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Prefazione

La presente opera, rivolta anzitutto agli studenti della Facolta di Matematica,
tratta gli argomenti usualmente svolti in un primo corso di geometria nelle uni-
versita italiane. Supponendo note le principali proprietd dei numeri reali e com-
Dplessi e utilizzando la teoria degli spazi vettoriali e I’algebra lineare, vi si espon-
gono i fatti fondamentali delle geometrie affini, euclidea e proiettiva e la teoria
elementare delle curve algebriche piane.

Per conciliare il pin possibile ’esigenza del rigore con quella, pure importante,
di non appesantire la trattazione con una teoria algebrica troppo astratta e for-
male, I’algebra lineare e esposta con gradualita e in alternanza con la geometria.
Questo anche al fine di porre nel dovuto rilievo gli aspetti geometrici della teoria
degli spazi vettoriali.

Il volume si compone di quattro capitoli, pitt due appendici i cui contenuti,
di carattere algebrico, esulano dall’algebra lineare.

L’esposizione, di tipo elementare, si avvale di numerosi esempi per facilitare
’apprendimento dei concetti piu delicati. Lo stesso scopo hanno gli esercizi che
compaiono al termine di ogni paragrafo (di molti di essi si da la soluzione a fine
volume). In molti casi i paragrafi sono corredati di ‘““Complementi’’ che conten-
gono spunti per approfondimenti ulteriori. (Vi si trovano, fra ’altro, i fatti essen-
ziali sulle ipersuperfici in spazi di dimensione qualunque, e la classificazione delle
quadriche.)

Nell’organizzazione della materia, infine, si é cercato di assicurare una flessi-
bilita sufficiente da consentire una lettura diversificata, e dunque una maggior
liberta nell’organizzazione dei corsi. Ad esempio, la trattazione del capitolo 3 puo
essere svolta prima di quella del capitolo 2; allo stesso modo, e possibile passare
direttamente dallo studio della geometria euclidea (cap. 2) a quello delle sole curve
piane affini ed euclidee (cap. 4) giungendo rapidamente alla classificazione delle
coniche. E pure possibile una lettura che separi piil nettamente I’algebra lineare
dalla geometria, e che puo ben conciliarsi con le esigenze di un corso diviso in
due semestri. E.S.



AVVERTENZE

I1 testo presuppone la conoscenza delle nozioni di base della teoria degli insiemi e delle
principali proprieta degli insiemi numerici fondamentali, per i quali si usano le seguenti
notazioni:

N: I’insieme dei numeri interi naturali (0 incluso).
Z : Vinsieme dei numeri interi relativi.

Q: I’insieme dei numeri razionali.

R: linsieme dei numeri reali.

C: I'insieme dei numeri complessi.

In prima lettura la conoscenza dei numeri complessi non & strettamente necessaria.

Le notazioni e i simboli adottati sono quelli di uso pitt comune nella letteratura. Per
comodita del lettore ne diamo un elenco.

A C B oppure B D A significano: I’insieme A & un sottoinsieme dell’insieme B.

a€ A significa: a & un elemento dell’insieme A4.

AUB, AN B, A X B sono rispettivamente I’unione, ’intersezione e il prodotto carte-
siano dei due insiemi 4 e B.

Se A C B, B\ A denota I’insieme differenza di B meno A, che consiste di tutti gli ele-
menti di B che non appartengono ad A.

Se n=1 ¢é un intero e A & un insieme, A" denota il prodotto cartesiano di 4 per sé
stesso n volte.

La scrittura

f:A—B
a~b

significa che I’applicazione f dell’insieme A nell’insieme B manda I’elemento a€ 4 in b€ B.
Se f:A— B e g:B— C sono applicazioni, la loro composizione si denota con gof.
Per ogni numero intero positivo &, il simbolo k! denota il prodotto 1-2- ... -k, chia-

mato ‘‘k fattoriale’’. Per definizione si pone 0! =1.

Dati a, b€ R, a < b, si denoteranno con (a, b), [a, b}, (a, b, la, b) gli intervalli rispetti-

vamente aperto, chiuso, aperto a sinistra, aperto a destra, di estremi a e b.

Il coniugato @ — ib di un numero complesso z = a + ib si denota con z. Il modulo di

z &~a*+ b? e sidenota con |z},

Per gli altri simboli utilizzati rinviamo il lettore alla lista che si trova alla fine del volume.
Le nozioni introdotte nelle Appendici vengono liberamente utilizzate nel testo.
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Capitolo 1

Geometria affine

1 Vettori geometrici. Spazi vettoriali

Lo studio della geometria nella scuola secondaria si basa sul sistema assioma-
tico di Euclide, nella formulazione moderna che gli fu data da David Hilbert
(1862-1943) alla fine del secolo xix. Per la geometria piana tale sistema considera
come enti primitivi il punto e la retta. Inoltre vengono considerate come primitive
alcune nozioni quali: ’appartenenza di un punto a una retta; il giacere di un punto
tra altri due punti; 'uguaglianza di segmenti; 'uguaglianza di angoli (le nozioni
di segmento e di angolo sono definite a partire dagli assiomi).

Analogo sistema di assiomi esiste per la geometria dello spazio.

Noi adotteremo un altro punto di vista, che consiste nel fondare la geometria
sul concetto di ‘‘vettore’’. L’assiomatica basata su tale concetto, oltre ad essere
molto semplice, riveste una grande importanza in tutta la matematica.

Per motivare le definizioni che dovremo dare, cominceremo con ’introdurre
il concetto di vettore nel piano e nello spazio della geometria di Euclide (che d’ora
in poi chiameremo piano e spazio ordinari), e metteremo in evidenza le proprieta
che verranno successivamente utilizzate per I’impostazione assiomatica. Per ora
ci limiteremo a considerazioni di carattere intuitivo, senza curarci di dare dimo-
strazioni complete.

Un vettore applicato (o segmento orientato) dello spazio ordinario ¢ indivi-
duato da un punto iniziale A e da un punto finale B, e viene denotato con il sim-
bolo (4, B). Il punto A si dice anche punto di applicazione del vettore applicato
dato. Un vettore applicato viene rappresentato con una freccia che congiunge i
punti A e B come nella figura 1.1.

Due vettori applicati (A4, B) e (C, D) si dicono equipollenti se hanno la stessa
direzione, la stessa lunghezza ¢ 1o stesso verso, cioé se giacciono su rette parallele
(eventualmente coincidenti) e se, movendo una delle due rette parallelamente a
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o\

A Figura 1.1
% /
Equipollenti Non equipollenti Non equipollenti  Figura 1.2

sé stessa, & possibile portare i due segmenti a sovrapporsi in modo che i loro punti
iniziali e i loro punti finali coincidano. Nell’insieme di tutti i vettori applicati I’equi-
pollenza ¢ una relazione di equivalenza, perché soddisfa in modo evidente Ie tre -
proprieta di riflessivitda, simmetria e transitivita. Un vettore geometrico (o sem-
plicemente vettore) &, per definizione, una classe di equipollenza di vettori appli-
cati, cioé & ’insieme di tutti i segmenti orientati equipollenti a un segmento orien-
tato assegnato (fig. 1.2).

I vettori verranno di solito denotati con lettere in neretto a, b, v, w ecc.

Ogni vettore applicato che individua il vettore a si dira rappresentante di a.
I1 vettore avente rappresentante (4, B) verrd anche denotato con AB. Dato un
punto A, ogni vettore a ha un rappresentante, € uno solo, applicato in 4.

Nella definizione non abbiamo escluso che A = B. Il vettore individuato da
uno qualunque dei segmenti orientati (4, A4) si chiama vetfore nullo: esso ha lun-
ghezza nulla, direzione e verso indeterminati e si denota con 0.

Si puo definire la somma di due vettori mediante loro rappresentanti nel modo
seguente (fig. l'é)' . .

Siano a=AB e b= BC; allora a + b= AC.

D Figura 1.3



1/Vettori geometrici. Spazi vettoriali 15

Se invece i vettori a g sono datl mediante loro rappresentanti ap;&)catl nello
stesso punto, cioca=ABeb = AD rispettivamente, allora a + b= AC, dove il
punto C ¢ il quarto vertice del parallelogramma i cui altri vertici sono A4, B, D.

Questo modo di costruire a + b & chiamato regola del parallelogramma.

L’operazione di somma di due vettori & associativa, cioé

at(bb+e)=@+b)+c [1.1}

per ogni terna di vettori a, b, ¢. Ci0 si verifica immediatamente utilizzando la
figura 1.4.

fat+b)+c=a+{b+c) Figura 1.4

Dalla [1.1] segue che sommando tre vettori si possono omettere le parentesi
perché la scrittura a + b + ¢ ha un solo significato. Una proprieta simile vale per
la somma di un numero finito qualunque di vettori (cfr. osservazione 1.3(2)).

Da come ¢ stata definita ¢ evidente che I’operazione di somma ¢ commutativa,
cio¢ che

a+b=b+a

per ogni coppia di vettori a, b.
Si noti anche che il vettore 0 soddisfa alla

at+0=0+a

per ogni vettore a.
Se a = AB denoteremo con — a il vettore BA Esso verifica evidentemente
I’identita:

a+(—a)=0.

Definiamo ora il prodotto di un vettore a per un numero reale k (i numeri reali,
nel contesto dei vettori, vengono anche chiamati scalari). Esso &, per definizione,
il vettore ka che ha la stessa direzione di a, lunghezza uguale a quella di a molti-
plicata per lkl, e verso discorde o concorde con a a seconda che k£ abbia segno
positivo o negativo; se k =0 oppure a =0, allora ka = 0.

L’operazione di moltiplicazione di un vettore per uno scalare ¢ compatibile con
quella di somma di vettori e con le operazioni di somma e di prodotto tra scalari.
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Ad esempio la seguente identitd ¢ di immediata verifica:
na=a+ ... +a (nvolte)
per ogni vettore a e per ogni intero positivo n. In particolare
la=a.
Inoltre
(-Da=-—a.
Si puo verificare facilmente che

(k+hya=ka+ ha
e che
(khya = k(ha)

per ogni coppia di scalari k, / e per ogni vettore a.
E anche facile verificare geometricamente che la seguente identita & valida:

ka+b)=ka+kb

per ogni scalare k e per ogni coppia di vettori a, b.
In modo simile al precedente si introducono i vettori della retta e i vettori del
piano ordinario.

E importante notare che, per definire i vettori e le operazioni di somma di due
vettori e di moltiplicazione di un vettore per uno scalare, abbiamo solo usato il
concetto di parallelismo tra retie e la possibilita di confrontare le lunghezze di
due segmenti situati su rette parallele (cioé la possibilita di trovare il numero reale
k che rappresenta la misura di uno di essi rispetto all’altro, e viceversa, di asso-
ciare a un segmento e a uno scalare & un secondo segmento che abbia misura &
rispetto al primo). Queste possibilita sono garantite dagli assiomi della geometria
euclidea.

Non abbiamo richiesto, per le nostre definizioni, che sia possibile confrontare
due segmenti qualsiasi o misurare ’angolo di due semirette. In particolare non
¢ necessario disporre di un’unita di misura assoluta delle distanze, né del concetto
di perpendicolarita.

Ora che abbiamo verificato in modo geometrico intuitivo le proprieta dei vet-
tori, capovolgeremo il punto di vista prendendo queste proprietd come assiomi
per la definizione di ‘‘spazio vettoriale’’.

Uno spazio vettoriale & sempre definito in relazione a un campo di scalari (cfr.
app. A), che nell’esempio precedente era R, ma che puo scegliersi in modo del
tutto generale. Noi non ci metteremo nella massima generalita possibile, ma pren-
deremo per campo di scalari un sottocampo di C.
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Pertanto d’ora in poi (ad eccezione che in app. A) denoteremo con K un sotto-
campo di C che si supporra fissato una volta per tutte.

In prima lettura sara sufficiente limitarsi a considerare il caso K = R. Tuttavia
& molto importante tenere presente che ci6¢ che diremo ha una validita pit generale.

1.1 DeriNizioNE  Uno spaZzio vettoriale su K, ovvero un K-spazio vettoriale,
& un insieme non vuoto V tale che:
1) per ogni coppia di elementi v, w €V sia definito un terzo elemento di V, che
denoteremo con v + w, e che chiameremo la somma di v piu w,
2) per ogni veY e per ogni k€K sia definito un elemento di V, che denoteremo
con kv, e che chiameremo prodotto di v per &,
in modo che le seguenti proprietd siano soddisfatte:

SV1 (Proprieta associativa) Per ogni u, v, W€V si ha
u+v)+w=u+(v+w).
SV2 (Esistenza dello zero) Esiste un elemento 0¢V, chiamato lo zero, o il
vettore nullo, tale che
0+v=v+0=v
per ogni vev.
SV3 (Esistenza dell’opposto) Per ogni veV [elemento (—1)v soddisfa
lidentita
v+(—1v=0.
SV4 (Proprieta commutativa) Per ogni u, v€V si ha
u+v=v+u.
SVS5 (Proprieta distributiva rispetto alla somma di vettoriy Per ogniu, veV
e per ogni k€K si ha
k(u+v)=ku+kv.
SV6 (Proprieta distributiva rispetto alla somma di scalari)  Per ogni veV e
per ogni h, keK si ha
(h+k)yv="hv+kv.

SV7  Per ogni veV e per ogni h, k€K si ha
(hk) v = h(kv).
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SV8 Per ogni veV si ha

iv=w.

Diremo anche che le due operazioni definiscono sull’insieme V una struttura
di K-spazio vettoriale.

E implicito che su un insieme possono a priori esistere diverse strutture di spa-
zio vettoriale, cioé diversi modi di definire su V delle operazioni che ne facciano
uno spazio vettoriale, eventualmente su campi diversi (cfr. esempio 1.2(4)).

Gli elementi dello spazio vettoriale V si dicono vetrori, e gli elementi di K si
dicono scalari.

I vettori della forma kv, k€K, si dicono proporzionali a (o multipli di) v.

Per ogni veV il vettore (— 1) v, chiamato ’opposto di v, si indica con — v,
e si scrivera u — v invece di u + (— 1) v.

Dagli assiomi SV1, ..., SV8 seguono diverse proprieta elementari che verranno
discusse alla fine di questo paragrafo (cfr. 1.3), e che d’ora in poi supporremo
note al lettore.

Quando K=R (K =C), V si dice anche spazio vettoriale reale (spazio vetto-
riale complesso).

Un insieme costituito da un solo elemento & in modo banale un K-spazio vetto-
riale il cui unico elemento ¢ il vettore nullo.

Vediamo ora alcuni esempi non banali di spazio vettoriale.

1.2 Esempi

1. Le proprieta che abbiamo verificato all’inizio del paragrafo implicano che
I’insieme V dei vettori geometrici del piano, quello dei vettori geometrici dello
spazio e quello dei vettori geometrici della retta, dotati delle operazioni di somma
di due vettori e di prodotto di un vettore per uno scalare, costituiscono altrettanti
spazi vettoriali su R.

2. Siano n =1 un intero e V = K", I’insieme delle n-uple ordinate di elementi
di K.
Definiamo la somma di due z-uple (x;, ..., X,,), (V5 ---s V) €K" come
s eees X))+ (P15 oees YD) = Q0+ Pps vees X+ 0
e, per ogni k€K, (x,, ..., x,)€K", definiamo
k(x5 ..., X)) = (kxy, ..., kx,);
in particolare
— (X5 eees X)) = (— Xp5 eeey — X,)-

E immediato verificare che, con queste operazioni, K” soddisfa gli assiomi
SV1, ..., SV8 e quindi & un K-spazio vettoriale. Esso viene solitamente chiamato
I’n-spazio numerico su K.
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1.’ 1-spazio numerico ¢ K stesso, il quale, con le sue proprie operazioni di somma
e di prodotto, & uno spazio vettoriale su sé stesso.

Se (x;, ---» X)) €K", gli scalari xi, ..., x, si dicono componenti, ¢ x; ¢ I’i-esima
componente, di (x,, ..., x,).

3. Sia I un insieme non vuoto qualunque e sia V I’insieme i cui elementi sono
le applicazioni f:I1— K. Per ogni f, g€V definiamo f+ g:I—- K ponendo

S+ =) +gx)

per ogni x€l. Otteniamo in questo modo un elemento f+ g€V.
Se feV e k€K, definiamo kf:I— K ponendo

(kf) () = kf (x)

per ogni x€l. Si ottiene quindi kfeV.
E facile verificare che V, con le operazioni che abbiamo introdotto, & un
K-spazio vettoriale.

4. Sia F un sottocampo di K. Se V & uno spazio vettoriale su K, allora su V
resta indotta una.struttura di F-spazio vettoriale dalle stesse operazioni che defi-
niscono la struttura di K-spazio vettoriale. In altre parole, la somma di due vet-
tori rimane la stessa, e la moltiplicazione di un vettore per uno scalare o €F si
definisce considerando o come un elemento di K e quindi utilizzando la defini-
zione di moltiplicazione per elementi di K.

Ad esempio, il campo C dei numeri complessi pud essere considerato, oltre
che uno spazio vettoriale complesso (I’1-spazio numerico su C), anche come uno
spazio vettoriale reale, perché R & un sottocampo di C.’

1.3 Osservazioni

1. Alcune delle proprieta che discendono dagli assiomi SV1, ..., SV8 di spazio
vettoriale sono evidenti nel caso dei vettori geometrici, ma richiedono una dimo-
strazione nel caso di uno spazio vettoriale qualsiasi. Vediamole.

Denotiamo con V un K-spazio vettoriale.

In V esiste un solo vettore nullo, ciog, se 0, e 0, sono vettori tali che
0,+v=v, 0,4+ v=v per ogni veV, allora 0, =0,.

Infatti, ponendo v = 0, nella 0, + v = v si ottiene 0, + 0, = 0,, mentre ponendo
v =0, nella 0, + v = v si ottiene 0, + 0, = 0,. Quindi

0,=0,+0,=0,+0,=0,

Per ogni veV esiste un solo opposto, cioé, se v+v,=0=v +v,, allora
V=V,
Infatti si ha

vi=04v,=(+v)+V,=v+V,+V)=Vv+H (v, +V)=(F+V)+tv,=
=0+v,=vV,.
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Per ogni a, b€V, lequazione x + a=b ha unica soluzione x =b — a.
Infatti (b —a)+a=b, e, se x+a=>b, allora

x=(X+a)—a=b-—a.

PerogniveV, si haOv =0, dove 0cK & lo scalare zero e 0€ V ¢ il vettore zero.
Infaiti Ov=(0+0)v=0v + 0v, e quindi Ov=0v—-0v=20.

Analogamente si ha k0 = 0 per ogni keK.

Infatti k0 =40+ 0)= k0 + k0, e quindi k0 =k0 - k0=0.

2. Sia V un K-spazio vettoriale. Dati tre vettori u, v, W€V, scriveremo u + v + w
per denotarne la somma effettuata in uno dei due modi possibili, i quali, per ’as-
sioma SV1, danno lo stesso risultato.

Supponiamo ora dati n = 3 vettori v,, ..., v,€ V. Vogliamo dimostrare che la
loro somma eseguita disponendo in un modo qualunque le parentesi:

vi+v+(...+v)..) {1.2]

da un risultato che dipende solo da v,, ..., v,, € che quindi puo essere denotato
con v, + ... +v,, omettendo le parentesi.

Procediamo per induzione su z: se n = 3 ’affermazione € vera per I’assioma
SV1. '

Sia n =4 ¢ supponiamo dimostrato I’asserto per ogni intero X compreso tra
3edn-1.

Possiamo scrivere due diverse somme [1.2] come & + P e Y + & rispettivamente,
dove a, B sono somme in cui compaiono v, ..., ¥, € V.|, ..., V, rispettivamente,
mentre in y, § compaiono v,, ..., V; € V;,, ..., V, Tispettivamente, per opportuni
interi positivi j, k£ minori di .

Se k=j, allora, per Plipotesi induttiva, si ha a=v e =38, e quindi
a+B=v+38.

Supponiamo ora k <j. Per P’ipotesi induttiva si ha

O+ (Ve + oo HV)=Y
(Ves1+ ... +V)+8=8

equindi @ +B=0+ (v, + ... +V)+8=7+38.

Esercizi

1. Un’applicazione s: N — K dell’insieme dei numeri naturali in K si dice successione di
elementi di K. Se s(n) = a,€K, la successione s si denota anche con {a,}.n, 0 sem-
plicemente con {a,}.

Sia Sk I’insieme di tutte le successioni di elementi di K. Si definiscano in Sk le opera-
zioni seguenti:

{an}'!'{bn}:{an‘l‘bnl, k{an}={kan}
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per ogni {a,}, {b,) €Sk, k€K. Dimostrare che, con queste operazioni, Sk ¢ un K-
spazio vettoriale (questo & un caso particolare dello spazio vettoriale V considerato
nell’esempio 1.2(3)).

Una successione {a,} € Sg si dice limitata se esiste R€R tale che a, < R per ogni n€N.
Sia Lg il sottoinsieme di Sg costituito dalle successioni limitate. Dimostrare che, con
le stesse operazioni definite nell’esercizio (1), Lr € uno spazio vettoriale reale.

Siano a, b€R, a < b, e sia C, , ’insieme di tutte le applicazioni continue definite nel-
Pintervallo (a, b) a valori in R. Per ogni f, g€ C, s si definisca f+ g: (¢, )~ R
ponendo

(f+2 ) =f(x)+g(x) perogni x€(a,b).
Se f€Can € c€R, si definisca ¢f: (a, b) ~ R ponendo

(cf)(x)=cf(x) perogni x€(a, b).

Dimostrare che f + g e ¢f sono continue e quindi nel modo anzidetto restano definite
due operazioni su C,, 5. Dimostrare che con queste operazioni Cg,; € uno spazio vet-
toriale reale.

Sia X un’indeterminata e sia K[ X ] I’insieme dei polinomi in X a coefficienti in K. Per
ogni f, g€ K[X} e a€K, siano f+ g€ K[X'] il polinomio somma di fe g, € af€ K[X]
il polinomio prodotto di «, considerato come un polinomio costante, per f. Dimo-
strare che, con queste operazioni, K[X'] & un K-spazio vettoriale.

2 Matrici

Siano m, n interi positivi. Una matrice m X n a elementi in K & una tabella ret-

tangolare

ay A ... Gy,

Dyt Az oor Gy

di mn elementi di K. Scriveremo anche A = (;;), <;<, © semplicemente A = (a;,).

i<j=sn

L’i-esima riga della matrice A ¢ la matrice 1X n

AG): (a“ a,' cee a;’n), i= 1, ceey M

e la j-esima colonna & la matrice m X 1
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A possiede m righe ed n colonne. Ognuno degli elementi g;; della matrice &
contrassegnato da due indici, di cui il primo denota la riga (indice di riga) e il
secondo la colonna (indice di colonna) cui Pelemento appartiene. g;; viene chia-
mato ’elemento di posto i, j.

Ad esempio
4
3 -2 —
5 [2.1]
V2 @ 183

¢ una matrice 2 X 3 a elementi in R; le sue righe sono
(3 ~2 ?) ~2 7 183),

e le sue colonne

3 -2 -
, 5
V2 T 183
L’elemento di posto 2,1 & /2, quello di posto 1,3 & 4
Se m = n la matrice A si dice quadrata di ordine n.
Una matrice 1 X #, cioé a una sola riga ed n colonne, viene anche chiamata
vettore riga oppure n-vettore riga, mentre una matrice n X 1, a n righe ¢ una
colonna, si dice vetfore colonna, oppure n-vettore colonna.
La trasposta della matrice m x n A = (q;;) ¢ la matrice n X m

a, ax dy )

a, 4dp [
A =(a;,)=

ain a2n amn

ottenuta scambiando tra loro le righe ¢ le colonne di 4. Ad esempio, la trasposta
della matrice [2.1] &

3 2
-2 T
A4 g

5
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L’insieme di tutte le matrici m X n a elementi in K si denota con M,, (K) e
P’insieme di tutte le matrici quadrate di ordine n con M, (K). Ovviamente
M, (K) = M(K), ed M|(K) = K, perché una matrice 1 X 1 non ¢ altro che un ele-
mento di K.

Una convenzione molto utile che adotteremo d’ora in poi consiste nell’identi-
ficare K" con M, (K), ’insieme degli n-vettori colonna. Pertanto un n-vettore
colonna

X

X

denotato brevemente con x, verra identificato con I’elemento (x,, X, ..., X,) € K".
Scriveremo anche x="'(x;, X, ... X,).

2.1 ProposIZIONE Ponendo
(a;) + (b)) = (a;; + b))
k(aij) = (kaij)

per ogni (a;), (b;;)eM,, (K), k€K, si definisce su M,, (K) una struttura di
K-spazio vettoriale. Lo zero & la matrice nulla m X n, cioé la matrice m X n avente
tutti i suoi elementi uguali a 0.

La dimostrazione ¢ lasciata al lettore.
Se A = (a;;) € B= (b)), k€K, le matrici (a;; + b;;) e (ka,;) si denoteranno con
A + B e kA rispettivamente.

E possibile definire un’operazione di prodotto tra matrici.
Dati un n-vettore riga

A=(a a .. a)

€ un n-vettore colonna

b,
b,
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il loro prodotto & Pelemento di K definito dalla seguente identita:

1

b,
(@ a ... a)| - |=ab +ab,+ .. +a,b, [2.2]
b,
Pili in generale, date una matrice 4 = (a;;) €M, ,(K) e una matrice B = (b; )€
€M, (K), il loro prodotto righe per colonne ¢ la matrice ABeM,, (K) il cui

elemento di posto 7, k & il prodotto della i-esima riga di A per la k-esima colonna
di B. In formule si ha

AB=(A"By) =a;,by + a,by + ... + @by

11 prodotto di un vettore riga per un vettore colonna, definito dalla [2.2], &
un caso particolare di prodotto righe per colonne di due matrici.

Si noti che il prodotto AB ¢ stato definito nell’ipotesi che il numero delle colonne
di A sia uguale al numero delle righe di B: esprimeremo questo fatto dicendo che
le matrici A e B possono essere moltiplicate.

21 0 -1
1 21

) e 0 1 1 O }possono essere mol-
2 30

1 3 6 2

Ad esempio, le matrici (

tiplicate, e il loro prodotto é:

21 0 -1
1.2 1 36 8 1
( 011 0}= .
2.3 0 4 5 3 =2
1 3 6 2
21 0 -1
1 21
Invecelematrici {0 1 1 O 5 3 non. possono essere molti-
0,
1 3 6 2

-plicate.
In particolare due qualsiasi matrici quadrate 4, B e M, (K) possono essere mol-
tiplicate. Si noti perd che in generale AB # BA. Ad esempio:

LG
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mentre
( 1 0) ( L 1 ) ( 11 )
10/ \o 1t/ \1 1)
Se A = (a;;)€M,(K), gli elementi a,,, ay, ..., a,, costituiscono la diagonale

principale di A. Se tutti gli elementi g,;, i #j, sono nulli, 4 si dice matrice dia-
gonale. Una particolare matrice diagonale n X n & la matrice unita I, = (5;;), dove
1 sei=j )
8= o [2.3]
0 sei#j.

Il §,; definito dalla [2.3] ¢ detto simbolo di Kronecker.

