5.6), e
utile per tutti gli usi piu frequenti e quindi essi possono essere considerati come
nodi “ottimali“ sull’intervallo.

5.3.2 Stabilita dell’interpolazione polinomiale

Dati (z;, f(2i)), i = 0,...,n, invece dei valori f(z;) consideriamo dei valori per-
turbati f(x;). Indichiamo con p/ il polinomio di grado n che interpola (x;, f(z;)),
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Figura 5.6: 10 punti di Chebyshev (o) e Chebyshev estesi (¥) in [—1, 1].

i =0,...,n. Allora,

Iph =l = max |5 1) ()~ Fay)) (5.19)
=0
< xgﬁ];|lj<x)|orgia§xn\f<xi> — @) (5.20)
Essendo A, (X) := max,cpa 4 >, |li(2)], con X = {xg,...,z,}, la costante di

Lebesgue si puo interpretare come il numero di condizionamento del problema
d’interpolazione polinomiale.

ESEMPIO 40. Consideriamo la funzione f(x) = sin(27z), x € [~1,1] che desideriamo
interpolare su 22 nodi equispaziati. Consideriamo poi i valori perturbati f(x;) tali
che

. NS —2
5.—02?;1\]”(11) f(zi)] = 4.5107~.

Costruiamo pgl e pgl. Mediante la (5.20) otteniamo la stima Ag; &~ 4500. Ovvero
il problema ¢ sensibile alle perturbazioni (che ritroviamo soprattutto nei punti di
massima oscillazione della funzione).

5.4 Polinomio interpolante in forma di Newton

Si puo esprimere il polinomio di interpolazione di grado n della funzione f, pf (z),
in forma di Newton:

pl(x) = by + b1 (z — 20) + bo(x — o) (@ — 1) 4+ -+ bp(z —20) - (& — Tp1) ,

dove b; rappresenta la differenza divisa di ordine i della funzione f. Per com-
prendere come costruire sifatto polinomio, dobbiamo dapprima introdurre le dif-
ferenze divise di una funzione.
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Polinomio d'interpolazions di grado 21, nodi equispaziati
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Figura 5.7: Funzione dell’Esempio 40

5.4.1 Differenze divise e loro proprieta

Definizione 19. Dati n + 1 punti distinti xo,...,z, e i valori y; = f(z;), la
differenza divisa di ordine 0 della funzione f & f[x;] = f(z;), la differenza divisa
flziga] — fla]

Ti41 — X4

diordine 1 e flx;, x;11] = e ricorsivamente, la differenza di ordine

ke
flxigy, - wig] — flre, o Tigp—1] . (5.21)
LTitk — L5

f[.’L‘i, ey mi+k} ==
1. La differenza divisa di ordine k£ + 1 di un polinomio di grado % & identica-
mente nulla. Vediamolo su un esempio.

ESEMPIO 41. Consideriamo i punti {—1,2,3,5} e f(z) = 22 + 1. La tabella
delle differenze divise e la seguente

z; | y; | ordine 1 | ordine 2 | ordine 3
1] 2

215 1

3 |10 5 1

5 | 26 8 1 0

Tabella 5.2: Differenze divise della funzione 22 + 1
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2. La differenza divisa di ordine n, si esprime come

flao,. . a) =Y (~1) f(z5)

=0 ico.in; (@i —5)

(5.22)

Questa proprieta deriva dalla cosidetta forma determinantale delle differenze
divise. Se prendiamo infatti I'insieme di punti distinti X = {z;, i =0,...,n}
e indichiamo con

QX(goa s agn) = (gj(mi))i,j:(),.“,n

la matrice i cui elementi sono le valutazioni delle funzioni g; nei punti z;,
si ha

flzo, ..., xn] =detQx(1,z,...,2" ', f)/detQx (1, z,...,2" 1 ™). (5.23)

3. Le differenze divise sono invariati rispetto all’'ordine dei nodi. Ovvero

flzo, -y xk] = flxig, -« i) (5.24)

dove (ig, ..., i) € una qualsiasi permutazione di (0, . .., k). Questa proprieta
€ una diretta conseguenza della formula (5.22).

Di tutte le predette proprieta, il lettore curioso puo trovare la dimostrazione ad
esempio in [2, pag. 384 e ss.].

Possiamo osservare che il polinomio
pl () = flzo] + flro, z1](x — zo) + -+ flxo, ..., ) (@ — 20) -+ (& — 1) (5.25)

¢ interpolante la funzione f(x) nei punti z;: infatti p,(x;) = f(z;). Per 'unicita
del polinomio d’interpolazione possiamo dire che esso ¢ il polinomio d’interpolazione!

La (5.25) & detta la forma di Newton del polinomio d’interpolazione che potremo
riscrivere piu semplicemente come

Pl (@) = bo+bi(w—z0) +ba(w —mo) (x—21) + -+ bp(w—m0) - (T —2p1) , (5.26)

dove b; rappresenta la differenza divisa di ordine i della funzione f.

5.4.2 Algoritmo delle differenze divise

Per determinare i coefficienti b;, i = 0, ...,n in (5.26), Palgoritmo delle differenze
divise e descritto nella funzione DiffDivise.m (cfr. Appendice C).
Alla fine, il valore del polinomio p,, in z, si determina con lo schema di Horner:

p= bu; (5.27)
p = (x—x)p+by, i=n—1,.,0
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Lerrore d’ interpolazione si puo esprimere usando le differenze divise di or-
dine n + 1 della funzione f. Ricordando che per I’errore vale

n (n+1)
Fall) = §(0) — pl(o) = (Hw—xi)) . (529
=0

facciamo ora vedere il legame esistente con le differenze divise. Vale il seguente
risultato:

Proposizione 10. Se f € C"*1(I), allora

Foe)
m = f[xo,...,xmx] y (5.29)
con & punto che appartiene al piu piccolo intervallo che contiene xq, . .., x,, .
Dim. Dati zy, ...,z, eivalori corrispondenti della funzione f(x;), i =0,...,n,

indichiamo con p/ il polinomio d’interpolazione. Preso poi un punto z, diverso dai
punti z;, che consideriamo come un altro punto ., ; d’interpolazione, costruiamo
! +1- Grazie alla formula di Newton dell'interpolante

Phia(t) = ph(t) + (¢ = 20) -~ (t = xn) flwo, - -, 2, ).

Pert =z, pr_l(x) = f(z), da cui

En(z) = f(x)=pl(x)=pl.(2) = pl(x) (5.30)
= (r—x0) (& —x)flro,. ., Tn, 1]
= wpii(@)flzo, ... 2n, 2],

Essendo f € C""!(I) (poiché x & un punto d’interpolazione) e ricordando che

(n+1)
Bua) = (2 = ao)- -+ (o — ) L) (5.31)

dal confronto di (5.30) e (5.31) si conclude. [J

(el

5.4.3 Formula di Hermite-Genocchi per le differenze divise

Questa formula e interessante perche permette di estendere la forma di Newton
dell’interpolante anche al caso di punti ripetuti.

Teorema 24. Siano dati n+ 1 punti distinti xo, 21, ...,x, e sia f € C*(I) con I il
piu piccolo intervallo che li contiene. Allora

flxo, 1. 2] = / f(") (xoto + -+ + xpty)dtrdts .. . dty, , (5.32)

Tn
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dove tg =1 — (t; +ta + ... + t,) e lintegrale é fatto sul simplesso
Tn = {(tl,tg,...,tn) D=0,y <1 }
i=1

Dim. Come prima cosa, osserviamo che top > 0e > "  t; = 1.
La dimostrazione di (5.32) si fa per induzione su n.

1. Sen=1, 7, =[0,1]. Lequazione (5.32) diventa

1 1
/ [ (towo + t1z1)dty = / f'(xo + t1(x1 — 0))dtq
0 0

— . imof(:ro +t1(x1 — 20)) 22(1)
= L) =@
1 — Xo

2. Nel cason = 2, 7 & il triangolo di vertici (0, 0), (1,0), (0,1).

/ f”(tod?o + tll‘l + tQIQ)dtldtQ =
T2

1 pl—ty
/ / [ (@0 + t1(x1 — x0) + ta2(x2 — 20))dtadty
0o Jo

1
1 =1—
/0 T3 — To ['(xo + t1(z1 — z0) + ta(@2 — xo))\g;é gty

1
o — o

{/01 F@ + t1(01 — ) dt1—

- /01 I (o + t1(z1 — xO))dtl}

1
T2 — o

{flz1, 2] = flwo, 21]} = flzo, 21, 22] -

3. Nel caso generale si integrera prima rispetto ad una variabile per ridurre
la dimensione, quindi per ipotesi induttiva si conclude.

Questo conclude la dimostrazione. O

Nel caso in cui tutti punti "collassano” in zy (cio ha senso poiche la funzione
flzo,...,x,] & continua nelle sue variabili) usando le proprieta delle differenze
divise avremo

f[an (X3} Io} - / f(n) (IO)dtl e dtn - f(n) (TO) : VOln(Tn)
——— .

n+1 volte
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ove Vol, (7,,) indica il volume n-dimensionale del simplesso 7,,. Ora, ricordando

. . ..
la relazione Vol,, (,) = — si ottiene la formula
n

(n)
flxo, ..., 20 = F o) . (5.33)
———

n!
n+1 volte

La proprieta (5.33) possiamo applicarla nel seguente semplice esercizio.

ESERCIZIO 64. Stimare le differenze divise di ordine 3 della funzione f(z) = V1 4 a2
sui punti {0, 1,1, 2}, arrotondandone il risultato a 2 cifre decinmali.

OSSERVAZIONE. Se di una funzione f(z) si conoscono il valore in un punto
x0 e 1 valori delle derivate fino all’ordine % in z, la tabella delle differenze divise

f" (o)

e la Tabella 5.3. dove f[.l?o,l‘o] = f/(.lﬁo), f[l‘o,l‘o,.ro] = — € f[.%‘o,. .. ,J)o] =
2 ———
k+1 volte
zo | flzo]  flzo,wol —  flwo,wo,20] ... flzo,... 20
———
k+1 volte

zo | flxo]  flxo,xo]

f[xo,l‘o,xo]

2o | flzo]  flwo, o)

Tabella 5.3: Tabella delle differenze divise per un punto ripetuto k + 1 volte

(k)
fT('xO). In questo caso quindi il polinomio d’interpolazione in forma Newton

coincidera con la formula di Taylor.

5.5 Interpolazione di Hermite

Il polinomio osculatore di Hermite (dal latino, osculare che significa baciare) e
quel polinomio ps,11(z), di grado 2n + 1 costruito usando n + 1 distinti z;, i =
0, ...,n che soddisfa le 2n + 2 condizioni

p2n+1(xi) - f('rl)a p/2n+1(z1) - f/(xl) ) 1= Oa e, (5-34)

In forma di Lagrange, il polinomio osculatore di Hermite si scrive come segue:

n n

Pont1(x) =Y ui(w) f(z:) + Y vil@) f/(2:) (5.35)

i=0 =0
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dove i polinomi u;(z) e v;(x) sono funzioni dei polinomi elementari di Lagrange,
ovvero

wi(2) = [1 = V() (x — 23)]12 (), (5.36)
vi(z) = (x — 2;)3(x) . (5.37)

E facile verificare che i polinomi u;(z) e v;(z) hanno grado 2n+1 e per essi valgono
le condizioni

ui(zr) = dik,
vi(we) = 0, ul(zx) =0, VK

vg(xk) = 5i,k-

Ne segue che il polinomio (5.35) ha grado < 2n + 1 e soddisfa le condizioni
d’interpolazione (5.34).

Il polimomio (5.35) si puo costruire anche in forma di Newton mediante la
seguente tabella delle differenze divise: dove flx;,z;] = f'(x;), i = 0,...,n. Per

zo | flwol
f[vaxO]

zo | flzo] flzo, w0, 1]
f[IO;xl]

zy | flr] flzo, v1, 1]
fley, 2]

€1 f[l‘ﬂ f[330,330a-~-7xn7$n]

. f[xo,fﬂml‘n]
f[xn—hxn]

Tn f[zn} f[x(Jv:Ena zn]
f[l'nvxn}

Tn | floa)

Tabella 5.4: Tabella delle differenze divise per I'interpolazione di Hermite

suggerimenti implementativi del polinomio osculatore di Hermite in forma di
Newton, rimandiamo all’Esercizio 72.

Possiamo anche estendere la formula dell’errore d’interpolazione,(5.12) o (5.28),
al caso in cui il polinomio sia costruito su nodi non necessariamente distinti.

Teorema 25. Se f(z) € C"*'[a,b], esiste un punto £ = £(z) € (a,b) tale che

A3

f[anxlw-wxn»l'] - (n+1)' . (538)
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Se f(x) € C""?[a, ], esiste un punto n = n(x) € (a,b) tale che

S ()
— T, T = —— 5.39
dl_f[x07x17 , L LU] (TL+2)' ( )
Infine, se i punti x, . .., T,,x sono tutti coincidenti allora £ =n = x.
Dim. Applicando il teorema della media integrale alla funzione f[xg, z1,. .., Zy, 2]

espressa mediante la formula di Hermite-Genocchi, si ha

1 t1 tn
flzo,x1,. .. ap, 2] = f("“)(ﬁ)/ dtl/ dtg.../ dt,
0 0 0

da cui deriva immediatamente la (5.38). La (5.39) si ottiene in maniera analoga
osservando che

af[wo,ml,...,xn,x] = fleo,x1,. .. 20, 2z, 2] .

Questo conclude la dimostrazione. [

5.6 Algoritmo di Neville

Dati a, b, estremi dell'intervallo di interpolazione, n il numero dei nodi di interpo-
lazione, x,y array di dimensione n che contengono i nodi equispaziati e il valore
della funzione f = (f(zo), ..., f(z,)) nei nodi equispaziati z; = a + (b —a)*, i =
0,...,n. Posto y; = f(z;), indichiamo con = € [a,b] il punto su cui valutare il
polinomio interpolante allora il polinomio interpolante in x & ottenuto con la

seguente formula iterativa, nota come schema d’interpolazione di Neville:

Pi = Yi, ’L:O,,TL

allora
rT)I\r —X — 1lr)\r—x
Po. k(x) _ P1,..., k( )( 0) Po,....k 1( )( k) (5.40)
T — Xo
¢ il polinomio d’interpolazione su xo, . .., z5. Pertanto alla fine, po 1,... ,(z) rappre-

sentera il valore in z del polinomio d’interpolazione di grado n costruito mediante
l'uso dei punti (z;,y;).

Il vantaggio di questa tecnica, e che il polinomio d’interpolazione viene costru-
ito come una successione di polinomi di grado crescente, per cui il procedimento
si arrestera quando e raggiunto il grado richiesto.

In Tabella 5.5 riportiamo lo schema triangolare di Neville nel caso cubico.
Come si puo facilmente verificare, i polinomi della prima riga py.. s, s =0,...,3
hanno grado crescente da 0 a 3.
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o | Yo poa1(z) poi2(x) poi2s3(T)
1 | Y1 Pl,z(l”) p1,2,3(96)

T2 | Y2 p2,3(33)

3 | Ys

Tabella 5.5: Schema di Neville, per n = 3.

ESERCIZIO 65. Si valuti il polinomio di Neville di grado 3 < n < 10, inter-
polante la funzione

sin(z)
(1+e7)’
su punti dell’intervallo e si determini anche l’errore d’interpolazione. Fare
il grafico della funzione, dell’interpolante di Neville e quello dell’errore al
variare di n.

fx) =

x € [0, 2],

5.7 Interpolazione polinomiale a tratti: cenni

Lidea sottostante a questa tecnica € di limitare il grado del polinomio di interpo-
lazione aumentando la flessibilita dell'interpolante.

Si parte da una suddivisione A = (J!"_, I;, dove I; & il generico sottointervallo
in cui si & suddiviso l'intervallo [a, )], e si opera un’approssimazione polinomi-
ale di grado basso su ogni sottointervallo I;. Rispetto all’interpolazione (globale)
su tutto l'intervallo, pur perdendo in regolarita, questa tecnica migliora la de-
scrizione della funzione da approssimare.

E assai diffuso l'uso dell’ interpolazione lineare a tratti che genera una fun-
zione che si presenta come un segmento di retta su ogni sottointervallo e come
una spezzata sull’intero intervallo dove risulta continua ma non necessariamente
derivabile. Datii punti z, ..., z, (non necessarimente equispaziati) di I = [z, z,,]
eivalori f(x;),4 = 0,...,n, indichiamo con I; = [z;,2;41] l'i-esimo intervallino.
Su ognuno degli n sotto-intervalli I;, i = 0,...,n — 1, iniziamo con 'approssimare
f con un polinomio lineare a tratti. Ovvero, su I;, costruiamo

f(@ig1) — f(zq)

p{,hz (z) = f@;) + (v — x3) W , (5.41)

dove l'indice h; in p{ o Cl ricorda che gli intervallini non hanno tutti la stessa
ampiezza.
Posto H = maxy<;<n—1 hs, vale il seguente risultato.

Proposizione 11. Se f € C%(I), allora

2

H ’
max | () — p] ()] < - max | ()] (5.42)
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La proposizione dice che se f e sufficientemente regolare allora il polinomio
lineare e continuo a tratti converge alla funzione con H — 0.

Facciamo notare come le funzioni fplot e plot di Matlab costruiscano proprio
I'interpolante lineare a tratti.

ESEMPIO 42. Consideriamo i valori della funzione sin nei punti equispaziati z; =
i, i = 0,...,10. Usando le seguenti istruzioni Matlab/Octave, facciamo vedere come
plot produca linterpolante lineare a tratti (vedasi Figura 5.8).

x=1:10; y=sin(x);
xx=0:0.01:10; yy=sin(xx);
plot(x,y,’-’,xx,yy,’:r’)

Figura 5.8: Funzione seno (linea punteggiata) e la sua interpolante lineare a
tratti (linea continua)

La generalizzazione dell'interpolante lineare a tratti & l'interpolazione poli-
nomiale (continua) a tratti.

Definizione 20. s ¢ un polinomio continuo a trattiin [a,b] di grado k se s € C|a, 1]
e se esistono dei punti &;, i = 0,...,na =& < & < - < &, = b cosicché s e un
polinomio di grado < k su ciascun intervallino [§;,&;4+1],i=0,....,.n — 1.

Nella sezione che segue introdurremo brevemente le funzioni splines polino-
miali che rappresentano tuttora uno degli strumenti piu flessibili, sia in termini
di ordine di approssimazione che di efficienza computazionale, per 'approssimazione
sia di funzioni che di dati. In pratica le funzioni splines sono un ottimo compro-
messo per chi desidera un strumento matematico sufficientemente duttile, effi-
ciente e preciso per approssimare e/o interpolare.
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5.8 Esercizi proposti

ESERCIZIO 66. Si consideri la funzione
f(z) =log(2+2), we[-1,1].

Indichiamo con p, il polinomio di interpolazione di grado < n costruito us-

ando i punti
2k + 1
T :cos( S 71')7 k=0,1,...n
2n

noti come punti di Chebysehv. Sotto tale ipotesi, é noto che l’errore di interpo-
lazione si pud maggiorare come segue:

£ D Nloo o

(n+1)! (5.43)

Hf _anoo S

1. Nel caso n = 4, si determini una maggiorazione dell’errore usando la
(5.43).

2. Nel caso in cui il polinomio di interpolazione, sia invece scrivibile in
forma in Taylor come

/ O 1 O (n) O
tn(x)=f(0)+&x+f—()x2+m+f ( )x", (5.44)
1! 2! n!
Lerrore nel generico punto x si esprime come
(n+41)
F) —tal) = &t e,

T
(n+1)! '
Determinare una maggiorazione di

I = talleo = max [f(z) —ta(x)],

e confrontare il risultato con quello ottenuto nel caso dei punti di Cheby-
shev.

3. Facoltativo: Plottare in un unico grafico, f(x), ps(x) e t4(x).

ESERCIZIO 67. Si consideri la funzione f(x) = x +e” +
allintervallo [—2,2].

To 22 5 ristretta
X

1. Determinare il polinomio d’interpolazione di grado 5 in forma di New-
ton sui nodi equispaziati x, = —2 + kh, k=0, ..., 5.

2. Calcolare lerrore d’interpolazione in un generico punto x € (—2,2).
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3. Ripetere i calcoli usando i punti di Chebyshev.
ESERcIZIO 68. Calcolare la costante di Lebesgue sui punti equispaziati
{0,0.5,1}.
ESERCIZIO 69. Stimare le differenze divise di ordine 3 della funzione f(x) =
V2 + a2 nei punti {0, 1,1, 2} (arrotondare il risultato a 2 cifre decimali).
20

T 1+ log(z2)
all’intervallo [1,2]. Determinare l'unico polinomio (d’interpolazione) di sec-
ondo grado, ps(z) = ag + ayx + axx? tale che

ESERCIZIO 70. Siconsideri la funzione f(x) —5 sin(e”) ristretta

2 2
po(1) = F(1), pa(2) = F(2). / pa () = / f(x)dz

Per il calcolo dell’integrale della funzione usare la funzione quadl di Matlab,
con tolleranza di 1.e — 6. Fare quindi il grafico della funzione, del polinomio

edi||f —palloc

ESERCIZIO 71. Si consideri la funzione f(z) = cos(x3)(x — 2m)e™®, z €
[0, 7]. Sperimentalmente si determini il grado del polinomio d’interpolazione,
costruito sui nodi di Chebsyhev in [0,7], che approssima f(x) in norma in-
finito a meno di tol = 1.e — 4.

