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Prefazione

Questo manuale ¢ un libro di testo per il corso di Geometria I del Corso
di Laurea in Matematica e insieme al mio precedente Geometria 1 completa, per
quanto riguarda la geometria, linsieme degli argomenti istituzionali del primo
biennio. In realta il programma di un secondo corso di geometria varia anche di
molto da universita a universita: per questo motivo ho deciso di inserire materiale
“in eccesso” in modo da assicurare un impiego abbastanza flessibile del testo.

Mentre nel primo volume il tema dominante ¢ ’algebra lineare, questo secondo
volume si occupa dell’aspetto topologico-differenziale della geometria nelle sue
varie forme.

Una prima parte é dedicata alla topologia generale. Pur sapendo che le si
dedica sempre meno spazio nei corsi istituzionali, rimango convinto della sua
funzione formativa.

Quindi ad essa ho dato ampio spazio (i primi 3 capitoli) in modo che lo
studente possa approfondire attraverso molti esempi ed esercizi cié che il docente
decide di svolgere a lezione. Il capitolo 4 tratta la teoria del gruppo fondamentale
e dei rivestimenti, primo approccio alla topologia algebrica.

1l resto del volume si occupa delle varieta differenziabili, concetto che deve
essere conosciuto da ogni matematico. Un obiettivo che mi sono posto é di separare
laspetto topologico-differenziale da quello geometrico-differenziale. Ho pertanto
riservato il capitolo 5 ad un minicorso di topologia dz_'ﬁ"erenzialfa nel quale il
lettore, con 'ausilio di molti esempi, pud familiarizzarsi con tecniche e nozioni di
base dove non intervengono questioni di natura metrica (summersioni, immersioni,
partizioni dell’unita, ecc.), spingendomi fino a dimostrare il teorema di immersione
di Whitney. Nel successivo capitolo 6 si studia invece la geometria differenziale
classica di curve e superfici. Qui vengono introdotte, seppure in modo elementare,
anche le superfici riemanniane e la geometria intrinseca; inoltre qualche spazio
e dedicato alla geometria iperbolica. Questa mi ha dato lo spunto per discutere
brevemente l'assiomatica euclidea secondo Hilbert, un argomento culturalmente
importante che non aveva trovato posto nel primo volume. Per il capitolo 6 non
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& necessario tutto il capitolo 5: se il docente vuole svolgere solo la geometria
differenziale classica pud limitarsi ad introdurre le prime proprieta delle varieta
differenziabili (§§ 19-23).

Il capitolo 7 tratta dell’integrazione sulle varieta differenziabili supponendo
nota integrazione secondo Riemann negli spazi R™. Questo argomento fonda-
mentale & svolto nella maggior parte dei testi di analisi matematica in modo
piuttosto affrettato e inadatto alle applicazioni geometriche. Percio I'ho inseriio,
pur sapendo che non spesso trovera posto in un corso di Geometria II.

In conclusione, il libro contiene materiale a sufficienza da consentire al docente
una certa flessibilita di utilizzo, in parte anche in corsi di Istituzioni di Geometria
Superiore. Gli esercizi, molti dei quali risolti, sono numerosi. L’esposizione é
sistematica e rigorosa, e per questo motivo & possibile che questo testo possa
rendersi utile anche come opera di consultazione a studenti del secondo biennio
e a laureati.

Quasi tutti i testi elencati nella bibliografia che si trova alla fine del volume
sono Sstati utilizzati e consultati nella preparazione del volume. Alcuni di essi
potranno fornire al lettore I’occasione per approfondimenti degli argomenti trattati.

Diverse persone mi hanno aiutato nella preparazione di questo secondo volume
e del precedente. Desidero ringraziare E. Arbarello, G. Campanella, Ciro Ciliberto,
R. Salvati Manni, E. Sinestrari per utili suggerimenti e osservazioni. Ringrazio in
modo particolare il dottor M. Bruno della Bollati Boringhieri per il suo accurato
e competente lavoro redazionale.

Un ringraziamento speciale va agli studenti dei miei corsi, tra cui in particolare
A. Sambusetti, per aver preteso precisione e chiarezza. Spero di riuscire ad
accontentare i loro successori.

E.S.

AVVERTENZE

Come ¢& consuetudine, denoteremo con N, Z, Q, R, C gli insiemi numerici fondamentali.

La scrittura A := B significa “A & per definizione uguale a B”. La fine di una
dimostrazione viene contrassegnata con il simbolo s. La composizione di due applicazioni
f:X->Y,g:Y — Z vienc denotata g - f.

Per gli altri simboli utilizzati e diversi da quelli di uso comune, rinviamo il lettore
all’elenco che si trova alla fine del volume.



Geometria ;






Capitolo |

Spazi topologici e applicazioni continue

1 Spazi metrici

I concetto di continuitd di una funzione f: R — R, dove R & la retta reale,
si esprime mediante quello di distanza: f si dice continua in z € R se per ogni
e > 0 esiste § > O tale che

If(x)— fy)| <e

per ogni y tale che |y —z| < 8. f si dice continua se lo ¢ in ogni z € R. Analoga
definizione si da per una funzione f:J — R definita in un intervallo J di R.

Si pud estendere la nozione di continuita a funzioni f : R® — R™ semplicemente
sostituendo il modulo di un numero reale con il modulo di un vettore. Pili in
generale & possibile introdurre il concetto di continuita di applicazioni tra insiemi
su cui siano definite funzioni “distanza” soddisfacenti ad opportunc condizioni.

Precisamente, uno spazio metrico & un insieme non vuoto X su cui sia definita
una distanza, cio® un’applicazione

d: XxX-R
tale che per ogni z, ', 2" € X
d(z,2") >0
d(z,z') = d(z', z)
d(z,z') +d(@',z") > d(z,z") (disuguaglianza triangolare)
d(z,z') =0 se e solo se z=2z'.

Quindi uno spazio metrico ¢ una coppia (X, d): distanze diverse sullo stesso
insieme X definiscono spazi metrici diversi.
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Per csempio R con distanza d(z,z') = |z — z'| € uno spazio metrico; pill in
generale, & uno spazio metrico R™ con la distanza euclidea

dx,x') = ||x — x||,

dove

lIx = x'|f =

n
2 (- z;)?
=1

per ogni X = (z),...,z,) ed X' =(z},...,2}) in R" (cfr. esercizio 1).
L'insieme C dei numeri complessi & uno spazio metrico se si definisce la
distanza ponendo d(z,w) = |z — w|.

Su un insieme arbitrario X & sempre possibile introdurre una distanza ponendo

Ose z=2x

d(z,z') = {

1 se z#2'.

Questa si dice distanza discreta su X.
Se X ¢ uno spazio metrico con distanza dx ¢ Y & un suo sottoinsieme non
vuoto, ponendo

dy (y,y") = dx(y,y")

per ogni y, y' € Y, si definisce una distanza dy su Y, detta restrizione di dx a
Y. Lo spazio metrico (Y,dy) si dice sottospazio di (X,dx), e questo € chiamato
lo spazio ambiente di (Y,dy).

Diremo che un’applicazione f: X — Z di spazi metrici, con distanze dx e dz
rispettivamente, € continua nel punto z € X se per ogni € > 0 esiste § > 0 tale
che

dz(f(2), f(z')) < e

per ogni z' € X tale che dx(z,z') < 6. f sard detta continua se & continua in
ogni punto di X.

Si ottiene in questo modo una generalizzazione della nozione di applicazione
continua di un intervallo reale in R, o di R™ in R™.

Le applicazioni costanti di uno spazio metrico in un altro e I’identita di uno
spazio metrico qualunque in se stesso sono applicazioni continue. E anche continua
I’inclusione di un sottospazio nel suo spazio ambiente.
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Esercizi

1. Dimostrare che ognuna delle seguenti & una distanza in R™

dx, x) =[x - x'|];
d'(x,x') = 2_:] lz; — 2]
d"(x,x') = max {|z, — z}|}

2. Dimostrare che ponendo

4" (x,x) = min {|z, - ]}

non si definisce una distanza in R".

3. Dimostrare che per ogni spazio metrico X con distanza d e per ogni r > 0, ponendo
d,(z,2') =rd(z,z'), si ottiene una distanza.

4. Dimostrarc che se X € uno spazio metrico con distanza d, anche

d(z,2') = d(z,2")/[] +d(z,2)]

¢ una distanza su X.

Sia X uno spazio metrico con distanza d. Se z € X ed r > 0, il disco aperto
di centro z e raggio r ¢

D.(z)={ye X :d(z,y) < r}.

Un sottoinsieme di X si dice aperto (rispetto alla distanza d) se & unione di
dischi aperti, oppure se ¢ vuoto. Con questa definizione !’intero spazio X ed i
dischi aperti sono particolari insiemi aperti.

In R con la distanza euclidea i dischi aperti sono gli intervalli aperti e limitati
(a,b) (= I)(,,_a)/z((b+a)/2)), a < b. Sono insiemi aperti ad esempio R, le semirette
(—o0,b) ed (a,+00), per ogni a, b € R, ¢ i complementari di insiemi finiti. Non
sono aperti gli intervalli del tipo [a,b), (a,b], [a,b], a < b, gli insiemi finiti, e gli
insiemi Z e Q, dei numeri interi e dei numeri razionali rispettivamente. Inoltre
R\Z ¢ aperto, mentre R\Q non & aperto.

Esercizi

5. Dimostrare che un sottoinsieme A di uno spazio metrico X & aperto s¢ e solo se per
ogni z € A esiste r(z) > 0 tale che D,(z) sia contenuto in A.
6. Dire quali dei sottoinsiemi seguenti di R* sono aperti rispetto alla distanza euclidea:
A={(z, ) 21 =22}; B={(z1,22) 712, #0};
C={(z1,2):2;>0}; D={(z1,22): 2, <0}
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7. Dire quali dei seguenti sottoinsiemi di R® sono aperti rispetto alla distanza euclidea:
A={xeR:|x]|>2}; B={@.z):d+zl<1};
C={(z,22,23):33=1}: D= RZxQ= {(z1,22.23) 1 23 € Q).

8. Dimostrare che i seguenti sottoinsiemi di R™ non sono aperti rispetto alla distanza
euclidea:

Z". Q" {(xeR":|x|<1}, {xeR":|x|| =1}

9. Sia X uno spazio metrico. Dimostrare che
(a) § ed X sono insiemi aperti;
(b) I'unione di una qualunque famiglia di insiemi aperti ¢ un insieme aperto;

(c) Vintersezione di due insiemi aperti & un insicme aperto.

Una delle ragioni dell’importanza degli insiemi aperti sta nel fatto che ¢ possi-
bile caratterizzare la continuita di un’applicazione di spazi metrici esclusivamente
in termini di tali insiemi, utilizzando quindi la distanza solo indircttamente.

1.1 TEOREMA  Un’applicazione [ : X — 'Y tra due spazi metrici é continua
se e solo se per ogni aperto A di Y I'insieme [~ '(A) é aperto in X.

Dimostrazione. Denotiamo con dx e dy le distanze in X e in Y rispettivamente.
Supponiamo che f sia continua; sia A un sottoinsieme aperto e non vuoto di Y e
sia z € f '(A). Poiché f(z) € A che & aperto, esiste ¢ > 0 tale che D.(f(z)) C A.
Per la continuita di f in z esiste §(e) > O tale che

I (Dsey(z)) C De(f ().

Ma allora Dy (z) C f '(A). Poiché z & un punto qualsiasi di f '(A) ne
discende che f '(A) & aperto.

Supponiamo viceversa che la condizione dell’enunciato sia soddisfatta e sia
z € X. Per ogni € > 0, D(f(z)) & un aperto di Y e quindi f '[De(f(z))] & aperto
in X. Poiché z € f~'[D.(f(z))], esiste §(¢) > O tale che

Dsiey(z) C ™' [De(f(2)].
Ma allora
f(Dse)(@)) C De(f(2)),
ciog per ogni z' € X tale che dx(z,z') < 6(¢g) si ha

dy (f(z), f(z") < e
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¢ quindi f ¢ continua in z. Dall’arbitrarieta della scelta di z segue che f &
continua. s

11 tcorema precedente € concettualmente importante perché esso afferma che per
poter parlare di continuitd di applicazioni non & necessario conoscere le distanze
definite sul dominio e sul codominio. Tutto quel che serve ¢ conoscere gli insiemi
aperti. Questo ¢ il punto di partenza della topologia, la quale studia insiemi su
cui siano assegnati dei sottoinsiemi, che si dicono “aperti” (senza necessariamente
far ricorso ad una distanza), in modo tale che il concetto di continuita si possa

definire e studiare efficacemente.

1.2 Esempi

1. E possibile che due diverse distanze su uno stesso insieme definiscano gli
stessi insiemi aperti. In questo caso le due distanze si diranno topologicamente
equivalenti. Se ad esempio su X ¢ definita la distanza d, ed r ¢ un numero reale
positivo, ponendo

dr(z,y) = rd(z, y)

per ogni z, y € X si ottiecne una distanza d, su X (cfr. esercizio 3) che ¢ diversa
da d se r#1. Si ha inoltre, per ogni € > 0,

De(2) = Dr(z)
dove abbiamo denotato con D ¢ con D" i dischi aperti rispetto a d ed a d,
rispettivamente; ne seguc che la famiglia dei dischi aperti rispetto a d coincide

con quella dei dischi aperti rispetto a d,. Quindi d ¢ d. sono topologicamente
equivalenti.

2. In R" le distanze d, d', d" introdotte nell’esercizio 1 sono topologicamente
equivalenti.
Per dimostrarlo consideriamo due punti distinti
X=(I|,,..,zn), y=(yl”y'ﬂ)€Rn
Si ha
d"(x,y) < d(x,y) < d'(x,y) < nd"(x,y). (1.1]

La prima disuguaglianza discende dal fatto che

d(x,y) =/ X (@i -y > ‘/mgx {(z; —y)*} = max {lzi — wil}
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e la seconda ¢ vera perché

d(x,y)? = E(zz y) < (E |z, - yzl) =d(x,y).

L’ultima disuguaglianza ¢ evidente.
Fissati x € R" ed ¢ > 0, dalle [1.1] segue che

D!(%) 3 De(%) 3 DL(x) D D!, (x). [12]

Quindi se A & un aperto rispetto alla distanza d, per ogni x € A esiste un
€ > 0 tale che D.(x) C A e allora, per le [1.2],

Di(x)C Ds(x)C Ae (x) C De(x) C A,

e/n
quindi A & aperto anche rispetto a d” e a d'. Gli altri casi si verificano in modo
simile.

3. Siano (X,dx) e (Y,dy) spazi metrici e sia f: X — Y un’applicazione.

Sia z € X; se esiste una costante M > 0 tale che per ogni z' € X si abbia

dy (f(z"), f(z)) < Mdx (', z)

allora f ¢ continua in z.
Infatti I’ipotesi implica che per ogni € > 0

F(Deypu(@)) C De(f(2)),

e quindi prendendo § =e/M la condizione della definizione & soddisfatta.

4. Ogni applicazione lineare L : R® — R™ & continua rispetto alle distanze
euclidee. Per dimostrarlo utilizzeremo il criterio dell’esempio 3 applicato alle
distanze d' in R™ ed in R™ che sono topologicamente equivalenti alle distanze
euclidee (cfr. esempio 2).

Poiché ogni applicazione costante & continua, po%siamo supporre che L non

xeR" si ha:

AL, LX) = | 2 0y — 2| + )

n n
< (max |ay;)) Zj(zj — )| + ...+ (max [am) E < Mmd'(x,x)
J = J J=1

dove M = max |a;;| > O perché L non & I'applicazione nulla. Dal criterio dell’e-
sempio 3 segue che L & continua.
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Casi particolari importanti di applicazioni lineari sono le proiezioni p; : R* — R,
1=1,...,n, definite da p;(x) = z,.
Pill in generale siano 1 <1, <4, < ... <1y < n; definiamo la proiezione

ponendo
pil,..‘,im(x) = (zi, sy xim)-

pi,,.q, ¢ lincare ¢ quindi continua.

5. Siano X ed Y spazi metrici. Un’applicazione bicttiva f: X — Y si dice
un’isometria se per ogni z, ' € X si ha

dx(z,2') = dy (f(2), [(z)).

Un’isometria & un’applicazione continua; cid segue dal criterio dell’esempio 3
con M =1.

X e Y si dicono isometrici se esiste un’isometria f : X — Y. L’identita di
uno spazio metrico in sé stesso, I'inversa di un’isometria e la composizione di
due isometrie sono altrettante isometrie. Quindi I'isometria & una relazione di
equivalenza tra spazi metrici.

6. Siano X ed Y spazi metrici. Un’applicazione biettiva f: X — Y si dice un
omeomorfismo se & continua ¢ se anche la sua inversa f ':Y — X & continua.

Ogni isometria ¢ un omeomorfismo, ma non ¢ vero il viceversa. Ad esempio
I’applicazione

exp : R — (0, +o0)
definita da exp(z) = e*, &€ un omeomorfismo perché ha inversa continua

log : (0, +00) — R
y — log(y).

Ma evidentemente exp non ¢ un’isometria, perché manda 'intervallo (—oo,0]
nell’intervallo (0, 1].

Due spazi metrici si dicono omeomorfi se esiste un omeomorfismo di uno sul-
Ialtro. E immediato verificare che I’omeomorfismo & una relazione di equivalenza
tra spazi metrici.

7. L’insieme Q dei numeri razionali, con la distanza usuale, non & omeomorfo
ad R perché non esistono biezioni tra Q e R.
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Esercizi

10. Sia (X,d) uno spazio metrico. Dimostrare che la distanza d definita nell’esercizio 4 &
topologicamente equivalente a d.

11. Sia (X,d) uno spazio metrico ed y € X. Dimostrare che ["applicazione f: X — R
definita da f(z) =d(z,y) & continua.

12. Dimostrare che I'intersezione di una famiglia qualunque di sottoinsiemi aperti di uno
spazio metrico non & in generale aperta (suggerimento: si prenda la famiglia di tutti
i dischi aperti di centro un punto fissato).

13. Dimostrare che se d; e d» sono distanze topologicamente cquivalenti su un insieme
X, Pidentita di X in se stesso € un omcomorfismo sc si considera il dominio con
distanza d, e il codominio con distanza d,.

14. Dimostrare che un’applicazione lineare L :C" — C™ & continua.

15. Un sottoinsieme S di uno spazio metrico X si dice limitato se esistono z€ X e r >0
tali che S c D,(z).
Ogni sottoinsieme finito di uno spazio metrico & limitato. Gli intervalli di R della
forma (a,b), [a,b), (a,b], [a,b] sono limitati, mentre non sono limitati gli intervalli
(—00,b), (—00,b], (a,+00), [a,+o0), R.
Dire quali dei seguenti sottoinsiemi di R", n > 2, sono limitati:

{xeR":z,>0}; {xeR":z, =0}
{xeR":|z;|< |, i=1,...,n}; {xeR":|z1+...+z,| < 1};
{xeR": |z +...+z,| > 1}; {xeR":zizy...3. = 1}.

16. Dimostrare che ’unione di una famiglia finita di sottoinsiemi limitati di uno spazio
metrico X ¢ un sottoinsicme limitato di X.

2 Spazi topologici

Sia X un insieme non vuoto. Una struttura topologica, o topologia, su X €
una famiglia non vuota T di sottoinsiemi di X, che si chiamano insiemi aperti
della topologia, soddisfacenti alle seguenti condizioni:

(A1) B e X sono insiemi aperti,
(A2) lunione di una qualsiasi famiglia di insiemi aperti é un insieme aperto;
(A3) lintersezione di due insiemi aperti qualsiasi é un insieme aperto.

Uno spazio topologico & un insieme X su cui sia assegnata una topologia T, e
si denota (X, T), o semplicemente X sottintendendo la topologia T per comodita
di notazione. Gli elementi di X si diranno punti. L'insieme X si dice supporto
dello spazio topologico (X, T).
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2.1 Esempt

1. Se X ¢ uno spazio metrico con distanza d la famiglia degli insiemi aperti
rispetto a d ¢ una fopologia su X (cfr. esercizio 1.9) che si dice indotta da d.

2. La topologia euclidea (o topologia naturale) su R" & la topologia € indotta
dalla distanza cuclidea d.

3. Su C la topologia euclidea (0 naturale) £ & quella indotta dalla distanza
d(z,w) = |z — w|; possiamo anche ottenerc questa distanza, e quindi la topologia
naturale, identificando C ad R® (z = z +iy — (z,y)) e considerando la distanza
euclidea in R%.

In modo analogo possiamo identificare C" ad R™. La distanza euclidea in
R* definisce su C" una distanza e quindi induce una topologia £ che si chiama
topologia euclidea, o naturale, su C".

In seguito, quando considereremo R™, oppure C", come spazi topologici, sara
sottinteso che ci riferiremo alla topologia euclidea, a meno che non si specifichi
il contrario.

4. In un qualsiasi insieme non vuoto X la famiglia B = {X,0} soddisfa le
condizioni Al, A2, A3 ed & quindi una topologia su X; B si chiama ropologia
banale e (X, B) € uno spazio topologico banale.

Un’altra topologia su un qualsiasi insicme non vuoto X si ottiene considerando
aperto ogni sottoinsieme, cioé¢ prendendo T = P(X). Questa si chiama topologia
discreta e (X, P(X)) & uno spazio topologico discreto.

5. Uno spazio topologico (X, T) si dice metrizzabile se esiste su X una distanza
che induce la topologia T. Ad esempio ogni spazio discreto ¢ metrizzabile: la
topologia discreta ¢ indotta dalla distanza discreta.

Non tutti gli spazi topologici sono metrizzabili; ad esempio uno spazio a
supporto finito e non discreto non € metrizzabile perché ogni spazio metrizzabile
e finito ¢ discreto; la dimostrazione di questo fatto ¢ lasciata come esercizio
(suggerimento: si cominci a dimostrarlo nel caso in cui X ha due punti).

Si noti che se (X, T) €& uno spazio topologico metrizzabile, la distanza che
induce la topologia T non ¢ univocamente determinata (cfr. esempio 1.2.(2)).

Nel considerare uno spazio topologico metrizzabile supporremo sempre impli-
citamente assegnata una distanza che ne induce la topologia.

6. Sia Y un sottoinsieme non vuoto di uno spazio metrizzabile X con distanza
dx. Gia sappiamo che la restrizione dy di dx € una distanza su Y'; la topologia
indotta da dy su Y si dice topologia indotta da X su Y.

Sia y €Y ed € > 0. Si ha evidentemente

Dy (y)=Dx(y)NY
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(dove Dy.(y) e Dx(y) sono i dischi aperti di centro y e raggio e in Y e in X
rispettivamente), e quindi gli aperti di ¥ sono i sottoinsiemi della forma Y N A,
dove A € un aperto di X.

Si noti che un sottoinsieme di ¥ aperto in Y non ¢ necessariamente aperto
anche in X. Ad csempio un intervalio chiuso Y =[a,b] di X =R ¢ aperto in se
stesso ma non in R.

7. Siano X un insieme non vuoto e K C P(X) la famiglia di sottoinsiemi di
X costituita dall’insieme vuoto e dagli insicmi il cui complementare & finito. K
¢ una topologia che si chiama topologia cofinita su X. Se X ¢ finito, e solo in
tal caso, K ¢ la topologia discreta.

8. Nell’insieme X = {a,b,c,d,e} le famiglie
T ={X,0,{a}, {a.b},{a,c,d}, {a,b,c,d}, {a,b,e}};
S ={X,0,{e},{a,e}.{c.d},{a,c,d},{c,d,e},{a,c,d,e}}
sono topologie, mentre
F={X,0,{a,b,c},{b,c,d}, {a,b,c,e}},
§={X,0,{b,c},{a,b,c}, {b,c,d}}
X ={0,{b}.{b,c}, {b,c,d}}

non sono topologie.

Se T e T' sono due topologic su un insieme non vuoto X, diremo che T &
meno fine di T', oppure che T' & pin fine di T, se ogni aperto di T & anche
aperto di T', cioé¢ se T C T'; scriveremo in tal caso T < T".

Ad esempio la topologia banale ¢ meno fine di ogni altra, mentre la topologia
discreta € piu fine di ogni altra.

Naturalmente puo accadere che due topologie su X non siano confrontabili,
ciot che nessuna delle duc sia pit fine dell’altra. Ad esempio, le topologie T ¢
$ dell’esempio 2.1(8) non sono confrontabili.

Esercizi
1. Sia {T;}jc; una famiglia di topologic sull’insieme non vuoto X. Dimostrare che
T =n;T,; ¢ una topologia su X.

2. Dare un esempio di due topologic T} e T> su un insieme X tali che T) U 7> non sia
una topologia.

Sia T una topologia sull’insieme non vuoto X. Una base di T ¢ una famiglia
di aperti B C T tale che ogni aperto di T sia unione di elementi di B. Detto in
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altro modo, ma cquivalente al precedente, B € una base di T se per ogni aperto
A di X e per ogni punto z € A esiste B € B tale che z € B C A. L’equivalenza
delle due definizioni di base si verifica subito.

Un esempio (banale) di base di T ¢ costituito dalla famiglia T stessa.

Come esempio tipico di basc si pensi alla famiglia degli intervalli aperti di R,
che costituiscono una base della topologia naturale. Pit in generale, la famiglia
di tutti i dischi aperti in uno spazio metrico (X,d) ¢ una base della topologia
indotta da d.

Dalla definizione scgue che se B ¢ una base di T e BC C C T, allora anche
C ¢ una base di T.

Come si fa a riconoscere una base di una topologia T su X? Se B ¢ una base
di 7, dati due qualsiasi A, B € B la loro intersczione € un aperto ed & quindi
unione di elementi di B. Anche X, essendo aperto, ¢ unione di elementi di B.
La proposizione seguente ci dice che queste due proprietd caratterizzano le basi.

2.2 PROPOSIZIONE  Sia X un insieme non vuoto ¢ B una famiglia di sottoin-
siemi di X tali che:

@ U B=x;
BeB
(b) dati comunque A, B € B, AN B ¢ unione di elementi di B.

Allora esiste una topologia Tg su X di cui B é una base; Tg e ['unica
topologia con tale proprieta.

Dimostrazione. Se Tp csiste allora ¢ unica perché ogni suo aperto deve essere
unione di elementi di B e, viceversa, ogni unione di clementi di B deve stare in
Tp perché gli elementi di B sono aperti in Tz. Quindi Tp deve coincidere con la
famiglia dei sottoinsiemi di X che sono unione di elementi di B.

Per dimostrare che questa famiglia Ty € effettivamente una topologia si osservi
innanzitutto che X e @ vi appartengono; il primo per I’ipotesi (a), e il secondo
come unione della famiglia vuota di elementi di B. Se {U;};cs ¢ una famiglia di
clementi di Tp allora si deve avere, per ogni j € J:

U;= U B, ByeB
I keky) ks k

dove i K(j) sono opportuni insiemi di indici; quindi:

Uu=U ( U Bk)eTB

jed je€J \keK()
Infine, se

U=U ByeTs, = U Bre T,
lheHh B'ZkeKk B
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allora

vint:= (hléJH Bh) n <kEK Bk) -

= U B,nBy.
heH(h &)
keK

Poiché per I'ipotesi (b), B, N By € T per ogni (h, k) € H x K, la loro
intersezione U; N U, sta in Tp. =

Un ricoprimento di un insieme non vuoto X ¢ una famiglia 7 di sottoinsiemi
di X tale che

x=U F
Fe¥

Pit in generale, se A ¢ un sottoinsieme non vuoto di un insieme X, una
famiglia 7 di sottoinsiemi di X tale che

Ac U F
Fe7?

si dice un ricoprimento di A.
La condizione (a) della proposizione 2.2 afferma che B € un ricoprimento di X.
Esercizi

3. Dimostrare che se B soddisfa le condizioni (a) e (b) della proposizione 2.2, la
topologia T di cui si dimostra I'csistenza pud anche caratterizzarsi come la topologia

intersczione di tutte quelle che contengono B, cioeé

=17
BCT

o equivalentemente come la meno fine tra tuttc le topologie che contengono B.

Una sottobase di una topologia T sull’insieme X ¢ una famiglia S di insiemi
aperti tale che la famiglia

B={UiN...NU,:U,,...,Up €S},

costituita da tutte le intersezioni di un numero finito di elementi di S sia una base

di T. In altre parole, per ogni aperto U di X ed z € X deve essere possibile
trovare Uy,...,U, € S tali che

zeUn...n0U, CU.
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E chiaro che & sufficiente verificare questa condizione per gli aperti U di una
base di T.

Si osservi che ogni base € anche una sottobase e che ogni sottobase ¢ un
ricoprimento di X.

Un csempio di sottobase della topologia naturale di R & la famiglia S degli
intervalli aperti illimitati (a destra o a sinistra), cioe del tipo (—oo,b), (a,+o0).
Infatti la famiglia delle intersezioni finite di elementi di § coincide con la famiglia
di tutti gli intervalli aperti di R. Si noti che § non ¢ una base.

Sia X uno spazio topologico. Un inforno di un punto z € X ¢ un insicme N
che contiene un aperto A contenente z:

ze ACN.

Denotiamo con N(z) la famiglia di tutti gli intorni di z; questa famiglia si
chiama sistema degli intorni di z. Si noti che N(z) non ¢ vuoto perché X € N(z).
Pil in generale ogni aperto contenente z sta in N(z); ne segue che un aperto
¢ intorno di ogni suo punto. Anche il viceversa ¢ vero, come ¢ affermato dalla
seguente :

2.3 PROPOSIZIONE  Un sottoinsieme A dello spazio X é aperto se ¢ solo se
A€ N(z) per ogni z € A.

Dimostrazione. Se A € N(z) per ogni = € A, la definizione di intorno implica
che per ogni z € A esiste un aperto A, tale che

T €A, CA,
e allora
A=U a4,
€A

N

¢ aperto. Il viceversa & ovvio ed & stato gid osscrvato prima dell’enunciato della
proposizione. a

Una base locale, o base di intorni, o sistema fondamentale di intorni di un
punto z dello spazio topologico X ¢ una famiglia B(z) di intorni di z tale che
per ogni intorno M di z esista un N € B(z) tale che N C M.

Si noti che nella definizione non si richiede che gli insiemi di B(z) siano
aperti. Ad esempio gli intervalli chiusi [z — r,z + r], r > 0, costituiscono un
sistema fondamentale di intorni di z € R neclla topologia euclidea. Gli intervalli
aperti (z — r,z+r), r > 0, costituiscono un sistema fondamentale di intorni aperti
di z € R. Pit in gencrale per un punto z di uno spazio metrizzabile i dischi
D,(z), r > 0, costituiscono un sistema fondamentale di intorni di z.
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Ovviamente il sistema N(z) di tutti gli intorni di z ¢ un particolare sistema
fondamentale di intorni di z € X.
Se B ¢ una base di X, la famiglia

B(z)={BeB:ze B}

¢ un sistema fondamentale di intorni aperti di z. Viceversa, se per ogni z € X ¢
assegnato un sistema fondamentale di intorni aperti B(z) di z, allora

B=U B(x)
zeX

¢ una base della topologia di X.

Uno spazio topologico X soddisfa il primo assioma di numerabilita se ogni
suo punto possiede un sistema fondamentale di intorni numerabile, cio¢ se per
ogni z € X esiste una famiglia {N; : 4 =1,2,...} che ¢ una base di intorni di
z. Si pud sempre supporre che un sistema fondamentale di intorni numerabile di
z soddisfi Iulteriore condizione N;,, C N; per ogni :: altrimenti basta sostituire
{N;} con {M; = ]Qv N;:i=1,2,...}.

1

Uno spazio top(_)logico X soddisfa il secondo assioma di numerabilita se X
possiede una base numerabile.

Ogni spazio metrizzabile (in particolare R"™) soddisfa il primo assioma di
numerabilita. Infatti per ogni z € X la famiglia:

B(z) = {Dl/n(a:) :n > 1 intero}

¢ una base numerabile di intorni di z.
R™ soddisfa il secondo assioma di numerabilita perché la famiglia

B = {Dl/n(x) :n > 1 intero, x un punto a coordinate razionali}

costituisce una base della topologia euclidea (cfr. anche esempio 2.4(5) ed esercizio
9).

Se uno spazio topologico X soddisfa il secondo assioma di numerabilita allora
soddisfa anche il primo. Se infatti B & una base numerabile di X allora per ogni
z € X la famiglia

B(z)={B€eB:z€ B}

¢ una base di intorni di z numerabile.

Il viceversa non & vero: ogni spazio discreto X soddisfa il primo assioma di
numerabilita, ma s¢ X non ¢ numerabile allora X non possiede una base nume-
rabile. Infatti ogni base della topologia discreta deve contenere tutti i sottoinsiemi
costituiti da un solo punto (cfr. esempi 2.4(4), (6)).
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Sia X uno spazio topologico. Denotiamo con N* I'insieme dei numeri naturali
positivi. Un’applicazione f : N* — X si chiama una successione di elementi di
X. Per ogni n € N* 'immagine z, = f(n) si chiama n-esimo termine della
successione f. Di solito una successione viene denotata {z, :n=1,2,...} oppure
{zn}n>1 o pilt semplicemente {z,}, cio¢ viene identificata con I’insieme f(N¥).
La successione {zn}n> si dice convergente al punto x € X (e z si dice limite
della successione) se per ogni intorno M di z esiste n(M) € N* tale che z, € M
per ogni n > n(M); si scrivera

lim z, = z.
n—oo

Una sottosuccessione di {z, :n=1,2,...} & una successione {z,, : k=1,2,...}
ottenuta in corrispondenza di una successione crescente di interi positivi: n; < ny <
< n3 < .... Equivalentemente una sottosuccessione della successione f: N — X
¢ una successione ottenuta come composizione f-p: N* — X dove p: N* — N*
¢ un’applicazione crescente.

Contrariamente a quanto accade per le successioni in R, una successione in uno
spazio topologico qualsiasi puo convergere a pitt limiti distinti. Ad esempio, se X
¢ uno spazio topologico banale e {z,} & una successione in X si ha 731»120 Tp=1I
per ogni z € X. In uno spazio metrizzabile se una successione ha un limite questo
¢ unico (cfr. esercizio 19 e proposizione 8.5).

2.4 Esempi
1. La famiglia
ts = {(—o00,b): be R} U {0} U {R}

(el

una topologia su R strettamente meno fine della topologia naturale €£.
Analogamente,

tg = {(a,+00) :a € R} U {0} U {R}

o

una topologia meno fine di €.

Le due topologie ¢s € ¢y non sono confrontabili.

La famiglia degli intervalli aperti a sinistra (e chiusi a destra) soddisfa alle
condizioni della proposizione 2.2 ¢ quindi ¢ base di una topologia js su R. Di
essa fanno ovviamente parte gli intervalli aperti a sinistra, che non sono aperti
nella topologia naturale; quindi js#¢&. D’altra parte, ogni intervallo aperto (a,b)
pud scriversi come unione

(a,b) = @) <a,b— l]
m>g‘_|_—a' m

di intervalli aperti a sinistra, e quindi sta in js. Percid js ¢ strettamente pil fine
di €.
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Ad una analoga conclusione si arriva se si considerano gli intervalli aperti a
destra (¢ chiusi a sinistra). La topologia j; che si ottienc ¢ la topologia js non

sono confrontabili: infatti non & possibile ottencre un intervallo aperto a destra
come unione di intervalli aperti a sinistra, e viceversa (perché?).

2.Se r>0ed x=(z,,z,) € R, il sottoinsieme di R®
2 r T
Qr(x) = {(yn-,yz) eER :ly -z < 5 ly2 — 72| < 5}

si chiama quadrato aperto con lati paralleli agli assi, di centro x e lato r.
Q-(x) ¢ un insieme aperto. Se infatti z € Q,(x) ¢

6=min{%~]z,~x||, —|22—$2|},

N =

allora Q,(x) D Ds(z), perché sc y € Dg(z) allora

[yi — 2| <y — 2|+ |z -z <6+ ]z -] < 5, 0=1,2.

NSl ]

Facciamo vedere che la famiglia di insiemi aperti
2 ={Q:®:xe R’ r>0}
¢ una base della topologia euclidea di R*.
Allo scopo sara sufficientc far vedere che ogni disco aperto Dy(y), y € R?,
p >0, & unione di insiemi Q,(x) opportunamentc scelti.
Osserviamo preliminarmente che per ogni x' € Q,(x) si ha
d(x,x') < V2 %
Sia ora x € D,y(y) ¢ § =d(x,y). Allora
Qr(X) C Dy(y)
dove r =+/2(p - 6) perché per ogni z € Q-(x) si ha:

d(y.z) < d(y,X) +d(X,2) <6+ (p -6)=p

¢ 'asserto & provato (fig. 2.1).
Se a<b e c¢<dlinsicme

R(a.bje,d) = (a,b) x (¢,d) = {(z),2.) eR*:a <z, < b, c<z<d)}

& un rettangolo aperto con lati paralleli agli assi. E immediato verificare che
R(a,b;c,d) ¢ unione di quadrati Q,(x) e quindi ¢ aperto. Denotiamo con R, la
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Figura 2.1

famiglia di tutti i rettangoli R(a,b;c,d). Poiché

T T T T
Qr(x)—R(fICl T3 ity oo, $2+§):
si ha R, D @, e quindi anche la famiglia R, ¢ una base della topologia euclidea.
Gli insiemi della forma (a,b) x R oppure R x (a,b) con a < b sono sottoinsiemi
aperti di R* che si chiamano strisce aperte parallele ad uno degli assi. Poiché
per ogni x € R%, >0, si ha

Q,(x):[(xl—%, a:,+%) xR]ﬂ[Rx(xg—%, x3+%)],

la famiglia S, delle strisce apertc & una sottobase della topologia cuclidea (fig.
2.2).

3. Sia X un insieme non vuoto ed ¥ la famiglia dei sottoinsiemi di X costituiti
da un solo elemento. 7 soddisfa le condizioni della proposizionc 2.2: la topologia
di cui 7 ¢ base ¢ la topologia discreta.

4. Ogni spazio discreto soddisfa il primo assioma di numerabilita, perché per
ogni z € X {{z}} ¢ un sistema fondamentale di intorni di z.

5. Sia B la famiglia degli intervalli aperti di R della forma (z -- g,z +¢), dove
z ¢ g sono numeri razionali ¢ ¢ > 0.

Evidentementc B ¢ una famiglia numerabile di insiemi aperti. Sia (a,b) un
intervallo aperto ed y un suo punto. Sia r > 0 tale che

(@, b) D(y—-ry+r)
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_

Y

Figura 2.2

siano z, ¢ numeri razionali tali che

r

3

r

<g<
<3

y-al<ye
Allora
yE€(z—gq,z+q)C(a,b).
Quindi (a,b) ¢ unione di intervalli appartenenti a B; ne deduciamo che B &
una base della topologia euclidea di R e quindi R soddisfa il secondo assioma di
numerabilita.

E facile dimostrare che anche R’ soddisfa il secondo assioma di numerabilita,
sostituendo la famiglia B considerata in R con la seguente:

BZ={QQ(X)ZQ$ Ty, zZEQ» q>0}

Pitr in generale, R™ soddisfa il secondo assioma di numerabilitd per ogni n
(cfr. esercizio 9).
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6. Sc uno spazio X soddisfa il primo assioma di numerabilita, X non soddi-
sfa necessariamente il secondo. Un esempio ¢ dato da uno spazio discreto non
numecrabile.

Un altro esempio ¢ dato da R con la topologia jy. Questo spazio soddisfa il
primo assioma di numecrabilita. Infatti per ogni z € R la famiglia

{[x,m+i) n> 1 intero}
n

¢ un sistema fondamentale di intorni di z.
Ma (R, jz) non soddisfa il secondo assioma di numerabilita. Sia infatti B una
base di j;. Per ogni z € R deve esistere A; € B tale che

z € A, C [z, +00)

perché [z,+o00) & un aperto di j;. Allora, se z <y si ha A;#A4, e quindi B
contiene I’infinita non numerabile di aperti

{A; 1z € R}
¢ pertanto B non ¢ numerabile.
Alla stessa conclusione si arriva considerando la topologia js.
Esercizi
4. Per ogni xe R? ed r > 0 il sottoinsieme di R?
Nx)={y e R*: |y —z1| + |y — 22| < 7}

& un quadrato aperto con diagonali parallele agli assi (fig. 2.3).
Dimostrare che la famiglia

Dy={N,(x):X€ R, r> 0}
¢ una base della topologia euclidea di R®.
5. Sia 4, la famiglia dei semipiani aperti di R di una delle seguenti forme:

{(xeR’:z, <a}, {xeR :z>a),

{xeRZ:zz<a}, {XER221:2>0.}: aeR.

Dimostrare che A, ¢ una sottobase della topologia cuclidea.

6. Sia n > 1; per ogni x € R™ »> 0. sia

Qx) = {yeR" o — ] <

N
~
il
S
N —
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Dimostrare che la famiglia

Qn= {Qr(x) -Xe Rn., r> 0}

¢ una base della topologia euclidea di R".
Per ogni scelta di a=(ay,...,an), b=(by,..., b,) € R™ tali che

sia

a) <bj,...,aq < by, .

R@b)=(a;,b)) X ... x (an,bn)={x € R" 1a; <z; < b;, i=1,....n}.

Dimostrare che la famiglia

Rn={R@b):a;<b;, i=1,...,n}

¢ un’altra base della topologia cuclidea di R".

Sia A, la famiglia dei semispazi aperti di R" della forma

{xe R":2; <a},

oppure

{xeR":z; >a},

Cap. |

Figura 2.3
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per qualche a € R e per qualche ¢ =1,...,n. Dimostrare che A, € una sottobase della
topologia euclidea.

Dimostrare che in R" la famiglia di sottoinsiemi
{@00\{x} :xeR", r>0},

& una base della topologia euclidea.
Dimostrare che, per ogni n > 1, R" soddisfa il secondo assioma di numerabilita.
(Suggerimento. Dimostrare che la famiglia

{Qq(x):‘b .’II[.,...,.'IInEQ, Q>0}

¢ una base della topologia euclidea).

Se 7 ¢ una famiglia di sottoinsiemi di un insieme non vuoto X, la topologia meno
fine tra tuttc le topologie 7 contenenti ¥, cio¢ nelle quali gli insiemi di # sono
aperti. ¢

TH=[T.
FcT

T(F) si chiama topologia generata da F. Dimostrare che:
(a) 7 ¢ una sottobase dclla topologia T (F) se e solo se F & un ricoprimento di X.

(b) Un ricoprimento di X & sottobase di un’unica topologia; precisamente, se T &
una topologia di cui 7 ¢ una sottobase allora T = T(¥).

(c) Se 7 non ¢ un ricoprimento di X, allora una sottobase di T(F) & costituita dalla
famiglia 7 U {X7}.

(d) Se 7 C F sono due famiglie di sottoinsiemi di X, si ha T(F) < T(F).

Si fissi un numero reale positivo r. Dimostrare che la famiglia di sottoinsiemi di R"
Qnsr = {Qr(x) 'Xe Rn}

non ¢ una basc della topologia euclidea. Qual & la opologia generata da @,.,?

Sia T* la famiglia dei sottoinsicmi di R? costituita da @, R® ¢ da tutti i sottoinsicmi
il cui complementare & unione di un numero finito di punti ¢ di un numero finito di
rette. Dimostrare che T* € una topologia ¢ che K < T* < &, dove K ¢ la topologia
cofinita ed £ & la topologia cuclidea.

Dirc se e quali delle topologie K e T* soddisfano il primo oppure il secondo assioma
di numerabilita.

Sia z un punto dello spazio topologico X e N(z) il sistema degli intorni di z.
Dimostrare che N(z) ha le seguenti proprieta:

(a) Se Ny, N> e N(z), allora NyN N> € N(z).
(b) Se Ne N(z) e XD M DN, allora M € N(z).

Sia X un insieme non vuoto; supponiamo che per ogni z € X sia assegnata una
famiglia N(z) di sottoinsiemi di X con le seguenti proprieta:
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(a) N(z)#0 e ogni N € N(z) conticne z.

(b) S¢ Ny, N, € N(z) allora N; NN, € N(z).

(c) Se Ne N(z) e XD M DN, allora M € N(z).

(d) Se N € N(z), esiste M € N(z) tale che M C N ed M € N(y) per ogni y&€ M.

Dimostrare che esiste una ed una sola topologia 7 su X tale che per ogni z € X
N(z) sia il sistema degli intorni di z rispetto a T.

15. Nell’insieme {a,b,c,d,e} si determinino le topologie generate dalle famiglie 7, G, ¥
dell’esempio 2.1(8).

16. Dimostrare che R con la topologia ¢s (cfr. esempio 2.4(1)) soddisfa il primo e il
secondo assioma di numerabilita.

17. Dimostrare che la famiglia degli intervalli chiusi e limitati
{la,b] : a < b}
non & base di alcuna topologia su R e che la famiglia
{la,bl:a<b, acQ, bgQ}

¢ base di una topologia su R.
18. Quali sono le topologie generate dalle due famiglie dell’esercizio 17?