Ad esempio
1 00
10
l] = (1)9 _IZ = ( )’ I3 = 01 0
0 1
0 0 1

Una matrice quadrata 4 € M (K) si dice triangolare superiore (triangolare infe-
riore) se a;;= 0 per ogni i> j (per ogni i <j). A4 si dice strettamente triangolare
superiore (strettamente triangolare inferiore) se a;= 0 per ogni i = j (per ogni
i =j). Ad esempio, delle tre matrici quadrate a elementi reali:

0 0 0 0
-1 N3 -7 7 0 0 0
7 0 '
( ) o o L], 11 ™o of,
0 2 2 2
0 0 -3 o 1 L o
2

la prima é diagonale, la seconda ¢ triangolare superiore, la terza & strettamente
triangolare inferiore. )
Una matrice quadrata A4 € M,(K) tale che ‘A = A4 si dice simmetrica; se invece

‘A = — A, allora A si dice antisimmetrica. Ad esempio la matrice
-1 S 3
5 0 -1
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¢ simmetrica, ma non lo ¢ la matrice

o )

La matrice
o -5 L
2
5 0 3
-L 3 9
2

¢ antisimmetrica.
Si noti che ogni matrice antisimmetrica ha necessariamente nulli gli elementi

della diagonale principale.

2.2 PROPOSIZIONE

1) Se A, BeM,, (K), C, DeM, (K) e k€K, allora
(A+BC=AC+ BC
A(C+D)y=AC+ AD
AC)Y=k(AC)=(kA)C
Al, =4, LC=C

2) Se AeM, (K), BeM, (K), CeM, (K), allora
(AB) C = A(BC).

3) Se A e B possono essere moltiplicate, allora 'B e ‘A possono essere molti-
Dplicate e si ha

'(AB) = 'B'A.
4) Se A, BeM,, (K), allora
‘A+'B="'A+ B).

Dimostrazione

1) Siano A9 =(a;, @, ... a,), B?=(b; by, ... b,)le i-esime righe
di A e di B rispettivamente, i=1, ..., m, €
Cie
Cox
Cw =
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la k-esima colonna di C, k=1, ..., p. L’elemento di posto i, k di (A + B)C &
(A +B)® Cupy=1{a; +b;)cy + (@ + b)) e + oo+ (@, + b)) i
mentre Pelemento di posto i, k di AC+ BC ¢

APCyy+ BOCyy = (@100 + 0iCo + oo + 8,C) + (051 C + by O + .
cee + hyC)

e quindi essi sono uguali. La seconda e la terza identita si dimostrano in modo
analogo.
L’elemento di posto i, j di AI, ¢

A(l)(ln)(!) = ai|0+ ...'I‘a;'j_]o"i‘ a,ll + ainO + ... +a‘~n0 = al'j,

e quindi AI, = A. Similmente si dimostra che I,C = C.

2) Si osservi che ABeM,, (K) e BCeM, (K), e pertanto sia ABe Cche A e
BC possono essere moltiplicate. L’/-esima riga di AB, i=1,..., m, &

(AR =(A"By, AVBy ... AVBy)
mentre la A-esima colonna di (BC), A=1,..., s, &
BYC,,
B®Cy,
BC)y =
B(n} C{h)

Pertanto I’elemento di posto i, 2 di (AB)C &

(AB)")C(,,) =(AYBgy) ¢+ (AYBy) ey + ... + (A “’B(p)) Con =
=(a;, by + a0, + ... +a,b,)c,,+
+(a;;b;, + a;,by, + ... +a,b,,)Cy + ...
oo ¥ (a; by, + a5y, + ... +a,b,,)Cpy.

[2.4]

L’elemento di posto i, & di A(BC) ¢ invece

AOBC)yy = a;(BOCy) + @, (BOCy) + ... + a,(B"Cy,) =
=a,(bycip+ by + .o + bi,Con) +
+ @by 01+ by + ol + DyyC) + o [2.5]
e+ (D10 + DpyCy + ol + B0 :
Confrontando [2.4] e [2.5] vediamo che essi coincidono, perché entrambi sono
la somma di tutti i prodotti della forma a;;b;,¢;, al variare di j=1, ..., n e di
k=1, ..., p. Quindi le due matrici (4B) C e A(BC) coincidono elemento per ele-
mento € ’assérto € provato.
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3) Supponiamo A4 €M,, (K) e BeM, (K). Allora ‘BeM, (K) e 'AeM, ,(K),
e quindi 'B e ‘A possono essere moltiplicate. Si ha

'(AB i = (AB)ij = A«)B(j) = (IB)U)('A)(,') = (IB%)ji'

4) La dimostrazione ¢ lasciata al lettore.

Dalla (2) della proposizione 2.2 segue che possiamo scrivere 4 BC per denotare
indifferentemente (4B) C oppure A(BC), perché queste due matrici coincidono.
Pili in generale, se 4,, 4,, ..., A, sono matrici ad elementi in K tali che 4, ed
A, , possono essere moltiplicate per k =1, ..., m — 1, si dimostra facilmente che
il loro prodotto eseguito disponendo in un modo qualunque le parentesi:

A(Af ... A,)...)

da un risultato che dipende solo da 4,, A4,, ..., 4,,. Pertanto denoteremo d’ora
in poi tale prodotto con il simbolo 4,4,. A La dlmostrazmne ¢ simile a
quella data in 1.3(2), ed ¢ lasciata al lettore

Una matrice quadrata A di ordine n si dice invertibile se esiste una matrice
MeM,(K) tale che AM = MA =1,. Se esiste, M ¢ unica: infatti, se N ¢ tale che
AN = NA =1, allora

M = ML, = M(AN) = (MA)N=I,N = N.

M & Vinversa di A, e si denota con A",

Se A e M (K) ¢ invertibile, allora affinché una matrice M€ M, (K) sia I’inversa
di A & sufficiente che sia verificata una sola delle due condizioni AM =1,
MA =1,. Infatti, se per esempio AM =1,, si ha anche

MA=(A "AYMA=A"T"AM)A=A""LA=A""4=1,.

Similmente si dimostra che MA =1, implica AM =1,.

La matrice unita I, ¢ invertibile e coincide con la sua inversa.

Segue immediatamente dalla definizione che (4 ') "= A per ogni matrice
invertibile 4 € M (K).

Se A, Be M, (K) sono invertibili, allora anche AB lo & esi ha (AB)"'=
=B 1A~ Infatti

(B'A-)Y(AB)=B(A"'A)B=B'LLB=B 'B=1,
Piu in generale, se 4, ..., A€ M,(K) sono invertibili, allora il loro prodotto
A A, ... A, ¢ invertibile, e si ha
(A, A4;,... AY) "' =A.LATTAT

La verifica ¢ simile alla precedente.
Nel paragrafo 3 descriveremo un procedimento che permette di calcolare I’in-
versa di una matrice invertibile assegnata.
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I1 sottoinsieme di M,(K) costituito dalle matrici invertibili viene denotato con
GL,(K).

Se k=1 ¢ un intero, denoteremo con A* il prodotto A4 ... A di una matrice
A eM,(K) per sé stessa k volte; porremo A°=1,. Se A€GL,(K) definiamo

A=A H*
Una matrice quadrata reale 4 € M,(R) si dice ortogonale se '"AA =1,, cioé se
'4 = A~'. L’insieme delle matrici ortogonali » X # si indica con O(n). Per defi-
nizione O{n) C GL,(R).
Le uniche matrici ortogonali 1 x 1 sono (1) e (—1). Una matrice A € M,(R) ¢
ortogonale se e solo se & della forma

a —b :
A =( ) [2.6]
b a
oppure
(5 )
A= [2.7]
b —a
con ¢*+ b*=1. Infatti, se A = (a;;) si ha
44 =( ai, + aj allalz+a21a22)
apdy + Ay, al, + a3

e quindi A€0(2) se e solo se
ai, + a3, =1=a}, + a3,

@,y + 0y a4, =0.
Dall’ultima condizione si deduce che esiste p # 0 tale che

(a1, a5) = (— pay, pay).

Dalle condizioni precedenti discende che p?=1, cioé¢ p= 1. Quindi
a, =+ a,, a,=Fa,, e A ¢&di una delle due forme dette.

Torneremo pit diffusamente a parlare delle matrici ortogonali nei paragrafi
20 e 21.

Per descrivere le matrici & spesso utile la cosiddetta notazione a blocchi. Tale
notazione consiste nello scrivere una matrice 4 € M,, ,(K) nella forma seguente:

A, A, ... Ay,
A2| A22 oo Az;(

A, Apn . Ap
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dove le A;; sono a loro volta matrici di ordini opportuni: precisamente
A€M, ,(K), dove mi+my+ ... + my=m, n,+ ny+ ... + n=n. :

Ad esempio, la matrice [2.1] puo essere anche denotata a blocchi nella forma
seguente:

A=(B C),
dove
3 —2 4
B= , Cc=| 5
V2 7 183

2.3 Osservazione

E possibile considerare matrici a elementi in un dominio qualsiasi D, anziché
nel campo K. Denoteremo con M,, ,(D) (rispettivamente M, (D)) I’insieme di tutte
le matrici m X n (quadrate di ordine #) a elementi in D. I casi che considereremo
piu frequentemente nel seguito sono D =Ze D = K[X], ..., X, dove X}, ..., X
sono indeterminate. Il prodotto di due matrici a elementi in uno stesso dominio
D si definisce come nel caso D = K. La proposizione 2.2 si estende senza cambia-
menti se nel suo enunciato il campo K viene sostituito da un dominio D.

Esercizi

1. Calcolare:

5 3
0
2 0
b)( )(1 s 37 497 2 -2 1)
-3 1
2
6
0
1
9 (5 0 1 o).
0
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2. Sia

12

A =( ) €M2(R).
0 3

Calcolare:

a) A2 b) 34— L 4440 ¢) W+ AU +UA - 3L

: 2
3. Sia

11 -1

A=]0 2 —;— eM;(R).

0 -2 -1
Calcolare 4> — ‘A + L.
3 2
Lo1+i .
2

—2i 1

4. Calcolare 1z + L.

5. Sia A € M,(K). Dimostrare che A + 'A & simmetrica ¢ che A — ‘A ¢ antisimmetrica.
Dedurre che A pud esserc espressa come somma di una matrice simmetrica e di una
antisimmetrica.

6. Esprimere le seguenti matrici a elementi numeri razionali come somma di una matrice
simmetrica e di una antisimmetrica:

1 2
(o)
-1 0
3 1
o )
1 0

7. Dimostrare che se 4 € M,(K), allora ‘AA & simmetrica.

8. Una matrice Ne M, (K) si dice nilpotente se esistc un intero k=1 tale che A* =0,
dove 0¢€ M,(K) & la matrice nulla. Dimostrare che per ogni a, b, c€K le matrici
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sono nilpotenti. Dimostrare che, pit in generale, ogni matrice A € M, (K) strettamente
triangolare (superiore o inferiore) & nilpotente.

9. Dimostrare che una matrice 4 € M, (K) nilpotente non ¢& invertibile.

10. Stabilire quali delle seguenti matrici sono ortogonali:

V2 V2
) 2 2
a
V2 V2
2 2
1 0 1 -1
b) c)
0 -1 -1 1
NE] 24/3 V3 V6
" 3 3 ) 3 3
€ _
2+/3 3 V6 V3
3 3 3 3
V2 0 2
_2 2 0 -1 0
f) 0o 1 o0 9l o o0 -1
Ny 2 -1 0 0
- 0__._
2 2
V3
L =
2 2
0 1 1 ]
V3 1
nlo o o Dl— —-—— o
2 2
1 1 o0
0 0 1
1 8 4 1 0 0 0
9 9 9 0 0 0 1
' k) V2OV2
o8 o1 4 o 22
9 9 9 2 2
V22
_4 4 7 0 —— X2 0
9 9 9 2 2
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11. Siano
a, 0 ... 0 b| 0 0
0 az .. 0 0 bz 0
A=}. . . B={. . . |eM,(K)
0 0 .. a 0 0 ... b,
due matrici diagonali di ordine n. Dimostrare che -
a b] 0 .. 0
0 azbz .. 0
AB=BA =} .
0 0 e @by

3 Sistemi di equazioni lineari

Le matrici intervengono in modo naturale nello studio dei *‘sistemi di equa-
zioni lineari”’.

Siano X, ..., X, indeterminate. Un’equazione lineare (o di primo grado) nelle
incognite X, ..., X, a coefficienti in K & un’equazione della forma

aX, +..+aX,=b [3.1]
oppure della forma equivalente
a X+ ...+a,X,—-b=0

in cui a,, ..., a,, b€K. La [3.1] deve intendersi come una relazione tra quantita
variabili o incognite, rappresentate dalle indeterminate X, ..., X,,.

Una soluzione dell’equazione [3.1] & un elemento (x,, ..., x,) di K" che, sosti-
tuito nella [3.1] al posto della n-upla (X, ..., X,), dd luogo a una identita.

La [3.1] si dice omogenea (non omogenea) se b =0 (se b # 0).

Se si considerano simultaneamente m =1 equazioni lineari nelle incognite
Xis ooy X2

an X, +a,X;+ ... +a,X,=b,

ay X+ apX,+ ... +a,, X, =D,
. [3.2]

a. X, +a,X+ ... +a,,X,=b,,

si ottiene un sistema di m equazioni lineari nelle n incognite X,, ..., X,. Il sistema
[3.2] si dice omogeneo (non omogeneo) se b,=b,= ... = b, =0 (se b;#0 per
qualche i).
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Una soluzione del sistema [3.2] & un elemento (x,, ..., x,) €K” che & soluzione
simultanea delle m equazioni [3.2]. Il sistema si dice compatibile (incompatibile)
se possiede almeno una soluzione (se non possiede soluzioni). Ogni sistema omo-
geneo ammette almeno la soluzione (0, ..., 0), che viene detta soluzione banale,
e quindi & compatibile; ogni sua altra soluzione si dice non banale.

Si noti che, viceversa, se il sistema [3.2] ammette la soluzione (0, ..., 0), allora
& omogeneo.

Ad esempio il sistema di equazioni a coefficienti reali

X, +2X,=1
Xl + 2X2 - 0
¢ incompatibile, perché i primi membri delle due equazioni sono uguali, ma non

lo sono i secondi membri e quindi non esiste alcun (x;, x,)€R? che soddisfi
entrambe le equazioni.

Il sistema
X, +X,=1
X, —X,=3

& compatibile e ammette I’unica soluzione (2, — 1), che si ottiene nel modo seguente.
Sommando membro a membro le due equazioni, si ottiene la nuova equazione
2X, = 4, che ¢ soddisfatta dall’unico valore X, = 2; sostituendo questo valore
nella prima equazione si ottiene I’unico valore X, = — 1 che la soddisfa. Inoltre
la coppia (2, — 1) ¢ soluzione anche della seconda equazione, € quindi ¢ "unica
soluzione del sistema.

II sistema

X, +3X,=-1
2X,+6X,=-2
¢ compatibile ed ammette le infinite soluzioni (—1— 3¢, ) al variare del parame-
tro r€ R. Infatti le due equazioni sono proporzionali e quindi hanno le stesse solu-
zioni: risolvendo per esempio la prima si trovano le soluzioni dette.
Il sistema
an X, +a,X,+ ... +a,X, =0

a'ZtX_l +a, X, + ... +a,X, =0
3.31

a.X +a,X,+ .. +a,X,=0

si dice il sistema omogeneo associato al sistema [3.2].
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3.1 PROPOSIZIONE  Se il sistema [3.2] & compatibile, le sue soluzioni sono tutte
e sole le n-uple ottenute sommando a una qualsiasi di esse una soluzione del sistema
omogeneo associato [3.3].

Dimostrazione
Denotiamo con T e L, i due sottoinsiemi di K" i cui elementi sono rispettiva-
mente le soluzioni del sistema [3.2] e del sistema [3.3]. Se (¥, ..., V) €X e (x5 ..,

x,)€L,, allora

Dps s P+ X5 o, X)) = (V) + X5 oo, Yo+ X )ED.

Infatti per ogni j=1, ..., m si ha
aj](yl +x)ta(y, +x)+ ...+ a(y, +x,) =
=@V + @y, + o+ a,y,) (@ x + apx+ .+ ax,) =
=b,+0=0b,
Viceversa, fissata (y,, ¥, ..., V)€ X, per ogni altra (z,, 25, ..., Z,)€X si ha
(zl —yl’ zZ—yZ’ ceey Zp _yn)EEO
perché:

@z =)+ o a2, - V) =2+ o+ @3, -
- (ajlyl +a,y,+ ..+ ajnyn) = bj - b;‘ =0

perognij=1,..., m.
Poiché

(zls L5 ooy zn) = (yla Yoy eees yn) + (z! —Vis 3= V25 eees 2y “yn)

abbiamo I’asserto.
Al sistema [3.2] possiamo associare la matrice 4 = (g;) €M, ,(K) formata dai
coefficienti delle incognite delle m equazioni del sistema, che si dice la matrice

dei coefficienti del sistema [3.2]. Aggiungendo ad A come (n + 1)-esima colonna la

b,
b,

formata dai termini costanti delle equazioni [3.2], si ottiene la matrice ad m righe
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e n+1 colonne:

a, ay .- a4y b

ay Gy ... 4y, by
(Ab) = : ,

aml amZ b amn bm

che diremo la matrice orlata del sistema [3.2].
Possiamo interpretare gli m primi membri di [3.2] come le componenti di un
vettore colonna e riscrivere la [3.2] come un’uguaglianza di vettori colonna:

an X, +a,X,+ ... +a,X, b,
ay X, + a, X, + .. + a5, X, b,
= . [3.4]
a, X, +a,X+ ... +a,,X, b,
Ponendo
X,
X
X =
X

e considerando X come un vettore colonna, il primo membro della [3.4] & il pro-
dotto righe per colonne A X. Il sistema [3.2] si scrive quindi anche nella seguente
forma piu concisa:

AX =hb. [3.5]

Viceversa ¢ evidente che per ogni matrice a m righe ed n + 1 colonne esiste un
sistema di m equazioni lineari nelle incognite X, ..., X, di cui essa ¢ la matrice
orlata. Nel seguito utilizzeremo spesso questa corrispondenza biunivoca esistente
tra martrici e sistemi di equazioni lineari per semplificare la trattazione, riducen-
doci a considerare matrici anziché sistemi.

Un sistema di equazioni lineari nelle incognite X, ..., X, si dice a gradini se
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ha la forma seguente:
au X, +apXy + ... +a, X, = b,
anX; + ... +a,,X, = b,
: [3.6]

2, Xpt+ ... +a,,X,=b,

con a,,8y .- Ay 7 0. La matrice dei coefficienti di [3.6] €

mm

a, ap .- a,
0 Ay ... ap
0 0 .. a,, - Qu

In particolare m < n.

Supponiamo m = n. L’ultima equazione di [3.6] ¢ soddisfatta dal solo valore
x, = b,a;}, il quale, sostituito nella penultima equazione, fornisce un unico
valore x,_, che la soddisfa. I valori x,_,, x, cosl ottenuti, sostituiti nella terz’ul-
tima equazione, danno luogo a un unico valore x,,_, che la soddisfa. Procedendo
in questo modo si arriva a ottenere un’unica soluzione di [3.6]. Quindi un sistema
a gradini di n equazioni in n incognite possiede un’unica soluzione.

Se m < n il sistema [3.6] puo essere riscritto nella forma equivalente seguente:

anXi+apXo+ oo 4, X, =0, — (@1 Xy + .o + 0, X))
apXo+ oo + 2, X, = b, — (@1 Xpir + - + 05, X))

Xm = bm - (amm+le+I + .+ aman)'

amm

Dando valori arbitrari ¢,,, ,, ..., £,€ K alle incognite X, |, ..., X, si ottiene un
sistema a gradini di m equazioni nelle m incognite X, ..., X,

aHXl + alZXZ + ...t alme = bl - (alm+l tm+l + ..+ alntn)
a22X2 + ...+ aZme = bz - (aZm+1 tm+1 + ...+ aZntn)
: [3.7]

amme = bm - (amm+ltm+1 + .+ anmtn)!

il quale ha un’unica soluzione. Ne deduciamo che il sistema [3.6] ammette le infi-
nite soluzioni ottenute dalle [3.7] al variare dei parametri ,,, ,, ..., £, in K. Dal
modo in cui si calcolano le soluzioni si deduce che ogni soluzione di [3.7] si esprime
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come una zn-upla

(Sl(tm+19 cees trf)’ SZ(tm+]? bt 4 tn)’ A4 Sn(tm-l-l’ s tn)) [3‘8]

in cui ghi S;(,.1» .-+, Z,) sono polinomi di primo grado nei parametri ¢,,, ,, ..., £,.
La [3.8] ¢ la soluzione generale del sistema [3.6].

La n-upla dei termini costanti (c;, ..., ¢,) degli S; & una delle soluzioni, preci-
samente quella corrispondente ai valori ¢,,,; = ... = £, = 0. Da ci0 e dalla propo-
sizione 3.1 segue che la n-upla di polinomi omogenei in ¢,,,,, ..., £,

(Sl(tm+]! e tll) - cl’ S2(tm+1’ 4 tn) - cz’ e Sn(tm+l’ i 4 tll) - Ck)

¢ la soluzione generale del sistema omogeneo associato a [3.6].

In particolare vediamo che un sistema a gradini é sempre compatibile. Espri-
meremo il fatto che le soluzioni di [3.6] si ottengono come funzioni di » — m para-
metri liberi di variare arbitrariamente, dicendo che il sistema [3.6] possiede o™ ™
soluzioni. Nel caso n = m intenderemo con cid dire che il sistema possiede una
sola soluzione.

Un’equazione lineare [3.1] in cui (a;, @, ..., 2,) #Z (0, ..., 0) si pud considerare
come un particolare sistema a gradini, salvo scambiare tra loro due delle variabili
se g, = 0; pertanto essa possiede oo"~! soluzioni.

Due sistemi di equazioni lineari nelle stesse incognite X, ...; X, si dicono equi-
valenti se possiedono le stesse soluzioni. Per essere equivalenti due sistemi non
devono necessariamente avere lo stesso numero di equazioni.

Vogliamo ora studiare un procedimento, detto metodo di eliminazione di Gauss-
Jordan, che permette di stabilire se un sistema & compatibile oppure no, ¢ nel caso
affermativo di trovarne sistematicamente tutte le soluzioni. Tale procedimento
consiste nel sostituire il sistema assegnato con un sistema a gradini, ad esso equi-
valente, mediante passaggi successivi detti ‘‘operazioni elementari sulle equazioni
del sistema’’. Esse corrispondono ad altrettante operazioni sulle righe della matrice
orlata.

Esistono tre tipi di operazioni elementari sulle righe di una matrice:

I) scambiare tra loro due righe della matrice;
IT) moltiplicare una riga della matrice per uno scalare non nullo;

III) sostituire una riga della matrice con quella ottenuta sommando ad essa

un multiplo di un’altra riga.

Le corrispondenti operazioni elementari sulle equazioni di un sistema sono le
seguenti:
I) scambiare tra loro due equazioni del sistema;
IT) moltiplicare (primo e secondo membro di) un’equazione per uno stesso
scalare non nullo;
III) sostituire un’equazione con quella ottenuta sommando ad essa un multi-
plo di un’altra equazione.
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Se si effettua su di un sistema un’operazione elementare del tipo (I), il nuovo
sistema che si ottiene ¢ equivalente al precedente, perché le soluzioni di un sistema
non dipendono dall’ordine in cui si considerano le sue equazioni. Similmente un’o-
perazione del tipo (II) non cambia I’insieme delle soluzioni del sistema perché due
equazioni proporzionali hanno le stesse soluzioni. Anche un’operazione del tipo
(1II) non modifica P’insieme delle soluzioni del sistema: infatti se una #-upla
(%5 ---» X) €K" soddisfa due equazioni del sistema,

an X+ apXs + .+ a, X, =b;

[3.9]
ajIXI + ajzXz + ... + aan,, = bj,

allora per un qualsiasi c€K essa ¢ soluzione delle due equazioni

a“X] + aszz + ... + ai”X” = bf
@, X, +a, X+ ... +a,X) +c@, X;+a, X+ ... +a,X,)=>;+cb,.
[3.10]

Si verifica in modo simile che viceversa ogni soluzione delle [3.10] soddisfa le
[3.9].

Quindi, se si effettua una qualsiasi operazione elementare sulle equazioni di
un sistema si ottiene un sistema ad esso equivalente.

Supponiamo dunque di avere assegnato un sistema [3.2]. Osserviamo prelimi-
narmente che se una delle sue equazioni, diciamo la i-esima, ha identicamente nullo
il primo membro, cio¢ & della forma

Ozb;,

allora essa ¢ identicamente soddisfatta se b; = 0, mentre ¢ incompatibile se b, # 0.
Nel primo caso potremo cancellare I’equazione e ottenere un sistema equivalente
al precedente, nel secondo caso il sistema [3.2] ¢ incompatibile. Possiamo per-
tanto supporre che nessuno dei primi membri di [3.2] sia identicamente nullo.

Possiamo inoltre supporre che sia a;; #0 per qualche i =1, ..., m: cid pud
essere ottenuto scambiando eventualmente tra loro due delle incognite. Con
un’operazione elementare (I) possiamo ottenere a,; # 0, ¢ moltiplicando per a;;’
la prima equazione (operazione elementare (II)) possiamo ridurci al caso a;; =1.
Sommando alle successive equazioni la prima moltiplicata rispettivamente per
—ay — , ..., — a4, (operazione elementare (III)) si ottiene un nuovo sistema
della forma seguente:

X] + 0{2X2+ e + a{an = b]’

Xy + ... +alX,= bJ
. . [3.11]

. .

@i Xy + ... +a,X,=b).
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Se qualcuna delle equazioni del sistema [3.11] & della forma 0 = 0, possiamo
ometterla senza modificare I’insieme delle soluzioni. Se invece compare un’equa-
zione della forma 0 = b;, con b/# 0, allora il sistema ¢ incompatibile, e pertanto
anche [3.2] ¢ incompatibile ed il procedimento si arresta. Possiamo pertanto sup-
porre che nessuno dei primi membri del sistema [3.11] sia identicamente nullo.

Ora procediamo sul sistema [3.11] senza pitt occuparci della prima equazione
-e ragionando, sulle rimanenti equazioni, come nel caso precedente. Effettuando
eventualmente un cambiamento dell’ordine delle variabili ed operazioni elemen-
tari (I) (II) possiamo supporre @,, =1. Sommando alle successive equazioni la
prima moltiplicata rispettivamente per — a;,, — 4,5, ..., — @, (Operazione elemen-
tare (III)), si ottiene un nuovo sistema della forma seguente:

Xi+aLX, +aX;+ ... +a,X,=b/
X, +an X+ ..o +anX,=b)
ap X, + ... +ap X, =by [3.12]

a’  X;+ ... +a,X,=b/.

Dopo aver eliminato dal sistema [3.12] tutte le equazioni della forma 0 = 0,
verifichiamo se vi compare un’equazione della forma 0 =5, b Z0: in caso
affermativo il sistema & incompatibile e pertanto anche [3.2] lo &, ed il procedi-
mento ha termine. In caso contrario applichiamo di nuovo lo stesso procedimento
al sistema [3.12] escludendo le prime due equazioni.

Questo procedimento potra essere iterato fintanto che non si arrivi a un sistema
incompatibile oppure a un sistema a gradini equivalente al sistema [3.2] da cui
eravamo partiti. Nel primo caso possiamo concludere che il sistema [3.2] & incom-
patibile. Nel secondo caso possiamo calcolare le soluzioni del sistema a gradini,
che sono anche le soluzioni di [3.2], ed il procedimento di Gauss-Jordan ha ter-
mine. La soluzione generale del sistema a gradini che si € ottenuto & detta solu-
zione generale del sistema [3.2].