ESERCIZIO 72. E noto che se f € C'la,b] e wg, ..., z,, SOnO N + 1 punti distinti
esiste un unico polinomio di grado 2n + 1 che interpola f(x) e ['(z) nei punti
z;. Tale polinomio é quello di Hermite

n

i=0
con H, ;(z)e f{n,i(z) polinomi di Hermite di grado n, definiti come
Hyi(x) = [1=2(x =)Ly, ;(2:)] L7, ;(x)
Hyi(x) = (v—m)L;;(x)

ove L, ;(x) é li-esimo polinomio di Lagrange di grado n.

Implementare (5.45) é computazionalmente costoso. Si puod alternativa-
mente usare lo schema di interpolazione nella forma di Newton nel seguente
modo. Si considerano i punti

{ZO) Z1yR2y B3y eeey z2n+1} — {x07l‘071‘17 X1, "'7‘rn7xn}

e i corrispondenti valori della funzione f e della sua derivata prima [’ nei
punti, cosicche il polinomio Ha,1(x) si puo scrivere nella forma equiva-
lente

Hopt1(2) 90,0 + q11(x — 20) + q22(x — 20)? + g3.3(x — m0)?*(z — 2(p.46)
qaa(z — $0)2($ — »’81)2 +

+ -+ C]Qn—i—l,Qn—i—l(Jj - 1'0)2(3; - 331)2 ce (T - xn—l)Q('r - xn) .

+
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Il problema e quindi ricondotto a determinare i coefficienti ¢, ;, come per
lo schema di interpolazione di Newton. In pratica qo0 = f[z0], 1.1 = f[70, 21]
ecc..

Sia Algoritmo 1 lo schema alle differenze divise che calcola i suddetti
coefficienti, restituendo l'array (qo.0,q1,15 -, q2n+1,2n+1)-

Scrivere un programma Matlab [ Octave che implementa I’Algoritmo 1
e costruisce il polinomio di interpolazione di Hermite mediante (5.46). Si
consideri f(z) = sin(e® — 2), x € 10,2].

Produrre anche il grafico di f e del polinomio interpolante.

Qual ¢ il massimo errore tra la funzione e linterpolante? Lerrore ha
analogie con lerrore d’interpolazione classico (solo sui dati)?
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5.9 Funzioni Spline

Per avere un quadro completo dell’argomento, che richiederebbe una trattazione
molto piu estesa, rinviamo il lettore interessato alla fondamentale monografia di
Carl de Boor [10] oppure al piu recente e compatto volume ad opera dell’autore
[11].

Definizione 21. Si dice che s ¢ una funzione spline di grado k se oltre ad essere un
polinomio di grado k & C¥~1[a,b]. In tal caso i punti x;, i = 1,...,n — 1 vengono detti
nodi (interni).

Notazione: S(k; g, 21, ..., ) € lo spazio lineare delle splines di grado .

Una spline si puo scrivere
k . 1 n—1
s(x) = chxj + & Z dj(x —x;)%, 2 € [a,0]. (5.47)
j=0 j=1

La funzione (z — z;)% si chiama potenza troncata ed & definita come segue:

o @—zp)k oz >y
(@ xj)Jr_{O z<uxj

In (5.47) ci sono k + n parametri (c; e d;), cio implica che lo spazio delle splines
di grado k£ ha dimensione n + k.

ESEMPIO 43. Le splines cubiche, che sono anche le pit usate, si ottengono per k =
3. Il comando Matlab | Octave spline costruisce proprio splines cubiche. Vedremo
nel paragrafo 5.9.3 come costruire splines cubiche interpolanti imponendo diverse
condizioni sui nodi di bordo.

Ordine di approssimaziome: se f € C**1[a,b] e se n (numero nodi) & variabile,
allora si prova che
min — || = O(h*H!
SES(k;60,€15--56n) ”f H ( )

con h = max |x;j+1 — 4.
1§i§n71| o i

5.9.1 B-splines
+oo

Sia {z1,x2,...,x,} (0 {z;};=°° ) una sequenza finita (o infinita) crescente di nu-
meri reali (z; < x;11), detti nodi che per ora assumiamo distinti.

Definizione 22. La i-esima B-Spline di ordine k, che st indica con B(x;z;, ..., Tik)
(grado k — 1) é la k-esima differenza divisa della potenza troncata p(x;t) = (x —

t)kt

B(x; iy @igk) = (Tivk — 2)P[Xsy oy Tigr] ()
dove con p[-|(x) si é indicata la k-esima differenza divisa costruita sui nodi x;, x;11,
wooy Ty di p(x;-) vista come funzione di .
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Nota. Per capire meglio questa definizione, suggeriamo di costruirsi le B-
splines lineari, ovvero per k = 2.

Proposizione 12. Alcune proprieta delle B-Splines.
o Bir(z) =0sex & (vi,Tipr]-
e B, > 0nel suo supporto [z;, ;i)

e VxR, > 7° _ Bix(z) =10 equivalentemente

/ Bip(z)dz = 1.
R

Le B-splines sono quindi a supporto compatto, positive e formano una par-
tizione dell’unita.

Relazione di ricorrenza. Si basa sulla regola di Steffensen per la differenza
divisa del prodotto di due funzioni f e g, nota come regola di Steffensen.

Proposizione 13. Siano f e g due funzioni sufficientemente differenziabili e i
punti 1 < ... < x,41 siano dati. Allora

n+1
(f - @1, oo @nga] = D flo1, oo 25]g[25, oo T (5.48)

j=1

Pertanto, se riscriviamo la funzione potenza p(z;t) = (z —t)* come il prodotto
delle funzioni f(z) = (z —t) e g(z) = (v — )%™, possiamo applicare la regola
di Steffensen per ottenere la seguente relazione di ricorrenza (utile ai fini com-
putazionali!) per le B-splines

Biy(x) = <W> Bi11-1(z) + <H> Bii_i(z) . (5.49)

Lil — Tg Litl—1 — T4

dove [ indica l'ordine (=grado +1), i I'indice di intervallo. La relazione si in-
nesca a partire da B; 1(z) = 1 se © € [§;, &i+1].

In Figura 5.9, sono rappresentate le B-splines di ordine 3 (quadratiche). La
suddivisione su cui sono costruite ha il secondo nodo doppio e 1'ultimo nodo con
molteplicita pari 3. Vedremo nel prossimo paragrafo che scegliendo i nodi multi-
pli, le B-splines e di conseguenza la risultante spline, diventano via via meno re-
golari. In particolare se il nodo ha molteplicita pari all’ordine, la B-spline diventa
discontinua, come in Fig. 5.9 nel caso della prima B-spline (dall’alto) costruita
sui nodi [4,6,6,6]: infatti essa risulta discontinua in 6. La funzione ricorsiva
bspline.m in Appendice C, consente di calcolare la i-esima B-spline di ordine k,
data una partizione xi di nodi, nel generico punto x.
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All quadralic B—splines for the knot sequence [01 124 6 & &]

Figura 5.9: Bsplines di ordine 3 (quadratiche).

5_5 WW

f '| '|

Q4 II |I

| \s /
A K\

Figura 5.10: Bsplines quadratiche costruite con la funzione bspline.m sulla
sequenza equispaziata x=linspace(1,10,10)

5.9.2 Interpolazione

Sia f(x) una funzione nota sui punti ¢y, t,..., t,,. Si desideri interpolarla per
mezzo di una spline S(x) di ordine n (grado n-1) con prescritti nodi interni x1, ...,xn_1.
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Inoltre t; <ty < ... <t,, e
hh <x1 <2< ...<ZN_1<1lm.
I parametri da determinare sono
m=N+n-—1
che verranno determinati dalle condizioni d’interpolazione

S(t;) = f(t;), j=1,...m. (%x)

Per 'unicita della soluzione & necessariochem =N +n—1.

I. J. Schoenberg e A. Whitney nel 1953 (cfr. C. de Boor: I.J. Schoenberg: Se-
lected Papers, Vol 2. pp. 342-344) hanno dimostrato che esiste un’unica soluzione
del problema d’interpolazione se e solo se i nodi soddisfano le relazioni

thh <z < tn+1

to < 29 < tpy2 (5.50)

tN—l <zTy-1 < tm

Osservazione. Non sono richieste informazioni circa le derivate finali. In tal
caso il problema d’interpolazione e trattato come un normale problema d’interpo -
lazione polinomiale.

Possiamo scrivere S(z) = Y., ¢;B;(z) , dove B; sono B-spline di ordine n con
nodi interni la sequenza x4, ..., xy_1. Percio (**) diventa

> eBity) = f(t;), j=1,..,m. (5.51)
i=1

ovvero, in forma matriciale, Ac = f

Costruiamo le B-splines B;, i = 1,...,m. A tale proposito, consideriamo 2n
nodi addizionali: x1_,,..., 20 <t1; T1_pn < To_p < - <xTp.

tm, 2 IN7IN+17"'7IN+’H,—1;
N > IN41 > > TN4n—1 -

Nota. I 2n nodi addizionali possono essere presi coincidenti (come dimostrato
da Carrasso e Laurent in Information Processing 68, IFIP Congress, Edinburgh
1968, Ed. A.J.H Morell, pp. 86-89).

Per la proprieta delle B-splines di avere supporto minimo cioe

>0 i, <zx<ux
/
Bi,(x) =
2y 1( ) \‘
=0 altrimenti

si ha che la matrice A ha al piz n elementi diversi da zero per ogni riga. Non
solo, tale matrice & anche stocastica (somma x righe = somma x colonne = 1)
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Base di B-splines |

Q.6

Q.4

0.2F

-5 [l 5

Figura 5.11: BSpline quadratiche costruite sulla sequenza xi = linspace(-5,5,11)
con aggiunta di nodi multipli, con molteplicita pari all’ordine, agli estremi.

ESEMPIO 44. N =6, n = 4 (spline cubiche) con nodi

a=1 < ta<a <lyg<aa<T3<1ty<1ls<tg<xy<ty<ig<
< wx5<tg=D.

La matrice A (N +n —1), 9 x 9 sara :

X
X X X X
X X X X
X X X X
A= X X X X
X X X X
X X X X
X X X X
X
5.9.3 Interpolazione con splines cubiche
Si consideri una funzione f(z) in un intervallo I = [a,}] della retta reale. Si

prenda una partizione di / (non necessariamente equispaziata)
a=r1 <9< ..<x,=0>0.

Facciamo vedere che il problema d’ interpolazione con una spline cubica &
equivalente alla soluzione di un sistema lineare A - m = d con A matrice tridiag-
onale simmetrica, definita positiva e diagonalmente dominante.
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+
x

— sin{x)"cos{(x"3)'3)

spline cub.
puntidi int.
nodi x Bsplines

2.5

3.5

05

b

— sin(x)"cos{{x"3)/3)

spline cub
puntidi int.
nodi x Bsplines

1

L
3.5

0.5

Figura 5.12: Spline cubica interpolante su nodi “ad hoc” a (sx) e nodi equis-

paziati (dx)
Infatti, su ogni intervallino I; = [z;,2;41], i = 1,...,n — 1 la spline & un poli-
nomio cubico, ovvero s;(z) = ag; + a1,z + az ;x* + ag ;2°. Per determinare univo-

camente la mia spline su I avremo bisogno di 4(n — 1) condizioni (tante quanti i
(5.52)

coefficienti incogniti). Ora, le condizioni d’interpolazione negli n punti z;

si(zi) = f(xi), si(@ip1) = f(@iq1), i=1,....m,
vanno a sommarsi alle 3(n — 2) condizioni di continuita C? nei nodi interni:
Sip1(xiz1),i=1,...,n—2, (5.53)
, (5.54)
(5.55)

5i(wiy1)
si(Tiy1) si1(@it1), i=1,.,m =2,
s (zi41) =
In definitiva avremo n + 3(n — 2) = 4n — 6. Restano pertanto due condizioni da

1 .
= si(Tig1),i=1,...,n—2.
assegnare per rendere univoca la determinazione dei coefficienti incogniti. Tra

le possibili scelte le pit1 usate sono le seguenti.
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e s/(x1) = s!(x,) =0, in tal caso la spline viene detta naturale;

e nel caso in cui siano noti i valori f'(z1) e f'(x,) s'imporranno le condizioni
si(xz1) = f'(z1) e s, (xn) = f'(2), in tal caso la spline viene detta vincolata
0 completa;

e nel caso in cui siano f(z) sia periodica di periodo =, — ;1 = b — a, ovvero
f(z1) = f(z,) s'imporranno le condizioni s (z1) = s/, (z,,) e s} (z1) = s (zy),
in tal caso la spline viene detta periodica.

Indichiamo con m il vettore dei momenti (cfr. eq. (5.55) )

m; = si(z;),i=1,..,n—1

mn = s,_1(zn).

Questa scelta riduce il numero di equazioni necessarie a determinare la spline.
Infatti, s/(x), = € [z;,z;+1] € un polinomio di grado al piu 1, poiché

r — T T — T
s7(x) = mip T +2 (5.56)
dove h; = x;41 — x;. Integrando due volte si ottiene
/ e (i)
si(x) = mip o0, mis g o (5.57)
(x — x;)3 (x —x441)3
si(z) = min Gh M G}L; +ai(z— )+ B

e le costanti o; e 3; vengono determinate imponendo le condizioni d’interpolazione
nei nodi. Ovvero

h2
miﬁ‘*‘ﬁi = f(zi)
h?
Miv1— +ahi + 8 = f(zig1).

6

Da cui ricaveremo S;, «;. In definitiva restano da determinare i momenti m;, i =
1,..., n. Dalle (5.57) imponendo la continuita della derivata prima nei nodi in-
terni e sostituendo i valori di «; e a;_; si ottiene il sistema tridiagonale di ordine
n — 2 nelle incognite mq,...,m,

hi—1 Jrh1‘,—1 + h; h; f@iv1) = flz)  fl@i) = flwiz1)

my;_1 Mi+—mijy1 =
6 7 03 1+ hifl )

3 6 hi

=2,...,n—1,

(5.58)
I valori di m; e m,, si determineranno imponendo le condizioni aggiuntive (5.53)-
(5.55).

Vediamo ora come costruire la spline cubica vincolata, ovvero la spline cubica
per la quale oltre ai valori della funzione f(x) nei nodi devono essere soddisfatte
le condizioni s'(a) = f'(a) e s'(b) = f/(b).
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Per facilitare I'implementazione siano x il vettore dei nodi della partizione,
y il vettorre dei valori della funzione, y; = f(z;), 1 siano dati i valori aggiuntivi
vy = f'(a) eyl, = f'(b). Pertanto l'algoritmo dovra eseguire i seguenti passi.

1. Costruire la matrice A e il vettore d come segue.

e Costruire il vettore h, tale che h; = x;11 — z;

o Costruire il vettore d, tale che di = Y24t —y, d; = 55— — 4=t

i i—1
2, .. —led, =1y, — M_

771

7Z:

e Costruire la matrice A, tridiagonale simmetrica, tale che

hl hn—l
A - 5 An n —
1,1 3 ’ s 3
e
Ai,z‘+1=€, Aiio1 = 61’ A ( 3 ) =2,.,n—1

Infine A1, =As1e Ay o1 = Ap_in.
2. Risolvere il sistema Am = d.

3. Visualizzare i punti (z;,y;), ¢ = 1,...,n e la spline interpolante definita
nell'intervallo z; < x < x;11, i=1,...,n — 1 come segue:

(zip1 — x)’m; + (x — ) M
6h;

S(l‘) = +C (-Ti-&-l — JJ) + D (33 — l‘l)

dove le costanti C, D sono date dalle formule seguenti: C' = z— — hig’“ e

_ Yit1 _ himigs
D= > -
Infine, per la ricerca dell’intervallo a cui appartiene il generico punto z, si pud
fare una ricerca binaria o sequenziale. Il seguente codice Matlab/Octave esegue
la ricerca sequenziale dell’indice j dell’intervallo a cui appartiene il punto z su
cui desideriamo valutare la spline

function j=search_int(x,d);
R N ———————.—
% Cerca 1l’indice j dell’intervallo a cui appartiene
% il punto x su cui valutare la spline
R e ————————.—
for i=1:length(d)-1,
if(x >= d(i) & x < d(i+1))
j=1;
break;
end;
if (x >= d(length(d)-1))
j=length(d)-1; break;
end;
end;
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Osservazione. Nel toolbox splines di Matlab/Octave, la funzione csapi, (la cui
chiamata si effettua come pp=csapi(x,y), consente di costruire la spline cubica,
nella forma definita nella struttura ppform pp, che soddisfa alle condizioni al
bordo dette “not-a-knot”. Tali condizioni prevedono che nel primo nodo interno,
T9, e nell’'ultimo interno x,,_1, sia verificata la condizione

jump 5@ () = 0 = Jump 5% (a,) ,

5.9.4 Teorema del campionamento di Shannon e smoothing
spline

Dato un segnale limitato in banda s(x) esso puo essere ricostruito dai suoi cam-
pionamenti (Nyquist rate) s, mediante I'uso della funzione sinc ovvero sinus

cardinalis, sinc(z) = sin(r ) (forma normalizzata) oppure sinc(z) = sin(x)
x
(forma non normalizzata):
s(x) = Z spsinc(x — k) . (5.59)

keZ

Nota: sinc(0) = 1,sinc(k) = 0, k € Z \ {0}. Nel caso discreto tale campiona-
mento da stime poco accurate.

In alternativa, si possono usare splines cardinali e relative B-splines
cardinali. B-spline cardinali di ordine n si ottengono facendo la convoluzione n+
1 volte di 3°(z) = 1, |z| < 1/2, p%x) = 0.5, |z| = 1/2 e altrove 0. lim,, o, 8" (x) =
sinc(x).

s(x) =) sk (x— k) .
keZ
Per le B-splines cardinali vale la relazione di ricorrenza

ﬁn(x) _ ni 1671—1(1‘) + Z:Tﬁn_l(qj _ 1) )

Tale scelta e pit smooth e meno costosa computazionalmente.
Smoothing: e 'altro modo di fare data fitting con spline.

Problema 1. Siano dati i punti (x;,v;), ¢ = 1,...,n con y; = f(x;). Trovare la
funzione f che minimizza

n Tn

St £ o [ (0 @)
i=1 v
La risultante curva € un polinomio continuo a tratti di grado 2p — 1 Il primo
termine misura la vicinanza della funzione di fitting dai dati. Il secondo pe-
nalizza la curvatura della funzione e « il collegamento tra i due termini. Se
0 < a < oo, Schoenberg provo che tale f e la spline naturale di grado 2p — 1. Se
a = 0, f=interpolante polinomiale;
Nota: i dati sono assunti del tipo segnale+rumore

Yi = f((El) + €, €= N(O,O’Q), 1= ]., N
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5.10 Polinomio d’approssimazione di Bernstein

Si consideri l'intervallo [a,b] = [0,1]. Sia inoltre k (grado) fissato. La base di
B-spline sulla sequenza di nodi

t():...:tk:(), tk+1:...:t2k+1:17
Bk, 1 =0,1,...,k sono polinomi di grado & su [0,1] che verificano la ricorrenza:
Big(z) = xBix—1(x) + (1 = 2)Biy1,p—1(z) , (5.60)

che e quella delle B-splines con le opportune modifiche. Sono detti polinomi di
Bernstein di grado k e si denotano con BF(z) o 3 ().

Teorema 26. (Teorema di Weierstrass)
Sia f € Cla,b]. Dato € > 0 & sempre possibile trovare un polinomio p,(x) (di grado
sufficientemente grande) tale che

‘f(x) _p'n,(l‘” <e, Vo € [a,b] .

Definizione 23. Sia f definita su [0, 1]. Il polinomio approssimante di Bernstein
di grado n associato ad f é

Bu(fin) =3 1) (] )t - ot
Nota: B, (f;0) = f(0), B,(f;1) = f(1) (“quast” interpolante) e

By, p(x) = (Z) (1 — z)nF (5.61)

che sono i polinomi elementari di Bernstein.Circa la convergenza dell’approssimazione
di Bernstein, vale il seguente risultato (dovuto a Bernstein) (cfr. [22, p. 5]).

Teorema 27. Sia f(x) limitata in [0,1]. Allora

lim By(f;z) = f(z)

n— oo

su ogni punto x € [0,1] dove f & continua. Se inoltre f € C[0, 1] allora il limite vale
uniformemente.

Come corollario a questo teorema possiamo ri-ottenere il Teorema di Weier-
strass.