19. Sia {z,},>1 una successione di elementi di uno spazio metrizzabile X. Dimostrare
che se {z,}n>) converge in X il suo limite & unico.

20. Trovare tutte le topologie su un insieme X = {a,b,c} costituito da tre elementi.

3 Sottoinsiemi di uno spazio topologico

Sia X uno spazio topologico e S un sottoinsieme di X. Un punto z € X si
dice interno a S se esiste un intorno N di z tutto contenuto in S. Il punto z € X
si dice esterno a S se esiste un suo intorno N tale che NNS =, ciog se z &
interno a X\S. Il punto z si dice punto di frontiera di S se z non ¢ né interno
né esterno a S; equivalentemente se, per ogni N € N(z),

NNS#0
NN (X\S)#0.

L’insieme dei punti interni a S si chiama interno di S, e si indica con Int(S).
Analogamente Est(S) denotera ’esterno di S, ciog 'insieme dei punti esterni a
S, mentre Fr(S) denota la frontiera di S, che & I'insieme dei punti di frontiera
di S. Ovviamente si ha:

W

In(s)c § [

W
ro

Est(S) = Int(X\S) 3.
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¢ quindi
Est(S)nS =9 [3.3]
Un punto z € Fr(S) pud stare o non stare in S; ad esempio
Fr([a,b)) = {a, b}

dove [a,b) C R & un intervallo aperto a destra, e ovviamente a € a,b) € b ¢ [a,b)
(cfr. esempio 3.4(2)).
Per ogni sottoinsieme S dello spazio topologico X si ha:

X = Int(S) U Est(S) U Fr(S) [3.4]
dove I'unione ¢ disgiunta.

3.1 PROPOSIZIONE  Sia S un sottoinsieme di uno spazio topologico X. Allora:

(a) 1at(S) e lunione di wuti gli aperti contenuti in S, cioe é il pii grande
aperto contenuto in S.

(b) S ¢ aperto se ¢ solo se S = Int(S).

(c) S ¢ aperto se e solo se SNFr(S)=0.

Dimostrazione

(a) Sia A un aperto contenuto in S. Per ogni z € A si ha che A € N(z) e
quindi z € Int(S); dunque A C Int(S). Facciamo vedere che Int(S) ¢ aperto. Sia
z € Int(S); per definizione csiste N, € N(zx) tale che N; C S e quindi esiste
un aperto A, tale che z € A, C N; ¢ S. Da quanto gia dimostrato segue che
A, C Int(S). Ma allora

ns$)= U A4,

zelnus)
¢ aperto.
(b) Segue subito da (a).
(c) Seguc da (b) tenuto conto di [3.3] e di [3.4]. =

La proposizione che ora dimostreremo caratterizza una classe importante di
sottoinsiemi di uno spazio topologico.

3.2 PROPOSIZIONE  Le condizioni seguenti sono equivalenti per un sottoinsieme
S di uno spazio topologico X:
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(a) Fr(S) c S.
(b) § =Int(S) U Fr(S).

(c) Il complementare X\S é aperto.

Dimostrazione
(b) = (a). Banale.
(a) = (c). Poiché Fr(S) = Fr(X\S), dalla (a) e dalla [3.4] segue che:
Fr(X\S$)Nn(X\S) =10
e quindi X\S & aperto, per la proposizione 3.1(c).

(c) = (b). Dalla (c), tenuto conto della [3.2] e della proposizione 3.1(b), seguc
che

X\S = Est(S)
e quindi
S =1Int(S) U Fr(S)

per la [3.4]. =

Un sottoinsieme S di uno spazio topologico X che soddisfa le condizioni
equivalenti della proposizione 3.2 si dice chiuso.

Denotiamo con ¥ la famiglia di tutti i sottoinsiemi chiusi dello spazio topologico
X. Dalle proprieta (A1), (A2), (A3) degli insiemi aperti segue subito che la famiglia
7 gode delle seguenti proprieta:

CcHe Xe?7.

(C2) L’intersezione di una qualsiasi famiglia di elementi di 7 appartiene ad

7.

(C3) L’unione di due (e quindi di un numero finito qualsiasi di) elementi di
7 appartiene ad ¥.

Viceversa, dato un insieme non vuoto X ed una famiglia 7 di sottoinsiemi di
X che gode delle proprieta (C1), (C2), (C3), la famiglia T C P(X) definita da

UeT e X\U)e7?

soddisfa evidentemente le condizioni (A1), (A2), (A3). Quindi T & una topologia
su X nella quale 7 & la famiglia degli insiemi chiusi. E evidente che T & I’unica
topologia che gode di tale proprieta. Cio significa che una topologia su un insieme
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X #0 puo anche essere definita assegnando la famiglia degli insiemi chiusi rispetto
a tale topologia, ciog¢ assegnando una famiglia 7 che soddisfi le condizioni (C1),
(C2), (C3).

Se S & un qualsiasi sottoinsieme di uno spazio topologico X la chiusura di
S, che si denota S, & definita come il pilt piccolo sottoinsieme chiuso di X
contenente S, o equivalentemente come !’intersezione di tutti i sottoinsiemi chiusi
contenenti S (tale intersezione & un chiuso per la (C2)). I punti di S si dicono
aderenti ad S, o punti di aderenza di S. Si ha:

sScS, [3.5]
S & chiuso se e solo se §=5, [3.6]
S = X\Es(S), [3.7]

e poiché Fr(S) = Fr(X\S):

S =S UFr(S) = In(S) U Fr(S). [3.8]
ScT=8cT [3.9]

Un punto z € X si dice punto di accumulazione (o punto limite) dell’insieme
S C X se ogni intorno di z contienc almeno un punto di S diverso da z, cioé se

(N\{z})NS+#0 per ogni N € N(z). [3.10]

L’insieme dei punti di accumulazione di S si chiama derivato di S ¢ si denota
con D(S).

3.3 PROPOSIZIONE  Per ogni sottoinsieme S di uno spazio topologico X si
ha:

S =8UD(S).

Dimostrazione. Per definizione di derivato si ha
D(S)NEst(S) =0
e quindi, per la [3.7]:
SuD(S)cS.

Siaz€S. Se z¢ S allora, per la [3.8], z € Fr(S). Quindi N NS #0 per ogni
N € N(z) e poiché z ¢ S ne discende che z € D(S). Dunque S C SUD(S). m
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3.4 PROPOSIZIONE  Sia X uno spazio topologico e sia S un sottoinsieme di
X.

(a) Un punto z € X ¢ aderente a S se e solo se NNS#0 per ogni N € N(z).

(b) Un punto x € X ¢ aderente a S se esiste una successione {z,} di elementi
di 8§ che converge ad z. Se X soddisfa il primo assioma di numerabilita
anche il viceversa é vero.

Dimostrazione

P

(a) Supponiamo z € S. Se z € § la condizione ¢ soddisfatta perché ogni
N € N(z) contiene z. Se z € D(S) la condizione ¢ soddisfatta per la [3.10].
Supponiamo viceversa che la condizione dell’enunciato sia soddisfatta. Allora
z & Est(S) perché Est(S)NS =0 ¢ Est(S), essendo aperto, ¢ intorno di ogni suo
punto. Pertanto z € S tenuto conto della [3.7].

(b) Supponiamo che {z,} sia una successionc di elementi di S tale che

lim z, = z. Per definizione di limite per ogni N € N(z) esiste z, € N, ¢ quindi
n—00

la condizione della partc (a) ¢ soddisfatta; dunque z € S. Supponiamo viceversa
che z€ S e sia {N,:n=1,2,...} un sistema fondamentale di intorni di z che
soddisfi la condizione N,.; C N,, per ogni n. Per la (a) per ogni n > 1 possiamo
trovare un punto z, € N, NS. La successione {z,} converge ad z. =

3.5 Esempi

[. Sia X uno spazio topologico e {z, : n = 1,2,...} una successione in
X. Supponiamo che {z,} possieda una sottosuccessione convergente {z,, : k =
=1,2,...} esiaz= klim Zn,; allora z € {z,} (proposizicne 3.4(b)). Naturalmente

N

N

cio non significa necessariamente che z ¢ un punto di accumulazione di {z,}: si
pensi ad esempio ad una successione costante in uno spazio metrico.

D’altra parte, se z € D({z,}n>1) non ¢ necessariamente vero che esistc una
sottosuccessione di {z,} che converge ad z. Ad esempio sia X = {a,b,c,d, e}
con la topologia T dell’esempio 2.1(8), e siano z; = a, z, = ¢, n > 2. Allora
e € D({zn}n>1) ma {z,},>1 non possiede una sottosuccessione convergente ad e.

Se X ¢ uno spazio metrizzabile ¢ z € D({zy}n>) allora {z,},>: possiede una
sottosuccessione convergentc a z. Per la dimostrazione rinviamo il lettore a un
risultato pitt generale che dimostreremo successivamente (proposizionc 8.6).

2. In R gli insiemi finiti (in particolare i punti), gli intervalli chiusi [a,b] ¢ lc
loro unioni finite sono insiemi chiusi. Gli intervalli aperti a destra [a,b) e quelli
aperti a sinistra (a,b] non sono né aperti né chiusi.



3 ] Sottoinsiemi di uno spazio topologico 29

Ogni sottoinsicme finito di R ha derivato vuoto e interno vuoto e quindi
coincide con la sua frontiera.
Se a <b e S ¢ uno qualsiasi degli intervalli (a,b], [a,b), |a,b], (a,b), allora

Int(S) = (a,b), Fr(S)={a,b}, D(S)=1a,b].

Una successione {z,}n,>; € un insieme chiuso se non possiede sottosuccessioni
convergenti oppure se contiene il limite di ogni sua sottosuccessione convergente.
Ad esempio {n}p>, & un insicme chiuso, mentre {1/n},>, non & chiuso e

{1/n}nz1 = {1/n}nz U {0}.
L’insieme Q dei numeri razionali soddisfa
In(Q) =0, Est(Q) =0, Fr(Q) =R
e quindi Q= R
3. In uno spazio metrizzabile X si ha, per ogni z € X, r > O:
Dy(x)Cc {ye X :d(z,y)<r};
Fr(D,(z)) C {y € X : d(z,y) =7};

Ogni punto ¢ chiuso in X. Per le successioni valgono le stesse affermazioni
fatte nell’esempio 2.

4. In R con la topologia cofinita gli insiemi chiusi sono gli insiemi finiti ed
R stesso. Quindi in questa topologia si ha, se a < b:

(a,b) =R;
Int((a, b)) = 6
Fr((a, b)) = R.
3.6 PROPOSIZIONE  Le seguenti condizioni sono equivalenti per un sottoinsieme
S di uno spazio topologico X:
(a) S =X.
(b) Int(X\S) = 0.
(c) S interseca ogni insieme aperto non vuoto.
(d) Esiste una base B per la topologia di X tale che S intersechi ogni aperto
non vuoto appartenente a B.
Dimostrazione
(a) = (b). Seguc dalla [3.7].
(b) = (c). Se A ¢ aperto e ANS =0 allora A C Est(S).
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(c) = (d). Ovvio.

(d) = (a). Sia z € X\ 9. Per ogni N € N(z) esiste A€ B taleche z€ AC N.
Poiché ANS#0 si ha

(N\{z})nS+#0
e quindi ze D(S)C S. =
Un sortoinsieme di uno spazio topologico X che gode delle propricta equivalenti
della proposizione precedente si dice denso in X.
Q ¢ un esempio di sottoinsieme denso in R. Si osservi che se SCTc X e
S ¢ denso in X allora segue dalla [3.9] che anche T ¢ denso in X.
Uno spazio topologico si dice separabile se possiede un sottoinsieme numerabile
che ¢ denso. R ¢ un esempio di spazio separabile perché Q ¢ denso e numerabile.
3.7 PROPOSIZIONE
(a) Uno spazio X che soddisfa il secondo assioma di numerabilita é separabile.
(b) Uno spazio metrizzabile e separabile X soddisfa il secondo assioma di
numerabilita.
Dimostrazione

(a) Sia B una base numerabile di X. In ogni aperto non vuoto A della base B
scegliamo un punto z4 e sia

S={ZEAIAEB}.

S ¢ un insieme numerabile che ¢ denso perché soddisfa la condizione (d) della
proposizione 3.6; quindi X & separabile.

(b) Sia S un sottoinsieme denso numerabile di X e sia
B ={Dy(z):z €S, ¢> 0 razionale}

la famiglia dei dischi aperti di centro punti di S c¢ raggio razionale; B & una
famiglia numerabile. Facciamo vederc che B & una base per la topologia di X.

Sia A C X aperto ed y € A. Sia r > 0 tale che A O D.(y). Poiché S & denso
esiste z € D,/3(y) N S. Allora se ¢ ¢ un numero razionale tale che

T o

3°9<3

si ha
yEDq(m)CDr(y)CA

¢ quindi A ¢ unione di elementi di B. =
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3.8 Esempi

I. Siano 0 < m < n interi ed R}, I'insicme dei punti di R™ aventi esattamente
m coordinate razionali. R}, & denso in R". Poiché R}, = Q" & numerabile, R" &
separabile e quindi soddisfa il secondo assioma di numerabilita.

2. (R, jg) ¢& scparabile perché Q ¢ denso nella topologia j;, ma non soddisfa il
sccondo assioma di numerabilita (cfr. esempio 2.4(6)). Quindi (R, j;) non ¢ uno
spazio metrizzabile.

3. Sia K un campo, n > | un intero ¢ X, ..., X, indeterminate. Denotiamo con

3 H

P I’anello dei polinomi in X,..., X, a coefficienti in K. Se S ¢ un sottoinsieme di
P, denotiamo con (S) l’ideale generato da S, che € I'intersezione di tutti gli ideali
contenenti S; ovvero, costruttivamenlc; (S) & I'insieme di tutte le combinazioni
lineari finite di elementi di S:

S)={pfi+...+prfu:fi,....fn€S, p,...,pn € P}

Sia a = (ay,...,a,) un elemento del prodotto cartesiano K". Diremo che a &
uno zero di S se f(a)=0 per ogni f€S.

L’insieme degli zeri di S verra denotato V(S), e si dira sottoinsieme algebrico
di K", o semplicemente insieme algebrico. Dalla definizione costruttiva dell’ideale
(8) segue immediatamente che

V(S)=V((9)

per ogni $ C P, e quindi non ¢ restrittivo considerare solo gli insiemi algebrici
definiti da ideali. Si ha inoltre:

(@ L chL« V)2V
b)YV, NL)=V{I,)UV (L), I, I, ideali;

©V (EA za) = f‘l/1 V(Ia) se {Ia}aca & una famiglia di ideali, dove deno-
@e ac

tiamo con EA I, I'ideale somma degli ideali I,, definito come
ac

> Ia=(U Ia>

a€A €A

(d) se mg = (X| —ay,...,Xn — a,) allora V(my) = {a};

(e) per ogni ideale I di P, si ha V(I) =V /1), dove
VI={feP:[*el per qualche s > 0}

¢ I’ideale radicale di I.
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Le (a), (c), (d), (e) sono di dimostrazione immediata. Dimostriamo la (b).
Per la (a)

VUiNnL)yDVUI)UV(DL).

Viceversa, se a € V(I,)UV (L), siano f, € I}, f» € L, tali che f(a)#0, i=1,2.
Allora f1f2 elinhe

(fif2)@) = fi(a)f(a) #0,

quindi a ¢ V(I,) UV (L],).
Si osservi che

=Vl
K" =V ((0))

sono insiemi algebrici. Dalle proprieta (b) e (c) segue allora che la famiglia dei
sottoinsiemi algebrici di K" ha le proprieta (C1), (C2) e (C3) degli insiemi chiusi,
e quindi definisce una topologia Z su K", nella quale gli aperti sono gli insiemi
il cui complementare € un insieme algebrico; Z si chiama topologia di Zariski
su K".

Si noti che per la (d) i punti di K" sono chiusi nella topologia di Zariski;
in particolare Z & piu fine della topologia cofinita; se n» = | le due topologie
coincidono.

In R" Z & meno fine della topologia euclidea perché gli insiemi algebrici sono
chiusi nella topologia euclidea (cfr. esempio 4.3(4)). Lo stesso vale in C".

Esercizi

1. Dimostrare con escmpi che 'unione di una famiglia infinita di sottoinsiemi chiusi di
uno spazio topologico non ¢ in generale un sottoinsieme chiuso.

2. Dimostrare che dati comunque due sottoinsiemi A, B di uno spazio topologico X si
ha

Fr(An B) = Fr(A) N Fr(B),
Fr(A U B) C Fr(A) U Fr(B),
Int(A N B) = Int(4) N Iny(B),
Int(A U B) D Int(A) U Ini(B),

b
ol

AUB=

ANBC

U

hN}
il

)

Trovare esempi in cui le inclusioni precedenti sono strette.
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In uno spazio topologico X siano E un sottoinsieme denso ed U un aperto. Dimostrare
che si ha:

EnUDU.

Sia X uno spazio topologico. Dimostrare che X & discreto se e solo se per ogni
sottoinsieme A di X, D(A) = 0.

Sia A un sottoinsieme di uno spazio topologico X. Dimostrare che Fr(4) D Fr(Int(A)).
Dare un esempio in cui non vale 1’uguaglianza.

Sia § la famiglia di sottoinsiemi di N costituita da @, N e da tutti i sottoinsiemi della
forma

Ap={n,n+1,n+2,...}, neN
(a) Dimostrare che $§ ¢ una topologia;
(b) trovare i punti di accumulazione dell’insieme
S ={3,7,51,107}
e determinare S.
(¢) determinare i sottoinsiemi di N il cui derivato & N:

Sia X = {a,b,c,d,e} con la topologia T dell’esempio 2.1(8). Trovare la chiusura, il
derivato, la frontiera e I'interno dei seguenti sottoinsiemi:

{a}, {e}, (e}, {ach {ab), {a,d,e}.

Descrivere la chiusura, la frontiera, I'interno, 'esterno e il derivato di ognuno dei
seguenti sottoinsiemi di R®:

{x = (:1:1,1:2,1:3) . Il,£2a£3 € Q},

{(x:z+z,=1}; {x:z,€Q};

{XZ$1+.’[2=2, :I:3>0}.

In R consideriamo il sottoinsieme

J - n . -
S= {—(n+1) .n—0,1,2,...}.

Dimostrare che

S =S5 U {1} nella topologia euclidea,
S =R nella topologia cofinita.

Sia X un insieme non vuoto. Un operatore di chiusura su X & un’applicazione
C:P(X)— P(X) tale che

C® =90, ‘
C(S8)D S per ogni S € P(X),

C(C(8)) =C(S) per ogni S € P(X),

C(AUB)=C(A)UC(B) per ogni A, B € P(X).
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Dimostrare che se C & un operatore di chiusura su X ¢ se T denota la famiglia
di tutti i sottoinsiemi S di X tali che C(X\S) = X\S, allora T ¢ una topologia.
Dimostrare che per ogni sottoinsieme S di X si ha:

ci$)=5

nella topologia T.

11. Sia X un insieme non vuoto. Un operatore di interno su X ¢ un’applicazione
I:P(X)— P(X) tale che

I(X) =X,
S D I(S) per ogni S € P(X),
I(1(S)) = 1(S) per ogni S € P(X),
I(ANDB)=I(A)NI(B) per ogni A, B e P(X).
Dimostrare che sc I & un operatore di interno su X e se T denota la famiglia di

tutti i sottoinsiemi A di X tali che I(A)= A, T ¢ una topologia. Dimostrarec che per
ogni sottoinsieme S di X si ha I(S) = Int(S) nella topologia T.

4 Applicazioni continue

Siano X e Y due spazi topologici e f : X — Y un’applicazione. f si dice
continua nel punto z € X se per ogni intorno N di f(z) € Y esiste un intorno
M di z tale che f(M)C N.

f si dice continua se ¢ continua in ogni punto.

E evidente che la definizione di continuita che abbiamo dato coincide con
quella data nel paragrafo 1 qualora X e Y siano spazi metrizzabili.

Linsieme i cui elementi sono le applicazioni continue di X in Y si denota

C(X,Y).

4.1 PROPOSIZIONE Sia [ : X — Y un’applicazione di spazi topologici. Le
condizioni seguenti sono equivalenti:

(a) f é continua.

(b) f '(A) ¢é aperto in X per ogni aperto A di Y.

(€) f (C) ¢ chiuso in X per ogni chiuso C di Y.

Dimostrazione

(a) = (b) Sia A un aperto di Y e 2 € f'(A4). Poiché A & un intorno di f(z) e
f & continua esiste un intorno M di z tale che f(M) C A. Quindi z € M C f '(4)
e percido f '(A) € N(z). Segue che f '(A) & aperto perché ¢& intorno di ogni suo
punto.
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(b) = (a) Sia z € X ¢ N € N(f(z)). Esiste un aperto A C Y tale che
f@)e AC N. Allora M = f '"(A)€ N(z) e f(M)=AC N. Quindi f & continua
in z.

(b) & (c) segue facilmente dalla relazione:
'Y\ =X\5 '(S)

per ogni sottoinsieme S di Y. =m

4.2 PROPOSIZIONE  Siano X, Y, Z spazi topologici, f : X -Y, g: Y - Z
applicazioni. Se [ ¢é continua in x e g é continua in f(z) € Y allora g- f é
continua in z.

Quindi se f e g sono continue anche la loro composizione g- [ é continua.

Dimostrazione. Immediata. =

4.3 Esempi

1. L’applicazione identita di uno spazio topologico in se stesso ¢ continua. Se
X, Y sono due spazi topologici e yy € Y, ’applicazione costante:

Cyy - X =Y

che manda ogni z € X in y, € continua.

Ogni applicazione di uno spazio discreto X in uno spazio Y ¢ continua. Ogni
applicazione di uno spazio X in uno spazio banale Y & continua.

Siano T e T' due topologie su un insieme non vuoto X e ly : X — X
’applicazione identité\, Se si considera il dominio di 1x con la topologia T’ ed
il codominio con la topologia T allora 1x & continua se e solo se T < T'.

2. Se X e Y sono spazi metrizzabili, un’applicazione f : X — Y ¢ continua se e
solo se & continua come applicazione tra spazi metrici. Cid segue dal teorema 1.1.
In particolare sono continue le applicazioni lineari L : R® — R™ (cfr. esempio
1.2(4)); le traslazioni T, : R® — R", ¢ € R", sono isometriec e quindi sono
continue. Similmente sono continue le applicazioni lineari L : C* — C™ ¢ le
traslazioni T, : C* — C".

3. Sia X uno spazio topologico. Un’applicazione f : X — R™ & continua in
z € X se e solo se sono continue in z le composizioni:

pi-f:X—-R, i=1,...,n,

dove p; denota la i-esima proiezione di R" in R.

L’affermazione “solo se” seguc dal fatto che le proiezioni p; sono continue
perché lineari ¢ dalla proposizione 4.2. Viceversa supponiamo che le applicazioni
fi = p;-f siano continue in z, e sia N ¢ R" un intorno di f(z) = (fi(), ..., fu(z)).



36 Spazi topologici e applicazioni continue Cap. 1
Esiste r > 0 tale che f(z) € Q.(f(z)) C N, dove
R ro.
QU@ ={ye R :jyi~ f@I < 5, i=1,....n)

(cfr. esempio 2.4(2)). Per la continuita di fy,..., fn in z esistono intorni M,..., M,
di z tali che

1) € (Ji@) = 5, @+ 2), i=1m
Ma allora, posto M = M, N...N M,, si ha:
JM) C [i(M) X ... X fu(My) C Q(f(z)) C N,

e quindi f & continua in z perché M € N(z).

4. Sia f: X — Y un’applicazione continua tra due spazi topologici. Gli insiemi
f'(y), y €Y, si chiamano fibre di f. Se i punti di y sono chiusi le fibre di f
sono sottoinsiemi chiusi di X. Le fibre di un’applicazione continua f:R" — R
si dicono insiemi di livello di f. Se L :R" — R ¢ lincare gli insiemi di livello
di L sono i sottoinsiemi di equazione

L(z)=a, a€R,

e cio¢ iperpiani affini di R"; per n = 2,3 si ottengono reite e piani affini
rispettivamente.
Due iperpiani affini

L(z) = a,
L(z)=b, a, beR

definiti dalla stessa applicazione lineare si dicono paralleli. Piti in generale un
sottospazio affine di R™ & un sottoinsieme chiuso che & fibra di un’applicazione
lincare L : R™ — R™. Quindi un sottospazio affine & un sottoinsieme di R™ definito
da equazioni della forma

ary t...+ apTn = ay
[4.1]
AT, +...F QpupZy = am

cio¢ ¢ il luogo delle soluzioni di un sistema di equazioni lineari. Se il sistema &
omogeneo si ottiene un sottospazio vettoriale. Ogni sottospazio affine non vuoto
A ¢ 1l traslato di un unico sottospazio vettoriale V, quello delle soluzioni del
sistema omogeneo associato al sistema {4.1] che definisce A:

A=V +b={v+b:veV}
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dove b € R™ ¢ un qualsiasi elemento di A, cio¢ una soluzione qualsiasi del sistema
[4.1]. La dimensione di A € per definizionc uguale alla dimensione dello spazio
vettoriale V.

« Siano X, Y spazi topologici. Un’applicazione f: X — 'Y si dice aperta se per
ogni sottoinsieme aperto A C X linsieme f(A) C Y & aperto; f si dice chiusa se
per ogni sottoinsicme chiuso C C X P’insieme f(C) ¢ chiuso in Y.

La composizione di due applicazioni aperte (rispettivamente chiuse) ¢ aperta
(chiusa).
. L’applicazione f : X — Y si dice un omeomorfismo oppure un’equivalenza
topologica se f & continua, biunivoca, e se 'inversa f ! : Y — X & continua.
Un’applicazione biunivoca e continua ¢ un omeomorfismo se e solo se € anche
aperta oppure chiusa. Un’isometria di spazi metrizzabili ¢ un omeomorfismo (cfr.
esempio 1.2(6)).
< Due spazi topologici si dicono omeomorfi, oppure topologicamente equivalenti,
e si scrive X =~ Y, sc esiste un omeomorfismo f : X — Y. Le tre proprieta
segucnti sono ovvie:

(a) lidentita di uno spazio in se stesso é un omeomorfismo;
(b) se f: X =Y & un omeomorfismo, anche f ' .Y — X é un omeomorfismo;

@) sef: X—>Yeg:Y — Zsono omeomorfismi, la composizione g-f : X — Z
é un omeomorfismo.

N

Da queste proprieta segue che [’equivalenza topologica é una relazione di
equivalenza tra spazi topologici.

Una proprietd che una volta posseduta da uno spazio X & anche posseduta da
ogni spazio omeomorfo a X si dice proprieta topologica. Ogni proprieta che si
definisce solo in termini di insicmi aperti o chiusi e di applicazioni continue ¢ una
proprieta topologica. Ad esempio soddisfare il primo oppure il secondo assioma
di numerabilitd, ’esscrc separabile, I’essere uno spazio discreto o banale, sono
altrettante proprieta topologiche.

4.4 Esempi

1. Le proiczioni p; : R — R sono applicazioni aperte. Sia A ¢ R" un aperto,
acpi(h)e

x=($lz~"ezi l:atzi-ﬂs"'azn)

un qualsiasi punto di A tale che p;(x) = a. Poiché A & aperto esiste r > 0 tale
che Q,(x) C A. Allora

a € pi(Qr(x)) C pi(4)

e pi(Qr(x)) = (a - %, a+ %) ¢ un intorno di a: quindi p;(A) ¢ aperto.
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Se n > 2 le proiezioni non sono chiuse. Sia infatti 1 < j < n, j#i, ¢
consideriamo il chiuso § di R"™ di equazione:

zz; —1=0.

Allora p;(S) = R\{0} non & chiuso.

2. Sia n<m e ¢:R" — R™ linclusione lineare
Az, . xp) =(21,...,2Zn,0,...,0).

¢ € continua e chiusa ma non aperta. La continuitd segue dalla linearita. Sia
C c R" chiuso e y = (y1,...,ym) € R™\«(C). Se y;#0 per qualche j > n + 1,
allora

Dy, (y) C R™\¢«(R™) c R™\«(C).

Se invece ypy =...=ym =0, allora y = u«(y’), dove y' = (y1,...,yn) € R"\C.
Sia r > 0 tale che D,(y') c R"\C. Allora

D(y) € R™(O).

Quindi ogni y € R™\«(C) ¢ esterno a «(C), ciog «(C) & chiuso. Questo dimostra
che ¢ ¢ un’applicazione chiusa.
L’applicazione ¢ non & aperta perché ((R™) non ha punti interni.

3. Sia X uno spazio topologico. L’insicme Omeo(X) degli omcomorfismi di X
in se stesso ¢ un gruppo di trasformazioni di X, cioé ¢ un insieme di biezioni di
X in sé che costituisce un gruppo rispetto alla composizione (cfr. Sernesi 1989,
§14).

Le applicazioni lineari invertibili L : R" — R" sono particolari omeomorfismi;
esse costituiscono un sottogruppo di Omeo(R"™) che si pud identificare con il
gruppo GL,(R) delle matrici n x n reali invertibili. Un altro sottogruppo di
Omeo(R™) & costituito dalle traslazioni:

Ta:R" - R, Ta(x)=x+a, xc R™

1! gruppo delle traslazioni di R" si identifica con il gruppo additivo R™ ¢ verra
denotato O,
Se Ta € ©, ¢ L € GL,(R) la composizione

Tor=Ta-L=L-Tp 1
¢ un’affinita di R". Si ha:

Tar(X)=L(x)+a=Ax+a= (E a,jzj+a|,...,§: anj:cj+an) ,
J J
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dove A = (a;;) ¢ la matrice che rappresenta L. Le affinita sono omeomorfismi
perché composizione di due omeomorfismi; esse costituiscono un sottogruppo di
Omeo(R™) che denoteremo Aff(R™) e che contiene GL,(R) e ©,, come sottogruppi.
Un altro sottogruppo notevole di Aff(R"™) & il gruppo A, delle omotetie: ricordiamo
che una omotetia ¢ un’affinita Ty 7, in cui L = Mg~ per qualche X € R\{0}.

Le applicazioni lineari L : R® — R" in cui L & un operatore unitario, cio¢ &
rappresentato da una matrice ortogonale, costituiscono un sottogruppo di GLn(R)
isomorfo al gruppo ortogonale O(n). Le affinita Ty, € Aff(R™) in cui L € O(n)
sono le isometrie, o congruenze, di R™ e costituiscono un sottogruppo Isom(R™)
di GLn(R). Le isometrie dirette, o simmetrie, di R™ sono quelle isometrie Tar
tali che L € SO(n), cioé tali che det(L) = 1. Esse costituiscono un sottogruppo
Isomy(R™) di Aff(R™) contenuto nel sottogruppo Affo(R™) di Aff(R™) costituito
dalle affinita dirette, cio¢ dalle affinitd Ty, tali che det(L) > 0.

Infine ricordiamo che una similitudine di R™ & un’affinita ottenuta componendo
un numero finito di isometrie e di omotetie. Le similitudini costituiscono un
sottogruppo Simil(R™) di Aff(R™) (cfr. Sernesi 1989, §20).

Vediamo dunque che tutte le trasformazioni di R™ considerate in geometria
affine e in geometria euclidea sono particolari omeomorfismi.

In modo simile si vede che Aff(C™) & un sottogruppo di Omeo(C"), ciog ogni
affinitd di C" & un omeomorfismo (cfr. esercizio 11).

Esercizi

1. Sia f: X — Y un'applicazione di spazi topologici, z € X e B(f(z)) un sistema
fondamentale di intorni di f(z). Dimostrare’ che f & continua in z se e solo se per
ogni N € B(f(z)) esiste M € N(z) tale che f(M)C N.

2. Siano X e Y due spazi topologici e f : X — Y un’applicazione. Siano § e B
rispettivamente una sottobase e una base della topologia di Y. Dimostrare che le
condizioni seguenti sono equivalenti:

(a) f & continua;
(b) f '(B) & aperto in X per ogni B € B;
(c) f '(S) & aperto per ogni S € §;
(d) f(V)c f(V) per ogni sottoinsieme V di X;
() /~'(W) > f (W) per ogni sottoinsieme W di Y.
3. Sia f: X — Y un’applicazione di un insieme X in uno spazio topologico Y con
topologia 7. Dimostrare che la famiglia di sottoinsiemi di X:

F T =) AeT)

¢ una topologia su X rispetto alla quale D’applicazione f & continua. [ '(T) &
precisamente la meno fine tra tutte le topologie su X che rendono f continua, e si
chiama ropologia indotta da f su X.
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Sia f: X — Y un’applicazione di uno spazio topologico X con topologia T in un
insieme Y. Dimostrare che la famiglia di sottoinsiemi di Y:

J(TYy={ACY: fi(A)eT}

¢ una topologia su Y, che I'applicazione f ¢ continua rispetto ad essa, e che ogni
altra topologia su Y che rende f continua ¢ meno fine di f.(T). Questa si chiama
topologia indotta da f su Y.

Sia S un sottoinsieme di uno spazio topologico X e xs: X — R I'applicazione cosi
definita:

1 seze$§
xs(z) =
0 sezgs$

IS

Dimostrare che xg & continua in z se e solo se z & Fi(S).

Dimostrare che le topologie j; e js su R sono omeomorfe.
(Suggerimento. Verificare che I'applicazione z+— —z € un omeomorfismo).

Siano X uno spazio topologico, f, g : X — R applicazioni continue e o € R.
Dimostrare che ognuna delle seguenti applicazioni € continua:

af : X —-R, (af)z)=af(z):
Ifl: X =R, |fl@=|f);
f+9: X —R, (J+9(z)= f(z)+g(z);
fe:X—-R, (f9))=f@)gz), ze€lX.

Siano X uno spazio topologico, f, g : X — R" applicazioni continue ¢ o € R.

Dimostrare che ognuna delle seguenti applicazioni & continua:
f+9: X - R (f+9)z)= f(z)+g(2);
af : X —R (af)(@)=af(z);
M= X =R, ifli) = (£ ).

Siano X uno spazio topologico e f: X — R un’applicazione continua tale che f(z)#0
per ogni z € X. Dimostrare che [’applicazione:

Yxon (l)u):#: rEX

f / f(z)
¢ continua.
Siano fi,...,fn : R — R applicazioni continue. Dimostrare che le applicazioni

fPiRY =R, fTX) = fi(z) + .+ ful2a);
R =R, fXX) = filz1)... falza)

X =(z),...,Ts), SONO continue.

Un’affinita complessa & un’applicazione f:C" — C" della forma
f@)=Lz)+b, zeC",

dove b e C" e L € GL,(C). Dimostrare che un’affinitd complessa & un omeomorfismo.
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Sia X uno spazio topologico tale che per ogni sottoinsieme I C X sia abbia Int(7) = @.
Dimostrare che ogni applicazione f :Y — X da uno spazio topologico Y in X &
continua.

Sia f:R — R I'applicazione cosl definita:

z se z<0
f(x)={

z+1 se z>0.

Dimostrare che f & continua se il codominio ha la topologia euclidea ed il dominio
ha la topologia jy (cfr. esempio 2.4(1)).

Sia n > 1 un intero. Si identifichi I'insieme M,(R) delle matrici quadrate n x n a
clementi reali allo spazio cuclideo R™, associando a una matrice A = (a;;) il punto

(a“)'")alnvazls“'sazn"' -:ann) € an-
Dimostrare che 1’applicazione
det: M,(R) = R A~ det(A4)

¢ continua.

In modo simile al caso reale dell’esercizio precedente, si identifichi M,(C) a C* e
si dimostri che det : M,(C) — C & un’applicazione continua.
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Esempi

5 Sottospazi

Sia X uno spazio topologico con topologia T, e sia S un suo sottoinsieme
non vuoto. Consideriamo la famiglia Tg dei sottoinsiemi di S della forma SN A,
al variare di A tra gli aperti di X. E immediato verificare che Tg ¢ una topologia,
che si chiama topologia relativa di S in X (ovvero topologia indotta da X su S);
siha Tg =14 '(T), dove i : S C X & linclusione (cfr. esercizio 4.3). In particolare
I’inclusione ¢ ¢ continua se S ha la topologia Tg (ed infatti Ty ¢ la topologia
meno fine su S che rende 7 continua).

Nel caso particolare in cui X € metrizzabile la topologia relativa di S in X ¢
quella indotta dalla distanza (cfr. esempio 2.1(6)).

Considerato come spazio topologico con la topologia relativa, S si chiama
sottospazio topologico (o brevemente sottospazio) di X e X si chiama spazio
ambiente di S.

Si noti che dalla definizione segue che un sottoinsieme H C S & chiuso se e
solo se csiste un chiuso K C X tale che H = KNS. Come abbiamo gia osservato
nel caso degli spazi metrizzabili, dal fatto che un sottoinsieme B di S sia aperto
(oppure chiuso) in S non segue necessariamente che B € aperto (risp. chiuso) in
X. Le principali proprieta dei sottospazi sono date dalla seguente

5.1 PROPOSIZIONE  Siano X uno spazio topologico e S un suo sottospazio.

(a) Se 0+T C S, la topologia relativa di T in S coincide con la topologia
relativa di T in X.

(b) Se B é una base della topologia di X, la famiglia
Bs={BNS:Be€B}

é una base della topologia di S.
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(c) Se S & una sottobase della topologia di X, la famiglia
Ss={ANS:Aec§}

¢ una sottobase della topologia di S.

(d) Sia z € S; un sottoinsieme U di S é un intorno di z in S se e solo se
esiste un intorno'V di z in X tale che U=V NS.

(e) Se W ¢ un sottoinsieme di S e denotiumo con W' la chiusura di W in S
e con W la chiusura di W in X, allora W =W n S.

(F) S é aperto in X se e solo se inclusione 1: S C X ¢ aperta.

(g) S e chiuso in X se e solo se linclusione i é chiusa.

Dimostrazione

(a) Sc AC T ¢ aperto nella topologia relativa di T in S esiste B aperto in S
tale che A = BNT; per la definizione di topologia relativa di S in X esiste un
aperto U di X tale che B=UNS; quindi A=TN(SNU)=TNU ¢ aperto nella
topologia relativa di T in X. Il viceversa si dimostra in modo simile.

(b) Sia A un aperto di S e B un aperto di X tale chc A=BnNS. Poiché B &
una base di X si ha

B=U B;, BjeB
JjeJ

e percio
A=BNS= (U Bj) ns=U®Bjnsy;
JjeJ JjeJ

poiché ogni B; NS € Bg, cid prova che Bg ¢ una base della topologia di S.
(¢) Segue immediatamente da (b).

(d) Se V' & un intorno di z in X esiste un aperto B di X tale che z€ BC V;
allora A=8NB & un aperto di S tale che z€e ACVNS=U, e quindi U ¢
un intorno di z in S. Se viceversa U € un intorno di z in S ed A un aperto di
S tale che z € A C U, esiste un aperto B di X tale che A = BN S. Poniamo
V=BUU. Allora z€ BCV, quindi V ¢ un intorno di z in X e VNS =U.

Le dimostrazioni di (e), (f) e (g) sono lasciate al lettore. m

- Sia f : X — Y un’applicazione continua di spazi topologici e sia ¥’ un
sottospazio di Y tale che f(X) c Y'. Ponendo f'(z) = f(z), =z € X, resta defi-
nita un’applicazione f': X — Y’ che, ¢ immediato verificarlo, & continua; f' si



44 Esempi l Cap. 2

chiama applicazione di X in Y' indotta da f. f si dice inclusione continua se
lapplicazione X — f(X) indotta da f & un omeomorfismo. In particolare se
f:X — Y & un omecmorfismo allora f & un’inclusione continua.

L’inclusione di un sottospazio nel suo spazio ambicnte € un’inclusione continua.

Se T, T» sono duc topologie su un insieme X#@ e T, < T, stretlamente,
I'identita (X, T») — (X, T1) & un esempio di applicazione continua e biettiva che
non ¢ un’inclusione continua.

Siano f: X — Y un’applicazione continua di spazi topologici, S un sottospazio
di X ed ¢:S c X linclusione. La composizione f-7:.5 — Y ¢ un’applicazione
continua che si chiama restrizione di f a S, € si denota fig. Se viceversag: S - Y
¢ un’applicazione continua, ogni applicazione continua f: X — Y tale che fig=g¢
si chiama estensione continua di g ad X.

Lasciamo al lettore la dimostrazione della seguente:

5.2 PROPOSIZIONE ~ Siano X, Y spazi topologici, [ : X — Y un omeomorfismo
ed S un sottospazio di X. Allora la restrizione fig @ S — Y & un’inclusione
continua.

Supponiamo dati un ricoprimento ¥ dello spazio X ed un’applicazione continua
f:X — Y. Per ogni F € 7 consideriamo la restrizione fjp: " =Y. La famiglia
di applicazioni continue

{fip: F = Y}rer
soddisfa alle ovvie condizioni di compatibilita
(fIE)]FIan:(lez)fFlﬂFﬁ per ogni F, he?.

Supponiamo viceversa dato un ricoprimento # dello spazio X ed una famiglia di
applicazioni continue

{fr:F—>Y}per
soddisfacenti alle condizioni di compatibilita
(JE)Fnm = (UR)FnR, Perogni Fi, F,€ 7. [5.1]

Possiamo allora definire [’incollamento delle applicazioni {fr} come I’applicazione
f:X —Y data da

f(x)= fr(x) se z€F.
Si ha ovviamente

fip=fr perogni FeZ,
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N

ma in gencrale f non & continua. Ad esempio ’applicazione f : R — R definita
da

0se z<0,

I sez>0,

f(z)={

non ¢ continua ed ¢ 'incollamento delle applicazioni costanti
co:(~00,0] = R, ¢, :(0,+00) =R,

che sono continue.
La proposizione seguente da delle condizioni che garantiscono la continuita
dell’incollamento di una famiglia di applicazioni continue.

5.3 PROPOSIZIONE ~ Siano ¥ un ricoprimento dello spazio topologico X, {fr:
F — Y}pez una famiglia di applicazioni continue a valori in uno spazio to-
pologico Y, soddisfacenti alle condizioni di compatibilita [5.1], e f : X - Y
lincollamento delle {fr}. Supponiamo che una delle seguenti condizioni sia sod-
disfatta:

() tutti gli F € F sono insiemi aperti (si dice in questo caso che F & un
ricoprimento aperto);

(b) 7 é una famiglia finita di insiemi chiusi (¥ & un ricoprimento chiuso finito).
Allora f ¢ continua.

Dimostrazione. Supponiamo soddisfatta la (a), e sia A un aperto di Y. Poiché
7 & un ricoprimento di X, si ha

-] — 1 _ 1 — -1
Fi)y=1 AN (FLEJ? F) - Ut wnm= U .

Per la continuita delle applicazioni fp, f5'(A) & aperto in F per ogni FF € 7
e quindi & aperto in X, perché gli F' sono insiemi aperti; ne segue che f '(A) &
aperto in X, e quindi f & continua.

Nell’ipotesi (b) la dimostrazione & simile: si considera un chiuso H C Y e si
verifica che f'(H) & chiuso in X. =

5.4 Esempi

I. Se X e Y sono due spazi metrici e f: X — Y ¢ un’applicazione tale che
dx(z,z') = dy (f(x), f(z")) per ogni z,z' € X, allora f & un’inclusione continua di
X in Y considerati come spazi topologici metrizzabili.
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2. I seguenti sottospazi di R™, n > 1, sono esempi che ricorrono frequentemente
in topologia:

I1={0,1}: Pintervallo unitario chiuso di R.

I"={xeR":0<z;<1, ¢=1,...,n}: I'n-cubo.

D" ={xe R":|x|| < 1}: I'n-disco unitario chiuso.

S" '={xeR": x| =1} =Fr(D"): I'(n— 1)-sfera.

St ' ={xeS" 'z, >0}

S" '={xe8" 'z, <0}; le (n—1)-semisfere chiuse (0 (n — 1)-calotte chiuse).

At={xeR":z+...4+3, <1, 2,20, e=1,...,n}: Un-simplesso.

Uno spazio X omeomorfo a D" si chiama n-cella.

Si verifica facilmente che ogni sottospazio affine A di.dimensione m di R"
¢ omeomorfo a R™. Sia infaiti A = V+b, b € R*, dove V & un sottospazio

vettoriale di dimensione m in R", e sia {v,,...,V;,} una base ortonormale di V.
L applicazione h: R™ — R"™ definita da

AMY)=y1Vi+...+YmVm +b

induce un omeomorfismo di R™ su A.
Un sottoinsieme K di R™ si dice convesso se per ogni coppia di punti distinti
P, Q € K, il segmento che li congiunge

PQ={1-t)P+tQ:tel}

¢ contenuto in K. Un solido convesso & un sottoinsieme convesso il cui interno
¢ non vuoto.

I", D" e A™ sono solidi convessi (fig. 5.1); un sottospazio affine diverso da
R™ & convesso ma non & un solido; 8™ "' non & convesso.