Daremo ora alcuni esempi per illustrare il procedimento di eliminazione di
Gauss-Jordan. Nella pratica & preferibile operare sulla matrice orlata del sistema
piuttosto che sulle equazioni. Inoltre & pil‘l opportuno effettuare i cambiamenti
nell’ordine delle variabili che dovessero rendersi necessari, corrispondenti allo scam-
bio di colonne della matrice, solo dopo aver effettuato tutte le necessarie opera-
zioni elementari sulle righe.

3.2 Osservazioni ed esempi
I.K=R

X, +2X,+3X,=1 2X,+ X, +4X,=2 3X,-3X,+ X, =1.
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Eseguiamo operazioni elementari sulle righe della matrice orlata:

1 2 3 1 1
2 1 4 2|-1]0 -3
3 -3 1 1

0 0 -2 -2
Il sistema ridotto a gradini ¢
X +2X,+ 3X,=1

X2+—§—X3=0

X,=1,

che possiede ’unica soluzione

X, +2X,=3
2X,+4X,-2X, =4
2X,+4X, —X,+2X,=7.

Eseguiamo operazioni elementari sulle righe della matrice orlata:

o 1 2 3\ [l1

0
2 4 -2 0 4]-{2 4
2 4 -1 2 7 0 0

-1 0 2

0 -9

W NN

41

[3.13]
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Il sistema corrispondente &
X, +2X,—- X, =2
X;+2X,=3.

Prendendo le variabili nell’ordine X, X;, X,, X, le stesse equazioni si riscrivono
nella forma seguente:

X, - X, +2X, =2
X, +2X, =3.

Abbiamo pertanto un sistema a gradini, la cui soluzione generale, che & anche
la soluzione generale del sistema [3.13], &

O, X X3 X)=(5—2—-2u, t,3—-2u, u), t, ucR.

11 sistema possiede oo? soluzioni.
3. K=R
X~ Xy=—1
X, + X = 1
2X,+ X, + Xy = 2.

Eseguiamo operazioni elementari sulle righe della matrice orlata:

0 1 -1 -1 1 0 1 1

La terza riga corrisponde all’equazione incompatibile O = 1; pertanto il sistema
¢ incompatibile.

4. Ogni sistema omogenco di m equazioni in z incognite, con n = m, possiede
oo™ soluzioni per qualche N = n — m. Infatti il sisterna & compatibile perché omo-
geneo, e il procedimento di Gauss-Jordan lo trasforma in un sistema a gradini
di p equazioni con p < m. Quindi il sistema originario possiede oo”~? soluzioni
ed n — p=n— m. Vediamo un esempio.
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K=R
X, +X,+2X,+ X, =0
X, + X+ Xs+2X,— X,=0
1 2 3 4 5 [3.14]
X, + X, +3X,-2X,=0
X, +X,+3X, + X,=0.

Questo sistema € omogeneo; in questo caso € sufficiente considerare la matrice
dei coefficienti, anziché la matrice orlata. Eseguiamo operazioni elementari sulle
righe della matrice:

1 1 2 1 0 1 1 2 1 0
1 1 1 2 -1 0 0 -1 1 -1
— —
1 1 0 3 =2 0 0 -2 2 =2
I 1 3 0 1 0 0 1 -1 1

[
ot
N
—
o

[~ N -
[
(=]

0
0 0
0 0 0 0

e scambiamo tra loro la seconda e la terza colonna:

1 1 2 1 0 1 2 1 1 0
(0 0 1 -1 1)%(0. 1 0 -1 1)'
Otteniamo il sistema a gradini
X +2X;+ X+ X, =0
X; -X,+X,=0
che possiede oo® soluzioni. Pertanto la soluzione generale del sistema [3.14] &

(X X0 X3, Xgp X5) =(—t—3u+2v, t,u—~v, u,v) t,u, veR.

5. Supponiamo che
AX =bh, [3.15]

AeM[K), beK", sia un sistema di # equazioni in # incognite tale che A4 sia inver-
tibile. Allora esso & compatibile e possiede un’unica soluzione x = (x, ... x,) €K”
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data dall’espressione
x=A"'b. {3.16]

Infatti, sostituito nella [3.15] al posto di X il valore di x dato dalla [3.16], si
ottiene I’identitd 44 ~'b = b e quindi x ¢ una soluzione. Viceversa ogni soluzione
y€K” soddisfa Ay = b: moltiplicando primo e secondo membro a sinistra per
A~ 'troviamoy=A"'b=x.

La [3.16] fornisce un metodo per trovare la soluzione di un sistema [3.15] di
n equazioni in 7 incognite tale che A4 sia invertibile, purché si sappia calcolare
A ~'. Tale metodo si dice merodo dell’inversa.

Vedremo tra poco un procedimento per calcolare A ~! per mezzo di operazioni
elementari sulle righe di 4.

6. Una matrice elementare di ordine n & una matrice R € M,(K) che puo essere
ottenuta dalla matrice identita per mezzo di un’operazione elementare sulle righe.
Ad esempio, ognuna delle seguenti matrici & elementare di ordine 4 a elementi reali:

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 01 0 0 01 5 0
o o1 0} o o 2 o] {o o 1 o
01 0 0 0 0 0 1 0 0 0 1

Introduciamo le seguenti notazioni per le matrici elementari di ordine »:

R];: matrice ottenuta scambiando tra loro I’i-esima e la j-esima riga di L,;

R?(c): matrice ottenuta moltiplicando per c€K* la /-esima riga di I,;

R]i(c): matrice ottenuta sommando alla /-esima riga di I, la j-esima moltipli-
cata per c€K.

Talvolta adotteremo la scrittura pitt semplice R;;,
le matrici elementari.

L’utilita di queste matrici sta nel fatto che, se 4 €M, ,(K), allora ogni opera-
zione elementare sulle righe di A si ottiene moltiplicando a sinistra A per la corri-
spondente matrice elementare.

La dimostrazione di quest’affermazione & lasciata al lettore.

Le seguenti identita sono di verifica immediata:

R;'=R;
R(c) '=Ri(c™)
Ri}.(c) = R (0.

R,(c) ed R;;(c) per denotare

In particolare vediamo che le matrici elementari sono invertibili e hanno per
inverse matrici elementari dello stesso tipo.
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7. Sia A€ M, (K). Le seguenti condizioni sono equivalenti:

a) A & invertibile;

b) A si pud esprimere come prodotto di matrici elementari.

(@)= (b). Per quanto visto nell’esempio § il sistema omogeneo di n equa-
zioni in z incognite A X = 0 ha ’unica soluzione x = 0. Quindi, utilizzando il pro-
cedimento di Gauss-Jordan, con operazioni elementari esso pud essere trasfor-
mato in un sistema a gradini di n equazioni omogenee in n incognite, cio¢ della

forma

X, +ahXy+ ... +al, X, =0
X+ ... +apX, =0

Xn—l + ar;—lan = O
X,=0.

Con ulteriori operazioni elementari del tipo (III) & possibile ridurre questo
sistema nella forma X =0, cioé .

X, =0
Xz =0

X, =0.

Tale trasformazione corrisponde alla moltiplicazione a sinistra del primo mem-
bro del sistema 4 X = 0 per il prodotto di un numero finito di matrici elementari,
cioé si ha

RV . R9AX=X=1LX
per opportune matrici elementari RV, R®, ..., RY, Pertanto RV ...R¥YA4A =1
per I’unicitd di A~'si ha RV ...R® =4 ' e quindi

A=RY ... R 1=RO-1  RATRO-I
¢ un prodotto di matrici elementari.

(b)=(a). Se A ¢ un prodotto di matrici elementari, allora & invertibile per-
ché ognuno dei fattori lo é.

8. Siano A, Be M (K). Se M € M,(K), allora M e la matrice (4 B)€M, ,, pos-
sono essere moltiplicate, e dalla definizione di prodotto righe per colonne segue che

M(A B)=(MA MB).
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Supponiamo che la matrice A € M(K) sia invertibile e consideriamo la matrice
(A L)eM, ,,. Moltiplicandola a sinistra per A4 ~' otteniamo

AMAL)=(, A7

Poiché dall’esempio 3 segue che A ~! & esprimibile come prodotto di matrici
elementari, vediamo che la matrice (I, A~') pud essere ottenuta a partire da
(A 1) mediante operazioni elementari sulle righe.

Si ottiene cosi il seguente metodo pratico per stabilire se una matrice data
AeM,(K) ¢ invertibile e, se lo &, per trovare A . Si considera la matrice (4 L):
se, effettuando operazioni elementari sulle sue righe, & possibile ottenere una
matrice della forma (I, B), allora A ¢ invertibile e la matrice B cosi ottenuta
necessariamente coincide con 4 ~!. Se invece cid non & possibile, allora 4 non
¢é invertibile.

Consideriamo ad esempio la matrice

o)

1 1 1 o 1 o L L
- = 3 3 .
o 1 2 _1 0 1 2 1
3 3 3 3
1 1
Quindi A & invertibile e 4~ = g ?
33
2 1 2110
Invece la matrice non ¢ invertibile. Infatti la non
! 1
1= 1 =0 1
2 2

puo essere trasformata in una della forma (I, B) con operazioni elementari.
La verifica di questo fatto ¢& lasciata al lettore.
Consideriamo ora
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Si ha
1 1 2 1 0 O 1 1. 2-1 0 O
o1 0 0 1 0}j—-]0 1 0 0 1 O0]—
-1 0 1 0 0 1 01 3 1 0 1
11 2 1 00 I 0 2 1 -1 0
-0 1 0 O 1 0f-10 1 0 O 1 0]-
0 0 3 1 -11 0 0 3 1 -1 1

1 12 1 12

1 0 0 — —— = 1 0 o + L _=
3 3 3 3 3 3

-lo 1 0 0 1 of=]o 1.0 0 1 o0

1 1 1
o 0 3 1 -1 1] {0 0 1 — -— —
3 3

Quindi A ¢ invertibile e

© W=
— |
o wln

1 1
33

w |

Nel paragrafo 6 descriveremo un altro metodo per calcolare I’inversa di una
matrice.

Esercizi

1. Risolvere i seguenti sistemi con il metodo di eliminazione di Gauss-Jordan:

a) K=Q) X—-3Y+5Z=0
2X—- 4Y+2Z=0
5X-11Y+9Z=0

b) (K=Q) Xi~2X,+3X:+ 4X,+5X,=0
Xi+4X,+ 7X,+2X=0

X] +4X2+ 7X4+2X5=0
2X,+2X+3X+11X,+7X:=0

3X| +6X2+3X3+18X4+ 9X5=0
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¢) (K=R) X +2X,— V2X;=0
3X - (V2+6)X;=0
-Xi+ X+ 3;=-1
2‘X|+ 2X3+X4_3X5=
X|+ X1+ X3+X4+ X5=
e) (K=R) X, +2X,=3
2X|+4X2—2X3 =4

2X|+4X2— X3+2X4=7.

. Dimostrare che una matrice diagonale

aq 0 ... 0
0 _az .. 0

A=} c | eM(K)
0 0 .. a,

& invertibile se e solo se @, @, ... a@,# 0, ed in tal caso la siia inversa &

ai’’ 0 .. 0

0 a[' 0
A=

0 0 e ay!

1 -1 0 2
. Calcolare 34 ' — AB 2, doveA=( ),B:( )
1 1 -1 1

. Calcolare I’inversa, se esiste, di ognuna delle seguenti matrici:

1 1 3 3
a K= (2 3| - b) (K=R)
5 2 1
V3
-3 2
0 -1 2
0 (K=R)( ) -V2 4
1 0 3
-1 0
1 i 2 2—1i
d) (K=0) ( ) e) (K=0C) ( )
2i -1 2+i -2
] L 6 -3 -2
f) (K=C) 2 g K=Q) |5 -2 -2
i 1

5 -3 -1
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-1 2 —- 1 1 0 1
hy (K=Q) |-5 13 —-10 ) (K=Q 1 1 0
2 -5 4 -1 1 0
-1 0 0 2
20 0 1
01 0 O
) (K=C) |[o o0 i k) (K=Q
i) ( ) L o o 1
1 i 1
1 0 1 1
0 0 0 i
o 0 1 O
) (K=0C)
0o 1 0 O
i 0 0 O

5. Risolvere i seguenti sistemi con il metodo dell’inversa:

a) (K=Q) X+ Y—%: i
12Y-Z =12
X+3Y =3
b) (K=C) iX~ Y=2i
3X-2iv=1
¢) (K=R) X+Z=2

X+\V2Y+ %Z:Z\/ﬁ

V2 V2
— X+ 2Y+—Z=3.
2 2

6. Esprimere ciascuna delle seguenti matrici quadrate ad elementi reali come prodotto
di matrici elementari:

0 2 -1 3 s
a) b) ( ) c) ( )
1 20 1 2
2
2 1 0 1 30
i1 1 o0 o2 11
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4 Alcune nozioni di algebra lineare
Sia V' uno spazio vettoriale su K.

4.1 DEerINIZIONE  Unr sottoinsieme non vuoto W di V si dice sottospazio vet-
toriale di V se:
1) per ogni w,, w,€W, la somma w, + w, appartiene a W,
2) per ogni weW e per ogni ceK, il prodotto cw appartiene a W.

Le condizioni (1) e (2) della definizione 4.1 implicano che le operazioni di somma
e di prodotto per uno scalare definite in V inducono altrettante operazioni in W;
inoltre, per la proprieta (2) applicata agli scalari 0, — 1, si ha rispettivamente
0=0weW e —weW. Quindi W soddisfa gli assiomi SV2 ed SV3. Poiché gli
altri assiomi SV1, SV4, ..., SV8 sono soddisfatti da V, essi sono a maggior ragione
soddisfatti da W. Quindi W & esso stesso uno spazio vettoriale.

E evidente che se W & un sottospazio di V e U & un sottospazio di W, allora
U ¢ un sottospazio di V. Analogamente, se U e W sono sottospazidi Ved UC W,
allora U ¢& un sottospazio di W.

4.2 Esempi

1. Esempi di sottospazi di un qualsiasi spazio vettoriale V sono V stesso e il
sottoinsieme costituito dal solo 0, che si denota con (0). Questi due sottospazi
sono detti sottospazi impropri o banali di V.

Sia veV un elemento qualsiasi. L’insieme

{v) ={cv:ceK]}

costituito da tutti i multipli di v costituisce un altro esempio di sottospazio di V;
la verifica ¢ immediata ed ¢ lasciata al lettore. Nel piano e nello spazio ordinari,
i sottospazi della forma {v) sono quelli che si ottengono fissando una retta e con-
siderando tutti i vettori ad essa paralleli.

2. Sia V=K", n=2. Il sottoinsieme H, di V costituito dalle n-uple della
forma (0, x,, ..., x,), al variare di x,, ..., x, €K, & un sottospazio vettoriale di K".
Infatti H, non & vuoto; inoltre, per ogni X,, ..., X5 Vay ..y ¥, CEK, si ha

(O, Xz, ey xn) + (05 yz, ceey yn) = (09 Xz +y29 seey xn +yn)€Hl
c(0, x35 ..., X)) =(0, ¢x,, ..., cx)EH,.

In modo analogo si verifica che per ogni indice i compreso tra 1 ed 7 il sottoin-
sieme H, di K” costituito dalle n-uple il cui i-esimo elemento € uguale a 0 & un
sottospazio vettoriale.

Dati a, ..., a,€K non tutti uguali a 0, sia

H={(x,..., x,)€K" a,x; + ... +a,x,=0].
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Se (X5 o5 X)s (P15 +-es V) EH € c€K, allora

aa+y)+ o Fa (g, ty)=ax+ ... Fax, +ay+ ... +a,y,=
=0+0=0

afcx) + ... +a(cx)=clax + ... +a,x)=c0=0,

cio (Xps -es X) + (¥y5 --., YD EH € c(xy, ..., X,) € H; pertanto H ¢ un sottospazio
vettoriale di K”. I sottospazi H; sono casi particolari di H che si ottengono pren-
dendo ,=1¢ea;=0, se j#i.

In modo simile il lettore pud verificare che, piti in generale, /’insieme £ C K* .
costituito dalle soluzioni di un assegnato sistema di equazioni lineari omogenee
in n incognite & un sottospazio vettoriale di K".

3. Sia V lo spazio vettoriale reale dei vettori geometrici dello spazio ordinario,

—>
sia 7t un piano e P un punto di n. L’insieme W dei vettori di V della forma PQ
per qualche Q€ x & un sottospazio vettoriale di V.

Infatti per ogni Q, R€x si ha

—  —>
PQ + PREW,

perché il quarto vertice del parallelogramma di vertici P, Q, R appartiene a ,
mentre per ogni c€R e Q€n si ha

—>
cPQeW

perché la retta contenente P e Q & contenuta in 7.
Si noti che W dipende solo da & ¢ non dalla scelta del punto Pen utilizzato
per definirlo.

Segue subito dalla definizione 4.1 che se U e W sono due sottospazi vettoriali
di V, I’intersezione UNW & ancora un sottospazio vettoriale di V.

Piu in generale, !’intersezione N, W, di una famiglia qualsiasi {W},, di sot-
tospazi vettoriali di V é un sottospazio vettoriale di V. La verifica ¢ immediata
ed ¢ lasciata al lettore.

L’unione UU W di due sottospazi non ¢ in generale un sottospazio di V. Ad
esempio, se u ¢ w sono due vettori non proporzionali di V, allora {u) U {w) con-
tiene i vettori u e w, ma non contiene u + w, perché questo non & multiplo né
di u né di w: <u) U {w) non soddisfa la condizione (1) della definizione 4.1.

Il sottoinsieme di V costituito da tutti i vettori della forma u + w, al variare
diwin Ue di win W, verra denotato con U + W.

Se u,, u,€U, w,, w,€ W, ¢ ceK allora

(wm+w)+@+w)=0,+u) +(w,+w)eEU+W
clu;, +w)=cu, +cw, €U+ W
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e quindi U + W ¢& un sottospazio vettoriale di V. Esso si chiama il sotrospazio
somma dei sottospazi U e W. ' '

Si osservi che U + W contiene U U W perché contiene tutti i vettoriu=u + 0
ew=0+w al variare di u€eU e di weW.

Se UNW =(0), allora U + W ¢ detto somma diretta di U e W, e si denota

con U W.
Ogni vettore di U @® W si esprime in modo unico nella forma v + w.
Infatti, se

ut+w=u +w
per qualche u, u' €U, w, w €W, allorau—u'=w —weUNW, e quindi
u—u =w -w=0,
ciog
u=u ew=w.
Se V=U® W i sottospazi U e W si dicono supplementari in V.
Nel caso in cui U= <u), W= (w), con u, weV non proporzionali, si ha

u) N{w) = (0). {(u) @ {w) consiste di tutti i vettori della forma au + bw, al
variare di a, beK. La figura 4.1 si riferisce al caso dello spazio ordinario.

Se U e W sono due K-spazi vettoriali, il loro prodotto cartesiano U X W & un
K-spazio vettoriale se si definiscono in esso le operazioni di somma di due vettori
e di prodotto di un vettore per uno scalare nel modo seguente:

(g, wW+@,w)=@u+u,w+w)
a(u, w) = (au, aw)

per ogni (u, w), (0, w)eU X W, aeK. Il vettore nullo di U X W ¢& (0, 0).

c

Figura 4.1
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Le verifiche di questi fatti sono lasciate al lettore.
1 sottoinsiemi

U’ = {(u, 0): ueU}
W’ = {0, w): weW}

sono due sottospazi di U X W. Si ha evidentemente
U'NW’ =(0, 0);

inoltre
(u, wy=(u, 0)+ (0, w)

per ogni (u, w)€eU X W. Pertanto si ha
UxW=U" @W'.

Ad esempio lo spazio vettoriale K”*” si identifica con K" X K™, ed ¢ somma
diretta dei due sottospazi

K" = (X, X35 «vus Xp» 0, oees 0): Xy, .., X, €K}
K™ = {(0, ..., 0, P15 Va5 cves V)i Vis oees Y€ K]

Un procedimento per costruire sottospazi vettoriali ¢ fornito dalla nozione di
‘‘combinazione lineare’’.
Siano v,, ..., v,€V e ay, ..., a,€K. Il vettore

av,+ ... +a,v, [4.1]

si dice combinazione lineare dei vettoriv,, ..., v, € ai, ..., a, si dicono coefficienti
della combinazione lineare.

Se i coefficienti sono tutti uguali a 0, allora la [4.1] & uguale al vettore 0 e si
dice combinazione lineare banale di v,, ..., v,. Ogni combinazione lineare di
vy, ..., V, in cui i coefficienti non siano tutti nulli si dice non banale.

(Attenzione: una combinazione lineare pud essere non banale e tuttavia essere
uguale al vettore nullo. Questo ¢ il caso ad esempio di Ov + a0, per ogni veV,
acK*)

Le combinazioni lineari di un vettore v€V sono i suoi multipli.

Si noti che

v,;=0v;+ ... +0v,_; +1v;+ 0v, ., + ... + Ov,

¢ combinazione lineare di v,, ..., v, i=1, ..., a.
Segue immediatamente dalla definizione 4.1 che se W ¢ un sottospazio vetto-
.riale di V e v, ..., v, sono elementi di W, allora ogni combinazione lineare di
Vi, ..., V, appartiene a W.
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4.3 PROPOSIZIONE Sia {V,, ..., V,} un sottoinsieme finito di vettori di V.
L’insieme (v, ..., v,) costituito da tutte le combinazioni linearidiv,, ..., v, & un
sottospazio vettoriale di V. Esso é uguale all’intersezione di tutti i sottospazi di
V che contengono {v,, ..., V,}.

Dimostrazione
Se v, + ... +a,v, € byv,+ ... + b,v, sono due elementi qualsiasi di (v,,...,V,)
e ceK, allora

av,+...+av)+ G v+ ... +b,v)=(a, +b)v,+(a,+b)v,+ ...
ee. +(a,+ b)v,

cla,v, + ... +a,v,)=cav,+ca,v,+ ... +ca,v,

sono elementi di (v,, ..., v,), € quindi {v,, ..., v,) € un sottospazio vettoriale di V.

Denotiamo con W P’intersezione di tutti i sottospazi di V che contengono
{vy, ...s v,}. Poiché (v,, ..., v,) & un sottospazio vettoriale contenente {v,, ..., v,},
si ha W C (v,, ..., v,). D’altra parte W, essendo un sottospazio, contiene tutte
le combinazioni lineari di suoi elementi, e quindi contiene quelle di v,, ..., v,; ciog
W D (v, ..., v,). In conclusione W = (v,, ..., v, ).

Chiameremo (v,, ..., v,) il sotfospazio generato da v, ..., Vv,.

Osserviamo che, se 1<m < n, il sottospazio (v,,..., v,)> € contenuto in
{V{, ..., V), perché ogni combinazione lineare di v,, ..., v,, € anche una combi-
nazione lineare di vy, ..., v,:

avi+ ... +a,v,=a;vi+ ... +a,v,+0v, ,+ ... +0v,.

Diremo che vy, ..., v, generano V, oppure che {v,, ..., v,} & un sistema di
generatori di V, se {v,, ..., v,) = V. Quindi v, ..., v, generano V se e solo se per
ogni v€V esistono aj, ..., a,€K tali che

v=aq,Vi+ ... +a,v,.
4.4 DEerINIZIONE [ vettori vy, ..., v, €V si dicono linearmente dipendenti se
esistono scalari a,, ..., a,€K non tutti nulli tali che
av,+ .. +a,v,=0,

o, equivalentemente, se il vettore 0 si puo esprimere come loro combinazione lineare
non banale.
Altrimenti v, ..., v, si dicono linearmente indipendenti.

Vediamo alcune semplici conseguenze della definizione 4.4.
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4.5 ProrosizioNE  Un vettore v e linearmente dipendente se e solo se v = 0.

4.6 PROPOSIZIONE Se v, e v, sono due vettori tali che v, sia proporzionale
a v,, cioe tali che v,=av, per quaiche acK, allora v, e v, sono linearmente
dipendenti.

Infatti av, — v, = 0 & una loro combinazione lineare con coefficientia e —1,
e quindi non entrambi nulli.

Viceversa, se v, e v, sono due vettori linearmente dipendenti, allora uno di essi
& multiplo dell’altro. Infatti a,v, + a,v, =0, cioé a,v, = — a,v,, con q,, a, non
entrambi uguali a 0, implica, supponendo ad esempio @, # 0, che v, = av,, dove
a=—aa,"".

4.7 PROPOSIZIONE Vi, ..., V,€V, n =2, sono linearmente dipendenti se e solo
se uno almeno di essi si puo esprimere come combinazione lineare dei rimanenti.

Infatti, se v,, ..., v, sono linearmente dipendenti, allora

O0=a,v,+ ... +a,v,,

con a; # 0 per qualche i; quindi

av,=—(@,vi+ ... +,_\V;_; + a8, Vi, + ... +a,v,)
cioé
—_ -1 —
vi=—a @i+ .. @ Vi Fa Vi F .t av,)=
— -1 -1 1 -1
=—a'avi— ... —a7'q_|Vi_;— @ '@ Vi — ... — a7 'a,v,.

Viceversa, se per qualche i
vi=bvi+ ... +b,_ v+ b Vie, + ... +b,v,
allora
0=pHvi+ ... +b,_yv;_, —v;+ b, Vi, + ... +b,v,

e quindi v,, ..., v, sono linearmente dipendenti.

4.8 ProrosizioNE Se [l’insieme {v,, ..., v,} contiene il vettore 0, allora
Vi, -.., V, Sono linearmente dipendenti.

Supponiamo infatti che si abbia v,=0 per qualche i compreso tra 1 ed ».
Allora si ha

Ovi+ ... +0v,_ +1v;+0v, , + ... + Ov,=v;=0,

e 0 ¢ una combinazione lineare non banale di v, ..., v,.

Si pud anche osservare che v;= 0 pud essere espresso come combinazione
lineare di v, ..., ¥;_;, Viyy, ..., V,, 12 loro combinazione lineare banale, e quindi
vy, ..., V, sono linearmente dipendenti per la proposizione 4.7.
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4.9 ProPOSIZIONE  Se {v,, ..., v,} sono linearmente indipendenti e | <m < n,
allora {v,, ..., v,,} sono linearmente indipendenti. Equivalentemente, se {v,, ...,
V..} sono linearmente dipendenti, allora anche {v,, ..., v,} sono linearmente
dipendenti.

Dimostriamo la seconda affermazione. Se v, ..., v,, sono linearmente dipen-
denti, allora

O0=aqv,+ .. +a,v,=av+ ... +a,v,+0v,  + ... +0v,

per qualche scelta di a,, ..., a,,€ K non tutti nulli, e quindi il terzo membro ¢ una
combinazione lineare non banale di v,, ..., v, che ¢ uguale a 0, cioé v, ..., Vv, SOno
linearmente dipendenti.

4.10 PropPOsizioNE  Se v, ..., V, sono linearmente indipendenti, e a,, ..., a,,
b, ..., b,€K sono tali che
avi+ .. +ayv,=bv,+..+b,v,
alloraa,=b,, a,=b,, ..., a,=b,.
Infatti, essendo
O0=aqv,+..+a,yv,—(bvi+ .. +b,v)=(a,— b)v,+ ... +(a,— b,)v,
si deve avere ¢, — b, =a,— b,= ... =a,— b,=0.

4.11 DermNizioNE  Un sottoinsieme finito {v,,...,v,} di V si dice base finita, o
semplicemente base, di V se v, ..., v, sono linearmente indipendenti e generano V.