Corollario 1. Se f € C[0, 1], allora per ogni € > 0 e per n sufficientemente grande
|f($) - Bn(f;x)‘ S € Vx € [0, 1] .

Concludiamo con I'approssimazione con operatori di Bernstein
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Polinomi di Bernstein di grado 3

BE_{o3} B_{3,3]

0.5 B_{1.3} B {2.3}

0 — L
o 0.5 1

Figura 5.13: Polinomi elementari di Bernstein di grado 3

5.10.1 Curve B-splines e di Bézier

Siat € [a, f] C R il parametro di una curva parametrica e Py, P, ..., P,_1, n punti
del piano.

1. La curva B-spline di ordine m associata al poligono di controllo indi-
viduato dai punti P; e la curva

S(t) = i PiB;m(t), t € [, B] .

1=0

2. La curva di Bézier di grado n — 1 associata al poligono di controllo
individuato dai punti P; e la curva

S(t) = i BB (t), t € [a,].

1=0

B '(t): polinomi di Bernstein. Come per le funzioni spline, valgono
gli stessi algoritmi di valutazione, derivazione e “knot-insertion”. In par-
ticolare, I’algoritmo di valutazione viene chiamato di De Casteljau. Le
cose interessanti in questo “nuovo” contesto sono relative alle condizioni
di adiacenza tra curve di Bézier, che si esprimono come differenze finite “in
avanti” dei punti di controllo, agli algoritmi di suddivisione e al blossom-
ing. Tali curve sono pero solo interpolanti agli estremi dell’intervallo (dei
parametri) e approssimano il “convex-hull” della curva. Esse sono invari-
anti per affinita, simmetriche e “variation-diminishing”.
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f{x)=x({x-1] su [0,1] & pol. di Bemstein di grado 20

o T T T T T T

— fix)=x{x-1]
= Puol. di Bern.

=005

-0151

_0.25 ! ! 1 1 ! !
0 0.1 0z 0.3 04 05 08 o7 0e 09 1

Figura 5.14: f(z) = x(z — 1), = € [0,1] approssimata con un polinomio di

Bernstein di grado 20

5.10.2 Algoritmo di De Casteljau

I polinomi di Bernstein hanno trovato applicazione nella geometria computazionale
e in particolare modo nella descrizione di curve e superfici di Bézier, che sono
funzioni polinomiali che si ottengono con ripetute interpolazioni lineari.
Consideriamo in questa sezione un algoritmo per la costruzione di curve di Bezier
noto col nome di Algoritmo di De Casteljau (descritto ad esempio in [13]).

Algoritmo 4. Dato un insieme B = {Py,..., P,} di punti del piano e t € R
(usualmente t € [0,1]), il generico punto appartenente alla curva di Bézier si
determina con i seguenti passi:

1. {Passo di inizializzazione}
b\ () = P; (5.62)
2. {Passo iterativo}

B (t) = (1=t V(@) + V() r=tm =0, (5.63)
La curva di Bézier calcolata con 'algoritmo 4 & quindi ottenuta con combi-
nazioni baricentriche ripetute. In Figura 5.15 & descritto il funzionamento
dell’algoritmo di De Casteljau.
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Figura 5.15: Costruzione di una curva di Bézier di grado 3 con I’algoritmo di De
Casteljau.

Proposizione 14. I punti b,(f) (t) possono essere espressi in termini di polinomi

di Bernstein B} di grado r risultando

b\ (1) Z PiyjBl(t) i=0,..on—7 (5.64)

Dim. Induzione su r.
b7 (8) P2 (1 eV () + b (1)
(5.64) i+r—1 i+r

=V (1-1) Y PBIZN +tZPB; L

Usiamo il fatto che B (t) = 0 se j ¢ {0, ...,n}. Riordinando gli indici otteniamo

+r i+r
(1—t)> PBl(t +tZPB;}1 =

i+r i+r

ZP (1—=t)B=}(t) + B~ ()| =>_ P;Bj_
Br (1) o
Questo conclude la dimostrazione O

Usando I’algoritmo di De Casteljau e la geometria sottostante possiamo de-
durre delle proprieta possedute dalle curve di Bézier. Di queste ricordiamo
linvarianza per affinita, l'interpolazione nei punti estremi dell’intervallo
di approssimazione, la proprieta di convex hull!, la simmetria e come per i
polinomi di Bernstein la caratteristica capacita mimica della curva.

1Si definisce convex hull I'insieme formato dalle combinazioni convesse di un insieme di punti (di
uno spazio euclideo) detto il poligono di controllo.
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Un codice per costruire una curva di Bézier & il seguente

function bb=Bezier(Px,Py,t)
e
% Dati i vettori Px e Py (ascisse e
% ordinate del poligono di controllo rispettivamente)
% e il vettore t dei parametri (di lunghezza m),
% la funzione costruisce la curva di Bezier
% e la salva nella matrice bb (di dimensione 2 x m)
R ————
n=length(Px) ;m=length(t); b=[Px; Pyl;
for k=1:m
for r=2:n,

for i=1l:n-r+1,

b(:,1)=(1-t(k))*b(:,i)+t (k) *b(:,i+1);

end
end
bb(:,k)=b(:,1);
end
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5.11 Minimi quadrati discreti e decomposizione SVD

In corrispondenza a punti (nodi) x; e ai valori y;, ¢ = 0,...,m provenienti, ad
esempio, da misurazioni sperimentali, il problema dei minimi quadrati discreti
consiste nell’approssimare tali valori con una funzione

sn(z) = Z cipi(r), n<m (5.65)
i=0

ovvero una combinazione lineare di n+ 1 funzioni linearmente indipendenti {¢; },
possibilmente facili da costruire. Per determinare s,, si chiedera che risulti min-
imo il residuo (quadratico)

E(sy) = Z(sn(mi) — ;) (5.66)

La scelta delle ¢; viene dettata di solito da informazioni note sulla distribuzione
dei dati o semplicemente dall’analisi grafica della loro distribuzione. Una scelta
semplice & di prendere ¢;(z) = 2%, i = 0,...,n. In tal caso il problema si riconduce
alla costruizione di un polinomio di approssimazione.

Dati m + 1 punti (z;,y;), ¢ = 0,...,m, ci si propone di trovare un polinomio
di grado n < m (possibilmente n < m) t.c. siano minime le deviazioni (errori)
(p(zi) = fi)?, i=0,...,m.

La soluzione si ricerca minimizzando il seguente funzionale quadratico rispetto
a tutti i polinomi p di grado m

E(p) =) (p(x:)) —y:)® =Y {ao+armi + - +ana) -y} . (5.67)
=0 =0

In effetti, il funzionale F(p) dipendente dai coefficienti del polinomio p, cioe
agp,...,a,, pertanto potremo scrivere E(ay,...,a,) per evidenziare tale dipen-
denza. Essendo un funzionale quadratico, il minimo lo si ricerca tra i punti che
annullano le derivate parziali rispetto ai coefficienti. Vale infatti il seguente Teo-
rema

Teorema 28. Condizione necessaria affinche si raggiunga il minimo é che

OF

@—O, 7=0,...,n. (5.68)

Questo da origine al sistema

m
Z{ao+a1xi+~--+ana@?—yi}x{ =0, 7=0,...,n,
i=0
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che in forma matriciale diventa

m m m m

0 n 0
dowl dowm e yow > ady,
i=0 i=0 i=0 i=0
m m m ag m

2 n+1

> x> ey a > " ziy;
i=0 i=0 i=0 . = i=0 (5.69)
m m m a7L m

n n+1 2n M
i=0 i=0 i=0 i=0

Il sistema (5.69) rappresenta le cosidette equazioni normali e si puo scri-
vere compattamente come

Ba=1,

con B matrice simmetrica e semidefinita positiva di ordine (n + 1) di elementi
m m

bij = E xﬁﬂ ~2 e z vettore colonna z; = E xéfl y; oppure, come vederemo pil
i=0 j=0

oltre, ricorrendo alla decomposizione SV D della matrice rettangolare A i cui ele-
menti sono a; ; = xfl, t=1,..m+1, j=1..n+1

Il seguente teorema garantisce l’esistenza e unicita della soluzione del prob-
lema dei minimi quadrati.

Teorema 29. Se i punti xg, ..., x,, sono distinti e n < m allora esiste ed é unico
il polinomio p, deg(p) < n tale che E(p) & minimo. I coefficienti ay,...,a, sono
determinati dalla soluzione del sistema (5.69).

5.11.1 Equivalenza tra sistema dei minimi quadrati e de-
compozione SVD
Sia A una matrice rettangolare m X m, m > n che rappresenta la matrice di

un problema di approssimazione dell’ insieme di valori X = {(z;,v;), i = 1,...,m}
con polinomi di grado < n — 1, ovvero

Zaim;'-*l =y, Jj=1,..,m. (5.70)
i=1

Sappiamo che AT A & n x n simmetrica e semidefinita positiva. Usando, ad es-
empio, il metodo di Jacobi per il calcolo di tutti gli autovalori di A7 A possiamo
determinare una matrice ortogonale U e una matrice diagonale D tale che

UT(ATA)U =D. (5.71)

Ora, essendo D = diag(\, ..., \,), le cui componenti sono gli autovalori di AT A
in ordine decrescente. Se qualche \; risultasse un numero negativo (di modulo
molto piccolo), lo si pud considerare zero, poiché gli autovalori di A” A sono tutti
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positivi a meno di errori di arrotondamento dovuti al metodo di calcolo (premoli-
plicazione di A per la sua trasposta) e alla precisone usata.

Da (5.71), posto B = AU (m x n), si ha che
B'B=D. (5.72)

Il che implica che le colonne di B sono ortogonali.
Usando invece la fattorizzazione QR della matrice rettangolare B, determiner-
emo una matrice ortogonale V tale che

VIB=R (5.73)
con R che é zero sotto la diagonale principale. Inoltre, la matrice R e tale che
R'TR=B"VIvB=BT'B=D;

Questo fatto ci suggerisce che le colonne di R sono ortogonali. Inoltre, se per
qualche i si ha \; = 0 allora e facile verificare che la corrispondente colonna di R
sara zero.

Poiché R e triangolare superiore ed & ortogonale, allora essa risulta essere
zero anche sopra la diagonale principale. In definitiva R & diagonale ed ha la
stessa forma della matrice F' della decomposizione SVD di A (ricordiamo che
VT AU = F) cioé

g 00 0 0
0 pu 0 0 0

R=| _ (5.74)
0o .- 0 pin

Ora avremo che R = F con p; = /).

In (5.73), essendo B = AU, si ha che la decomposizione SVD richiesta e:
VIAU =R .

Riassumendo, potremo dire che il vantaggio e lo svantaggio di questo approc-
cio sono rispettivamente

1. vantaggio: semplicita di implementazione del metodo, una volta risolto il
problema della ricerca degli autovalori di A” 4;

2. svantaggio: si deve fare il prodotto A” A che come noto puo portare ad una
perdita di informazioni ed ad un aumento del numero di condizionamento
di A.

Un esempio

Si vuole determinare la funzione che approssima, nel senso dei minimi quadrati i
punti {(x;,y;), 1 <i < m}, con un polinomio cubico p3(z) = aj + azx + azx? +asz®.
Questo & quello che in inglese si chiama “data fitting”.
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Per determinare i coefficienti a;, ¢ = 1,...,4 minimizzeremo, invece dell’errore,
lerrore quadratico medio

E(a1,a2,a3,a4) = Z —p3(;))”

Osserviamo che minimizzare E oE%e&la stessa cosa. Ora poiché E? & una fun-
=0, 1=1,2,3,4.
Cio da luogo ad un sistema lineare Aa =y con A, m x 4 e 1 vettorl a,y che sono
4 x 1 em x 1, rispettivamente.

Vediamo il tutto in un caso concreto.

Si considerino i punti:

t=0:.05:1.0;
y=[.486; .866; .944;
1.144; 1.103; 1.202;
1.166; 1.191; 1.124;
1.095; 1.122; 1.102;
1.099; 1.017; 1.111;
1.117; 1.152; 1.265;
1.380; 1.575; 1.857];
Dati di cui si cerca una approx. LS
2 T
1.8 R
1.6 R
14| . ]
1.2 o . ]
) s i R ] [} T
1_ -
o.af R
0.6 R
0.4 !
0 0.5 1

Figura 5.16: Dati da approssimare con il metodo dei minimi quadrati
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Una possibile implementazione in Matlab/Octave della decomposizione SVD
di una matrice A, applicata al problema dei minimi quadrati per data fitting, &
come segue.

function [x]=SVD_MinQuad(t,n)

% t=vettore dei punti

% n=grado del polinomio d’approssimazione
0,

/A

% x=soluzione del sistema con SVD
m=length(t);

for i=1:m,
a(i,:)=t(i).~(0:n);
end;

[u,d]=eig(a’*a);

b=ax*u;

[v,r]=qr(b);

z=inv (r’*r)*r’* (v’ *y) ;

disp(’Soluzione con la decomposizione SVD di A ’);
X=U*Z

Eseguendo il codice ecco i risultati.

>> Soluzione con la decomposizione SVD di A

0.5747
4.7259
-11.1282
7.6687

5.11.2 SVD in Matlab/Octave

In questa sottosessione, facciamo vedere come usare Matlab/Octave per deter-
minare la decomposizione SVD (Singular Value Decomposition) di una matrice.
Tale decomposizione, fattorizza una matrice A € R"*™ (anche rettangolare) nel
prodotto

A=USVT, UeR™" SeR™™ VeR™™

Gli elementi nella “diagonale” di S sono chiamati valori singolari di A. Tutti gli
altri elementi di S sono nulli. Le matrici U e V sono ortogonali, cioe UTU = I,
e VTV = I, ove I, e I,, indicano le matrici identita di ordine n e m, rispetti-
vamente. Il comando svd calcola appunto la decomposizione SVD. Vediamo un
esempio.

>> A=[1,2,1;1,3,1;0,1,1;1,1,1]
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2 T

1.8 A
;

!
I L

1.6 a

,
1.4F & :
&
o
1.2 - ‘ ]
- % - 4
# ~ &
K *ox TR o x_x e
. -
1f - b R
#
¥
#
'
0.8F B
F’ #  Dati

06k LS sclution with cubics i

0.4 *
0 0.5 1

Figura 5.17: Approssimazione ai minimi quadrati

= O~
= o= W N
=R

>> [U,S,V]l=svd(A)

U =
-0.5346 0.1091 -0.1889 -0.8165
-0.7186 -0.5603 -0.0547 0.4082
-0.2738 0.2608 0.9258 0.0000
-0.3505 0.7786  -0.3230 0.4082
g =
4.5732 0 0
0 0.7952 0
0 0 0.6736
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vV =
-0.3507 0.4117  -0.8411

-0.8417 -0.5323 0.0903
-0.4105 0.7397 0.5332

A partire dai fattori U, S e V & possibile calcolare, ancora, la soluzione ai minimi
quadrati di un sistema sovradeterminato

>> b=[1;2;0;1]

b =

1

2

0

1
>> d=U’*b
d =
-2.3223
-0.2329
-0.6213
0.4082

>> s=diag(S)

4.5732
0.7952
0.6736

>> y=d(1:length(s))./s
y =

-0.5078

-0.2929

-0.9224

>> x=Vx*xy
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0.8333
0.5000
-0.5000

In maniera analoga, & possibile calcolare la soluzione ai minimi quadrati di un
sistema quadrato singolare.

>> A=[1,2,1;1,2,1;0,1,0]

A =
1 2 1
1 2 1
1
>> b=[1;2;0]
b =
1
2
0

>> [U,S,V]=svd(A)

U =
-0.6873 -0.1664 -0.7071
-0.6873 -0.1664 0.7071
-0.2353 0.9719 0

S =
3.5616 0 0
0 0.5616 0
0 0 0

V =

-0.3859 -0.5925 -0.7071
-0.8379 0.5458 0
-0.3859 -0.5925 0.7071
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Il terzo valore singolare vale 0 e dunque non & possibile calcolare y3; = d3/s3.
Basta pero porre y3 = 0. Si puo fare automaticamente con il comando find:

>> d=U’*b

d =
-2.0618
-0.4991
0.7071

>> s=diag(S)

3.5616
0.5616
0

>> y=zeros(size(d))

y =

0
0
0

>> index=find(s~=0)

index =

1
2

>> y(index)=d(index) ./s(index)

y:
-0.5789
-0.8888

0
>> x=V*y

X:

0.7500
-0.0000

0.7500
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Nota bene: si procede in maniera del tutto analoga per sistemi sottodeterminati
(sia quadrati che rettangolari), nel caso in cui si desideri la soluzione di norma
euclidea minima, piuttosto che quella con il maggior numero di zeri. Analoga-
mente quando si desideri la soluzione ai minimi quadrati di norma euclidea min-
ima di sistemi singolari.

5.11.3 Esercizi proposti

ESERCIZIO 73. (Appello del 21/6/06). Si considerino i valori di tabella

T

1

2.5

3

5

6.5

8

9.3

Yi

4

2

3

3.5

3.9

7

5.3

1. determinare il polinomio P,,, di grado m = 3 approssimante le coppie di

valori (x;,y;) nel senso dei minimi quadrati discreti.

2. Si giustifichi il fatto che per m = 6 il polinomio é interpolante.

3. Siconsideri il punto T = 4 e come valore corrispondente y, quello dell’interpolante
lineare sull’intervallo [3,5]. Sia ora |P,,(z) — y| Uerrore assoluto in . Far
vedere che per m = 2 lerrore & minimo.
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5.12 Interpolazione trigonometrica e FFT

Definizione 24. Una funzione della forma

M

ta(x) = Z(ak cos(kx) + by sin(kx)) | (5.75)
k=0

si chiama un polinomio trigonometrico di grado M.

Se f : [0,27] — C & una funzione periodica di periodo 27 (f(0) = (27r)), se
si desidera interpolarla negli n + 1 nodi equispaziati z; = 2%3, j=0,...,ncon
tp(z) chiederemo che siano soddisfatte le condizioni

tv(z;) = flz;), j=0,...,n. (5.76)

Anzitutto osserviamo che ¢, () si puo scrivere come segue

e seneparie M =n/2

" M
ty(x) = ?0 + Z(ak cos(kx) + by sin(kx)) ; (5.77)
k=1

e senedisparie M = (n—1)/2

" M
ty(x) = 50 + ) (aycos(kz) + b sin(kzx)) + apr41 cos((M + 1)x) . (5.78)
k=1
Ricordando I'identita e’ = cosz + i sinz dimostriamo ora la seguente
Proposizione 15.
ta(w Z cre’ (5.79)
k=—M
con
ap = Ci + C—g
{ bk:i(ckfc_k), kZO,,M (580)
Dim. Infatti,
M _ M
Z crpettT = Z cp(cos(kx) +isin(kx)) =
k=—M k=—M
M M
= Z cx(cos(kx) + isin(kz)) + Z c_p(cos(kx) —isin(kz)) + co
k=1 k=1

se n e pari e facile verificare che valgono le (5.80), mentre se n & dispari, osser-
(M+1)

vando che ¢/ (x) = Z cxe’*® sihacheicy, k=0,..., M sono come in (5.80)
k=—(M+1)
€ Crn41 = C_(M+1) = CLM+1/2. O
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Alla luce della precedente Proposizione, possiamo scrivere ¢,;(xz) compatta-
mente come segue
(M+s)

t]w (3:) = Z Ckeikx

k=—(M+s)

con s = 0 quando n & pari e s = 1 quando n dispari.
Ritorniamo al problema dell’interpolazione trigonometrica, le condizioni di
interpolazione (5.76) si riscrivono come segue

(M+s)

> e = f(z;), j=0,...,n. (5.81)
k=—(M+s)

Moltiplichiamo in (5.81) a sinistra e destra per e =%, 0 < m < n e sommiamo
su j. Otteniamo

n (M+s)

S DD aemmet | =) e f(xy) (5.82)
j=0

§=0 \k=—(M+s)

Introdotta la matrice quadrata 7, con t;, = /" 0 < j < n, k = -M —
$,...,M+s,lerelazioni (5.82) portano quindi alla soluzione di un sistema lineare
Tc=fconconc={c}, f={f(xz;)}. Pertanto per trovare i coefficienti incogniti
cx. si dovra fare un prodotto matrice-vettore che costa, in questo caso, (n+1)2. Per
ottenere un algoritmo piu veloce, iniziamo provando una importante proprieta
delle funzioni esponenziali coinvolte.

Lemma 2. Le funzioni {eimi } , 0 < p < nformano un sistema ortogonale, ovvero

n
Ze‘im’”-’eimﬂ' =n+1)0km, 0<m<mn.
j=0

Dim. Infatti, osservando che la somma & " e"*=™) con z; = jh, h =
27 /(n + 1).