2
P S

. ~

Figura 5.1
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L’intersezione di una famiglia qualunque di insiemi convessi & un insicme
convesso, come segue subito dalla definizione.

Se S ¢ R™ & un qualunque sottoinsieme, 'inviluppo convesso di S ¢ il pil
piccélo insieme convesso K(S) contenente S, cioe I'intersezione di tutti gli insiemi
convessi contenenti S. Ovviamente I'inviluppo convesso di un insieme convesso
S ¢ § stesso.

L’inviluppo convesso di S"~' & D". A* & Pinviluppo convesso dell’insieme
finito {0,e,,...,e,}, dove e,...,e, sono i vettori della base canonica di R™. Piu

in generalc I’inviluppo convesso di un insieme finito {Py,..., Py} ¢

KP,...,Pp)={tiPi+ ...+ tmPpy ti+...+tm=1, t; >0, j=1,...,m}.

3. Per costruire omeomorfismi tra sottospazi di R™ useremo quando possibile
affinitd o addirittura congruenze o similitudini.

Due sottospazi topologici S e T di R"™ si diranno affinemente equivalenti
(rispettivamente congruenti, risp. simili) sc esiste un’affinitd (risp. una congruenza,
risp. una similitudine) f : R® — R" tale che f(S)=T.

Poiché le affinitda sono omeomorfismi, seguc dalla proposizione 5.2 che due
sottospazi affinemente equivalenti (in particolare congruenti o simili) sono omeo-
morfi.

Ad esempio D" ed S" ' sono omeomorfi ad un qualsiasi disco chiuso D, (x),
x € R", r > 0, e alla sua frontiera rispettivamente, perché & possibile, con una
opportuna similitudine (quale?) mandare D" su D,(x) in modo che S" ' abbia
per immagine Fr(D,(x)). Denoteremo d’ora in poi Fr(D,(x)) con §™ '(x,r).

4. Consideriamo D;(0) = D"\S""' ¢ R", il disco aperto di centro I’origine e
raggio 1. L’applicazione

h:D,0) — R"
definita da
h(x) =x/(1 - |Ix]))
¢ un omeomorfismo. Infatti k € continua e possiede un’inversa continua data da

R y) = y/(L+ ]yl

Sottospazi di R

5. Siano [a,b] e [c,d] due intervalli chiusi e limitati (a < b, ¢ < d), considerati
come sottospazi topologici di R. L’applicazione

fila,b) = [c,d]
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definita da

C(x—a)

f@=cts—

¢ la restrizione ad [a,b] di una affinita di R in R, che & un omecomorfismo. Per
la proposizione 5.2 f ¢ un omeomorfismo. Con un’ulteriore restrizione otteniamo
omeomorfismi tra

(a,b) e (c,d),
la,b) ¢ [c,d),
(a,b] e (c,d].

L’omeomorfismo f che abbiamo considerato soddisfa f(a)=¢, f(b) =d. Se si-
considera invece I’applicazione

¢:[a,b] - le,d]
definita da
o@) =d+ =z —a)
b—a

si ottiene un omeomorfismo tale che g(a) = d, g(b) = c; g induce omeomorfismi di
la, b) su (c,d]

e di
(a,b] su [e,d).

Si noti che se b —a#d — ¢ gli intervalli [a,b] € [¢,d] non sono congruenti pur
essendo omeomorfi.

6. Siano c < b ed f : [c,b) — R definita da
f(z)=(z —c)/(b - 2).

f ¢ un’inclusione continua cio¢ induce un omeomorfismo di [c,b) sull’immagine,
che ¢ l’intervallo [0, +co). Infatti f & continua e dotata di inversa f~!: [0, +oc0) —
[c,b) data da

I i)y =t +c)/t+1).

Per restrizione f definisce un omeomorfismo di (¢, b) su (0, +c0).
Analogamente, se a < ¢ e se poniamo

g(z) = (z — ¢)/(z — a)
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definiamo un omeomorfismo g : (a,c] — (—o0, 0], il cui inverso &
g '@ =(- at)/(1 —t).

Anche qui per restrizione si definisce un omeomorfismo di (a,c) su (—oo,0).

Il lettore pud modificare facilmente questi esempi sostituendo [0, +o00) e (—o0, 0]
con [d.+o0) e (—oo,d] per un qualsiasi d € R.

Se a < b e se poniamo ¢ = (a + b)/2, possiamo definire

h:(a,b) - R

come incollamento di f e g definite qui sopra, ponendo cio¢

z—
sea<z<ec,

hz)=1 7"
sec<z<b.

b—=zx

Otteniamo in questo modo un omeomorfismo di (a,b) su R.

7. Riassumendo gli esempi 5 e 6, possiamo dire che: () due intervalli aperti,
limitati 0 no, sono omeomorfi; (3) due intervalli chiusi e limitati sono omeomorfi;
(y) due intervalli aperti da una parte e chiusi dall’altra, limitati o no, sono
omeomorfi.

E possibile dimostrare che le classi (), (8) e (v) sono topologicamente distinte,
ciog che ogni intervallo di una di esse non ¢ omeomorfo ad alcun intervallo di
un’altra. Dimostreremo questo fatto nel paragrafo 11 (cfr. esempio 11.14(1)).

Sottospazi di R* e di C

8. Siano P, ..., Py, m > 2 punti di R tali che P; |#P; per ogni j =2,...,m.
La poligonale di vertici Py, ..., Py € 'unione di segmenti

[I=1l,....Pn)=PRUBPU...UB, \Pn

La poligonale IT si dice chiusa se P, = Py IT si dice semplice se non si
autointerseca, cioé¢ se due qualsiasi dei segmenti che la compongono non hanno
punti in comune, fatta eccezione per I’estremo comune a due segmenti consecutivi
({P;} = P;_\P;n P;P;,)) e per il punto P, = Py, (comune a PP, ¢ a Py {Pr)
nel caso in cui I & chiusa (fig. 5.2). E facile dimostrare che una poligonale sem-
plice e non chiusa I (P,...,P,) ¢ omeomorfa ad I. Un omeomorfismo ¢ indotto
dall’immersione f : I — R?, definita come incollamento delle applicazioni (5 =
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dove

Uji[]_z ]—l]—’lg u]‘(t)z(m—l)t—j+2,

m-—1" m-1

fi:IT-R fiw)=(1-wP; , +uP;.

Una poligonale semplice e chiusa IT - H(P.,...,Pm ,P) (con m > 4) ¢
omeomorfa alla circonferenza S'.

P

4

P.
s R

Poligonale
né semplice né chiusa

P
F, Poligonale
semplice non chiusa
A

P

7 o 7

A
Poligonale

semplice e chiusa
Figura 5.2
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Per costruire un omeomorfismo & : S' — I1 si ponga:
S*={x=(z,9€S :1y>0}, S :={x=(z,y) €S :y <0},

M =T, PP, T :=Tlpn 1, P,

!
Essendo I una poligonale semplice e non chiusa, dalla prima parte di questo
!
esempio otteniamo un omeomorfismo [ :1[0,1] — IT. per ogni x € S*, si ponga

h'(x):f(z;'l).

. !
Ovviamente #' : 8" — I & un omeomorfismo e si ha:

h'(1,0)= f(1) = P;
h'(=1,0) = f(0) = P 1.

Sia ora g : [0,1] — H” I’omeomorfismo cosi definito: g(t) = (1 — t)Py, - +tP).
Per ogni x € §™, si ponga

hn(x)=g(.’t;]).

_ " R . .
Ovviamente A" : S™ — IT ¢ un omeomorfismo e si ha:

h'(=1,0)=g(0) = Py -3
h'(1,0) = g(1) = P,.
Ne segue che h' e h" si incollano in un’applicazione h:S' — IT. Inolure » &

continua (infatti {S,$*} & un ricoprimento finito e chiuso di S') e dunque h &
un omecomorfismo come richiesto.

9. Il quadrato I? ed il disco chiuso D* sono omeomorfi (cioé I* & una 2-cella).
Possiamo sostituire I* con il quadrato chiuso

Q={(,z)eR:~1<z,5 <1}

di centro I’origine e lato di lunghezza 2 : I* e Q sono simili € quindi omeomorfi.
La similitudine s : I* —» Q & data da

s(x) =Rz, - 1,2z, - 1)
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e ’inversa &

i ti+1 t+1
s (t)-—( > T .

Costruiamo un omeomorfismo f di D* su Q nel modo seguente.
Per ogni x#0 denotiamo con x' € Fr(Q) il punto di intersezione con Fr(Q
della semiretta di origine 0 e passante per x. Definiamo

_ 0 se x=0,
10 = {Hx']]x s¢ x € D2\{0}.

L’applicazione f:D? — Q cosi definita & biunivoca perché ha inversa
0 sey=0
Y/ sey € Q\{0}.
La continuita di f e di f° I segue da quella della funzione
Q\{0} — R
y~ Iyl

f"(y)={

la cui verifica clementare & lasciata al lettore (fig. 5.3).

Si noti che f induce un omeomorfismo di S' sulla poligonale Fr(Q). Si os-
servi anche che f non pud essere la restrizione di un’affinita f : R? — R®. Tale
affinitd sarebbe infatti un’applicazione lineare (perché F(0) = f(0) = 0) e quindi

Y

Figura 5.3
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un’omotetia (per come & definita f). Ma cid implicherebbe che ||x'|| & costante al

variare di x € §', il che ¢ falso.

10. Siano P,,...,Pne R, m>3 punti distinti a tre a tre non allineati ¢ tali
che per ogni j=2,...,m i punti P,,...,Pj. 5, Pj,,..., Py siano tutti in uno dei
due semipiani in cui R* & diviso dalla retta contenente P;_, e P;. Linviluppo
convesso K(P,...,Py) si chiama poligono convesso di vertici P,...,Py,. Con
un metodo simile a quello dell’esempio 9 si dimostra che ogni poligono convesso
¢ una 2-cella.

11. Un sottospazio topologico di R* omeomorfo a S' si chiama arco di Jordan.

Come dimostrato nell’esempio 8 una poligonale semplice e chiusa ¢ un arco di
Jordan. La figura 5.4 rappresenta un arco di Jordan.

12. In molti casi & comodo identificare R* al piano complesso C ¢ averc cosi
a disposizione il linguaggio e le propricta dei numeri complessi per studiare la
topologia del piano.

Ad esempio, sia 0 < 0 <27 ¢ sia

Ag = {z € C\{0} : 0 < arg(z) < 0}.
Se n > 2 ¢ un intero, I’applicazione
C-C
n

zZ—z

definisce per restrizione un omeomorfismo di Ay, su Ay per ogni ¢ € (0,2x], il
cui inverso ¢ indotto dall’applicazione di C in C:

w +— (determinazione principale di w'/™) =

= {/|wl (Cos (a___rg(w)) +i sin (__arg(w))) .
n n

Figura 5.4
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In particolare si trova che il semipiano
Ar={z€C:Im(z) > 0}
¢ omeomorfo al primo quadrante aperto
Arp={z€ C :Re(z) > 0, Im(2) > 0}
e anche a
Ay =C\{z €eR:z >0}

Pili in generale, qualsiasi siano 0,, 0, € (0,2«] gli aperti Ay ed Ap, sonc
omeomorfi; un omeomorfismo

Ag, — Ag,
¢ definito da
z +— (determinazione principale di 200y
= [2[9301_ ](005(020[' arg(z)) +1i s.in(020," arg(z)))
13. Consideriamo la funzione csponenziale complessa
exp:C—-C
definita da
exp(z) = e*(cos(y) +1 sin(y)), se z =1z +1y.
Questa applicazione ¢ evidentemente continua. Inoltre
exp(z1) = exp(22)
se ¢ solo se
Ty =11, Y2 =y +2kw per qualche k € Z.
Quindi exp ¢ iniettiva ad esempio nella striscia aperta
B={z2€C:0<Im(z) < 2r}

la quale viene mandata sull’aperto A, (fig. 5.5). Su A,r 'applicazione inversa
di exp ¢ data dalla determinazione principale del logaritmo naturale complesso

In: Ay — C
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Figura 5.5

definito da

In(w) = In|w| +i arg(w).
Poiché In ¢ continua, abbiamo che B ¢ omeomorfa ad A,r e quindi, per quanto
visto prima, ad Ay per ogni 6 € (0,2x].

Si noti che exp trasforma i segmenti di B paralleli all’asse immaginario in
circonferenze di centro ’origine.

14. 11 semipiano A, C C e il disco aperto unitario
D={zeC:|z| <1}

sono omeomorfi. Un omeomorfismo ¢ indotto dall’applicazione

7.4, - C
definita da

r(z)= 2

Z+1

Per verificarlo osserviamo che 7 ¢ ben definita ¢ continua in tutto A, e che
7(z) € D per ogni z € Ar. Infatti Im(z) > 0 implica |Im(z —i)| < |Im(z +1)|, ed
essendo

Re(z — 1) =Re(z +1)

si ha |z —i] <|z+1i|, cioe |7(2)| < L.
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D’altra parte consideriamo 1’applicazione o : D — C definita da

a(w)=.w+1

(w—1)°
¢ ¢ continua e soddisfa ¢(D) C Ar. Quest’ultimo fatto segue osservando che

w+l  —w+ DH@—1) =2 Im(w) +i(l — [w]?)
(w-1)" w-H@-1)  |w]>-2Re(w)+]

il denominatore & reale positivo perché
lw|* — 2 Re(w) + 1 > (Re(w) — 1)* per ogni w € C;

la partc immaginaria del numeratore & 1 — |w|?> > 0; quindi ¢(w) € Ar.
E immediato verificare che, per ogni z € Ay, w € D, si ha

0(1(2)) =z, 7(0(w)) =w.
Questo dimostra che
0(D)= Az, 7(Az)=D

¢ che 7 e ¢ sono iniettive. Quindi 7 e ¢ sono omeomorfismi tra Ay € D uno
inverso dell’altro.

Altri esempi

15. Sia ¢ € R* e H un piano di R’ non contenente ¢; sia He il piano parallelo
a H passante per ¢. Denotiamo con

Tey  R\He — H
I’applicazione definita da
e g (X) = HNr(e, X)

dove abbiamo denotato con r(c,x) la retta contenente ¢ ed X. we gy si chiama
proiezione di R® su H di centro ¢; ¢ & il centro di proiezione.

Per la sua definizione geometrica ¢ evidente che 7 g € continua. Per verificare
questo fatto analiticamente scegliamo ad esempio H come il piano di equazione
z3=0 e ¢=(0,0,1). Allora, identificando H a R?, I’applicazione

Te.H R3\Hc — R? (dove H, & il piano di eq. z; = 1)
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c=1(0;0,1)

Figura 5.6

¢ data da
Te,g(X) = (2, /(1 — z3), 22/(1 — z3)),

ed & evidentemente continua.

La restrizione di 7 g (con ¢ e H come qui sopra) a S*\{c} si denota =, e si
chiama proiezione stereografica di $?\{c} su R’ (fig. 5.6). Questa applicazione &
un omeomorfismo di 8%\{c} su R*. Infatti & dotata di inversa continua definita da

2y, 2y, yf+y§—1>
v+ + 1l yiryi+ ] yieyial

T (Y, ) = (

Si noti che la restrizione della proiezione stereografica alla semisfera chiusa
§? ={x €8 :z; <0} & un omeomorfismo di §? su D’

E evidente che cambiando opportunamente ¢ € §> e H & possibile definire in
pidt modi un omeomorfismo di S, privata di un punto qualsiasi, su R*. L’unica
condizione che ¢ e H devono soddisfare (oltre a ¢ &€ H) & che Hc incontri s?
solo in e.

16. L’esempio 15 pud facilmente generalizzarsi a R", n > 2. Sia ¢ € R", H un
iperpiano di R™ non contenente ¢, e Hc 'iperpiano parallelo a H passante per ¢.
La proiezione di R™ su H di centro ¢ (il centro di proiezione) si definisce come
I’applicazione

Te.H - RTL\HC — H
data da
me,g(x) = H Nr(c, X).

Se ¢=(0,...,0,1) e H ha equazione z, =0, si ha

— In — In I -z,
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La restrizione di 7¢ g a $" '\{c} & un omeomorfismo di "~ '\{c} su R""’ che
si denota m, e si chiama proiezione stereografica.

Nel caso particolare n = 2 si ottiene un omeomorfismo di S'\{(0,1)} su R,
come illustrato nella figura 5.7.

17. 1l gruppo lineare generale reale
GL,(R) = {a € M,(R) : det(4)#0} (n intero > 1)

& un sottospazio aperto di My, (R). Denotiamo con I, € Myp(R) la matrice identita.
[ sottogruppi di GL,(RY):

Omn)={Ae M,(R):'AA=1,}: gruppo ortogonale
SO(n) = {A € O(n) : det(A) = 1} : gruppo ortogonale speciale;
SL,(R)={A € M,(R) : det(4) =1} : gruppo lineare speciale reale,

sono sottospazi chiusi di M, (R).

Sia g un intero > 1 e

g

o I
(4 ) esam

"IQ 9

Figura 5.7
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dove O, € My(R) denota la matrice nulla. Il sottogruppo di GLy,(R)

gruppo simplettico
Sp(g,R) = {4 € My(R) :*AJ,A = Jg} .
reale di grado g

¢ un sottospazio chiuso di My (R).
Le verifiche di questi fatti sono lasciate al lettore.

18. Similmente al caso reale (esempio 17), GL,(C) & un sottospazio aperto di
M, (C), mentre i suoi sottogruppi
Un)={A € M,(C):"AA=1,}: gruppo unitario,
SU(n) = {A € U,(C) : det(A) = 1} : gruppo unitario speciale,
SL,(C)={A € M,(C) :det(A) =1} : gruppo lineare speciale complesso.

sono chiusi in My(C).
E anche chiuso in Mzg(C) il gruppo simplettico complesso di grado g:

Sp(g,C) = {A € My(C) : *AJ,A = J,}.

Esercizi

1. Dimostrarc che un sottospazio topologico di uno spazio soddisfacente il primo (risp. il
secondo) assioma di numerabilita soddisfa anch’esso il primo (risp. il secondo) assioma
di numerabilita.

2. Siano a, b numeri reali non nulli e C C R? I'ellisse di equazione
22 /a® + 23 /b = 1.
Con un metodo simile a quello dell’esempio 9 si dimostri che I’inviluppo convesso
K(C) & una 2-cella (fig. 5.8).
3. Per ogni n >3 dimostrare che I" & una n-cella.

4. Sia S={(z,z)eR*: -1 <z 22 < 1}.
Trovare un sottospazio X di R? contenente S nel quale S sia, rispetto alla topologia
relativa di X,

(a) aperto e chiuso,
oppure

(b) chiuso ma non aperto,
oppure

(¢) aperto ma non chiuso.

5. Esercizio come il precedente, ma con

S ={(z1,22) e R : =1 < 2y, < 11\{(0,0)}.
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K(C)

iy
N

Figura 5.8

Far vedere con un esempio che la conclusione della proposizione 5.3 non & vera se
nell’ipotesi (b) non si suppone finito il ricoprimento 7.

Descrivere analiticamente I'inversa della proiezione stereografica =, di 8"~ "\{(0,...,
0,1)} sul’R"™" di cquazione z, =0.

Un sottoinsieme E di uno spazio topologico X si dice discreto se la topologia relativa
di E in X ¢ la topologia discreta. Dimostrare che:

(a) EC X e discreto se e solo se ogni e € E possiede un intorno U, in X tale che
U.NE = {e};

(b) Z, {I/n:n e N} sono sottoinsiemi discreti di R, mentre Q, {1/n:n € N }uU {0}
non sono discreti.

Un’applicazione continua f: X — Y si dice un omeomorfismo locale se ogni ¢ € X
possiede un intorno aperto che vicne mandato da f omeomorficamente su un aperto
di Y.

Ogni omeomorfismo ¢ un omeomorfismo locale, ma non vale il viceversa: ad esempio
ogni applicazione di spazi discreti ¢ un omeomorfismo locale, ma non ¢ vn omeomor-
fismo se non ¢ biettiva. Vari csempi di omeomorfismi locali verrano dati nei capitoli
seguenti. Si dimostri che un omeomorfismo locale ¢ un’applicazione aperta.
Dimostrare inoltre che un’inclusione continua f: X — Y ¢ un omcomorfismo locale
se e solo se & un’applicazione aperta.

Dimostrare che ST ~ S” per ogni n > I.
Sia X={xeR’:2,>0, ||x| < 1}. Dire quali dei seguent. sottoinsiemi sono chiusi
in X con la topologia di sottospazio di R*:
A={xeR 2 >0, |x|=1}; B={xeR:z;>1/2, x| <1};
C={0,t)eR*:0<t<1};  D={tt):0<t<2/2}.
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12. Sia X = {x e R*: |z3] < 1, 22 +22 < 1}. Dire quali dei seguenti sottoinsiemi sono
aperti in X con la topologia di sottospazio di R’:
A={xeR:0<zm <, 2+23<1/2);
B={x=(0,0,t):0<t<1};
C={x=(0,0,t):0<t< 1}
D={xeR:zl+22 < 1/2, |zs| <1}
E={x=(zi,22,1/2): 27 + 13 < 1/2}.
13. Sia X = {(z;,3:2) € R?: 1z, > 1 >0} Dire quali dei seguenti sottoinsicmi sono aperti
in X con la topologia di sottospazio di R’:
A={xeR*:0<z <z:;<1); B={xeR*:l<z <m};
C={xeR2 1<y <) D={xeF¥2 1z <z, z1=1/n, n>1 intero}.
14. Sia X = {(z),12) € R? . z; > 0,z > 0}. Dire quali dei seguenti sottoinsiemi sono
chiusi in X con la topologia di sottospazio di R?:
A= {(],.7:2) 1T > 0};
B={(1/n,1):n>1 intero};
C={x=(z,22) € R :zy+z=1, 2, >0, 2 > 0};
D={(1,1/n):n >1 intero}.
15. Sia X = {xe R*: ||z|| < 1}u{x € R* : z; = 0}. Dire quali dei seguenti sottoinsiemi
sono chiusi in X con la topologia di sottospazio di R%:
A={xeR¥:|x||<1}; B=AU{0,D};
C=BuU{(0,-1}; D={(z,0):-1<z <1}

6 Prodotti

In questo capitolo studieremo un procedimento per costruire nuovi spazi topo-
logici a partire da spazi assegnati, che consiste nel considerare il loro prodotto
cartesiano e su di esso definire un’opportuna topologia.

Descriveremo il procedimento inizialmente nel caso di due spazi X, e X,
con topologie T, e T, rispettivamente. Nel prodotto cartesiano X = X, x X,
consideriamo la famiglia B dei sottoinsiemi che sono il prodotto di un aperto di
X, per un aperto di X, cioe

B={A1><A23A|€T1, AzeTg}.
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La famiglia B & un ricoprimento di X perché X = X, x X, € B. Inoltre se A; x A,,
B) x B, € B, allora

(A] XAQ)O(B] X Bz)z(A| ﬂBl)x (Aanz)E B

perché AiNB, € T ed A,N B, € T,. Cid prova che la {amlgha B soddisfa le
condizioni della proposizione 2.2 ed ¢ quindi base di un’unica topologla T su X;
T si chiama topologia prodotto su X (delle topologie T; € T;); con la topologia
T X si chiama spazio topologico prodotto (oppure prodotio topologico) di X,
per X,.

Per definizione gli aperti di X sono i sottoinsiemi che si possono ottenerc
come unione di insiemi appartenenti a B. Segue subito che un sottoinsieme N
di X € un intorno del punto (z;,z,) € X se e solo sc esistono un intorno N, di
1, € X, ed un intorno N, di z; € X, tali che Ny x N, C N.

Un esempio importante & R?, che & il prodotto topologico di R per se stesso.
Per vederlo occorre ricordare che la famiglia dei rettangoli aperti

{R(a,b;c,d):a<b, c<d}

& una base per la topologia euclidea di R* (cfr. esempio 2.4(2)). Tali rettangoli
sono particolari elementi della base B che definisce la topologia prodotto, quindi
questa topologia ¢ pil fine della topologia euclidea. Per concludere che di fatto
le due topologie coincidono ¢ sufficiente verificare che il prodotto di due aperti
di R, cioé¢ un elemento di B, & un aperto nella topologia euclidea; la verifica &
immediata e si fa con lo stesso procedimento usato per dimostrare la seguente
proposizione, che generalizza quest’esempio.

6.1 PROPOSIZIONE  Siano By e B, basi degli spazi topologici X, ed X, rispet-
tivamente. La famiglia di sottoinsiemi

B|Bz {B[ XBZ BIGB, BZEBz}

¢ una base per la topologia prodotto di X| x X,.

Dimostrazione. Poiché gli elementi di B, B, sono aperti nella topologia prodotto,
¢ sufficiente verificare che gli insiemi della forma A, x A,, A; aperto in X;, 7= 1,2,
sono unione di elementi di B, B,.

Si ha

=U B/, 4=U B!
hEH

JjeJ
per opportuni B,j € By, B} € B,, ¢ quindi

Al X A = <U B{) % (U BZ’L) = U B/ xB. =
jeJ heH JjeJ

heH
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I prossimo risultato ci dice che I’operazione di prodotto topologico ¢ compa-
tibile con quella di considerare sottospazi.

6.2 PROPOSIZIONE  Siano S, ed S, sottospazi degli spazi topologici X, ed
X, rispettivamente. La topologia indotta da X, x X, su S; x Sy coincide con la
topologia prodotto delle topologie di S, e di S,.

Dimostrazione. Se V. .C S; x S, & un aperto nella topologia indotta da X, x X,,
esiste un aperto U di X, x X, tale che

V=(S x S)NU.

Per definizione di topologia prodotto U' = _UJ A; x Bj per opportuni aperti A; di
j€
X, e B; di X,. Quindi

V=(S %8N (U Ajx B]-> =U (8 x 8N4 x By) =
jeJ jeJ
=U in4;)x($:nB)
JjeJ

e questo prova che V ¢ aperto nella topologia prodotto. Il viceversa si dimostra
leggendo le stesse uguaglianze in senso inverso. =

Un caso banale di prodotto topologico si ha quando uno dei due spazi possiede
un solo punto. Se X & uno spazio topologico e {x} ¢ uno spazio con un solo
punto *, allora {*}x X ed X x {*} sono omeomorfi ad X stesso; gli omeomorfismi
sono quelli ovvi:

X - {(:x}xX X - Xx{x}

z > (*,7) z (2, ).

Combinando la proposizione preccdente con questa osservazione si ottiene il
scguente

6.3 COROLLARIO  Nel prodotto topologico X, x X, dei due spazi X, ed X,
per ogni z, € X, e 1, € X, i sottospazi {z\} x X» e X; X {z.} sono omeomorfi
a X, e a X, rispettivamente.

Dati due insiemi non vuoti X, ed X», le applicazioni

p|2X|>(X7_—>Xp

p22X1><X2—'X2
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definite da p;(z), z,) = z;, 1 = 1,2, si chiamano proiezioni. Per ogni sottoinsieme A,
di X, sihap; '(4)) = A; x X,; analogamente p; '(4,) = X x A, se 4, C X,. E chia-
ro quindi che se X; e X, sono spazi topologici e X; x X, ha la topologia prodot-
to, le proiezioni sono applicazioni continue. Pill precisamente abbiamo la seguente

6.4 PROPOSIZIONE  Siano X, e X, spazi topologici. La topologia prodotto su
X, x X, & la meno fine tra tutte le topologie rispetto alle quali le proiezioni p,
€ py Sono continue.

Dimostrazione. Siano Tj e T> le topologie di X, e di X, rispettivamente. La topo-
logia meno fine tra quelle che rendono continue p; ¢ p, ¢ generata dalla famiglia
p (M Up, ()
dove
P (M) ={p ' (A)=A xX;: A € T},
P (M) ={p;'(A) =X\ x A2 : Ay € To},

e quindi ha per base la famiglia di tutte le intersezioni finite di elementi di
p, () Up; '(T2). Ma poiché, come & evidente, p; '(T;) e p;'(T2) sono due
topologie, un’intersezione finita del tipo suddetto si riduce all’intersezione di
un elemento di p; '(Ty) con uno di p;, '(T2); quindi la topologia gencrata da
p; (1) Up; '(T2) ha per base la famiglia

{(AxX)NXixA)=Aix At A €T, A ETD)

che ¢ la base che definisce la topologia prodotto. s

Si noti che la proposizione 6.4 fornisce una definizione alternativa della topo-
logia prodotto. Un’altra proprieta delle proiezioni & la seguente:

6.5 PROPOSIZIONE  Se X ¢ X, sono due spazi topologici, le proiezioni p; :
X, x Xa —» X;, 1=1,2, sono aperte.

Dimostrazione. Sia A C X, x X, aperto; allora

A= U 4l x A,
jeJ )

dove gli A’,' e gli A’; sono aperti di X, e di X, rispettivamente. Si ha

pi(4) = U pial x a)=U 4,
jedJ J

pa(A) = U pya? x al)=U 4,
JjeJ J

che sono aperti. s
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Avevamo gia verificato che le proiezioni sono aperte nel caso di X; x X, = R?
(cfr. esempio 4.4(1)).

Se fi:Y - X, e f,:Y — X, sono applicazioni di insiemi non vuoti, possiamo
definire un’applicazione

Y -X xX,

ponendo f(y) = (fi(y), f(y)) per ogni y €Y. E evidente che f'¢'I’unica applica-
zione di YV in X, x X, tale che p, - f=f1, p2- f=fo; [ si chidama applicazione
prodotto di f; e f, e si denota talvolta con f; x f,. La seguente proposizione
esprime la cosiddetta proprieta universale del prodotto topologico (vedi anche
esempio 4.3(3)).

6.6 PROPOSIZIONE  Siano Y, X,, X, spazi topologici. Un’applicazione f :
Y - X, x X, ¢ continua in y €Y se e solo se le applicazioni

fi=p Y - X,
fizpa- [ Y = X,

SONO continue in y.

Dimostrazione. Se f € continua in y € Y, allora f; e f» sono continue in y
perché lo sono anche p, e ps.

Supponiamo viceversa che f, e f, siano continue in y € Y, e siano z, = f(y),
z; = fo(y). Scegliamo un intorno aperto A di f(y) = (z),z2), e siano A; e A,
intorni aperti di z, e di z, rispettivamente tali che A D A, x A,. Per la continuita
di f, in y esiste un intorno aperto U, di y tale che fi(U;) C A;; analogamente
esiste un intorno aperto U, di y tale che f,(U,) C A,. Allora U;NU, & un intorno
aperto di y tale che

fUnU) C fitUinUy) x L(UNU) C A x Ay C A
e quindi f € continua in y. =
La seguente proposizione ¢ di dimostrazione immediata.
6.7 PROPOSIZIONE  Siano Y, X, X, spazi topologici. Un’applicazione g :
X, x X, = Y é continua in un punto (z,,z;) € X, x X, se e solo se per ogni

intorno N di g(z,,z,) €Y esistono un intorno Ny di =z, € X, e un intorno N, di
z, € X, tali che g(N; x N) C N.

La generalizzazione della definizione di prodotto topologico dal caso di due
spazi a quello di un numero finito qualunque ¢ molto semplice.
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Se Xi,...,X,, sono spazi topologici con topologie T,..., T, rispcttivamente,
la topologia prodotto su X, x...x Xp, = X (delle topologie Ti,..., Trn) si definisce
come la topologia che ha per base la famiglia di sottoinsiemi di X

{A/X .. XAm A, €T, i=1,...,m}.

Che questa famiglia ha le proprieta caratteristiche di una base (proposizione 2.2)
si verifica come nel caso m = 2. X, con la topologia prodotto, si chiama prodotto
topologico (o spazio topologico prodotto) degli spazi X,,..., Xp.

La definizione di topologia prodotto su X pud anche darsi in modo cquivalente
per induzione su m > 2, scrivendo

X]X...XXm=X| X(XzX...XXm).

E facile verificare che le due definizioni sono equivalenti. I risultati dimostrati per
il prodotto di due spazi si possono estendere in modo ovvio al caso di un numero
finito qualsiasi di spazi. Ne lasciamo le dimostrazioni al lettore come esercizio.

6.8 Esempi

1. Per ogni n > 2 R", con Ia topologia euclidea, & il prodotto topologico di R
per se stesso n volte. Cio segue dal fatto che la famiglia

{R(a,b):aj <b;, j= l,...,n}

che genera la topologia prodotto, ¢ una base della topologia cuclidea (cfr. esercizio
2.6). Dalla proposizione 6.2 segue che I'n-cubo I" & il prodotto topologico di I
per se stesso n volte.

2. Poiché C =~ R?, il prodotto topologico C™ di C per se stesso n volte (n > 2)
¢ omeomorfo a R™,

~

3. Se X & un sottospazio di R™ e n > m, il prodotto topologico X x R"™™ &
un sottospazio di R™ che si chiama cilindro di base X.
L’esempio elementare del sottospazio Y di R® definito dall’equazione

z%+a:§=1

¢ il caso particolare del cilindro di R’ di base S8' ¢ R? cio¢ in questo caso
Y =S'x R (fig. 6.1).

4. 11 prodotto di n copie della circonferenza S' per se stessa si chiama toro
n-dimensionale, o n-toro, e si denota T". Poiché §' ¢ R*, T" & omeomorfo a un
sottospazio di R™ =R*x ... x R%

Il 2-toro T? ¢ omeomorfo al sottospazio di R*

T = {1, v,y ¥8) " yi +y3 = 1 =93 +yi}.
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L applicazione continua h: R* — R’ definita da
h(yi, ... y8) = (Y1 + 2)y3, (41 +2)ys, 42)

manda T’ omeomorficamente sul sottospazio di R* (vedi fig. 6.2)
T= {(z),z2,23) 1 ( zi+z% — 2P +2l= 1}.

Infatti evidentemente h(T') C T inoltre I’applicazione & : T — R* cosi definita:

/ x Iy
k(xl:$2:z3) = z% + IIJ% - 2; z3, l
2 2
Vi + 23

’ \/a:f+x§
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¢ continua e soddisfa

kT)c T,
hiTl k= ]T
k- hITI = lTI.

Quindi ks e k sono omeomorfismi inversi uno dell’altro.

5. Se n=(0,0,1), s=(0,0,—1), lo spazio 8§?\{n,s} & omeomorfo a S' x R.

Identifichiamo S' x R al cilindro ¥ ¢ R? di equazione z}+z3 = 1 (cfr. esempio
3). Un omeomorfismo h : §°\{n,s} — Y si ottiene per proiezione da 0, ciog
ponendo (vedi fig. 6.3)

h(x) =Y N (semiretta per x di origine 0) =

_ Z) P 3
Vat+a e+ i+l

La verifica che h € un omeomorfismo ¢& lasciata al lettore come esercizio.

\\__,,/ Figura 6.3
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Consideriamo una famiglia qualsiasi {X;}scs di spazi topologici con topologie
Ts, s € S, e il prodotto cartesiano

x=11I Xs={f:S—> U x,:f(s) € X, seS}.
ses seS

SeteSe feX, f(t)e X, si chiama t-esima coordinata di f. L'applicazione
P X — Xy

definita da p:(f) = f(t) si chiama t-esima proiezione.

Definiamo su X una topologia nel modo seguente. Consideriamo la famiglia B
di tutte le intersezioni finite di insiemi p; '(Us), al variare di s€ S e di Us € Ts.
La famiglia B & ovviamente un ricoprimento di X (= p, '(X;) per un qualsiasi
s € 5), e 'intersezione di due qualsiasi elementi di B ¢ ancora un elemento della
famiglia B. Quindi B & base di una topologia T su X che si chiama topologia
prodotto delle topologie Ty, s € §. Con la topologia T, X si chiama spazio
topologico prodotto (o prodotto topologico) della famiglia {X;}scs.

Dalla definizione segue che rispetto alla topologia T tutte le proiezioni sono
continue ¢ che T ¢ la meno fine tra le topologie su X che rendono continue tutte
le ps. Quindi, per la proposizione 6.4 e per la sua generalizzazione al prodotto di
un numero finito qualsiasi di spazi, la definizione di topologia prodotto data ora
coincide con quella data precedentemente nel caso di una famiglia finita di spazi
topologici.

Un caso particolare importante di prodotto topologico si ha quando tutti i fattori
X, coincidono con uno spazio fissato Y. In questo caso

Il x,=v$
ses
¢ I'insieme delle applicazioni di S in Y.
Se ad esempio § = N* (i numeri naturali positivi), si ottiene come prodotto
I’insieme delle successioni di elementi di Y.
Per $ =N ed I=[0,1], il prodotto topologico IN si chiama cubo di Hilbert.
Un altro esempio notevole si ottiene prendendo S = (a,b), un intervallo aperto
di R, ¢ Y = R. In questo caso X = R®? & I'insieme delle funzioni a valori
reali definite in (a,b). La topologia prodotto in R@® si chiama topologia della
convergenza puntuale. Questo nome ¢ dovuto al fatto che una successione di
funzioni {fn},en+ € R®Y ha un limite nella topologia prodotto T se e solo se
per ogni z € (a,b) la successione di numeri reali {f,(z)},cn+ ha un limite. Se
infatti f = nli_p;) fn allora per ogni z € (a,b) ¢ r > 0 deve esistere un n, tale che

per ogni n > n,

Jn €9 ' ((f(@) =7, [(z)+7),
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ciog
[fn(z) = f@)] <,

e quindi f(z)= lim f,(z).
n-—00
Se viceversa per ogni € (a,b) esiste il lim f,(z), allora ponendo
n—00

@ = lim fa(2)

si definisce un elemento f € R@b: scelti Zy,..., Tk € (a,b) e ry,...,rp > 0, siano
ny,...,ng interi positivi tali che per ¢ =1,...,k si abbia

[fu(z;) — f(z5)] <r; per ogni n > n;.
Allora per n > max(n,,...,n;) si ha

Jn € 07 (fl@) =1, fl@)+r)) N Npg (f(@g) — e, flar) +rp)

e questo prova che f= lim f,.
n—00
Diamo ora la generalizzazione di due risultati gia dimostrati nel caso del
prodotto di due spazi.

6.9 PROPOSIZIONE  Sia X = HS X,. Allora:
se.

(a) Per ogni s € S la proiezione ps : X — X5 ¢é aperta.

(b) Un’applicazione g : Y — X di uno spazio Y in X é continua se e solo se
sono continue tutte le composizioni

gs=ps-g:Y - X,.

Dimostrazione

(a) Sia U un aperto di X e s € S. Scelto comunque a € p;(U) sia f € U
tale che ps(f) = a. Poiché U ¢ aperto, esistono s,...,sx € S ed aperti U, C
C Xs,,...,Up C X5, tali che, posto

V=p,'U)N...0p;, ),

si abbia f € V. C U. Ma allora a € p;(V) C ps(U) e

Xs se s {s1,...,8¢}

s(V)={
P Us se s€ {s1,...,5k},

¢ un aperto. Ne segue che a ¢ interno a pg(U), il quale quindi & aperto.
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(b) Se g € continua ¢ ovvio che le composizioni g, sono tutte continue, stante
la continuitd delle p,. Supponiamo viceversa che tutte le g, siano continue. Per
dimostrare che g ¢ continua sara sufficiente dimostrare che, per ogni s € § ed
ogni aperto Us di Xs, g '(p; (Us)) & aperto (perché gli insiemi p, '(Us) formano
una sottobase di X). Ma

g ', 'Us) =(ps-9) "(Us) = g5 ' (Us)

¢ aperto perché g, ¢ continua. =

Esercizi
1. Dimostrare che se X; e X, sono spazi topologici 1’applicazione
g: X, XX, - Xp x X

definita da o(zy,z7) = (z2,z)) € un omeomorfismo.

2. Dimostrare che se X),..., X, sono spazi topologici discreti (risp. banali) il prodotto
topologico X x ... x X, & discreto (risp. banale).

3. Dare un esempio di spazio X tale che X ~ X x X.

4. Sia X uno spazio metrizzabile. Dimostrare che la distanza d: X x X — R ¢ un’appli-
cazione continua rispetto alla topologia prodotto.

5. Siano S| e S, sottoinsiemi degli spazi topologici X e X, rispettivamente. Dimostrare
che nel prodotto topologico X x X, si ha:

Sy XSQ =§| ng,
Int(S) x Sp) = Int(S;) x Int(S>),
Fr(S, x $) = (Fr(S1) x S2) U (§; x Fr(5y)).

6. Dimostrare che se 0 < a < b sono numeri reali, la corona circolare
Cop={z€C:a<|z|<b}CcC

¢ omeomorfa a Ix S'.

7. Dimostrare che R™'\{0} ¢ omeomorfo a S" x R.
(Suggerimento. Usare f:S" xR — R"”\{O} definita da f(x,t) = efx).

8. Dimostrare che se X, Y, Z sono spazi topologici ed X =Y, allora X x Z~Y x Z.

9. Siano X' e X" due spazi topologici metrizzabili con distanze d' e d" rispettivamente.
Dimostrare che il prodotto topologico X' x X" & metrizzabile.
(Suggerimento. Dimostrare che

d((@',z"), (¢, y") = max{d'(«', "), d"(z",y")}

¢ una distanza su X' x X" che induce la topologia prodotto).



72 Esempi f Cap. 2

10. Sia X uno spazio topologico discreto ed Y uno spazio qualsiasi. Dimostrare che la
proiezione

XxY ->Y
& un omeomorfismo locale.

11. Dimostrare che in K* (K un campo infinito) la topologia di Zariski & strettamente pid
fine della topologia prodotto della topologia di Zariski su K per se stessa.

7 Quozienti

Considereremo ora un altro procedimento per costruire spazi topologici, che
¢ quello del passaggio al quoziente. Esso consiste nel costruire un nuovo spazio
topologico a partire da uno spazio dato mediante “incollamenti” o “identificazioni”
ottenuti introducendo una relazione di equivalenza nell’insieme supporto dello
spazio.

Sia X uno spazio topologico, Y un insieme e p : X — Y un’applicazione
suriettiva. La topologia quoziente su Y rispetto a p €

T,={UCY:p '(U) & aperto in X}.
Con la terminologia dell’esercizio 4.4 T, ¢ la topologia indotta da p su Y. E
ovvio che se Y ha la topologia quoziente, p ¢ un’applicazione continua; inoltre
Tp ¢ pil fine di ogni altra topologia che renda p continua. Seguc subito dalla
definizione che un sottoinsieme C di Y & chiuso rispetto a T, se e solo se p~ '(C)
¢ chiuso in X.

Un’applicazione continua e suriettiva p : X — Y di spazi topologici si dice una
identificazione se Y ha la topologia quoziente rispetto a p. Dalla definizione segue
immediatamente che un’identificazione biunivoca & un’applicazione aperta e quindi
& un omeomorfismo. E chiaro che vale anche il viceversa: ogni omeomorfismo &
un’identificazione.

Daremo ora un criterio per verificare se una data applicazione di spazi topologici
¢ un’identificazione. Premettiamo che, data un’applicazione suriettiva di insiemi
[ S — T, un sonoinsieme A di S si dice saturo (rispetto a f) se A= f~'(f(4));
equivalentemente, se ogni s € S tale che f(s) € f(A) appartiene ad A. Se A ¢ un
qualsiasi sottoinsieme di S, la saturazione di A (rispetto a f) & f~'(f(4)), ciog
¢ il pilt piccolo sottoinsieme saturo di S contenente A.

7.1 LEMMA

(a) Sia p: X — Y un’identificazione. C’¢ una corrispondenza biunivoca tra i
sottoinsiemi aperti (risp. chiusi) saturi di X e i sottoinsiemi aperti (risp.
chiusi) di 'Y, che si ottiene associando ad A C X il sottoinsieme p(A) C Y.

(b) Condizione necessaria e sufficiente affinché un’applicagione continua e su-

riettiva p : X — 'Y sia un’identificazione é che p(A) sia aperto in Y per
ogni aperto saturo A di X.
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Dimostrazione

PN

(a) Se A & un aperto saturo, p(4) ¢ aperto, perché p~'(p(A)) = A & aperto in
X c p ¢ un’identificazione. Ogni aperto B di Y si otticne in questo modo perché
B=p(p '(B)) e p '(B) & un aperto saturo. Se poi 4, ¢ A, sono aperti saturi tali
che p(A)) = p(4,), allora A;=p '(p(A1)) =p” ' (p(4)) = Aa.

L’affermazione riguardante i chiusi si ottiene osservando che A C X ¢ un chiuso
saturo se ¢ solo se X\ A & un aperto saturo, e che in tal caso p(A4) = Y\p(X\A).