Se {v,, ..., v,} € una base, allora, poiché v,, ..., v, generano V, per ogni véV
esistono a, ..., a,€K tali che
v=a, v+ ... +a,v,; [4.2]

inoltre, per la proposizione 4.10, a,, ..., a, sono univocamente determinati da v.
I coefficienti a,, ..., a, della combinazione lineare [4.2] si dicono le coordinate
di v rispetto alla base {v,, ..., v,}, e (a,, ..., a,) si dice la n-upla delle coordinate
di v. Quindi, una volta assegnata una base {v,, ..., v,} di V, ad ogni vettore veV
viene univocamente associata una z-upla di coordinate; viceversa ogni n-upla
(a5 ..., a,)€K" individua univocamente il vettore [4.2] di cui essa & la n-upla delle
coordinate. _
Un vettore v di coordinate a,, ..., a, verra spesso denotato con v(a,, ..., @,).
Lo spazio vettoriale {0} costituito dal solo vettore 0 non possiede una base
finita, perché il suo unico elemento & linearmente dipendente. Non tutti gli spazi
vettoriali diversi da {0} possiedono una base finita (cfr. esempio 4.15(5)).
Dimostreremo tra poco che se uno spazio vettoriale V possiede una base costi-
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tuita da n elementi, ogni altra base ha lo stesso numero #z di elementi. Questo risul-
tato fondamentale & conseguenza del teorema seguente.

4.12 Teorema Sia {v,, ..., v,} un sistema di generatori di V e siano w,, ...,
w,, elementi di V. Se m>n, allora w,, ..., w,, sono linearmente dipendenti.

Dimostrazione

Per la proposizione 4.9, se w,, ..., W, sono linearmente dipendenti lo sono
anche w, ..., w,. Pertanto non sara restrittivo dimostrare I’asserto supponendo
che w,, ..., W, siano linearmente indipendenti. Sara sufficiente dimostrare che
W, ..., W, generano V, perché da cio seguird che w,, puo esprimersi come loro
combinazione lineare, e quindi dalla proposizione 4.7 seguira la dipendenza lineare
di wy, ..., W,

Dall’ipotesi che v, ..., v, generano V si deduce che esistono scalari a,, ..., a,
tali che

W, =a,Vi+ ... +a,v,

Poiché abbiamo supposto che w,, ..., w, siano linearmente indipendenti, w,
¢ diverso da 0 e quindi i coefficienti «,, ..., @, non sono tutti nulli. Salvo rinu-
merare vy, ..., v,, possiamo supporre g, # 0. Pertanto:

— -1 -1 -1
Vi=a W —a @V~ ... — a4 4,V,,

cio¢ v, €{w,, v,, ..., v,>. Poiché ovviamente anche v,, ..., v,€{W,, V,, ..., V,),
si ha
(Wi, Yoy eiy V) DAV, Yy e, V) =V,

cioé wy, V,, ..., v, generano V.
Supponiamo ora che per qualche 1 <s<#n —1 si abbia

(Wi ey Wey Voo pp ooy V) = Vo [4.3]
Segue da cio che esistono scalari b, ..., b,, ¢, ..., C, tali che
W, =bw+ . +DW Vet .G,

Poiché wy, ..., w,, w__, sono linearmente indipendenti, uno almeno dei coeffi-
cienti ¢, ;, ..., ¢, deve essere diverso da 0: salvo rinumerare v, , ..., v, se heces-
sario, possiamo supporre c,,, # 0. Deduciamo che

— -1 -1 -1 -1
Verl = _cs+lb1w1 e _cs+Ibsws+ Csr1Wsig = eoo T Cs 16y Vs

e quindi v, €{Wy, ..., W, W, V., ..., V,) (rispettivamente, v,€ (W, ..., W,
se s =n —1). Pertanto si ha

(W], cees Woo Wopgs Viios eens vn> D <w1’ cees W Vi oo V,,) =V

cioé W, ..., W, W, 1, Vo.y, ..., V, (rispettivamente w,, ..., w,) generano V.



58 Geometria affine

Abbiamo gia dimostrato che I’ipotesi [4.3] ¢ vera se s = 1; la conclusione segue
allora per induzione su s.

4.13 CoroLLarRio Siano {v,,..., v,} e {w,, ..., w,} due basi dello spazio
vettoriale V. Allora m = n.

Dimostrazione

Poiché v,, ..., v, generano V ¢ wy, ..., w,, sono linearmente indipendenti, dal
teorema 4.12 segue che m < n. D’altra parte, poiché w,, ..., w,, generano V e
vy, -.., V, sono linearmente indipendenti, dallo stesso teorema segue che anche
n=<m. Quindi m = n.

4.14 DeFiNizioNE Se il K-spazio vetforiale V possiede una base finita

{Vis ooy V3, 0 numero n si dice la dimensione di V, e si denota con dim,(V), o
semplicemente dim(V). Se V = {0} consiste del solo vettore nullo, si pone
dim(V) =0.

Se V = {0}, oppure V possiede una base finita, diremo che V ha dimensione
finita.

Dal corollario 4.13 segue che la definizione di dimensione & ben posta perché
il numero di elementi di una base dipende solo da V.

4.15 Esempi

1. Sia v = OP un vettore geometrico non nullo della retta ordinaria. Poiché
ogni altro vettore geometrico & multiplo di v, {v} & una base dello spazio dei vet-
tori geometrici della retta ordinaria, il quale quindi ha dimensione 1.

Sia V lo spazio vettoriale reale dei vettori geometrici del piano ordinario, e siano
v, e v, due vettori non proporzionali di V, che penseremo applicati in uno stesso
punto O, rappresentati nella forma

—> —
V]=0P1, V2=0P2

per opportuni punti P, e P, (fig. 4.2). Dalla proposizione 4.6 segue che v, e v,
sono linearmente indipendenti. Denotiamo con %, (con %,) la retta contenente i
punti O e Ij_>(i punti O e P,).

Sia v = OP¢€V un vettore qualsiasi. Detto Q, (rispettivamente Q,) il punto di
intersezione con %, (con 2,) della retta parallela a z, (a z,) e passante per P, sia

— — — — .
O0Q, = a,OP, ¢ OQ, = a,OP, per opportuni a,, a,€R.
Poiché
—> —> —> —>
v=00Q, + 00Q,=a,0OP, + a,0P, = a;,v, + a,v,

vediamo che v ¢ combinazione lineare di v, e di v, e che quindi v,, v, generano
V. Dunque {v,, v,} € una base di V. Pertanto V ha dimensione 2.
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Figura 4.2

Nello spazio ordinario tre vettori geometrici v, = 5—)}3,, v, = O_>P2, vy = 5—)&
sono linearmente indipendenti se e solo se i punti O, P,, P,, P, non giacciono in
uno stesso piano: cid segue subito dal fatto che la dipendenza lineare di v, v,,
v, equivale all’essere uno di essi combinazione lineare dei rimanenti. Se v,, v,, v,
sono linearmente indipendenti, allora, con una costruzione simile a quella illu-
strata dalla figura 4.2 nel caso del piano ordinario, si verifica che ogni vettore
geometrico si puod esprimere come loro combinazione lineare. Quindi {v,, v,, v;}
& una base, e i vettori geometrici dello spazio ordinario costituiscono uno spazio
vettoriale reale di dimensione 3.

2. Sia n=1. Consideriamo lo spazio vettoriale numerico K”, e siano
E=(1,0,..0, E=(,1,0,..,0, .. E=(@,..0,1.

" I vettori E,, ..., E, generano K". Infatti per ogni (x, ..., x,)€K" si ha

e ) =xE +x,E,+ ... +x,E. [4.4]

Inoltre, essendo (x, ..., X,) = 0 se e solo se x; = x, = ... =x, =0, segue dalla
[4.4] che E,, ..., E, sono linearmenté indipendenti. Quindi {E,, ..., E,} & una base
di K” ¢ K” ha dimensione n.

{E,, ..., E,} si chiama la base canonica di K".

Per n =1 otteniamo che il campo K, considerato come uno spazio vettoriale
su sé stesso, ha dimensione 1, la sua base canonica essendo costituita dal solo 1€K.

Dalla [4.4] segue che le coordinate di un vettore (x,, ..., X,) rispetto alla base
canonica coincidono con le sue componenti x, ..., X,.

3. Siano A€M, ,(K), X="(X; X, ... X,) indeterminate, ¢
AX =0 [4.5]

il sistema omogeneo, di m equazioni nelle incognite X, la cui matrice dei coeffi-
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cienti ¢ 4. Denotiamo con X, I’insieme delle soluzioni del sistema. Come
abbiamo gia osservato nell’esempio 4.2(2), X, € un sottospazio vettoriale di K”.
Le m equazioni [4.5] si dicono equazioni cartesiane del sottospazio X, di K".
Quindi, per definizione, due diversi sistemi di equazioni lineari omogenee nelle
incognite X sono equivalenti se e solo se sono equazioni cartesiane dello stesso
sottospazio di K”.

Gli elementi di X, possono interpretarsi come relazioni di dipendenza lineare
tra le colonne Ay, Ay, ..., Ay di A, considerate come vettori di K. Infatti
x="(x, x ... x,)€K"¢é soluzione di [4.5] se e solo se Ax =0, o, equivalen-
temente, se e solo se

A(])x! +A(2)X2 + ... +A(n)xn = 0.

4. Consideriamo un sistema di # equazioni lineari omogenee a gradini:

a X, +a,X,+ ... +a,X,=0
apX, + ... + az,,X,, =0 [4.6]

@i Xp + oo + 0, X, =0,

a, ay ... 4,,#0. Se n=m, il sistema [4.6] ammette solo la soluzione banale.
Se n> m le oo™~ soluzioni di questo sistema sono ottenute dando valori arbi-
trari alle incognite X, ,, ..., X,, € risolvendo il corrispondente sistema di m equa-
zioni nelle X, ..., X,,. Consideriamo in particolare le n — m soluzioni

m+l ( m+ll9 m+12’ eres Sm+lm’ l 0 ey 0)
m+2 ( +2|s m+22 *°3 m-er’ 0 1 0 O)
Sy =uts Suzs eres Sy 050y 0, 1)

ottenute in corrispondenza alle (n — m)-uple
U ts bazs oor £)=(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)

rispettivamente.
Per ogni ¢,,,;, 1.2 ---s £,€K si ha

tm+ism+l + tm+25m+2 + ...+ fnS ( m+ ISm+1| + ..o+ tnsnl’ tm+ lSm+|2 + ...

cee F 5 Suns cves by 1Smatm t oor T+ LuSums t,,,ﬂ, Bias oons L) [4.7]
I1 secondo membro ¢ uguale a (0, ..., 0)seesoloset,, ,=74,,,= ... =1, =0.
Quindi s,,.., S,y ---» S, SONO linearmente indipendenti.

11 secondo membro della [4.7] & la soluzione del sistema [4.6] che corrisponde
alla scelta dei valori ¢, |, £,,,, ---» £, Der le incognite X,,,, ;, ..., X,; la [4.7] mostra
che tale soluzione & combinazione lineare di s,,,;, S,42 ---» S, Quindi s,,,,,
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Spmazs +--» S, generano lo spazio X, delle soluzioni del sistema [4.6]. Segue che
{Smst> Sma2s ---s S,} € una base di X,. In particolare, dim(X,) = n — m. Pertanto
I’infinita delle soluzioni del sistema omogeneo a gradini [4.6], cosi come & stata
definita nel paragrafo 3, coincide con la dimensione dello spazio delle sue soluzioni.

Pili in generale, poiché ogni sistema di equazioni lineari omogenee [4.5] & equi-
valente a un sistema a gradini, abbiamo che ’infinita delle soluzioni di un sistema
di equazioni lineari omogenee é uguale alla dimensione dello spazio delle sue
soluzioni.

5. Sia X un’indeterminata. Il K-spazio vettoriale K[X ] dei polinomi in X a coef-
ficienti in K non ha dimensione finita.

Supponiamo infatti per assurdo che esista una base finita { f,(X), ..., f,(X)}
di K{X]. Detti d,, ..., d, i gradi di f,(X), ..., f,(X) rispettivamente, poniamo
D =max{d, ..., d,}, e sia f(X) un polinomio di grado d> D. Poiché
{ (XD}, ..., f,(X)} & una base, esistono a,, ..., a,€K tali che

X)) =a,/(X)+ ... +a,[,(X).

Ma il polinomio a secondo membro ha grado non superiore a D e quindi non
pud essere uguale a f(X). Questa contraddizione implica che la base finita
{ f1(X), ..., [,(X)} non esiste.

In modo simile si dimostra che il K-spazio vettoriale K[.X}, ..., X,] dei poli-
nomi nelle indeterminate X, ..., X, a coefficienti in K non ha dimensione finita.

6. Per un qualsiasi intero positivo d, lo spazio vettoriale K[.X|, ..., X,], costi-
tuito dai polinomi omogenei di grado d in X, ..., X, a coefficienti in K e dal poli-
nomio 0 possiede una base finita: ad esempio quella costituita da tutti i monomi
monici di grado d. Quindi K[X,, ..., X,], ha dimensione finita uguale a

d+n—-1
( ), per il lemma A.11; in particolare lo spazio vettoriale K[.X|, ..., X1,
d

dei polinomi omogenei di primo grado in X}, ..., X, ha dimensione #.

7. Lo spazio vettoriale M, ,(K) delle matrici m X n a elementi in K ha dimen-
sione mn. Consideriamo infatti, per ogni 1<i<m, 1<j<n, la matrice 1;; che
ha 1 nel posto i, j e ogni altro elemento uguale a 0. Otteniamo cosi un insieme
di nm matrici {1,;, 1,5, ..., 1,,}, che costituisce una base di M,, ,(K). Infatti, se
A =(a;)¢M,, (K), allora in modo unico si ha

A=a,l, +a,l,+ ... +a,,l,,.

4.16 ProOPOSIZIONE  Supponiamo che dim(V) = n.

1) Sev,, ..., v,€V sono linearmente indipendenti, {v,, ..., v,} é una base di V.
2) Sev,, ..., V€V sono linearmente indipendenti, esistono v, ,, ..., v,€V tali
che §{v,, ..., v,} sia una base di V.
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Dimostrazione

1) E sufficiente mostrare che (v, ..., v,) = V. Per ipotesi esiste una base
{b;, ..., b,} di V, e cid implica, per il teorema 4.12, che per ogni veV i vettori
vy, ..., V,,, ¥ sono linearmente dipendenti. Pertanto esistono «,, ..., 4,, 2€K non
tutti nulli tali che

avi+ ..+ayv,+av=0.
Poiché v, ..., v, sono linearmente indipendenti, deve essere a # 0. Quindi si ha
=—alayv,— ... —ala,yv,

cioé ve(v,, ..., v,>. Essendo v€V arbitrario, si ha ’asserto.

2) Per il teorema 4.12 deve essere k < n. Se £ = n la conclusione segue dalla
parte (1); supponiamo dunque & < .

¥V}, ..., V; ON possono generare V, altrimenti si avrebbe una base costituita da
k # n elementi, il che contraddirebbe il corollario 4.13. Pertanto possiamo tro-
vare un vettore v, €V \ (v, ..., V).

Supponiamo che a, ..., a,, a;,;€K siano tali che

av + @+ a, Ve, =0
Deve essere a,,; = 0, perché se fosse a,,, # 0 si avrebbe
— -1 -1
Viee1 = 7 Qi1 V) T een T Qg1 Gy

cio¢ v, €{v,, ..., V), il che & contro 'ipotesi; pertanto si deve anche avere
a, = ... =a, =0, perché v, ..., v, sono linearmente indipendenti. Dunque i vet-
tori vy, ..., V,, Vv;,; sono linearmente indipendenti.

Se k + 1 = n si conclude, per la parte (1), che {v,, ..., ¥, V,,,} ¢ una base, e
I’asserto € provato; se invece k + 1 < n possiamo ripetere il ragionamento prece-
dente e trovare v, ,€V tale che {v, ..., V;, V.1, Vi,,} siano linearmente indi-
pendenti. Iterando questo procedimento n — k volte & possibile trovare v,,,,
Vii2s --s V,€V tali che {v,, ..., v,} siano linearmente indipendenti. Per la (1),

{vi, ..., v,} € una base, e ’asserto & provato.

4.17 Cororrario  Se dim(V) = n, ogni sottospazio vettoriale W di V ha
dimensione finita non superiore a n.

Dimostrazione

Per il teorema 4.12, per ogni sottoinsieme finito {w,, ..., w,,} di W costituito
da vettori linearmente indipendenti deve essere 7 < n. Quindi, se W ha dimen-
sione finita, ogni sua base deve essere costituita da non pitt di n elementi, cioé
dim (W) < n. D’altra parte, se W non avesse dimensione finita, per ogni sottoin-
sieme finito {w,, ..., w,,} di vettori linearmente indipendenti di W si avrebbe
(W, ..., w,> #W, e quindi esisterebbe w,,, €W tale che w, ..., w,,, w,,,, siano
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linearmente indipendenti (cfr. dimostrazione di 4.16(2)). Cid implica Pesistenza
di insiemi finiti di vettori linearmente indipendenti di V con un numero arbitra-
riamente alto di elementi, il che & impossibile per il teorema 4.12.

Se in particolare dim (W) = 0 oppure n, allora W = (0) oppure W = V rispet-
tivamente.
Per ogni sottospazio vettoriale W di V, il numero

dim(V) — dim(W)

si dice codimensione di W in V.
Dimostreremo ora un’importante formula che mette in relazione le dimensioni
di due sottospazi, della loro intersezione ¢ della loro somma.

4.18 TEoREMA Siano U e W due sottospazi di dimensione finita dello spazio
vettoriale V. Allora UNW e U + W hanno dimensione finita e

dim (U) + dim(W) = dim(U + W) + dim(U N W). [4.8]
In particolare, U + W é somma diretta di U e W se e solo se
dim (U + W) = dim (U) + dim (W).

Dimostrazione

U N W ¢ un sottospazio di U, che ha dimensione finita, e quindi anche UN'W
ha dimensijone finita. Sia dunque {z,, ..., z,} una base di U N W. Per la proposi-
zione 4.16(2) esistono uy, ..., w,€U € wy, ..., w € W tali che {z, ..., z,, u, ..., u,}
sia una base di U e {z, ..., Z,, W, ..., W]} sia una base di W. Poiché

dim(U) + dim(W) —-dim(UNW)=qg++s,

per dimostrare la prima parte del teorema sara sufficiente dimostrare che
{z;y..s 2, Uy, ..., U, Wy, ..., W} € una base di U+ W.

Sia u + weU + W. Esistono scalari a,, ..., a,, ai, ..., a;, b, ..., b, ¢, ..., ¢
tali che

u=a,z, + ... +a,z,+ byu, + ... + bu,
W=a{z2;+ ... + @z, + W+ ... +C W
Si ha quindi

ut+tw=(g +a)z,+ ... t{@,+adz, +bu + ... +bu+cw + ...
.. F W,

Dunque z,, ..., Z,, ;, ..., U,, Wy, ..., W, generano U + W.
Supponiamo ora che a,, ..., a,, by, ..., b, ¢, ..., c,€K siano tali che

@z, + ... +a,z,+bu + ... +bhu +cew + ... +ew, =0 [4.9]
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Dalla [4,9] segue che
aw, + ... tew,=— (a2, + ... +a,z,+bu, + ... +bu). [4.10]

Poiché il primo membro della [4.10] appartiene a W, il secondo membro sta in
UNW. Essendo {z,, ..., z,} una base di UN'W, si ha

@z, + ... +az,+bu +..+bu=ez+ ..+ez,
per opportuni e, ..., ¢,€K, 0, equivalentemente,
oy —e)z + ..+ (a,—e)z, +bu, + ... +bu,=0.

Per I’indipendenza lineare di z,, ..., z,, u,, ..., u, tutti i coefficienti sono 0, e in
particolare b, = ... = b,=0. Per la [4.9] si ha dunque

@z + ... +a,z,+cw + ... +cw =0,
Dall’indipendenza lineare di z,, ..., z,, W, ..., w, segue che anche
=¢=..=¢=0.

Quindi z,, ..., z, u,, ..., 4, W, ..., W, sono linearmente indipendenti.
L’ultima asserzione del teorema segue immediatamente dalla [4.8] e dalla defini-
zione di somma diretta.

La [4.8] ¢ detta formula di Grassmann vettoriale.

Esercizi

1. Stabilire quali dei seguenti insiemi di vettori sono linearmente indipendenti, quali sono
un sistema di generatori dello spazio, e quali costituiscono una base:

In R%:

a) {(1, 123), (-7, — )} b) {2, -1/3), (-1, 1/6)}

c) {(4/5, 5/4), 4,5)} d) ({1, 2), (11, -=7V2), (-1, D}.
In R*:

e {(4, 1, 3), 2, 2,0), 3, 3, —3)}
f) {1, —1, =/5), (1, 1, V5), (0, 1, 2v/5)}
2 {(1,0,0), (1, 1, 1), (0, 1,2), (-1, —2, —3)}.
In C*:
h) {1, 0,1, 0), G, 0, i, 0), (0, 1, 1, 0), (0, i, 0, )}
i) {0, 1,1,0), O, —i, —2i, ), 0, i, 0, 1), (1, 0, 0, 0)}

2. Dimostrare che le matrici

1 1 1 1 1 0 2 -2 1
LT e
2 0 1 -1 0 1 1 0 0

sono linearmente indipendenti.
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3. Stabilire quali dei seguenti sottoinsiemi di R® sono sottospazi vettoriali:

a) {(0, 0, 0)} b) {(x, 0, 0): xeR, x#0}
¢) {Ge, ¥y, 2:x—=2y+z=1} d) {(t,t,N):0=<t=<1]}
e {(t, t, N: 0<t<1} f) R\{(0, 0, 1)}

g) HIUH2UH3, dOVe H1={(X|, X2y x.‘i): xI:O}
h) {(x, y, 2 X+ ¥+ 22 =1}
Dy, Dx+y—35z=0,2(x+y) =0} i) (@, 1, 0): teR}.

4. Sia V uno spazio vettoriale reale di dimensione 3, e sia {i, j, k} una base di V. Siano
U={i+j,i-jy, W=(j+k, j— k). Dimostrare che V= U + W, e che la somma
non ¢ diretta.

5. Dimostrare che R*=U® W, dove
U=<(1,0, -V5,0), /5,0, -1, 0)»,
W=1{((0, —2,0, 3), (0, 1, 0, 1)),

6. Dimostrare che R* = U® W, dove
U={(x,», 2:x-y=0},

W ={((1, 0, 1)).

7. Utilizzando esclusivamente operazioni elementari sui vettori, trovare una base del sot-
tospazio di Q* generato dai seguenti vettori:

vw=(1,1,2,3), v,=@3,210), v=(-1,0,3,6), v.=(2,2,2,2).
8. Dimostrare che gli n vettori
(1,1,..,0,01,..,1,001,..,1),..0,..,0,1,1),©,..01)
costituiscono una base di K".

9. Sia V un K-spazio vettoriale. Si supponga che v, ..., V€V siano linearmente
indipendenti; dimostrare che A,Vi, ..., AV, sono linearmente indipendenti per ogni
Aty eees M EKEL

10. Sia 1 <i=< n. Determinare una base del sottospazio H; di K".
11. Dimostrare che GL,(K) non & un sottospazio vettoriale di M, (K).

12. Sia A = (a;) ¢ M.(K). La traccia di A &
tr(A) =ay+an+ ... + .

Dimostrare che il sottoinsieme % di M,(K) costituito dalle matrici aventi traccia
uguale a 0 & un sottospazio vettoriale, e calcolarne la dimensione.

13. Le matrici di M,(C)

=0 ) == ) =)
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*si dicono matrici di Pauli. Dimostrare che:
a) Li=Xi=Xi=0L

Eizz = iE; 2221 =— iE;
2223=i23 :322= "'iEI
232; = iZZ 2[ 23 = - izz.

b) {Iz, E[, 22, 23} & una base di Mz(C).

Calcolare le coordinate in tale base delle matrici

1 0 0 1
11|=( ), 1:2=( ),

0 0 0 O

0 O 0 O
121=( ), 122=( )

1 0 0 1

14. Dimostrare che lo spazio vettoriale Sy delle successioni di elementi di K non ha dimen-
sione finita.

15. Dimostrare che ’insieme Lg delle successioni limitate di numeri reali costituisce un
sottospazio vettoriale dello spazio Sg. Dimostrare che Lg non ha dimensione finita.

16. Sia Sk lo spazio vettoriale delle successioni di elementi di K, e sia Px il sottoinsieme
di Sk costituito dalle successioni {a,} tali che a, = 0 per tutti gli » sufficientemente
grandi. Dimostrare che P« € un sottospazio vettoriale di Sx.

17. Siano a, b€R, a < b. Dimostrare che lo spazio vettoriale C, ,, di tutte le applicazioni
continue dell’intervallo (g, b) in R non ha dimensione finita.

18. Sia X un’indeterminate e & =1 un intero. Dimostrare che il sottoinsieme K[X }., di
K[X ] costituito dai polinomi di grado non superiore a d e dal polinomio 0 & un sotto-
spazio vettoriale di dimensione d + 1.

19. Dimostrare che i polinomi omogenei di secondo grado
X3, X+ XL X3+ X0+ X3 XXy, X1 Xa, XoXa
costituiscono una base di K[X,, X, X3l.

20. Siano W,, Wy, Wy, i seguenti sottoinsiemi di K[X,, X1, Xala:

W, = {FeK[Xy, X;, Xl,t F & divisibile per X,};
Wm = {FeK[Xo, X'), Xz]z: F= XoLo + X|L1 per qualche Lo, L;eK[Xo, X., Xz}. };

WOI2 = {F€ K{Xo, X|, Xz]z: F= XoLo + X;L; + Xsz per quaIChe Lo, Lg, Lze K[Xo,
Xla XZ}I}'

Dimostrare che W,, Wy, € Wy, sono sottospazi vetoriali di K[X,, X), X3), e calcolarne
la dimensione.

21. Una successione {a,} di elementi di K & una successione di Fibonacci se per ogni n =0
si ha a,,, = a, + a,,;. Dimostrare che le successioni di Fibonacci costituiscono un sot-
tospazio vettoriale F di Sk, e che dim(F) = 2.
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5 Rango

Il metodo di eliminazione di Gauss-Jordan, molto utile in pratica per risolvere
sistemi di equazioni lineari, non si presta troppo bene ad essere utilizzato in que-
stioni teoriche, in cui & preferibile avere criteri generali di risolubilitd espressi attra-
verso le matrici associate al sistema. Criteri di questo tipo possono essere ottenuti
in modo naturale per mezzo della nozione di ‘“‘rango’’.

Se V & un K-spazio vettoriale, € {v,, ..., v,,} & un sottoinsieme finito di V, il
rango di {v,, ..., v,,} € il massimo numero di vettori linearmente indipendenti
appartenenti a {v,, ..., v,,}. Equivalentemente, il rango di {v,, ..., v,,} ¢ la dimen-
sione del sottospazio vettoriale v, ..., v,).

Se AeM,, ,(K), il rango per righe di A ¢ il rango dell’insieme delle sue righe,
cio¢ il massimo numero di righe linearmente indipendenti di 4, considerate come
vettori di K”. Analogamente si definisce il rango per colonne di A.

L’utilita di queste nozioni deriva dal seguente risultato.

5.1 TEoREMA 1l rango per righe e il rango per colonne di una matrice
AeM,, (K) coincidono.

Dimostrazione

Siano r il rango per righe e ¢ il rango per colonne di A. Se r = 0, allora tutti
gli elementi di A sono nulli e quindi anche ¢ = 0. Pertanto possiamo supporre r > 0.