(i) Per k = m & verificata: la somma si riduce 7 _; 1 =n + 1.
(ii) Per k # m osserviamo che

" gnim _ Lo ()
Zoe ’ - 1 — eth(k—m)
‘7:

n+1

ith(k—m) _ ei(nJrl)h(kfm) _

con numeratore che € uguale a zero poiché (e

cos(2n(k —m)) + isin(2n(k — m)) = 1. Pertanto anche quando k # m vale la
somma. [J.
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Alla luce del precedente Lemma, possiamo concludere che

n

_ 1 —ikx; . —
ck_nH;e flzj), k=—(M+s),...,M+5s. (5.83)

In analogia con le serie di Fourier, i coefficienti c¢;, sono detti trasformata discreta
di Fourier (o DFT) . Ricordiamo infatti, che i coefficienti della serie di Fourier
continua sono
1 27

27

Da un punto di vista computazionale, il calcolo di ogni coefficiente ¢ in (5.83),
richiede (n + 1) operazioni moltiplicative. Basta infatti osservare che ¢, nel caso
M = 2, &il prodotto scalare dei vettori f = [f(x0),..., f(zn)] ee =[e' 27" ... e "2
che hanno lunghezza n + 1. Complessivamente, per il calcolo di tutti i coefficienti
il costo & O(n?).

Ma & possibile calcolare tutti i ¢, in modo piu efficiente mediante ’algoritmo
noto in inglese col nome di Fast Fourier Transform o FFT.

Ve = e " f(x)dr, keN.

5.12.1 Algoritmo FFT

. . . 2mi . 4
Dato l'insieme X = {zg,...,z,} con m = 2", r > 1, poniamo w,, = e m cosicché
lequivalente di ¢, per I'insieme X,

—jk
E wltri, k=0,...,m—1.

Posto quindi p = 2, ¢ = 2"~ ! (cosicche pg = m)

151
dy, = pz kl( Zw $l+p5> .

=0

Posto quindi

e,(cl) Zw Tiyps, 1=0,.,p—1,k=0,...,m—1, (5.84)
allora
154
de ==Y wiklel)  k=0,...,m—1. (5.85)
p

=0

Complessita. Iniziamo con l'osservare che, in (5.84), e,(gr g = efﬁl) perche w, 1=

1. Pertanto, per ogni [, calcoleremo solo i coefficienti 66)7 o ,e((zl ; che sono una

trasformata dei valori z;, x14p, ..., 2 p—1). 1l costo di {e )} e qulndl quello dip
trasformate discrete di ordine ¢q. Ora, calcolando preventivamente ek , il calcolo
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di d; in (5.85), richiedera mp moltiplicazioni. Essendo m = 2", il calcolo di dy
richiede 2m moltiplicazioni piu il costo di valutare due trasformate discrete di
ordine ¢ = 2"~!. Continuando, la complessita totale &:

m 2 m r my - _ _ 2
2m+2 (2 . 5)—1—2 (2 . 2—2)+ 42 (2 : 27) = ;2771 =2mr = 2m logy(m) < m=.
Per maggiori dettagli vedasi [1, pag.181 e ss.].

La funzione myFFT.m, in Appendice C, presenta un’implementazione della
FFT.



Integrazione

Si desideri calcolare 'integrale definito

/ab f(a)dz .

I motivi che inducono a calcolare numericamente un integrale sono svariati: ad
esempio nel caso in cui non si conosca una primitiva di f(z), oppure f(x) sia nota
solo in alcuni punti o ancora f(x) & valutabile su ogni valore di  ma solo me-
diante una routine automatica. In tutti questi casi, si preferiscono le cosidette
formule di quadratura. In pratica una formula di quadratura & una approssi-
mazione dell’integrale che fa uso dei valori della funzione in alcuni punti

b n
/ f(z)dr ~ szf(lz) ; (6.1)
@ i=0

dove x; sono detti nodi di quadratura e i coefficienti w; sono detto pesi della
formula di quadratura.
Nel seguito ci limiteremo allo studio di integrali definiti del tipo

/ " o@) ()

dove w(x) & una funzione positiva su [a,b] detta funzione peso. Le formule di
quadratura che considereremo saranno di tipo interpolatorio costruite sia su nodi
equispaziati che su nodi coincidenti con gli zeri dei polinomi ortogonali rispetto
all'intervallo [a, D] e alla funzione peso w(z).

6.0.2 Formule di tipo interpolatorio

Assegnati i punti distinti z, ...z, dell'intervallo [a,b] e p,(z) = D1 l;(z) f(2;)
il polinomio d’interpolazione di grado n che interpola f nei punti z; ed E, f il
corrispondente errore d’interpolazione. Allora, grazie alla proprieta di linearita
dell'integrale

n

b b b
/ w(x)f(z)de = Z (/ w(x) li(x)dx> flay) —|—/ w(x) By f(z)dz . (6.2)

=0
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Posto quindi

b b
w; = / w(x) li(z)dz, R,f = / w(x) By f(z)dx |
allora , .
/ w(x) f(x)de = wif(x;) + Rnf - (6.3)
@ =0

Le formule di quadratura della forma (6.3) si dicono interpolatorie perche si
basano sul polinomio d’interpolazione della funzione f.

Definizione 25. Una formula di quadratura di tipo interpolatorio si dice esatta
con ordine (o grado) di esattezzan seintegra esattamente i polinomi di grado
n.

La definizione appena data afferma che se f(z) € P, allora E,f(x) = 0 e
pertanto anche R,, f = 0. Non solo, se f(z) =1, z, 2%,..., 2" e la formula (6.3) &
esatta di ordine n, allora possiamo scrivere

b
wo + e+ w, = / w(z) 2%z
b
woro + -+ wpm, = w(z)zdx
o / (#) (6.4)
b
wory + -+ wpxl = / w(x)z"dx
b
dove gli integrali / w(x)xk, k=0,...,nsichiamano momenti . Il sistema (6.4) &

a
un sistema di ordine n+1 con matrice di Vandermonde che & non singolare poiché
x; # =;. Pertanto il sistema puo essere utilizzato per determinare univocamente

ipesiw;, i = 0,...,n. Lunicita dei pesi di quadratura ci assicura anche che
non esistono altre formule per i pesi che producono formule di tipo interpolatorio
(6.1).

Osserviamo subito che essendo la matrice di Vandermonde malcondizionata,
dovremmo aspettarci che per n — oo le formule di tipo interpolatorio siano insta-
bili. Vedremo in seguito come evitare questi problemi d’instabilita delle formule
di tipo interpolatorio.

Definizione 26. La formula di quadratura di tipo interpolatorio (6.1) si dice
convergente se

n b
lim > wif(wi) = / w(@)f(zx)dz . (6.5)
i=0 @

Si puo dimostrare (cfr. [6]) che se f € C[a, b] si ha convergenza se

Sl <C (6.6)
1=0
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con C' una costante indipendente da n. Ovvero si ha convergenza quando i pesi
sono limitati in modulo. Se inoltre f € C*[a,b] si ha anche che

IR, f| < %, (6.7)

con A costante positiva. Pertanto piu f e regolare e piu veloce e la convergenza.

6.0.3 Formule di Newton-Cotes

Le formule di quadratura di Newton-Coétes, di seguito useremo N-C, sono carat-
terizzate dalla scelta di nodi equispaziati: x; = a +ih, h = (b — a)/n. Sono di due
tipi
e formule chiuse: quelle per cui xg = a, v, =bex; =x9+th,i=1,...,n—1
conh=(b—a)/n, n>0;
e formule aperte: quelle per cui zg = a+ h, z, = b—hex; = 29+ ih,i =
,....n=1, h=(b—a)/(n+2), n>0;

I pesi di quadratura w; delle formule di N-C hanno la caratteristica di dipendere
solo da n e h ma non dall'intervallo di quadratura. Infatti, nel caso di formule
chiuse e con w(x) = 1, posto x = a + th, 0 <t < n, 1 pesi diventano

b n n t 7]-
w /a (z)dx /0 H (6.8)

P
j=ogi | J

Posti

/ H jdt i=0,...,n, (6.9)

Jj= OJ;ﬁl

che dipendono solo da i e n ma non dai nodi z;, allora la formula di quadratura

diventa .
In(f) = hzaif(xi) :
i=0

Pertanto, i “nuovi” pesi «a; si possono tabulare una volta per tutte usando la (6.9).
Osservando che a; = «,,_;, potremo limitarci a calcolarne solo la meta.

I pesi «; sono noti col nome di numeri di Cétes. Infine, mediante la proprieta
dei pohnom1 di Lagrange di formare una partizione dell’'unita, otteniamo la re-

lazione E a; =n.
1=0

Anche nel caso di formule aperte possiamo calcolare i pesi «;. Essendo xg =
a+h,zn,=b—hexy=a+ (k+1)h, k=1,...,n,siha

o; = / H jdt i=0,. (6.10)

Jj= OJ#
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Nel caso particolare in cui n = 0, essendo ly(z) = 1, da (6.10) si ha ay = 2.

ESEMPIO 45. Calcoliamo i coefficienti «; per le formule di N-C chiuse con n = 1, 2.

e Cason =1. Essendo zg = a, 1 = b, e b—a = h, allora

! 1
aoz/(l—t)dt:—7a1:ao.
0 2

La formula di quadratura corrispondente ¢ la ben nota formula dei trapezi

ovvero

h

1(f) = 5 [F(@) + FB)] -

(6.11)

In Figura 6.1, facciamo vedere come si comporta la formula per il calcolo di

/2

2
/ sin (z) dx. L’area evidenziata in colore ¢ il valore approssimato ottenuto
1

con la formula dei trapezi. L’errore commesso ¢ rappresentato dalla “differenza”
di area tra il grafico della funzione e 'area colorata.

e Per n =2, useremo i punti g = a, 1 = “T*b e ry = b. Pertanto
21 1 ? 4
ap = —(t—l)(t—Z)dtZ—, ] = t(2—t)dt=—, Qo = Qg -
0 2 3 0 3

Da cui si ottiene la formula di (Cavalieri-)Simpson

09

08

o7

06

os

04

03

0z

0.1

Q

04 08

Figura 6.1: Regola dei trapezi per il calcolo di / sin (z) dx.

B(f) = 5 [f(z0) + 4f(a) + ()]

os

1 1.2

1.4 16

18 2

22

2

1/2

(6.12)
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ESERcI1ziO 74. Costruire una formula di quadratura di N-C a 3 punti di tipo
aperto nota come formula di Milne:

2h
. f(z)dz ~ wy f(=h) + w2 f(0) + w3 f(h).

Sugg. Determinare i pesi w; chiedendo lesattezza su 1, x, x>

6.0.4 Stima dell’errore di quadratura

Sia f € C*[a,b]. Sotto queste ipotesi di regolarita della funzione, vale il seguente
risultato (la cui dimostrazione si trova ad esempio in [2, p. 721]).

Proposizione 16. Al solito h = *=%. Allora

b (k)
) = [ e - 1) =it ey, 61)

con

S—
3

pernpari k=n+2 5, = tr, (t)dt

n
perndispari k=n+1 =, = / 7 (t)dt

(=)

dove 7, (t) =t(t —1)--- (t — n).
Riprendiamo ’esempio precedente.

e Per n = 1 ed essendo n dispari e k = 2, pertanto v; = fol t(t —1)dt = —1/6.
Da cui l'errore di quadratura per la formula dei trapezi é:

G

Ri(f) = & =—Ef<2>(§),ge<a,b). (6.14)

eConn=2k=4evy = f02 t2(t — 1)(t — 2) = —4/15. La funzione f viene
approssimata con un polinomio di secondo grado ottenendo la formula di
Simpson (6.12). Per 'errore, grazie alla Proposizione 16, otteniamo errore
di quadratura per la formula di Simpson

Ro(f) = 5 h*F9(E), €€ (D) (6.15)

L'esame dell’errore di quadratura indica due situazioni
1. quando n & pari, le formule di N-C sono esatte per i polinomi di grado n + 1;

2. quando n & dispari, esse sono esatte per polinomi di grado n.
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n_ Qo ai Qg Qs errore
1 1

1 —h 2
1 4 1

2 = - ——h% @
5 3 LA
3 9 3
2 =z _ 2 p5 )

3 8 8 80 FE)
14 64 24 8

4 — i i 2 BT £(6)
45 45 45 945h FE)
95 375 250 275

5 — — — ———p7 f©
288 288 288 12096 £
41 21 2 272

6 6 7 7 9 B £ (¢)

140 140 140 140 1400

Tabella 6.1: Formule di N-C per n = 1,...,6. Per n = 1 si ha la formula del
trapezi, per n = 2 la formula di (Cavalieri-)Simpson e per n = 3 si parla di
formula dei 3/8.

Pertanto, ai fini dell’errore, sono preferibili le formule per n pari, ovvero con n + 1

punti d’interpolazione.
Riassumiamo questi risultati in Tabella 6.1, per valoridin =1,...,6.

ESEMPIO 46. Vogliamo calcolare

1 2
I:/eﬂ”dw,
0

con un errore minore o uguale a tol = 0.5 - 1073, L’integrale dato si pud esprimere
analiticamente mediante la funzione errore, erf (implementata con il nome erf
anche in Matlab/Octave)

2 xr
erf(m) = ﬁ/o e_t2dt ,

il cui grafico e riportato in Figura 6.2 ottenendo

I= gerf(l) ~ 0.747 .

Mediante le formule date nella Proposizione 16, si tratta di trovare n cosicché
Perrore sia < tol.
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Feoioss s &

-3 -2 -1 o 1 -3 a

Figura 6.2: Grafico della funzione errore, erf

e Partiamo con n = 1. Abbiamo bisogno di max,¢o 1) |f"(z)|. Essendo f"(x) =

2(2x271)e"”2, che ¢ strettamente crescente in [0, 1] e per = 0 (assume il valore
minimo) vale —2 mentre per z = 1 vale 2/e < 1. Pertanto max,¢o,11 | f"(z)| = 2.
Calcoliamo 7, = fo (t—1)dt = % e quindi, la stima richiesta, ricordando che
orah=1,k=n+1 perche n ¢ dispari, sara

.12 _
3 ~ 0.1667 > tol .

2
[Ry| < e

Dobbiamo aumentare n.

Prendiamo n = 2. Ragionando come prima, abbiamo ora bisogno di

max |f@(z)| = max |4(42® — 1222+ 3)e " | = 12..
z€[0,1] z€[0,1]

Ricordando che ora h = 1/2, n = 2, ricaviamo la stima

5
1 1 2
|R2|<(2> 12%:%m410_3>t0l

Infine prendiamo n = 4. Ragionando allo stesso modo, dobbiamo ora calcolare

max |f® (z)] = max |8(82° — 60z* + 9022 — 15)e ™ | = 120.
z€[0,1] x€[0,1]

Ricordando che ora h = 1/4, n = 4 (pari), ricaviamo la stima richiesta

~ —5
IR, |_716128 6.- 10 <tol .
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6.0.5 Formule composite o generalizzate

Estendendo la Tabella 6.1 fino a n = 8, si puo verificare che alcuni dei pesi w;
risultano negativi (in Tabella 6.2 sono riportati proprio i valori dei «;, i =0,...,4
per le formule di N-C chiuse). Essendo alcuni di essi negativi, cio puo dar luogo

n (7)) (05} (6%5) Qa3 Qg

g 3956 23552 ~ 3712 41984 18160
14175 14175 14175 14175 14175

Tabella 6.2: Pesi di formule chiuse di N-C conn = 8

ad instabilita dovuta a cancellazione numerica, rendendo pertanto le formule
inutilizzabili per gradi elevati.
Una prima alternativa alle formule di N-C classiche, sono quelle composite o

generalizzate.
A tal proposito, consideriamo l'intervallo [a, b] che suddividiamo in N sottoin-
tervalli mediante i punti equispaziati 2, £ = 0,...,N (con zyg = a e xy = b).

Grazie alla additivita dell’integrale possiamo scrivere

b o s ox I
/af(x)da;:/mo f(x)da:—i—/ml f(x)dx+--~+/m fla)de = kzzo/ F@)dz |

N—

(6.16)

In ciascuno dei sottointervalli I}, = [z, 2;41] applichiamo ora una formula di N-C
di grado n. Indicato con I} (f) il valore dell'integrale di f sul k-esimo intervallino

I, allora
N—

I(f) =) L)

k=0

[

I due casi di nostro interesse sono per n = 1 e n = 2 che corrispondono alla
formula dei trapezi composita detta anche formula trapezoidale e alla formula
di Simpson composita, rispettivamente.

1. Per n = 1, su ogni sotto intervallo I;; = [z}, k1] si usa la formula dei
trapezi, ovvero
Bt h b—a
[ @ G () + Sl b= 0

Tk

Mettendo assieme tutti gli integrali avremo la formula trapezoidale

’ h h h
/f(x)dar ~ @)+ fle)] + 5 [f(@) + flz2)] -+ 5 [flan—1) + flan)]
= g [f(a) +2f (w1) + 2f (w2) + -+ + 2f (wv—1) + f(D)] - (6.17)
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2. Per n = 2, su ogni intervallino I, = [z}, z;11] si usa la formula di Simpson.
Ovvero,

Tk + T4l h:b—a
2 ’ 2N

[ s~ 3 ) + 40 + San)]

Osservando che su ogni sotto intervallo I, abbiamo introdotto il punto medio
x}, il che equivale a considerare i punti da z;, k = 0,...,2N. La formula
generalizzata di Simpson é quindi la seguente:

(f(a) +4f(z1) +2f(22) +4f (23) + - + 4f (zan-1) + f(D)]
(6.18)

wl =

/abf(:v)dm ~

dove al solito a = zg e b = 2.

Losservazione precedente sul numero dei punti si puo assumere a priori e
dato N si considereranno sempre 2N + 1 punti.

Come semplice esempio, in Figura 6.3 facciamo vedere come si comporta la
formula trapezoidale rispetto a quella classica. E interessante vedere la dif-
ferenza d’errore tra le due formule.

05 09

08 08
07 07
06 06
05 05
04 04
03 03
02 0z

o1 o1

[}
04 08

o

08 1 1.2 14 18 12 2 2z 04 06 08 1 1.2 14 15 18 H 2z

Figura 6.3: Confronto tra la formula dei trapezi e dei trapezi composita per il
calcolo di f02. 5 sin () d.

Vediamo ora come si comporta 'errore di quadratura composita.
Supponiamo che f € C*[a, b], sapendo che 'errore nel k-esimo intervallino &

(s) b—a

allora l'errore totale sara

N—1 N—1 (s) hs+1 N—1
Ru(f)=>Y_rF=>" h”lfs—(,g’“) = > V&) - (6.19)
k=0 k=0 : T k=0
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Si dimostra che vale la seguente uguaglianza

N (),
s! hott =

Ru(f) =n Yn(b— a) ¢ e (ab). (6.20)
Nei due casi precedentemente studiati, trapezi e Simpson compositi, valgono le

seguenti formule d’errore:

3

m = e, 621)
(b—a)® (4)

Ro(f) = _Wf ). (6.22)

Infine, grazie alla (6.20), ricordando che N dipende da n, se f € C®[a,b] allora
A;im |Rn(f)] = 0. Ovvero, fissato ¢ > 0, possiamo trovare N tale che |[Ryi1| <.
— 00

o1 .

ESEMPIO 47. Riprendiamo I’Esempio 46. Vogliamo approssimare/ ¢~ dz a meno
0

di tol = 0.51072 con le formule composite dei trapezi e di Simpson.

e Trapezi composito. Sapendo che max,cp 1 |f® (2)] = 2, si ha [Ri(f)| <
1/(6 N?) . Pertanto, affinché |Ri(f)| < tol, dovremo chiedere che N > 19,
ovvero dovremo prendere 20 punti equispaziati.

e Simpson composito. Sapendo che max,e(o 1) |f ¥ (z)] = 12, si ha [Ry(f)| <
12/(2880 N4) . Pertanto, affinché |Ra(f)| < tol, dovremo chiedere che N > 2,
ovvero dovremo prendere 5 punti equispaziati.

6.0.6 Routine adattativa per la quadratura: applicazione
al metodo di Simpson e dei trapezi

Lidea delle routine adattative ¢ di usare punti di integrazione dove “serve”,
ovvero dove la funzione ha maggiori oscillazioni o discontinuita. La tecnica adat-
tativa ha lo scopo di variare la posizione dei nodi secondo il comportamento locale
della funzione integranda, avendo cosi un risparmio sul numero di valutazioni
della funzione integranda.

In appendice C si trova la funzione simp_ada.m (che implementa la routine
b

adattativa di Simpson per il calcolo di / f(z)dxz . Come input l'utente fornira

gli estremi di integrazione a, b, la tolleranza epss e gli verra richiesto di passare
un parametro di dilatazione della tolleranza allo scopo di rendere la stima sui
sottointervalli piu conservativa possibile, al fine di verificare la disuguaglianza

b
| / f(@)dz — F(f)] < e

ove I(f) & Papprossimazione dell'integrale calcolata con una formula di quadratura
composita.
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In output si otterranno il valore approssimato dell'integrale, nella variabile
integral e il numero di valutazioni della funzione integranda in nv.