(b) La necessita ¢ stata appena dimostrata. Supponiamo viceversachep: X — Y
sia continua e suriettiva ¢ che la condizione dell’enunciato sia soddisfatta. Se B
in Y & tale che p~ '(B) sia aperto allora B = p(p' '(B)) ¢ aperto perché p~!(B)
¢ un aperto saturo. Ne segue, tenuto anche conto della continuita di p, che gli
aperti di Y sono i sottoinsiemi B tali che p~ '(B) sia aperto. m

Un esempio di identificazione & dato dall’applicazione (fig. 7.1)
E:[0,1] - §'
definita da
E(a) = (cos(2ra), sinra)) (= €™ se si considera S' ¢ C)
E ¢ continua e suricttiva. Un aperto A C I € saturo precisamente se non

contiene né 0 né 1 oppure se li contiene entrambi. Nel primo caso A ¢ unione
di intervalli aperti contenuti in I ed E(A) & unione dei corrispondenti archi aperti

N

di S', quindi & aperto; nel secondo caso A & unione di intervalli aperti contenuti

o

0 1 EQ=EM=1

Figura 7.1
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o

inTed [0,79U( —r1] per qualche r > 0. Anche in questo caso E(A)
unione di archi aperti e quindi & aperto. Dal lemma precedentc segue che E
un’identificazione.

Si noti che la restrizione di E all’intervallo (0, 1] & continua e biunivoca ma
non & un omeomorfismo, perché non ¢ un’identificazione: infatti A = (1/2,1] ¢

N

un aperto saturo di (0,1], ma E(A) non & aperto in S'.

o’

Se in un insieme X & definita una relazione di equivalenza p possiamo con-
siderare I’insieme quoziente X/p i cui clementi sono le classi di p-equivalenza.
Chiameremo 1’applicazione suriettiva p : X — X/p, che a ogni z € X associa la
sua classe di equivalenza, proiezione naturale (o proiezione canonica). Un sot-
toinsieme S di X si dira saturo rispetto a p (0 p-saturo) se & saturo rispetto a p,
cioe se contiene ’intera classe di equivalenza di ogni suo elemento.

Supponiamo che I'insieme X su cui & definita la relazione di equivalenza p
abbia una struttura di spazio topologico. X/p, con la topologia quoziente rispetto
alla proiczione canonica p si chiama spazio quoziente di X rispetto a p.

Si osservi che ogni applicazione suriettiva di insiemi f: X — Y pud vedersi
come la proiezione naturale rispetto a una opportuna relazione di equivalenza.
Infatti si ha una biezione Y — X/p(f), dove p(f) & la relazione di equivalenza
su X cosi definita:

z1p()zy & [(z1) = f(z2).

7.2 PROPOSIZIONE  Supponiamo che f: X —Y e g:Y — Z siano identifica-
zioni. Allora g- f : X — Z & un’identificazione.

Dimostrazione. Chiaramente g- f & continua e suriettiva. Se A C X & un aperto
saturo rispetto a g- f allora A & saturo rispetto a f ¢ quindi f(A) & aperto in Y.
Poiché f(A) ¢ anche saturo rispetto a g, g(f(A)) = (g- f)(A) & aperto in Z; quindi
g - f ¢ un’identificazione per il lemma 7.1. =

7.3 PROPOSIZIONE ~ Sia p: X — Y un’applicazione continua e suriettiva. Se p
é aperta oppure chiusa p é un’identificazione.

Dimostrazione. Se p ¢ aperta allora in particolare per ogni aperto saturo A C X
p(A) ¢ aperto; quindi p ¢ un’identificazione per il lemma 7.1.

Se p ¢ chiusa e A ¢ un aperto saturo di X, allora p(A) = Y\p(X\A) ¢ aperto;
la conclusione segue ancora dal lemma 7.1. = '

Dalle proposizioni 7.3 ¢ 6.9 segue che, se X = Hq X, ¢ il prodotto topologico
SEL

di una famiglia {X,},cs di spazi topologici, le proiezioni ps; : X — X, sono
identificazioni. E facile dare esempi di identificazioni che non sono né aperte né
chiuse (cfr. esempio 7.6(5)).
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7.4 PROPOSIZIONE  Sia p: X — Y un’identificazione ¢ Z uno spazio topolo-
gico. Un’applicazione g :' Y — Z ¢ continua se e solo se g-p: X — Z é continua.

s\

Inoltre g & un omeomorfismo se e solo se é biettiva e g -p e un’identificazione.
g . g-p

Dimostrazione. E ovvio che g-p € continua se g lo €. Supponiamo viceversa
che g - p sia continua, e sia U un aperto di Z. Allora

p (g ' U)=(g-p) (V)

¢ un aperto di X e quindi g~ '(U) & aperto in Y perché p ¢ un’identificazione.
Quindi g & continua.

Se g ¢ biunivoca e g - p & un’identificazione allora g ¢ continua; inoltre per
ogni aperto A di Y

9(A)=(g-p)p '(4)
¢ aperto perché p '(A) & un aperto saturo di X; quindi g & anche aperta, ciog &

un omeomorfismo. Il viceversa € ovvio. =

Se p € una relazione di equivalenza in un insieme X ¢ Z ¢ un insieme,
un’applicazione G : X — Z si dice compatibile con p se G(z;) = G(z,) ogni volta
che z,pz,. Il seguente corollario ¢ immediato.

7.5 COROLLARIO  Se p & una relazione di equivalenza nello spazio topologico
X e Z ¢ uno spazio topologico, sussiste una corrispondenza biunivoca

applicazioni continue
G:X—-2Z

{ applicazioni continue }
=
compatibili con p

9:X/p— 2
data da
g—g-p
dove p: X — X/p e la proiezione naturale, e la cui inversa é
Gy — G,
dove

Gi(p(z)) = G(z) per ogni p(z) € X/p.

7.6 Esempi
l.Sen>mel<i<...<ip<mn, la proiczione
pilz"'a":m : Rn - Rm

¢ un’identificazione perché & suriettiva, continua e aperta.
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2. Lidentificazione E : [0,1] — S' considerata a pagina 73 ¢ la restrizione
dell’applicazione continua

E:R-S!
E(a) = ™2,

Anche quest’applicazione ¢ un’identificazione perché, come ¢ facile verificare, &
aperta. E anche facile vedere che E ¢ un omeomorfismo locale.

3. Sia X uno spazio topologico e S un suo sottoinsieme. Denotiamo con pg
la rclazione di equivalenza in X cosi definita:

Z1psTy & T = x2 Oppure z,, z, € S.

Le classi di equivalenza sono S e i punti di X\S. Per questo si dice che lo spazio
quoziente X/pg € lo spazio ottenuto da X identificando S a un punto.

4. Un caso particolare dell’esempio 3 si ha prendendo X =[0, 1], S={0,1}; in
questo caso X/pg ~ S', e ’'omeomorfismo ¢ indotto dall’identificazione E : I — S
considerata prima.

Pi in generale si prenda X = D" e § = S"7'. Allora lo spazio X/pg &
omeomorfo a S™.

Diamo la dimostrazione nel caso m = 2, costruendo un’identificazione p :
D’ — §? a cui sia associata la relazione di equivalenza pg (ciog pgi = p(p)).
L’applicazione p € definita nel modo seguente:

p(u,v)= (Zu\/l —u? — 2, 20V 1 — w2 — 02, 2(u? + v?) — 1) , (u,v) € D

E facile verificarc che p & suriettiva, che p '((0,0,1)) =S' e che la restrizione
Ppns' DA\S' — S%\{(0,0, 1)}

¢ bicttiva. Chiaramentc p € continua. La verifica che p & un’identificazione sara
facile dopo che I’avremo interpretata geometricamente.
Sia

F={(z),2,3) g} +2i+(z;— 1)’ =1}n{xeR :z; < 1}
Pemisfero inferiore della sfera di centro (0,0, 1) e raggio 1, e
2= {(z1, 32, 23) : T2+ 22+ (23 — 1/2)7 = 1/4}
la sfera di centro (0,0,1/2) e raggio 1/2 (vedi fig. 7.2).

. 2 o . . .
Denotiamo con ¢ : F' — R la restrizione a F* della proiezione p, ; : R* - R% ¢
induce un omeomorfismo di F' su D? che verra denotato con lo stesso simbolo.
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Figura 7.2

Sia n=(0,0, 1) e definiamo un’applicazione
wiF — 2
nel modo seguente:
n, se ;=1
wix) = { (E\{n}) Nr(x,n), se z3#1

dove r(x,n) denota la retta passante per X = (z,,22,23) € F ¢ per n. Sia infine
r: 2 — S Pomeomorfismo

T(SI 5 82, 53) = (231 s 232: 2(33 - ]/2))
Allora ’applicazione p & la composizione
p=r w £

(la verifica & un esercizio). Poiché 7 e €' sono omeomorfismi, e quindi identifi-
cazioni, per verificare che p & un’identificazione sara sufficiente verificarc che w
lo & '

Poniamo K =w™'(n) e sia A un aperto saturo di F. Poiché

w|F\K . F\K - z\{n}

¢ un omeomorfismo, se AN K =§ w(A) & aperto in z\{n} e quindi in 2. Se
invece ANK #0, allora K C A perché A ¢ saturo e K ¢ una classe di equivalenza.
Ma allora A\K ¢ aperto e w(A\K) € ancora aperto per quel che abbiamo appena
detto. Per verificare che

W(A) = w(A\K) U {n}
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¢ aperto basta verificare che n ¢ interno a w(A). Poiché A ¢ aperto e contiene K
esiste r > O tale che A contenga

Fn{(z),z2,z3) 23> 1 -1}

denotiamo con F, quest’insieme. Allora w(A) contiene w(F,), che & un disco
sferico aperto centrato in n; ne segue l’asserto (vedi fig. 7.3).

In gencrale per ogni n > 2 si definisce un’identificazione p : D" — S™ che
induce un omeomorfismo D" /pS"“ ~ S" ponendo

La verifica ¢ simile a quella fatta nel caso n =2.

5. Un’identificazione non ¢ in generale né aperta né chiusa. Un esempio ¢ dato
dallo spazio Y ottenuto da R identificando ad un punto Vintervallo [0, 1) e dalla
proiezione canonica. p: R — Y. 1l punto p([0, 1)) non ¢ né aperto né chiuso e

p((0, 1)) = p((0, 1)) = p((0, 1/2)).

6. In I? sia k la relazione di equivalenza che identifica il punto (0,t) con il
punto (1,¢) per ogni t € I, e lascia ogni altro punto equivalente solo a se stesso.
Il quoziente K =I*/k & omeomorfo a S' x I.

Per verificarlo identifichiamo S8' x I al sottospazio di R’

S'xI={(z),22,23): 2l +23=1, 0< 23 < 1}
e definiamo un’applicazione

FiP oS xI

Figura 7.3
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ponendo
f(s,t) = (cos(2ws), sin(2ws), t).

f & chiaramente continua e suriettiva, ¢ p(f) = k.
Per verificare che f & un’identificazione consideriamo un aperto saturo A C I°.
Sia
S={0,1} xI=({0} xDHu {1} xD.
La restrizione
fill\s . 12\5 —-S'xI
definisce un omeomorfismo di I°\ S sulla sua immagine (perché f & invertibile su
f(I*\S)) che & aperta in ' x I. Quindi s¢ A C I’'\S f(A) & aperto (cfr. fig. 7.4).
Se invece esiste x € AN S, allora x = (0,t) oppure x = (1,t) per qualche t eI e

la classe di equivalenza di x ¢ {(0,¢),(1,t)}. Poiché A ¢ un aperto saturo, esiste
r > 0 tale che

U =(0,r)x @t —rt+r)U(d -7 1] x{E—-rt+71)) C A

A
T
_ ~ S
733 s'xl
] [] f [ﬁ/
P T L7 .
*
3

T
C__,) Figura 7.4
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Ma allora f(U,) ¢ un intorno di f(x) contenuto in f(A), cio¢ f(x) ¢ interno a
f(A). Questo prova che

f(A)=f(ANS)U f(A\ANS)
¢ aperto perché f(A\(ANS)) ¢ aperto e ogni punto di f(ANS) ¢ interno a f(A).
Quindi f & un’identificazione.

7. Ancora in I? consideriamo la relazione di equivalenza u che identifica il
punto (0,t) con il punto (1, 1 —-¢) per ogni ¢ € I e lascia ogni altro punto equivalente
solo a sc stesso. Il quoziente M =1°/p si chiama nastro di Moebius (fig. 7.5).

Con una verifica simile a quella dell’esempio 6 si dimostra che I’applicazione
g : P = R’ definita da

g(s,t) = (cos(2ms) + (t — 1/2)sin(ws) cos(2ws), sin(2ws)+

+(t — 1/2)sin(ws) sin(2xs), (¢t — 1/2)cos(xs))

induce un’inclusione continua di M in R®. L’aperto M° = di M si

Ix(0,1)
. ©
chiama nastro di Moebius aperto.

8. Sia 7 la relazione di equivalenza in I’ che identifica il punto (0,t) con il
punto (1,¢) per ogni t € I, il punto (s,0) con (s, 1) per ogni s € I, e lascia ogni
altro punto equivalente solo a se stesso. Il quoziente I?/r & omeomorfo al toro
T? =8' x S'. L’omeomorfismo & indotto dall’applicazione h : I*> — R’ definita da

h(s,t) = (2 + cos(2ws)) cos(2nt), (2 + cos(2ws))sin(2xt), sin(2ws)).
la cui immagine & T. La verifica & simile a quella dell’esempio 6.

9. Un gruppo topologico ¢ un insieme G che & contemporaneamente un gruppo
¢ uno spazio topelogico in modo che I’operazione gruppale e la struttura topologica

Figura 7.5
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siano legate dalla seguente condizione:

1

I’applicazione G x G — G : (z,y) — zy ° & continua.

R e C, con I'operazione di somma e la topologia euclidea, sono gruppi topologici.
Ogni gruppo astratto munito della topologia discreta ¢ un gruppo topologico; lo
¢ anche se munito della topologia banale.

GL,(R), SL,(R), O(n), SO(n), con la topologia di sottospazi di an, sono
gruppi topologici. Lo stesso & vero per i gruppi di matrici complesse GL,(C),
SL,(C), U(n), SU(n), con la topologia indotta da C"Z. Pill in generale, ogni
sottogruppo di un gruppo topologico (e quindi ogni sottogruppo di GL,(R) e di
GL,(C), ciog ogni gruppo lineare), con la topologia di sottospazio, & un gruppo
topologico.

Se H & un sottogruppo del gruppo topologico G, I'insieme G/H delle classi
laterali destre & uno spazio topologico con la topologia quoziente; ¢ facile verificare
che la proiezione p: G — G/H ¢ aperta. Lo stesso vale per I'insieme delle classi
laterali sinistre. Se il sottogruppo H & normale, G/H ¢ un gruppo topologico.

Ad esempio la circonferenza S' ~ R/Z ¢ un gruppo topologico; analogamente
il toro T =~ R"/Z".

10. Sia X un insieme e G un gruppo. Diremo che G agisce, o opera, su X
(a sinistra), oppure che X & un G-insieme (sinistro), se ¢ definita un’applicazione

a:GxX—-X

tale che, denotata con gz € X I'immagine a(g,z) di (g,z) € G x X, si abbia:
(99')z = g(g'z), per ognig, ¢'€G, z€ X,
er =1, per ogni z € X,

dove e ¢ I'identita di G. L’applicazione a si dice un’azione (sinistra) di G su X.
Dalla definizione segue che per ogni g € G I'applicazione indotta g : X — X,
g(z) = gz, € una biiezione.

L’azione di G su X si dice libera se per ogni g#e e per ogni z € X si ha
gr#z.

a si dice transitiva se, dati comunque z, 2’ € X, esistec g € G tale che gz = 1.

Se z € X, Vorbita di z ¢ Gz = {gz € X : g € G}; lo stabilizzatore di z ¢ il
sottogruppo G, = {g € G : gz = z}.

Per definizione G agisce liberamente (risp. transitivamente) su X se e solo se
Gy = {e} per ogni z € X (risp. se e solo se Gz = X per ogni z € X).

Ogni gruppo G agisce transitivamente per moltiplicazione sinistra sull’insieme
G/H delle classi laterali sinistre rispetto a un qualsiasi sottogruppo H:

G % G/H — G/H
(g, h) — gh.
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In particolare G agisce transitivamente su se stesso per moltiplicazione a sinistra.

Se X ¢ uno spazio topologico, ogni sottogruppo di Omeo(X) opera su X come
un gruppo di trasformazioni di X.

Se un gruppo G agisce su uno spazio topologico X in modo che per ogni
g € G I'applicazione g : X — X sia un omeomorfismo, X si dice un G-spazio. Se
I’azione ¢ transitiva, X si dice un G-spazio omogeneo; se ’azione ¢ libera, X ¢
detto G-spazio principale.

R™ & esso stesso un gruppo topologico. Un R™-spazio principale omogeneo &
uno spazio affine n-dimensionale.

Se X & un G-insieme, due distinte G-orbite sono disgiunte; quindi G definisce
una relazione di equivalenza in X in cui le G-orbite coincidono con le classi di
equivalenza; se X ¢ uno spazio topologico lo spazio quoziente si denota X/G e
si chiama spazio quoziente di X rispetto all’azione di G. Si verifica facilmente
che la proiezione naturale p: X — X/G ¢ aperta.

Infatti la saturazione rispetto a p di un sottoinsieme A di X ¢ Uc gA;sc A ¢
9€G
aperto quest’insieme ¢& aperto.

[1. Sia n > 0; in R™"\ {0} consideriamo la seguente relazione di cquivalenza ~:
X~y & esiste A€ R, A#0, tale che y; = Az, 1=0,...,n.

Quindi due punti sono equivalenti se e solo se appartengono alla stessa retta per
origine. Lo spazio quoziente R™'\{0}/ ~ si chiama spazio proiettivo reale di
dimensione n, e si denota con P"(R), o sempliccmente P*. P' ¢ P? si chiamano
rispettivamente retta proiettiva reale e piano proiettivo reale. P consiste di un
solo punto.

Per definizione P" pud essere identificato con l'insieme delle rettc di R™"
passanti per I'origine; un insieme saturo & un sottoinsieme di R™'\{0} che &
unione di rette passanti per 1’origine, private di 0. Denoteremo con

©: R™\{0} — P"

la proiczione canonica. Se x = (zy,..., ), denoteremo con [z, ...,z,] il punto
n(x) € P"; X = (z0,...,2,) si dird una (n+ [)-upla di coordinate omogenee del
punto w(x). E chiaro dalla definizione che le coordinate omogence di un punto
di P® sono individuate dal punto stesso solo a meno di un comune fattore di
proporzionalitd non nullo.

Per ogni i=0,...,n sia

U; = {lzo,...,zn} € P" : z;#0}.

Evidentemente U, ..., U, sono aperti in P™ ¢ costituiscono un ricoprimento (ogni
: H o

punto di P* ha una almeno delle sue coordinate omogenee diversa da zero). Se
si pone

R =x '"(U;) = {(z0,...,zn) € R"'\{0} : z; #0},
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la restrizione di 7
T R?H — U,'
¢ un’identificazione (cfr. esercizio 4). Da cio segue che I’applicazione continua

¢RI - R

essendo compatibile con 7, induce un’applicazione continua
["27g Ui — R™,

La ¢; ¢ biunivoca; la sua inversa ¢

ed & anch’essa continua, perché ¢ la composizione dell’inclusione continua
Rn . Rn+l\{0}
(yU)"'zyi—I:yi+l:"':y‘n) = [y()t""yi' s ]3yi+la"'=ynJ

con 7;. Quindi ognuno degli aperti U; C P* & omeomorfo a R". Il complementare
H; =P™"\U; si chiama iperpiano all’infinito (o improprio) rispetto a U;. E facile
verificare che H; ~ P"~' e che U; & denso in P".

12. P*(R) pud anche essere definito nel modo seguente. In S" si consideri la
relazione di equivalenza cosi definita:

X~y &y=tx,

che identifica ogni punto x € S" con il suo antipodale —x. Si noti che S" C
R™'\{0} e che la relazione ~ su S" & la restrizione della relazione ~ su
Rn+l\{0}
Lo spazio quoziente S"/ ~ ¢ omeomorfo a P". Per dimostrarlo osserviamo
preliminarmente che la proiezione naturale v :S™ — 8"/ ~ ¢ aperta e chiusa.
Infatti, se A ¢ S™ ¢ aperto, ’insieme saturato di A &

7 ((A)) = AU (- 4),

dove —A ={-x:x€ A} ¢ I'immagine di A attraverso I’omeomorfismo S§" — S"

che manda x — —x, e quindi & aperto. Allora 7(4) = 7(AU(—A)) ¢ 'immagine di

un aperto saturo e quindi ¢ aperto. Nello stesso modo si dimostra che 7 ¢ chiusa.
Definiamo un’applicazione continua

i R™\{0} - S
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ponendo
Ax) = %/ x|l
La composizione
p=1 R R*™N\{0} - 8"/ ~
induce un’applicazione continua e biunivoca
Pt — S/~

Quest’applicazione & un omeomorfismo se & aperta. Sia A C P" un aperto.
Allora

A(A) = p(r” '(A) = (i~ (A) = (S N '(A))

¢ aperto in S™/ ~ perché r & aperta. Quindi @ & un omeomorfismo.

13. P' ¢ omeomorfo a S'. Per definire un omeomorfismo consideriamo la
circonferenza S ¢ R* di centro (0, —1/2) e raggio 1/2. Definiamo un’applicazione
continua ~ : S' — S ponendo

se x=(£1,0),
(x) = .
(S\{0}) Nr(x,0) altrimenti,

(dove r(x,0) denota come al solito la retta contenente x ¢ 0; vedi fig. 7.6).
Analiticamente

(%) = (~ziza/||X], —a3/[IX]).
Chiaramente ~ ¢ continua ed aperta. Poiché ~(x) = y(y) se ¢ solo se y = +x,
~ induce un omeomorfismo P' — §. Ma S = S', quindi P' ~ §'.

14. Sia n > 0 un intero. E possibile definire lo spazio proiettivo complesso
di dimensione n, denotato P*(C), in modo simile a come ¢ stato definito P*(R),
come il quoziente di C""'\{0} rispetto alla relazione di equivalenza ~

x~y«esiste A€ C, A#0, tale che y; = Az;, i1=0,...,n

(dove, come nel caso reale, C"*'\{0} si intende munito della topologia euclidea
indotta da C™).

P'(C) e P*(C) si dicono retta proiettiva complessa e piano proiettivo complesso
rispettivamente. Denoteremo con

m: C™'\{0} — P*(C)
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~X

Figura 7.6

la proiczione naturale; per ogni z = (2,...,2,) € C”*'\{O}, il punte w(z) € P*(C)
si denotera anche |[zg,...,2,], € (2¢,...,2y,) si dird una (n+ 1)-upla di coordinate
omogenee di w(z).

Ponendo

Ui={{'2() ..... ZnJGP"(C):ZZ"T‘O} Z.ZO,...,’I'L,

s 3

si ottiene un ricoprimento aperto {U, ..., U,} di P*(C) in cui ogni U; ¢ omeomorfo
a C" tramite I’omeomorfismo

Il complementare
H; = P"(C)\U;

si chiama iperpiano all’infinito (o improprio) rispetto a Uj;.

Le dimostrazioni di questi fatti si estendono parola per parola dal caso rcale a
quello complesso.

E facile dimostrare che P'(C) & omeomorfo a S%; esso vienc spesso chiamato
sfera di Riemann (cfr. Sernesi 1989, p. 306).

Esercizi
1. Sia p la relazione di equivalenza su R cosi definita:

zpy « |z = |y|.

Dimostrare che R/p & omeomorfo alla semiretta chiusa [0, +oo).
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Siano p|, pp e p le seguenti relazioni di equivalenza in R?:
(z1,2)01(y1,92) & 2 =2 € |z1] = |y1].
(21, 22)02(y1,92) & 1 =91 € |22] = [yl
(@1, 22)p(y1,y2) & || = lyil, |o2] = |y

. 2 2 . s .
Dimostrare che R“/p; ¢ R*/p, sono entrambi omeomorfi a un semipiano chiuso, e
che R?/p & omeomorfo al quadrante chiuso

{(z1,22) 12, >0, 2, >0} C R2.

Dimostrare la seguente proposizionc:

Siano X, e X, spazi topologici con relazioni di equivalenza p, e py rispettivamente.
Supponiamo che le proiezioni canoniche p; : X; — X;/p;, ¢ = 1,2, siano entrambe
aperte>Nello spazio topologico prodotto X = X x X sia p la relazione di equivalenza

(z1,22)p(y1,92) & T1p1Y1, T20292
e sia p: X — X/p la proiezione naturale. Allora I’applicazione
X > Xi/px X/
i(@1,22) = (p1(21), pa(22)
induce un omecomorfismo
q: X/p— X\/;m x Xa/pa.
Sia f : X — Y un’identificazione, B C Y un sottospazio aperto (risp. chiuso) e
A= f Y(B)c X. Dimostrare che 'applicazione
g:A—- B

indotta da f & un’identificazione.

Sia f: X — Y un’identificazione, A C X un sottospazio, B=f(A)CY e g: A— B
I’applicazione indotta da f. Consideriamo in B le due topologic

Ty = topologia indotta da Y;
T>» = topologia quoziente rispetto a g.

Dimostrare che T) < T» e dare un esempio in cui T;#7,. Dimostrare che sc 4 ¢
aperto e f & aperta, oppure A ¢ chiuso ¢ f & chiusa, allora T = Ta.
In IxS' si consideri la relazione di equivalenza ~:
(t,s) ~(#,s") & (t,5)=(t',s') oppure
t=t'=0 oppure
t=t'=1.

Dimostrare che Ix 8'/ ~ & omeomorfo a $°.
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7. Sia p: X — Y un’identificazione. Dimostrare che se D & un sottoinsicme denso di X,
p(D) & denso in Y.

8. Interpretare P"(R) come spazio quoziente rispetto a un’azione di R* := R\{0} su
Rn+l\{0}.

9. Dimostrare che uno spazio quoziente di uno spazio separabile ¢ separabilc.

10. Dimostrare che P"(R) & omeomorfo al quoziente della semisfera S} rispetto alla
relazione di equivalenza che identifica i punti dell’equatore {x € 8" : z,; = 0} ~ 8" !
che sono diametralmente opposti.

(Suggerimento. Si utilizzi I’esercizio 5 ¢ il fatto che la proiezione S™ — P™ ¢ chiusa).

11. Dimostrare che se G & un gruppo topologico ¢ H & un sottogruppo discreto di G,
la proiezione G — G/H & un omeomorfismo locale (in particolare R® — T™ & un
omeomorfismo locale).

12. Sia [ : X — Y un’identificazione. Dimostrare che se X soddisfa il primo (risp. il
secondo) assioma di numerabilita allora Y soddisfa il primo (risp. il secondo) assioma
di numerabilita.



Capitolo 3

Proprieta topologiche

8 Proprieta di separazione

In questo paragrafo studieremo una classe di proprieta topologiche, dette pro-
prieta di separazione.

Uno spazio di Hausdorff (o spazio T») € uno spazio topologico X che soddisfa
i} seguente assioma:

ASSIOMA DI SEPARAZIONE DI HAUSDORFF  Dati comunque u, v € X distinti,
esistono due aperti U, V di X tali che ue U, veV e UNV =4

Gli esempi pid importanti di spazi di Hausdorff sono gli spazi metrizzabili (in
particolare R™): se u#v sono punti dello spazio metrizzabile X, allora d(u,v) =
=r>0e gliaperti U = Dr/B(u), V = D,/3(v) soddisfano ovviamente v € U,
v e V; inoltre U NV = 0. Infatti, se per assurdo esistesse w € U NV, si avrebbe

r=d(u,v) < du,w) +dw,v) <r/3+r/3=2r/3.

Ogni spazio discreto ¢ di Hausdorff; uno spazio topologico banale con almeno
due punti non & di Hausdorff. Ogni insieme infinito con la topologia cofinita non
¢ uno spazio di Hausdorff.

8.1 PROPOSIZIONE  Ogni sottospazio Y di uno spazio di Hausdorff X é di
Hausdorff.

Dimostrazione. Se u, v sono due punti distinti di Y, esistono aperti U, V' di
XwlicheueU,veVelUNV=0 AlloralU =UNY, V' =V NY sono aperti
diYwulicheueU,veV,eUNV =0.u

8.2 PROPOSIZIONE Il prodotto topologico X di una famiglia {Xs}ses di spazi
di Hausdorff & uno spazio di Hausdorff.
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Dimostrazione. Siano u, v due punti distinti qualsiasi di X. Poiché u#v, esiste
un indice s € S tale che u(s)#uv(s) in Xs; e poiché X, ¢ di Hausdorff, esistono
aperti Us, Vs in X tali che u(s) € Us, v(s) € Vs, e Us NV, = 0.

Siano U e V gli aperti di X definiti da

U=p,'(Us)={z€ X :2(s) €Us};
V=p,/'(Vi)={z€X:x(s)€Vs}.

Chiaramente u € U, veV ¢ UNV = . Quindi X ¢ uno spazio di Hausdorff. =

La seguente proposizione descrive una proprieta degli spazi T, che abbiamo
gia osservato negli spazi metrizzabili.

8.3 PROPOSIZIONE  In uno spazio di Hausdorff X ogni punto & un sottoinsieme
chiuso.

Dimostrazione. Sia w € X. Per ogni v € X, v#u, esistono aperti U, V tali che
wueU,veV ed UNV =0, in particolare v € V C X\{u}. Dunque X\{u} ¢ un
intorno di v, e quindi ¢ aperto, cio¢ u ¢ chiuso. =

Uno spazio topologico i cui punti sono sottoinsiemi chiusi si dice spazio T).
La proposizione 8.3 afferma che ogni spazio di Hausdorff ¢ anche uno spazio 7.
Il viceversa non & vero, ciog¢ ci sono spazi Ty che non sono T,. Un esempio ¢
dato dalla topologia cofinita in un insieme infinito. Uno spazio banale con almeno

due punti € un esempio di spazio topologico che non ¢ uno spazio 7.

8.4 PROPOSIZIONE  Uno spazio topologico X e uno spazio T\, se e solo se
per ogni coppia di punti distinti u, v € X esistono aperti U, V tali che u € U,
vgU,eveV, ugV.

Dimostrazione. Supponiamo che X sia uno spazio T). Presi u, v € X distinti,
i sottoinsiemi U = X\{v}, V = X\{u} sono aperti e soddisfano le condizioni
richieste.

Supponiamo viceversa che X soddisfi le condizioni dell’enunciato, e sia u € X
un punto qualsiasi. Per ogni v € X\{u} esiste per ipotesi un aperto V tale che
ugV,veV; quindi v €V C X\{u}, cioe X\{u} & un intorno di v. Poiché cio
¢ vero per ogni v € X\{u}, X\{u} & aperto, cioe {u} & chiuso. =

Le proprieta delle successioni in uno spazio T} o in uno spazio di Hausdorfl
sono simili a quelle delle successioni negli spazi metrizzabili.

8.5 PROPOSIZIONE  Se una successione in uno spazio di Hausdorff X converge,
il suo limite ¢ unico.
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Dimostrazione. Sia {z, :n =1,2,...} una successione in X, e supponiamo per
assurdo che z, 2’ € X siano distinti e tali che
z= lim z, =1 [8.1]
n—00
Poiché X ¢ di Hausdorff esistono U, V C X aperti tali che z € U, 2’ €V,
UNV =@. Per la prima delle [8.1] esiste N > 0 tale che z,, € U per ogni n > N.

D’altra parte la scconda delle [8.1] implica I'esistenza di N’ > 0 tale che z, € V
per ogni n > N', ¢ questa & una contraddizione. =

La proposizione 8.5 si applica in particolare agli spazi metrizzabili, ma non
¢ vera per gli spazi T). Infatti se ad esempio X & uno spazio infinito con la
topologia cofinita, allora X ¢ T, ed ogni sua successione costituita da infiniti
punti converge a ogni punto dello spazio.

Una proprietd abbastanza sottile riguarda i punti di accumulazione di una
successione (cfr. esempio 3.5(1)). Il seguente risultato € utile in molti casi.

8.6 PROPOSIZIONE Sia {z, : n = 1,2,...} una successione in uno spazio
T\ soddisfacente il primo assioma di numerabilita, e sia z € X un punto di
accumulazione di {zn}. Allora {z,} possiede una sottosuccessione convergente
ad z.

Dimostrazione. Poiché X ¢ T, ogni sottoinsieme finito di {z,} & discreto e
quindi z & punto di accumulazione di {z, : n > N} per ogni N > 0. Sia {Up}g>
un sistema fondamentale di intorni di z tale che Uy, C U, per ogni k > 1.
Poiché = € D({z,}) esiste n, > 0 tale che z,, € U,. Poiché z € D({z, : n > ni})
esiste ny > n, tale che z,, € U,. Procedendo induttivamente possiamo trovare una
soltosuccessione {z,, : k = 1,2,...} tale che z,, € Uy per ogni k > 1. E chiaro
che z = lim z,,. =

k—o00

La proposizione precedente si applica agli spazi metrizzabili e agli spazi T\ a
base numerabile.

Uno spazio regolare € uno spazio topologico X che soddisfa le seguenti
condizioni:

(R)) X ¢ uno spazio T).
(R>) Per ogni sottoinsieme chiuso F in X e ogni z € X\F esistono aperti U, V
tali che z €U, FCV e UNV =0

8.7 PROPOSIZIONE  Ogni spazio regolare é di Hausdorff.

Dimostrazione. Sia X uno spazio regolare e u, v € X due punti distinti. Poiché
X ¢ uno spazio T, {v} ¢ un insieme chiuso. Prendendo F = {v}, z = u, la
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proprieta (R,) assicura I'esistenza di aperti disgiunti U, V tali che u e U, v eV
¢ quindi X & di Hausdorff. m

Uno spazio normale & uno spazio topologico X che soddisfa alle seguenti
condizioni:
(N)) X é uno spazio Ty;

(IV,) per ogni coppia di sottoinsiemi chiusi e disgiunti Iy, I, di X esistono aperti
U, U, tali che F\ C U, F,cU, U, NnU, =0

8.8 PROPOSIZIONE  Ogni spazio normale é regolare, e quindi di Hausdorff.
Dimostrazione. Esercizio. =

Esistono spazi regolari che non sono normali e spazi di Hausdorff che non sono
regolari (cfr. esempi 8.11(1), (3)). Ogni spazio discreto ¢ normale. Un’importante

N

classe di spazi normali ¢ costituita dagli spazi metrizzabili.
8.9 TEOREMA  Ogni spazio metrizzabile X é normale.

Dimostrazione. Abbiamo gia osservato che X € uno spazio di Hausdorff e
quindi ¢ uno spazio T.

Sia d : Xjx X — R la distanza che induce la topologia di X. Per ogni
sottoinsieme non vuoto F C X, definiamo una funzione

dp: X - R
ponendo

dp(z) = ;2; {d(z,y)}.

Per verificare la proprieta (NV,) consideriamo due sottoinsiemi chiusi e disgiunti
F\, F> di X, che possiamo supporre entrambi non vuoti (la condizione (N,) ¢ veri-
ficata banalmente se almeno uno dei due insiemi F| ed F> & vuoto). Consideriamo
i sottoinsiemi

U ={z€X :dr(z) - dp(z) <0},
U,={zxe€ X :dp(z)—dp(z) >0}

Chiaramente U, N U, = 0.

Sia z € F. Allora dp,(z) = 0. D’altra parte = ¢ F> e quindi, poiché F, ¢ chiuso,
esiste r > O tale che d(z,y) > r per ogni y € I>; ne scgue che dp(z) > 0, e
quindi che

dp (z) — dp(z) = —dp(z) <0,

ciog z € U,. Quindi Fy c U,. In modo simile si dimostra che F, C U,.
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Facciamo vedere che U, € un insieme aperto. Sia z; € U, e poniamo
r=dp(z) — dp ().

Si ha r > 0; faremo vedere che D, /3(z1) € Ur, e questo provera che U, ¢ aperto.
Sia dunque z € D, /3(z1); dobbiamo far vederc che

dr,(z) — dp,(z) < 0.
Si ha
dr(z) — dp(z) =
=[dr (z) — dp(z)] +[dp (z)) — dp(2)] +[dp(2)) — dR(2)] = (8.2
=[dp(2) — di (z1)] - r + [dp(21) — dpy(2)].
Inoltre per ogni y € F| si ha
d(z,y) < d(z,z)) +d(z),y) <r/3+d(z,y)
¢ quindi
dr () = inf {da, )} < v/3+ inf {d(or, )} =r/3+dp @),
cioe
dr,(z) — dp(z)) < r/3.
Analogamente si trova che per ogni y € I
d(z\,y) < d(z),z) +d(z,y) <r/3+d(z,y)
e quindi che
dp(@) = inf {dz,y)} <r/3+ Jnf {d(z. )} =r/3+dr(2)
cioe
dp,(21) — dF,(z) < 1/3.
Sostituendo nelle [8.2] si trova
dp(z) —dp(z)<r/3-r+7r/3<0

¢ I'asserto € dimostrato. In modo simile si dimostra che U, ¢ aperto. =
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Le proprieta di separazione che uno spazio X pud avere sono collegate all’e-
sistenza di applicazioni continue su X a valori reali.

Ad esempio su uno spazio topologico banale (che non soddisfa alcuna delle
proprietd di separazione considerate sopra) le uniche funzioni continue a valori
reali sono le costanti.

Dr’altra parte, se uno spazio X ha la proprieta che per ogni coppia di punti
distinti u, v € X esiste una funzione continua f : X — R tale che f(u)# f(v) (ciog¢
una funzione continua che “separa u da v”) allora X ¢ uno spazio di HausdorfT:
infatti, ponendo r = d(f(u), f(v)) e

U= ((fw)—r/2, f(w)+7/2)),
V=f () =r/2, f()+r/2)),

U e V sono aperti disgiunti e uc U, veV.

Ci si pud aspettare che gli spazi normali, soddisfacendo alla proprieta di
separazione pilt forte, possiedano funzioni continue a valori reali con proprieta
molto forti. Cid € quanto afferma il seguente

8.10 TEOREMA (Lemma di Urysohn) Siano A¢ e A, due sottoinsiemi chiusi
non vuoti e disgiunti di uno spazio normale X. Esiste un’applicazione continua
f:X —10,1] tale che

0 per ogni z € Ay

f(x)={

1 per ogni z € A,.

Dimostrazione. Denotiamo con D l'insieme dei numeri razionali diadici non
negativi, cio¢ dei numeri razionali della forma a/29, dove a e ¢ sono interi non
negativi.

Cominciamo col costruire una famiglia

F={Us:te D}
di insiemi aperti di X tale che per ogni s, t € D, s < t, si abbia
Us C Us.
Prendiamo
Uy=X perognit>1, teD,
U =X\A,.

Per la normalita di X esistono aperti M e N tali che A C M, A, C N,
M N N = §. Prendiamo

Uy=M.
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Si ha
U() C X\N C X\A] = U|.

Sia ora t € D tale che 0 < t < 1. Possiamo scrivere in modo unico t = 2m+1)/2"
per qualche m, n > 0. Costruiremo U; per induzione su n. Poniamo

a=2m/2" =m/2" !
B=Q@m+2)/2" = (m+1)/2" .

Sen=1, allora a=0, §=1¢e U, =0, Ug="U, sono gia stati costruiti in
modo che U, C Up.

Se n > 2, allora @ <t < B e per I'ipotesi induttiva possiamo supporre di aver
costruito insiemi aperti Uy ¢ Uy tali che Uy C Ug. Allora Uy ¢ X\Ug sono due
insiemi chiusi ¢ disgiunti; per la normalita di X esistono due sottoinsiemi aperti
V, W tali che

UsCV, X\UgCW, WNV =9
Prendiamo U; = V. Si ha
UaCcU, Uz C X\W C Ug.

E chiaro che se ¢ = 2h+ 1)/2", t < ¢, allora Uy e Uy costruiti in questo modo
soddisfano U; C Uy, perché si ha m < h e quindi

UscUicUicUgcUpgCUyCUp CUpCUs,

dove v = h/2"7', 6§ = (h+1)/2" '. Da cid segue che la famiglia 7 costruita
induttivamente ha le proprieta volute.
Definiamo ora I’applicazione f: X — [0,1] ponendo

fz)=inf{te D:z €U} perognizeX.

Si noti che la famiglia 7 ricopre X; quindi per ogni z € X l'insieme {t € D :
z € Ui} non € vuoto e il suo estremo inferiore € ben definito. Inoltre da come &
stata costruita la famiglia 7 seguc subito che f(z) € [0, 1] per ogni z € X, e che

f( ) { 0 sexze A()
) =
1 sexzecA.

Ci resta da verificare che f & continua. A questo scopo sara sufficiente verificare
che per ogni numero reale a tale che 0 < a < 1 gli insiemi f '({0,a)) e f™'((a, 1])
sono aperti in X (perché gli intervalli della forma [0,a) ed (a,!] formano una
sottobase della topologia di {0, 1]).
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Consideriamo 1’insieme
J'(0,0)={z€X: f(z)<a}.

Per definizione di estremo inferiore quest’insieme consiste degli z € X tali che
z € Uy per qualche t < a. Quindi

J '(10,an= U U
teD

t<a

(vl

un insieme aperto.
Per dimostrare che I’insieme

(e, 1) ={z€X: f(z) > a}

o

aperto sara sufficiente dimostrare che
X\f (@, 1) =f "(10,a) ={z € X : f(z) < a}

un insieme chiuso.
Perché si abbia f(z) < a deve essere z € Uy per ogni t > a, t € D. Quindi

o

J '(0,ahy= N U,
teD

t>a

Faremo vederc che quest’insieme € chiuso mostrando che

n Ut = n ﬁt .
teD teD
t>a t>a

Ovviamente si ha

ﬂ U C ﬂ Ut.
teD teD
t>a t>a
D’altra parte per ogni t > a, t € D, csiste s € D tale che a < s <t perché D ¢

denso in R*; quindi U c U;. Ne segue che

n Us C ﬂ Ui. m
seD teD
s>a t>a

Si noti che, viceversa, se X & uno spazio topologico tale che per ogni coppia
di sottoinsiemi chiusi non vuoti disgiunti Ay e A, esiste un’applicazione continua
f:X —[0,1] tale che

0 sc ze A

f(:c)={1 se z €A,

allora X ¢ uno spazio che soddisfa (V,).
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Infatti
Uo=f '(10,1/2)), Uy = f'((1/2,1))
sono due aperti disgiunti di X tali che 4o C Uy, A, C U,.
8.11 Esempi

1. Spazio di Hausdorff non regolare.

Sia X =1[0,1] ¢ R e S il sottoinsieme {I/n : n = 1,2,3,...}. Sia T la
topologia meno fine contenente ogni sottoinsieme aperto di X\ {0} nella topologia
di sottospazio di R, e contenente inoltre ogni insieme B,, 0 < r < 1, definito da

B,={zeX:z<r, ¢S5}

Con la topologia T cosi definita X ¢ uno spazio di Hausdorff, ma non ¢
regolare.

Dimostriamo che X & di Hausdorff. Siano u, v € X distinti, e supponiamo
u<wv Se 0#u, stae=v—u; U=(0,u+e/2), V=(u+e/2,1] sono due aperti
di XtalicheueU,veV,UNV =0 Se u=0, sia 0 <r < v, e prendiamo
U=B,, V=(w-r1]. U eV sono aperti in X; inoltre uc U, veV, UNV =0.
Quindi X € uno spazio di Hausdorff.

S ¢ un sottoinsieme chiuso di X perché S = X\B;; inoltre 0 ¢ §. Facciamo
vedere che non esistono aperti U, V' in X tali che 06U, SCcV,UNnV =4.

Ogni aperto U contenente 0 deve contenere B, per qualche 0 < r < 1; d’altra
parte ogni aperto V' contenente S ma non 0 & un aperto di X\{0} nella topologia
euclidea; ma un V siffatto interseca ogni B,, 0 < r < I, quindi la condizione
UNV =0 non puod essere verificata.

Questo dimostra che X non ¢ regolare, perché non soddisfa la condizione (R»)
(si noti che X ¢ T, perché ¢ di Hausdorff).

2. Un criterio utile per costruire esempi di spazi non normali ¢ il seguente

LEMMA  Se uno spazio topologico separabile X contiene un sottoinsieme
chiuso discreto non numerabile S, X non é normale.

Dimostrazione. Sia D C X un sottoinsieme numerabile e denso (X ¢ separabile)
e supponiamo per assurdo che X sia normale. Poiché S & discreto e chiuso in
X, ogni sottoinsieme di S & chiuso in X. Quindi per ogni sottoinsieme proprio
A;S esistono aperti U(A) e U(S\A) in X tali che A C U(A4), S\A C U(S\A),
U(A)NU(S\A) = 0. Poiché D & denso, si ha:

U(A)ND#@ per ogni sottoinsieme non vuoto A;S. [8.3]
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Inoltre, se A, B;S sono due sottoinsiemi non vuoti ed A# B, si ha
U(AYND+#U(B)N D. [8.4]
Infatti, se A\B#0, si ha
UBYNUBS\B)ND=40
mentre
UAYNU(S\B)ND#§

perché U(A)NU(S\B) & un intorno aperto di A\B e in particolare non & vuoto;
ne consegue che U(A)ND e U(B)ND sono distinti. Se invece B\A# 0 si ragiona
nello stesso modo.