Una relazione di dipendenza lineare tra le colonne di 4 ¢ una soluzione non
banale del sistema omogeneo

AX =0 [5.13

dove X ='(X] ... X,). Pertanto il rango per colonne di A4 ¢ individuato dall’in-
sieme delle soluzioni del sistema [5.1]. Se le righe di A si dispongono in ordine
diverso, ¢ non cambia perché un cambiamento nell’ordine delle equazioni del
sistema, cioé una successione di operazioni elementari (I), non influisce sull’in-
sieme delle sue soluzioni. Neanche r cambia se si riordinano le righe di 4, perché
il rango di un insieme di vettori non dipende dal loro ordine.

Pertanto non ¢é restrittivo supporre che le prime r righe di A siano linearmente
indipendenti. La matrice

a; dp a,

a4 an %,
A* — .

a., a,. [T/

ha rango per righe uguale a r.
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Consideriamo il sistema
A*X =0 [5.2]

e sia (x, ..., x,) una sua soluzione. Se r<m, allora per ogni i=r+1,..., m
I’i-esima riga di A & combinazione lineare delle righe di A*, e quindi si ha

ap X+ ...+ ax, =@+ ... Fapx)+ ..o Folax+ .. ta,x)=
=0+ ..+0=0

per opportuni &, ..., @, €K. Pertanto (x,, ..., x,) & anche soluzione di [5.1]. Vice-
versa € ovvio che ogni soluzione di [5.1] & soluzione di [5.2], che & un suo sotto-
sistema. In conclusione [5.1] e [5.2] sono equivalenti, e quindi il rango per colonne
di A* & uguale a c. Poiché le colonne di A* sono vettori di K’, si ha c<r.

Ragionando allo stesso modo su 'A si deduce che anche r < ¢, e ’asserto &
provato.

Il valore comune del rango per righe e del rango per colonne di A si dice
rango di A e si denota con r(4). E evidente che r(A) < min(m, n) per ogni
AeM, (K).

La proposizione seguente afferma che le operazioni elementari sulle righe di
una matrice non ne modificano il rango.

5.2 ProposizioNe  Sia A€M, ,(K). Se Be M, ,(K) & ottenuta da A mediante
una successione di operazioni elementari sulle righe, allora r(A) = r(B).

Dimostrazione

E sufficiente dimostrare asserto nel caso in cui B ¢ ottenuta da A mediante
una sola operazione elementare sulle righe. Se B ¢ ottenuta da A per mezzo di
un’operazione elementare (1), le sue righe sono AY, ..., AV, ..., 49, ..., A™ per
qualche 1=s<#=<m, e quindi si ha

(AD, .., AO, ., A9, ., Ay =(AD, ., A™),

cioé r(A4) = r(B), perché il rango di un insieme di vettori non dipende dall’ordine
in cui si considerano.

Se si & effettuata un’operazione elementare (II), le righe di B sono 4%, ...
ey €AY, ..., A™ per qualche c€K* e | < f=<m, e si ha evidentemente

(AD, ..., cAO, .., Ay = (AD, A

cioé ancora r(4) = r(B).

Se I’operazione elementare & del tipo (III), le righe di B sono A®, ..., A¢~1
A9+ cAD, ASTD . A™ per qualche ceK e 1 <s, t<m, s#t; poiché tali
righe sono combinazioni lineari di A, ..., A", si ha

CAD, oy ASD, 49 £ A0, 464D AMY C(AD, ..., A™).
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D’altra parte

A® = (A(s) + CA(")) —cAY
e quindi & vera anche Pinclusione opposta:

(AD, L, AV, 49 £ A0, ACHD Ay D (AD, .., A™),
e di nuovo r{4) = r(B).

5.3 PROPOSIZIONE
1) Se A e B sono due matrici che possono essere moltiplicate, allora

r(AB) < min(r(A4), r(B)).
2) Se AeGL,(K), BeM,, (K), CeGL,(K), allora

r(AB) = r(B) = r(BC). [5.3]
Dimostrazione

1) Siano A = (a;;)€éM,, ,(K) ¢ B=(b,)eM, (K). Per ogni i=1,..., m, la
i-esima riga di AB ¢

APB=(a;b, + ... +a,b,;, ayby+ ... +a,b,y,s ..., @b+ ... +a,b,)=
=(a;16115 4;,D1ps -y @11D1) + (0130515 G12bnss ..., @ DY) + ...
) .o +a,b,,, 2,0,5 ..., a,b,) =
=a;;B" + a,B? + ... + a,,B™.

Quindi, essendo ogni A¥)B combinazione lineare delle righe di B, si ha
(AVYB, A®B, ..., A™B)Y C(B", B®, ..., B")

e pertanto r(AB) < r(B).
D’altra parte si ha anche

r(AB) = r({AB)) = r('‘B'A) < r(*{A) = r(A4)

e la (1) & dimostrata.
2) Per la (1) si ha

r(AB) <r(B)=r(A""(AB)) < r(AB)

e quindi r(AB) = r(B). La seconda uguaglianza in [5.3] si dimostra in modo simile.
Per le matrici quadrate si ha il seguente teorema.

5.4 TeoreMA Una matrice quadrata di ordine n é invertibile se e solo se ha
rango n.
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Dimostrazione

Per la proposizione 5.3(2) una matrice invertibile A ha lo stesso rango di
L,=A7'A. Il rango di I, & n, perché le sue righe costituiscono la base canonica
{E,, ..., E,} di K". Viceversa, se A ha rango n, le sue righe A", ..., A™ costi-
tuiscono una base di K”. Quindi, per ogni i =1, ..., n, esistono b;,, ..., b, €K tali
che

E=b0,AY+b,A%+ ... + b, A". [5.4]
Consideriamo la matrice B = (b;) € M, (K). La [5.4] equivale all’identita
I,=BA

e quindi A4 ¢ invertibile.

Una sotfomatrice p X g di una matrice A € M,, ,(K) ¢ una matrice costituita
dagli elementi di A comuni a p righe € a ¢ colonne fissate in A. Scelti indici
=i <ih<..<i,=melsj <j<..<j,<n, lasottomatrice di A corrispon-
dente alle righe i-esima, i-esima,..., i-esima, ¢ alle colonne j,-esima,
Jr-esima, ..., j-esima, si denota con A i, ... i,|j; jo «ee J))- E una matrice
pXq.

Ad esempio se

8§ 0 -1 3 -

A= 10 E1‘44,5(R),
2 -5 7 2 6
Ly 1 0 =5
2

allora
s L
AQ 4]3 4 5)= 10 ) em, ,R)
1 0 -5

5.5 PROPOSIZIONE  Se B ¢ una sottomatrice della matrice A, allora r(B) < r(A).

Dimostrazione
Sia AeM,, ,(Kye B=A(, i, ... i|j, J, ... j,). Consideriamo la sottomatrice
di A
C=AG by ... |12 ... n)eM, (K)
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costituita dalla i-esima, i,-esima, ..., i,-esima riga. La disuguaglianza
r(Cy=r(A4) [5.5]

¢ ovvia se interpretata come una relazione tra i ranghi per righe delle due matrici.
D’altra parte B € una sottomatrice di C, e precisamente

B= C(l 2 vee p[j! j2 eee jq):

la sottomatrice costituita dalla j-esima, j,-esima, ..., j,-¢sima colonna di C.
Anche in questo caso la disuguaglianza

r(By=r(C) [5.6]

¢ ovvia se interpretata come relazione tra i ranghi per ¢olonne delle due matrici.
La [5.5] e la [5.6] insieme implicano r(B) < r(A4).

Come conseguenza dei risultati che precedono abbiamo il seguente teorema.

5.6 TEorEMA 1l rango di una matrice A & uguale al massimo degli ordini delle
sue sottomatrici quadrate invertibili.

Dimostrazione

Sia p il massimo degli ordini delle sottomatrici quadrate invertibili di 4. Dalle
proposizioni 5.4 e 5.5 segue che p <r(A4). D’altra parte, posto r = r(A4), se le
righe AW, A®, ..., A® di A sono linearmente indipendenti, la sottomatrice
B=A(, ... i|l1 ... n)harango r, e quindi possiede r colonne linearmente indi-
pendenti B, By;,, ..., B, La sottomatrice quadrata B(1 ... r[j; ... j) di B
ha rango r, cio¢ ¢ invertibile. Poiché

B ... Fljy o G)=AG, o Ly e J)

¢ una sottomatrice di A4, si ha anche p = r(4).

La nozione di ‘‘determinante”’, che introdurremo nel prossimo paragrafo, ed
il teorema 5.6 insieme forniscono un metodo pratico per calcolare il rango di una
matrice (cfr. corollario 6.6).

Dalla dimostrazione del teorema 5.6 segue che se B=A(; ... i.[j, ... j) ¢
una sottomatrice quadrata invertibile di A4, allora le righe A®™, 4@, . A®@ di
A sono linearmente indipendenti. Similmente, le colonne 4, 4 - Agy
sono linearmente indipendenti.

Passiamo ora a considerare i sistemi di equazioni lineari. La nozione di rango
permette di dare il seguente semplice criterio di compatibilita di un sistema.

U)o

5.7 TeoreMA (KRONECKER-ROUCHE-CAPELLY)  Un sistema di m equazioniin
n incognite

AX =b, [5.7]
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dove AeM,, ,(K), beM, (K}, X ='(X, ... X)), & compatibile se e solo se
r(A) =r(4b).

In tal caso il sistema [5.7] possiede """ soluzioni, dove r = r(A).

Dimostrazione
Sia
an  ap a,
@ ay ay,
A=

aml ”mz one amn

Una n-upla (x,, ..., x,)€K” & soluzione di [5.7] se e solo se si ha

an a; Qin b,
2 ay N b,

Xl : +x2 : + ... +x" : = : . {5.8]
aml amZ : amn bm

La [5.8] esprime la condizione che il vettore b sia combinazione lineare delle
colonne di A. Questa condizione ¢ verificata se e solo se la matrice (4b) ha lo
stesso rango per colonne di A, cioé se € solo se r(A4) = r(4b). La prima parte del
teorema ¢ dimostrata.

Se il sistema [5.7] & compatibile, e r = r(A4), possiamo supporre che le sue prime
r equazioni siano linearmente indipendenti e sostituire [5.7] con il sistema equi-
valente:

a, X, +a,X,+ ... +a,X,=b
a21X1 + a22X2+ vee +a2an= b2

[5.9]
a,.IXl + 0,2X2 + ... + amX,, = b!"

Applicando il procedimento di Gauss-Jordan al sistema [5.9], nessuna delle
equazioni si riduce a 0 = 0, perché cio implicherebbe che essa € linearmente dipen-
dente da quelle che la precedono. Quindi il sistema [5.9] si pud trasformare in
un sistema a gradini di r equazioni; cio significa che [5.9], e quindi [5.7], possiede
oo 7 soluzioni.
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Esercizi

1. Calcolare il rango delle seguenti matrici a elementi razionali:

. 1 1 -1
=~ 3 1 -1
2 0 1 1
a) 1 4 2 0 ) |1 -1 -1
_1 -2 -1 0 0 0 1
2
0 0 O

)
2 2 3 11 7

3 6 3 18 9

2. Dimostrare che tutte le matrici n X m a elementi in K di rango minore o uguale a 1
sono della forma '
a

(b] cee b,,,), a,, a,, b;, ooy b,,E K.

a,

6 Determinanti

In questo paragrafo descriveremo un modo di associare un elemento di K, chia-
mato ““il determinante di 4°’, ad ogni matrice quadrata 4 a elementi in K. Il deter-
minante, come vedremo, ¢ uno strumento di fondamentale importanza pratica
in algebra lineare.

Faremo uso del simbolo di sommatoria £ per denotare la somma di un numero
finito di termini contrassegnati da uno o piu indici; gli insiemi di variabilita degli
indici saranno indicati sotto ¢/o sopra al simbolo Z.

Similmente il simbolo II sara utilizzato per denotare un prodotto.

6.1 DEFINIZIONE Sian=1e

a, Qp ... a,

@ Gyp ... Gy

hS
Il

€ M, (K).
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Il determinante di A é ’elemento di K

det(A) =p§a D), %2p0) -+ Aupiny [6.1]

dove ¢, denota ’insieme di tutte le permutazioni di {1, 2, ..., n} e dove e(p) &
il segno della permutazione p € g, (cfr. app. B); det(A) verra anche indicato con
det(a;) oppure con 1Al. -

La [6.1] ¢ una somma di n! termini, che, a meno del segno, sono tutti i possi-
bili prodotti di #n elementi di A appartenenti a righe ed a colonne diverse.
Se n=1, allora A = (@) ¢ si ha det(A) = a.

Sen=2e
a,;, ap
e ( ,
4 dp
allora
a, adp
=dpay — Ay
ay ay

Se n=3siha

a;, 4dp dg
@,y | = nldns— 0,005 t A0ya3 — Q13,0503 + 430585, —
— A;3axas.

a4 Ay

a; 43 a4y

Al crescere di n il determinante di una matrice n X n qualsiasi non & facile da
calcolare direttamente a partire dalla sua definizione [6.1]. Vedremo tra poco dei
modi piu semplici di farlo senza dover ricorrere alla [6.1].

Se A e M, (K), denoteremo come al solito con A9, ..., A™ le sue righe e con
Agays ---» Ag, le sue colonne; scriveremo, con notazione a blocchi,

A=ApAg - Aw

oppure
AWM

A®

A=| - |.
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Scriveremo quindi
AW
A4
det(4) =det(4,,Ap ... Ay =det

A (n)

Con queste notazioni il determinante verra considerato come una funzione di n
vettori colonna oppure di » vettori riga.

6.2 TEoREMA Sia n =1 un intero e sia
40
AD
A= (aij) =Apdg - Aw= : €M, (K).
A(n)
Allora:
1) det(‘4) = det(A4).

2) Se AQ=cV+c'V', per qualche 1 <i<n, c, ¢’ €K, cioé se la i-esima riga
di A é combinazione lineare di due n-vettori riga, allora

AW AWM
det(A) =cdet] V +c' det} V’

A(n) A®
Analogamente, se A;, = cW + ¢’ W' per qualche 1 <i<n, c, ¢’ €K, dove W
e W' sono due n-vettori colonna, si ha
det(4) =cdet(4;, ... W ... A, +c det(4y, ... W' ... Ag,).

3) Se la matrice Be M, (K) é ottenuta da A scambiando tra loro due righe
oppure due colonne, si ha det(B) = — det(A). _

4) Se A ha due righe oppure due colonne uguali, allora det(4) = 0.

5) detI,) =1.

Dimostrazione
1) Si ha

det(’4) = E e(p) By 18232 -+ Ap iy [6.2]
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A meno del segno, gli addendi di [6.2] sono gli stessi di [6.1]; infatti il termine

p1y1% @2+ Fp(mn [6.3]
pud anche essere scritto nella forma seguente:
alq(l)azqf(Z) cee anq(n) [6.4]

dove g = p~'€a,. Osservando poi che e(p ') = e(p), si conclude che gli addendi
di det(A4) e di det('4) sono gli stessi, cioé det(4) = det(‘4).

2) Le due affermazioni sono equivalenti per la (1), e quindi & sufficiente dimo-
strare la prima. Siano

V=@ .. 92, V' =@ .. v;).
Si ha
a, a, .. a)=(Cv,+cv/ cv,+cv, ... cv,+c'v))

det(4) = ,,E, €(P) a1,y @yp 2y - Qpiny =

= L e(P)ay - (COpy + CV50) e By =

—-_— 4 Pl
= cp)i (D) @ypy -+ Vpgiy - Qupmy + c’p)e: WD) ypqy e Vypiiy oor upy =
n On

A(l) A(l)

=cdet{ V +cedet| V'’

A AP

3) Per la (1) & sufficiente dimostrare la (3) nel caso in cui B sia ottenuta da
A scambiando due righe, siano esse la i-esima ¢ la j-esima, dove 1 <i <j < n. Posto
B=(b,,), si ha

det(B) = T €(2) bipcy -+ Bipwr -+~ by -+~ bapr =

= p)e-_'; D) aipqy -+ Yipy - Ay ++ Aup) =

= p‘g €(D) @y 1y -+ Ty iy« Gapy () + Fniimd )

dove abbiamo denotato con ¢ la trasposizione che scambia i/ con j. Poiché
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e(p) = — e(t°p) e poiché al variare di p€o,, t°p descrive tutto ¢, si deduce:

det(B)= L — €(q) @yyqy --- Aiggpy -+ Lig(jy -+ Angmy = — deL(A).

n

4) Supponiamo che A abbia due righe uguali. Scambiando tra loro tali righe
si ottiene ancora la matrice A. Per la (3) si ha quindi det(4) = — det(A4), sicché
det(A4) =0.

5) L’unico addendo di det(l,) diverso da 0 ¢

aydy ... Ay = 1.
Dal teorema 6.2 segue facilmente il risultato seguente.

6.3 CoroLLARIO Se A, Be M, (K), allora det(AB) = det(A) det(B).
In particolare, se A é invertibile, allora det(4 ~") = det(4) .

Dimostrazione
Siano A =(a;) e

B®

B®
B=|

B(n)
Si ha, utilizzando la (2) ¢ la (3) del teorema 6.2:

a,B® + ... + a,, B
ayB® + ... +a,,B®

det(AB) = det : =

a,,BY+ ... +a,B"

alme(p(l)) Bt
00 B BP®
= ,Eg" det : = ,,é‘:g""‘”” wee @y det =
anme"’(”» : B
B
B®
= X e(Daya) - Ay det : = det(A4) det(B).

pea,

B(?‘)
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L’ultima affermazione segue immediatamente dalla prima applicata al prodotto
I,=AA ', tenuto conto del teorema 6.2(5).

Una proprieta fondamentale del determinante € la sua relazione con il rango,
che & espressa dal seguente teorema.

6.4 TeorEMA Sia A€M, (K). Allora det(A) # 0 se e solo se r(A) =n.

Dimostrazione

Se r(A) = n, allora A ¢ invertibile per il teorema 5.4. Dal corollario 6.3 segue
che dev’essere det(A4 ') = det(4) ', e pertanto det(A4) # 0.

Supponiamo r(4) < n, cioé che le righe di A4 siano linearmente dipendenti. Salvo
scambiare tra loro due righe di A4, il che, per il teorema 6.2(3), non influisce sulla
conclusione, possiamo supporre che

AN =, AP + ... + ¢, AM, o ees 6, €K,

cioé che la prima riga sia combinazione lineare delle rimanenti righe di A. Per
il teorema 6.2(2) si ha

A@ A® A

A® AQ AD
det(A)=c,det| . [+cydet] . |+ ...+ c,det

AW A A@

Poiché ognuna delle matrici che compaiono a secondo membro ha due righe
uguali, per il teorema 6.2(4) il suo determinante ¢ 0. Pertanto

det(A)=c,0+ 0+ ... +¢,0=0.

6.5 DEFINIZIONE Sia Me€M,, ,(K). Un minore di M é il determinante di una
sua sottomatrice quadrata. L’ordine del minore é ’ordine della sottomatrice qua-
drata corrispondente.

Abbiamo il seguente utile corollario.

6.6 CoroLLARIO Sia MeM,, ,(K). Il rango di M é uguale al massimo ordine
dei minori non nulli di M.

11 corollario & immediata conseguenza dei teoremi 5.6 e 6.4.

Le seguenti ulteriori proprieta del determinante seguono facilmente dai teo-
remi precedenti.
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6.7 ProposizioNE  Sia A = (a;) € M, (K):

1) Se A ha una riga oppure una colonna nulla, det(A)=0.

2) Se Be M, (K) ¢ ottenuta da A sommando a una sua riga (colonna) un mul-
tiplo scalare di un’altra riga (¢olonna), allora det(B) = det(A4).

Dimostrazione

1) Se A ha una riga, o una colonna, nulla, 7(A) < n, e quindi det(A4) = 0 per
il teorema 6.4. '

2) Supponiamo che si abbia B=(B;, ... By) con B; =A; + cA;, per
qualche i #j, e By, = Ay, per ogni k #i. Allora

det(B) = det(4) + cdet(Ayy ... Ay ... Ay =det(4) +c0=det(A4)

perché (4, ... A; ... Ag) ha uguali la j-esima e la j-esima colonna, e
quindi ha determinante uguale a 0. In modo simile si procede nel caso in cui
BO = 4D 4 cqW,

Daremo ora una definizione che ha una notevole importanza pratica nel cal-
colo dei determinanti.

6.8 DEFINIZIONE  Data A = (a;) €M, (K), per ogni 1'<si, j<nsia A(1...7...
en|l.. J ... n) la sottomatrice quadrata di ordine n — 1 di A ottenuta cancellando
la i-esima riga e la j-esima colonna.

1l complemento algebrico (o cofattore) dell’elemento a;; di A &

Ajy=(—1"det(A(...7...n|1...]...n).
La matrice cofattore di A &
cof(4) = (4,) e M, (K).
Il risultato seguente fornisce un procedimento induttivo per calcolare il deter-
minante di una matrice.

6.9 ProposizioNE Sia A€M, (K). Per ogni 1 <i, j<n si ha

det(A4) = a;;A;, + a;,A; + ... +a, A, [6.5]

det(4) = a, Ay + ayAy + ... +a,A,. [6.6]

La [6.5] e la [6.6] sono rispettivamente lo sviluppo di det (A4) secondo la i-esima
riga e secondo la j-esima colonna.

Dimostrazione
Sostituendo A4 con la sua trasposta ci si riduce a dimostrare solo la [6.5].
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Mediante i — 1 scambi fra righe contigue di A si ottiene una matrice
A (1)
A r(2)
A= .
A r{(n)

la cui prima riga ¢ A’Y = 4@, ¢ le rimanenti righe sono nella stessa posizione
relativa delle righe di A4, cioé

40
A'@
A'® A(;j -n
= AU+D
A r‘(n)
A(t;)

Si ha pertanto
det(A’) = (— 1)~ det(A).
Inoltre, perogni 1 <j<n:

Al =(-1)""det[A’ Q...n[1...]..n)] =
=(-1)/*"det[A(...0...n|l...j..n)=(=1)""A4,,.

Quindi, se la [6.5] & vera per A, lo & anche per A. Quest’osservazione ci con-
sente di limitarci a considerare il caso i =1, cioé a dimostrare lo sviluppo [6.5]
di A secondo la prima riga.

A questo scopo consideriamo i termini della sommatoria [6.1] in cui compare
a,;, che sono della forma ’

€(D) a1 @zp0 -+ iy [6.7]

dove p€ g, ¢ una permutazione tale che p(1) = j. Ad ogni tale p possiamo far cor-
rispondere la permutazione g€g,_, definita, per k=1, ..., n—1, da

qglk)=pk+1) se plk+1)<j [6.8]
=pk+1)—-1 sepk+D>j.

Si ha
(—1)""e(g) = e(p).
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Infatti la permutazione r€ o, definita da
r(y=1,
rik)=qk -1, k=2,...,n
¢ ottenuta componendo p con j —1 trasposizioni di elementi contigui, e quindi

soddisfa e(r) = (— 1)/~ 'e(p). D’altra parte, per definizione, si ha evidentemente
e(@) =¢€(). )

Poniamo B = (b,,) = AQ2 ... n|1 ... ] ... n). Poiché al variare di p€o, tale che
p(1) =j la permutazione g definita dalla [6.8] descrive tutto ¢,_,, la somma dei
termini [6.7] € uguale a

a;(=1)7"" T @by busrgm-ry = @y (= 1)’ det(B) = a,;A,;.

g€a, ¢
In conclusione, la somma di tutti i termini della [6.1] € uguale a £ a,;4,;, che
¢la[6.5] peri=1. !

Nell’applicare la proposizione 6.9 & conveniente, quando possibile, scegliere una
riga o una colonna nella quale compaiano degli zeri, allo scopo di abbreviare i
calcoli.

11 seguente corollario fornisce in particolare un metodo pratico per calcolare
I’inversa di una matrice 4 € GL,(K), alternativo a quello descritto nell’esempio
3.2(8).

6.10 CoroLLARIO Per ogni A = (a;;) € M,(K) sussiste I’identita
A'[cof (A)] = det(A)1,. [6.9]

In particolare, se A ¢é invertibile, si ha

1= [cof (A)]. [6.10]
det(A) [eof(4)
Dimostrazione
La [6.9] & equivalente alle n> identita seguenti:
fE‘ ay Ay = det(A)§;; [6.11]

dove §;; & il simbolo di Kronecker. Infatti il primo membro € I’elemento di posto
i, j della matrice A'[cof(A)]. Nel caso i =j la [6.11] coincide con la [6.5], che
é gia stata dimostrata. Se i #j la [6.11] &

kz_la;kAjk= 0. . [6.}.2}

Per la proposizione 6.9, il primo membro della [6.12] é lo sviluppo secondo
la i-esima riga del determinante della matrice B ottenuta da A4 sostituendo la sua
riga i-esima alla j-esima. Poiché B ha due righe uguali il suo determinante & 0,
¢ pertanto la [6.12] & vera.
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-La [6.10] segue dalla [6.9] moltiplicando ambo i membri a sinistra per
det(4)'4 L.

Il metodo dell’inversa, che abbiamo introdotto nel paragrafo 3 per risolvere
un sistema di # equazioni lineari in # incognite, pud ora essere formulato in un
modo diverso, e pill preciso, noto come regola di Cramer:

6.11 CoroLLARIO (REGOLA DI CRAMER) Signo A = (¢;)€GL,(K), b=
= '(b, ... b,) un n-vettore colonna e
AX=Db [6.13]

il corrispondente sistema di n equazioni in n incognite. L unica soluzione di [6.13],
x = (% ... x,), é data dalla formula

x=—=L i=1,..., n [6.14]
det(A4)
Dimostrazione

Basta ricordare la regola dell’inversa [3.16] che da x = 4 ~'b, e sostituire la
[6.10] al posto di 4.

Si noti che il secondo membro della [6.14] ha per numeratore il determinante
della matrice ottenuta da A sostituendo la colonna b al posto della colonna i-esima.

Descriveremo ora un metodo di calcolo dei determinanti che generalizza la pro-
posizione 6.9. Allo scopo avremo bisogno della seguente generalizzazione della
definizione 6.8.

6.12 DeFiNizIONE ~ Sia A € M, (K), e sia
M=A@, ... ilj, -« Jo
una sottomatrice quadrata di ordine k di A. Il complemento algebrico (o cofat-
tore) di M ¢é
(= Dy it e e det (A ({1 ey RNy ceny B3] LD ey BI\Ubs ey i)

cioé é il determinante della sottomatrice quadrata di ordine n — k di A ottenuta
cancellando le righe e le colonne di M, preso con il segno + o — a seconde che
i+ ... i, +j,+ ... +Jj, sia pari o dispari.

Nel caso particolare & =1 si riottiene la definizione 6.8 di complemento alge-
brico di un elemento di 4.

Dimostreremo ora un teorema che generalizza lo sviluppo del determinante
secondo una riga o una colonna.
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6.13 TeorEMA (LAPLACE) Sia A€M, (K), e siano assegnate k <n righe
(colonne) di A. Allora det(A) € uguale alla somma dei prodotti dei minori di ordine
k di A estratti dalle righe (colonne) assegnate per i corrispondenti cofattori. .

Dimostrazione

La daremo nel caso delle righe, lasciando al lettore I’immediata estensione al
caso delle colonne.

Denotiamo con D(A) la somma indicata nell’enunciato, che vogliamo dimo-
strare essere uguale a det(A4). Il prodotto di un minore di ordine k estratto dalle
k righe assegnate per il corrispondente complemento algebrico é una somma di
k! (n — k)! termini, perché il minore & un determinante di ordine &, e quindi otte-
nuto sommando k! termini, mentre il cofattore € un determinante di ordine n — &,
quindi somma di (z — k)! termini. Inoltre il numero dei minori di ordine £ distinti
che si possono estrarre dalle & righe assegnate &

(n) _ n!
kI kim-k!