Le Figure 6.4 e 6.5 mostrano la differenza tra la routine classica e quella
adattativa applicate al calcolo numerico di

3100 . 10
725111(7
J1 T T

)dx

con precisione ¢ = l.e — 5. Dall’'output ottenuto, il numero di valutazioni con il
metodo classico & di 256 contro le 161 con la routine adattativa (avendo usato un
fattore di dilatazione 15). Infine lerrore calcolato & di 2.43 - 10~ % con il metodo
classico contro 4.17 - 10~7 con il metodo adattativo.

Metodo di Simpson classico
a0 T

t puntidiint.

4 Walore funzione
60 b

40

201 b

1 2 3

Figura 6.4: Integrazione con Simpson composito

Alternativamente una funzione Matlab che calcola adattativamente un inte-
grale definito usando il metodo trapezoidale & la seguente. Si parte considerando
una formula base su 3 punti e stimando 'errore usando l'estrapolazione di Richard-
son (vedi sessione 6.4 per dettagli), che sostanzialmente equivale ad usare la
formula di Simpson sugli stessi punti.

Detto

Ti+ Ti—1

10 =L + 20 4 e}

I'integrale approssimato con la formula trapezoidale su [z;_1,;] con h; = x; —
x;_1. Allora

o= [ s 10 = G { i) + 20 (B < )
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Metodo di Simpson adattativo

a0
Punti integr.
Hy Valore funzione
60 J 1 -
%
T
40 T E
i3
T L
20 b
+
3
- R SRR R
} + t
ot
o0 : —
+ +

—40 g
—B0 .

1 2 3

Figura 6.5: Integrazione con Simpson adattativo

Pertanto, se I'errore ¢; verifica

(cosicche quello totale risulta essere < ¢) allora si conclude altrimenti si procede
alla nuova suddivisione.

La function Matlab/Octave trap_ada.m, in Appendice C, fa proprio questo.
In Figura 6.6 si visualizza I'applicazione della routine adattativa trapezoidale

appena descritta al calcolo di
3 o
/ sin(x) i
—3 (1+e€7)

con tolleranza ¢ = 1.e — 4. In output il valore approssimato dell’integrale & nella
variabile I, l'errore approssimato in errest e nel vettore x i punti usati per il
calcolo.

Osservazione. Il repository
http://www.mathworks.com/matlabcentral/fileexchange/

che raccoglie il software di scambio degli utenti Matlab, si trova il package

adaptQuad di Matthias Conrad e Nils Papenberg che contiene due routine

iterative per la quadratura adattativa usando sia Simpsons che Lobatto. Per

maggiori informazioni si rinvia al Technical Report [8].
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Figura 6.6: Integrazione con il metodo dei trapezi adattativo. I punti utilizzati
sono oltre 2000, molti di piu di quelli richiesti dalla stima a priori (6.21), ma
distribuiti non uniformemente ma dove la funzione oscilla di maggiormente.

6.1 Polinomi ortogonali

Prima di introdurre le formule di quadratura gaussiane, facciamo dei richiami
sui polinomi ortogonali.

Definizione 27. Un insieme infinito di polinomi {po,p1,...,Dn,...} tali che
pn(x) = an,ofn + Clrz,lfrk1 + -t ann,

¢ detto ortogonale in [a,b] rispetto ad una funzione peso w(x) non negativa, se
valgono le relazioni

b
/ W()pp (T)pm(x)dz =0 m#n

b
/ w(z)(pn(z))*dz >0 m=n.

b
Di solito si indica h, = | w(x)(p,(x))?dz > 0.

a
Alcune importanti proprieta dei polinomi ortogonali sono le seguenti.

(a) La funzione peso non negativa w(z) e 'intervallo [a, b] definiscono univoca-
mente I'insieme dei polinomi {p,, }.

(b) Per ognin > 1, p,(x) ha esattamente n zeri reali, distinti ed interni ad [a, b].
Inoltre gli zeri di p,,(z) separano quelli di p,,_;(z) (tra 2 zeri di p,, si trova
uno ed uno solo zero di p,,_1).
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(¢) Ogni sistema di polinomi ortogonali {p,}, soddisfa ad una relazione di ri-
correnza a 3 termini

Prt1(x) = (Apz + Bp)pn(z) — Cppp_1(x), n=1,2,... (6.23)

dove C,, >0e

A, = “ntld (6.24)
Qn,0
B, = A, <a"+1:1 _ an,1> , (6.25)
Up41,0 Qp,0
A h Ap4-1.2
C, = no_h = 4, A2 (6.26)
Ap—1 hpa (n41,1

Elenchiamo qui di seguito i polinomi ortogonali che per noi rivestono maggior
interesse.

T, : Polinomi di Chebyshev di prima specie. Sono definiti su [—1,1], w(x) =
(1 — 22)~1/2 e per essi vale la ricorrenza Ty(z) = 1, Ti(z) =z e

Toi1(x) = 22T, (z) — Thoq (), n>1. (6.27)
Infatti, ricordando che T,,(z) = cos(n arccosx) n =0,1,... e larelazione
cos[(n + 1)0] + cos[(n — 1)0] = 2cos @ cos(nb)
posto # = cos x si riottiene la (6.27).
Facciamo anche vedere che
To(z) =2" o™ + .. (6.28)

Infatti, essendo T (z) = 22%—1, T5(z) = 423 —3x = 23~ 123 -3z, per induzione
si ottiene la (6.28).

Infine, gli zeri del polinomio di Chebyshev di prima specie di grado n, che
sono stati introdotti al capitolo dell’ interpolazione polinomiale, sono i punti

di Chebyshev
<2k -1 )
T = COS T, k=1,...,n.

2n

U,: Polinomi di Chebyshev di seconda specie. Sono definitisu[—1,1], w(z) =
(1 — x2)'/2 e per essi vale la ricorrenza Uy(z) = 1, U;(z) =2z e

Ups1(z) = 22U, (x) —Up_1(x), n>1.

P,: Polinomi di Legendre. Sono definiti su [—1,1], w(z) = 1 e per essi vale la
ricorrenza Py(z) =1, Pi(z) =x e

2n+1 n
P, - Py(x) — ——Py_1(2), n>1.
+1(2) R (z) i 1(z), n
In questo caso possiamo anche facilmente calcolare a, o = QELQ(Z?;Q eh, =

2/(2n +1).
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L,: Polinomi di Laguerre. Sono definiti su [0, +00), w(z) = e~ " e per essi vale
la ricorrenza Lo(z) =1, Li(z) =1—ze

n+1—=x n

L’n - Ln, ) 21
N1 (@) = g lea(@) m

Lyii1(x) =

. . _n
Anche in questo caso possiamo calcolare a,, o = (G DI h,, = 1.

n!

H,: Polinomi di Hermite. Sono definiti su (—oc,+00), w(z) = e~* e per essi
vale la ricorrenza Hy(z) = 1, Hi(z) =2z e

H,1(x) =22H,(x) — 2nH,_1(x), n>1.
In questo caso a,, o = 2" e h, = 2"n!\/7.

Vale la pena osservare che in [—1, 1] i polinomi ortogonali di Legendre e di Cheb-
syshev sono un caso particolare di una famiglia piu generale e associata alla
funzione peso w(z) = (1 — 2)*(1 + z)?, a,8 > —1, detti polinomi di Jacobi,
P8(x). Posto v = a + 3, per essi vale la ricorrenza

Pyfi(x) =
2 52
Cn+14+9)[(® = 5%)+ (2n+ v +2)(2n + )] Pod(z) +
2(n+1)(n+~v+1)(2n+7) '
2(n+a)(n+B)(2n+v+2) 0 (), n>1.
2n+1)(n+~v+1)2n+7)
Pertanto, per « = 8 = 0 otteniamo i polinomi di Legendre, per o = 8 = —1/2

otteniamo i polinomi di Chebyshev di prima specie e per o = § = 1/2 otteniamo i
polinomi di Chebyshev di seconda specie.

OO

6.2 Formule di quadratura gaussiane

Dato l'intervallo [a,b] e la funzione peso w(z), siano x;, i = 1,...,n gli zeri del
corrispondente polinomio ortogonale di grado n. Allora possiamo scrivere

b n
/ w(a)f(z)de ~ ZAi f () (6.29)

dove i pesi A; dipendono dalla particolare formula di quadratura gaussiana.

Prima di dare alcune espressioni esplicite dei pesi di quadratura, enunciamo un
risultato fondamentale per la quadratura gaussiana (la cui dimostrazione si puo
trovare, ad esempio, in [26]).
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Teorema 30. Siano x4, ...,x, gli zeri del polinomio ortogonale di grado n rispetto
all’intervallo [a,b] e alla funzione peso w(x). Supponiamo che i pesi A; siano stati
determinati cosicché

b n
/ w(@)f(z)de =Y Aif(z;) + Ra(f) , (6.30)

i=1

¢ esatta per i polinomi di grado < n — 1. Allora la formula (6.30) é esatta per tutti
i polinomi di grado < 2n — 1.

Un’ulteriore caratteristica delle formule di quadratura gaussiane, che & uno
dei motivi per i quali sono preferite rispetto a quelle di N-C, & che i pesi A; sono
positivi. Infatti vale la rappresentazione

Ai:1))2/abw(x)[P”(x)rdwizl,...,n, 6.31)

(P! (z; T —x;
dove P, indica il polinomio ortogonale di grado n relativo all'intervallo [a b]

alla funzione peso w(x). Da questa relazione segue che f w(z)de = 3710
> |Ail, pertanto si ha convergenza delle formule al valore dell’mtegrale Per-
tanto nel caso [—1,1], w(z) =1,siha . | A; = 2.

e [a,b] = [-1,1], w(z) = (1 —22)"'/2 1a corrispondente formula di quadratura
si dice di Gauss-Chebyshev di prima specie, GC1. I pesi sono

A2(001) _ %7 Vi

la cui somma & 7. I nodi, che sono gli zeri di Chebyshev, sono

2i—1
ngm) = cos ( ! 7r> t=1,..,n.
2n
La (6.29) diventa

Loz in s (= (%)

e Sempre in [~1,1] ma con w(z) = (1 — 22)'/2: la corrispondente formula
di quadratura si dice di Gauss-Chebyshev di seconda specie, GC2. I pesi
sono

Essendo

otteniamo il risultato richiesto Z A (GC2) _ T

i=1
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I nodi, che sono gli zeri dei polinomi di Chebyshev di seconda specie, sono

La (6.29) diventa

/ 11 FV 1= e~ Z (sin (le»z f (cos (Hlﬂ)) |

1=1

e Sempre in [—1, 1] ma con w(xz) = 1: la corrispondente formula di quadratura
si dice di Gauss-Legendre. I pesi sono
2
Aiz 2,1'20,...71’),.
(1—=3) (Pr,H-l( ))

Riassumiamo nella Tabella 6.3, per n = 1,...,4, i valori dei nodi (zeri) del
polinomio di Legendre e dei corrispondenti pesi. Si noti che sono indicati
n + 1 nodi, poiché per un dato n calcoliamo i = 0,...,n nodi e pesi. Ad es-
empio, per n = 1, significa che stiamo considerando il polinomio di grado
2, che ha appunto zeri +37'/2. Per i pesi sono indicati, per simmetria, solo
quelli coni = 0,...,[%]|. Sempre relativamente alla formula di quadratura

+ \ 1

5

+v35 |

©lut
©oloo

+.L1/525 — 70v/30, /525 + 70v/30 | L(18+/30), (18 — V/30)
0,45 /245 — 14v/70, £ 4 1/245 + 1470 | 128, 1(322 4 13V/70), 5% (322 — 13/70)

Tabella 6.3: Nodi e pesi per le formule di Gauss-Legendre conn =1,2,3,4

di Gauss-Legendre, osserviamo che talvolta conviene includere anche gli es-
tremi dell’intervallo, ovvero —1,1. Si parla allora di formule di quadratura
di Gauss-Legendre-Lobatto. Ora, i nodi xg = —1 e x,, = 1 sono fissati, gli
altri n—1 sono scelti come gli zeri di P/ (z) ottenendo per i pesi I'espressione

A 2 ! =0
i = , L =U,...,n.

n(n+1) (Pa(2:))?
Pertanto, il grado di esattezza delle formule di Gauss-Legendre-Lobatto
sara 2n—1. In Tabella 6.4 ricordiamo chi sono i nodi e i pesi per le formule di
Gauss-Legendre-Lobatto con n = 1,2, 3,4. Un altro interessante esempio &
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n T ‘ A;

1 +1 \ 1

2 +1,0 | 3,3
3] 41,48 | 12

4| 41, +¥2 o | L 4982

Tabella 6.4: Nodi e pesi per le formule di Gauss-Legendre-Lobatto con n =
1,2,3,4.

fornito dalle formule di Gauss-Chebyshev-Lobatto, in cui w(z) = 1/v/1 — 22,
delle quali i nodi ed i pesi sono come segue

T
r; = cos|— |,
n

A = " dy=d, =2 di=1,1<i<n—1.

Infine, per quanto riguarda I'errore di quadratura con formule di Gauss-
Legendre (GL) e Gauss-Legendre-Lobatto (GLL), ricordiamo le seguenti for-
mule che per essere applicate richiedono una certa regolarita della funzione
integranda (cfr. [25]).
22n+3((n + 1)] 4
(2n+3)((2n+2)")
227 n3(n + 1) ((n — 1))
(2n+ 1)((2n)")3

I(f) = IaL(f) = SfE(E), ge (-1,1). (6.32)

4
I(f) = Igro(f) = — FeE), €€ (~1,1). (6.33)

Due considerazioni conclusive.

1. Le formule gaussiane in [—1,1] sono estendibili ad un generico intervallo
[a, b] con 'opportuna trasformazione lineare sia sui nodi che sui pesi.

2. In Matlab/Octave la funzione quadl implementa la formula di quadratura
di Gauss-Lobatto. Si chiama con quadl (fun,a,b): in questo caso la toller-
anza di default & 1.c—3 e fun puo essere definita sia su un altro M-file di tipo
funzione o mediante fun=inline(’ ’). Per usare una tolleranza definita
dall’'utente, tol_utente, si usera la chiamata quadl (fun,a,b,tol _utente).

Infine, facciamo un esempio di una formula composita gaussiana (a 2 punti).
Essa generalizza infatti la formula di Gauss a 2 punti per il calcolo di

/ g(t)dt =S Asgl(ty)
-1 i=0
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cond; =1,i=01lety=—1/3et; = —to.
La costruzione viene fatta come segue. Partendo da una suddivisione equis-
paziata consideriamo, invece dei punti x;_; e x, 1 punti

=T +E 1—i = —l—ﬁ 1—1—i
Yk—1 = Th—1 B \/§ y Yk = Tk—1 5 \/?; .

La formula di quadratura di Gauss composita ed il relativo errore assoluto sono:

e Formula di Gauss composita e relativo errore.

IE() = 237 (Flem) + )
k=1
1)~ T(7) = T 0n f0(E) , €€ (a,D),

dove al solito h = (b — a)/n.

ESERCIZIO 75. Si calcoli numericamente

27 —27 —27
3 —1) - 10
/ e cos 2wd — SC 2)5 T~ —0.12212260462 ,
0

mediante le 3 formule composite dei trapezi, di Simpson e di Gauss, per n = 7. Si
determini anche Uerrore assoluto. Se invece si prendesse n = 10, come cambierebbe
lapprossimazione?

Un M-file che puo essere usato per implementare simultaneamente le formule
composite dei trapezi, di Simpson e di Gauss dell’esercizio precedente, & descritto
in Appendice C. Per il suo utilizzo € necessario definire la funzione integranda
funQ.m.

6.3 Esercizi proposti

ESERCIZIO 76. Calcolare numericamente
1
/ (1+2?)V1 — 22 dx
-1

usando il metodo di Simpson composito. Quanti punti sono necessari affinche
lerrore assoluto sia < l.e — 42 Come valore esatto, considerare il valore
dell’integrale ottenuto con quadl a meno di 1.e — 6.
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ESERcCIZIO 77. Trovare ay e x5 cosicché la formula di quadratura

[ s ans (3) + e

sia esatta sui polinomi di primo grado generati da {1,1 — x}.

ESERCIZIO 78. Data la formula di quadratura

1
/_ @) a1 f(=1)+ 02 (0) + 0 (1/2).

Trovare i coefficienti «; cosicché abbia grado di esattezza 2.

ESERcCIZIO 79. Si calcoli un’approssimazione di

2
5 15
12[1 <2z4—2x3+2>d:c

con le formule di Newton-Cotes di tipo chiuso con n < 4. Ricordiamo che le
formule di Newton-Cétes di tipo chiuso hanno la forma seguente

L (f) =k-h-Y_cif(x;)
j=0

dove h = (b—a)/n, xj = a+ jh, j =0,...,n el coefficienti si ricavano della
tabella seguente

n kK Co C1 C2 C3 Cy4 Cs
112 1 1

2 1/3 1 4 1

3 38 1 3 3 1

4 2/45 7 32 12 32 7

5 5/288 19 75 50 50 75 19

Calcolare anche lerrore assoluto commesso rispetto al valore dell’integrale.

ESERCI1ZIO 80. Un corpo in caduta libera all’equatore, subisce una devi-
azione dalla verticale dovuta all’ accelerazione di Coriolis. Supponendo che
al tempo t = 0 il corpo sia fermo (cioe‘ x(0)=0, v(0)=0 e a(0)=0) e che la sua
accelerazione di Coriolis sia nota solo negli istanti di tempo di Tabella, si
determini lo spostamento dalla verticale dovuto a tale accelerazione dopo
t = 100 sec..

In tabella elenchiamo al variare del tempo t, i valori dell’accelerazione

a(t):
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a |.0144 .0216 .0432 .0576 .072 .1008 .1439

Mediante integrazione dell’accelerazione, il suggerimento é quindi di cal-
colare la velocita v(t) negli istanti di tempo indicati usando la formula di
quadratura dei trapezi composita e integrando nuovamente calcolare la devi-
azione x(t) (sempre integrando numericamente con i trapezi compositi) negli
stessi istanti di tempo. Essendo

i ar

o(T) = /O dzgt)dt:v(T)—v(O) (6.34)
T X

#(T) = /0 d d(:)dt::c(T)—x(O) (6.35)

Applicando all’equazione (6.34), la formula di quadratura composita dei
trapezi, si avrebbe

v(0) = 0
10
v(10) = (0.0144 + 0);
v(15) = v(10)+g(0.0144+0.0216);
ecc...

Applicando ancora all’equazione (6.35), la formula di quadratura composita
dei trapezi, si avrebbe

z(0) = 0

r(10) = D(10) +v(0));

x(15) = z(10)+g(v(10)+v(15));
ecc...

e Quale sarebbe la distanza percorsa dal corpo dopo t = 100 sec (suppo-
nendo non ci sia attrito)? Sugg. 1 Lenergia potenziale si trasforma in
cinetica, quindi .... Sugg. 2 oppure per la seconda legge della dinamica

e integrando due volte si conclude.
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ESERCIZIO 81. Si consideri il seguente integrale definito

=

o7 1
/ sin <> dx .
1 T

1. Dire a priori quanti punti sono necessari, sia col metodo dei trapezi
composito che con il metodo di Simpson composito, per il calcolo
dell’integrale a meno di tol = l.e — 4. Si suggerisce di costruire una
funzione funQ che valuta sia f(x) = sin(1/z) che le derivate f(?) e f().

2. Calcolare quindi lintegrale con il metodo di Simpson composito usando
il numero minimo di nodi richiesto al punto precedente. Qual é l’errore
assoluto commesso? Come valore esatto usare quello ottenuto con quadl
con tolleranza tol = 1.e — 4. Che conclusione si puo trarre osservando
Lerrore di approssimazione?

3. Calcolare l'integrale con il metodo di Simpson composito usando i punti
;= G@+1)/m i=0,..,4ex;, = (i—4)m, i =5,...,9. (Sugg. Applicare
Simpson composito ai due insiemi di punti sommandone poi il valore
che si ottiene con Simpson nell’intervallo [5/m,7]...)

ESERCIZIO 82. Si consideri il seguente integrale definito

1

-1 1
/_ sin (ﬂ) dr .

1. Dire a priori, analizzando la formula dell’errore, quanti punti sono nec-
essari per il calcolo del precedente integrale con il metodo dei trapezi
composito a meno di tol = 1.e — 3.

2. Calcolare quindi lintegrale con il metodo di trapezi composito usando
20 punti equispaziati tra —m e —5/m e 50 punii equispaziati tra —5/w
e —1/m. Qual é lerrore assoluto commesso? Usare come valore esatto
quello ottenuto con la funzione quadl con la stessa tolleranza.

ESERCIZIO 83. Calcolare numericamente

1
/ V]xd —0.7| dx
—1

usando il metodo dei trapezi composito su 10 sottointervalli di [-1,1]. Con-
frontare poi i risultati con la funzione quadl di Matlab usando come toller-
anza 1l.e — 6.