Dalle [8.3] e [8.4] segue che I’applicazione

P(S) — P(D)
definita da

A~ UAND, se A;S, A#0,

S~ D

B0

¢ inicttiva. Cio ¢ assurdo perché P(S) ha cardinalita maggiore di quella di P(D).

3. Applichiamo il lemma dell’esempio 2 per dare un esempio di spazio regolare
che non é normale.

Sia S una retta di R*> e X uno dei due semipiani chiusi individuati da S. Sia
D la famiglia dei dischi aperti di R* contenuti in X e ¥ la famiglia cosi definita:

¥={DUP:PeS, DeD, D tangente a S in P}.

E immediato verificare che Ia famiglia D U ¥ soddisfa le condizioni della
proposizione 2.2 ed ¢ quindi base di una topologia T su X. Si noti che S ¢
chiuso in (X, T) e che la topologia indotta da T su X\S ¢ la topologia euclidea,
mentre quella indotta su S ¢ la topologia discreta. Inoltre (X, T) ¢ separabile
perché Q>N X & un sottoinsieme denso. Dal lemma dell’esempio 2 segue che
(X, T) non & uno spazio normale.

Ma (X, T) ¢ uno spazio regolare. Infatti T ¢ una topologia che soddisfa 1’as-
sioma T, perché pill fine della topologia euclidea (esercizio 8). Inoltre siano F' un
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sottoinsieme chiuso di X e p € X\F. Se p ¢ S, sia r > 0 tale che D,(p) non
intersechi S né il chiuso (X\S)N F di X\S. Allora D,(p) N F' =0 ¢ quindi

A=D,p(p) ¢ B=X\D,pp)

sono aperti disgiunti tali che pe A, F' C B.
Supponiamo invece p € S. Poiché F' ¢ chiuso esiste un apertc DUP in ¥ tale
che (DUP)N F =0. Si scelga allora D, UP € ¥ con D, ;D. Si ha subito che

A=D] UP e B=.X\D] uUP
sono due aperti disgiunti, pe A, F C B.

4. Abbiamo visto (proposizione 8.2) che il prodotto topologico di una famiglia
di spazi di Hausdorff & ancora di Hausdorff. Di un’analoga proprieta godono gli
spazi 7' e gli spazi regolari (cfr. esercizi 15 e 16). Ma la proposizione 8.2 non si
estende agli spazi normali. Un esempio ¢ dato dal prodotto topologico di (R, jz)
per se stesso. Infatti (R,j;) & normale (esercizio 12), ma R’ con la topologia
prodotto J; non ¢ normale.

Per vederlo osserviamo che una base B di Jy ¢ costituita dai rettangoli della
forma [a,b) x [¢,d), a < b, ¢ < d.

Da cid segue che Q* & denso in R? rispetto a Jy, ¢ quindi (R?,J;) & uno
spazio separabile.

Sia S la retta di equazione z+y = 0 (ma le stesse considerazioni si applicano ad
ogni retta di coefficiente angolare < 0). Per ogni P = (a,—a) € S esiste un aperto
A € B tale che ANS = {P}; basta prendere ad esempio A = [a,a+1)x[—a, —a+1)
(vedi fig. 8.1). Questo significa che S & un sottoinsieme discreto di (R?, J,). Poiché

\Z

P

Figura 8.1
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evidentemente S € anche chiuso, applicando il lemma dell’esempio 2 si vede che
(R?, J;) non & normale.

Si noti che lo spazio (R, j;) & normale ma non metrizzabile (cfr. esempio 3.8(2)).
Se X & uno spazio normale metrizzabile, X x X ¢ normale perché metrizzabile
(cfr. esercizio 6.9).

5. E evidente che ogni sottospazio di uno spazio T) é uno spazio T;. L’analoga
proprieta ¢ stata dimostrata per gli spazi T, (proposizione 8.1).

E anche vero che ogni sottospazio Y di uno spazio regolare X ¢ regolare.

Sia infatti F' un sottoinsieme chiuso di Y ¢ y € Y\F; sia ' un chiuso di X
tale che F'= F'NY. Poiché X ¢& regolare e y ¢ F' esistono aperti U', V' in X
tali che y e U', FFcV' e U'NV' =0 Allora U=U'NnY e V=V'NY sono
apetrii di Y eye U, FCcV,UNV =@ Quindi Y soddisfa la condizione (R,);
poiché inoltre Y ¢ sottospazio di uno spazio 7| ¢ anche uno spazio T, e quindi
¢ regolare.

In modo simile & facile dimostrare che ogni sottospazio chiuso Y di uno spazio
normale X é normale (esercizio 17). Cio non ¢ pil vero se si toglie la condizione
che Y sia chiuso: esistono esempi di sottospazi (non chiusi) di spazi normali che
non sono normali.

6. Una varieta topologica di dimensione n (intero > 1) ¢ uno spazio topologico
di Hausdorff X che soddisfa il secondo assioma di numerabilita ¢ tale che ogni
z € X possieda un intorno aperto U, omeomorfo a un aperto di R™.

Un omeomorfismo ¢y di un aperto U di X su un aperto di R" si chiama carta
(o carta locale). Una famiglia {¢p } di carte tale che {U;};c; sia un ricoprimento
aperto di X si dice atlante. E evidente che per dimostrare che uno spazio di
Hausdorff X ¢ una varieta topologica ¢ sufficiente trovare un atlante.

Ogni aperto di R", in particolare R™ stesso, n > 1, & un esempio di varieta
topologica di dimensione n.

Per ogni n > 1, S™ & una varieta topologica di dimensione n. Infaui S™ ¢
cvidentemente uno spazio di Hausdorff a base numerabile; un atlante costituito da
due sole carte si pud ottenere in pitt modi considerando le proiezioni stereografiche
di centro due punti distinti.

Il prodotto X x Y di duc varieta topologiche X e Y di dimensioni n e
m rispettivamente, ¢ una varieta topologica di dimensione n +m (esercizio). In
particolare per ogni n > 2 I'n-toro T™ ¢ una varicta topologica di dimensione n.

Lo spazio proiettivo reale P*(R), n > 1, ¢ una varieta topologica di dimensione
n (cfr. esercizio 18 ed csempio 7.6(11)).

Nella definizione di varieta topologica la condizione di essere spazio topologico
di Hausdorff non ¢ ridondante. In altre parole csistono spazi topologici non di
Hausdorff tali che ogni loro punto possieda un intorno aperto omeomorfo a un
aperto di R™ per qualche n > 1 (indipendente dal punto). Un esempio ¢ il seguente.
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Sia X = (-1,2] c R con la topologia T cosi definitaz U € T se e solo se
U =0, X, oppure se ¢ unione di insiemi della forma
(a:b): —l§a<b§2,
(a,0)U(b,2]., —-1<a<0, 0<b<2.
E facile verificare che T & una topologia e che T & meno fine della topologia
indotta da R (gli insiemi (b,2] non sono aperti in T).
X non ¢ di Hausdorff perché ogni intorno di 2 interseca ogni intorno di 0.

D’altra parte ogni punto z € X ha un intorno omeomorfo a un aperto di R. Cid
¢ evidente se z#2. Se z =2, allora

U=(-1/2,0)U(3/2,2]

¢ un intorno di 2; ¢ facile verificare che 1’applicazione

f:U—=(1L1
definita da
2u se —1/2<u<0
f(u)={
4-2u se3/2<u<?2

¢ biunivoca, continua, con inversa g : (—1,1) — U continua definita da

t/2 se —1<t<0
g(t)={
2-t/2 se0<t< .

Esercizi

1. Dimostrare che I’essere T) (rispettivamente T», regolare, normale) & una proprieta
topologica per uno spazio X.

2. Dimostrare che un insieme infinito con la topologia cofinita non ¢ metrizzabile.

Dimostrare che uno spazio banale con almeno due punti non & metrizzabile.

4. Dimostrare che uno spazio X & di Hausdorff se e solo se per ogni z € X I'intersezione
di tutti gli intorni chiusi di z consiste del solo punto z.

5. Dimostrare che uno spazio X ¢ di Hausdorff se e solo se la diagonale
A={(z,z):z€ X}
€ chiusa in X x X.
6. Sia f:X — Y un’applicazione di insiemi; il grafico di f &
Ij={(z f@)eXxY :ze X} Cc X xY.

Dimostrare che se X e Y sono spazi topologici, ¥ di Hausdorff, ¢ f & continua, il
grafico T’y & chiuso in X x Y.
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7. Siano f, g: X — Y applicazioni continue, con Y di Hausdorff. Dimostrare che se
esiste un sottoinsieme denso D C X tale che f(z)=g(z) per ogni z € D, allora [ =g.

8. Dimostrare che se 7 < U sono due topologie sull’insieme non vuoto X e T ¢ T
(risp. T») allora U & Ty (risp. T»).

9. Dimostrare che uno spazio quoziente di uno spazio X € uno spazio Tj se e solo se
ogni classe di equivalenza ¢ un sottoinsieme chiuso di X.

10. Sia X uno spazio normale e S un sottoinsieme chiuso. Dimostrare che lo spazio
quoziente ottenuto da X identificando S a un punto & normale.

11. Sia E un sottoinsieme di uno spazio Tj e p un suo punto di accumulazione. Dimostrare
che ogni intorno di p contiene infiniti punti di E.
12. Dimostrare che (R, jy) (risp. (R, Js)) € uno spazio normale.

13. Dimostrare che uno spazio Ty X & regolare se e solo se per ogni p € X e ogni aperto
U contenente p esiste un aperto V' tale che

peVcVcl.

14. Dimostrare che uno spazio T) X & normale se e solo se per ogni sottoinsieme chiuso
F C X e ogni aperto U contenente F esiste un aperto V tale che

FcvcVcU.

15. Dimostrare che il prodotto topologico di una famiglia di spazi T) & uno spazio Tj.
16. Dimostrare che il prodotto topologico di una famiglia di spazi regolari & regolare.
17. Dimostrare che ogni sottospazio chiuso di uno spazio normale ¢ normale.

18. Dimostrare che lo spazio proiettivo reale P"(R) & uno spazio di Hausdorff.
(Suggerimento. Si usi la rappresentazione di P" come quoziente di S™).

9 Compattezza

Uno spazio topologico si dice compatto se ogni suo ricoprimento costituito da
insiemi aperti (brevemente, se ogni ricoprimento aperto) possiede un sottorico-
primento finito, cio¢ possiede una sottofamiglia costituita da un numero finito di
insiemi che € ancora un ricoprimento dello spazio.

- Un sottoinsieme K di uno spazio topologico X si dice compatto se con la
topologia relativa K ¢ uno spazio compatto; equivalentemente K si dice compatto
se ogni ricoprimento di K con insiemi aperti di X possiede un sottoricoprimento
finito.

Ogni spazio banale ¢ compatto, come ¢ anche compatto ogni spazio finito ed
ogni spazio con la topologia cofinita.

Se X ¢ uno spazio discreto, la famiglia {z},cx € un ricoprimento aperto di X
tale che ogni. sua sottofamiglia non ¢ un ricoprimento (cio¢ {z},cx non possiede

N

sottoricoprimenti propri); quindi se ¢ infinito e discreto X non ¢ compatto.
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R non & compatto, perché ad esempio il ricoprimento aperto {(—n,n)},>; non
possiede un sottoricoprimento finito.
Ogni intervallo aperto (a,b) di R non ¢ compatto. Infatti la famiglia di intervalli

. b—a - . . .
aperti U = {(a +g,b—-¢):0<e< T} costituisce un ricoprimento di (a, b); ma

ogni sottofamiglia finita di U ha come unione un intervallo ancora appartenente
ad U, e quindi diverso da (a,b). Abbiamo il seguente risultato classico:

9.1 TEOREMA (di Heine-Borel)  Ogni intervallo chiuso e limitato |a,b] C R ¢
‘compatto.

Dimostrazione. Sia U un ricoprimento di [a,b] con aperti di R. Consideriamo

il sottoinsieme
X ={z € la,b] : |a,z] & ricoperto da un numero finito di aperti di U}.

E sufficiente far vedere che X = [a,b]. Innanzitutto X #¢: infatti « € U per
qualche U € U, e quindi a € X. E anche evidente che X & un intervallo contenuto
in [a, b].

X ¢ aperto in [a,b]. Sc infatti z € X ¢ Uy,...,U, € U sono tali che [a,z] C
CcU,U...UUy, allora, poiché U, U...UU, & aperto, esiste r > 0 talc che:

la,blN(z —r,z+r)Cc U, U...UU,
e quindi anche [a,b]N(z —r,z+7r)C X.

Sia z = sup X. Poiché X C [a,b] e [a,b] & chiuso e limitato, z € [a,b] e quindi
esistc V € U tale che z € V. Sia s > 0 tale che (z — s,2] C V N [a,b]. Allora
z —s € X e quindi esistono Vy,..., Vi, € Y tali che [a,2 —s]C Vi U...UV,. Ma
allora

[a,z]cVU...UV,,UV
e quindi z € X; pertanto X ¢ anche chiuso in [a,b]. Ma ['unico intervallo simul-
taneamente aperto e chiuso in [a,b] & la,b] stesso; dunque X =[a,b]. =

Non tutti i sottospazi di uno spazio compatto sono compatti. Ad esempio un
intervallo aperto ¢ limitato (a,b) non € compatto, ma ¢ un sottospazio di [a,b],
che & compatto. Abbiamo per0 il seguente risultato:

9.2 PROPOSIZIONE

(a) Ogni sottoinsieme chiuso K di uno spazio compatto X é compatto.

(b) Ogni sottoinsieme compatto K di uno spazio di Hausdorff X é chiuso.

Dimostrazione

(a) Sia U un ricoprimento di K con aperti di X. Poiché X\ K ¢ aperto la famiglia
UU{X\K} ¢ un ricoprimento aperto di X. Ma X & compatto e quindi questo
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ricoprimento possiede un sottoricoprimento finito, cioé esistono U,...,U, € U tali
che:

U,U...UU, U(X\K) = X.

Segue che K C Uy U...UU,, ciog¢ {U,,...,Us} & un sottoricoprimento finito
di K e quindi K ¢ compatto.

(b) Sia p € X\K. Poiché X ¢ di Hausdorff per ogni z € K esistono aperti U,
e V; tali che z € Uy, p € Vg, U NV, = 0. La famiglia {U,},cx € un ricoprimento
aperto di K e quindi, per la compattezza di K, possiede un sottoricoprimento
finito. Quindi esistono z,,..., zp € K tali che K C Uz, U...UUg,. Laperto

V=V N...NnV,, soddisfa
peV C X\K
e quindi p ¢ esterno a K. Poiché p & arbitrario in X\K seguc che K ¢ chiuso. =

Si noti che ogni sottoinsieme proprio non vuoto di uno spazio banale & compatto
ma non & chiuso: quindi nella proposizione 9.2(b) I'ipotesi che X sia di Hausdorff
¢ necessaria.

Come conseguenza della proposizione 9.2 abbiamo la seguente caratterizzazione
dei sottoinsiemi compatti di R.

9.3 COROLLARIO  Un sottoinsieme K di R é compatto se e solo se K & chiuso
e limitato.

Dimostrazione. Supponiamo che K sia chiuso e limitato. Poiché ¢ limitato, K
¢ contenuto in un intervallo chiuso e limitato J. Poiché & chiuso in R, K & chiuso
in J. Ma allora K & compatto per la proposizione 9.2(a) e per la compattezza di
J.

Supponiamo che K sia compatto. Poiché R ¢ di Hausdorff K & chiuso per la
proposizione 9.2(b). Inoltre K deve essere limitato. Se non lo fosse {(—n,n)},>
sarebbe un ricoprimento di K che non possiede un sottoricoprimento finito: infatti,
per ogni sottofamiglia finita

{(_nlsnl)a e ’(_nksnk)}»
si ha
(—n,,m) Uu...u (_nk:nk) = ("_nan)

dove n = max{n,,...,n;}, che & un intervallo limitato e quindi non contiene X. =

Abbiamo la seguente importante:
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9.4 PROPOSIZIONE

(a) Ogni sotwoinsieme infinito Z di uno spazio compatto X possiede un punto
di accumulazione in X.

(b) Ogni successione di punti di uno spazio compatto T\ che soddisfa il primo
assioma di numerabilita possiede una sottosuccessione convergente.

Dimostrazione

(a) Supponiamo per assurdo che Z non possieda punti di accumulazione: allora
Z ¢ chiuso in X e quindi compatto. Inoltre la topologia relativa su Z ¢ la
topologia discreta: quindi Z € uno spazio topologico discreto infinito e pertanto
non ¢ compatto. Abbiamo una contraddizione.

(b) Se infiniti termini della successionc coincidono essi formano una sottosuc-
cessione convergente. Se la successione contiene infiniti punti distinti essa, per la
prima parte della dimostrazione, possiede un punto di accumulazione ed in questo
caso la conclusione segue dalla proposizione 8.6. =

Una conseguenza importante della proposizione 9.4 ¢ il seguente risultato
classico:

9.5 TEOREMA (di Bolzano-Weierstrass)  Ogni successione limitata {zn}n> di
numeri reali possiede una sottosuccessione convergente.

Dimostrazione. Poiché {z,} ¢ una successione limitata, esiste un N > 0 tale
che {z,} C [-N,N]. Ma [-N, N] & compatto, ¢ quindi per la proposizione 9.4(b)
{zn} possiede una sottosuccessione convergente. m

E possibile caratterizzare la compattezza mediante una proprieta delle famiglie
di insiemi chiusi. Una famiglia 7 di sottoinsiemi di un insieme X si dice avere la
proprieta dell’intersezione finita se ogni sottofamiglia finita di 7 ha intersezione
non vuota.

9.6 PROPOSIZIONE  Condizione necessaria e sufficiente affinché uno spazio
topologico X sia compatto e che ogni famiglia 7 di sottoinsiemi chiusi di X che
ha la proprieta dell’intersezione finita abbia intersezione non vuota.

Dimostrazione

Necessita. Supponiamo X compatto e sia 7 una famiglia di sottoinsiemi chiusi

di X: & sufficiente dimostrare che, se ﬂf F =, allora 7 non ha la proprieta
Fe
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dell’intersezione finita. Consideriamo la famiglia di insiemi aperti di X:
U={X\F:Fe7}.
Poiché

Uv=U X\F=X\[n F]=X,
Uel Fe7 Fe7

U ¢ un ricoprimento aperto di X. Per la compattezza di X esistono
U =X\F,....U,=X\F, el

tali che
X=U,U..UU,=(X\F)U...UX\F,) =X\(i Nn...NFy,).

Da queste uguaglianze scgue che Fin...NF, =, e quindi 7 non ha la
proprieta dell’intersezione finita.

Sufficienza. Supponiamo soddisfatta la condizione dell’enunciato e sia U un
ricoprimento aperto di X. Consideriamo la famiglia

F={X\U:U €U}

di sottoinsiemi chiusi di X. Poiché U ¢ un ricoprimento di X la famiglia 7 ha
intersezione vuota: infatti

£, 7=, =3 (Y, 0) -0

Quindi la famiglia 7 non ha la proprieta dell’intersezione finita. Segue che
esiste una sottofamiglia finita:

{Fi=X\Uy,....F,=X\Up}C ¥
la cui intersezione € vuota, cioe tale che
P=(X\U)N...n(X\Uyp) =X\({U,U...UUp).

Da quest’uguaglianza segue che X = U, U...UU, e quindi U possiede un
sottoricoprimento finito. =

Un’altra importante proprieta della compattezza ¢ il suo comportamento rispetto
alle applicazioni continue.
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9.7 PROPOSIZIONE ~ Sia f : X — Y un’applicazione continua di spazi topolo-
gici. Se X ¢ compatto, f(X) é compatto in Y.

Dimostrazione. Sia U un ricoprimento aperto di f(X). La famiglia di sottoin-
siemi di X
V={f'U):Uecl}

¢ un ricoprimento aperto di X. Per la compattezza di X esistono U,,...,U, € U
tali che X = f "(U))U...U f '(Uy). Si ha quindi

X)) =ff"UHU...Uuf ' U)CUU...UU,.
cioe {Uy,...,U,} & un ricoprimento di f(X). Quindi f(X) & compatto. =

9.8 COROLLARIO  Sia X uno spazio topologico e f: X — R un’applicazione
continua. Se X é compatto f assume un valore massimo ed un valore minimo su
X.

Dimostrazione. Dalla proposizione 9.7 segue che f(X) ¢ un sottoinsieme com-
patto di R, ¢ quindi & chiuso e limitato. Ne segue che f(X) contiene il suo
estremo superiore ed il suo estrcmo inferiore. =

9.9 COROLLARIO

(a) La compattezza e una proprieta topologica.

(b) Uno spazio quoziente di uno spazio compatto é compatto.
Dimostrazione. Esercizio. =
Il semplice risultato seguente viene utilizzato spesso.

9.10 PROPOSIZIONE ~ Sia X uno spazio compatto ed Y uno spazio di Hausdorff.
Se f: X —Y ¢é un’applicazione continua allora f e chiusa. Se f ¢ continua e
biunivoca allora f é un omeomorfismo.

Dimostrazione. Sia C C X chiuso. Allora C & compatto per la proposizione
9.2(a), e quindi f(C) & compatto. Dalla proposizione 9.2(b) segue che f(C) &
chiuso in Y; quindi f & un’applicazione chiusa. L'ultima asserzione segue dalla
prima perché un’applicazione biunivoca, continua e chiusa & un omeomorfismo. =

Dimostreremo ora un importante risultato che afferma che il prodotto di una
famiglia di spazi compatti & uno spazio topologico compatto. La dimostrazione di
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questo fatto ¢ molto pin facile nel caso del prodotto di un numero finito di spazi
che nel caso generale. Per completezza daremo le dimostrazioni separatamente nei
due casi, anche se la seconda dimostrazione é indipendente dalla prima.

9.11 TEOREMA (di Tychonoff) Il prodotto topologico di una famiglia di spazi
compatti é compatto.

Dimostrazione. Diamo per prima la dimostrazione nel caso del prodotto topo-
logico X x Y di due spazi compatti X e Y. Sia {U;}e; un ricoprimento aperto
di X xY e, per ogni j € J, sia

vi= U vyxw
J heh() h h

per opportuni aperti V,, C X, W, C Y. La famiglia
F={VpyxW,:heH}

dove H = UJ h(j), & un ricoprimento aperto di X xY. Sia z € X; {z} xY ¢
JE

un sottospazio compatto di X x Y perché omeomorfo ad Y, e quindi esiste un
sottoinsieme finito h(z) C H tale che:

(z}xYc U vxw,
heh(x)

e tale che ogni V}, contiene z. Per ogni z € X definiamo un intorno aperto V(z)
di z ponendo:

V)= N v,
heh(z)

La famiglia V = {V(z) : z € X} & un ricoprimento aperto dcllo spazio compatto
X, e quindi possiede un sottoricoprimento finito; pertanto esistono z;,...,z; € X
tali che

X=V(z)U...UV(z).
La famiglia finita di aperti:
V@) xWy:hehz)}U...U{V(zs) x Wy : h € h(zs)}

¢ un ricoprimento di X x Y. Inoltre per ogni ¢ =1,...,s ed ogni h € h(z;) I’aperto
V(z;) x W), ¢ contenuto in Uj ) per qualche j(i,h) € J. Ne deduciamo che la
famiglia

i 0= 1...o0.h € hz)

¢ un sottoricoprimento finito di {U;};es € quindi X xY ¢ compatto.
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Questa dimostrazione si generalizza facilmente al caso del prodotto di un
numero finito qualunque di spazi compatti.
Dimostriamo il teorema nel caso generale.

Supponiamo che {X,},ea sia una famiglia di spazi compatti e sia X = ule_IM X,
Consideriamo una famiglia qualsiasi B di sottoinsicmi di X avente la proprieta

dell’intersezione finita; dimostreremo che

N B+ [9.1]

BeB

e da cio seguira la compattezza di X per la proposizione 9.6.

Per dimostrare la [9.1] consideriamo la classe I di tutte le famiglie di sot-
toinsiemi di X che hanno la proprieta dell’intersezione finita. La classe I ¢
parzialmente ordinata rispetto all’inclusione; se £ € una catena in I la famiglia
Fy = FLer F appartiene a I cd ¢ un estremo superiore per X. Dal lemma di Zorn
segue che I possicde un elemento massimale. E evidente che per dimostrare la
[9.1] non ¢& restrittivo supporre che B sia proprio I’elemento massimale di 7. Da
quest’ipotesi segue che:

(a) ogni sottoinsieme di X che sia I’intersezione di un numero finito di elementi
di B appartiene a B;

(b) se un sottoinsieme di X ha intersezione non vuota con ogni elemento di B
appartiene a B.

Sia pe M, p, : X — X, la proiezione e consideriamo la famiglia di sottoin-
siemi di X,

B, ={p,(B): B € B}.
La famiglia B, ha la proprieta dell’intersezione finita e, poiché X, ¢ compatto,

I, = BQB pu(B)#0.

Scegliamo un punto z, € I, per ogni indice 4 € M, e sia z € X il punto definito
da

z(p) =z, p€M.

Dimostreremo che z € B per ogni B € B: da cid seguira la [9.1] e il teorema.
Scegliamo arbitrariamente 4 € M ed un aperto U, C X, contenente z,. Poiché
z, € pu(B) per ogni B € B, si ha

Uy,Npu(B)#0 per ogni B€ B
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e quindi
P, (U,)NB#B per ogni B € B. [9.2]

Dalla (b) segue che p;;'(U,‘) € B. Dalla (a) segue inoltre che ogni intersezione
U* di un numero finito di insiemi pM'(U#) sta in B. Poiché tutti questi insiemi
contengono z, dalla definizione di topologia prodotto segue che gli aperti U*
costituiscono un sistema fondamentale di intorni di z; inoltre dalla [9.2] segue
che ognuno degli U* interseca ogni B € B. Di conseguenza ogni intorno di z
interseca ogni B € B, cio¢ z € B per ogni BE B. »

9.12 COROLLARIO  Un qualsiasi prodotto topologico di intervalli chiusi e
limitati di R & uno spazio compatto di Hausdorff.

Dimostrazione. 11 corollario &€ immediata conseguenza della proposizione 8.2 e
del teorema di Tychonoff. =

9.13 COROLLARIO  Un sottoinsieme K dello spazio euclideo R™ & comparto
se e solo se é chiuso e limitato.

Dimostrazione. Supponiamo K chiuso e limitato. Allora K & contenuto in un
prodotto di intervalli chiusi e limitati P =1, x ... x I, che ¢ compatto; essendo
inoltre chiuso in R™, e quindi in P, K & compalto. Supponiamo viceversa K
compatto. K & chiuso perché R™ & di Hausdorflf (proposizione 9.2(b)). Se K
non fosse limitato la famiglia dei dischi aperti di centro 'origine sarebbe un
ricoprimento di K che non possicde un sottoricoprimento finito, il che & una
contraddizione. =

9.14 Esempi, osservazioni e complementi

1. Dal corollario 9.3 segue che in R gli unici intervalli compatti sono gli
intervalli chiusi ¢ limitati. Sappiamo che due intervalli chiusi e limitati qualsiasi
sono omeomorfi (esempio 5.4(7)); quindi, poiché la compattezza & una propricta
topologica, se J e J' sono due intervalli omeomorfi € J & compatto, anche J' &
compatto. Questo dimostra che la classe (8) dell’esempio 5.4(7) ¢ disgiunta dalle
classi (a) e (7).

2. Se n > 1 segue dal corollario 9.13 che un disco aperto D,(x) C R", x € R",
r > 0, non ¢ compatto perché non ¢ chiuso. Un ricoprimento aperto di D,(x) da
cui non ¢ possibile estrarre un sottoricoprimento finito ¢ ad esempio:
{D,(x):0< p<r}.
La n-cella D" ¢ compatta e quindi non omeomorfa ad alcun disco aperto.
Il semispazio aperto

Zn={xeR":xn>O}
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non ¢ compatto perché non ¢ né chiuso né limitato; il ricoprimento aperto di En

{En, r>0 reale}

dove
Yr={xeR iz, >1},

non possiede un sottoricoprimento finito.

3. La sfera 8", n > 1, & compatta perché chiusa ¢ limitata in R™'. Lo
spazio proiettivo reale P*(R) ¢ compatto perché esiste un’applicazione continua e
suriettiva S* — P™(R) (proposizionc 9.7). Il toro n-dimensionale 7" =8’ x...xS!
(n volte) & compatto per il tcorema di Tychonoff.

4. 11 gruppo ortogonale O(n) & compatto. Infatti la condizione che definisce le
matrici A = (a;;) € O(n) & "AA=1,, ciod:

Eh: apiapj =065, 1<14, j<n

In particolare si ha:
2 .
Xk =1, 1=1,...,n
h hi 5 d

OVVvero:

E a%n =n.

h,a

Quindi O(n) si identifica ad un sottoinsieme chiuso di R™ contenuto nel disco
chiuso Dy(4/n). Pertanto O(n) ¢ chiuso e limitato, cio¢ compatto. In modo simile
si dimostra che SO(n), U(n), SU(n) sono compatti.

5. Un sottoinsieme A di uno spazio topologico X si dice relativamente compatto
in X se A & compatto. Ogni sottoinsicme limitato di R™ & relativamente compatto.
Ogni sottoinsieme di uno spazio compatto & relativamente compatto (proposizione
9.2(a)). Ogni sottoinsieme compatto di uno spazio di Hausdorff ¢ relativamente
compatto perché € chiuso (proposizione 9.2(b)).

Si osservi che uno spazio topologico A pud essere relativamente compatto
come sottospazio di uno spazio X ma non esserlo come sottospazio di un altro
spazio Y: ad esempio un intervallo aperto limitato (a,b) ¢ relativamente compatto
in R ma non lo & in se stesso.

6. Ogni spazio compatto di Hausdorff X é normale. Siano infatti A e B duc
sottoinsiemi chiusi e disgiunti di X. Per la proposizione 9.2(a) A e B sono
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compatti. Sia b € B. Poiché X ¢ di Hausdorff per ogni ¢ € A esistono intorni
aperti U, di a e V, di b tali che a € Uy, b €V, U NV, = 0. La famiglia
{Us}aca € un ricoprimento aperto di A, ¢ quindi possiede un sottoricoprimento
finito; pertanto esistono ay, ..., anp € A tali che A C Uy U...UU,,. Gli aperti

Up=Uy U...UU,, ¢ Vp:=V, N...NV,, soddisfano:
AC U, beV, U,,an:(b.

La famiglia {V,}cp costituisce un ricoprimento aperto di B e quindi possiede
un sottoricoprimento finito. Pertanto esistono b,,...,b, € B tali che B sia con-
tenuto nell’aperto V :=V, U...UV, . Laperto U :=U,, N...N U, contiene A e
UNV =0. Quindi X & normale.

7. Un’applicazione continua f : X — Y si dice propria se per ogni sottoinsieme
compatto K C Y l'insieme f~'(K) & compatto. Un esempio banale di applicazione
propria ¢ I'identita di uno spazio X in sé. Se Z ¢ uno spazio compatto e ¥ ¢
uno spazio qualsiasi, la proiezione Z xY — Y ¢ propria.

E propria ogni applicazione continua f : X — Y di uno spazio compatto X
in uno spazio di Hausdorff Y: infatti ogni compatto K C Y ¢ chiuso e quindi
f (K), essendo chiuso in X, & compatto.

8. Daremo ora una dimostrazione del teorema fondamentale dell’algebra che

utilizza la nozione di compattezza e la proposizione 9.8.

TEOREMA FONDAMENTALE DELL'ALGEBRA  Ogni polinomio non costante a
coefficienti complessi P(Z)=ag+a\Z +...+anZ™ possiede una radice in C.

Dimostrazione. Possiamo supporre an, #0, n > 1. L’applicazione:
IPl(2) = | P(2)

¢ continua. Facciamo vedere che |P| possiede un minimo assoluto, cio¢ che esiste
u € C tale che |P(u)| < |P(2)| per ogni z € C. Scrivendo:

_ n an | ag
P(Z)=a,Z <1+ o +"'+anzn)

abbiamo per ogni z#0:

An | Qg
l+ ——+...+
an? anz"

|P(2)| = |anz"|

¢ da quest’uguaglianza segue facilmente che per ogni costante reale C > 0 esiste
r(C) > 0 tale che |P(z)] > C per ogni z € C tale che |z] > r(C). Inoltre per
ogni r > 0 la restrizione di |P| al disco chiuso D, = D,(0) ammette un massimo
e un minimo perché D, ¢ compatto (proposizione 9.8). Ma allora, scelto C > 0
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arbitrario € w € D), posto
R = max{r(C), r(|[P(w)}
un punto u € Dg in cui |P|p, ammette un minimo soddisfa
|P(u)| < |P(2)] per ogni z € Dp. [9.3]
In particolare
|P(u)] < |P(w)
perché w € Dp; quindi, essendo |P(w)| < |P(2)| per ogni z ¢€ Dp, si ha anche:
|P(u)| < |P(z)] per ogni z &€ Dp. [9.4]
Le [9.3] e [9.4] insieme ci dicono che u € un punto di minimo assoluto per
|P|i3’er concludere la dimostrazione dobbiamo far vedere che |P(u)] = 0. Suppo-

niamo per assurdo |P(u)| > 0. Ponendo z — u = h, per ogni z € C possiamo
scrivere:

P(z)=P(u+h)=A0+A]h+...+Anh"

per opportuni A; € C. Sia m il pil piccolo intero positivo tale che A, #0: m
esiste perché A,#0. Osservando che A4y = P(u), ¢ dividendo per P(u) primo e
secondo membro, otteniamo !’identita:

P(u+h)

T’u,)zl+Bm}l +...+Bnh, [95]

dove abbiamo posto B; = j—(’) Poiché B, #0, possiamo esprimerlo come:
By, = r(cos(p) +1 sin(p))
dove r = |Bp,| > 0. Analogamente scriviamo:
h = p(cos(h) +1 sin(e))).
Pertanto si ha:
B h™ = rp™(cos(p + ma) + 1 sin(p + ma)).
Scegliendo 1 in modo che si abbia ¢ +mi = si ottiene:

Bph™ = —rp™.
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Con questa scelta di h la [9.5] diventa:

POth) e g e (Bt ...+ Bah™ ™™ 9-6]
P(u)

Scegliendo inoltre p > 0 tale che 0 < rp™ < 1, cioe

w1
O<p< \/:,
r
si ottiene:
0<1+Bphm=1-rp" < 1.

Pertanto dalla [9.6] deduciamo:

<1 —rp™+ ™| Bmuth+...+ Byh™ ™| [9.7]

P(u +h)
P(u)

L’espressione:
Bpah+ ...+ B,h" ™™

¢ una funzione di h che tende a O al tendere di h a 0; quindi & possibile scegliere
p = |h| sufficientemente piccolo perché si abbia:

[Bmsih+ ...+ B,h" ™™ < 1.
Ma allora dalla [9.7] segue:

P(u+h)
P(u)

il che contraddice I'ipotesi che |P(u)| sia un minimo assoluto per |P|. =

Esercizi
1. Dimostrare che un sottoinsieme chiuso e discreto di uno spazio compatto €& finito.
(Suggerimento. Utilizzare la proposizione 9.2(a)).

2. Sia X uno spazio topologico e siano K,..., K sottoinsiemi di X. Dimostrare che se
K,,..., K, sono compatti allora K;U...UK, ¢ compatto.

3. 1 seguenti sottoinsiemi di R™, n > 2, non sono compatti:
D™\ {0}, S" l\{(1,0,...,0)}, {xe R":z, =0}, Int(I").

Di ognuno di essi trovare un ricoprimento aperto che non possiede un sottoricoprimento
finito.
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4. Siano a < b numeri reali. Dimostrare che X = |a,b]NQ non & compatto trovandone
un ricoprimento aperto che non possiede un sottoricoprimento finito.

5. Dimostrare che I'unione delle circonferenze di centro 0 e raggio r € {0,1]nQ & un
sottoinsieme non compatto di R? trovandone un ricoprimento aperto che non possicde
un sottoricoprimento finito.

6. Dimostrare che ognuno dei seguenti spazi topologici:
I". §* 1 A" D" n>1
non ¢ omeomorfo ad alcuno dei seguenti:

R, R™\I", R"\A", R"\S" !, Int(I"), Int(A™), n > 1.

7. Sia X un insieme ¢ ¢ un numero reale non nullo. Un’applicazione f: R — X si dice
periodica di periodo o se per ogni z € R si ha:

flz+o)=f(z).

Ogni applicazione costante & periodica di periodo ¢ per ogni ¢ € R\{0}. Esempi non
banali di applicazioni periodiche sono le funzioni trigonometriche sin, cos : R — R,
che hanno periodo 2x. Dimostrare che se X & uno spazio topologico e f:R— X &
un’applicazione continua e periodica, f(R) & compatto in X.

8. Dimostrare che P*(C) & compatto per ogni n > 1.
9. Dimostrare la proposizione 9.4 utilizzando la 9.6.
10. Sia

I, =lan,bal, n=1,2,...

una successione di intervalli chiusi e limitati di R tali che I,,; C I, per ogni n.

Dimostrare che, sc limy, |b, - an| =0, allora n I, ¢ non vuoto ¢ consiste di un solo
7w

punto.

11. Sia X uno spazio metrizzabile con distanza d, e siano A, B sottoinsiemi chiusi non
vuoti di X. Poniamo:

d(A,B) = ;22 d(a,b).
beB

Dimostrare che sc A oppure B ¢ compatto allora
d(A,B)=0 & AN B#0.

Dare un esempio in cui ANB =0 e d(4,B)=0.

10 Generalizzazioni della compattezza

10.1 DEFINIZIONE ~ Uno spazio topologico X si dice localmentc compatto se
ogni punto p € X possiede un intorno compatto.
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Sono esempi di spazi localmente compatti gli spazi compatti, lo spazio cuclideo
R™, i chiusi di R", gli aperti di R™ e pil in generale le varietd topologiche, gli
spazi discreti.

Q, e pil in generale Q", sono esempi di spazi non localmente compatti.

10.2 PROPOSIZIONE

(a) Ogni sottospazio chiuso C di uno spazio localmente compatto X é local-
mente compatto.

(b) Sia X uno spazio localmente compatto di Hausdorff. Ogni punto di X
possiede un sistema fondamentale di intorni relativamente compatli.

Dimostrazione

(a) Sia p € C e sia K un intorno compatto di p in X. Allora CN K ¢ un
intorno di p in C che & chiuso in K e quindi ¢ compatto.

(b) Sia p € X c sia U un aperto contenente p. Poiché X ¢ localmente compatto,
p possiede un intorno compatto K. Allora V := Int(X)NU € un intorno aperto
di p contenuto in U. Inoltre V ¢ K = K, perché K & chiuso essendo compatto
in uno spazio di Hausdorfl (proposizione 9.2(b)). Ma allora V' & compatto perché
chiuso nel compatto K. =

10.3 PROPOSIZIONE  Sia X uno spazio topologico localmente compatto di
Hausdorff che soddisfa il secondo assioma di numerabilita. Allora X & unione
di una famiglia numerabile di sottoinsiemi compatti {K; : ¢ =1,2,...} tali che
K, C Int(K;,,) per ogni 1.

Dimostrazione. Sia {U; : 1 = 1,2,...} una base numerabile di X. Sia U un
aperto di X ¢ sia z € U. Poiché X ¢ localmente compatto, z possiede un intorno
compatto K, cd esiste 7 tale che z € U; C Int(K) N U; come nella dimostrazione
della 10.2(b) si vede che U; ¢ relativamente compatto. Quindi per ogni aperto U
ed z € U ecsiste U; relativamente compatto tale che z € U; C U. Pertanto gli U;
che sono relativamente compatti costituiscono a loro volta una base numerabile
di X. Possiamo percid supporre che {U; :7=1,2,...} sia una base numerabile di
aperti relativamente compatti di X. Per ogni 4 la chiusura U; pud essere ricoperta
da un numero finito di aperti Uj;, la cui unione ha chiusura compatta H;, essendo
gli U; rclativamente compatti. Pertanto si ha, per ogni ¢:

U; C Int(H;)
¢ quindi

x =U ().
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Poniamo K, = H, e induttivamente definiamo K, = [) Hj, dove J(z) Cc N*
JjeJ)
& un sottoinsieme finito tale che

k,c U muH).
jeJ@)

La famiglia {K,} ha le proprieta volute. =

La proposizione 10.3 si applica alle varieta topologiche e ad ogni sottospazio
X di R™ che sia aperto oppure chiuso in R™.

L'esistenza di una famiglia numerabile di sottoinsiemi compatti {K; : ¢ =
=1,2,...} con le proprieta dell’enunciato nel caso di aperti o di chiusi di R™ si pud
dimostrare direttamente. Se X & chiuso basta prendere ad esempio K; = X N D;(p)
dove p ¢ un fissato punto di X. Se X ¢& aperto si prenda

K; = {a:e X x| <4, d(x,R"\X) > %}

dove per un qualsiasi sottoinsieme F di R™ si pone:
d(x, F) :=inf{d(x,y) : y € F}.

Sia X uno spazio topologico e siano U e V due ricoprimenti aperti di X.
Diremo che V ¢ un raffinamento di U, oppure che V & piu fine di U, se ogni
V €V & contenuto in qualche aperto di U.

Una famiglia 7 di sottoinsiemi di uno spazio topologico X si dice localmente
Jinita se ogni punto p € X possiede un intorno U, che interseca solo un numero
finito di insiemi della famiglia 7.

10.4 DEFINIZIONE ~ Uno spazio topologico X si dice paracompatto se ogni
ricoprimento aperto U di X possiede un raffinamento V localmente finito.

Ogni spazio compatto X & paracompatto: se infatti ¥ € un ricoprimento aperto
di X, e V ¢ un suo sottoricoprimento finito, allora ¥V ¢ un raffinamento local-
mente finito di U. E facile verificare che ogni sottospazio chiuso di uno spazio
paracompatto ¢ paracompatto.

La nozione di paracompattezza viene utilizzata nello studio delle varicta diffe-
renziabili. E utile avere criteri per stabilire se uno spazio topologico & paracom-
patto. La seguente proposizione da un criterio che utilizza nozioni pit facili da
verificare della paracompattezza.

10.5 PROPOSIZIONE  Sia X wuno spazio topologico localmente compatto di
Hausdorff che soddisfa il secondo assioma di numerabilita. Ogni ricoprimento
aperto U di X possiede un raffinamento localimente finito V costituito al pin da
un’infinita numerabile di aperti. In particolare X e paracompatto.
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Dimostrazione. Per la proposizione 10.3 esiste un ricoprimento numerabile di
X costituito da sottoinsiemi compatti {K; :7=1,2,...} tali che K; C Int(K;,,)
per ogni 7. Per ogni ¢ > 0 la famiglia

vi = {[Int(Kz+2)\Kz |_| NnU :U e U}

(dove si pone K; =@ se j < 0) costituisce un ricoprimento aperto di K;,,\Int(X;),
che ¢ chiuso in K;,, e quindi compatto. Pertanto V; possiede un sottoricoprimento
finito {V;),...,Vigw} di K\Int(K;). Poiché

U (K, \In(K;)] = X,
120

la famiglia
V={Vypp:i=0,1,...,1 <h < a@®)}
costituisce un ricoprimento aperto di X parametrizzato da un insieme numerabile.

Inoltre V ¢ pil fine di U per come sono stati definiti i ricoprimenti V;. Sia z € X;
esiste ¢ > | tale che z € K;. L’aperto Int(X;,,) ¢ un intorno di z tale che

Int(K;,)NVj, =0 per ogni j >i+2

e quindi interseca solo un numero finito di aperti del ricoprimento V. Pertanto V
¢ un raffinamento localmente finito di U. =

10.6 COROLLARIO

(a) Sia X c R™. Se X & chiuso oppure aperto, allora X é paracompatto.

(b) Se X ¢ una varieta topologica allora X é uno spazio paracompatto.
Dimostrazione. Immediata. w
Altre generalizzazioni della nozione di compattezza sono le scguenti.

10.7 DEFINIZIONE  Uno spazio topologico X si dice numerabilmente compatto
se ogni sottoinsieme infinito Z C X possiede un punto di accumulazione. Uno
spazio topologico X si dice compatto per successioni se ogni successione di
elementi di X possiede una sottosuccessione convergente.

Dalla proposizione 9.4(a) segue che ogni spazio topologico compatto ¢ nu-
merabilmente compatto. D’altra parte ogni spazio compatto per successioni ¢
numerabilmente compatto; infatti ogni suo sottoinsicme infinito Z contiene una
successione a elementi tutti distinti e questa, dovendo contenere una sottosucces-
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sione convergente, possicde qualche punto di accumulazione. Quindi valgono le
seguenti implicazioni:

X compatto = X numerabilmente compatto < X compallo per successioni

Nessuna delle implicazioni precedenti ¢ un’cquivalenza (cfr. esercizio 8). Di-
mostreremo tra poco che le tre nozioni di compattezza coincidono negli spazi
metrizzabili.