Pertanto D(A) é somma di (Z) k1(n — k)! = n! termini. Poiché anche det (4)

¢ somma di n! termini, sara sufficiente dimostrare che ogni termine di D (A4) appare
almeno una volta in det(A4).

Supponiamo dapprima che le righe assegnate siano AP, 4@, ..., 4®. 1 ter-
mini di D{A) sono prodotti di un termine di det(A(1 ... k|j; ... j,) per uno di
det(Ak+1 ... n|{1,..., a}\{j,, ..., Ji}), per qualche scelta di j,,..., J;,
moltiplicati per (—1)!* - +¥+4+ -~ +&_ Consideriamo il caso particolare in cui
{Jis--s k) = {1, ..., k}. Un termine di D(A) corrispondente & della forma

(=Dt rhrt etk e (g) Ay --- aks(k)] fe@Map, ;. 11y == O ks sgn—iy] = [6.15]
= e(S)eD 550y - T sy Pr1 k400 +++ Fn kst n -1

dove s€g,, t€a, .
Per riconoscere che [6.15] & un termine di det (4) osserviamo che la permutazione

(1 ko k+1 n )
""(un e SO k+t(l) ... k+t(n—k

ha segno uguale a e(s)e(#), perché ogni indice s(/#) ¢ minore di ogni indice £(¢),
e quindi il numero di trasposizioni di cui ¥ & prodotto ¢ la somma del numero
di trasposizioni di s e di quelle di 2. Da cid segue che [6.15] & un termine di det (A4).

Per dimostrare che il prodotto di un termine di det(A(l ... k|j; ... j)
per uno di det(Ak+1 ... n|{l,..., #}\{j, ..., J,}) moltiplicati per
(— D)1+ *k*it - vie per scelta arbitraria di 1 <j, <j,<..<j,<n, & un ter-
mine di det(A4), scambiamo tra loro opportunamente le colonne di A in modo
da ottenere una matrice B in cui la j-esima colonna, la j,-esima colonna ecc.
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di A si trovino rispettivamente come prima, seconda, ..., k-esima colonna. Cosi
facendo si operano (j, — D+ (L—D+(y— D=4+ ... +4—(10+ ... +k)
scambi di colonne, e quindi

det(B) — (_ 1)j,+ U R LI o 4] det(A) — (_ 1)l+ Y & 5 R A det(A).

Il termine di D(A) che stiamo considerando & uguale a (—1)}* -~ *k+i++i
per un termine di D(B) del tipo che abbiamo considerato nella prima parte della
dimostrazione, ¢ quindi & uguale a (— 1)!* -~ +*¥*/* —+4 per un termine di det(B),
cioé & uguale a un termine di det(A4).

Se le righe assegnate sono A®, A® ... AW  consideriamo la matrice C
ottenuta da A con opportune trasposizioni delle righe in modo che la i,-esima
riga, la i,-esima riga ecc. di A4 siano rispettivamente prima, seconda, ..., k-esima
riga di C. Il numero di inversioni effettuate ¢

G-D+G-D+ 0 +G—D=i+ = (I + ... +4),

e quindi det(C) = (—1)"* -~ *4- 0+ +B det(A4), D’altra parte ogni termine di
D(C) & uguale a (— 1)+~ *&-0+ 40 per yn termine di D(A), e quindi

D(C) — (_ l)i, + oG F L+ k)D(A)
Confrontando otteniamo D(A) = det(A4), come si voleva.
Il procedimento per calcolare il determinante di una matrice quadrata descritto
dal teorema 6.13 & chiamato mefodo di Laplace o sviluppo di Laplace. Esso &

particolarmente utile quando la matrice 4 di cui si vuole calcolare il determinante
ha molti elementi uguali a 0. Consideriamo ad esempio la matrice

1 -2 1 0

2 1 -2 0

0 -3 I 4

0 -1 2 -1

Sviluppando det(A) con il metodo di Laplace rispetto alle prime due righe si
trova:

4

‘1 1H-3 4
+(-1)
2 -2

1 =2|l1
det(A4) = (- 1)6' , '
2 1il2 -1

-1 -1
=5X(=9) —(—4) XT=—17.

11 calcolo di det (4) mediante lo sviluppo secondo una riga o una colonna sarebbe
stato piu laborioso.
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6.14 Osservazioni ed esempi

1. Sia 4 una matrice triangolare superiore (inferiore). Sviluppandone il deter-
minante secondo la prima colonna (la prima riga), si trova subito, procedendo
per induzione su n, che det(A4) é uguale al prodotto degli elementi della diagonale
principale. :

2. Sia data una matrice M€M,, ,(K) e supponiamo di volerne calcolare il
rango utilizzando il corollario 6.6. Supposto che M non sia la matrice nulla, e
quindi che il suo rango sia almeno 1, si dovranno calcolare i minori di ordine via
via crescente, a partire dall’ordine 2. Quando per un certo r si sara trovato un
minore di ordine r non nullo, mentre tutti i minori di ordine r + 1 si annullano
(oppure non ce ne sono se r = min (2, n)), si concludera che r(M) = r. Infatti dal-
I’annullarsi di tutti i minori di ordine r + 1 discende I’annullarsi dei minori di ordine
superiore: ¢id segue subito per induzione su s sviluppando ogni minore di ordine
s> r secondo una sua riga o una sua colonna.

I calcolo del rango pud essere semplificato notevolmente se si tiene conto del
cosiddetto principio dei minori orlati, cioé della seguente osservazione.

Sia B=M(i, ... i|Jj, ... j,) una sottomatrice quadrata di un certo ordine r della
matrice M, tale che det(B) # 0. Supponiamo che ogni sottomatrice quadrata
di ordine r+1 di M ottenuta aggiungendo a B una riga e una colonna di M
(fig. 6.1) abbia determinante nullo, cioé che i cosiddetti minori orlati di B siano
tutti nulli. Allora M ha rango r.

Infatti dall’ipotesi det (B) # 0 discende che le colonne j,-esima, ..., j-esima di
M sono linearmente indipendenti, € pertanto la condizione sui minori orlati implica
che ogni altra colonna di M é combinazione lineare delle colonne j,-esima, ...,
j-esima. Quindi M ha rango r.

Ad esempio, la matrice

11 2 3
M={1 1 0 0
0 0 2 3

B :

Figura 6.1
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ha rango 2. Infatti la sottomatrice

1 2
B =M(12]13) = ( )
1 0

ha det(B) = -2, e quindi (M) = 2; inoltre i due minori orlati sono:

1 1 2
det(M(123[123)=|1 1 0 |=0
0 0 2
e
1 2 3
det(M(123|134)=|1 0 0 |=0,
0 2 3

e quindi r(M) = 2.

3. Il determinante, per la sua stessa definizione [6.1], ¢ ben definito anche
quando gli elementi della matrice quadrata 4 appartengono a un dominio qual-
siasi D. Ovviamente il determinante di una matrice siffatta é ancora un elemento
del dominio D. Ad esempio il determinante di una matrice in M, (K[X]), cioé ad
elementi polinomi in una indeterminata X a coefficienti in K, ¢ un polinomio di
KIX]; se A€M, (Z), allora det (4) & un numero intero ecc. Noi utilizzeremo que-
st’osservazione e considereremo per esempio matrici a elementi polinomi di una
o piu variabili, i loro determinanti quando esse sono quadrate, i minori ecc.

4. Consideriamo il seguente sistema di tre equazioni in tre incognite:

2X,+3X, - X,=1
X, +4X, +2X,=2
3X,- X, — X,=3.

Il determinante della matrice dei coefficienti &

2 3 ~1
1 4 2|=30%0
3 -1 -1

e quindi il sistema ammette un’unica soluzione (x,, x,, x;), data dalla regola di
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Cramer:
1 3 -1
2 4 2
3 -1 -1
x =—————=136/30 =6/5
det(A)
2 1 -1
1 2 2
3 3 -1
X, = =6/30 = - 1/5
~ det(A4)
2 3 1
1 4 2
3 -1 3
= =24/30 = 4/5.
det(4)

5. Supponiamo assegnato un sistema di m equazioni in 7 irfcognite, in cui i
coefficienti delle incognite e i termini noti siano funzioni di uno o pili parametri
variabili in K. Per ogni valore assunto dai parametri si ottiene un diverso sistema
a coefficienti in K di cui si vuole accertare la compatibilitd e ricercare le eventuali
soluzioni: lo studio dei casi che si presentano ¢ la ricerca delle rispettive soluzioni
si dice la discussione del sistema assegnato. Il modo piu efficace e naturale di pro-
cedere in questo caso ¢ quello di utilizzare il teorema 5.7 analizzando i valori pos-
sibili del rango della matrice dei coefficienti e della matrice orlata in funzione dei
parametri. Una volta stabiliti i valori dei parametri per cui il sistema é compati-
bile, e in ogni caso I’infinita delle soluzioni, si procedera a risolverlo in ciascun caso.

Consideriamo ad esempio il sistema a coefficienti reali nelle incognite X, Y, Z:

X-Y+mZ=0
mY— Z=90
-X+Y+ Z=m.
11 determinante della matrice dei coefficienti & m? + m, che si annulla per m = 0,

—1. Per ogni m # 0, — 1 la matrice dei coefficienti ha rango 3 e quindi il sistema
& compatibile, per il teorema 5.7, e possiede I'unica soluzione

(l——m, 1 , m )
m+1 m+1
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Quando m = 0 si ottiene il sistema omogeneo

X-Y=0
-Z=0
~-X+Y+Z=0,
che possiede le infinite soluzioni: {(f, ¢, 0): f€ R}. Quando m = — 1 si ottiene il

sistema

X-Y-Z= 1
-Y-Z= —1
-X+Y+Z= -2

che é incompatibile.

6. Siano x,, x,, ..., x,€K, n = 2. Il determinante ¥(x,, x,, ..., X,) della matrice
di Vandermonde

1 1 e 1

Xy Xy eee Xp
3 oxx  ..ox
xln—l x;t—l ... x'r’t—l

¢ detto determinante di Vandermonde relativo a x,, x,, ..., X,.
Si ha
VX, Xp ooy X)) =06 — X)) oo 6, — X)) (5 — ) oo (X, — X)) (X — X3) ...
06—, (6.16]

il secondo membro essendo il prodotto di tutti i termini della forma (x; - x)),
l=j<i<n.

La [6.16] si dimostra per induzione su #, il caso # = 2 essendo ovvio. Suppo-
niamo 7 = 3 ¢ che la [6.16] sia stata dimostrata per n — 1. Operiamo sulle righe
della matrice di Vandermonde, sottraendo dall’s-esima riga la (n — 1)-esima mol-
tiplicata per x,, dalla (n — 1)-esima la (n — 2)-esima moltiplicata per x, ecc. Si
ottiene

11 w1
0 x-—x e X, — X
Vix, X o0y X0=10 X0 —x,) e Xy (x5, — X)) =

0 x;'z(xz—’xl) x:_z(xn_xl)
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1 i 1
x2 X3 o x”
=06-Xx) 06— x) ..., —x) | : : : =
xrzz— 2 xg—z xn-l
n

=0,b—-Xx)0G—x) ... (x, —x) Vx5 ..., X)=V(x;, Xp5 ..p X).

7. Non ¢ difficile dimostrare che le proprieta (2), (3) e (5) del teorema 6.2 sono
sufficienti a caratterizzare univocamente il determinante. Precisamente, si dimo-
stra che, se D: M,(K)— K & un’applicazione tale che, per ogni A=(A4 -..

Ay €M, (K) si abbia

a) D(Ag - CV+C V' . Ap) =cD(Ag, - V oo Apy) +
+ DAy .. V' o Ay)  se A =cV VY,

b) D(A“) eee A(‘) e A{j) cen A(”))= ""D(A(” cee A(l) cen (’) (n))
perogni lsi<j=<n,

) D@E)=1,

allora
D(A) = det(4)

per ogni A € M, (K).

Esercizi

1. Calgolare I'inversa di ognuna delle matrici dell’esercizio 4 (§ 3) utilizzando il corolla-
rio 6.10.
2. Discutere i seguenti sistemi nelle incognite reali X, Y, in cui 7 & un parametro reale:

a) 2X-Y=m+1 . b) 2X + mY=1
mX+Y=1 2X+(1+m)Y=1
B-mX+ 3Y=1+m

Q) 2X+mY=—4
mX—-3Y= 5§
3X+ Y=-5m.

3. Discutere i seguenti sistemi nelle incognite reali X, Y, Z, in cui m & un parametro reale:

a) X+mY+Z=2m b) Y+mZ=m+1
mX+ Y+Z=2 X+Y+Z =2
mX+Y =m+1
¢) 2X+mY+mZ=1 d X+Y-2Z=0
mX+2Y+mZ=1 2X-Y+mZ=0

mX+mY+ 2Z=1 X-Y- Z=0
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e) X+ Y+2Z=1 fy X-Y =2
X+2Y+4Z=1 mY+ Z=m
2X+3Y+6Z=m Y+mZ=m

g) mY+(m-2Z=90 hy X- Y+ Z=0
mX + Y+ 2Z=90 -~ X-mY+2mZ=-1/3
mX + 3Z=0 mX+mY =—1/3.

4. Risolvere i seguenti sistemi con la regola di Cramer:

a) (K=R) 2X-Y =2-2
- X+\V2Z=1 _
V2X+Y =22

b) K=C) 2X+ iY+ Z= 1-2i
2Y—-iZ= —-2+2
X+ iY+iZz= 1+ i

c) (K=Q) X, + 2X; =
_X|+X2 = —1

X2+ X3 =
X, + Xi= 1.

5. Siano A, B, Ce M, (K), e siano M, N€ M,,(K) le matrici seguenti:

w(y o (o)

Dimostrare che det (M) = det(A4) det(C) = det (V).

6. Sia A =(a;)€M,.,,(K) e r(4A) =n — 1. Dimostrare che le o' soluzione del sistema
omogeneo in 7 incognite A X = 0 sono proporzionali alla #-upla dei minori di ordine

massimo di A4, presi a segni alterni.
7. Siano a;, @, ..., a,€K*. Si consideri la matrice M = (m;;) € M, (K) cosi definita:

my=1+a, i=1,..,n,
m;=1 se i#].

Dimostrare che det(M) =a,a; ... a, (1 + 1 + 1 + ..+ I )
a a a,

8. Siano D un dominio € X, @3, .., @iny 23y covs Aons vves Au_2n- 1y An 20y Au_1n€D.
Dimostrare la seguente identita:

X d; ... ain
X X dryy ... Qo
=x(X—an) (¥ - an) (X — @) ... (X — @y 1)
X . X Qn In
X X
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7 Spazi affini (I)

In questo paragrafo introdurremo gli “‘spazi affini’’, che generalizzano il piano
e lo spazio ordinari, e nei quali lo spazio dei vettori ¢ assegnato nella definizione.
Negli spazi affini si studiano esclusivamente le proprieta geometriche deducibili
per.mezzo dell’uso dei vettori.

Le figure che accompagnano il testo si riferiscono per lo pit al piano e allo
spazio ordinari e costituiscono esclusivamente un supporto intuitivo alla lettura.

7.1 DErNizIONE  Sia V uno spazio vettoriale su K. Uno spazio affine su V
(ovvero uno spazio affine con spazio vettoriale associato V) é un insieme non vuoto
A, i cui elementi si dicono punti di A, tale che sia data un’applicazione

AXA—V [7.1]

—>
che associa ad ogni (P, Q)€ A X A un vettore di V, denotato con PQ e chia-
mato vettore di punto iniziale P ¢ di punto finale Q, in modo che i seguenti due
assiomi siano soddisfatti:

]
SA1 Per ogni punto P€ A e per ogni vettore v €V esiste un unico punto Q€A
tale che :

—>
PQO=v.

SA2  Per ogni terna P, Q, R di punti di A é soddisfatta la seguente identita:
—_—  —> —-—>
PQ + QR = PR.

Per ogni (P, Q)€A x A diremo P punto di applicazione del vettore 136

Se K=R (K= C) A si dice spazio affine reale (spazio affine complesso).
L’applicazione [7.1} definisce una struttura di spazio affine sull’insieme A.

Prendendo P O=R nell’ass1oma SA2 abblamo che PP=0 per ogni PcA.
Prendendo invece R = P troviamo QP = - PQ per ogni P, Q€A.

Similmente a quanto accade per gli spazi vettoriali, su un insieme non vuoto
A possono esistere diverse strutture di spazio affine, cioé diversi modi di asse-
gnare uno spazio vettoriale V e una applicazione A X A =V che soddisfa SAl
e SA2.

Nel seguito considereremo esclusivamente spazi affini tali che lo spazio vetto-
riale associato V abbia dimensione finita.

La dimensione di V & detta dimensione dello spazio affine A, ed & denotata
con dim(A).

Uno spazio affine di dimensione 1 (dimensione 2) viene comunemente chia-
mato retta affine (piano affine).
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7.2 Esempi

1. La retta, il piano e lo spazio ordinari sono rispettivamente una retta affine
reale, un piano affine reale e uno spazio affine reale di dimensione 3. Gli spazi
vettoriali associati sono quelli dei vettori geometrici dei rispettivi spazi, e I’opera-
zione che associa un vettore a una coppia ordinata di punti é quella con cui nel
paragrafo 1 abbiamo definito i vettori geometrici. Quindi gli spazi affini sono gene-
ralizzazioni della retta, del piano e dello spazio ordinari.

2. Sia V uno spazio vettoriale di dimensione finita su K. Ponendo
—
ab=b-—-a

si definisce su V una struttura di spazio affine su sé stesso.

L’assioma SA1 ¢& soddisfatto perché per ogni punto p€V e per ogni vettore
veV il punto ¢ = p + v € unico che soddisfi Pidentitad q — p = v. La proprieta
SA2 ¢ verificata perché sussiste I’identita

r-p=@Q@-p+@c—q

per ogni p, q, T€V.
Quindi ogni spazio vettoriale V pud considerarsi come uno spazio affine, su
sé stesso. Con questa struttura di spazio affine, V si denotera con V,.

3. Un caso particolare dell’esempio precedente si ha prendendo V =K”". Lo
spazio affine (K”), si chiama n-spazio affine numerico su K. Esso si denota con
A"(K), o semplicemente A” quando dal contesto il campo K risulti individuato
senza possibilita di equivoco.

L’assioma SA1 implica che se in uno spazio affine A si fissa un punto O€A
e si associa ad ogni punto P€ A il vettore OPe V, si ottiene una corrispondenza
biunivoca di A su V. Tale corrispondenza é la generalizzazione di quella che, nello
spazio ordinario in cui si sia fissato un punto O, associa ad ogni.punto P il vet-
tore geometrico rappresentato dal segmento orientato di punto iniziale O e punto
finale P.

7.3 DermNizIONE  Siano V un K-spazio vettoriale e A uno spazio affinesu V.
Un sistema di coordinate affini (ovvero un riferimento affine) nello spazio A &
assegnato una volta fissati un punto O€ A e una base {e,, ..., e,} di V; esso viene
denotato con Oe, ... e,.

Per ogni punto P€A si ha OP = a,e, + ... + a,e, per opportuni a,, ..., a,€K.
Gli scalari a,, ..., a, si dicono coordinate affini (0 semplicemente coordinate) e
(ay ..., a,) si dice n-upla delle coordinate, di P rispetto al riferimento QOe, ... e,.

Il punto O si dice origine dél sistema di coordinate. Esso ha (0, ..., 0) per n-
upla delle coordinate.
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Dato un riferimento affine Oe, ... e, in A, scriveremo P(x, ..., X,) per deno-
tare un punto P€A di coordinate x,, ..., x, (la fig. 7.1 si riferisce al piano
ordinario). .

Se A(a,, ..., a,), B(b,, ..., b)EA, il vettore ABha (b, — a,, ..., b, — a,,)gme
n-upla di coordinate rispetto alla base {e,, ..., e,}. Cio segue dall’identitd 4B =
= OB - OA.

Se A = A", il riferimento affine OE, ...E,incui 0= (0, ..., 0) ed {E,, ..., E,}
¢ la base canonica di K", si dice riferimento affine standard. In questo riferi-
mento ogni punto (x,, ..., X,) € A" ha sé stesso come #-upla di coordinate.

I pit importanti sottoinsiemi di uno spazio affine sono i ‘‘sottospazi affini’’,
che ora introdurremo.

7.4 DeriNiziONE  Sia V un K-spazio vettoriale e sia A uno spazio affine su
V. Siano assegnati un punto Q€ A e un sottospazio vettoriale W di V. Il sottospa-
zio affine passante per Q e parallelo a W ¢ il sottoinsieme S di A costituito da

—>
tutti i punti P€ A tali che QPeW.

Si_EE)ti che Q¢€S, perché il sottospazio vettoriale W contiene il vettore nullo
0 = QQ; in particolare S = O.

11 sottospazio W C V & chiamato giacitura di S; il numero dim (W) & detto dimen-
sione di S ¢ si indica con dim(S).

Se dim(S) = 0, allora S = {Q} & un punto; viceversa, ogni sottoinsieme di A
costituito da un solo punto € un sottospazio affine di dimensione 0.

Se dim(S) =1, S si dice retta di A e W direzione di S; un qualunque vettore
non nullo a€W ¢ un vetfore di direzione della retta. Segue dalla definizione che
la retta S consiste di tutti i punti P€ A tali che QP = fa per qualche 7€K.

Se dim(S) =2, § si dice piano di A. (La fig. 7.2 rappresenta un piano dello
spazio ordinario.)

P{2,1)

e,

Figura 7.1
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La dimensione di un sottospazio affine non pud superare dim(A). Se
dim(S) = dim (A), allora S = A, perché in tal caso W = V e quindi QP € W per ogni
PecA.

Se dim(S) = dim(A) — 1, S & detto iperpiano. Ad esempio una retta in un piano
affine ¢ un iperpiano, e cosi anche un piano in uno spazio affine di dimensione 3.

7.5 Esempi

1. Sia A lo spazio ordinario. I sottospazi affini di A sono i punti, le rette, i
piani e A stesso.

2. Sia V uno spazio vettoriale non nullo di dimensione finita su K. Conside-
riamo un sottospazio vettoriale W C V e un punto g€ V,. 1l sottospazio affine di
V, passante per q e parallelo a W & Pinsieme

q+W={q+w: weW}.

Infatti ¢ + W consiste di tutti i veV, tali che v— qeW.

Se in particolare g€ W, allora q + W = W. Vediamo quindi che i sottospazt
vettoriali di V sono particolari sottospazi affini di V, e che ogni sottospazio
affine ¢ della forma q + W, per qualche q €V, e per qualche sottospazio vetto-
riale W C V, cioé ¢ un fraslato di un sottospazio vettoriale di V.

3. Dati s+ 1 =2 punti P,, ..., Py di uno spazio affine A, il sottospazio affine

—_— ——> —
passante per P, e avente giacitura (PP, P,P,, ..., PyPy) viene indicato con
P, P, ... P, e si chiama sotfospazio affine generato da P,, ..., Py.
E facile vedere che P,P, ... Py non dipende dall’ordine in cui vengono presi

i punti Py, ..., Py. Infatti il sottospazio vettoriale (P, P,, PyP,, ..., P,Py) con-
tiene tutti i vettori P,P,= P,P;— PyP,, ¢ quindi

—_— —_— — —_— .
(PoP,, ..., P,P\) D (PP, ..., PP [7.2]

—_
per f)gnl i=1,...,N. VlggiersaLger ogm. 1-—j 1, ..., N, ogni vettore PyP; si pud
esprimere come P,P;= P,P,— P,P,, ¢ quindi anche

(P,P,, ..., PPyy C(PP,, ..., P,Py). [7.3]
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N e — ———
Pertanto, se P€ A soddisfa P,P€{PyP,, ..., P,P,), allora
— —*. — — o
P.P=PP— PPc(PP,y, .., PPy
—> — o
per la [7.3]. D’altra parte, se P,P€{P,P,, ..., P,Py), allora
— — — —> P
P0P=P;P_P£POE<P0P§,...,PoPN>

per la {7.2].

Dalla definizione di P,P, ... Py segue che dim(P, P, ... P,) < N. Se vale Pugua-
glianza i punti P,, ..., Py si dicono indipendenti; altrimenti P,y ..., P, si dicono
dipendenti. Per definizione i punti P,, ..., Py sono indipendenti se e solo se i vet-

T —
tori PyP,, PyP,, ..., PP, sono linearmente indipendenti. Se P,, ..., P, sono indi-
pendenti, allora N < dim(A).

Due punti P,, P,€ A sono indipendenti se e solo se sono distinti; in questo
caso P,P, ¢ una retta. Tre punti P,, P,, P, sono indipendenti se e solo se non
appartengono a una retta; in questo caso PP, P, ¢ un piano (fig. 7.3).

I punti Py, ..., Py€A si dicono allineati (o collineari) se esiste una retta che
li contiene, o, equivalentemente, se

dim(P,P, .. Py <1;

altrimenti P,, ..., Py si dicono non allineati (0 non collineari).
I punti P, ..., Py€A si dicono complanari se esiste un piano che li contiene,
0, equivalentemente, se

dim(P, P, ... Py) <2.

4. Sia A uno spazio affine su V, e sia C€ A. Per ogni PcA, il punto simme-
trico di P rispetto a C ¢ il punto o.(P) che soddisfa I’identita vettoriale

o —— —>
Co.(P)=—CP.
Si osservi che si ha o.(6.(P)) = P per ogni P€A perché

Coo(00(P)) = — Cao(P) = CP.

Se in A ¢ fissato un riferimento affine Oe, ... e,, € i punti C e P hanno ri-
spettivamente coordinate ¢, ..., C, € X, ..., X,, il punto 6.(P) ha coordinate

P PoPiP;

Figura 7.3
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2¢, — Xy ... 2¢, — X,,. Infatti
(2C1 = Xps eees 2Cn - Xn) - (Cl’ (] cn) = (Cl —Xp5 eeey G xrl)

¢ la n-upla delle coordinate di 1_36 = - (35 Nel caso particolare C = O, le coor-
dinate di g.(P) sono — x;, ..., — X,.

L’applicazione o.: A— A manda sottospazi affini in sottospazi affini. Piu
precisamente, sia S C A il sottospazio affine avente giacitura W C V e passante
per il punto Q€ A. Allora 6.(S) = {o.(P): P€S} ¢ il sottospazio affine S’ avente
la stessa giacitura W e passante per o.(Q).

Infatti, per ogni P€S, si ha

00(Q) 6c(P) = 6(Q) C + Coc(P) = CQ — CP = — QPeW,

e quindi o.(P)eS’. Viceversa, se P’ €S’, allora, posto P= g.(P’), si ha
—> —> —> _ —> —_—
QP=0C+CP=—-0(Q)C—CP" =— o (Q)P €W

e quindi P€S. Dunque P’ =o6.(P)€0o.(S). (La fig. 7.4 si riferisce al piano
ordinario.)

7.6 PROPOSIZIONE

1) Un sottospazio affine & individuato dalla sua giacitura e da uno qualsiasi
dei suoi punti.

2) Sia S un sottospazio affine di A} avente giacitura W. Associando ad ogni
coppia di punti P, Q di S il vettore PQ si definisce su S una struttura di spazio
affine su W. ’

Dimostrazione

1) Sia Sil sottospazio affine di A passante per Q ed avente giacitura W. Sia
MeS e sia T il sottospazio affine passante per M ed avente giacitura W.