ESERCIZIO 84. Lintegrale di f(z) = Ze™ 2 cos(z) su [—1,1] si puo approssi-
mare con la formula di Gauss-Legendre

1 n
/ fla)de =~y wif(z) . (6.36)
-t i=1

11 vettore dei nodi z e dei pesi w si possono determinare con la M-function:
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function [z,w]=zwlegendre(n)
/% This function computes nodes z and wetights
% w of the Gauss-Legendre quadrature formula.

7% Input:
% n = number of quadrature nodes
A0utputs:
A z = column vector of the nodes
VA w = column vector of the weights
T
if n<=1

z=[0]; w=[2];

return
end

A=zeros(n); k=[1:n-1];
v=k./(sqrt(4*(k. 2)-1));
A=A+dtag (v, 1)+diag (v, -1);
[w, z]=eig(4);
nm2=sqrt (diag (w’*w)) ;
w=C2*w(1,:)’.2)./nmm2;
z=diag(z);

Si chiede di calcolare lintegrale (6.36) con la formula di Gauss-Legendre
costruita prendendo n = 2¢, i = 0,1,...,imax = 8 punti a meno di tol =
l.e — 9. In pratica ci si arrestera quando n > 28 oppure lerrore in modulo
diventa minore di tol, assumendo come valore esatto quello che si ottiene con
la funzione quadl).

ESERCIZIO 85. Assegnatii punti xg =0, x1 = %, x9 = 1 e la funzione f(x) =
1
1+ 22

1. Determinare il polinomio ps(x) in forma di Lagrange che interpola f(x)
nei punti assegnati e se ne plottino i rispettivi grafici

2. Dare una maggiorazione dell’errore d’interpolazione di f(x) con pa(x)
1 1
3. Approssimare / f(z)dx con / pa(z)dz e calcolarne lerrore assoluto.
0 0

4. Quanti punti si dovrebbero considerare per avere un errore < 10~ con
il metodo di Simpson composito?

ESERCIZIO 86. Usando la formula dell’errore per la regola dei trapezi com-
posita

__(b=a)P
Ri(f) =~ O €)

trovare, per il calcolo di f13 1 dz = In(3), il numero minimo di sottointervalli
N per cui I’ errore R (f) sia minore di tol = 1072,
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6.4 Derivazione

Sia f € C'[a,b]. Come possiamo approssimare f’(Z) in un generico punto & €
[a, b]? Vediamo tre approssimazioni utili in molti casi di nostro interesse.

1. Differenze finite in avanti: A,.
Ricordando che se f e derivabile in z allora

allora una prima approssimazione di f’(Z) si ottiene usando il rapporto in-
crementale:

f«@)zzfgiffgiligﬁ;::Aaftm (6.37)

Se f € C?[a, b] avremo

£+ h) = @)+ /(@) + o )

con &; € (&, % + h). Pertanto per 'errore avremo 'espressione

F/8) - Baf () =~ 5 "(65) (6.38)

che tende a zero come h. In pratica A, f(i) fornisce un’approssimazione del
primo ordine della derivata di f in .

2. Differenze finite all’ indietro: A;.
Come prima, una prima approssimazione di f'(Z) si ottiene usando il rap-
porto incrementale relativamente al punto & — h:

ﬂ@zﬁ@l%ﬁﬂlzgﬂ@ (6.39)
Se f € C?[a, b] avremo
h2
£ =) = £@) b @)+ e

con n; € (& — h, ). Pertanto per I'errore avremo un’espressione simile alle
differenze finite in avanti

/3~ A f(@) = 5" (0s) (6.40)

che tende a zero come h. In pratica A; f(&) fornisce anch’esso un’approssima-
zione del primo ordine della derivata di f in Z.
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3. Differenze finite centrali: 4.
Una approssimazione migliore di /() si ottiene usandoivaloridi fin &—h
e T + h come segue:
fE+h) = £ —h)

fl(z) ~ 5 =6 (&) (6.41)

Infatti, se f € C3[a, b]

h? h?
J@+h) = (@) +hf(@)+ 5 (@) + 571 (&)

coné; € (&,£+h)

2 3
P~ h) = F(&) B 5'(@) + o (@) + o Ol

con n; € (& — h,&). Sommando membro a membro e dividendo per 2/ otte-
niamo

/(@ +h) — B~ )+ (1) + O ms))

Pertanto I'errore assume l'espressione

£8) - 5.5(3) = 15 (F&) + D)) (6.42)

che tende a zero come h2. Osserviamo anche che al tendere di h — 0
anche &;) e 1;) tenderanno allo stesso valore. In pratica ¢ f(#) fornisce
un’approssimazione del secondo ordine della derivata di f in Z.

Data una suddivisione regolare dellintervallo [a,b], ovvero i punti x; = a +
kh, k = 0,...,n con z,, = b, da un punto di vista implementativo le formule
A, si possono applicare per ogni punto eccetto il punto b; le formule A; si possono
applicare per ogni punto eccetto il punto ¢ mentre le formule centrali § si possono
applicare per ogni punto interno dell’intervallo.

Nel caso delle differenze centrali, nei punti z( e x,, si usano invece le seguenti
approssimzioni

187 (x0) + 4 (m) — f(a2)] in g (6.43)
%[Sf(a:n)—élf(:cn,l)—&- F@n_s)] inan, (6.44)

che si ottengono calcolando in z( (rispettivamente in x,,) la derivata prima del
polinomio d’interpolazione di grado 2 della funzione f.

Infatti, il polinomio di secondo grado relativo ad g, si puo costruire usando i
punti zg, z1, r2 ottenendo

p2(z) = f(zo)lo(z) + flz1)li(z) + f(z2)l2(2)
2
dove, al solito, [;(z) = H ((x_xj)) Derivandolo e valutandolo in z, sapendo
Ty — T
j=047i > Y
che 1 = 29 + h e x9 = x + 2h, si ottiene la (6.43).
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o é 1‘0 1‘5 20 2‘5 3‘0 3‘5 40 4‘5 A0
Figura 6.7: Grafico che illustra l'errore relativo compiuto dal metodo 1 (dif-

ferenze in avanti), in rosso, col + e dal metodo 2 (differenze finite centrali) in
nero con o, nell’approssimare exp(1).

6.4.1 Un esempio

Vediamo come si comportano le approssimazioni alle differenze finite in avanti
e alle differenze finite centrali nel calcolo della derivata prima della funzione
f(z) = exp(z) nel punto z = 1. Essendo f'(z) = exp(z), il valore da approssimare
& quindi exp(1).

Scriviamo quindi un codice Matlab/Octave che confronta i due metodi sopraci-
tati per valori del passo h dellaforma h = 2=%, k=1, ...,50 e ne determina anche
Perrore relativo commesso. Il codice si trova nel file mydiff.m in Appendice C.

I grafici di Figura 6.7, mostrano come entrambi i metodi siano instabili. Quando
il passo h e troppo piccolo, I'approssimazione di entrambe peggiora invece di
migliorare. Nel grafico in scala semi-logaritmica, la curva in rosso coi ' — +’
rappresenta il primo metodo, quella in nero indicata con ’ — o’ il secondo. Os-
serviamo che tra i due metodi il secondo sembra avere comunque performance
migliori.

Vediamo di giustificare questo fatto analizzando l’errore. Infatti, come di-
mostrato, I’ errore assoluto con differenze finite in avanti A, e del tipo

RG]

Ey 5

a561($7$0)
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mentre con le differenze finite centrali 6 &

P + (&)

E
2 12

, &1, & € I(xo + h, 20 — h)

dove I(s,t) e il piu piccolo intervallo aperto contenente s e .
Nel nostro caso essendo f(")(z) = exp(x) per ogni n € N, e poiché per z ~ 1 si
ha exp(z) = exp(1) deduciamo

By ~ w (6.45)
2
By ~ [h[” exp(1) (6.46)

6

Per esercizio verificare se sono buone approssimazioni dell’errore le stime (6.45)
e (6.46).

6.4.2 Metodi di Eulero

In questa breve sottosezione, vediamo come applicare le formule per approssi-
mare la derivata prima alla soluzione di equazioni differenziali del primo ordine.

Consideriamo il problema di Cauchy

() = f(t,(0)
{ y(to) = 1o . (6.47)

con f: I xR — R, tyg € I. Dato l'intervallo I = [ty,T], T < oo, prendiamo un
passo h = (T —tg)/N, con N > 1 che indica il numero dei sottointervalli in cui
suddivideremo I, e i punti ¢t,, 0 < n < N. Sia poi y, il valore approssimato
della soluzione y(t,), ovvero y, =~ y(t,), ottenuto con un metodo discreto per
approssimare /' (t)

Se usiamo il rapporto incrementale in avanti A,

y'(tn) ~ ynJrlh_ Yn , (6.48)

dove y,+1 = y(tns1) € yn = y(tn). Sostituendo in (6.47), otteniamo la formula del
metodo di Eulero esplicito (EE)

Yntl1=Yn +hfn,mn=01,...,N—1 (6.49)

dove abbiamo usato la notazione f,, = f(t,, yn).
Se invece dell’approssimazione (6.48) usiamo il rapporto incrementale A;

Y () = 20 (6.50)
oppure
y'(tn)z Yn — Yn—-1 (6.51)
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otterremo il metodo di Eulero implicito (EI) (o all’indietro)
yn+1:yn+hf7l+1an:0717"'7N71 (652)

dove fri1 = f(tni1,Ynt1)-
Pertanto, poiché y, € nota, I'insieme dei valori ¥,...,yy rappresentano la
soluzione numerica del nostro problema.

ESEMPIO 48. Crescita di una popolazione. Sia y(¢) una popolazione di batteri
(ma questo esempio si puo generalizzare al caso di una popolazione di persone) posta
in un ambiente limitato, ovvero dove non possono vivere piu di B batteri. Sapendo
che yp < B. Sia C > 0 il fattore di crescita, allora la velocita di cambiamento dei
batteri al tempo ¢ sara proporzionale al numero dei batteri presistrenti al tempo ¢, ma
limiata dal fatto che non possono vivere piu di B batteri. L’equazione differenziale
corrispondente, detta equazione logistica , ¢

di/ziit) _ Cy(t) (1 _ y(;) 7 (6.53)

che e un’equazione del primo ordine la cui soluzione ci da il numero di batteri presenti
al tempo t.
Se approssimiamo la derivata con il metodo di Eulero esplicito (6.49) essa diventa

Con Eulero implicito (6.52) essa diventa

Ynt1 = Yn + Chyniy1(1 = yny1/B)n > 0.

In quest’ultimo caso, appare evidente, che usando un metodo implicito per il calcolo
della soluzione al passo t,4+1, si dovra risolvere, ad ogni passo, un’equazione non
lineare. Nonostante i metodi impliciti siano pitt costosi essi perd sono piu stabili
(vedi, ad esempio, [25, 26]).
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6.5 Estrapolazione di Richardson

In questa sezione presentiamo la tecnica di estrapolazione di Richardson che rap-
presenta uno degli strumenti pit interessanti per I'accelerazione di successioni,
ovvero il loro calcolo "veloce”, e che trova applicazione anche alla quadratura
numerica.

Uno degli ingredienti su cui si basa la tecnica di Richardson e la formula di
sommazione di Eulero-Maclaurin che a sua volta si basa sui numeri di Bernoulli
ovvero il valore in zero dei polinomi di Bernoulli di grado pari.

Presenteremo quindi lo schema di (estrapolazione) di Romberg come appli-
cazione della tecnica di Richardson alla quadratura numerica. A sua volta, la tec-
nica di Romberg si puo pensare come 'algoritmo di Neville per la valutazione in
0 del polinomio di interpolazione i cui nodi non sono altro che i passi al quadrato
da cui si parte per raffinare la formula di quadratura (ovvero per aumentarne
Pordine di convergenza).

Molti dei metodi numerici, quali quelli per I'interpolazione e la quadratura, si
basano sulle informazioni di una certa funzione su un insieme di valori che
dipende da un passo h # 0.

Ad ogni h # 0 posssiamo far corrispondere il valore T'(h) di un funzionale lin-
eare e continuo (che rappresenta il processo numerico) che ammette un’espansione
asintotica in termini di potenze di h:

T(h) = T0+7T h" +1h 2+ . .+Tmh7m+a7,L+1(h)h’y’"+l , 0<y <va <o < Ypt1

(6.54)
con 7;, i = 0,...,m indipendenti da A, |a,+1(h)] < A (ovvero limitata) e v; non
tutti numeri interi. Chiederemo inoltre che 7y = }{12% T'(h) ovvero, 7, rappresenta

la soluzione del problema considerato.
Presentiamo ora due semplici esempi di funzionali lineari che si possono rap-
presentare nella forma (6.54).

ESEMPIO 49. Sia
fle+h) = flz—h)
2h
Loperatore alle differenze finite centrali. E noto che T(h) ~ f'(z). Se f €

C*™ 3y —a,x +a], m > 0e |h| < |al, allora dall’espansione di Taylor possiamo
riscrivere T (h) come segue:

T(h) =

_ 1 / @\ R2EE L emets)
1) = g { S+ b O+ ) + o) -
1 / (2) h? 2m+3 pmT? (2m+3) -
= 55 f@ - F@h+ [T @)+ + (D) m[f (z) +o(1)] p =
= o+ nh?+. . Tk am+1(h)h2m+2 , (6.55)
(2k+1)
dove 79 = f'(x), 7, = M, k=1,....m+1leamnii(h)=Tmi1 +o(1)L

ICon il simbolo o(1) si intende indicare una quantita che ha ordine di infinitesimo di una costante.
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EsEMPIO 50. Sia
fl+h) - f(z)
h
lUoperatore alle differenze finite in avanti. Operando come prima si ha

T(h) =

T(h) =70 + T1h + 72h® ...+ T h™ 4+ a1 (R) R (6.56)

f(k+1)(a7)
(E+1)°

Infine, come gia osservato alla sezione 6.4, 'operatore alle differenze finite
centrali ¢ una approssimazione migliore dell’operatore alle difference finite in
avanti, poiché la sua espansione asintotica contiene solo potenze pari di h (cft.
(6.55) e (6.56)).

dove 1, = k=0,1,....m+1eani1(h) = Tme1 +o(1).

La domanda d’obbligo, a questo punto, € la seguente: come possiamo costruire
un metodo generale di estrapolazione?

Dato un metodo di discretizzazione, scegliamo una sequenza di passi, {h;,i=0,1,...},
tali che hg > hy > hy > ... > 0, e calcoliamo T'(h;), i = 0,1,2,.... Fissato poi un
indice k, per ¢ < k costruiamo i polinomi

T; x(h) = bg + bih"" + ... + bph* (6.57)

tali da soddisfare le condizioni d’interpolazione

Tin(hj) =T(hj), j=i—ki—k+1,...i.

Consideriamo quindi i valori
Tix = T;1(0)

)

come approssimazione di 7.2
Ci limiteremo al caso in cui v = k.

Poniamo, 2 = 77 e z; = hj, j=0,1,...,m, cosicché

Ti’k(h) =by+ b1z + b22’2 + ...+ bkzk = i’k(z) .

Proviamo un risultato che sostanzialmente afferma che il valore estrapolato
T i, altro non & che il valore in z = 0 del polinomio di interpolazione di grado k
sui nodi z;, j =1 — k, ..., i che assume il valore T'(h;).

Proposizione 17. In z = (,

Lagrange : i : 3
Tiwi=Pi(0) 5" N QU Pz) = Y Al T(hy) (658
j=i—k j=i—k

5—

2Talvolta ai polinomi (6.57) si preferiscono funzioni razionali.
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dove

sF#J
=i—k
sono i polinomi elementari di Lagrange, tali che
i 1 p=0
Sl ={0 =1,k (6.59)
k.j~i P Sy .
j=i—k (—D)*2ipzigy1-2z p=k+1

Dim. Osserviamo che i coefficienti ck dipendono solo da z;. Consideriamo
i monomi 2P, p = 0,1,..., k. R1scr1v1am0h come polinomi di interpolazione di
Lagrange

%

7
z—Z
=y - IIT — »r=01,.k.
j=i—k . AT s
577
s=1—k

Da cui, per z = 0 si ottengono le prime due uguaglianze in (6.59).
Infine, osserviamo che

4 4

= Z z;ﬁ'l . H ZZ__? + H (z — z5) . (6.60)
j=i—k sHj J s s=i—k
s=1i—k

+1

Infatti, poiché z**! sta sia a sinistra che a destra della (6.60), il polinomio dif-

ferenza
Zk+1 — (membro destro in (6.60)) e Py
e si annulla nei k + 1 punti z,, s =i —k, ..., 7. Cioe esso si annulla identicamente.
Cio prova la validita della (6.60).
Sostituendo z = 0, si ottiene la terza delle (6.59). [J

Siamo in grado di usare I'espansione (6.58). Pertanto, per k£ < m

i

Ty = Z c,(f’)jT(hj) = Z c,(;)] [T0 + 712 + 7'22.72- +...+ Tsz + zf+1(7k+1 + O(hy))] ,

j=i—k j=i—k
(6.61)
eperk=m
Z CT,ZL)]T Z CZ)J [TU+T1Z]'+722J2-+ ct Tmzj" +z amH(hj)] .

j=i—m Jj=t—m

(6.62)



216 Appunti di Calcolo Numerico con codici in Matlab/Octave

Se 1 passi h; sono tali che h; = hob’, 0 < b < 1, ovvero formano una successione
geometrica di ragione b, o in generale % <b< 1, V7, sipuo dimostrare che
3

esiste una costante C} dipendente solo da b tale che

Z |C;(j,)j\zf+1 S Crzi—kZi—ky1 " % - (6.63)
j=i—k
Dalle relazioni (6.59) e (6.63) segue che
T =70+ (-D)*2pzimpt1 - zi(Tip1 + O(hizk)), k<m; (6.64)
e
‘EJ?L - 7-0| S M7n,+1CmZi—nLZi—m+1 T2, (665)

se |m1(hj)| < My,q1, per j > 0.
Concludendo, per k fissato e i — oo
T, — 70| = O(FH)) = o(hF D7) (6.66)

Rappresentando il tutto su un “tableau”, come in Figura 6.8, potremo dire che
T, , ovvero I’ i-esimo elemento della (k + 1)-esima colonna, converge a 7, con

ordine (k + 1)7.

To.o
-
.
ia
PR A
—~ .
e \*
Tio v T22
~— 7 .
\\\\\‘L - .
- -
v 121 A
T v T33
o -
e A 7
Tz.0 Taz
~
o e
‘Ta,i'
l”
e
r’//l.
T30

Figura 6.8: Tableau dello schema di Richardson per m = 3, con T} o = T'(h;).

6.5.1 Applicazione alla quadratura numerica

b
Sia f € C?™*2[a,b] e si desideri calcolare | f(t)dt su una partizione uniforme,

x;=a+ih, 1=0,1,...,n, h=(b—a)/n, n>1.
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Regola trapezoidale

Se si fa uso della formula trapezoidale, € noto che

f(a)

T(h)=h<2+f(a+h)+...+f(b—h)+f(b)> .

2

Per tale funzionale vale la formula di sommazione di Eulero-Maclaurin:

b m 21
70) = [ F0a Y T (100 - O (@) 4 R e o),
a =1 ’ ’
(6.67)

con a < £ < b. La formula precedente ci da una espressione esplicita dell’errore
che si commette approssimando l'integrale di f su [a,b] mediante la formula
trapezoidale. I coefficienti By sono i numeri di Bernoulli che sono definiti come il
valore in 0 dei polinomi di Bernoulli di grado k, con k pari (si veda la sottosezione
6.5.3 per alcuni cenni sui polinomi di Bernoulli).

Alla luce di quanto detto, la formula trapezoidale (6.67) si puo riscrivere come

T(h) =10+ 1h®> 4+ ... + 7 h®™ + apy A2 2 (6.68)
dove
b
To = / f(t)dt
B
Tk (22];! (f(%*l)(b) — f(%*l)(a)) L k=1,....m
B, "
am1(h) = ﬁ(b —a)fP(E(h) a<€(h)<b.

Poiché f(>™+2) ¢ Cla,b], allora esiste una costante L tale che |f*™*2)(z)| < L,
uniformemente in z. Ci6 implica che 3 M,,; tale che

(1 (B)] < M, \m:b;“, n>0. (6.69)

La disequazione (6.69) ci dice che il termine di errore dell’espansione asintotica
(6.68) tende a zero come h — 0. Infine, detta espansione approssima 7, come un
polinomio in /2, al tendere a zero di h.

Metodo di Romberg
Per il calcolo di 7y si puod procedere come segue:

h h
1. hozb—a,hlz—o,...,hm: 0,c0nn17...,nm>0, m > 0.
ni Tom,

2. In corrispondenza determino
Ti,O :T(hl), i:O,l,...,m;
dove T'(h) e il funzionale (6.68).
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3. Sia

Tm,m(h) =ap + a1h2 44 athm :

tale che Tm,m(hi) =T(h;), i=0,1,...,m. Il polinomio Tm,m altro non & che
il polinomio di interpolazione di T o.