Sia U un ricoprimento aperto di uno spazio metrizzabile X. Supponiamo che
esista un numero reale ¢ > 0O tale che il ricoprimento V. costituito dai dischi
aperti di raggio € sia un raffinamento di 4. Il numero ¢ > 0 si dice un numero
di Lebesgue del ricoprimento U.

Abbiamo il seguente utile risultato.

10.8 PROPOSIZIONE  Sia X uno spazio metrizzabile compatto per successioni.
Ogni ricoprimento aperto U di X possiede un numero di Lebesgue.

Dimostrazione. Per ogni z € X, sia g(z) > 0 'estremo superiore dei numeri
6§ > 0 tali che il disco Dg(z) sia contenuto in un aperto del ricoprimento U.
Poniamo

gg = inf e(x).
zeX )

€ . . .
Se €y > 0, prendendo ¢ = 50 si ottiene I’asserto. Supponiamo per assurdo che

g0 = 0; allora esiste una successione {z,} di punti di X tale che
lim e(zy,)=0.
n—oo

Poiché X & compatto per successioni, a meno di sostituire {z,} con una sua

sottosuccessione, possiamo supporre che csista zo € X tale che lim z, = z,. Sia
n—00

1 . .
ny tale che d(zg, z,) < 7 e(zo) per ogni n > ng. Allora si ha
De(zy)/a(@n) C Deggyypa(zo)  per ogni n > ng

e(xo)

¢ quindi &(z,) > per ogni n > ny. Pertanto

e(zo)

lim e(z,)> > 0,
n—00
una contraddizione. =

Possiamo ora dimostrare il seguente:
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10.9 TEOREMA  Sia X uno spazio metrizzabile. Le seguenti condizioni sono
equivalenti:

(a) X é compatto.
(b) X & numerabilmente compatto.

(c) X é compatto per successioni.

Dimostrazione
(a) = (b) ¢ la proposizione 9.4(a).

(b) = (c). Sia {z, :n=1,2,...} una successione in X. Se infiniti termini della
successione coincidono essi formano una sottosuccessione convergente. Se {z,}
contiene infiniti punti distinti essa possiede un punto di accumulazione perché X
¢ numerabilmente compatto; in questo caso, poiché X & uno spazio metrico, per
la proposizione 8.6 {z,} possiede una sottosuccessione convergente.

(c) = (a). Sia U un ricoprimento aperto di X e sia € > 0 un numero di Lebesgue
di U. Supponiamo per assurdo che U non possieda un sottoricoprimento finito.
Allora neanche il ricoprimento Ve costituito dai dischi aperti di raggio e possiede
un sottoricoprimento finito. Pertanto, scelto arbitrariamente un punto z; € X, esiste
z3 & Dg(x,). Procedendo per induzione supponiamo di aver trovato {z,,z,,...,Zn}
tali che z; & Dg(xy) per ogni 1 < h < k < n. Poiché {D.(z)),..., De(z)} non
¢ un ricoprimento di X esiste zn. & De(zp) per ogni h = 1,...,n. Pertanto ¢
possibile costruire una successione {z, : n = 1,2,...} di punti di X tali che
d(z;,z;) > € per ogni i#j. D’altra parte la compattezza per successioni di X
implica ’esistenza di una sottosuccessione convergente {zn, @ k = 1,2,...}. Sia
T = klim Zp,. Sia ko > 0 tale che

—00

€ .
d(zg, Tn,) < 3 per ogni k > k.
Allora, per ogni h, [ > kg, si ha:
d(xnh: znz) S d(znhs z0) + d(fE(), zn;) < €,
una contraddizione. Cid conclude la dimostrazione. =
Originariamente la nozione di compattezza & stata introdotta negli spazi metrici
sotto forma di compattezza per successioni. Solo successivamente si € passati alla
definizione utilizzata oggi.

Un’altra caratterizzazione della compattezza negli spazi metrizzabili viene data
attraverso la nozione di “completezza”.
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10.10 DEFINIZIONE ~ Sia X uno spazio metrico con distanza d. Una successione
di Cauchy in X & una successione {xn}n> di elementi di X tale che per ogni
€ > 0 esiste Ne > 0 tale che d(zn,z) < € per ogni n, n' > N.

Se {zn}n>1 € una successione convergentc allora ¢ di Cauchy.
Sia infatti z = lim z, ¢ sia & > 0. Poiché la successione converge esiste Ng
n—0

€ . .
tale che d(z,z,) < 3 per ogni n > Ng. Pertanto, se n, n' > Ng, si ha:

A(2ny T) < A, 7) + d(z, T0) < =

€, _,
2 277

Viceversa non ¢ sempre vero che una successione di Cauchy converge. Ad

esempio la successione di numeri reali { —:n=1,2,...¢ converge a 0 ¢ quindi
n

¢ di Cauchy; questa stessa successione, considerata nello spazio metrico (0,1}, &
ancora di Cauchy ma non converge.

10.11 DEFINIZIONE  Uno spazio metrico X si dice completo se ogni succes-
sione di Cauchy in X converge.

Dai corsi di Analisi Matematica & ben noto al lettore che R, e pill in generale
R", sono spazi metrici completi, mentre Q non & completo. Ogni sottospazio
chiuso di uno spazio metrico completo ¢ ancora completo: la dimostrazione di
questo fatto ¢ lasciata al lettore.

Si osservi che la completezza, a differenza di tutte le altre proprieta studiate
fin qui, non & una proprieta topologica. In altre parole due spazi metrizzabili
omeomorfi possono essere ’'uno completo e ’altro no. Ad esempio l’intervallo
(0, 1) ed R sono due spazi metrizzabili omeomorfi, ma R & completo mentre (0, 1)

non lo é.

10.12 DEFINIZIONE ~ Uno spazio metrico X si dice totalmente limitato se per
ogni € > 0 esso possiede un ricoprimento finito costituito da dischi chiusi di
raggio e.

La totale limitatezza ¢ equivalente all’esistenza, per ogni & > 0, di un numero
finito di punti tali che ogni p € X abbia distanza al pid € da uno di essi.
Ogni spazio metrico totalmente limitato € limitato perché 'unione di un numero
finito di sottonsiemi limitati & limitato. Il viceversa non ¢ vero: esistono spazi
metrici limitati che non sono totalmente limitati (cfr. esercizio 7). Neanche la
totale limitatezza ¢ una proprietd topologica degli spazi metrici. Un esempio ¢
nuovamente fornito dall’intervallo (0,1) e da R.

Abbiamo la seguente caratterizzazione degli spazi metrizzabili compatti.
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10.13 TEOREMA  Uno spazio metrizzabile X é compatto se e solo se come
spazio metrico & completo e totalmente limitato.

Dimostrazione. Supponiamo X compatto. Allora X ¢ totalmente limitato perché
per ogni € > 0 il ricoprimento costituito dai dischi aperti di raggio e possiede un
sottoricoprimento finito.

Inoltre X & completo. Sia infatti {z,} una successione di Cauchy e fissiamo

, 3 . 5

e > 0. Sia N’ tale che d(z,,zm,) < 3 per ogni n, m > N'. Per la compattezza &

possibile trovare una sottosuccessione convergente {z,, }. Sia z = klim Tn, € sia
—00

€
2
d(z, zq) < d(z, Tn,) + d(Tn,, Tn) <€

k> 0 tale che ny > N' e d(z,2,,) < =. Allora, per ogni n > N’ si ha:

e quindi z =nli_’n;O zn; pertanto {z,} converge e quindi X & completo.
Supponiamo viceversa X completo e totalmente limitato. Sara sufficiente dimo-
strare che X ¢ compatto per successioni. Sia dunque {z,} una successione in X.
Possiamo supporre che contenga infiniti termini distinti, altrimenti essa certamente
possiede una sottosuccessione convergente. Consideriamo un ricoprimento di X
con un numero finito di dischi chiusi di raggio 1. Poiché {z,} ¢ un insieme
infinito, almeno uno di tali dischi, diciamo B;, contiene infiniti termini distinti
della successione, corrispondenti a un insieme infinito di indici I, ¢ N*. Conside-
riamo ora un ricoprimento di X con un numero finito di dischi chiusi di raggio

ok Poiché la sottosuccessione {z, : n € I} contiene infiniti termini distinti, uno

di tali dischi, diciamo B,, contiene infiniti termini distinti della sottosuccessione,
corrispondenti ad un insieme infinito di indici I, C I,. Proseguendo in questo
modo possiamo costruire induttivamente per ogni intero k > 1 un insieme infinito
I, di numeri naturali tale che Ip,, C I e tutti i termini z, per n € Iy siano

contenuti in un disco di raggio e Ora costruiamo una sottosuccessione {z,, }

scegliendo n, < ny < ... tali che n; € I per ogni k. Per ogni 7, j > k si ha:

2
d(zn, s mnj) < 7{:'

perché z,, ¢ z,, sono entrambi contenuti in un disco di raggio %; quindi {z,,} ¢

una successione di Cauchy. Poiché X & completo questa successione € convergente
¢ quindi {z,} possiede una sottosuccessione convergente: dunque X & compatto
per successioni. =

E interessante notare che il teorema precedente caratterizza una proprietd to-
pologica degli spazi metrizzabili, la compattezza, mediante due proprietad non
topologiche.
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10.14 TEOREMA  Sia X uno spazio metrico completo. Per ogni successione
{Dn = D, (zn)}n>1 di dischi chiusi in X tali che D, D D, D ... e lim r, =0, si

n—o0
ha:

rn]Dn#(b.

Dimostrazione. La successione {z,} dei centri dei dischi D, & una successione
. . N £ . .
di Cauchy perché se ¢ >0 e N ¢ tale che ry < =, allora per ogni n, m > N si

2
ha z,, z, € Dy e quindi

d(zn, Tm) < 2ry < e.

Sia z = lim z,. Facciamo vedere che z € [1 D,. Per ogni n > 1 il disco

mn-—00 n
D,, contiene i termini z,, Tns, Tns2,-... della successione. Il punto z, essendo

punto di accumulazione di {z,}, lo & anche dell’insieme {z,, : m > n}: pertanto
z appartiene a D, perché quest’insieme & chiuso. =

Per un caso particolare di questo risultato si veda I’esercizio 9.10. Vedremo
tra poco una conseguenza interessante del teorema 10.14.

10.15 DEFINIZIONE  Uno spazio topologico X si dice di prima categoria se
¢ unione di una famiglia numerabile di sottoinsiemi chiusi aventi interno vuoto.
Altrimenti X si dice di seconda categoria o di Baire.

10.16 TEOREMA (di Baire) Ogni spazio metrico completo é di seconda cate-
goria.

Dimostrazione. Supponiamo che X sia uno spazio metrico completo e che
{Cpn}n> sia una famiglia numerabile di insiemi chiusi aventi interno vuoto. Sia
D, un disco chiuso di raggio 1. Poiché C, ha interno vuoto, anche C, N D, ha
interno vuoto e quindi esiste un disco chiuso D, di raggio minore di 1/2 contenuto
in D, e tale che D,NC, = §. Similmente C, N D, & un chiuso avente interno
vuoto, ¢ quindi esiste un disco chiuso D; di raggio minore di 1/3 contenuto
in D, tale che D; N C, = . Continuando in questo modo possiamo costruire
induttivamente una successione di dischi chiusi {Dp},>, tali che D, D D, D

D,N(C, 1U...UC)) =0 e tali che D, abbia raggio r, < 1/n per ogni
n. Per il teorema 10.14 esiste z € [1 D,. Per costruzione z ¢ Uc, e quindi
n

n
UcC,#X. =
n
Dal teorema di Baire scgue che R™ & uno spazio di seconda categoria. Invece
Q, e pil in generale Q", & di prima categoria perché & numerabile e i suoi punti
sono chiusi a interno vuoto. Uno spazio discreto ¢ banalmente di seconda categoria
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perché non possiede sottoinsiemi chiusi non vuoti ad interno vuoto. Un’altra classe
di spazi di seconda categoria costituita dagli spazi compatti di Hausdorff, come
ora dimostreremo.

10.17 TEOREMA  Ogni spazio compatto di Hausdorff X é di seconda categoria.

Dimostrazione. Sia {Cp}p>) una famiglia numerabile di sottoinsiemi chiusi di
X a interno vuoto. Poiché X & normale (cfr. esempio 9.14(6)) e poiché X\C, £0 ¢
possibile trovare un aperto non vuoto U, C X\C, tale che U;NC, = §. Similmente,
poiché U, & compatto di Hausdorff, e quindi normale, ¢ poiché T, NC, & un chiuso
a interno vuoto, possiamo trovare un aperto non vuoto U, C U, tale che U, c U,
¢ U,NC, = . Procedendo induttivamente si costruisce una successione di aperti
{Un}ns: tali che Upyy C Uy € U, N(CpU...UC)) = 0. La famiglia di chiusi
{Un}n>1 ha la proprieta dell’intersezione finita e quindi, per la compattezza di
X, esiste z € Q U.,. Per costruzione z ¢9 C, € pertanto LnJ CphtX. =

Terminiamo il paragrafo con alcuni risultati riguardanti gli spazi di funzioni.
Siano X un insieme e (Y, d) uno spazio metrico. Nell’insieme Y X delle applicazioni
di X in Y definiamo una distanza ponendo per ogni f, g € YX:

6(f,9) = sup {d(f(z), 9(x))}.
zeX

E immediato verificare che 6§ & una distanza, che & chiamata distanza del sup o
distanza della convergenza uniforme. La topologia definita da § in Y X si chiama
topologia della convergenza uniforme.

" 10.18 PROPOSIZIONE  Se (Y,d) ¢ uno spazio metrico completo allora (YX,6)
é uno spazio metrico completo.

Dimostrazione. Sia {f,} una successione di Cauchy in YX. Poiché, per ogni
n,mez€X,

E(fn(m)u fm(x)) < 6(fn, fm)s

la successione {f,(z)} di elementi di ¥ ¢ di Cauchy per ogni z € X. Poiché
Y & completo, per ogni z € X esiste y, € Y tale che y, = lim f,(z). Definiamo
f X —'Y ponendo, per ogni z € X,

f(z) = yg.

€

Facciamo vedere che f =lim f,,. Fissato € > 0, sia N > 0 tale che §(fp, fm) < >
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per ogni n, m > N. Allora, per ogni z&€ X e n > N, si ha:
= . = [
d(fn(2), f(2)) = lim d(fn(2), fm(2)) < 5 <€
m—oo 2

e quindi 6(fp,f)<e perognin>N.wm

I1 caso pih importante della proposizione 10.18 si ha quando X ¢ uno spazio
topologico. In questo caso possiamo considerare il sottoinsieme C(X,Y) di yX
costituito dalle applicazioni continue. Si ha il seguente risultato.

10.19 TEOREMA  Siano X uno spazio topologico e (Y,d) uno spazio metrico.
Allora C(X,Y) é chiuso in YX rispetto alla topologia della convergenza uniforme.
In particolare, se Y é completo anche C(X,Y) é completo.

Dimostrazione. Sia f € YX un elemento appartenente alla chiusura di C(X,Y)
e sia {f,} una successione di elementi di C(X,Y) convergente a f. Fissato & > 0,

sia n > 0 tale che 6(fn, f) < % Sia z € X. Per la continuitd di f, esiste un

intorno U di z tale che, per ogni ' € U
dfa(e), ful2) < 5.
Pertanto si ha:
d(f (@), 1) € AIG), ol )+Aale), Ta@)+dFal@), f@)) < 5+5+5 =€
e quindi f & continua in z. Segue che f & continua in ogni punto, e quindi &
continua.

L'ultima affermazione dell’enunciaio segue dalla proposizione 10.18 e dal fatto
che C(X,Y) ¢ chiuso in Y¥X. =

Il teorema 10.19 generalizza il ben noto risultato dell’Analisi Matematica se-
condo il quale sc una successione di funzioni continue a valori reali definite in un
intervallo J converge uniformemente, allora il suo limite & una funzione continua
su J.

Esercizi

1. Dimostrare che Q & uno spazio paracompatto, ma non localmente compatto.

2. Dimostrare che il prodotto di una famiglia di spazi localmente compatti & localmente
compatto.

3. Dimostrare che la compattezza locale, la paracompatlezza ¢ la compattezza per suc-
cessioni sono proprietd topologiche.

4. Dimostrare che uno spazio metrico completo ¢ scparabile.
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Sia X uno spazio metrico non compatto. Dimostrare che esiste una funzione continua
e non limitata f: X — R.

Dimostrare che in uno spazio metrizzabile X un sottoinsieme Y & compatto se e solo
se ¢ chiuso e compatto per successioni.
Sia I, linsieme costituito dalle successioni {z, :n =1,2...} di numeri reali tali che

la serie 2 22 sia convergente, ciod tali che 2. z2 < co. Si dimostri che ponendo
n n

d({fl:n}, {yn}) = ‘,Xn: (zn — yn)z

si definisce in [, una struttura di spazio metrico. Si dimostri che la sfera unitaria
Si1(0) c I di centro la successione 0 a valori costanti uguali a 0, con la metrica
indotta da [, ¢ uno spazio metrico limitato ma non totalmente limitato.

(Suggerimento. Gli infiniti punti e; = {1,0,0,...}, e ={0,1,0,...}, e3={0,0,1,0,...},

. di S$1(0) hanno tra loro distanza v/2).

In N si consideri la topologia I generata dagli insiemi {2n—1,2n}, n > 1. Dimostrare
che (N, I) & numerabilmente compatto ma non & compatto né compatto per successioni.

Dimostrare che uno spazio metrico completo privo di punti isolati non & numerabile.

. Dimostrare che uno spazio topologico X & di seconda categoria se e solo se l'inter-

sezione di una qualsiasi famiglia numerabile di insiemi aperti densi &€ non vuota.

11 Connessione

Uno spazio topologico X si dice connesso se gli unici sottoinsiemi di X

che sono contemporaneamente aperti ¢ chiusi sono X e @. Altrimenti X si dice
sconnesso; quindi X & sconnesso se csiste un sottoinsieme aperto e chiuso A di

X

non vuoto e diverso da X.
Un sottoinsieme Y di uno spazio X si dice connesso (risp. sconnesso) se con

la topologia di sottospazio Y & uno spazio connesso (risp. sconnesso).

11.1 PROPOSIZIONE  Le condizioni seguenti per uno spazio topologico X sono

equivalenti:

(a) X ¢é sconnesso.
(b) X e unione di due sottoinsiemi aperti non vuoti e disgiunti.

(c) X é unione di due sottoinsiemi chiusi non vuoti e disgiunti.

Dimostrazione. (a) < (b). X ¢ sconnesso se e solo se esiste A#@, X aperto

e chiuso in X in tal caso A e B = X\ A sono entrambi aperti, disgiunti ¢ non vuoti
e X = AU B. Viceversa, se X = AUB con A e B aperti non vuoti e disgiunti,
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allora A e B sono ciascuno sia aperto che chiuso e diversi da § e da X; quindi
X ¢ sconnesso.
L’equivalenza (a) < (c) si dimostra nello stesso modo. s

Sono sconnessi gli spazi discreti con almeno due punti perché ogni loro sot-
toinsieme ¢ aperto e chiuso. Ogni spazio banale ¢ connesso. Un qualsiasi punto
di uno spazio topologico ¢ un sottoinsieme connesso.

Per ogni z € R, R\{z} & sconnesso perché unione dei due aperti (—oo,z)
e (z,+o00). Analogamente, se J & un intervallo aperto di R e z € J, J\{z} ¢
SCONNesso.

Se r & la retta di R* di equazione L(x) =0, dove L(X) = az, + bz, +c, Rz\r ¢
unione dei due aperti

U ={xeR:Lx) <0}, U'={xeR: Lx)> 0},

e quindi ¢ sconnesso.
11.2 TEOREMA  Gli intervalli di R, in particolare R stesso, sono connessi.

Dimostrazione. Supponiamo che J sia un intervallo sconnesso; dunque esistono
due chiusi A, B di R tali che JC AUB, ¢ AnJ e BnNJ siano non vuoti e
disgiunti.

Siano a € ANJ e b€ BNJ, e supponiamo a < b. Poiché J ¢ un intervallo,
[a,b] Cc J. L’insieme A N[a,b] & un chiuso di R, quindi contiene il suo estremo
superiore, che chiamiamo z. Poiché z € AN[a,b] e b€ B, si ha z < b; e poiché
z = sup{A N [a,b]} Iintervallo (z,b) & contenuto in B. Ma B ¢ chiuso e percio
z € B, e questa ¢ una contraddizione. =

Vale anche un teorema inverso, e cioe
11.3 TEOREMA  Ogni sottoinsieme connesso di R & un intervallo.

Dimostrazione. Per il teorema precedente ¢ sufficiente dimostrare che un sot-
toinsieme YV di R che non ¢ un intervallo & sconnesso se contiene almeno due
punti. Siano dunque ¢#b due punti di Y; poiché Y non ¢ un intervallo possiamo
sceglierli in modo che esista ¢ € R\Y tale che a < ¢ < b. Poniamo A = (—o0,¢).
Allora

ANY =AnY;

quindi ANY & un sottoinsieme di Y non vuoto e diverso da Y, aperto e chiuso
inY. m

Dimostreremo ora alcune proprieta degli insiemi e degli spazi connessi.
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11.4 PROPOSIZIONE  Siano Y, Z sottoinsiemi dello spazio topologico X tali
che Y CZCY. SeY ¢ connesso anche Z é connesso.

Dimostrazione. Sia F C Z un sottoinsieme aperto e chiuso in Z. Esistono un
aperto A e un chiuso C di X tali che F=ZNA=ZnC. Poiché Y & connesso
e FNY ¢ aperto e chiuso in Y si ha

FNY=0¢ oppure FNY =Y.
Nel primo caso
p=FNY=ANY=ANnY

perché A ¢ aperto ¢ quindi anche F=ANZ=4.
Nel secondo caso

Y=FNY=CnY, cioe YCC,

quindi Y C C, perché C ¢ chiuso. Segue che F=ZNC=2. =

11.5 PROPOSIZIONE Se f : X — Y ¢ un’applicazione continua e se Z é un
sottoinsieme connesso di X, f(Z) é un sottoinsieme connesso di Y.

Dimostrazione. E sufficiente dimostrare che, se f : X — Y & continua e
suriettiva e X ¢ connesso, allora anche Y & connesso.

Supponiamo per assurdo che A sia un sottoinsieme aperto e chiuso di Y,
diverso da Y e da @. Per la continuita di f, f '(4) € un sottoinsieme aperto e
chiuso di X; poiché f & suricttiva f '(A) non & vuoto e & diverso da X; questo
contraddice la connessione di X. =

11.6 COROLLARIO
(a) La connessione & una proprieta topologica.

(b) Uno spazio quoziente di uno spazio connesso é connesso.
Dimostrazione. Esercizio. s

11.7 PROPOSIZIONE  Se due sottoinsiemi connessi Y e Z di uno spazio topo-
logico X hanno un punto in comune, Y U Z é connesso.

Dimostrazione. Supponiamo che A sia un sottoinsieme aperto e chiuso di YUZ.
Se A#0 sara ad escmpio ANY #0. Poiché ANY ¢ aperto e chiuso in Y connesso,
si ha Y = AnY. Poiché per ipotesi Y N Z #0, anche AN Z #(; dalla connessionc
di Z segue che ANZ=Zcquindi A=YUZ. =
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Due punti dello spazio topologico X si dicono connessi in X se esiste un
sottoinsieme connesso di X che li contiene entrambi.

11.8 PROPOSIZIONE ~ Se scelti comunque due punti dello spazio topologico X,
questi sono connessi in X, lo spazio é connesso.

Dimostrazione. Supponiamo che A sia un sottoinsieme non vuoto, simultanea-
mente aperto e chiuso di X, e facciamo vedere che A = X.

Poiché A+ esiste p € A. Sia ¢ un qualsiasi altro punto di X; per ipotesi
esiste un sottoinsieme connesso Y C X tale che p, g€ Y. ANY ¢ aperto e chiuso
e non vuoto in Y, quindi ANY =Y ne segue che g€ A. Quindi A=X. =

Combinando le proposizioni 11.7 e 11.8 si dimostra il seguente

11.9 COROLLARIO  L’unione di una famiglia di sottoinsiemi connessi di uno
spazio topologico X aventi un punto in comune é connessa.

Dimostrazione. Sia Y = U K;, K, sottoinsicmi connessi di X tali che [ K;#0,
i€l el
e sia yy € n K;. Siano y;, y» € Y due punti arbitrari; siano ,, i, € I tali che
el
Y € K;, e y2 € K;,. Allora K; U K;, & connesso per la proposizione 11.7, perché
Yo € K;, N K;,. Quindi y, e y, sono connessi in Y; dalla proposizione 11.8 segue
che Y & connesso. =

In uno spazio topologico X possiamo introdurre una relazione binaria p ponendo
ppg & p € g sono connessi in X.

E facile verificare che p & una relazione di equivalenza (per la transitivita si
utilizzi la proposizione 11.7). Le classi di p-equivalenza si chiamano componenti
connesse di X; per ogni p € X denoteremo con C(p) la componente connessa che
lo contiene, e la chiameremo la componente connessa di p. Per la proposizione
11.8 X & connesso se e solo se possiede un’unica componente connessa.

11.10 PROPOSIZIONE Per ogni p € X, C(p) ¢ il piin grande sottoinsieme
connesso di X contenente p.

Dimostrazione. Supponiamo che Y sia un sottoinsieme connesso di X conte-
nente p. Se ¢ € Y allora per definizione p e ¢ sono connessi in X, cio¢ g € C(p);
quindi Y C C(p).

D’altra parte C(p) ¢ connesso. Infatti per ogni z € C(p) esiste un sottoinsieme
connesso Y(z) ¢ X tale che p,z € Y(z); come abbiamo appena dimostrato
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Y (z) C C(p). Si ha quindi
= U Y@

z€C(p)
e poiché

pe N Y@),
z€C(p)

per il corollario 11.9 C(p) ¢ connesso. =

11.11 COROLLARIO  Per ogni punto p dello spazio X, la componente connessa
di p é un sottoinsieme chiuso di X.

Dimostrazione. Poiché C(p) & connesso, anche C(p) & connesso per la pro-
posizione 11.4. Dalla proposizione 11.10 segue che C(p) C C(p), e quindi vale
I’uguaglianza. =

11.12 TEOREMA Il prodotio topologico di una qualsiasi famiglia di spazi
connessi € uno spazio COnnesso.

Dimostrazione. Diamo prima la dimostrazione nel caso del prodotto X x Y di
due spazi connessi X e Y.

Siano (z1,y1), (z2,42) € X x Y. I sottospazi X x {y;} ¢ {z;} xY di X xY
sono omeomorfi a X e a Y rispettivamente e quindi sono connes$i. Ne segue che
in XxY

(zla yl)/)(fﬁl, y2)
(z1, 12)0(22, Y2).

Per la transitivita

(xl » Y1 )p(x2a y2)a

quindi X x Y & connesso per la proposizione 11.8.

Per induzione si dimostra facilmente che il prodotto topologico X X ... x X,
di un numero finito di spazi connessi X,...,X,, € connesso.

Dimostriamo ora il teorema nel caso generale.

Sia X = MEM X, il prodotto topologico di una famiglia {X,},cp di spazi
connessi, e sia p € X un suo qualsiasi punto. Consideriamo un arbitrario aperto B
della base che definisce la topologia prodotto. Per definizione esistono un numero
finito di indici w,...,ux € M e aperti non vuoti A4 C X, ,...,Ax C Xy, tali che

B={zeX:z(u) €A, 1=1,...,k}.
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Fissiamo a, € Ay,...,a; € A; denotiamo con ¢ il punto di B cosi definito:

a; se u=p; per qualche 1 =1,...,k;

alw) = { p(u) altrimenti.

Consideriamo il sottoinsieme di X

G={ze X :z(u)=plp) perogni p#u,..., LM}

G ¢ connesso perché omeomorfo a X, x...x X, e contiene i punti p e g.
Quindi ¢ € C(p); ne segue che C(p) N B#0.

Poiché B ¢ un arbitrario aperto di una base di X, C(p) ¢ denso in X; ma C(p)
¢ anche chiuso; quindi C(p) = X, cio¢ X & connesso. =

11.13 COROLLARIO  Per ogni n > 1, R, I", 8" ¢ P*(R) sono connessi.

Dimostrazione. La connessione di R™ e di I" segue dal teorema precedente
applicato a n copie di R e di I=[0,1], che sono connessi per il teorema 11.2.
La connessione di S™ segue dal fatto che per un qualsiasi p € S™ si ha

S* =8"\{p}

e S"\{p} ¢ omeomorfo a R", quindi & connesso.
P*(R) ¢ connesso perché & un quoziente di 8™ che & connesso. =

11.14 Esempi e applicazioni

N

1. Sia J un intervallo aperto (limitato o no) di R. Un intervallo J' & omeomorfo
a J se e solo se J' & aperto.

Se infatti J' & aperto allora ¢ omeomorfo a J, come abbiamo gia dimostrato
(esempi 5.4(5), (6)). Se invece J' & chiuso e limitato, & compatto e quindi non
isomorfo a J, che non & compatto.

Supponiamo poi che J' = (a,b] sia un intervallo aperto a sinistra, e che esista
un omeomorfismo f:J' — J. Poiché f & un’applicazione biunivoca si ha

FANED = IN{f(b)}-

J\{b} = (a,b) & connesso e, poiché f & continua, f(J'\{b}) & connesso. Ma
questo ¢ assurdo perché J ¢ un intervallo aperto e quindi J\{f(b)} € sconnesso.
Analogamente si dimostra che un intervallo della forma J' = [a,b) non pud essere
omeomorfo a J.

Tenuto conto dell’esempio 9.14(1), questo dimostra che le 3 classi (a), (8),

(v) dell’esempio 5.4(7) sono disgiunte.

2. Generalizzando il ragionamento dell’esempio 1 & facile dimostrare che I e
S' non sono omeomorfi.
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Supponiamo infatti per assurdo che esista un omeomorfismo
f: 18"
Poiché f & biunivoca si ha
F(0, 1) = SN\{f(0), F(1)}.

Dalla continuita di f segue che questo sottoinsicme di S' & connesso, perché (0, 1)
¢ connesso. Ma

S"\{f(0)} =R
e, poiché f(0)# f(1),
S"\{f(0), f(1)} ~ R\{un punto}

che ¢ sconnesso; questa € una contraddizione.
Si noti che I e S' sono entrambi compatti e connessi.

3. Le componenti connesse di uno spazio topologico sono chiuse (corollario
11.11) ma in generale non sono aperte.
Si consideri ad esempio il sottospazio T' di R cosi definito:

T={0}u{l/n:n>1 intero}.
Allora €(0) = {0} non & aperto in T, perché 0 € D(T).

4. Siano (X, T}) e (X5, To) due spazi topologici. La loro somma topologica si
definisce come lo spazio (X, HXZ,T) dove X, HXZ ¢ 'unione disgiunta di X,
e X5, e la topologia T ¢ definita nel modo seguente:

AeT seesolose ANX, eTie ANX, €T

Si noti che X, e X, sono sottospazi di X|HX2 simultaneamente aperti e
chiusi. Quindi X, HXQ € sconnesso.

In modo simile si definisce la somma topologica di una famiglia qualsiasi di
spazi topologici.

Esercizi

1. Dimostrare che I'insieme dei numeri razionali Q c R ¢ sconnesso.
2. Riconoscere quali dei seguenti sottoinsiemi di R? sono sconnessi:
A=R’\{(z,0): z#0).
B =P\{(0,y) : y irrazionale}, dove P={(z,y): ~1 <z, y<1}
C=D(1,00uD(-1,0)
D=C
E=CuU{0,0)}.



w

4.

5.

6.

7.

8.

9.
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Dimostrare che R con la topologia j; (rispettivamente j;) & sconnesso.

Sia S un sottoinsieme dello spazio topologico connesso X. Diremo che S sconnette X
se X\S & sconnesso. Dimostrare che un iperpiano sconnette R" e che un sottospazio
affine di dimensionc m < n — 2 non sconnette R", n > 2.

Dimostrare che R non & omeomorfo a R" per ogni n > 2.
(Suggerimento. Usare il fatto che un punto sconnette R mentre nessun punto sconnette
R™).

Dimostrare che I'unione delle circonferenze di centro (0,0) e di raggio razionale < 1
& un sottoinsieme sconnesso di R2.

Sia f : R* — R™ un’applicazione continua ¢ biunivoca tale che f(S" ') = S*"!.
Dimostrare che f(D;(0)) = D,(0).

Uno spazio topologico X si dice fotalmente sconnesso se per ogni z € X C(z) = {z}.
Dimostrare che ogni spazio metrizzabile numerabile con almeno due punti & totalmente
sconnesso (in particolare Q ¢ totalmente sconnesso).

Dimostrare il seguente teorema:

TEOREMA DEL PUNTO FISSO Ogni applicazione continua
[ :la,b] — [a,b]

di un’intervallo chiuso e limitato [a,b], a < b, in se stesso ha un punto fisso, cioé
esiste z € [a,b] tale che f(z)=z.

10. Uno spazio topologico X si dice localmente connesso in un punto p € X se ogni

intorno di p contiene un intorno connesso di p. X si dice localmente connesso se &
localmente connesso in ogni suo punto.

Ogni spazio discreto & localmente connesso pur essendo totalmente sconnesso.

Il sottospazio di R

T={0}u{l/n:n>1 intero}

¢ localmente connesso in tutti i suoi punti eccetto che in {0}; si noti che T ¢
totalmente sconnesso.

Uno spazio connesso non & necessariamente localmente connesso (cfr. esempio 12.6(2)).
Dimostrare che:

(a) se uno spazio X € localmente connesso nel punto p, allora p € un punto interno
di C(p);
(b) ogni sottospazio aperto di uno spazio localmente connesso ¢ localmente connesso;

(c) per ogni punto p di uno spazio localmente connesso X C(p) € un sottoinsieme
aperto di X

(d) la connessione locale & una proprieta topologica.

11. Dimostrare che per ogni ¢ € R il sottospazio di R?

X ={(z,y) : zy =t}

non ¢ omeomorfo ad R.
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12. Sia X c R? l'unione di due circonferenze di raggio 1 e centri (1,0) e (~1,0)
rispettivamente, tangenti nell’origine (fig. 11.1).
Dimostrare che:

(a) X non & omeomorfo a S';

(b) X non & omeomorfo a L

Figura 11.1

13. Si consideri la somma topologica X, =S'LI... 118" di n>1 copie di S, ¢ sia F,
lo spazio quoziente di X, ottenuto identificando a un punto il sottoinsieme

{(1,0)1,---,(1;0)71};

dove (1,0); & il punto (1,0) della j-esima copia di S'. F, si chiama fiore ad n petali
(se n=1, Fy =Sh).
Per ogni intero n > 1 si consideri poi il sottospazio di R’

dove C; ¢ la circonferenza di centro il punto (j,0) e raggio j (fig. 11.2).
Dimostrare che:

(a) per ogni n>1, I, = Yy,

(b) se n#Em. F, % Fp,.

Figura 11.2
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14. Sia Y c R? il cilindro di equazione
:1:% + :1:% =1
e Z il cono di equazione
22+ 23— 22 =0.
Dimostrare che ¥ e Z non sono omeomorfi.

15. Dimostrare che GL,(R) e O(n) sono sconnessi.

16. Dire quali dei seguenti sottoinsiemi di R® sono connessi:
A={1,0,t):0<t < 1}U{(z1,22,0): 2? + 22 = 1} U {(z1, 22, 1) : 2 + 2] = 1}
B=A\{(1,0,1)};

C = A\{(0,1,0)};
D={(1,0,t):0 <t < 1}U{(z1,22, 1) : 2} +2} =1}.

17. Dire quali dei seguenti sottoinsiemi di R? sono connessi:
A={xe R*:z;=nz;, 21 >0, 20> 0, n intero tale che 1 <n < 3%
B=AU{xeR:z;=1}
C=AU{xeR?: 2 =0}

D=AU{X€ RZ:zISO, 1‘2<0}.

18. Dire quali dei seguenti sottoinsiemi di R® sono connessi:
A={xeR x| <1, (z1,22)#(0,0)};
B={xe R :|x| <1, z,+z,+z3#0};
C={xeR*:12<|x| <1, = #0};
D={xeR:|x||=1, (z1,22)#(0,0)#(z1,23), (z2,23)#(0,0)}.

19. Siano Z, = {x e R*: ||x - (1,0)]| < 1},
7o ={xeR:|x—(-1,0)]| < 1};
dire quali dei seguenti sottoinsiemi di R’ sono connessi:
A=ZUZ-y;
B=AU{(0,0)};
C=AU{(-2,00,2,00};
D=AU{xeR iz =1}

E=AU{xeR":z=0}.
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12 Connessione per archi

Un arco, in uno spazio topologico X, € un’applicazione continua a: I — X
dell’intervallo chiuso e limitato I =[0,1] in X. I punti a(0), a(l) € X si dicono
gli estremi di a, ¢ rispettivamente punto iniziale e punto finale di a.

Se per ogni p, ¢ € X esiste un arco a tale che a(0) =p e a(l) = ¢, X si dice
connesso per archi (fig. 12.1).

Un sottoinsieme Y di uno spazio X si dice connesso per archi se come
sottospazio ¢ connesso per archi.

Per ogni n > 1 R™ & connesso per archi. Infatti, se x, y € R",

a®) = (1 — t)x +ty

¢ un arco in R™ di estremi x ed y (¢ il segmento di estremi X e y). Analogamente
sono connessi per archi i sottoinsiemi convessi di R"; in particolare i dischi aperti,
D", I", A™ sono connessi per archi.

La connessione per archi & una proprieta pitt forte della connessione:

s\

12.1 PROPOSIZIONE  Uno spazio connesso per archi é connesso.

Dimostrazione. Siano z, y € X. Per ipotesi, esiste un arco «:1 — X tale che
a(0) =z, a(l) = y. Gli elementi z e y appartengono al sottoinsieme connesso a(I)
di X: dunque z e y sono connessi in X. Ne segue, per la proposizione 11.8, che
X ¢ connesso. =

La proposizione 12.1 non si pud invertire: esistono spazi connessi che non
sono connessi per archi (cfr. escmpio 12.6(1)). Dalla proposizione 12.1 segue che
uno spazio sconnesso non € connesso per archi.

Un’altra proprieta importante ¢ data dalla seguente proposizione (si noti 1’ana-
logia con la proposizione 11.5):

Figura 12.1
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12.2 PROPOSIZIONE  Se f : X — Y é un’applicazione continua e se Z é un
sottoinsieme connesso per archi di X, f(Z) é un sottoinsieme connesso per archi
Y.

Dimostrazione. E sufficiente dimostrare che, se f:X — Y ¢ continua ¢
suriettiva € X ¢ connesso per archi, allora Y ¢ connesso per archi.

Siano g, y, due punti qualsiasi di Y; per la suriettivitd di f esistono z;,z, € X
tali che f(z;)=y;, 1=1,2. Sia a:I — X un arco in X di estremi z, e z,. Allora
fra:l-Y éunarcoinY e

(f-a)O0) =y, (f-a)()=y,. =

12.3 COROLLARIO
(a) La connessione per archi é una proprieta topologica.

(b) Uno spazio quoziente di uno spazio connesso per archi é connesso per
archi.

Dimostrazione. Esercizio. m

L’analogia tra connessione per archi e connessione si ha anche per il concetto
di “componenti connesse per archi” di uno spazio, che ora definiremo.

Sia dato uno spazio topologico X; introduciamo in X una relazione binaria ¢
ponendo zey se esiste un arco a in X tale che a(0) =z, a(l) = y.

E facile verificare che ¢ & una relazione di equivalenza. La riflessivita zez per
ogni z € X segue dal fatto che ’applicazione costante a : I — X, a(t) = = per ogni
tel, & un arco. Se zey, cioé esiste un arco a tale che a(0) =z, a(l) =y, allora
yez perché b: I — X definito da b(¢) = a(1 —t) & un arco tale che b(0) = a(l) =y,
b(1) = a(0) = z; quindi ¢ & simmetrica. La transitivita: se zey, yez, allora esistono
archi a, b in X tali che

a(0) =z, a(l)=y=5b0), b(l) ==z

Definiamo ¢ : I — X ponendo

{a(Zt) se 0<t<1/2
c(t) =
b2t—1) se 1/2<t< 1.

¢ ¢ un arco, e ¢(0) =z, ¢(1) = 2z, quindi zez.

Le classi di e-equivalenza si chiamano componenti connesse per archi di X,
la componente connessa per archi contenente un punto p € X si denota Cq4(p).
X ¢ connesso per archi se e solo se possiede un’unica componente connessa per
archi. Si ha la seguente
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12.4 PROPOSIZIONE  Per ogni punto p di uno spazio topologico X, C.(p) & il
pi grande sottoinsieme connesso per archi di X contenente p.

Dimostrazione. Se Y & un sottoinsieme di X connesso per archi contenente p,
e g € Y, per definizione esiste un arco e in Y tale che a(0) = p, a(l) =g¢. La
composizione di a con 'inclusione di ¥ in X & un arco in X di estremi p e g;
quindi peq, ciot g € Cq(p). Ne segue che Y C Cqu(p).

D’altra parte C,(p) € connesso per archi. Infatti se ¢ € Co(p) esiste un arco a
in X tale che a(0) = p, a(1l) = ¢; per concludere ¢ sufficiente far vedere che a ¢
un arco in Cq(p), cioe che a(I) C Co(p). Sia s € L. Definiamo b, : I — X ponendo

bs(t) = a(ts), te L

bs & un arco in X di estremi p ed a(s); quindi a(s) € Cq(p); poiché cid ¢ vero
per ogni s €I si ha a(l) C Cyu(p). »

Vale anche il seguente

12.5 TEOREMA Il prodotto topologico di una famiglia qualsiasi di spazi
connessi per archi é uno spazio connesso per drchi.

Dimostrazione. Sia X = I1 Xy, X, connesso per archi per ogni u € M. Siano
HEM
p, ¢ € X. Per ogni u € M esiste un arco a, in X, di estremi p(p) e g(u), perché

X, ¢ connesso per archi. Definiamo a : I — X ponendo
a(t)(p) = au(t).

Per le proprieta della topologia prodotto, a € un arco in X; inoltre
a(0)() = au(0) = p(p),

cio¢ a(0) = p; analogamente a(1) = g, quindi X ¢ connesso per archi. m

12.6 Esempi

1. In R? consideriamo il sottoinsieme
C={(/n,y):0<y<1, n>1 intero},
e P’intervallo unitario dell’asse z

L ={(z0):0<z < 1}.
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E facile vedere che I, UC & connesso per archi, e quindi connesso. Si osservi
infatti che

Luc=U d,ucy,
n>1

dove
Co={(I/n,y):0<y< 1},

Poiché ognuno degli insiemi I, UC, & connesso per archi e
n LuCy)=LUu <n Cn> =1,
n>1 n

dall’esercizio 1 segue I’asserto.
Sia p=(0,1). L’insieme
X={pjuLucC
¢ connesso perché
pel,uC

(chiaramente p € D(I; U C)). D’altra parte X non & connesso per archi; per
dimostrarlo sara sufficiente far vedere che se ¢ : I — X & un arco tale che
a(0) = p, allora a(t) =p per ogni t € I.

I sottoinsieme

G=a'(p)CI

¢ chiuso perché a ¢ continua. Sia t), € G e D = D, (p); per la continuita di a
esiste £ > 0 tale che

a((to —e, ty+e)Cc DN X.

Ma a((to — e,ty +€)) ¢ connesso ¢ contiene p, quindi coincide con p perché ogni
sottoinsieme di D N X contenente p € sconnesso se contiene altri punti. Quindi

(to—¢€, to+€) CG;

ne segue che G ¢ aperto e chiuso in I; dunque G =1 perché I & connesso.

2. Uno spazio topologico X si dice localmente connesso per archi in un punto
p € X se possiede un sistema fondamentale di intorni connessi per archi di p. Cio
equivale a dire che per ogni intorno U di p esiste un intorno V C U di p tale che
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per ogni ¢ €V esista un arco
ag: 1 -V

tale che ag(0) =p, a,(l)=gq.

E evidente che se X & localmente connesso per archi in p allora X ¢ localmente
connesso in p (cfr. esercizio 11.10)).

X si dice localmente connesso per archi se € localmente connesso per archi
in ogni suo punto.

Ogni aperto di R™ ¢ localmente connesso per archi, perché i dischi aperti di
R™ sono connessi per archi. Ogni varietd topologica & localmente connessa per
archi.

Uno spazio discreto con almeno due punti ¢ localmente connesso per archi,
ma non ¢ connesso per archi.

Viceversa uno spazio connesso per archi non & necessariamente anche local-
mente connesso per archi.