Se Pe S, allora si ha

— —> — — >
MP =MQ + QP = - QM + QP
che & un vettore di W perché entrambi gli addendi vi appartengono; quindi P€ 7.
Se viceversa P€ T, allora
— — ——> — —
OP=0OM+ MP=—MQ+ MPcW,

e quindi P€S. In conclusﬁine, S=T.
2) Se P, Q¢ S, allora PQ¢W perché, per la (1), S coincide con il sottospazio
affine passante per P e parallelo a W. Otteniamo quindi un’applicazione

SXS—-W
P, Q) PQ

la quale soddisfa le proprieta SAl ed SA2, perché esse sono verificate in A.



7/Spazi affini (1) 97

Figura 7.4

7.7 Esempi e osservazioni

1. Sia A uno spazio affine reale con spazio vettoriale associato V. Fissati un
punto Q€A e un vettore non nullo a€V, ’insieme dei punti P€A tali che

—>
QP=ta

per qualche =0 ¢& la semiretta di origine Q e direzione a.
Se A e B sono due punti distinti di A, il segmento di estremi A e B & I’insieme
dei punti P€A tali che

—> —
AP=tAB

per qualche 7€R tale che 0 <t =<1, e si denota con AB.
1 punti Py, ..., P,_,€ AB che dividono il segmento in ¢ parti uguali, cioé tali
-—» g — ., - o - -
che AP, =P P,= ... = P,_,B, sono definiti dalle condizioni

— >
AP,= £ AB, i=1,..,t-1

Se in A ¢ fissato un riferimento affine Oe, ...e, ¢ A= A(a, ..., a,),
B=B(b,..., b)), P,=P(x,, ..., x,), la condizione ¢ equivalente alla seguente:

i
X, — Qs eees X, — ) = 7 b,—ay,....,b,—a)
e pertanto '

(X1 ves X) = @By + (= D) @y, ooy 1B, + (= D) ).

In particolare, il punto medio del segmento AB ha n-upla di coordinate

a,+b, a,+b, a,,+bn)
2 2 2

(xlo eres xn) = ( ’ 3 sy
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Triangolo Parallelogramma Figura 7.5

2. Sia A uno spazio affine reale, e siano 4, B, C€ A tre punti non allineati.
Il triangolo di vertici A, B, C ¢é P’insieme dei punti P€ A tali che

— — —
AP=tAB+ uAC

per qualche 7, u€R, con f, u=0et+u=<1.
1l parallelogramma individuato da A, B, C (fig. 7.5) & I’insieme dei punti P€ A

tali che
—_> —_—> .o
AP=tAB+uAC

per qualche 7, u€R, con 0<¢, u<1.

3. Sia A uno spazio affine reale, e siano A, B, C, D€ A punti non complanari.
11 tetraedro di vertici A, B, C, D & Pinsieme dei punti P€A tali che

ﬁztA—§+uA—C)+vE
per qualche ¢, u, veR, cont, u, v=0et+u+v=<l.

11 parallelepipedo individuato da A, B, C, D (fig. 7.6) & I’'insieme dei punti
PcA tali che

AP=1tAB+uAC+vAD

per qualche ¢, u, veR, con0<t¢, u, v<1.

|

]

|

i

I

!

i
5
-
- D

P

A B
Tetraedro Paralielepipedo Figura 7.6
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4. 1 segmenti, i triangoli e i tetraedri sono casi particolari di sottoinsiemi degli
spazi affini reali chiamati ‘‘simplessi’’.
Sia A uno spazio affine reale, e siano P,, Py, ..., P,€ A punti indipendenti. I1
k-simplesso di vertici Py, P,, ..., P, ¢ I’insieme dei punti P€ A tali che
— — —_ e
P,P=t, PP + t,P,P,+ ... + 1, PP,

per qualche ¢, £, ..., {,€R, con ¢, £,, ..., 4, =z0e T ¢, <1.

Per k=1, 2, 3 un k-simplesso € un segmento, un triangolo, un tetraedro rispet-
tivamente.

5. Sia A uno spazio affine reale. Un sottoinsieme S di A si dice convesso se
per ogni A, BeS il segmento AB ¢ contenuto in S (fig. 7.7).

E facile verificare che ogni sottospazio affine e ogni simplesso A sono sottoin-
siemi convessi.

Dalla definizione segue che I’intersezione di una famiglia qualsiasi di insiemi
convessi ¢ un insieme convesso.

Se &7 & un sottoinsieme di A, Pinviluppo convesso di & & il pili piccolo sot-
toinsieme convesso di A contenente & cioé & ’intersezione di tutti i sottoinsiemi
convessi di A che contengono .“(fig. 7.8).

Convesso Non convesso Figura 7.7

Figura 7.8
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6. Sia A uno spazio affine con spazio vettoriale associato V. L’assioma SA1
definisce un’applicazione

:AXV—A

che associa a una coppia (4, a) il punto B = 1(A4, a) tale che A—g =a.

L’applicazione ¢ gode delle seguenti- proprieta:
a) t(t(4, a), b)=1(A4, a+b) per ogni A€A ¢ a, beV;
b) per ogni A, B€ A esiste un unico a€V tale che B= t(A a).

Ponendo tnfattl B =t(A4,1a), C=t({(A, a), b), si ha AB= a, BC = b, ela (a)
afferma che AC = AB + B_C), che ¢ vero per I’assioma SA2.

La (b) & una riformulazione di SAIL.

Viceversa, dati uno spazio vettoriale V, un insieme A e un’applicazione
t: A X V— A che soddisfa le condizioni (a), (b), resta definita su A una struttura
di spazio affine con spazio vettoriale associato V. Infatti, per la (b), ¢ individua
un’applicazione A X A —V che soddisfa SA1, e che, per la (a), soddisfa anche SA2.

7. Sia A uno spazio affine e A, B, C, D€A. Se AB = CD allora AC = BT))

(fig. 7.9).
Infatti si ha
AC=AB+ BC

BD = BC + CD,

e quindi
—>  —> —_— —>
AC—-BD=AB-CD=0,
—> -

cioé¢ AC=BD.

A c Figura 7.9

8 Spazi affini (I)

Sia A uno spazio affine su V in cui supponiamo fissato un riferimento affine
Oe, ... e,.
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Sia S il sottospazio affine passante per il punto Q(g;, ..., g,) €A e parallelo
al sottospazio vettoriale W di V. Scegliamo una base {w,, ..., w,} di W, dove
W,(Wijy ey Wy)s i =1, ..., s = dim(S).

Per ogni punto P(x,, ..., X,)€S si ha

—
QP =t,W, + ... +1,W, [8.1]

"per opportuni Z,, ..., f,€ K. Uguagliando le coordinate di primo e secondo mem-
bro della {8.1] si ottiene

X, = ql + tl w” + ... + tsw!s
Xoa=q, +Ewy + ... FEW,
[8.2]

X, =q,ttw, + ... +{w,.

Al variare dei parametri ¢, ..., £,€ K le [8.2] danno le coordinate di tutti i punti
di S; le [8.2] sono equazioni parametriche di S.

Si noti che le equazioni parametriche [8.2] non sono univocamente determi-
nate da S, ma dipendono dalla scelta di Q e di w, ..., w,.

Nel caso in cui il sottospazio affine ¢ una retta z, passante per il punto
0(q,, ---» g,) € avente vettore di direzione a(ay, ..., a,) (fig. 8.1), le [8.2] prendono
la forma

X, =q, +at
X =g+ ayt
: : [8.3]
X, =q,+a,l.

Le [8.3] sono equazioni parametriche della retta .

(o] Figura 8.1
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Quando la retta z & assegnata mediante due suoi punti distinti Q(g,, ..., g,)

e 0@, ..-» gD Q—Q” ¢ un vettore di direzione di £ e nelle [8.3] si pud
~A A r I3
prendere a = QQ’, cioé (a, ..., @,) = (@] — Gy ---> G5 — Gn)-

Se n =2, cioé se A & un piano affine, le [8.3] si riducono a due equazioni. Le
coordinate di a si denotano in questo caso di solito con /, m, le coordinate del
punto variabile con x, y e quelle del punto Q con a, b; quindi le equazioni para-
metriche di una retta in un piano affine si scriveranno:

x=a+lt
[8.4]
y=b+mt.

Nel caso in cui dim(A) = 3 le equazioni parametriche di una retta si scrivono
invece

x=a+lt
y=b+mt [8.5]
zZ=cC+ nt,

denotandosi con x, y, z le coordinate del punto variabile P, con /, m, n quelle
del vettore di direzione e con a, b, ¢ le coordinate del punto Q€z.

Torniamo a considerare il caso generale. Un altro modo di rappresentare un
sottospazio affine mediante equazioni & dato dal seguente teorema.

8.1 TEOREMA
1) Sia

an X, + ... +a,X,=b

) : [8.6]
a, X+ ... +a,X,=b,
un sistema di equazioni lineari nelle incognite X, ..., X,. L’insieme S dei punti
di A le cui coordinate sono soluzioni di [8.6], se non é vuoto, & un sottospazio
affine di dimensione n —r, dove r & il rango della matrice dei coefficienti del
sistema. La giacitura di S é il sottospazio vettoriale W di V avente per equazioni
cartesiane il sisterna omogeneo associato

a X+ ... +a,X,=0
: : [8.7]
a X, + ... +a,X,=0.

2) Per ogni sottospazio affine S di A di dimensione s esiste un sistema din — s
equazioni lineari in n incognite le cui soluzioni sono le coordinate di tutti e soli
i punti di §S.
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Dimostrazione
. 1) Per ipotesi esiste un punto Q(qy, .., 4,) €S. Per ogni punto P(x,, ..., x,)€S
si ha

ajl(xl —g)+ . +a,(x,—q,) = a;X F ...+ apX, — (@9, +... + aann) =
=b—b;=0 [8.8]
per ogni j=1, ..., ¢, cioé (x; — g -.., X, — g,) ¢ una soluzione del sistema [8.7],

—>
ovvero QP€W; quindi S & contenuto nel sottospazio affine ¥ passante per Q e
parallelo a W. .

Viceversa, se P(x,..., x,)€X, allora QP€W e quindi le coordinate

X — gy -y X, — g, di Q_ﬁ sono soluzione delle [8.7]. Si ha dunque
=800 =)+ -+ G0~ @) =Xt + X, — (@Gt F )
ovvero
a X+ ... + @ X, =a,q,+ ... +a,q9, =b;

per ogni j=1, ..., t, cioé¢ PeS. Quindi S= X ed S ¢ un sottospazio affine.
2) Supponiamo che SC A sia il sottospazio affine passante per il punto
Q(q,, ..., g,) e avente giacitura W. Siano

ay X+ ...+ a,X,=0

X, + . X,=0

a, s nsn

equazioni cartesiane di W. I punti P(x,, ..., X,) di S sono caratterizzati dalla con-
dizione QP€W, cio¢

aj!(xl _ql)+ .o +aj};(xn_qn)=03 j=13 ey S,
Oovvero
a;x + ... + a;,x,= b, Jj=1,...,n-s

dove abbiamo posto b; =a;,q, + ... + a;,,q,-
Dunque i punti P(x,, ..., X,) €S sono precisamente quei punti di A le cui coor-
dinate sono soluzioni del sistema

aqu + ... + ak‘Xn: b]

n -sl1 n—sn

Le [8.6] si dicono equazioni cartesiane del sottospazio S rispetto al riferimento
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Oe, ... e,. E evidente che le [8.6] non sono univocamente determinate da S: due
sistemi di equazioni lineari definiscono lo stesso sottospazio affine di A se e solo
se sono equivalenti.

8.2 Osservazioni

1. Il sottospazio S di equazioni cartesiane [8.6] contiene I’origine se e solo se
b, = ... =b,=0, cioé se e solo se il sistema & omogeneo. Quindi ogni sistema di
equazioni lineari omogenee [8.7], oltre a definire un sottospazio vettoriale W di
V, definisce anche un sottospazio affine S di A passante per ’origine e avente
per giacitura W. Per ogni punto P(x,, ..., x,) €S il vettore w(x,, ..., x,) avente le
stesse coordinate di P appartiene alla giacitura W di S; si ottiene cosi una corri-
spondenza biunivoca tra S e la sua giacitura W.

2. Dal teorema 8.1(2) segue che ogni iperpiano H di A si rappresenta con
un’equazione cartesiana
aX + ...+aX,=b,
in cui @, ..., a,€ K non sono tutti uguali a 0. In particolare, se dim(A) = 2 ogni
retta di A ha un’equazione cartesiana della forma
a X, +a,X,=b.
Analogamente, se dim (A) = 3 ogni piano di A ha un’equazione cartesiana della
forma
X, +a,X,+a,X,=b.
L’iperpiano H dello spazio affine A contiene ’origine se e solo se 5= 0. In
particolare, per ogni j =1, ..., n, liperpiano di equazione
X,=0

passa per [’origine; esso si dice j-esimo iperpiano coordinato.

8.3 DermnizioNE  Siano S e T due sottospazi affini di A, aventi giaciture W
ed U rispettivamente, di dimensione maggiore di zero.

S e T si dicono paralleli se W C U oppure U C W. Scriveremo talvolta SN T
come sinonimo di ‘S e T sono paralleli’’.

Se dim(S) = dim(7), allora S e T sono paralleli se ¢ solo se W = U; in partico-
lare due sottospazi affini uguali sono paralleli. Nella figura 8.2 sono rappresen-
tati due piani paralleli dello spazio ordinario.

Nel caso in cui S ¢ 7 sono due rette il loro paralltelismo significa che hanno
la stessa direzione, cio¢ che hanno vettori di direzione proporzionali.
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Figura 8.2

Se il sottospazio affine S & contenuto nel sottOﬂ))azio affine T, allora S & paral-
lelo a T infatti al variare di P, Q¢€S, il vettore QP descrive la giacitura W di S,
ma ¢ anche contenuto in quella U di T perché P, Q¢ T. Quindi WC U.

8.4 ProPoSIZIONE Siano S, T C A due sottospazi affini paralleli, tali che
dim(S) < dim(T).

1) Se S e T hanno almeno un punto in comune, allora SC T.

2) Se dim(S) = dim(T"), ed S e T hanno almeno un punto in comune, allora
S=T.

Dimostrazione .

1) Sia Q€SN T. Per ogni P€Ssi ha QPeW C U, quindi PeT; dunque SC 7.

2) Se dim(S) = dim(7), allora W = U: dalla (1) si deduceche SC Te TCS,
cioe S=T.

8.5 CoroLLARIO Se S ¢ un sottospazio affine di A e P€ A, esiste un unico
sottospazio affine T contenente P, parallelo a S e tale che dim(T) = dim(S).

Dimostrazione :
Segue immediatamente dalla (2) del teorema 8.4.

Nel caso in cui A ¢ il piano affine ordinario ed S una retta, il corollario 8.5
¢ equivalente al quinto postulato della geometria euclidea piana (il cosiddetto
‘“postulato delle parallele’’). Gli assiomi di piano affine implicano quindi la vali-
dita di tale postulato in un piano affine qualunque.

8.6 Esempio

Siano V uno spazio vettoriale su K e W un sottospazio vettoriale di V. Dalla
proposizione 8.4(2) segue che, se v, v’ €V, i due sottospazi affiniv+ Wev' + W
di V, o coincidono oppure sono disgiunti. Da cid segue che la famiglia dei sot-
tospazi affini di V, aventi giacitura W costituisce una partizione di V. L’insieme
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quoziente di V rispetto a tale partizione, cioé I’insieme i cui elementi sono i sotto-
spazi affini di V, aventi giacitura W, si denotera con V/W.
Sinotiche v+ W = v’ + W se e solo se v € v + W, perché cid equivale alla con-
dizione
V+WNEF +W) =0
cio¢ all’esistenza di w, w’ € W tali che v+ w=v’ + w’, cioé alla condizione
V=v+(W-—w)Ev+ W,
Definiamo un’operazione di somma in V/W ponendo
(VI+W)+(Vz+W)=(V‘ +V2)+w.

Quest’operazione ¢ ben definita, perché non dipende dai vettori v, e v, che sono
stati scelti per rappresentare i due sottospazi. Infatti, se

vVitW=vi+W, v,+W=v,+W,
allora v{ = v, + w,, v; = v, + w, per qualche w,, w, €W e quindi

Vi +V)+W=v;+Vv,+ W, + W)+ W=(v,+Vv,)+ W

Definiamo in V/W un’operazione di moltiplicazione per elementi di K ponendo
c(v+W)=cv+ W,

Anche quest’operazione ¢ ben definita, perché v+ W=v' + W significa
v =v+w, weW, e quindi

cV+W=c(v+w)+W=(cv+cw)+ W=cv+ W,

Lo zero rispetto alla somma in V/W ¢ il sottospazio W = 0 + W, come si vede
subito. E immediato verificare che V/W, con le operazioni che abbiamo intro-
dotto, ¢ un K-spazio vettoriale, che si chiama spazio vettoriale quoziente di V
modulo W (oppure rispetto a W).

Si noti che se V=W, lo spazio V/W possiede un unico elemento, V stesso,
e quindi si identifica con lo spazio costituito dal solo vettore nullo. Se invece
W = (0), i sottospazi affini di giacitura W sono i punti di V,, cio¢ lo spazio V/W
coincide con V.

8.7 DEFINIZIONE  Due sottospazi affini S e T di A non paralleli si dicono
sghembi (incidenti) se sono privi di punti in comune (se hanno almeno un punto
in comune) ( fig. 8.3).

Consideriamo due sottospazi affini S e T, con dim(S) = s, dim(7) = . Suppo-
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S s
Sghembi
T
T
Incidenti
Figura 8.3
niamo che essi abbiano equazioni cartesiane:
n
S: }3] m;X;=b, i=1,...,n—s, [8.8]
j:
n
T: ‘E‘ n X, = Cps k=1,...,n—t. [8.9]
i=

L’intersezione SN T ¢ il luogo dei punti di A le cui coordinate sono simulta-
neamente soluzioni delle equazioni cartesiane di Se di 73 quindiipuntidiSN T
si ottengono in corrispondenza delle soluzioni del sistema

j§l m;ij'——b;, i=l,...,n—s,
[8.10]

n

j§t n;X; = ¢, k=1,...,n—1.

Per il teorema 8.1 il sistema [8.10], se ha soluzioni, rappresenta un sottospazio
affine. Quindi, se non & vuoto, SN 7" é un sottospazio affine di A.

La dimensione di SN T ¢ uguale a n — r, dove r ¢ il rango della matrice dei
coefficienti del sistema [8.10]. Poiché

rsn—s+n—-t=2n—-(s+1%),
si ha che, se SN T# O,
dimSNT)=n-r=zn—Rn—-G+Hl=s+t—n. [8.11]

Draltra parte, essendo SN 7 contenuto sia in S che in 7, la sua dimensione
non pud superare il minimo tra s e z.
Riassumendo quanto detto, possiamo enunciare la seguente proposizione.

8.8 ProrosizioNt  L’intersezione SN T di due sottospazi affini Se T di A,
se non & vuota, & un sottospazio affine tale che

dim(S) + dim(7") — dim(A) = dim(S N 7') < min [dim(S), dim(7)].
[8.12]
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Dalla dimostrazione segue che nella [8.12] sussiste la seconda uguaglianza se
e solo se SC T oppure T'C S. Se invece S e T sono paralleli e disgiunti, allora
SN T=@. 1l caso in cui vale la prima uguaglianza nella [8.12] & considerato nella
proposizione seguente.

8.9 ProposizioNe  Siano S e T sottospazi affini di A di giaciture W e U rispet-
tivamente. Allora SNT#0 e

dim(SN T) = dim(S) + dim(7) — dim(A) [8.13]

se e solo se V=W +U.

Dimostrazione

Supponiamo che S e T abbiano equazioni cartesianc [8.8] e [8.9] rispetti-
vamente. La [8.13] sussiste precisamente quando SN 7#®@ ¢ si ha 'ugua-
glianza nella [8.11]. La [8.11] si pud leggere come una relazione tra s = dim (W),
t=dimU) e dim(WNU)=dim(SNT), ed & una conseguenza diretta della
formula di Grassmann. Piu precisamente, la formula di Grassmann afferma
che la [8.11] ¢ un’uguaglianza se e solo se n = dim(W + U), cioé se solo se
V =W + U. Per concludere ¢ quindi sufficiente mostrare che in questo caso il
sistema [8.10] & compatibile. Ma la matrice dei coefficienti del sistema [8.10] ha
rango r=(n—s)+(n—1=2n—(s+1¢), che & il numero delle sue righe, e la
matrice orlata ha lo stesso numero di righe e quindi lo stesso rango: il sistema
¢ compatibile per il teorema 5.7.

Applicate ai casi dim(A) = 2,3, le proposizioni 8.8 e 8.9 permettono di ritro-
vare i risultati sulla posizione reciproca di rette e piani che sappiamo essere veri
nel piano e nello spazio ordinari. Nei paragrafi 9 e 10 tratteremo questi casi diret-
tamente senza ricorrere a questi risultati.

Un caso particolare importante della proposizione 8.9 & quello in cui le giaci-

u U=

Figura 8.4
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ture W e U dei sottospazi affini S e T sono supplementari in V, cioé tali che
V = W @ U: poiché in questo caso dim(S) + dim(7) = dim(A), la [8.13] afferma
che S e T hanno un solo punto in comune. Cid & quanto avviene ad esempio per
due rette non parallele in un piano affine, oppure per un piano e una retta non
paralleli in uno spazio di dimensione 3.

Da quest’osservazione si deduce la seguente costruzione geometrica. Sia S un
sottospazio affine di dimensione s di A, e sia W la sua giacitura. Fissiamo un sot-
tospazio vettoriale U di V tale che W @ U = V. Per il corollario 8.5, per ogni punto
Pe¢ A esiste un unico sottospazio affine 7, ,, contenente P e avente giacitura U.
Dalla [8.13] segue che SN T, = {Q}. L’applicazione pgsy: A—S, definita
ponendo pg ((P) = Q, & chiamata proiezione di A su S parallela a U.

Se dim(U) =1, allora S ¢ un iperpiano e ps , € la proiezione di A su S nella
direzione U. La figura 8.4 si riferisce allo spazio ordinario.

Esercizi

1. In A}(C) sia // il piano di equazione 2X + Y —1 = 0. In ciascuno dei seguenti casi
calcolare le coordinate di p.(x, y, 2), dove p.: A’ —>// ¢ la proiezione, (x, y, z) €A?
¢ un punto variabile e ueC* & il vettore

a) (1,0, 0) b) @G, 0, 0) ¢ 2L, i, 1) d) (0, i, 2).

2. Sia A uno spazio affine reale con spazio vettoriale associato V. Si supponga fissato
un riferimento affine O, ... e,.
Sia H C A un iperpiano di equazione

X+ ... +a,X,+c=0.
I sottoinsiemi di A
X, = {P(-x., cenX)raxi+ .. +a,x,+c=0}
Y ={PX,... X)) taxi + ... +a.x,+c<0}
sono i semispa=i di A definiti da H. Dalla definizione segue che
L.NX_=H, ZZ.UX =A.

Verificare che la definizione di semispazio non dipende dall’equazione né dal sistema
di riferimento.

Dimostrare che i semispazi sono sottoinsiemi convessi di A.

Se dim(A) =1, (dim(A) = 2), i semispazi sono chiamati semirette (semipiani). Se
dim(A) =1, dimostrare che una semiretta, cosi definita, coincide con una semiretta
di A come definita in 7.7(1).

(Suggerimento. Verificare che £, e L. sono caratterizzati dalla seguente proprieta
geometrica: fissato P,€ L. (rispettivamente Po€ X ), il punto P€ X, (il punto P€X )
se solo se il segmento PP ¢ interamente contenuto in X, (in X.)).

3. Sia A uno spazio affine reale e siano 4, B, C, D punti indipendenti di A. Dimostrare
che il triangolo di vertici 4, B, Cé ’inviluppo convesso di {4, B, C} e che il tetraedro
di vertici A, B, C, D & l’inviluppo convesso di {A, B, C, D}.
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9 Geometria in un piano affine

In questo paragrafo considereremo il caso dei piani affini, cioé degli spazi affini
di dimensione 2 su K. Tra questi rientra come caso particolare il piano ordinario,
che é un piano affine reale.

Consideriamo dunque uno spazio vettoriale V su K, tale che dim(V) =2, e un
piano affine A su V. Fissiamo un riferimento affine Oe, e, in A e denotiamo con
X, y le coordinate di un punto variabile P€ A e con X, Y indeterminate. I sotto-
spazi affini di A sono le rette, oltre ad A stesso e ai punti di A.

Ogni retta z di A ha equazioni parametriche

x=a+lt

[9.1]
y=b+mt

in cui Q(a, b) & un punto qualsiasi di z e v(/, m) & un vettore di direzione di 2.
Poiché ha codimensione 1 in A, la retta z si pud anche rappresentare per mezzo
di un’equazione cartesiana

AX+BY+C=0, [9.2]

per opportuni A, B, C¢K tali che (4, B) # (0, 0). Le costanti A, B, C sono
individuate da # solo a meno di un comune fattore di proporzionalita non nullo,
e quindi una retta £ possiede infinite equazioni [9.2], tutte tra loro proporzio-
nali. La retta z di equazione [9.2] contiene I’origine O se € solo se C = 0. Le rette
di equazioni X =0 ¢ Y =0 si dicono assi coordinati, rispettivamente asse delle
Y e asse delle X.

Per ottenere un’equazione cartesiana della retta z a partire da sue equazioni
parametriche [9.1], cioé una volta noti un suo punto Q(a, ) e un suo vettore di
direzione v(/, m), si puod osservare che le [9.1] esprimono la condizione che il vet-
tore QP sia parallelo a v, e che la stessa condizione pud esprimersi imponendo
che (x, y) sia soluzione dell’equazione in X, Y:

X—a Y-b

\ =0 [9.3]
! m

ciog

mX-a)-1(Y-b)=0, [9.4]
0, equivalentemente,

mX—-1Y+1b—ma=0. [9.5]

L’equazione [9.3] & soddisfatta da tutti e soli i punti P(x, y) € z. Quindi la [9.3],
oppure la [9.4] o la [9.5], & un’equazione cartesiana di 2.
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Se la retta z ¢ assegnata mediante due suoi punti distinti Q(a, b)e Q'(a’, b’),

allora come vettore di direzione si pud prenderev{a’ —a, b’ — b) = Q—Q) "ela[9.3]
prende la forma

X—a Y-5
a—-a b -b

i =0. [9.6]

9.1 ProPOsSIZIONE Siano z ed 2’ due rette di A di equazioni cartesiane

AX+BY+C=0,

A'X+B'Y+C' =0

rispettivamente. Allora:
1) z ed 2’ sono parallele se e solo se la matrice

(A B .71
A B’) )

ha rango 1, cioe se AB’ — A’B=0.
2) Sez ed %' sono parallele, allora sono disgiunte oppure coincidono a seconda
che la matrice

A B C
A! BI C/

abbia rango 2 oppure 1.
3) z edz’ hanno uno e un solo punto in comune se e solo se la matrice [9.7]
ha rango 2. In questo caso il punto ¢\ %’ ha coordinate

CB'-C’'B AC' —A'C
Xo=————, YVo=—T— . [9.9]
AB'— A’'B AB’'—A'B
Dimostrazione

Le direzioni di £ e di £’ sono determinate dalle equazioni omogenee

AX+BY =0,

AX+B'Y=0

rispettivamente. Quindi z ed 2’ sono parallele se e solo se A’ =pA, B’ =pB
per qualche p # 0 in K, cioé se e solo se la [9.7] ha rango 1. Cio prova la (1).
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La matrice [9.8] ha rango 1 se e solo se le equazioni di z e di ' sono propor-
zionali, cioé se e solo se z = z’. Quindi, se la [9.8] ha rango 2 e la [9.7] ha fango
1, ¢ ed z’ sono distinte e, per la (1), parallele, e pertanto non hanno punti in
comune. La (2) € dimostrata.