4. Sia T, ,,(0) il valore estrapolato di 7.

Su queste idee si basa il metodo di Romberg. Le scelte dei passi /; e dei polinomi
T; 1, sono fatte come segue:

b—a
hi: Ty
° 50

1> 0.

o Per calcolare Tm,m(O) (ovvero il valore estrapolato di 7y) si usa l'algoritmo
di Neville (vedi sottosezione 6.5.4). Per 1 < i < k < m sia T; il polinomio
di grado k in h? tale che:

A partire da k = 1, algoritmo di Neville consente di determinare T; ; dai
valoridi T; 51 € T;_1 ;—1, usando la formula

T v — T 40
T R 1 S A (6.70)

2 ) SRS
hi_
EnlleE

La formula (6.70) & I'algoritmo di Neville con z; = h? (valutato in z = 0).

Ty =Tik-1+

)

Per capire meglio il funzionamento del metodo facciamo un’esempio.

1
I:/ 22dx .
0

Il valore esatto dell’ integrale ¢ 7 = é Prendiamo hg = 1, hy = 271, hy = 272
Calcoliamo mediante la formula trapezoidale i valori Tj o = 0.5 corrispondente a h3,
T1,0 = 0.265625 ~ é—z corrispondente a hf e T5,0 = 0.192383 ~ % corrispondente a

h3. Usiamo la (6.70) per calcolare T3 ; e T 1. Un ulteriore applicazione della (6.70)
consente di determinare 755 = 0.1666667 ~ é.

ESEMPIO 51. Calcoliamo

Una prima importante proprieta dello schema di Romberg & che ogni T; ;, del
tableau costruito con la (6.70) (vedi Figura 6.8) rappresenta una regola di inte-
grazione lineare, ovvero

Tir=oaof(a)+arfla+h;)+ -+ an,_1f(0—h;) +an, f(b) .

Proposizione 18. Per i = k alcune formule T}, rappresentano formule di
quadratura di tipo Newton-Cotes. In particolare
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o Ty e la formula dei trapezi (T; o formule dei trapezi composte);
o Ty, éla formula di Simpson, (T; 1 formule di Simpson composte);
o 155 ¢ la formula di Milne.
T3 5 non é una formula di N-C.
Dim. Facilmente si prova che

b—a

To,o = 5

(f(a)+ (D)), (formula dei trapezi)

T =" (0 + 2715

Da cui, mediante I’algoritmo di Neville

Tio—Topo 4 1
Ty =To+ 2220 — 27— —Tpp.
1,1 1,0+ 3 3110~ 3100

1= "3 (@31 (57) + 30)

che & la ben nota formula di Simpson.
Le rimanenti affermazioni si lasciano per esercizio. [J

)+ f(b)) -

Sviluppando

Come ultima osservazione, il metodo di Romberg & un metodo di estrapo-
lazione di Richardson della formula (6.54) in cui I’esponente ;. = 2k.

6.5.2 Una implementazione del metodo di Romberg

I1 metodo di Romberg per la quadratura si applica usando la seguente ricetta: si
costruisce una tabella, T triangolare (inferiore), la cui prima colonna consiste dei
valori approssimati dell'integrale mediante formule composite dei trapezi costru-
ite usando suddivisioni regolari con N = 2™, m = 0,1, 2, ...., (ovvero suddivisioni
con 2™ +1 punti). Se indichiamo con 7} ;, i = 1,2, ... elemento dell’ i-esima riga
della prima colonna di T, che contiene il valore approssimato dell’integrale con
i passi h; = 277, ovvero 2¢ + 1 punti, gli elementi delle successive colonne sono
costruiti mediante la ricorrenza

AT o1 — Ti1 g1
ﬂ,k - 4]9 1 )

i=k,...,m,k=0,...,m,. (6.71)

Un esempio di tabella di Romberg e visualizzato in Tabella 6.5. Questa tecnica
trova la sua utilita nelle seguenti due proprieta

(a) T € una formula di quadratura del tipo

N
TNy = Z AjNf(ziN) -

j=1
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T 9 |
Too | Too |

Too | Tor1 Thoo ‘

Tosg | To21  Toro Thog ‘

Toag | Tosy  Th2o  To3 T1,4‘

Tabella 6.5: Tabella del metodo di Romberg

(b) Ciascuna delle formule in una data riga, come ad esempio la riga evidenzi-
ata in Tabella 6.5
Tys 0, T2 1, To1 9, Too3
0 in generale
Tgm ,05 TQm—l 1 T2m—2 25 j—‘2m—3’37 (*)

é una formula con N = 2" 4+ 1 punti e in ciascuna delle formule (¥) i punti
sono gli stessi che in T5m g.

Infine, vale il seguente risultato.

Teorema 31. Ciascuna formula 11,15, T5 ), .... € una formula di grado di
esattezza 2k — 1.

Ad esempio, se consideriamo la terza colonna di Tabella 6.5, essa rappresenta
una formula di quadratura esatta sui polinomi di grado 5 (ecco perche integra
perfettamente la funzione z°).

6.5.3 I polinomi di Bernoulli

In questa sottosezione desideriamo richiamare alcune delle caratteristiche salienti
dei polinomi di Bernoulli.

Si parte dall’intervallo I = [0, 1] e per ogni z € I i polinomi di Bernoulli sono
definiti dalle seguenti relazioni:

By(z) = 1, (6.72)
Bi(z) = x—%, (6.73)
Bji(x) = (k+1)By(z), k=1,2,.. (6.74)

Le relazioni (6.73) e (6.74) consentono di determinare i polinomi di Bernoulli
a meno di una costante di integrazione. Per avere univocita si introducono le
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ulteriori condizioni
BQl+1(O) - O - B21+1<1), l Z 1 . (675)

Si voglia ad esempio determinare By (z). Dalle (6.73) e (6.74) si avrebbe Bj(x) =
2z — 1. Integrando Bs(z) = 2% — z + c¢. Usando ancora le (6.73) e (6.74) si avrebbe
Bs(x) = d — 51'2 + 3cx + d. Usando le condizioni al contorno (6.75) si ottiene
d=0, c= é
Da quanto detto segue che i numeri di Bernoulli sono nulli per i polinomi di

grado dispari (cio segue da (6.75)) e diversi da zero per quello di grado pari. I

.. . .. . 1 1 1
primi 4 numeri pari di Bernoulli sono: By =1, By = & Bs = ~35 Bg = oL
Due proprieta facilmente verificabili sono:

1. (~1)*Bi(1 — z) = By(x), k > 0;

1
2. / Br(t)dt =0, k> 1.
0

Polinomi di Eernoulli
0.2

Figura 6.9: Alcuni polinomi di Bernoulli.

Per il grafico di alcuni polinomi di Bernoulli, vedasi Fig. 6.9.

6.5.4 Algoritmo di Neville

Lalgoritmo di Neville consente di valutare il polinomio interpolante mediante
una successione di interpolazioni lineari di polinomi di grado via via crescente.

Sia S, = {(zs,:), i = 0,1,...,n} un insieme di punti in R? Nella sua forma
originale I’algoritmo funziona come segue:
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(a) Fase di inizializzazione

Po=v;, i=0,1,...n.

s

(b) Passo iterativo

X — Ti—k X, — X
Py = ——Pr a1+t ———P 11,
Li — Ti—k Li — Ti—k
Pix—1— P11
P = P+ ——F 1 ,i=1,...,n k=1..,n.
T—x;

Al termine del processo P, , conterra il valore in x del polinomio di interpo-
lazione di grado n su .S,,.

function [n]=neville(x,y,t)
A —
% Valuta in t il polinomio di interpolazione di
% grado length(x)-1, mediante 1’algoritmo di Neville
% facendo uso di un solo vettore p
R —
n=length(x); p=y;
for i=2:mn,

for k=i:n,

PR =(pk) *(t-x(k-i+1))-p(k-1) *(t-x(k)))/ (x (k) -x(k-i+1) ) ;

end
end
n=p(n);

Il polinomio interpolante ottenuto con I'algoritmo di Neville, puo scriversi

nella forma
itk

Pig(a) =) 1 i(2)y;
j=i

dove i polinomi di grado k, [ f’i(az), sono i polinomi elementari di Lagrange.
Tale algoritmo si puo applicare allo schema di Romberg pur di prendere z = 0
e r; = h? nonché prendendo i = 0,1,2,... e k = 1, ...,i nel passo iterativo.



Metodi iterativi ed
eqguazione logistica

Questa Appendice ha lo scopo di far capire come i modelli di evoluzione di una
popolazione, siano studiabili come metodi iterativi per la ricerca di zeri di fun-
zione. Si tratta di successioni il cui valore corrente dipende da quello prece-
dente tramite una funzione di iterazione, che rappresenta I'evoluzione della popo-
lazione.

Iniziamo ricordando dapprima due tra i pit noti e semplici modelli di evoluzione
di una popolazione: il modello lineare di Malthus e quello quadratico di Verhulst.
Poi studieremo brevemente il modello lineare discreto (del modello differenziale)
di Volterra, applicato all’evoluzione di due popolazioni concorrenti, e la sua con-
troparte non lineare noto come modello di Lotka-Volterra.

A.1 Modello lineare di Malthus

I1 Rev.do Thomas (Robert) Malthus (?/2/1766- 23/12/1834), curato inglese ad Al-
bury (vicino ad Oxford), nel suo saggio "An Essay on the Principle of Population”
pubblicato nel 1798, ipotizzo che una popolazione che non ha scambi con I'esterno
cresce sempre piu dei propri mezzi di sussistenza.

Aveva delle visioni pessimistiche sia come demografo che come economista.
Predisse che la crescita di una popolazione matematicamente € una crescita geo-
metrica, ovvero il tasso di crescita e lineare.

Se pertanto xq € il numero di individui iniziali, allora dopo un certo tempo la
popolazione sara x; = xy + gxg, con g € R che e detto fattore di crescita (o
growth rate). Allora x; = (1+g)xg, v2 = (1+g)z1 = (1+9)[(1+g)z0] = (1+9)%x0

e al passo k

rp=(1+g)Fzy geR (A.1)

che & una progressione geometrica di ragione 1 + g.

Domanda: come varia la popolazione? Risposta: in funzione di g e del valore
iniziale xg.

Studiamo la successione (o progressione) geometrica (A.1). Essa converge se e
solo se |1 + g| < 1 per ogni popolazione iniziale zy. Pertanto, si ha convergenza
quando —2 < g < 0. Se =2 < g < —1 allora —1 < 14 g < 0 cosicché z; sara
negativo per k dispari e positivo altrimenti. Ovvero non sapremo dire nulla. Se
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Figura A.1: Thomas Malthus

g=-1,14+¢g=0equindi z; =0, Vk. Infine, quando —1 < ¢ < 0,1+ g < 1 per
cui xp < xo: la popolazione si estingue!

Ci sono due altri casi da considerare:
e g = 0. In tal caso la popolazione rimane inalterata z; = xq, Vk.

e Divergenza quando g > 0. Infatti, se 1 + ¢ > 1 che implica z; > z;_1 >
-+ > x0: la popolazione cresce esponenzialmente.

ESEMPIO 52. Come esempio, consideriamo la popolazione iniziale xq = 100 e
consideriamo 10 iterazioni, k = 0,1, ..., 10. Levoluzione sara come in Figura A.2

A.2 Il modello non lineare di Verhulst

Pierre Verhulst (Brussels, 28/10/1804-15/2/1849) era un matematico che si inter-
esso di biologia e in particolare della legge di crescita di una popolazione.

Nel 1838 in Verhulst, P. F. Notice sur la loi que la population pursuit dans son ac-
croissement, Corresp. Math. Phys. 10:113-121, propose un nuovo modello di crescita
della popolazione, assumendo non piu una crescita costante ma con fattore di
crescita di tipo lineare g(z) = —axz +b, a > 0. Partendo da una popolazione
iniziale ¢, la (A.1) al passo k, si scrivera come

Tpt1 = ok + g(ag) v = —axi + (14 b)zy . (A.2)

Lequazione (A.2) ha senso se a > —1 e 0 < z < 2t (perche la popolazione deve

essere sempre > 0). Il modello & equivalente alla mappa quadratica

T:RT — RT

x—T(z)=—az’+ (1 +b)x . (A.3)
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[ u=03 || - [ =21
1o L—e=0 | |—— 0=03
!
100 1000 -
00
80 800
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40 400
a0
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2 4 6 8 10 e 4 6 8 10

Figura A.2: La progressione di Malthus a partire da una popolazione iniziale di
100 individui per diversi valori di g.

Figura A.3: Pierre Verhlust

(14b)

Consideriamo la trasformazione lineare + = ~——~y, che mappa l'intervallo [0, (1+
b)/a], dove la parabola di (A.3) € T'(x) > 0 in [0, 1]. Otteniamo

T(y) = —a (T)f v+ (1+b)- (T) Yy (A4)

Semplificando .
T(y) = —ry* + ry (A5)

avendo posto xk = A40)°  Gedi Fig. A4.

a >
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T {x)

0 1+b"
D T N

k4

(1 1-1/k 1

Figura A.4: La trasformazione lineare della parabola T'(x) > 0 in [0, 1]

Possiamo allora studiare la mappa discreta
Thi1 = —KTh +RTE, 0<k <4 (A.6)

Il processo iterativo (A.6) si chiama processo logistico discreto. Pertanto,
partendo da un zy € (0, 1], scelto un valore di x € (0,4], itereremo la mappa
(A.6) un certo numero di volte, ottenendo un punto del cosidetto diagramma di
Verhulst.

Riassumendo, indichiamo in tabella A.1, le differenze tra i due approcci.

A.2.1 Isometrie, dilatazioni e contrazioni

In entrambi i procedimenti di Malthus e Verhulst, partendo da un z; e da una
funzione 7' : R — R si & generata una successione di valori {z,},>¢ tale che
Tpt1 = T(x,), n=0,1,... Consideriamo allora la successione

Tpe1 =T (x,), n=0,1,2,... (A.7)
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Verhlust

Figura A.5: Iterazione del processo di Verhulst che origina il ben noto dia-
gramma di biforcazione

Malthus: lineare Verhulst: non lineare
fattore di crescita costante ¢ lineare g(x) = ax + b
i o
0 2
processo { - Tpy1 = —kxs, + kz,
o1 = (1+9)2n k=(1+b)%/a
trasformazione T(x)=(1+g)z T(z) = —ka? + kx

Tabella A.1: Tabella di confronto tra le iterazioni di Malthus e Verhlust

essa sara detta

e una isometria se

T (xp+1) — T(xn)| = |xns1 — xpnl, YneN (A.8)

e una dilatazione se

[T (xpi1) — T(xpn)| > |Tpi1 — x|, YneN (A.9)

e oppure una contrazione se

[T(xp+1) — T(zn)| < k|Tpe1 —xn|, VRneEN, ke€[0,1) (A.10)

Vale il seguente Teorema del punto fisso di (Banach-)Caccioppoli
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Teorema 32. Ogni contrazione T : R — R ammette un unico punto fisso,

Partendo da un fissato x il processo
Tn+1 = T(xn) y = 03 1»27
L, . . - - . .
e un’approssimazione di x* che migliora ad ogni passo, cioé
* *
|Tnt1 — 2| < |x, — 2|, n=0,1,2,...

N

Il punto z* & detto appunto punto fisso della contrazione 7.

Figura A.6: Renato Caccioppoli

Se T' e una contrazione, allora esiste un « € [0,1) tale che
[T(zpt1) — T(xn)| < K|Tp+1 — znl, YR EN, (A.11)
ovvero
T (znt1) — T(xn)|
|xn+1 - -Tn|
La disuguaglianza (A.12) ci dice che il "rapporto incrementale” ¢ sempre mi-

nore di 1. Quando |z,,11 — x,| < € allora il rapporto incrementale approssima
la derivata di 7" in z,,.

<1. (A.12)

A.2.2 Semplici esempi di processi iterativi

1. Processo di traslazione: T(z) = x + a. Le progressioni aritmetiche, come
la capitalizzazione semplice degli interessi, sono processi di traslazione.
Sono processi isometrici.
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2. Processo omotetico: 7'(z) = ma.

e |m| < 1, &€ una contrazione.

e |m| > 1,e una dilatazione.

e |m| = 1, & una isometria (identita se m = 1 e simmetria rispetto
Porigine se m = —1).

Le progressioni geometriche, quali la capitalizzazione composta degli inter-
essi, sono esempi di processi omotetici.

La rappresentazione grafica dei processi iterativi si ottiene seguendo questa “ricetta”

1. In un riferimento cartesiano ortogonale, tracciamo il grafico della trasfor-
mazione 7' e della funzione identica y = x, come evidenziato in A.7.

#% W
A

x, =1(x,)

X, =Tx, )

ba

Figura A.7: Rappresentazione di un processo iterativo.

2. Fissato quindi un punto iniziale z, costruiamo la sua immagine x; = T(z)
sull’asse delle ordinate. Per simulare il procedimento di retroazione, ripor-
tiamo in ascissa il valore z; attraverso la funzione identica y = z. Calco-
liamo quindi z9 = T'(x1) e riportiamo il suo valore in ascissa. Procediamo
iterativamente per calcolare z1 = T'(z).

In Figura A.8 il primo fotogramma illustra un processo shift; nel secondo e
nel terzo due processi omotetici di contrazione con attrattore nullo. Il quarto
fotogramma rappresenta infine un processo espansivo.

ESEMPIO 53. Esempi di un processo iterativo convergente Fig. A.9 e di processo
iterativo divergente Fig. A.10. Infine alcune iterazioni di Verhulst per diversi valori
di x si trovano nelle Figure A.11-A.13.
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m=l =2 mp=4 |m=0d og=0 m=55

tn=-0.8 g= =55 |m=14 og=0 =05

Figura A.8: Processi iterativi per diversi valori di m.

y=T(x)

05

X,

0 : 4

Figura A.9: Processo convergente
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2r ¥=Tix)

el

Figura A.10: Processo divergente

A.3 Modello lineare di Volterra

A.3.1 Interazione tra 2 popolazioni: modello lineare di Volterra

Si suppone che il tasso di crescita delle 2 popolazioni sia proporzionale e costante
al numero di individui di ciascuna (nonché diverso per le 2 popolazioni).

Tpy1 —Tn = aTp+by, = Xnt1 =(1+2a)xn+byn (A.13)
Yn+1 — Yn = an"'dyn = ¥n+1 = CXp + (1+d) Yn (A.14)

con x,,, y, gli individui al passo n.
Equivalentemente

Tpa1 - 1+a b Tn
Ynil ) c 1+d Un
T:R? — R} T(X)=X":=A4-X

con A matrice dei coefficienti e X = [z y]’.

Consideriamo come Esempio Figura A.14

Cerchiamo di chiarire il significato dei coefficienti cooperazione: a e d (di
ciascuna popolazione, rispetto se stessa) sono negativi, ciascuna specie - da sola
- si estinguerebbe (contrazione). Ma sono positivi i coefficienti di crescita b e
¢ (di ciascuna popolazione, rispetto all’altra), la presenza dell’altra specie puo
rallentare o addirittura inibire il processo di estinzione.
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0.6

0 _ ' y=T9

0.2

0.2 : j H -

i 1
-0.2 -0.1 0 01 0z 0.3 0.4 05 0.6 0.7 0.8

Figura A.11: Processo di Verhulst convergente con zyp = 0.1,x = 3.

segno dei coeff. || evoluzione del sistema
a, b, ¢, d
-+ + - cooperazione
+ - —+ competizione
+ + — - prede-predatori

competizione: il segno dei coefficienti di crescita & 'opposto del caso della
cooperazione. Ciascuna specie esploderebbe (crescita) se non ci fosse l'altra ad
inibire tale processo. La competizione fa si che una delle due specie si estingue e
P’altra esplode, come mostrato nella prossima figura.

preda-predatore: il segno dei coefficienti di crescita a,b & positivo mentre
quelli della seconda specie, ¢,d sono negativi. Si possono interpretare le due
specie come una popolazione di prede = ed una di predatori y, da cui il nome di
modello preda-predatore.
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£

08k ) ; i I3 ] HE " -

0.8 A AR —N|| [ —

Figura A.12: Processo di Verhulst convergente con zy = 0.1,x = 3.9

A.4 Modello non lineare di Lotka-Volterra

In analogia a quanto fatto nel caso unidimensionale (nel passare da Malthus a
Verhulst):

dz/dt = z(a— by) (A.15)
dy/dt = —y(c —dx) (A.16)
Tpt1 —Tp = (a—byn)x, (A.17)
Yn+1 —Yn = (C Tp — d) Yn (A.18)

con x,,, y, gli individui al passo n, a,b,c,d > 0.
Pertanto, partendo dalle popolazioni iniziali x(, yo otteniamo il sistema non
lineare

Tpi1 = (a+1)x, —bryy, (A.19)
Ynt1 = CTpyn + (1 —d)y, (A.20)

dove
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Figura A.13: Processo di Verhulst divergente con 2o = 0.1,x = 4.1

Processo lineare di Volterra

Pap, |
107} - Pop,

Figura A.14: Quizy =10, yo=20ea=0=0.1, c=0.01,d =0 .

e la prima equazione e quella della popolazione delle prede (che si assume
abbiano una riserva di cibo illimitata);

e la seconda equazione e quella della popolazione dei predatori.
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Processo kneare & Volterra
. ' : ! !
200
180
160 - ;
o’
'l'
140 Vi
’
o,
’
120 S
'I
‘/
100 o
Fa
a0 L
-
-
-
-
A L
—’.
40 o
_-—-"
-;r-‘--—
S jmmmmn =TT
4 a a 10 12 14 16 18 20

2

Figura A.15: Valori scelti: g = 10, yo = 20e a = —0.01,b = 0.2 ¢ = 0.1,d =

% 10° Procesao kneare i Volterra
' ' T T 1 ' 1 ' 1
{
i
7 -
v
+ : H
- Pop, i
B === Pop, f
i
i
i
5 H
i
:
i
i
i /
i
V
i
|
ar i
]
:
'
2 ‘}'
/
/
v
1 ,j
P
-~
e
4 a [ 10 12 14 16 18 20

c20=10, yo=20ea=—0.1,b=10c=—0.1,d = 0.1

Figura A.16: Valori scelti

In Figura A.19 presentiamo un esempio di evoluzione mediante lo schema non

lineare di Lotka-Volterra.
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Procesao kneare o Volterra
v T T T

L « Pop, |
X —ae POD,
1o Y
\

Figura A.17: Valori scelti: 2o = 10, yo = 20 e a = 0.01,b = 0.02 ¢ = —0.01,d =
—0.2

il

Figura A.18: Alfred J. Lotka (1880-1949)(sx) e Vito Volterra (1860-1940)(dx)
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Processo non-lineare di Lotka-Valterra

T T T T T T T T T T 3
8000 + Pop,
. 1"0|:J2

7000 K
G000 - z . -
5000 , Y

a ‘:\_ -
4000 Pt R S

d000
2000

1000 -

450 500 550 GO0

Figura A.19: Valori scelti: =y = 2000, yo = 600, a = 0.1, b = 0.00008333333, ¢ =
0.00004, d = 0.04.