Ad esempio si consideri il sottoinsieme I, UC c R? dell’esempio 1, ¢ si prenda

Yy=LuC=LuCul,
dove

L ={0,»:0<y <1}
Y & connesso per archi perché

Y= 9, (L UC) U, UL,
ognuno degli insiemi I, UC, e I; UL, & connesso per archi e
L Uuly)n [ Q] (I U Cn)] =L, 40

(cfr. esercizio 1).
D’altra parte ¥ non & localmente connesso in p = (0,1) (e quindi non &
localmente connesso per archi in p). Infatti ogni intorno di p della forma

D,(p)nY, O0<r<1

non contiene intorni connessi di p (fig. 12.2).

3. Le componenti connesse per archi di uno spazio topologico non sono chiuse
in generale, a differenza di quel che accade per le componenti connesse.
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Figura 12.2

Ad esempio lo spazio X dell’esempio 1 si decompone in due componenti
connesse per archi:

X={ptud;u0).
La componente {p} & chiusa, mentre la componente I, UC non & chiusa perché

p ¢ aderente a I, UC.

Esercizi

1. Dimostrare che ’unione di una famiglia di sottoinsiemi connessi per archi di uno
spazio topologico X aventi un punto in comune ¢ connessa per archi.

Y

Figura 12.3
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Dimostrare che i seguenti sottoinsiemi di R™, n > 2, sono connessi per archi:

{(xeR":z,>0}); $"7"; {xeR":z,#0} U {0}.

Dimostrare che uno spazio topologico connesso e localmente connesso per archi X ¢
connesso per archi.

imostrare che i aperto connesso di ¢ $SO per i
Dimostrare che ogni apert so di R™ & conne arch

Si considerino i seguenti sottoinsiemi di R%:
L ={0,):0<y <1}, B={(z,9):0<z <1, y=cos(n/z)}.

Si dimostri che X =1, UB & connesso ma non connesso per archi (vedi fig. 12.3).



Capitolo 4

Omotopia, gruppo fondamentale e rivestimenti

13 Omotopia di applicazioni continue

In questo capitolo studieremo I’omotopia, che & una relazione di equivalenza
tra applicazioni continue di importanza fondamentale in topologia, e nc daremo
diverse applicazioni. Denoteremo come al solito con I I’intervallo chiuso [0, 1] di
R.

Siano X e Y due spazi topologici e fy, fi : X — Y due applicazioni continue;
una omotopia tra f, e f; ¢ un’applicazione continua:

F: XxI-Y

tale che F(z,0) = fo(z) e F(z,1) = fi(z) per ogni z € X. Se un’omotopia F' esiste
diciamo che f, é omotopa a f, e scriviamo F : fy ~ f), o pill semplicemente
fo= f.

Nella pratica risulta essere pill utile la seguente nozione pitt generale. Siano A un
sottoinsieme di X e fy, f; : X — Y due applicazioni continue tali che fo(a) = fi(a)
per ogni a € A; una omotopia tra fy e f) relativa ad A &€ un’omotopia F : fy ~ f;
tale che

F(a,t) = fo(a) = fi(a)

s\

per ogni a € A, t € I. Se F esiste diciamo che f, é omotopa a f, relativamente
ad A e scriviamo F': fy ~14 fi, 0 pill semplicemente fy >~ 4 fi. Ovviamente
prendendo A = si riottiene la nozione di omotopia.

13.1 LEMMA Siano X e Y due spazi topologici e A un sottoinsieme di
X. Nell’insieme delle applicazioni continue di X in'Y la relazione ~p 4 € di
equivalenza. In particolare I’'omotopia é un relazione di equivalenza.

Dimostrazione. La riflessivita si dimostra prendendo F(z,t) = f(z) per ogni
i X —>Y.Se F: fy~eafi allora G: fi =4 fo, dove G(z,t) = F(z,1 —t):
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quindi. la relazione ¢ simmetrica. Per dimostrarc la transitivitd supponiamo F :
foreta fi € Gt fi =14 fo; allora:
F(z,2t) 0<t<1/2

H(z,t)={ zeX
Gz,2t—1) 1/2<t< 1

definisce un’omotopia tra fo e f, relativa ad A. =

Se fo ~e14 1 diremo che fy e fi sono omotope relativamente ad A (oppure
che sono omotope se A = 0). Intuitivamente f, e f; sono omotope se ¢ possibile
deformare con continuitd fy in f;: infatti un’omotopia ¢ essenzialmente una fa-
miglia di applicazioni continue F; : X —» Y, t € I, dove Fi(z) = F(z,t) per ogni
zeX.

13.2 Esempi

1. Siano f, g : X — R™ due applicazioni continue da uno spazio X in R™,
Ponendo

F(z,t) = f(z) +t(g(z) — f(z))

si definisce un’omotopia tra f e g. In particolare F(x,t) = tx+ (1 — t)y definisce
un’omotopia F : R" x I — R" tra I’applicazione costante cy (dove y € R" & un
punto fissato) e I’identitd Ige.

2. Sia Y uno spazio topologico. Un’applicazione continua f : §' — Y & omotopa
a un’applicazione costante se e solo se f si estende a un’applicazione continua
g : D> — Y. Supponiamo infatti che g esista: allora ponendo F(x,t) = g(tx) si
ottiene un’omotopia F' : cyo) =~ f. Se viceversa esiste un’omotopia F : ¢, =~ f per
qualche p € Y D'applicazione g : D* — Y definita da

F{-X ‘ 0
g(x) = { (||x||«[|X||) se Xx#
p se X=0

¢ continua ¢ estende f.

Due spazi topologici X e Y si dicono omotopicamente equivalenti (oppure dello
stesso tipo di omotopia) se esistono applicazioni continue f: X - Y, f':Y - X
tali che

flof~lx, [ ~1y.

Le applicazioni f e f' si dicono equivalenze omotopiche tra X e Y una inversa
dell’altra.
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13.3 LEMMA  L’equivalenza omotopica ¢ una relazione di equivalenza tra
spazi topologici.

Dimostrazione. La riflessivitd ¢ la simmetria sono ovvie per definizione. Di-
mostriamo la transitivitd. Siano f: X —» Y, g:Y — Z equivalenze omotopiche,
di inverse omotopiche ¢': Z —»Y e f': Y — X. Quindi esistono omotopie:

F:fl feoly, Flif-flely
Gig-g=ly, G:g-g =1z
Si ottiene un’omotopia H : (f'-¢')- (g - f) ~ lx ponendo

J'(G(f(2),2t)) 0<t<1/2

H(z,t) =
.0 {F(z,2t~l) 12<t<1.

Un’omotopia H' : (g- f)-(f'-¢') = 1z & invece data da:
g(F'(g'(2),2t) 0<t<1/2

H'(z,t) = {
G'(z,2t—1) 1/2<t<l. =
Ovviamente se X e Y sono omeomorfi allora X e Y sono anche omotopi-
camente equivalenti, ma non vale il viceversa. Ad esempio R", n > 1, non &
omeomorfo a un punto {p} ma & omotopicamente equivalente a {p}. Definiamo
infatti

f:{p} - R"

ponendo f(p) =0, e sia g : R" — {p}. Allora g- f = 1(py mentre un’omotopia
F:f.g~1gs ¢ data da F(x,t) =tx. Quindi f e g sono equivalenze omotopiche.
Uno spazio topologico si dice contraibile se & omotopicamente equivalente a

s

un punto. Dalla verifica precedente segue che R" & contraibile.

13.4 Esempio

S" ' e R™\{0} sono omotopicamente equivalenti per ogni n > 2. Infatti 1’in-
clusione ¢ : "' — R™\{0} e Papplicazione ¢ : R"\{0} — S™ ' definita da

o(x) = sono equivalenze omotopiche: un’omotopia F': v 0 = Ign gy ¢ data

X
[1]]
da F(x,t) = xett " DInllxIl,

Esercizi
1. Siano z, y punti di uno spazio topologico X. Dimostrare che le applicazioni costanti

¢z, ¢y : I — X sono omotope se e solo se z e y appartengono alla stessa componente
connessa per archi.
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2. Dimostrare che uno spazio X ¢ contraibile se e solo se I'applicazione 1x ¢ omotopa
a un’applicazione costante di X in se stesso.

3. Dimostrare che un sottospazio convesso di R™ & contraibile. In particolare D", I", A"
sono contraibili.

4. Dimostrare che uno spazio contraibile ¢ connesso per archi.

14 1l gruppo fondamentale

In questo paragrafo vedremo come, utilizzando la nozionc di omotopia, sia
possibile associare ad ogni spazio topologico un gruppo. Le proprieta algebriche
di questo gruppo riflettono le proprieta topologiche dello spazio.

Siano X uno spazio topologico e f, g : I — X due archi tali che f(1)=g(0).
La composizione, o prodotto di f per g, € I'arco f *g cosi definito:

f@t) 0<t<1/2

(f *9)6) = {g(Zt— h 12<t<l.

Due archi f, g : I — X si dicono equivalenti, e si scrive f ~ g, se sono
omotopi relativamente a {0,1}. In particolare se f ~ g allora f(0) = g(0) ed
f(1) =g¢(1) (fig. 14.1).

14.1 LEMMA  Siano fo, go, f1, 91 : 1 — X archi tali che fo ~ fi e go ~ g1- Se
Jo(1) = go(0), allora fi(1)=g,(0) e fo*go~ fi*g.

Dimostrazione. L affermazione f (1) = ¢,(0) € ovvia. Siano
F o fo~rerqony fis G190 el {01} 91-
Allora:

F(2s,t) 0<s<1/2

H(s,t)={
G2s-1,t) 1/2<s<1

& un’omotopia fo * go el (0,1} S1 * g1 (fig. 14.2). =

Fissiamo un punto z, € X. Chiameremo cappi di base z, gli archi chiusi
di punto iniziale e finale z,. Denotiamo con m (X, z,) |'insieme delle classi di
equivalenza di cappi di base z,. Se [ € un cappio di base z, denoteremo con
[f] € m(X, zo) la sua classe di equivalenza.

Si noti che, dati f, g cappi di base z,, la composizione f g ¢ definita ed ¢
ancora un cappio di base z,. Pertanto, dati [f], [g] € 7 (X, z¢), definiamo il loro
prodotto nel modo seguente:

[fllgl=1[f *g].



Figura 14.2
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Per il lemma precedente quest’operazione € ben definita.

14.2 PROPOSIZIONE ~ Sia cq, : I — X il cappio costante di base z, ed f, g, h
cappi di base xy. Allora:

@) (fxg)xh~ fx(gxh)

(b) CI() * f ~ f ~ f* CI();
©) f*f0~cyy ~ fOx f, dove fO:1— X & il cappio di base z, cosi definito:

)= f(1-3s), sel

Dimostrazione
(a) Per definizione
f(4s) 0<s<1/4
((fxg)xhl(s)={§ glds — 1) 1/4<s<1/2
h(2s—1) 1/2<s<1
f(2s) 0<s<1/2
[fx(gxh))(s)=q g(4s—2) 1/2<s<3/4
h(d4s—3) 3/4<s<l.

Un’omotopia F : (f * g) * h > o,y [ * (g = h) & data da:

1(4s) 1+t
T+t Oss<—
1+t 24+t
F(s,t)= —t— L P i
(5,0)={ glds—t—1) —=<s<™
hds —t—2) 2+t
< s <
2t 7 =s=l

Quest’omotopia ¢ illustrata dalla figura 14.3.

(b) Dimostreremo che ¢y, * f ~ f lasciando al lettore il compito di dimostrare
in modo simile che f ~ f *¢y,. Definiamo:

—

-1
o OSS

IN

FeD=3 rossee—1 124

1+t 2

IA
W
IN N

Otteniamo cosi un’omotopia F : ¢z, * [ ~pe (o, J che ¢ illustrata dalla figura
14.4.
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f g h f
XO XO
XO
f g h S, f
Figura 14.3 Figura 14.4
f f°
% X
CX

Figura 14.5

(c) Poiché (f°) = f & sufficiente dimostrare una delle due affermazioni. Di-
mostreremo che ¢y, ~ f * fO. Per definizione

fQ2s) 0<s<1)2

x £O)(s) =

L’applicazione

)_{f(Zst) 0<s<1/2

F(s,t
J(@-29)t) 1/2<s<]1

¢ un’omotopia ¢z, ey (o, f* [0 (fig. 14.5). =

14.3 COROLLARIO  Rispetto al prodotto, m1(X, z¢) & un gruppo il cui elemento
neutro ¢ lcg,| e in cui [f1 ' =1[f°1 per ogni [f]€ = (X, z¢).

Dimostrazione. E una conseguenza immediata della proposizione 14.2. =
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w1 (X, zo) si chiama gruppo fondamentale, o primo gruppo di omotopia, di X
con punto base x.

Se X ¢ dotato della topologia discreta, in particolare se X = {z,} consiste di
un solo punto, allora 7(X, zo) = {lcz,]} € ridotto al solo elemento neutro. Pil in
generale segue subito dalla definizione che

T (X, 20) = m(Calz0), 7o)

(Cafzo) € la componente connessa per archi di z).

Se z, e z; sono due punti di X, che relazione c’¢ tra m;(X,z¢) € m (X, z,)?
Se z, e z; appartengono a componenti connesse per archi distinte allora non c’¢
alcuna relazione tra i due gruppi fondamentali perché, come gia osservato, essi
dipendono solo dalle rispettive componenti connesse per archi. Nel caso in cui
invece z, e z; siano estremi di uno stesso arco i due gruppi sono isomorfi, come
ora dimostreremo.

14.4 PROPOSIZIONE  Siano zy, z, € X e supponiamo che esista un arco
a:1— X tale che a(0) =zy ed o(l) = z,. Allora I'applicazione:

T TI(X, zg) — (X, z))
definita da:

To(lf]) = [ * f xal
e un isomorfismo di gruppi.

Dimostrazione. Lasciamo al lettore il compito di dimostrare che 7, & ben
definita utilizzando il lemma 14.1. Se [f], [g] € m1(X, zy) si ha:

mal([fllg)) = ma([f xg)) = (o’ * fxgx a] =
=la’* fraxa’xgxal=[a’* f*alla’ *g* a] = 7a([f)7a(lg))

e quindi 7, ¢ un omomorfismo di gruppi. Inoltre si verifica immediatamente che
I’omomorfismo

Tt - W}(X,III]) — 7rl()(; ZE())
soddisfa

(moo - ma ) fD) = [f] per ogni [f] € m (X, o)
(mo - mo)lgl =gl  per ogni [g] € m(X, z))

¢ quindi 7, € T sono isomorfismi uno inverso dell’altro. =
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Una conseguenza immediata della proposizione 14.4 & che se X ¢ uno spazio
connesso per archi allora (X, z¢) e m;(X,z,) sono gruppi isomorfi per ogni z,
z; € X; quindi, a meno di isomorfismo, si pud parlare del gruppo fondamentale
di X senza far riferimento a un punto base. Va osservato che I'isomorfismo =,
definito dalla proposizione precedente non & canonicamente definito ma dipende
dall’arco a (cfr. esercizio 4). Se perd m,(X, zo) & commutativo allora I’isomorfismo
7o ¢ indipendente da « (cfr. esercizio 6).

Uno spazio topologico X si dice semplicemente connesso se X ¢ connesso
per archi e ha gruppo fondamentale ridotto al solo elemento neutro. Il pilt ovvio
esempio di spazio semplicemente connesso ¢ uno spazio costituito da un solo
punto. Vedremo nel prossimo paragrafo che ogni spazio contraibile ¢ semplicemente
connesso; in particolare 1o sono R™ ¢ D".

Esercizi

1. Sia X uno spazio topologico. Dimostrare che dati due archi f, g: 1 — X tali che
J(0) =29 =g(0), f(1)=g(1) si ha f ~g se e solo se fxg" ~ ¢z, dove g%(s) = g(1—3s),
sel

2. Sia X uno spazio topologico e sia ¢ : I — I un’applicazione continua tale che (0) = 1,
©(1) =0. Dimostrare che per ogni arco f:I — X si ha fO~ foe.

3. Sia X uno spazio topologico. Dimostrare che se f, g, h: I — X sono tre archi tali
che f(1)=g(0) e g(1)=h(0) allora (f xg)*h ~ f*(g*h).

4. Sia X uno spazio topologico, zp, z; € X e a, f: 1 — X due archi tali che
a(0) = 2o = B(0), a(l) =z, = B(1). Dimostrare che
Tgo + Ta t (X, z0) = (X, 20)

coincide con I’automorfismo interno

[f1 = lax B '[f1lax Bl

S. Sia X uno spazio topologico e siano zj, z; € X e o, f:1 — X come nell’esercizio
precedente. Dimostrarc che se o ~ g allora m, = 7g.

6. Sia X uno spazio topologico. Dimostrare che se zg, z; € X appartengono alla stessa
componente connessa per archi, I’isomorfismo
Ta + T1(X, 2g) — T(X, 21)
¢ indipendente dall’arco a«: 1 — X di estremi zy ed z; sc ¢ solo se m(X,zy) & un
gruppo abeliano.

7. Dimostrare che un sottospazio convesso V C R" ¢ semplicemente connesso.
(Suggerimento. Se f. g : 1 —V sono cappi di base veV si definisca F: f rel{o.) 9
ponendo F(s,t) = f(s)+ t(g(s) — f(s)).
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15 Proprieta funtoriali del gruppo fondamentale

Il gruppo fondamentale non sarebbe di alcuna utilita se non avesse la proprieta
di essere compatibile con le applicazioni continue, nel senso che ora spiegheremo.

Consideriamo due spazi X, Y e un’applicazione continua ¢ : X — Y. Sia
7o € X; definiamo un’applicazione:

¥s (X, 70) — (Y, %(20))
ponendo

D=0y fl

E facile verificarc che I’applicazione v, & ben definita (la verifica & lasciata al
lettore).
15.1 TEOREMA  Siano X, Y e Z spazi topologici e z, € X.

(a) Per ogni ¢ : X — 'Y continua I’applicazione
Y 1 T (X, 30) — 71 (Y, P(20))

e un omomorfismo di gruppi.

(b) Siano v : X =Y, ¢:Y — Z applicazioni continue. Si ha:
() = u - Pt m(X, 20) = m(Z, (- P)(20))

dove 1 m(X, 20) = m (Y, 9(20)) € o« 1 m(Y,%(20)) — m(Z, (- $)(z0))-

(©) (1x)s : (X, zo) — m (X, z0) & ["omomorfismo identita.

Dimostrazione

@ u(fllgh) =p:(Uf x gD =¥ - (fx Pl = - N @- Pl = (¢ fllY - gl =
=¥ ([f DY.(lg)).

Le proprieta (b) e (c) sono ovvie. =

Le (a), (b) e (c) del teorema 15.1 si dicono proprieta funtoriali del gruppo
fondamentale. Se ¢ : X — Y & un’applicazione continua e z, € X chiameremo
Py - (X, z9) — T (Y, 9(z0)) 'omomorfismo indotto da .

15.2 COROLLARIO Se 9 : X — Y ¢ un omeomorfismo e z, € X, l'omo-
morfismo indotto . : (X, 1) — (Y, ¥(z0)) & un isomorfismo. In particolare,
due spazi connessi per archi aventi gruppi fondamentali non isomorfi non sono
0meomorfi.
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Dimostrazione. Dalle (b) e (c) del teorema 15.1 segue che
(¢_ 1)* TPx = (IX)* = 1‘K|(X.Z())

T/)* : ('ﬁb l)* = (]Y)* = 17\'1(Y,¢(Io))
e quindi 9, e (¢ '), sono isomorfismi uno inverso dell’altro. =

L'ultima asserzione del corollario ¢ particolarmente importante. Essa fornisce
infatti un criterio sufficiente affinché due spazi siano omeomorfi. Purtroppo il
gruppo fondamentale & in generale difficile da calcolare e quindi il corollario 15.2
in molti casi non puo essere applicato.

Cercheremo di aggirare questa difficolta studiando la relazione tra gruppo
fondamentale e omotopia di applicazioni continue. Utilizzeremo il seguente lemma.

153 LEMMA  Sia X uno spazio topologico ¢ E : 1 x1 — X un’applicazione
continua. Poniamo f(t) = E(0,t), g(t) = E(1,t), h(s) = E(s,0), k(s) = E(s,1).
Allora:

fPxhxg =rel {o,1} k
Dimostrazione. Poniamo z¢ = k(0), z, = k(1) ¢ definiamo G : I x I — X nel

modo seguente:
Zo 0 S s S t/3

f(l+t—-3s) t/3<s<1/3
Gis,ty=4¢ EQ3s—1,t) 1/3<s<2/3

gt +3s) 1/321-s5>t/3
T l—s S t/3
S, k Cx
Xq Xy
E(3s-1t)
fll+t-3s glt+3s)

f° h g Figura 15.1
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E immediato verificare che G : fOx h* g ~ (0,1} k- L'omotopia G ¢ illustrata
dalla figura 15.1. =

15.4 PROPOSIZIONE  Siano X, Y spazi topologici, o, ¥ : X — Y applicazioni
continue ¢ F : Xx1 —'Y un’omotopia tra ¢ e . Siano zo€ X e a: I - Y l'arco
di estremi p(z) e Y(zo) definito da o(t) = F(zo,t), t € I Si ha un diagramma
commutativo di omomorfismi:

(X, z0) B m (Y, p(z0))

P N L o
m (Y, 9%(20))

In particolare @, ¢ un isomorfismo (rispettivamente iniettiva, suriettiva) se e
solo se 1, & un isomorfismo (rispettivamente iniettiva, suriettiva).

Dimostrazione. Sia f : I — X un cappio di base zo e sia E: Ix1 - X
I’applicazione continua definita da: E(s,t) = F(f(s),t). Si ha:

E(5,0)=(p - [)(s), E(s,1)= (- f)(s)
E0,t) = a(t) = E(1,t).
Per il lemma 15.3

e((fD =19 fl=1a"*(p- f) x al = malps((f])). =

15.5 COROLLARIO  Siano X, Y spazi topologici e ¢ : X — Y un’equivalenza
omotopica. Allora o, : T1(X, z0) — m (Y, ©(x0)) & un isomorfismo per ogni =, € X.

Dimostrazione. Sia ¢ : Y — X un’inversa omotopica di ¢. Dalla proposizione
15.4 applicata a ¢ - e 1x si deduce che

(1 - @)e = u - ou - (X, T0) = m(X, P((X0))),

dove v, : 7 (Y, p(x()) — (X, ¥(©(Xp))) € un isomorfismo: pertanto ¢, € iniettiva
e 1. € suriettiva. Applicando ancora la proposizione 15.4 a ¢ -9 e ly si deduce
che

(@ Pl = @x - u - T (Y, 0(z0)) — T1(Y, e(9p(0(Xo)))),

dove ora g : m(X, p(p(X0)) — (Y, p(h(©(X0))) & un isomorfismo. In parti-
colare ), € iniettiva. Scgue che %, € un isomorfismo. Ma allora anche

s (X, z0) — T(Y, 0(20))

dev’esserc un isomorfismo. =
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Quindi il gruppo fondamentale di uno spazio topologico € invariante per equi-
valenza omotopica oltre che per omeomorfismo. In particolare abbiamo:

15.6 COROLLARIO  Ogni spazio contraibile é semplicemente connesso.
Un’altra utile conseguenza della proposizione 15.4 ¢ il seguente

15.7 COROLLARIO  Supponiamo che ¢ : X — Y sia un’applicazione conti-
nua omotopa a un’applicazione costante. Allora @ : m(X, z9) — 7 (Y, 0(zq)) €
’omomorfismo nullo per ogni z, € X.

Dimostrazione. Immediata. =

16 Esempi ed applicazioni

Fino a ora gli unici spazi di cui abbiamo calcolato il gruppo fondamentale
sono quelli contraibili, che abbiamo visto essere semplicemente connessi.

Il primo esempio di spazio non semplicemente connesso di cui calcoleremo il
gruppo fondamentale & S'. Consideriamo I’applicazione continua

E:R->S

data da E(z) = e¥™2, z ¢ R, dove abbiamo identificato S' all’insicme dei numeri
complessi di modulo 1. E ¢ anche un omomorfismo di gruppi. Inoltre E ¢ aperta
ed & un omeomorfismo locale. Pill precisamente per ogni z € R Dintervallo

1
aperto <x ~ 5 T+ %) viene mandato da E omeomorficamente su S'\{-E(z)}.

Denoteremo con
S\(-B@} — (25, 245
€r: S z)} T35, THs

I’omeomorfismo inverso.
Utilizzeremo i seguenti due lemmi.

16.1 LEMMA (di sollevamento) Se « é un arco in S' di punto iniziale 1,
esiste un unico arco o' in R di punto iniziale 0 tale che E-o' = a. o & chiamato
sollevamento di o a R.

Dimostrazione

Esistenza. Poiché 1 & compatto e o ¢ continua, possiamo suddividere I in sot-
tointervalli [to, %], [t1,82],...,{tn 1,tn], O0=t0 <t <...<t, =1 tali che si abbia
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|a(t)—a(t')] < 1 per ogni t, t' € [t; |,t;], e quindi tali che a([¢t; |,;]) sia contenuto
in S"\{—a(t;- )}, per ogni ¢ = 1,...,n. In particolare «([0,t,]) & contenuto in
S'"\{-1} e possiamo quindi definire un’applicazione continua o, : [0,t;] — R

1 1 .

—5 5); evidentemente
ai(0)=0 e E- o = a),. Procediamo per induzione su i: supponiamo di aver
definito o; : [0,¢;] — R continua tale che a;(0)=0¢ E-a; = qp;,. Se i <n—1
possiamo definire «;,, : [0,¢;,,] — R continua come I’incollamento di «; con la
composizione di oy 5 ) con

come la composizione di oy, con & : SN\{-1} — (

1 1
oty - S'\{~alty)} — (ai(ti) ~ 5 o;(t;) + 5) .

Larco o = ay ha le proprieta

411

Evidentemente «;,,(0)=0¢e E-a;, = o0,
volute. '

Unicita. Supponiamo che o e o siano due archi in R tali che o/(0) = &"(0) =0
cE-o=FE-o"=a Larco o —a":1 — R soddisfa E - (¢! — a&")(t) =1 per ogni
t, e pertanto si ha (&’ — o")(I) C Z. Ma poiché I ¢ connesso o' ~ o dev’essere
costante, e da o/(0) = o/(0) segue o/ =a'". =

16.2 LEMMA (di sollevamento dell’omotopia) Se o e 8 sono due archi in S'
di punto iniziale 1 tali che esista un’omotopia

F o~y 8

allora esiste un’unica omotopia F': o ~p o,y ' tale che E - F' = F.

Dimostrazione

Esistenza. Sia Fy : 1 — S' la restrizione di F:IxI1—S' aIx {t}. F; & un
arco in S' di punto iniziale 1, ¢ quindi, per il lemma 16.1, possiede un unico
sollevamento a un arco F] : I — R di punto iniziale 0. Definiamo F' : Ix1— R
ponendo F'(s,t) = F{(s). Si ha E-F' = F.

Resta da dimostrare che F' & continua. Poiché F' & continua ¢ Ix I & compatto,
esiste € > 0 tale che |F(y) — F(y')] < 1 per ogni y, ¢’ € IxI tali che |y—¢'| <e.
Da cio segue che esistono O0=s5y< s <...<sp=leO=¢ <t <...<tp=1
tali che per ogni j=1,...,m,7=1,...,n, si abbia

F(lsj 1,851 % [t 1,6 CS'\{~F(sj 1,t; 1}
Per ogni ¢ = 1,...,n Pinsieme F'([0,s;] x [t;-,,t;]) & connesso perché gli
insiemi ([0, s,] x {t}) = F{([0,s]), t € [t; |,t;], sono connessi e contengono
F'(0,t) = 0; ma allora

11
Fl([O»SIJX[ti Iati])c <_§7 5)
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e quindi la restrizione di F' a [0,s,] X [t;-,t;] coincide con la composizione
o Flo.sxit, ,.,)> che & continua. Per incollamento segue che F|,r()s[]xl ¢ continua.

Procediamo per induzione: supponiamo di aver dimostrato che 1 € continua

/
F“O.s,lx
per qualche 1 < j < m — 1. Per ogni ¢ = 1,...,n F'([sj,5;,] % [t; |,t;]) € un
sottoinsieme connesso di R perché gli insiemi F'([s;, sj.1]1 x {t}) = F{([s;,5;,1])
sono connessi e intersecano F'({s;} x [t; ,t;]) che & connesso per I’ipotesi
induttiva. Ma allora

\ . ]
F,([s]'as]#lj X [tz I’ti]) - (F,(s]'ati -l) - 55 P’(s]':ti I)+ 5)

e quindi, come nel caso precedente, segue che la restrizione |’{s IRV
7357+ 2 - 1sh

¢ continua; per incollamento deduciamo che F| .1 ¢ continua e il passo

!

1087411
induttivo & dimostrato. Quindi F' & continua. F' & ur;’omolopia tra o e @' perché
F'(s,0) = Fi(s) = o/(s), F'(s,1) = Fl(s) = A(s); per definizionc F'(0,¢) = O per
ogni t € I; inoltre F'(1,t) & contenuto in E '(a(1)) perché F(1,t) = a(l) = B(1)
per ogni t € I, e dalla connessione di {1} x I segue che F' & costante su {1} xI:
quindi F': o >0,y B

Unicita. Sia F" : o ~ 1, B un’altra omotopia tale che E- F" = F. Per ogni
t €I la restrizione di F" a I x {t} deve coincidere con il sollevamento F} di F,
e quindi F"=F'. =

Dalla dimostrazione del lemma 16.2 segue immediatamente il seguente:

16.3 COROLLARIO  Per ogni arco o in 8', il punto finale o/ (1) del sollevamento
o dipende solo dalla classe di omotopia relativa a {0,1} di .

16.4 TEOREMA = (S',1) = Z.
Dimostrazione. Definiamo un’applicazione
§:m(@S",1)—2
ponendo 6([f]) = f(1). Per il corollario 16.3 § & ben definita. Inoltre § & un
omomorfismo: se [f], [g] € m(S', 1), sia ¢" : I — R P'arco definito da ¢"(t) =

=f'(M+g'(t), t€l. Si ha E-¢g" =g, c quindi arco f'*g¢" & il sollevamento di
fxge

S(Lf gD =8(Lf » gD = (f" * g")(1) = f'(1) +4'(1) = 6D + 6(g))-

6 ¢ suriettiva: per ogni n € Z sia o, : I — R definito da o},(t) = nt. Allora
on = E -l soddisfa §([o,]) =n.
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6 ¢ iniettiva: se §([f]) = 0, allora f' & un cappio in R. Poiché R & semplicemente
connesso f' =gy co, € quindi f =gy €1, ciod [f]=[c]. =

In particolare vediamo che S' non & semplicemente connessa. Poiché S' &
omotopicamente equivalente a R*\{0}, si ha anche:

m(R*\{0},(1,0)) = Z.

Per calcolare il gruppo fondamentale di altri spazi topologici ¢ utile la scguente
proposizione:

16.5 PROPOSIZIONE ~ Siano X, Y spazi topologici e zoy€ X, yo €Y. Si ha un
isomorfismo:

(X X Y, (20, 90)) = mi(X, z0) X M (Y, yo)-
Dimostrazione. Le proiezioni px : X xY — X, py : X x Y — Y inducono
omomorfismi:
px, (X X Y, (z9, y0)) — m (X, z0)
py, : Ti(X X Y, (20,%0)) — m(Y,90)
che definiscono un omomorfismo:
(px.,py.) : Mi(X XY, (20, 40)) — ™ (X, z0) X mi(Y, yo).

Per dimostrare che questo € un isomorfismo verifichiamo che possiede un
inverso. Per ogni (If],[g]) € m(X, zy) X m(Y,yo) definiamo un cappio f X g in
X x Y di base (zg,y0) ponendo (f X g)(s) = (f(s),9(s)), s€ L E facile verificare
che I’applicazione:

T (X, 20) X 7 (Y, yo) = m(X X Y, (20, %0))

che manda ([f],[g]) in [f x g] ¢ ben definita ed & Pinversa di (px_,py,). ®
Abbiamo il seguente immediato

16.6 COROLLARIO
(a) Il gruppo fondamentale del toro T* =S' x 8" ¢ isomorfo a Z°.
(b) Il gruppo fondamentale del cilindro R x 8' & isomorfo a Z.

In particolare il toro ed il cilindro non sono semplicemente connessi € non
sono omeomorfi tra loro.
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Un sottospazio X dello spazio Y si dice un ritratto di Y se esiste un’applica-
zione continua p : Y — X la cui restrizione a X sia ’identita, ciog¢ sia tale che
p-t=1x, dove ¢+ : X - Y ¢ linclusione; un’applicazione p siffatta si dice una
retrazione di 'Y su X.

16.7 TEOREMA  S' non é un ritratto di D

Dimostrazione. Sia . : 8' — D Pinclusione. Se esistesse una retrazione p :
D’ — S' si avrebbe:

pote=(lga=1_ g im(S',1) - m(D 1) - m(S', 1),

Ma cid & impossibile perché m(S', 1) = Z, mentre «;(D?* 1) & banale essendo
D? semplicemente connesso. =

16.8 COROLLARIO (Teorema del punto fisso di Brouwer) Ogni applicazione
continua f : D* — D? ha almeno un punto fisso, cioé soddisfa f(x) = x per
qualche x € D,

Dimostrazione. Sc esistesse una f : D> — D? priva di punti fissi sarebbe
possibile definire una retrazione g : D> — S' ponendo g(x) =y, dove y & il punto
di intersezione di S' con la retta (x, f(x)) pid vicino ad x (fig. 16.1). =

Il teorema precedente si estende a D™ per ogni n > 1, cio¢ si dimostra che
ogni applicazione continua f : D" — D" possiede un punto fisso. Una versione
differenziabile di questo teorema sard dimostrata nel paragrafo 45 (tcorema 45.4).
Questi risultati sono a loro volta casi particolari di altri “teoremi di punto fisso”
(quali ad esempio il tcorema del punto fisso di Lefschetz; cfr. Guillemin e Pollack
1974) i quali affermano che, sotto opportune ipotesi, un’applicazione continua di
uno spazio in se stesso possiede un punto fisso.

I teoremi del punto fisso sono intercssanti perché hanno svariate applicazioni
in matematica. Il seguente risultato ne ¢ un csempio.

glx)

Figura 16.1
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16.9 TEOREMA  Sia A una matrice 3 x 3 ad elementi numeri reali positivi.
Allora A possiede un autovalore reale positivo.

Dimostrazione. Sia D = S N {(z;,22,23) : 1, > 0, 2, >0, z3 > 0}. D ¢
omeomorfo a D* e quindi, per il teorema di Brouwer, ogni applicazione continua
di D in sé ha un punto fisso. Sia F' : R* — R’ I'applicazione lineare definita dalla

matrice A. Se x € D allora F(x) ha tutte le coordinate positive per 'ipotesi su A
F(x)

1P|
si definisce un’applicazione continua f: D — D. Sia v € D un punto fisso di f;
si ha:

e perché le coordinate di x sono tutte non negative. Quindi ponendo f(x) =

IEW[lv = F(v)

¢ quindi v & un autovettorc di F' con autovalore ||F(v)|| > 0. =

II prossimo risultato che dimostreremo ¢ utile per calcolare il gruppo fonda-
mentalc in molti casi. Esso ¢ un caso particolare del tcorema di Van Kampen, il
quale esprime il gruppo fondamentale di uno spazio della forma X =U UV, con
U, V aperti, in termini dei gruppi fondamentali di U, V ¢ UNV. La dimostrazione
del teorema di Van Kampen va pero al di 1a degli scopi di questo testo; il lettore
interessato pud consultare Greenberg (1967).

16.10 TEOREMA  Sia X =U UV, con U, V aperti semplicemente connessi e
tali che UNV sia connesso per archi. Allora X é semplicemente connesso.

Dimostrazione. Sia 2, e UNV e sia f: 1 — X un cappio di base z,. Sara
sufficiente dimostrare che f ¢ equivalente a un cappio interamente contenuto in
U. Per la compattezza di I esistono 0 =ty < t; <...<t, =1 tali che, per ogni
i=1,...,n, f(lt; 1,t;]) sia contenuto in U o in V. Scegliamo una suddivisionc
siffatta tale che il numero n sia il minimo possibile.

Allora f(t;) € UNV per ogni 7. Supponiamo infatti che ad esempio f(¢t;) € U: al-
lora f([t; 1,t;]) e f(It;,t;,,1) sono contenuti in V, e quindi anche f([t; ;1)) CV;
ma allora possiamo omettere ¢; dalla suddivisione, e cid contraddice la minimalita
di n.

Per ogni ¢ = 1,...,n sia f; : I — X Darco ottenuto riparametrizzando la
restrizione di f a [t;-,t;], cioé definito come f;(t) = f((1 — t)t; | + tt;). Per
costruzione f; ¢ un arco interamente contenuto in U oppure in V. Facciamo
vedere che se f; non & contenuto in U allora & equivalente ad un arco contenuto
in U.

Poiché gli estremi di f; appartengono a U NV, per la connessione per archi
di UNYV esistono archi a, b in UNV tali che a(0) = zg, a(l) = f;(0), e b(0) = x,
b(1) = f;(1) (fig. 16.2).
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Figura 16.2

La composizione a * f; * b & un cappio in V di base zo; per la semplice
connessione di V questo cappio ¢ equivalente in V, e quindi anche in X, al
cappio costante c;,; pertanto f; & equivalente in X all’arco a®*b, che ¢ interamente
contenuto in U, essendo addirittura contenuto in UNV. Sia F; : f; 10,1 a’xb
un’omotopia che realizza 1’equivalenza. Riparametrizzando e incollando le F;
otteniamo un’applicazione F': I x I — X cosi definita:

s—1t; .

F(s,t)y=F; ,
(s,1) 7 (ti_ti-l,

t) s € [t;-1,t:]).

Per costruzione F' & un’omotopia rel {0, 1} tale che F(s,0) = f(s), e F(s,1) €U
per ogni s€l. =

16.11 COROLLARIO La sfera S™ é semplicemente connessa per ogni n > 2.
Dimostrazione. Sia 0 < € < 1, e siano
U={xeS":zp>—¢€}, V={xe8" 2y, <e}.

U e V sono aperti di S™ semplicemente connessi perché omeomorfi a D, e
UNV & connesso per archi. Dal teorema 16.10 segue che S™ ¢ semplicemente
connessa. ®

Terminiamo questo paragrafo con una dimostrazione del teorecma fondamentale
dell’algebra che utilizza I’omotopia.

16.12 TEOREMA FONDAMENTALE DELL' ALGEBRA  Ogni polinomio non costante
a coefficienti complessi P(Z) = ay+a;Z + ...+ a,Z" possiede una radice in C.
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Dimostrazione. Possiamo supporre a,, = 1, cioe che P(Z)=ao+a,Z+...+ Z"
sia monico di grado effettivo n > 1. Sia:

ao a

Q) =+

a. 1 _
—— T+ +——T" ' +T"
(4 Cc

dove ¢ € C & una costante non nulla. Per ogni ¢t € C si ha:
P(ct) = c"Q(2)

e quindi un numero complesso ¢ ¢ radice di Q(T') se e solo se ¢t € radice di P(Z).
Pertanto ai fini della dimostrazione del teorema non ¢ restrittivo sostituire P(Z)
con il polinomio Q(T'); inoltre se scegliamo ¢ in modo che |¢| > 0 i coefficienti
di Q(T) soddisfano:

An |
[+

ao
o

aj
cn 1

I+...+

|<1.

Pertanto, salvo sostituire P(Z) con Q(T') per un opportuno ¢, possiamo supporre
che P(Z) soddisfi la condizione:

|a()|+|a1|+...+|an-1| < 1.

Farcmo vedere che P(Z) possiede una radice nel disco unitario D?. Supponiamo
per assurdo che P(z)#0 per ogni z € D Allora P definisce un’applicazione
continua

p:D? — C\{0}
la cui restrizione a S'
¢:S8' — C\{0}
¢ omotopa a una costante (cfr. esempio 13.2(2)). Per ogni (z,t) € S' x I poniamo:
F(z,t)=2"+t(an-12" "' +...+ a1z + ag).
Si ha
|[F(z, )| > |2"| — [t(an 12" ' +...+ a1z +ao)| >
> 1= t(lan- 12" | +...+ |ao]) =
=1—t(ao| +|a1] +...+]an 1|) > 0.
Pertanto F : §' x I — C\{0} definisce un’omotopia tra I’applicazione 2" : §' —

— C\{0} € ¢, e quindi 2" & omotopa a una costante. D’altra parte 2" : §' — C\{0}
¢ la composizione di 2" : §' — 8' con Pinclusione §' — C\{0}: la prima
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applicazione induce 1’omomorfismo
7TI(S]7 l) - 7('|(Sl, ])s

“moltiplicazione per n”, che & diverso da zero, mentre I'inclusione S' — C\{0}
induce un isomorfismo di gruppi fondamentali perché € un’equivalenza omotopica;
quindi

(Zn)* : WI(SI: ]) - WI(C\{O}a 1)

¢ non nullo e 2" non & omotopa ad una costante. Abbiamo ottenuto una contrad-
dizione e il teorema ¢ dimostrato. =

17 Rivestimenti

Un’applicazione continua di spazi topologici p: R — X & un rivestimento se
¢ suriettiva e se ogni z € X possiede un intorno aperto U, tale che p '(Uy) sia
unione disgiunta di aperti ognuno dei quali vienc mandato da p omecomorficamente
su Uz. Un aperto U, con tale proprieta si dice ben ricoperto.

E ovvio che ogni rivestimento & un omeomorfismo locale. Il viceversa &
falso perché un omeomorfismo locale non ¢ in generale suriettivo: ad esempio
un’immersione aperta A C X ¢ un omeomorfismo locale ma non ¢ un rivestimento
se A#X. L'applicazione £ : R — S', E(z) = ™M & un rivestimento; la sua
restrizione a un qualsiasi aperto proprio di R & un omeomorfismo locale ma non
¢ un rivestimento.

Un altro esempio di rivestimento & la proiezione naturale 7 :S™ — P™.

Il lemma scguente descrive alcune propricta generali dei rivestimenti.

17.1 LEMMA  Sia p: R — X un rivestimento.

(a) Per ogni aperto U C X, la restrizione py : p '(U) — U & un rivestimento.

(b) Se Y ¢ una componente connessa di R e X ¢ connesso e localmente
connesso, la restrizione q:Y — X é un rivestimento.

(c) Per ogni x € X p '(z) é un sottospazio discreto di R.

(d) Se X e connesso e localmente connesso e se per qualche z € X p '(x)
& un insieme finito costituito da n punti, cio é vero per ogni altro punto
z' € X. Il numero n si dice grado del rivestimento p.

Dimostrazione

(a) e lasciata al lettore.

(b) Dalla definizione di rivestimento segue che anche R ¢& localmente connesso.
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Poiché Y ¢ aperto in R (cfr. esercizio 11.10) e p ¢ aperta, p(Y) & aperto in X.
D’altra parte, sia z € p(Y) e sia U, un intorno connesso di z ben ricoperto. Si
ha p '(Uz)NY #0 perché U, Np(Y)#0 e quindi Y contiene qualche componente
connessa di p '(U;) che viene mandata da p omeomorficamente su U,. In parti-
colare z € p(Y), cioe p(Y) € anche chiuso. Poiché X ¢ connesso, p(Y) = X, cioe
g € suriettiva. L’esistenza di intorni ben ricoperti di ogni punto si verifica subito.

(¢) Sia U ¢ X un aperto ben ricoperto contenente z. Ogni r € p (z) &
contenuto in un aperto V, mandato da p omeomorficamente su U, e quindi non
contenente alcun altro ' € p '(z).

(d) Sia Z c X il sottoinsieme costituito dai punti z € X tali che p '(2)
consiste di n punti. Z#@ perché z € Z. Sia z € Z ¢ U, un intorno connesso di z
ben ricoperto. Poiché p~'(z) consiste di n punti, p '(U,) possiede n componenti
connesse, ¢ quindi p '(z') consiste di n punti per ogni 2’ € U, ciot U, C Z:
pertanto Z & aperto. D’altra parte, se t € Z, e se Uy & un intorno connesso di t
ben ricoperto, U; N Z #@ e quindi, ragionando come prima, si deduce che U; C Z:
in particolare ¢t € Z e quindi Z ¢ anche chiuso. Poiché X & connesso, si ha
Z =X, ciot lasserto. =

Per comodita, nel seguito di questo paragrafo considereremo coppie (X, zg)
costituite da uno spazio topologico X e da un suo punto z; chiameremo una
coppia siffatta spazio topologico puntato (o con punto base); un’applicazione
continua (un omeomorfismo, un rivestimento, ecc.) di spazi topologici puntati f :
(X, zo) — (Y,y0) ¢ un’applicazione continua (un omeomorfismo, un rivestimento,
ecc.) f: X — Y tale che f(zo) = yo-

Dimostreremo una serie di risultati che mettono in relazione il gruppo fonda-
mentale di uno spazio con i suoi rivestimenti. La teoria che svilupperemo ¢ basata
su opportunc generalizzazioni dei lemmi 16.1 e 16.2.