Inferpolazione: aspetti
iImplementafivi e
applicazioni

Questa appendice e stata scritta insieme al Prof. Marco Caliari dell’'Universita
di Verona a cui va il mio personale ringraziamento.

B.1 Richiami sull’interpolazione polinomiale

Data una funzione f: [a,b] — R e un insieme {z;}!"; C [a,b], sia p,—1f(z) il
polinomio di grado n — 1 interpolatore di f nei punti x; (cioé p,_1f(x;) = f(x;).
Chiameremo i punti z; nodi di interpolazione (o, piu semplicemente, nodi). Un
generico punto Z € [a,b] in cui si valuta L,_; f sara chiamato nodo target (o, piu
semplicemente, target).

In nodi di Chebyshev sono gli zeri del polinomio di Chebyshev di grado n T},(z) =
cos(narccos(z)) (vedasi anche §5.1). Dunque, z;;1 = cos # ,j=0,....,n—1.
Si chiamano n nodi di Chebyshev estesi (o di Chebyshev-Lobatto) i nodi ;11 =
cos (%), j =0,...,n— 1. Tali nodi appartengono all’intervallo [—1,1]. I nodi
di Chebyshev relativi ad un intervallo generico [a, b] si ottengono semplicemente
per traslazione e scalatura.

B.1.1 Interpolazione di Lagrange

Dato un insieme di n coppie di interpolazione {(x;, y;)}- , il polinomio elementare
di Lagrange i-esimo (di gradon — 1) &

I1 codice Matlab/Octave per il calcolo dei polinomi di Lagrange su vettori (colonna)
di punti target x e riportato nella funzione lagrai target.m di Appendice E .
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Il polinomio di interpolazione si scrive dunque

Pn—1($) = Zy,L(;z:) .

B.1.2 Sistema di Vandermonde

Dato il polinomio
Pn-1(x) = a " a2+t ap 17+ ay

e n coppie di interpolazione {(x;,y;)}" ;, il corrispondente sistema di Vander-
monde si scrive

1 Ty 1 ai Y1
n—1 n—2
Tq Ty To 1 ao U2
: : = : (B.1)
n—1 n—2
LTp—1 Tp—1 -+ Tn-1 1 An—1 Yn—1
an=t o ogr=2 0 o, 1 an Yn

11 calcolo della matrice di Vandermonde si puo fare con il codice Matlab/Octave
in Tabella B.1. oppure usando la funzione Matlab/Octave vander.

function V = vandermonde (nodi)
%

% V = vandermonde (nodi)

%
n
v

length(nodi) ;
repmat(nodi’,1,n) . repmat([n-1:-1:0],n,1);

Tabella B.1: Matrice di Vandermonde.

B.1.3 Interpolazione di Newton

Data una funzione f, definiamo le differenze divise nel seguente modo:

flx] = f(z)
. < L= e
Xr — X
flon s e z] = fler, o,y xp—1, 2] — fleg, @a, .o 21, 2]

T — Tk

Per il calcolo delle differenze divise ci possiamo avvalere della funzione DiffDivise
di Appendice E.
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Il polinomio d’interpolazione nella forma di Newton si scrive quindi

pof(x) =dy
w=(r—1x1)

pif(x) =piif(x) +dipiw, i=1,...,n—1
w=w-(x—xi1), i=1,....,n—1

ove
di = f[.rl,...,z:i] .

I1 calcolo delle differenze divise e la costruzione del polinomio di interpolazione
possono essere fatti nel medesimo ciclo for.
Sfruttando la rappresentazione dell’errore

% i

flx)—pi—1f(x) = H(x —xj) | fle, ...z, 2] = H(:c —xj) | fle, ..oz Tig]
j=1 j=1
(B.2)
& possibile implementare un algoritmo per la formula di interpolazione di New-
ton adattativo, che si interrompa cioé non appena la stima dell’errore e piu pic-
cola di una fissata tolleranza.
Dato il polinomio interpolatore nella forma di Newton

Pno1(@) =di+do(z—21)+ ... +dp(z—21) ... - (& —Tpo1)

si vede che le differenze divise soddisfano il sistema lineare

0 0 1 d, f(x1)
0 0 (x2 —x1) 1 dp—1 f(z2)
6 H;-:f(an —xj) ... (xn—lh_ 1) 1 Ciz f(‘r’l.’Lfl)
H;':_ll (xn, — ;) . coe (mp—a) 1 dy f(zn)
(B.3)

B.1.4 Interpolazione polinomiale a tratti
Data una funzione f: [a,b] — R e un’insieme {z;}?_; C [a,b] di nodi ordinati,

consideriamo l'interpolante polinomiale a tratti L§ ,f di grado k£ — 1. Su ogni
intervallo h; = x; 1 — z; essa coincide con il polinomio di grado k& — 1

a1 (x — mi)k_l +a;o(x — :Ci)k_Q +.oooFaip—1(r—x) Faig . (B.4)

Dunque, l'interpolante polinomiale a tratti & completamente nota una volta noti
inodi e i coefficienti di ogni polinomio.
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B.1.5 Strutture in Matlab/Octave

In Matlab/Octave e possibile definire delle strutture, cioeé degli insiemi (non ordi-
nati) di oggetti. Per esempio, le istruzioni

S.a = 1;
S.b [1,2];

generano la struttura S

g =
{

3

Linterpolazione polinomiale a tratti ¢ definita mediante una struttura solita-
mente chiamata pp (piecewise polynomial), che contiene gli oggetti pp.x (vettore
colonna dei nodi), pp.P (matrice dei coefficienti), pp.n (numero di polinomi), pp.k
(grado polinomiale aumentato di uno) e pp.d (numero di valori assunti dai poli-
nomi). La matrice P ha dimensione n x k e, con riferimento a (B.4),

Pij = aij -

Nota una struttura pp, & possibile valutare il valore dell'interpolante in un gener-
ico target Z con il comando ppval (pp,xbar).

B.1.6 Splines cubiche

Le splines cubiche sono implementate da Matlab/Octave con il comando spline
che accetta in input il vettore dei nodi e il vettore dei valori e restituisce la strut-
tura associata. La spline cubica costruita € nota come not-a-knot, ossia viene
imposta la continuita della derivata terza (generalemente discontinua) nei nodi
2o e x,_1. Lo stesso comando permette di generare anche le splines vincolate: &
sufficiente che il vettore dei valori abbia due elementi in piu rispetto al vettore
dei nodi. Il primo e 'ultimo valore verranno usati per imporre il valore della
derivata alle estremita dell’intervallo.

Implementazione di splines cubiche naturali in Matlab/Octave

Con le notazioni usate fino ad ora, si puo costruire una spline cubica S a partire
dalla sua derivata seconda nell'intervallo generico [z;, ;1]

Miy1 — My :
Sliiea) (@) = +T(w—xi)+mi, i=1,...,n—1 (B.5)



B. Interpolazione: aspetti implementativi e applicazioni 243

ove m; = S”(z;) sono incogniti, con m; = m, = 0. Integrando due volte la (B.5),
si ottiene

Mip1 — My
Sy win) (@) = JFQTi(m —x) 2+ mi(r — ;) + a;
M1 — My mi
Staswig) () = JFGT(Z‘ —z;)° + 7@ —z;)? + ai(x—x;) + bi

ove le costanti a; e b; sono da determinare. Innanzitutto, richiedendo la proprieta
di interpolazione, cioe S|, ... ,)(z;) = f(z;), j = i,i+ 1, si ottiene

f(z; — [l h; h;
a; = ( +12i (@) — (M1 — mi)g - ng =
f(@iv1) — flz:) h; hi
= —Hh—l - mi+1€ - mi?
A questo punto, richiedendo la continuita della derivata prima, cioe S[’IF1 ] (x;) =
szwﬂl](xi) peri=2,...,n — 1, si ottiene
hi—1 hi—1 + hi hi f(@ig1) — flza)  flz) — f(@ima)
/’i— ’L — 'l pu— - . B-6
R T s T B9

Risulta chiaro che ci sono n — 2 equazioni e n incognite m;.

Splines cubiche naturali Si impone che il valore della derivata seconda agli
estremi dell’intervallo sia 0. Dunque m; = m,, = 0. Il sistema lineare (B.6)
diventa allora

by the ke 0 ma ds
0 S

: : : . 0

0 0 h'n.6—2 hn—2'§h‘n,—l hn6—1 M1 dp_1
0 R R R 0 1 Moy, dp,

cond; =d, =0ed; = f(“’i“,z_f(“) —f(”'i);{(l‘”’l), i=2,...,n—1. Lalgoritmo
per il calcolo della struttura associata ad una spline cubica naturale & ri-
portato in Tabella B.2.

Splines cubiche vincolate Si impongono due valori d] e d), per la derivata
S’(x1) e S’(x,), rispettivamente. Si ricava dunque

alzdll

My — Moy —
(g — 2 1)+ M1 (T — Tp1) + an = d,
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function pp = splinenaturale(x,y)

%

% function pp = splinenaturale(x,y)

pA

n = length(x);

x =x();

y = y();

h = x(2:n)-x(1:n-1);

dl = h(2:n-2)/6;

d0 = (h(1:n-2)+h(2:n-1))/3;

rhs = (y(3:n)-y(2:n-1))./h(2:n-1)-(y(2:n-1)-y(1:n-2))./h(1:n-2);
S = diag(dl,-1)+diag(d0)+diag(d1l,1);

m = zeros(n,1);

m(2:n-1) = S\rhs;

a = (y(2:n)-y(1:n-1))./h(1:n-1)-h(1:n-1) .*(m(2:n) /6+m(1:n-1)/3);
b = y(1:n-1);

Pp.X = X;
pp.P = [(m(2:n)-m(1:n-1))./(6%h) ,m(1:n-1)/2,a,b];
pp-k = 4;
pp.n = n-1;
pp.d = 1;
Tabella B.2: Spline cubica naturale.
da cui
hy hy flz2) = fl21)
s o, = 22 7\
3 mi + 6 ma Iy 1
hn—l hn—l f(zn) - f(xn—l)
e T
Il sistema lineare da risolvere diventa dunque
2?1 h %h }E) ) i 4
o a 0 ms da
0 . . . B
: . . 0 : :
0 o 0 hn672 hn7243rhn71 hn671 M1 dy_1
0 hn—1 hn—1 My, dn
6 3

condlz%ﬂm—daedn:d;_%‘

n—1
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Splines cubiche periodiche Siimpone S”(x1) = 5" (x,) e S'(z1) = S'(x,). Si
ricava dunque

mp = mpy
My, — My
a; = anlhn—l + mn—lhn—l + Ap—1
da cui
mi —my, =0
h1 hy hn—1 hn—1 flx2) = fl@1)  fzn) — flwn_1)
—my+ —mos+ ——my_1 + My, = -
3 T et e Ty ha hn—1
Il sistema lineare da risolvere diventa dunque
1 0 Cee 0 -1 my dy
hi  hit+h h
© % h Ezh }? . ) e 2
0 ° e 0 0 ms ds
0 o 0 ’ln6—2 hn_othn_1 hn6—1 My—1 dp_1
h’?l % 0 S 0 7h"671 % My dyp

cond, =0ed, = f(wz)h—lf(’i’l) _ f(mn)};Lji(lxn—l).

Splines cubiche not-a-knot Siimpone la continuita della derivata terza in z-
e r,_1. Siricava dunque

M2 — 1My m3 — M2

hy ho
Mp_1— My My — My_1
Tn—2  hp
da cui
1 1 1 1
h71m1_ (h1+hQ>m2+h2m3:0

1 1 n 1 n 1 0
Mp—9 — — | Mp— — My =
hn—2 ’ hn—2 hn—l ! hn—l

Il sistema lineare da risolvere diventa dunque

Eli B é%ghz e 8 8 m o
6 mso do
0 ’ : B

. . 0 : :
0 L 0 hn?_2 hn_Q—ghn_l hn?_l My —1 dy—1
0 U _hn1_2 - hnl_1 - Mn dn

cond; =d, =0.
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Rappresentazione dell’errore

Supponiamo di usare un metodo di interpolazione polinomiale a tratti di grado
k — 1 in un intervallo [a, ] e consideriamo due diverse discretizzazioni, rispetti-
vamente con n; e ne nodi, con intervalli di lunghezza media hy = (b —a)/(n; — 1)
e hs = (b—a)/(ny — 1). Gli errori di approssimazione saranno verosimilmente
err; = Ch¥ e erry = ChY. Si ha dunque

ety _ (ho)"
err;y  \ hg

logerry — logerr; = k(log ho —loghy) = —k(log(ng — 1) — log(n — 1)) .

da cui

Dunque, rappresentando in un grafico logaritmico-logaritmico I'errore in dipen-
denza dal numero di nodi, la pendenza della retta corrisponde al grado di ap-
prossimazione del metodo, cambiato di segno.

B.1.7 Compressione di dati

Supponiamo di avere un insieme molto grande di coppie di nodi/valori {(z;,y;)} Y,
e di non conoscere la funzione che associa il valore al nodo corrispondente. Ci
poniamo il problema di comprimere i dati, ossia memorizzare il minor numero di
coefficienti pur mantenendo un sufficiente grado di accuratezza. Una prima idea
potrebbe essere quella di selezionare alcuni dei nodi, diciamo n, e di costruire
la spline cubica su quei nodi. Il costo di memorizzazione, oltre ai nodi, sarebbe
dunque pari a 4(n — 1). Rimarrebbe il problema di scegliere i nodi da memoriz-
zare, visto che non si suppone siano equispaziati.

Si potrebbe ridurre il costo di memorizzazione (a n) usando un unico polinomio
interpolatore: rimarrebbe il problema della scelta dei nodi e, probabilmente, si
aggiungerebbe un problema di mal condizionamento sempre dovuto alla scelta
dei nodi.

Un’idea che combina le tecniche discusse e la seguente: si usa una interpo-
lazione a tratti (anche lineare) per ricostruire i valori della funzione sconosciuta
in corrispondenza di n nodi di Chebyshev. Si usa poi un unico polinomio interpo-
latore su quei nodi. Il rapporto di compressione & 2N/n, considerando che non &
necessario memorizzare i nodi di Chebyshev, ma solo i coefficienti del polinomio
interpolatore (e trascurando i due estremi dell’intervallo).

B.1.8 Esercizi proposti

ESERCIZIO 87. Si implementi una function y =
interplagrange (nodi,valori,z) per la formula di interpolazione nella
forma di Lagrange.
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ESERCIZIO 88. Si testi l'interpolazione nella forma di Lagrange della fun-
zione di Runge nell’intervallo [—5, 5] su nodi equispaziati. Si prendano rispet-
tivamente n = 11,21, 31,41, 51 nodi di interpolazione e si valuti l'interpolante
su 5(n — 1) + 1 nodi target equispaziati. Si producano delle figure mettendo
in evidenza i nodi di interpolazione, la funzione di Runge e l'interpolante.

ESERCIZIO 89. Siimplementi una function y = chebyshev(n) per il calcolo
dei nodi di Chebyshev nell’intervallo [—1,1].

ESERcCIZIO 90. Si ripeta lesercizio 88 usando nodi di interpolazione di
Chebyshev anziché nodi equispaziati.

ESERCIZIO 91. Si implementi una function V = vandermonde (nodz) per il
calcolo della matrice di Vandermonde definita in (B.1).

ESERCIZIO 92. Si implementi una function y =
interpvandermonde (nodi,valori,z) per la formula di interpolazione
mediante matrice di Vandermonde. Si spieghino i risultati ottenuti.

ESERCIZIO 93. Si ripeta lesercizio 88, usando la formula di interpolazione
mediante matrice di Vandermonde. Si usi il metodo di Horner (vedasi Sezione
2.6.1, tabella 2.3) per la valutazione del polinomio.

ESERCIZIO 9. Si implementi una function y =
interpnewton(nodi,valori,z) per il calcolo del polinomio di interpolazione
nella forma di Newton.

ESERCIZIO 95. Si ripeta lesercizio 88, usando la formula di interpolazione
di Newton.

ESERCIZIO 96. Si modifichi limplementazione dell’interpolazione nella
forma di Newton, in modo da prevedere come parametro opzionale di input
la tolleranza per Uerrore (in norma infinito) di interpolazione, stimato come
in (B.2). Nel caso la tolleranza non sia raggiunta, lalgoritmo si interrompe
all’ultimo nodo di interpolazione. La function deve fornire in uscita il numero
di iterazioni e la stima dell’errore.

ESERCIZIO 97. Si considerino n = 21 nodi di interpolazione equispaziati
nell’intervallo [—5,5]. Si interpoli in forma di Newton la funzione y = cos(x)
sull’insieme di nodi target {—2,0, 1} per diverse tolleranze e, successivamente,
sull’insieme di nodi target {—2m,7}. Si spieghino i risultati ottenuti.

ESERCIZIO 98. Si calcolino i numeri di condizionamento della matrice di
Vandermonde (B.1) e della matrice dei coefficienti dell’interpolazione di New-
ton, da ordine 2 a 20 (considerando nodi equispaziati in [—1, 1] e se ne produca
un grafico semilogaritmico nelle ordinate. Si discutano i risultati.

ESERcCIZIO 99. Si implementi una function pp = lintrat(z,y) per
linterpolazione lineare a tratti.
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EsSERrcIZio 100. Si verifichi, mediante un grafico logaritmico-logaritmico,
il grado di approssimazione (errore in norma infinito) delle splines cubiche
naturali per la funzione di Runge. Si considerino un numero di nodi di in-
terpolazione equispaziati nell’intervallo [—5,5] da n =11 a n =91 e 102 nodi
target equispaziati.

ESERCIZIO 101. Si ripeta lesercizio precedente con l'interpolazione lineare
a tratti.

ESERCIZIO 102. Data la struttura associata ad una spline cubica, si ricavi
la corrispondente struttura per la derivata seconda.

ESERCIZIO 103. Si ripeta lesercizio 100, confrontando pero la derivata sec-
onda della funzione di Runge e la derivata seconda della spline cubica not-a-
knot associata.

ESERCIZIO 104. Si considerino le coppie {(x;,y;)} ove gli x; sono N = 1001
nodi equispaziati nell’intervallo [0,27] e y; = sin(z;). Mediante il procedi-
mento descritto in § B.1.7 (interpolazione lineare a tratti e interpolazione su
nodi di Chebyshev estesi), si determini il minimo grado n necessario per com-
primere i dati con un errore in norma infinito inferiore a 107°. Si determini
poi lerrore in corrispondenza del rapporto di compressione 286. Infine, si
giustifichi la stagnazione dell’errore di approssimazione per grado di interpo-
lazione maggiore di 10.
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Codici Matlab/Octave

I codici relativi alle funzioni citate dalla presente trattazione, sono scaricabili al
link

http://www.math.unipd.it/~demarchi/CN2006-07/CodiciMatlab.pdf
I codici sono parte integrante del presente libro. Invitiamo il lettore a farne il
download.
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