17.2 TEOREMA (di unicitd del sollevamento) Siano p : (R,ro) — (X, zo) un
rivestimento e f : (Y,yo) — (X, z0) un’applicazione continua di spazi topologici
puntati con'Y connesso. Se esiste un’applicazione continua f': (Y,yy) — (R,rq)
tale che p- f' = f (cioé un sollevamento di f), essa é unica.

Dimostrazione. Supponiamo che f" : (Y,y¢) — (R,r0) sia un altro sollevamento
di f. Siano

A={yeY: fy=f"w}
B={yeY: f+'w}

SihaY=AUB, ANB=0, c A#0 essendo y, € A. Dimostreremo che sia A
che B sono aperti: da cid seguira che B=0 e che A=Y perché Y & connesso.
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Siag€eY e sia U C X un intorno aperto di f(y) ben ricoperto. Se i € A il punto
f'@ = f"(y) appartiene a un aperto V di R mandato da p omeomorficamente su
U; sia ¢ : U — V ’omeomorfismo inverso. Allora f/ '(V)n f” (V) & un intorno
aperto di ¥ contenuto in A perché per ogni y € f' '(V)n f* (V) si ha:

'@ =q(f ) = ")

pertanto A € aperto.

Se y € B allora i punti f'(y) ed f"(y) di R appartengono ad aperti disgiunti
V' e V" rispettivamente, mandati da p omeomorficamente su U. Allora f' "(V')n
Nf"Y (V") & un intorno aperto di § contenuto in B, e quindi B & aperto. =

17.3 TEOREMA (di sollevamento degli archi) Siano p: (R,r0) — (X, zo) un
rivestimento e o un arco in X di punto iniziale xo. Esiste un unico arco oy, in
R di punto iniziale ry tale che p- oy = o; o, si dice sollevamento di a.

Dimostrazione

Esistenza. Supponiamo dapprima che X sia ben ricoperto; sia V. C R un
aperto contenente r, mandato da p omeomorficamente su X ¢ sia ¢ : X — V
I’omeomorfismo inverso. Allora o' = ¢- o & un sollevamento di a.

Passiamo al caso generale. Poiché I & compatto ed o € continua, possiamo sud-
dividere I in sottointervalli [to,t1], [t1,t2],..., ltn-1,tn), O=ts <t;1 < ... <tp =
tali che a([t;. 1,t;]) sia contenuto in un intorno ben ricoperto di a(t; ) per ogni
t=1,...,n. Ragionando come nella prima parte della dimostrazione vediamo che
esiste « : [ty,t;] — R continua tale che (0 =ry ¢ pray = Qo) Procediamo
per induzione su ¢: supponiamo di aver definito o; : [0,¢;] — R continua tale
che 0;(0) =rg e p-oy = 04,7 Nuovamente, ragionando come nella prima
parte della dimostrazione possiamo sollevare o, ; ,, a un’applicazione continua
¢i  [ti tin] — R tale che 0;(t;) = o;(t;) e p-o; = oy ) Incollando «; con o,
otteniamo ey, : 10,21 — R continua tale che @;,(0) = ro € p- i = oyqy,,,)-
Allora 'arco o = a,, & un sollevamento di o.

Unicita. Segue dal teorema 17.2. =

Ovviamente il sollevamento o}, dipende dal punto iniziale ro. Per ogni altra
scelta di r € p '(zo) il teorema fornisce un diverso sollevamento o/ di a di punto
iniziale r.

17.4 TEOREMA (di sollevamento dell’omotopia)  Siano p: (R,r9) — (X, z¢) un
rivestimento, o un arco in X di punto iniziale z, ed o/ = o, il sollevamento di
a. Per ogni omotopia F :1x1 — X tale che F(s,0) = a(s) per ogni s €1 esiste
un’unica omotopia F' : 1 x 1 — R tale che p-F' = F e F'(s,0) = o/(s) per ogni
s€L
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Dimostrazione. La dimostrazione ¢ molto simile a quella del lemma 16.2. Per
ogni s €I sia F; : I — X I'arco di punto iniziale a(s) definito da Fy(t) = F(s,t).
Per il teorema 17.3 esiste un unico sollevamento Fi : I — R di F, tale che
Fl(0) = d&/(s). Definiamo F' : I xI — R ponendo F'(s,t) = F.(t) per ogni
(s,t) € Ix L Lapplicazione F' soddisfa p- F' = F ¢ F'(s,0) = o/(s) per ogni s € I;
inoltre F & unica con queste proprietd, per l'unicita dei sollevamenti F,. Resta
da verificare che F' & continua.

Poiché IxI ¢ compatto e F' ¢ continua, anche F(IxI) & compatto; gli aperti ben
ricoperti di X costituiscono una base, e quindi esiste una famiglia finita di aperti
ben ricoperti {U,,..., Uy} che ricopre F(I x I). Gli aperti F~'(U,),...,F '(Uyn)
ricoprono I xI. Siano O0=sp <5 <...<sm=lel=t) <t; <...<t,=1 tali
che per ogni j=1,...,m,i=1,...,n si abbia [s; |,s;]1x[t;-,t;] C F"'({Uy) per
qualche k.

Per ogni j =1,...,m, F'(ls;-,,s;]1 x [0,,]) &€ un sottoinsieme connesso di R
perché gli insiemi F'({s} x [0,t,]) = Fy([0,,]), s € [s; ,,s;], sono connessi e in-
tersecano I’insieme connesso F'([s;.,s;]1x {0}) = &([s; ,5;]). Quindi, avendosi:

p(F'([s5 1,851 < [0,t:1)) = F([s; 1,551 [0,t1]) C Ui

per qualche %, F’([sj_l,s]-J x [0,t,]) € contenuto in un aperto V; mandato da p
omeomorficamentc su Uy; pertanto:
! _ [
Fils] 128, 1%[08 ) (P[Vk) ) F||s, 1,8, 1%10.8;]

! ¢ continua. Per induzione suppo-

¢ continua. Per incollamento segue che Fllxlot.l
niamo di aver dimostrato che F|’l><|o £ ¢ continua per qualche 1 <7< n—1. Per
ogni j=1,....,m, F'([sj 1,s7]x[t;,t:,]) & un sottoinsieme connesso di R perché

1 sottoinsiemi
F’({S} X [tiati+l]) = E;([tistiﬂj): s € [8]'“ I;Sj]:

Sono connessi e intersecano F’([sj 1,871 X {t;}), anch’esso connesso per I’ipotesi

induttiva. Da ci0 segue come prima che F]IIS 8 IX1: ot ¢ continua, e per incolla-
j 1597 19be+

. / 5 Di ; , i 1

mento anche F|l><|t.,t.*11 lo ¢. Di nuovo per incollamento deduciamo che Fllxio,tm |

¢ continua, e quindi F' & continua. =

17.5 COROLLARIO  Siano p : (R,r9) — (X, zo) un rivestimento e o, B due archi
in X di punto iniziale z,. Se a ~p {01} B allora i loro sollevamenti soddisfano
) el (0.1} By, In particolare o (1) = B (1).

Dimostrazione. Sia F : & ~q,} B un’omotopia relativa e sia F' :Ix1— R
il suo sollevamento. Si ha F'(s,0) = o/(s) per ogni s € I; inoltre F'(0,t) = ry per
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ogni ¢ € I perché Fj : I — R & il sollevamento dell’arco costante Fp : I — X,
Fo(t) = F(0,t) = zo; similmente F'(1,t) = o, (1) per ogni ¢t € I perché F : I — R
¢ il sollevamento dell’arco costante F) : I — X, Fi(t) = F(1,t) = a(l). Quindi
F' ¢ un’omotopia relativa a {0, 1}. Inoltre F'(s, 1) = B, (s) per ogni s € I perché

F'(0,1)=ry e F(s,1) = B(s). Quindi F': o) = (0,1} B, =

17.6 COROLLARIO Se p: (R,ry) — (X,z0) € un rivestimento, I’omomorfismo
indotto ps @ m(R,ry) — 7 (X, z0) € iniertivo.

Dimostrazione. Se f' ¢ un cappio in R di basc ry tale che p- f' ~1(0,1) €z
cio¢ tale che p.([f']) = [cg,], allora segue dal corollario 17.5 che f' (0,1 ¢r,
cioe [f'] = lcp,). =

Consideriamo un rivestimento p: R — X e un cappio o : I — X di base un
punto zo € X. Per ogni r € p '(z) il sollevamento o : I — R & un arco di punto
iniziale r il cui punto finale ol(1) dipende solo da r e da [a] € m(X, zo), per il
corollario 17.5, e appartienc a p '(z¢). Si ottiene in questo modo un’applicazione:

P (z0) X m(X, z0) — p ' (z0)
(r, [a]) = og(1).

[17.1]

17.7 PROPOSIZIONE Sia p : R — X un rivestimento ¢ zo € X. La [17.1]
definisce un’azione di m (X, z¢) su p~ '(zo):

rla) = al(1)

in cui lo stabilizzatore di un punto ro € p '(z¢) coincide con il sottogruppo
pe(m (R, 70)) di m(X,z0). L'azione & transitiva se e solo se p” '(z) & contenuto
in una componente connessa per archi di R.

Dimostrazione. La proprieta r[cg,] = r per ogni r € p '(zy) & ovvia. La verifica
del fatto che r([al[B]) = (rlaDIB] per ogni [a],[8] € m(X,z0) e r € p '(zy) &
lasciata al lettore.

Affinché [a] € (X, o) stabilizzi il punto ro € p~'(z¢) & necessario e sufficiente
che si abbia aj (1) = 7o, ciot che o}, sia un cappio di base ro; poiché a=p-o;,
cio significa che [a] € p«(m (R, 10)). Lultima asserzione € conseguenza del fatto
che ogni arco di estremi due punti ro, r; € p '(z¢) & della forma a'm per qualche
cappio a : I — X di base z; (la sua proiezione). =

Lazione descritta dalla proposizione precedente & chiamata monodromia del
rivestimento p sulla fibra p '(z). La monodromia associa ad ogni [a] € 7 (X, z¢)
una biezione dell’insieme p” '(z¢) in sé stesso, cioé una permutazione di p '(zq).
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L’insieme delle permutazioni di p '(z¢) cosi oltenute costituisce un sottogruppo del
gruppo di tutte le permutazioni di p~'(zo), che si chiama gruppo di monodromia
del rivestimento p nel punto z.

17.8 COROLLARIO

(a) Sia p: (R,ry) — (X, zo) un rivestimento di spazi topologici puntati, con R
connesso per archi. C’¢é una corrispondenza biunivoca naturale tra l'insieme
p '(z) e linsieme delle classi laterali destre di p.(m(R,70)) in m (X, zo).
Quindi se p '(zy) é finito la sua cardinalita & uguale all’indice di p.(m (R, ry))
in m (X, xp).

(b) Sia p: R — X un rivestimento tale che R sia connesso per archi. Allora
wutte le fibre p~'(z) hanno la stessa cardinalita.

Dimostrazione

(a) La corrispondenza ¢ indotta dall’azione [17.1] e associa a una classe laterale
px(m (R, 70))[e] 'elemento ryla] = aiu(l). La biunivocita segue dalla proposizione
17.7.

(b) Siano =z, z, € X, 1o € p”'(z0), 71 € p '(z)), sia o/ : I — R un arco tale
che /(0)=ry, &/(1)=r), e sia a=p-o : 1 — X. E immediato verificare che il
diagramma:

Tt mM(R,yr0) — m(R, )

Ps | Px |
o T(X, 29) — m(X,2))

¢ commutativo. Pertanto I’isomorfismo w, manda il sottogruppo p.(w (R, ro)) sul
sottogruppo p«(m(R,71)), e quindi induce una biezione dell’insieme delle classi
laterali destre di p.(m (R, ro)) su quello delle classi laterali destre di p«(m (R, r)).

-
Esercizio
1. Siano p: R — X, q: S — Y rivestimenti. Dimostrare che I'applicazione pxq: Rx S —
- X xY, (pxq)r,s)=(p(r),q(s)), & un rivestimento.

18 Rivestimenti universali

Uno spazio topologico T si dice localmente connesso per archi se ogni punto
t € T possiede un sistema fondamentale di intorni aperti connessi per archi.

In questo paragrafo tutti gli spazi che considereremo si supporranno implici-
tamente connessi per archi e localmente connessi per archi.
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18.1 DEFINIZIONE Un rivestimento p : R — X in cui R ¢é semplicemente
connesso ¢ detto un rivestimento universale di X.

Un esempio di rivestimento universale ¢ I’applicazione
E:R—S', E@) =2

che abbiamo studiato nel paragrafo 16.

18.2 PROPOSIZIONE  Sia p : (R,r9) — (X, zo) un rivestimento universale di
spazi topologici puntati. C’e una corrispondenza biunivoca naturale tra p™'(zy) e
m1(X, zo).

0N

Dimostrazione. E un caso particolare del corollario 17.8. =

18.3 Esempio

Sia P" lo spazio proiettivo reale di dimensione n > 2, e sia 7 : 8™ — P" la
proiezione naturale. 7 ¢ un rivestimento e, poiché 8" & semplicemente connessa,
7 & un rivestimento universale. Per ogni p € P" la fibra 7 '(p) consiste di due
elementi: segue dalla proposizione 18.2 che = (P™) & un gruppo costituito da due
elementi. Quindi m(P") = Z/2. Invece P' & omeomorfo a S' e quindi =,(P') = Z.
In particolare P" non ¢ semplicemente connesso per ogni n > 1.

La proposizione 18.2 mette in evidenza una proprieta importante dei rivesti-
menti universali. Anche il prossimo risultato ha conseguenze importanti nel caso
particolare dei rivestimenti universali.

18.4 TEOREMA  Sia
(R,70)
lp [18.1]
(Y, y0) — (X, z0)

un diagramma di applicazioni continue tra spazi topologici puntati, con p un
rivestimento. Le seguenti condizioni sono equivalenti:

(a) esiste un sollevamento g : (Y,yo) — (R, 7o) di f;

(b) fu(m(Y,50)) C pa(mi(R, 7o)

Dimostrazione
(a) = (b) Segue dalle proprieta funtoriali del gruppo fondamentale.

(b) = (a) Definiamo g nel modo seguente. Per ogni y €Y sia a:1 —Y un
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arco tale che a(0) = gy, afl) =y; Parco f-a: I — X soddisfa (f - a)(0) = =y,
(f - a)1) = f(y); sia (f - a)’m : T — R il suo sollevamento di punto iniziale r.
Poniamo ¢(y) = (f - a);, (1).

Verifichiamo che g ¢ ben definita. Se §:1 — Y & un altro arco tale che
B(0) =yy, B(1) =y allora e+ A" & un cappio di base y, e f(a*B°) & un cappio in
X di base z,. Per ipotesi [f(a*B%)] € p.(m(R,ry)) e quindi f(a*B°) si solleva a
un cappio di base r, (proposizione 17.7). Cio significa che i sollevamenti di f-«
e di f-f8 hanno lo stesso punto finale, cio¢ che (f - a); (1) = (f- )}, (1), e quindi
g & ben definita.

g & continua. Sia infatti y € Y, e sia, come nella prima parte della dimostrazione,
a:I—Y un arco tale che a(0) = yo, a(l) =y; sia U C R un intorno aperto di
g(y), che possiamo supporre essere mandato da p omeomorficamente sull’aperto
p(U), e sia V C Y un intorno aperto di y connesso per archi tale che f(V') C p(U).
Per ogni y' € V esiste un arco ¢ : I — V tale che 0(0) =y, 0(1) = y': poiché axo
¢ un arco di punto iniziale yo e finale ', si ha g(y') = (f(ax0)), (1) = (f~a);(y)(1),
e questo punto appartiene a U perché f-o ¢ contenuto in p(U) e (f -a);(y)(O) eU.
Quindi g(V) C U, e pertanto g ¢ continua in y; per l'arbitrarieta di y € ¥ cio
dimostra che g ¢ continua. =

18.5 COROLLARIO

(a) Sia dato un diagramma [18.1] di applicazioni continue tra spazi topologici
puntati, con p un rivestimento. Se Y ¢ semplicemente connesso allora un
sollevamento g di f esiste.

(b) Se p: (R,r9) — (X, z0), q: (T, tg) — (X, zy) sono due rivestimenti universali
di X, esiste un unico omeomorfismo @ : (R,ry) — (T, ty) tale che q-® =p.

Dimostrazione. La (a) ¢ evidente. Dimostriamo la (b). Il teorema 18.4 applicato
prima al rivestimento ¢ e poi al rivestimento p implica I’esistenza di @ : (R, o) —
— (T,tp) e di ¥:(T,ty) — (R,r) tali che g-®=pe p-¥=gq, e quindi tali che
gD ¥Y=gq, p-¥ ®=p. Per 'unicita del sollevamento (teorema 17.4) applicata
ai diagrammi

(T, to)

lg
q: (T: t()) d (Xy ﬁl?())

(R, o)

Ip
p:(R,r0) — (X, z0)
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rispettivamente, si ha @ W= 17, ¥-® = 1p, ¢ quindi ® ¢ ¥ sono omeomorfismi
inversi uno dell’altro. L'unicita di @ segue ancora dal teorema 17.4. =

Dal corollario 18.5(b) seguc dunque che un rivestimento universale di uno
spazio X, se esiste, € unico a meno di omeomorfismo. Un caso particolare della
(a) del corollario 18.5 ¢ la seguente:

18.6 PROPOSIZIONE (Proprieta universale dei rivestimenti universali) Sia p :
(R,r0) — (X, z0) un rivestimento universale. Per ogni rivestimento q : (Y,yo) —
— (X, zy) esiste un’unica applicazione continua g : (R,ry) — (Y,yo) tale che
g-g=p, e g ¢ un rivestimento.

Dimostrazione. Resta solo da dimostrarc che g € un rivestimento; la verifica &
un semplice esercizio che lasciamo al lettore. =

Un caso particolare della proposizione 18.6 ¢ il seguente:

18.7 COROLLARIO Se g : (R,79) — (X, z9) & un rivestimento, con X sempli- .
cemente connesso, allora g é un omeomorfismo.

Vogliamo ora occuparci del problema dell’esistenza del rivestimento universale
di un dato spazio topologico X.

Osserviamo innanzitutto che se p : B — X & un rivestimento universale e
V C X & un aperto ben ricoperto, allora per ogni cappio a : I — V esiste
un’omotopia rel {0,1} in X tra o e un cappio costante: infatti o si solleva a un
cappio o' in R il quale, per la semplice connessione di R, & omotopo rel {0, 1}
ad un cappio costante ¢ I’omotopia induce un’omotopia in X tra o € un cappio
costante. Pertanto X soddisfa la seguente condizione:

Ogni punto z € X & contenuto in un aperto V tale che ogni cappio di base z
contenuto in V' ¢ omotopo rel {0, 1} in X al cappio costante c,.

Uno spazio X soddisfacente questa condizione si dice localmente semplicemente
connesso. Quindi una condizione necessaria affinché X possieda un rivestimento
universale ¢ che X sia localmentc semplicemente connesso.

18.8 Esempio

Sia X =U ¢, c R, dove C, c R? & la circonferenza di centro il punto
n

1 N . .
(;, 0) e raggio (fig. 18.1). Questo spazio & connesso per archi e localmente

connesso per archi, ma non & localmente semplicemente connesso perché la
condizione della definizionce non ¢ soddisfatta nell’origine. Quindi X non possiede
un rivestimento universale.
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</

Dimostreremo ora un teorema di esistenza per i rivestimenti.

Figura 18.1

18.9 TEOREMA  Se X ¢ uno spazio connesso per archi, localmente connesso
per archi e localmente semplicemente connesso allora X possiede un rivestimento
universale.

Dimostrazione. Fissiamo zy € X. Sia A(X;zo) l'insieme degli archi in X
aventi per punto iniziale z, e sia “~” la relazione di equivalenza, gia introdotta
nel paragrafo 14: o ~ 3 se a e B sono omotopi relativamente a {0,1}. In parti-

. AX;20) ,. . .
colarc se a ~ B allora a(l) = g(1). Sia R = M I’insieme quoziente e per

ogni o € A(X; zp) sia [a] € R la classe di equivalenza di a. Definiamo p: R — X
ponendo p({a]) = a(l). Introduciamo una topologia in R assegnandone una base
nel modo seguente. Per ogni [a] € R e per ogni aperto V C X contenente p([a))
sia

@, V]={[lax*pB]:p arco in V di punto iniziale a(l)} C R.

Ovviamente a € [a,V] e gli insiemi [@,V] ricoprono R. Inoltre, se [B] €
€ lay, Vil N[y, V2] allora [B] € [8,Vi N V3] C e, Vil N [a2, V2] quindi [e, VI
Nlaz, V5] & unione di insiemi [a,V]. Pertanto la famiglia di insiemi {[a,V]} &
base di un’unica topologia su R.

p é continua: sia U C X un aperto ¢ sia a € p” '(U). Allora [, U] & un aperto
di R contenente o ¢ p(le,U]) C U; dunque p ¢ continua.

p ¢ aperta: infatti p(la, V1) € la componente connessa per archi di V' contenente
p(a): pertanto p(fe,V]) & aperto in V e quindi in X perché V, come X, ¢
localmente connesso per archi.
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p € un rivestimento: sia z € X e sia U un aperto contenente z, COnNesso per
archi e tale che ogni cappio in U di base z sia omotopo rel {0, 1} al cappio costante
cz. Per ogni oo € p '(U) si ha p(la, U]) = U. Inoltre se [a* 3], [a*B'] € [, U] sono
tali che p([axB]) = p([axB']) allora B(1) = B'(1) ¢, per la scelta di U, B ~ o 8';
quindi [a* B] = [a * B']. Pertanto la restrizione di p a |, U] & biunivoca su U
oltre che continua ed aperta. Dunque p manda [a, U] omeomorficamente su U.
Pertanto, poiché p !(U) & unione disgiunta degli aperti [, U], U & ben ricoperto
¢ quindi p € un rivestimento.

R é connesso per archi. Sia [cg,] € R la classe del cappio costante in zq. E
sufficiente costruire, per ogni [a] € R, un arco in R di punto iniziale [cz,] € punto
finale [«]. Poniamo a,(t) = a(st) per ogni s, t € I. L’applicazione ¢, : I — R,
dal(s) = las], soddisfa ¢o(0) = [cz,], da(l) =[al, p- ¢o = a. Inoltre ¢, ¢ continua:
per ogni s €I e per ogni intorno aperto V' di a(s) = p(¢a(s)), sia € > 0 tale che
a((s —e,s+¢€)) C V; si verifica subito che ¢u((s —g,5+¢)) C [da(s), V] =las, V],
e quindi ¢, € continua.

R é semplicemente connesso. Sia ¢ : I — R un cappio di base [cz,] € sia a = p-¢.
Per I'unicita del sollevamento si ha ¢ = ¢o. Quindi [a] = ¢(1) = [cg, ] perché ¢ & un
cappio. Ne discende che a ~ ¢z, € quindi anche ¢ ¢ omotopicamente equivalente
al cappio costante di base [cy,] per I'iniettivita di p. : m(R, [eg,]) = m1(X, 20). ®

Le ipotesi del teorema 18.8 sono in particolare soddisfatte dalle varieta topo-
logiche connesse. Quindi deduciamo il seguentc

18.9 TEOREMA  Ogni varieta topologica connessa possiede un rivestimento
universale.

Ad esempio il toro T? =S' x S' possiede il rivestimento universale:
p:R-T?
p(z,y) = (E(2), Ey)) = (€7, &™)

(cfr. escrcizio 17.1).
La sfera S™, n > 2, essendo semplicemente connessa, € rivestimento universale
di se stessa, cioé ha come rivestimento universale I’identitd S* — S™.



Capitolo 5

Varieta differenziabili

In questo capitolo abbandoneremo la generalitd della topologia per passare a
considerare le varieta differenziabili studiandone le principali proprieta. La nozione
di varieta differenziabile ¢ una delle pili importanti di tutta la matematica. Molti
degli spazi topologici che abbiamo considerato nei capitoli precedenti sono esempi
di varieta differenziabili, e ora li tratteremo in modo diverso utilizzando strumenti
del calcolo differenziale di pil variabili.

19 Funzioni e applicazioni differenziabili - Varieta

In questo paragrafo introdurremo alcune nozioni di calcolo differenziale di pid
variabili reali che vengono utilizzate nello studio delle varieta differenziabili. Ci
limiteremo ad alcuni richiami che hanno soprattutto lo scopo di fissare notazioni
¢ terminologia. Per maggiori dettagli rinvieremo il lettore ai testi di Analisi
Matematica, nei quali questi argomenti vengono sviluppati in modo sistematico e
approfondito.

Denoteremo con wuy,...,u, le funzioni coordinate in R". Sia U un aperto di
R", a=(aj,...,a,) €U, ve R" e sia F: U — R una funzione. La funzione
composta:

t—a+tve— Fa+1tv)

¢ definita in un intorno di 0 € R. La sua derivata in 0, cioé il limite

. Fa+tv)— F(a)
lim ———m — 2
t—0 t

se esiste, si dice derivata direzionale di F in a nella direzione v, o rispetto a v,
e si denota V(F),.
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Se v= e, il j-esimo vettore della base canonica, la derivata direzionale e i(F)a
si dice j-esima derivata parziale di F in a, o anche derivata parziale di F in a
oF
rispetto ad uj, € si denota anche — (a).
Ou;
19.1 PROPOSIZIONE ~ Siano U c R™ un aperto, ac€ U, v, we R*, F, G :

U — R funzioni, e a, b € R. Valgono le seguenti identita ogni volta che primo e
secondo membro esistono:

(av +bW)(F)a = av(F)a + bw(F)y
V(aF +bG)a = av(F)a + bv(G)a [19.1]
V(FG)a = V(F)aG(a) + F(a)V(G)a

La dimostrazione & lasciata al lettore.

Una funzione F : U — R sara detta di classe C” in U se & continua in U,
di classe C' se & continua e tutte le sue derivate parziali prime esistono in ogni
punto di U e sono funzioni continue in U. Le derivate parziali seconde, terze ccc.
di F' si definiscono induttivamente. F sara detta di classe C®, k>0, in U se &
di classe C¥ e tutte le sue derivate parziali di ogni ordine minore o uguale a k
esistono in ogni punto di U e sono funzioni continue in U. F & di classe C©
se & di classe C® per ogni k > 0.

Ovviamente, se I ¢ di classe C® in U, F & anche di classe C® in U per

ogni 0 < h<k.
Se F' & di classe C®, k > 2, la sua derivata parziale di ordine h < k eseguita
rispetto alle variabili w;,, u,,, ...,u;, nel punto a € U si denota
oF

auilauiz cee Buih (a)

Per funzioni di classe C® le derivate parziali successive sono indipendenti

dall’ordine in cui vengono eseguite; cosicché ad esempio, se k > 2 si ha:

O*F (@) = *F
duidu;  Ou;du;

(a)

per ogni i#jeacU.
Se UcR™ ¢ un apertoc F: U — R™ ¢ un’applicazione, per ogni x € U si
ha:

F(x) = (Fi(x),..., Fp(x))

dove F,...,Fppy: U — R sono le funzioni coordinate (o componenti) di F. Diremo
F di clavse C‘k’ in U se le funzioni F,..., F, sono di classe Cc® in U; similmente
diremo F di classe C® in U se F,.. Fm sono di classe C©® in U.
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Un fatto evidente, che va perd sottolineato, ¢ che la restrizione di un’appli-
cazione F : U — R™ di classe C* (risp. di classe C) a un aperto V. C U &
ancora un’applicazione di classe C*' (risp. C®). Inoltre Iidentita di R™ in sé &
un’applicazione di classe C, e quindi I’inclusione U c R™ ¢ di classe C,

Le applicazioni di classe C*¥' o C° si possono comporre. Precisamente, se
UcR"eVcR™ sono aperti, F: U - R™ e G:V — RP sono applicazioni di
classe C® (risp. C*) tali che F(U) C V, allora la composizione G- F : U — RP
& una funzione di classe C® (risp. C).

Se U,V sono due aperti di R", una biezione F : U — V si dice un dif-
feomorfismo di classe C® (risp. C°) sc le composizioni F : U — V c R" e
F ':V — U c R" sono entrambe applicazioni di classe C* (risp. C°). Se un
diffeomorfismo F : U — V csiste, anche F~! & un diffeomorfismo e U e V si
dicono diffeomorfi di classe C® (risp. C).

E utile estendere le nozioni di applicazione di classe C®' o C®, a insiemi di
definizione qualsiasi, nel seguentec modo.

Sia X c R" un sottoinsicme, ¢ sia F': X — R™ un’applicazione. Diremo F di
classe C* (risp. C) in X se per ogni x € X esiste un intorno aperto Uy di x
in R™ ed un’applicazione F : Uy — R™ di classe C* (risp. C°) tale che:

Fixnuy = Fixnuy-

Se X c R" ed Y c R™, un’applicazione I : X — Y si dira di classe C*
(tisp. C®) se la composizione F: X — Y c R™ & di classe C® (risp. C°°) in
X. F si dirh un diffeomorfismo di classe C® (risp. C°) se & biettiva e anche
F ' & di classe C® (risp. C©)); se una tale F esiste diremo X ¢ Y diffeomorfi
di classe C® (risp. C©).

La composizione di applicazioni di classe C® o C definite su insiemi
qualsiasi & ancora di classe C* o C'®, come segue subito dalla definizione.
Inoltre, la restrizione di un’applicazione F': X — Y a un sottoinsieme X' C X &
di classe C* (risp. C'*) in X' se F & di classe C® (risp. C).

19.2 DEFINIZIONE  Sia X uno spazio topologico. Una coppia (U, py) dove
UcC X ¢ un aperto e py ¢ un omeomorfismo di U su un aperto di R" si dice
una n-carta locale, oppure un n-sistema di coordinate locali, in X. Due n-carte
locali (U, py), (V,ey) in X si dicono C‘k’-compatibili, oppure differenziabilmente
compatibili di classe C*¥ (k > 0 oppure k= o0) se UNV =@ oppure se UNV #6
e applicazione:

ov -y terUNV) - pyUNV) [19.2]

¢ un diffeomorfismo di classe C® (vedi fig. 19.1).

Se (U,py) € una n-carta locale in X, con abuso di notazione diremo talvolta
che Papplicazione @y : U — R™ & una n-carta ocale in X relativa all’aperto U.
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Scriveremo

erp)=(z(p),...,za(p)

dove z,,...,%, : U — R sono le funzioni componenti dell’applicazione ¢y : U —
— R", che chiameremo coordinate locali in U definite da oy . Chiameremo talvolta
U un aperto coordinatizzato di X. Un aperto contenuto in U ¢ ancora un aperto
coordinatizzato perché la restrizione di una carta locale ad un aperto piu piccolo
¢ ancora una carta locale.

Nel caso k = 0 la condizione [19.2] & automaticamente soddisfatta perché
oy - ¢y ¢ composizione di omeomorfismi e quindi & un omeomorfismo. Quindi
due n-carte locali in uno spazio X sono sempre C*-compatibili.

In R le coppic (R, ), (R,t*) sono l-carte locali che non sono C'"-compatibili
perché la funzione y/z, pur essendo un omeomorfismo di R in sé, non & di classe
C® in 0.

Si osservi che se due n-carte locali (U, py), (V,py) in X sono C®-compatibili
allora sono anche C-compatibili per ogni 0 < h < k. ‘

Siano (U, ¢y), (V,py) due n-carte locali in X tali che U NV #§, siano
zy,...,%n : U — R le coordinate locali definite da oy, € yi,...,yn : V — R
le coordinate locali definite da ¢y. Le componenti dell’applicazione [19.2] sono
funzioni a valori reali sull’aperto @y (U NV) di R™ che si diranno funzioni di

transizione dalle coordinate z,...,z, alle coordinate yi,...,yn.
|
Dy 9y
A
A
-1
Oy 9y
e RN -

Figura 9.1
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19.3 DEFINIZIONE Un n-atlante differenziabile di classe C® nello spazio
topologico X é una famiglia di n-carte locali {(Uy, )} ren tale che {Uy}en sia
un ricoprimento di X e le carte locali (Uy, p)) siano a due a due C(k’-compatibili.

Uno spazio topologico di Hausdorff a base numerabile in cui sia assegnato
un n-atlante differenziabile di classe C® per qualche intero n > 0 si dice varieta
differenziabile di classe C®, se k > 1 oppure k = oo, e si dice varietd to'pologica
(0 di classe C®) se k=0 (cfr: anche esempio 8.11(6)). L’intero n & la dimensione
della varieta X.

Diremo anche che latlante {(Uy, ©)}aea definisce in X una struttura di varieta
differenziabile di classe C® (se k> 1, 0 k = o) oppure una struttura di varietd
topologica (se k =0). Scriveremo dim(X)=n se la varieta X ha dimensione n.

E evidente che una varieta di classe C*® & anche una varieta di classe C* per
ogni 0 < h < k. In particolare ogni varieta differenziabile ¢ una varieta topologica.
D’ora in poi, per semplificare la trattazione, quando parleremo di diffeomorfismi
senz’altro specificare, sottintenderemo che si tratti di diffeomorfismi di classe C',
mentre parlando di varieta e di applicazioni differenziabili sottintenderemo che
esse siano di classe C'®. Molte delle cose che diremo si estendono dal caso C
al caso C*, per un qualsiasi k& > 1.

Le condizioni che lo spazio topologico X sia di Hausdorff e soddisfi il secondo
assioma di numerabilita non sono ridondanti (cfr. esempio 8.11(6)). Molte pro-
prieta locali delle varieta differenziabili si mantengono senza tali ipotesi, le quali
hanno perd lo scopo di escludere esempi patologici assicurando che le varieta
differenziabili non siano oggetti troppo generali (si veda a questo proposito il
successivo §29).

Diremo che due diversi n-atlanti differenziabili

{(U)\: <P).)}1\6A7 {(‘//l,, "pl-b)}/LGM

sono equivalenti, oppure definiscono la stessa struttura di varieta differenziabile
su X se e solo se la loro unione

{(U)\vso)\)a (Vp.g'(/)p,) H )\ c A, 22 € M}

¢ ancora un atlante differenziabile. Cid equivale a dire che ogni carta locale
(Uy, ) ¢ differenziabilmente compatibile con ogni carta locale (V,,,).

Da questa definizione segue che per una data struttura di varieta differenziabile
su X esiste un atlante differenziabile massimale, ottenuto prendendo 1’unione di
tutti gli atlanti che definiscono quella struttura. In pratica tutti gli esempi di varieta
differenziabili vengono assegnati mediante un particolare atlante differenziabile,
spesso costituito da un numero finito di carte locali; la nozione di atlante differen-
ziabile massimale ¢ perd utile nel trattare questioni generali e nelle dimostrazioni.
Nel considerare una varieta differenziabile sottintenderemo che le carte locali consi-
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derate siano elementi di un dato atlante differenziabile. Lasceremo al lettore di
verificare di volta in volta che una data condizione soddisfatta in un dato atlante
¢ soddisfatta anche in ogni altro ad esso equivalente.

L’esempio pit semplice di varieta differenziabile di dimensione n ¢ lo spazio
R™, in cui la struttura di varictd pud essere definita da un atlante costituito un’unica
carta locale: {(R", 1g:)}.

Ogni aperto U di R® ¢ un esempio di varieta differenziabile di dimensione n
in cui un atlante & costituito da una sola carta locale {(U,:)}, dove +: U — R" &
I’inclusione.

Pil in generale ogni aperto A di una varieta differenziabile X ¢ ancora una
varieta differenziabile della stessa dimensione che si dice una sortovarieta aperta
di X. Infatti se {(Uy, p)}ren € un n-atlante differenziabile in X, allora la famiglia
{(UAN A, 05 ,n4a)}renrs dove A* C A & il soltoinsieme costituito dagli indici
tali che Uy N A#0, & un n-atlante differenziabile in A.

Ogni spazio discreto X € una varieta differenziabile di dimensione 0, in cui
le applicazioni {p} — R’ = {0}, p € X, sono carte locali che costituiscono un
atlante differcnziabile.

Una varieta differenziabile (topologica) di dimensione 2 ¢ detta superficie
differenziabile (topologica).

L’importanza delle varieta differenziabili sta nel fatto che ad esse & possibile
applicare gli strumenti ed 1 risultati del calcolo infinitesimale in pid variabili
utilizzando le carte locali per ricondursi allo spazio euclideo. Ad esempio, una
Sfunzione

F:A-R

definita su un aperto A della varieta differcnziabile X si dice differenziabile se
per ogni carta locale (U, py) tale che UN A#@ la funzione

F.oy' topUnA) - R

¢ differenziabile; si osservi che F-goU‘ ¢ una funzione delle coordinate u,,...,u,

in R" definita nell’aperto oy (U N A) di R".
Siano X ed Y varieta differenziabili, dim(X) = n, dim(Y") = m. Un’applicazione

F: X-Y

si dice differenziabile, oppure un morfismo, se per ogni carta locale (U, py) in X
e per ogni carta locale (V,4y) in Y, la composizione:

Yy - F-oy' oyU) - R™

¢ differenziabile come applicazione dell’aperto oy (U) ¢ R™ in R™. F si dira un
diffeomorfismo se & un omeomorfismo ¢ sc F e F ' sono differenziabili.
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L’identita di una varieta in se stessa ¢ un esempio di diffeomorfismo. Segue
dalla definizione che se F': X — Y & un diffeomorfismo anche F'': Y — X & un
diffeomorfismo. E facile verificare che la composizione di morfismi & ancora un
morfismo. In particolare la composizione di diffcomorfismi ¢ un diffeomorfismo.

Se esiste un diffeomorfismo F : X — Y diciamo che X é diffeomorfa ad Y
e le varieta X ed Y si dicono diffeomorfe. Lo studio delle varieta differenziabili
¢ delle proprieta che una varietd ha in comune con quelle ad essa diffeomorfe &
I’oggetto della topologia differenziale.

Per le varieta differenziabili di dimensione 1 non useremo il termine “curva”
perché, conformemente alla tradizione, riserveremo questo nome per qualcosa
di un po’ diverso. Precisamente, sia X una varieta differenziabile; una curva
differenziabile in X & un’applicazione di classe C*:

a:J—- X

dove J C R ¢ un intervallo (se J non & aperto cio significa che I’applicazione &
definita ¢ di classe C'° su un’intervallo aperto contenente J). Quindi una curva
differenziabile ¢ un’applicazione; due curve differenziabili diverse possono avere
la stessa immagine.

Esercizi

1. Dimostrare che un’applicazione lineare L : R* — R™ & di classe C®, e che & un
diffeomorfismo se e solo se ¢ invertibile, cio¢ n =m e det(L)#0. Dimostrare inoltre
che una traslazione ¢ un diffeomorfismo. Dedurre che affinitd, isometric ¢ similitudini

sono diffeomorfismi.
2. Dimostrare che I'applicazione f: R — R, f(t) =¢> & un omcomorfismo di classe C'’
ma non & un diffeomorfismo.

3. Dimostrare che i due atlanti (R, t), (R,#?) su R, pur non essendo equivalenti, definiscono
su R due strutture di varieta differenziabili diffeomorfe.

4. Generalizzando I’applicazione f dell’esercizio 2 definire un omeomorfismo di classe
C® f:R"™ — R" che non & un diffeomorfismo.

5. Siano a, be R, con a < b. Dimostrarc che I"applicazione

b;a tanh(t) + _b+a7

[tR-R, f)= 5

dove

sinh(t) e -—-e!
tanh(t) = ——— = ———,
anh(t) cosh(t) et+e t’

definisce un diffeomorfismo di R sull’intervallo (a,b). In particolare, due intervalli
aperti qualsiasi di R sono diffeomorfi. Verificare se I'omeomorfismo & : (a,b) — R
dell’esempio 5.4(6) & un diffeomorfismo oppure no.
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6. Dimostrare che la funzione ¢ : R — R:

e /7 150
p(z) =
0 z<0

¢ di classe C*,

7. Trovare un diffeomorfismo di R"™ sull’aperto (0, 1)".

Eed

Dimostrare che I'applicazione f:R™ — D™\8" !, f(x) = ¢ un diffeomorfismo.

_x
T 1]l

9. Dimostrare che Ie seguenti applicazioni di R* in sé sono diffeomorfismi e determinarne
le inverse:

(a) F(u,v) = (ve*,u);

(b) F(u,v) = (u’,v — u);

¢y Flu,v)=(1+2u-2v, 1 —2u+v);
(d) Flu,v)=(u+e’, 1+uv).

10. Dimostrare che
1 RA\{0} - R*\{0}
f(u: ’U) = (L —:'2‘"')

’LL2+'U2= ’l.l,z‘l”l}2

¢ un diffeomorfismo, e determinarne 1'inverso.

11. Verificare che I’applicazione di classe C**:

{:R >R

fu,v) = (u? — 0%, 2uv)

non ¢ un diffeomorfismo sulla sua immagine.

20 Esempi di varieta differenziabili

Come al solito identificheremo C con R?, ¢ quindi potremo considerare C ¢ i
suoi aperti come delle varietd differenziabili. Una funzione di variabile complessa
[ : U — C definita su un aperto U di C ¢ differenziabile se la parte reale e
la parte immaginaria di f(z) = f(z +iy) sono differenziabili come funzioni di
(z,y). Tutte le funzioni olomorfe sono differenziabili di classe C'* nell’aperto di
definizione. In particolare lo sono i polinomi a coefficienti complessi ¢ le funzioni
trascendenti elementari, cioé e?, le dcterminazioni di In(z), sin(z), cos(z) ecc. e
le loro inverse. Il coniugio z — z & un diffeomorfismo di C in sé.

Gli esempi principali di varieta differenziabili sono ottenuti come “sottovarieta
di RV» per qualche N, secondo la seguente definizione.
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20.1 DEFINIZIONE  Un sottospazio X di RY si dice sottovarieta differenziabile
di dimensione n se ogni punto x € X possiede un intorno aperto in X che, come
sottoinsieme di RN, ¢ diffeomorfo a un aperio di R™

Quindi, in basc alle definizioni date nel paragrafo precedente, X c RV &
una sottovarietd se per ogni x € X esiste un intorno aperto U di x in R e
un’applicazione differenziabile Fy : U — R™ che induce una biezione Fx di UNX
su un aperto V di R", tale che la biezione inversa V — U N X sia differenziabile
come applicazione di V in RY. Se queste condizioni sono soddisfatte le coppie
(UNX, Fx) sono n-carte locali tra loro differenziabilmente compatibili al variarc
di x € X, e quindi costituiscono un atlante differenziabile in X; X ¢ pertanto una
varieta differenziabile di dimensione n.

Un modo per assegnarc sottovarietd di RY ¢ mediante “parametrizzazioni”.

20.2 DEFINIZIONE  Una parametrizzazione in RY ¢ un ‘applicazione differen-
ziabile
f:A—-RY

definita su un aperto A di R" che & un diffeomorfismo sull’immagine. In tal caso
f(A) & una sottovarieta di dimensione n di RY.

Quindi una paramectrizzazione ¢ essenzialmentc 1'inversa di una carta locale.
Se pe RY e v & un vettore non nullo di RY allora

f@)=p+tv=(p +tv,...,pn+tvy) [20.1]

¢ una parametrizzazione f : R — RY della retta passante per p e di direzione (v);

pertanto r € una sottovarietd di dimensione 1 di RY. Similmente un sottospazio
affine X di dimensione n & un esempio di sottovarietd differenziabile di R" di
dimensione n, ottenuta come immagine di una parametrizzazione di X (Sernesi
1989, p. 101).

Ovviamente non ogni sottovarieta di RY i puo ottencrc come immagine di
una parametrizzazione, perché non ¢ detto che possegga un atlante costituito da
una sola carta locale. Perd se X & una sottovarieta di RY , allora per definizione
csistono parametrizzazioni f) : Ay — RY, ) € A, tali che U Ay =X e gli
insiemi fy(A,) sono aperti coordinatizzati di X. A

L applicazione

f:R-R?
120.2)
f@t) = (r cos(t), r sin(t))
ha per immagine la circonferenza S'(0,r) di centro 0 e raggio r > 0 che & una
sottovarictd di R* (vedi oltre) ma f non & una parametrizzazione perché non ¢&
biunivoca.
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-

Figura 20.1

Sia A=(0,7/2)U(x/2,27) C R, e sia a: A — R’ definita da
a(0) = (cos(8), sin(20)) [20.3]

a ¢ differenziabile e biunivoca ma non ¢ una parametrizzazione, perché a(A)
¢ connesso, mentre A € sconnesso (fig. 20.1).

Si osservi che la [20.1] e la [20.2] sono curve differenziabili in RY. La [20.3]
non ¢ una curva differenziabile perché non & definita in un intervallo, ma la sua
cstensione a R lo &.

Una sottovarieta di dimensione n in R™"' & detta ipersuperficie differenziabile.
Nel caso n = 1, 2 si hanno le curve piane differenziabili e le superfici differenziabili
di R* che forniscono esempi classici e ben conosciuti di varieta differenziabili.
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