Infine, la [9.7] ha rango 2 se e solo se Z ed z’ non sono parallele. In questo
caso, per il teorema di Cramer, il sistema costituito dalle equazioni di z e di 2’
ha un’unica soluzione (x,, y,) data dalla [9.9]. Cid prova la (3).

I casi che vengono considerati nell’enunciato della proposizione 9.1 sono tutti
quelli che si possono presentare per la posizione reciproca di due rette di A, per-
ché corrispondono a tutte le possibilitd per un sistema di due equazioni lineari
in due incognite. In particolare vediamo che I’unica possibilita perché due rette
z ed z' non abbiano punti in comune € che la [9.7] abbia rango I ¢ la [9.8] abbia
rango 2, ¢ questo caso corrisponde al parallelismo di z ed z’. Quindi due rette
di un piano affine non possono essere sghembe.

Sia Q(x,, ¥} € A. L’insieme @ i cui elementi sono le rette di A passanti per Q
si dice fascio proprio di rette e Q si dice il suo centro (fig. 9.1).

Siano

AX+BY+C=0
AX+B'Y+C' =

equazioni cartesiane di due rette distinte, aventi in comune il centro Q di ®. Siano
A, p€K due scalari non entrambi nulli; la retta di equazione cartesiana

AMAX+BY+C)+p(A’'X+B'Y+C')=0 [9.10]

passa per Q e quindi appartiene al fascio ®.
Viceversa, se z€® e P(x, y)€z & un punto diverso da Q, la condizione

AMAx+By+C)+p(A'x+ B’y +C')=0 [9.11]

¢ un’equazione lineare omogenea in A e g che ha un’unica soluzione, determinata

Figura 9.1
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a meno di un fattore di proporzionalita: la retta [9.10] in cui A e u soddisfano
la [9.11] appartiene a ® e passa per P, quindi coincide con z.

Pertanto tutte le rette di ® si rappresentano nella forma [9.10]; una retta di
® determina A, u solo a meno di un fattore di proporzionalita.

Un caso particolare della [9.10] si ha prendendo z ed #’ parallele agli assi:
si ottiene che ogni retta del fascio & si puo scrivere nella forma

AMX =x) +u(Y —y9=0

per opportuni A, u.

I fasci di rette sono utili in pratica soprattutto quando il punto Q & individuato
da due rette che lo contengono ma le sue coordinate non sono note, e si vuole
individuare una retta contenente Q soddisfacente a condizioni assegnate, ad esem-
pio la condizione di passare per un punto P diverso da Q, oppure di essere paral-
lela ad una retta assegnata. '

E talvolta pilt conveniente utilizzare un solo parametro non omogeneo ¢, invece
della coppia di parametri omogenei A, p. In altre parole, anziché nella forma [9.10],
si pud scrivere la retta variabile nel fascio nella forma

AX+BY+C+t(A'X+B'Y+C’)=0, [9.12}
e la condizione di passaggio [9.11] diventa un’equazione lineare in ¢:
Ax+By+C+tA'x+B'y+C')=0, [9.13]

la cui soluzione, se esiste, determina la retta cercata.
Si faccia perd attenzione: nella forma [9.13] si rappresentano tutte le rette del
fascio ® ad eccezione delia retta

A'X+B'Y+C' =0. [9.14]
Cio corrisponde al fatto che ’equazione [9.13] é incompatibile se (e solo se)
A'x+B'y+C’ =0

e
Ax+ By + C#0,
cioé se P# Q e P appartiene alla retta [9.14].
Con questa avvertenza, si pud sempre utilizzare un parametro non omogeneo
per determinare una retta del fascio ®, purché si interpreti nel modo detto I’equa-
zione [9.13} quando essa risulti incompatibile.

Considerazioni simili alle precedenti si possono fare nel caso dei ¢“fasci impro-
pri’’. Dato un vettore non nullo vé V, I’insieme i cui elementi sono le rette di A
aventi direzione (v} & un fascio improprio di rette, e {v) &la sua direzione (fig. 9.2).

Data una retta del fascio improprio ®, di equazione

AX+BY+C=0,
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ogni altra retta di ® ¢ della forma
AX+BY+1=0

al variare del parametro ¢ € K. Cid segue immediatamente dalla proposizione 9.1.
Per ogni punto P(x, y)€ A esiste un’unica retta di ¢ contenente P, che & quella
corrispondente al valore

t=—(Ax + By).

Si noti che, mentre per individuare un fascio proprio sono necessarie due sue
rette, un fascio improprio & individuato una volta assegnata una sola sua retta.
Il motivo di cio sara chiaro quando, nel capitolo 3, interpreteremo i fasci dal punto
di vista dalla geometria proiettiva.

9.2 Esempio

Sia C(xg, Yo) €A e sia P(x, y) un altro punto qualsiasi. Il punto simmetrico di

——> — }

P rispetto a C ¢ il punto o.(P) tale che Co (P) = PC (cfr. esempio 7.5(4)). Le
coordinate x’, y’ di 0.(P) sono individuate dalla condizione

X =X V' =Y} ==X, Yo— )
e quindi sono
&5 ¥)=@2X— X, 25— )
Sia z la retta di equazioni parametriche

x=a+lt
y=b+ mi.

Se P(a+It, b+ mf)€zg, il punto o.(P) &
QCx,—a—1It, 2y,— b—mi).

Da cio discende che al variare di P€#z il punto o.(P) descrive la retta di equa-
zioni parametriche

x=2x,—a—1It y=2y,—b—mi,

v Figura 9.2
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che denotiamo con o.(%). Si noti che a.(z) passa per 0.(Q), dove Q(a, b)ez, ed
¢ parallela a z, avendo un vettore-di direzione di coordinate (— I, — m)).

Il risultato seguente ¢ una generalizzazione del classico teorema di Talete a piani
affini qualunque.

9.3 TeoreMA (TALETE) Siano H, H', H" rette parallele e distinte del piano
affine A, ed z,, ¢, due rette non parallele ad H, H', H". Siano inoltre

P,=v,0NH, P/=y,NH', P'=¢,NH", i=1,2,

e k,, k,€K tali che

_— ——

PP/ = kPP, i=1,2.
Allora k, = k,.

Dimostrazione

Supponiamo 2z, # 7, (fig. 9.3), perché se z, = #, il teorema ¢ banalmente vero.
Salvo scambiare tra loro due delle rette H, H’, H”, possiamo supporre P, # P,.
Poniamo v =P, P,. Si ha

—
P,P; — PP/ =P/P] - PP,=av
P,P; — PP/ =P/P] — P\P,=f3v

per opportuni «, S€K.
Se =0, z, ed %, sono parallele; allora anche 8 = 0, perché se fosse 8 #0 il

Z1 ZZ

\P A,
H

N
\1 2 )
P,”\ Pr

Hll

Y

v ) Figura 9.3
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vettore v sarebbe parallelo a z, e a z,, contro I’ipotesi. In questo caso:

P

— —
PP =k,P,P] =k,P P/

— —>
P P/ =kIP1Pl,

- 4 p—4 .
e poiché P P = P,P; otteniamo k, = k,.
Se a # 0 allora

—_— e —_— —

PP/ — PP’ =pv=a'BaV)=a 'BP,P; —a 'BPP|. [9.15]
D’altra parte si ha anche

— e — —

P,P/ — P P’ =k,P,P; —k,P P/. [9.16]

Poiché o #0, P,P{ ¢ P,P; non sono paralleli, e quindi sono linearmente
indipendenti. Confrontando [9.15] e [9.16] deduciamo che k, =« '8 =k,.

Il teorema di Talete afferma essenzialmente che lo scalare k = k, = k, dipende
solo da H, H’', H” e non dalle rette trasversali z,, Z,. Un caso particolare si
ottiene prendendo #, ed %, incidenti in un punto O€ H. In questo caso si ha

A — — — —
P, = O =P, e il teorema afferma che OP; = kOP{, OPy = kOP;.

Utilizzando il teorema di Talete dimostreremo ora due importanti risultati di

geometria affine piana.

9.4 TroreMA (Pappo) Siano H e H’' due rette distinte, del piano affine A.
Siano P, Q, R€H, P’', Q', R'€H’ punti distinli, nessuno dei quali comune ad
Head H'. Se PO'IP"Q e ORI Q'R, allora PR’ | P'R.

Dimostrazione
Supponiamo che H e H’ non siano paraliele, e sia {O} = HN H’ (fig. 9.4).

Figura 9.4
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Per il teorema di Talete si ha, per opportuni A, k€K*:

— - — —> —
OP' =k0OQ’, OQ=kOP perché PQ'IP'Q,
—> — — — - —
OQ’ = hOR’, OR=hOQ perché OQORIOR.
Ma allora:
PR’ =OR' - O0P=h"'0Q" —k~'0Q
—> — —> — —
RP" = OP' — OR = kOQ" — h0Q,

. . —_— — . —_— ——
e quindi RP’ = hkPR’, cioé RP'I PR’.
Se HIH’, allora si ha

PO = Q_T?" perché PQ’'IP’Q,
— J—
OR=R'Q’ perché OR'IQ'R,

e quindi
PR=PO+QR=Q P +R'Q'=R'P".
Pertanto PR’'ll P'R.

Esistono altre versioni del teorema di Pappo, per le quali rinviamo il lettore
a [7] e [2]. 1l secondo teorema che vogliamo dimostrare ¢ dovuto a Desargues.

9.5 TEoREMA (DESARGUES) Siano A, B, C, A’, B’, C'€A punti a tre a tre
non allineati, tali che ABIVA"B’, BCIB'C’', ACIA'C’. Allora le tre rette
AA’, BB’, CC’ sono parallele oppure hanno un punto in comune.

Dimostrazione

Supponiamo che AA’, BB’, CC' non siano parallele. Allora due di esse si
incontrano, e possiamo quindi supporre che @ N BB’ = {0} (fig. 9.5).

Per il teorema di Talete applicato ad AB, A’B’ si ha

OA’=kOA, OB’ =kOB, keK.
Sia {C”} = OCN A'C’. Per il teorema di Talete applicato ad AC, A’C’ si ha
— —
oCc” =koC [9.17}

perché OA’ = kOA. D’altra parte, posto {C” } = OCN B’C’, il teorema di Talete
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Bl

Figura 9.5

applicato alle rette BC, B’C’ implica che
—_—> -—_—>
OC” =kOC [9.18]
—> —>
perché OB’ = kOB. Confrontando le [9.17] e [9.18] vediamo che C" = C” = C’,

e quindi O, C, C’ sono allineati.

Questi due teoremi hanno anche versioni proiettive che vedremo nel capitolo
3. La loro importanza ¢ dovuta soprattutto alla relazione che hanno con la carat-
terizzazione degli spazi affini per mezzo di proprietd di natura grafica. (Per det-
tagli su quest’argomento cfr. [7] e [12].)

Esercizi

1. Stabilire quali delle seguenti sono terne di punti allineati di A’(R):

o[ft o (¢-3)

b) {1, D, (1, -1, (=1, D}

G332 63)

C) s T s = s T Fs VT s T )i

4 4 2 2 5 5

2. Determinare un’equazione cartesiana della retta # di A?(R) contenente i punti P e
Q in ognuno dei casi seguenti:

a) P= (1%) Q= (% 1) b) P=(0, 172, Q=(/7, 0)
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cg P=4nN2’, Q-—-/ﬂ&", dove 4, 47, Z, Z' sono le rette

L X+5Y-8=0, 2:3X+6=0, /:5X—7Y=1, Z:X-Y=5.

3. Determinare equazioni parametriche della retta di A?(C) parallela al vettore v e pas-
sante per il punto Zz N4 in ciascuno dei casi seguenti:

aAv=_2,4), 2:3X-2Y-7=0, £:2X+3Y=0
b)) v=(—5V2, 7, ZX-Y=0, 4L:X+Y=1.

4, Siano P=(2, 3), Q=(1, — \/5)€ A2(R). Determinare il punto medio del segmento
PQ.

5. In A*(R) siano P=(1, — 1), Q@ = (2, 15/2). Determinare i punti che suddividono il
segmento PQ in 4 parti uguali.

6. Dimostrare la seguente generalizzazione del teorema di Talete.
In uno spazio affine A su K siano H, H’, H” iperpiani paralleli e distinti, e siano
z1, %, rette non parallele ad H, H', H”. Siano P,=zNH, P/ =2 NH',
P"=¢zNH",i=1, 2, e siano k;, k.€ K gli scalari tali che

—_— —
PP’ =kPP/, i=1,2.

allora k= kz.

10 Geometria in uno spazio affine di dimensione 3

Considereremo ora il caso degli spazi affini di dimensione 3. Tra questi rientra
come caso particolare lo spazio ordinario.

Supponiamo assegnato un K-spazio vettoriale V di dimensione 3 e uno spazio
affine A su V. Fissiamo un riferimento affine Oe,e,e; in A; denotiamo con x,
v, z le coordinate di un punto variabile P€A e con X, Y, Z indeterminate.

I sottospazi affini di A sono i piani e le rette, oltre ad A stesso e ai suoi punti.

Un piano /£ di A passante per un punto Q(g,, ¢,, g;) ha equazioni parame-
triche della forma

X=qg;+a,u+bv
y=q,+a,u+b,v [10.1]
z=g;+ a;u + by,

dove {a(a;, a,, a3), b(b,, b,, b))} & una base della giacitura W del piano

(fig. 10.1).
Il piano /2, avendo codimensione 1, si rappresenta anche con un’equazione
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Figura 10.1

cartesiana
AX+BY+CZ+D=0 [10.2]

per opportuni 4, B, C, D€K tali che (4, B, C) #(0, 0, 0). Le costanti A, B, C,
D sono individuate da /4 solo a meno di un comune fattore di proporzionalita
non nullo.

Il piano /¢ contiene origine Oseesolose D=0.1 piani di equazione X = 0,
Y =0, Z = 0 si dicono piani coordinati, e rispettivamente piano YZ, piano XZ,
piano XY.

Possiamo ottenere un’equazione cartesiana [10.2] di // a pgtére dalle [10.1]
osservando che esse esprimono la dipendenza lineare dei vettori QP, a, b; le [10.1]
sono pertanto equivalenti all’annullarsi del determinante della matrice le cui righe
sono le coordinate di questi vettori. Quindi il punto P(x, y, z) appartiene al piano
passante per Q(q,, 9, ¢s) € parallelo a <a(a,, a,, a;), b(b,, b,, b;)) se e solo
se le sue coordinate soddisfano I’equazione in X, Y, Z

X-q Y-q, Z-gq,
a, a, a, =0. [10.3]

Espandendo il primo membro della [10.3] secondo la prima riga, ¢ ponendo

a, a a, a a, a
A - 2 3 , __ 1 3 , — 1 2 , [10.4]
b, b, b, b b, b,
si ottiene
AX—-q)+B{Y —-g)+ C(Z—-g;)=0. [10.5]

Si noti che 4, B, C, non sono tufti nulli: cid segue dalla loro definizione e dal
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fatto che a e b sono linearmente indipendenti. Se poniamo
D =— Aq, — Bg, — Cgq,, [10.6]
possiamo scrivere la [10.5] nella forma
AX+BY+CZ+D=0. [10.7]

La [10.7] & soddisfatta da tutti e soli i punti P(x, y, z)€ £ e quindi & un’equa-
zione cartesiana del piano /x .
Se /o ¢ assegnato mediante tre suoi punti non allineati Py(xy, Yo, Zo)s Py (x;,

— —
Y1, 2, Py(%, ¥,, Z,), la sua giacitura ¢ generata dai vettori PP, ¢ P,P,, e la
[10.3] prende la forma seguente:
X—x, Y-y, Z-3
X\—=Xo Yi—Yo Zi—% |=0. [10.8]
X=X M=V 2%

La [10.8] &€ un’equazione cartesiana del piano passante per i punti P,, P,, P,.
Una retta £ C A ha equazioni parametriche della forma

x=a+lIt
y=b+mt [10.9]
z=c+nt,

dove Q(a, b, c)€z e v(l, m, n) € un suo vettore di direzione. La retta z pud
anche essere definita da due equazioni cartesiane, cioé come intersezione di due
piani, perché ha codimensione 2:

AX+BY+CZ+D=0
[10.10]
A'X+B'Y+C'Z+D" =0.

La direzione di z ¢ il sottospazio vettoriale di dimensione 1 di V definito dal
sistema omogeneo associato

AX+BY+CZ=0
AX+B'Y+C'Z=0.

[10.11]

Da cid segue che il vettore v(/, m, n) di coordinate

B C A C A B
B C A A B

1= : . n=

¢ un vettore di direzione di &, perché (/, m, n) é una soluzione non nulla del sistema
[10.11].
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Quest’osservazione fornisce un metodo pratico per calcolare un vettore di dire-
zione di una retta £ assegnata mediante equazioni cartesiane [10.10].

Se viceversa la retta z & assegnata mediante un suo punto Q(a, b, ¢) e un suo
vettore di direzione v(/, m, n), ovvero per mezzo delle [10.9], se ne possono otte-
nere equazioni cartesiane imponendo la condizione che si annullino i minori di
ordine 2 della matrice

(X—a Y-b Z—c)

l m n

[10.12]

Infatti questa condizione nelle indeterminate X, _,__I: , Z & soddisfatta dalle coor-
dinate dei punti P(x, y, 7)€ A tali che il vettore QP sia proporzionale a v, cioé
dai punti di z.

Supponendo ad esempio / # 0, la condizione detta ¢ equivalente alle due equa-
zioni seguenti:

mX-a)-1(Y-b)=0

[10.13]
nX—-ay—I(Z—-c)=0,
cio¢ alle
mX—-1Y—-(ma—-1b)=0
[10.14]

nX—1Z—(na—1Ic)=0,

che sono equazioni cartesiane di due piani distinti contenenti £ (Che i due piani
sono distinti segue dal fatto che, essendo /# 0, la matrice dei coefficienti delle
incognite delle due equazioni [10.14] ha rango due), i quali quindi definiscono
z. Si noti che le [10.13] implicano I’annullamento del rimanente minore della
[10.12]:

n(Y-by-m@Z-o)=I""{mn(X—a)—I(Z-c)l—n[m(X —a) —
- I(Y-b)]}=0.

10.1 PROPOSIZIONE Siano ﬁ e /' due piani di A, di equazioni cartesiane

AX+BY+CZ+D=0,
[10.15]
AX+B'Y+C'Z+D' =0

rispettivamente. Allora:
1) // e // sono paralleli se e solo se la matrice

A B C
(A ) [10.16]
7 B! Cl

ha rango 1.
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2) Se la matrice [10.16] ha rango 1, allora // e // sono paralleli e disgiunti
oppure coincidono a seconda che la matrice
A B C D
[10.17]
A" B C' D’
abbia rango 2 oppure 1.
3) Se /v e /o’ non sono paralleli, allora sono incidenti e /20 /2" & una retta;
cio avviene se e solo se la matrice [10.16] ha rango 2.

Dimostrazione

I casi considerati nell’enunciato corrispondono alle possibilita che si hanno per
il sistema [10.15], di cui la [10.16] € la [10.17] sono rispettivamente la matrice
dei coefficienti e la matrice orlata.

Poiché le giaciture di /£ e di /£’ sono determinate dalle equazioni omogenee
associate

AX+BY+CZ=0

[10.18]
AX+B'Y+C'Z=0,

il parallelismo di /2 € £’ ¢ equivalente alla condizione che le [10.18] siano pro-
porzionali, cioé che la [10.16] abbia rango 1. In questo caso la matrice [10.17]
ha rango 1 o 2 rispettivamente, a seconda che il sistema [10.15] sia compatibile
oppure no, cio¢ che £ N /¢’ # @ oppure /N /" = @. Nel primo caso dev’essere
/= /¢ perché i due piani sono paralleli. Cid dimostra (1) ¢ (2).

Per la (1) la [10.16] ha rango 2 se e solo se £ e // non sono paralleli.
In tal caso il sistema [10.15] & compatibile, perché anche la [10.17] ha rango 2.
1l sistema [10.15] possiede oo! soluzioni e /¢N £ & una retta. Anche la (3) &
dimostrata.

Passiamo ora a considerare il caso di una retta e di un piano. La proposizione
seguente descrive tutti i casi che si possono presentare nella loro posizione relativa.

10.2 PROPOSIZIONE  Sia %z una retfta di equazioni parametriche [10.9] e carte-
siane [10.10}], e sia //” un piano di equazione

A"X+B"Y+C"Z+ D" =0. [10.19]
1) ¢ e " sono paralleli se e solo se

A B C
A" B C' =0 [10.20]
AII BII CII
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0, equivalentemente, se e solo se
A"l+B"m+C"n=0. [10.21]

2) Se la [10.20] é soddisfatta, allora z e /2" sono paralleli e disgiunti oppure
coincidono a seconda che la matrice

A B C D
A" B C' D [10.22]
A" B" C" D"

abbia rango 3 oppure 2.
3) Sez e /" non sono paralleli, allora sono incidenti ed 2N /" consiste di

un solo punto; cio avviene se e solo se

A B C
A" B C'|{ #0 [10.23]
A” B” C”
o, equivalentemente, se e solo se
A"l+B"m+ C"n#0. [10.24]
Dimostrazione

Supponiamo soddisfatta a [10.20]. Allora il sistema omogeneo

AX+BY+CZ=0

A'X+B'Y+C'Z=0 [10.25]

A"X+B"Y+C"Z=0
¢ equivalente al sistema costituito dalle sue due prime equazioni, che definiscqno
la direzione di z. Pertanto ogni vettore di direzione di z soddisfa la terza equa-
zione [10.25], che é un’equazione della giacitura di /2" cioé //" ed z sono paral-
leli. Se viceversa //’ ed z sono paralleli, necessariamente la terza equazione [10.25]
& dipendente dalle prime due, e la [10.20] ¢ soddisfatta. L’equivalenza delle con-
dizioni [10.20] e [10.21] si vede sviluppando il determinante [10.20] secondo la
terza riga. La (1) ¢ dimostrata.

Se //’ ed z sono paralleli, allora coincidono oppure sono disgiunti a seconda

che il sistema

AX+BY+CZ+D=0
AX+B'Y+C'Z+D'=0 [10.26}
A"X+B"Y+C"Z+D"=0

sia compatibile oppure no. Cid prova la (2), tenuto conto del teorema 5.7.
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Per la (1), /a” ed #z non sono paralleli se e solo se la [10.23] o la [10.24],
che come gia osservato sono equivalenti, sono soddisfatte. In questo caso il sistema
[10.26] & compatibile e ammette un’unica soluzione, per il teorema 5.7. Quindi
Z e 4" hanno un unico punto in comune.

La [10.20] e la [10.21] danno la condizione di parallelismo di una retta e di
un piano.

Passiamo ora a considerare due rette e le loro posizioni relative.

Due rette £ e %, di A si dicono complanari se esiste un piano che le contiene
entrambe.

10.3 ProposizioNE Due rette z ed 2z, di A sono complanari se e solo se una
delle condizioni seguenti & verificata:

1) ¢ ed %, sono parallele;

2) ¢ ed &, sono incidenti.

In particolare ¢ ed %, sono complanari se e solo se non sono sghembe.

Dimostrazione .

Poiché due rette di un piano affine che non sono incidenti sono necessaria-
mente parallele, se Z ed %, sono complanari, allora o sono parallele o sono
incidenti.

Viceversa, se z = %,, allora ovviamente z ed &, sono complanari. Se z ed #,
sono parallele e distinte sono contenute nel piano che passa per un punto gual-
siasi Q€z e di giacitura (v, QQ,», dove v & un vettore di direzione di z €
diz, e Q,€%,. Se z ed z, sono incidenti e distinte sono contenute nel piano pas-
sante per il punto £ N #, e di giacitura (v, v,), dove v e v, sono vettori di dire-
zione di z e di z, rispettivamente.

La proposizione che segue da dei criteri per riconoscere la complanarita di due
rette assegnate.

10.4 ProrosizioNE Siano ¢ ed &, due rette di A; supponiamo che z abbia
equazioni cartesiane [10.10] e che z, abbia equazioni cartesiane

AX+BY+CZ+D, =0

[10.27]
AIX+B/Y+C/Z+ D/ =0.

Siano Q(a, b, )€, Q,(a,, b, c,)€2,; siano inoltre v({, m, n) e v,({,, m,;, n,)
vettori di direzione di v e di ¢, rispettivamente. Le seguenti condizioni sono
equivalenti:

1) ¢ ed %, sono complanari;
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2)
a—a, b—b c—c¢
) m n =0;
A m, n,
3)
A B C D
A" B’ C' D’
A, B C D | 0
A} B{ C] Dj
Dimostrazione

(1)=(2) - Sez ed %, sono parallele, allora v e v, sono proporzionali, ¢ quindi
la (2) & soddisfatta. Se L ed £, sono incidenti, allora sono contenute in uno stesso
piano ¢ ; il vettore QQ, appartiene alla giacitura di 2 che & generata da v
e da v,, e di nuovo la (2) & soddisfatta.

(2)= (1) Sela (2) ¢ soddisfatta, allora o le ultime due righe della matrice

a—a b-b c—¢

/ m n [10.28]

sono proporzionali, e le due rette sono parallele, oppure la prima riga della [10.28]
¢ combinazione lineare delle ultime due, e il piano ¢ di giacitura {v, v,) pas-
sante per Q, che contiene z, contiene anche Q,, ¢ quindi contiene z,. In ogni caso
le due rette sono complanari.

(3)=(1) Se il sistema costituito dalle [10.10] e dalle [10.27] é compatibile,
allora z ed %, sono complanari perché hanno punti in comune.

Supponiamo che il sistema non sia compatibile. Allora, poiché il rango R della
matrice ’

A B C D
A" B C' D’

[10.29]
A, B, C D
A B ¢ Dy
¢ al piu 3, e quello r della matrice
A B C
A° B ¢ [10.30]
A, B C
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¢ almeno 2, si deve avere R =3 ed r = 2. La condizione r = 2 implica che le due
ultime righe della [10.30] sono combinazione lineare delle prime due; z ed 2,
hanno pertanto la stessa direzione, cioé sono parallele, e in particolare complanari.

(1)=(3) Sez ed z, sono incidenti il sistema costituito dalle [10.10] e dalle
[10.27] & compatibile, e quindi la [10.29] ha rango minore di 4. Se invece z ed
z, sono parallele, la [10.30] ha rango 2 e conseguentemente la [10.29] ha rango
al pitt 3. In entrambi i casi la (3) & verificata.

Sia z unaretta di A. L’insieme & dei piani di A che contengono # si dice fascio
proprio di piani, ed z & detta asse del fascio (fig. 10.2).
Consideriamo due piani distinti /£ e /£, di ®, di equazioni rispettive

AX+BY+CZ+D=0
A, X+B,Y+CZ+D,=0.

Come nel caso dei fasci di rette, si verifica che ogni piano appartenente a ® ha
equazione

AMAX+BY+CZ+ D)+ puA X+B Y+C, Z+D)=0

per opportuni A, u€K non entrambi nulli.
Anche in questo caso si pud utilizzare un parametro non omogeneo f per rap-
presentare i piani del fascio nella forma

AX+BY+CZ+D+1(AX+B Y+CZ+D)=0,

tenendo presente che il piano //, & ’unico elemento di ® che non si pud ottenere
in questo modo.

Se ¢ un piano non parallelo a z, i piani appartenenti al fascio & di asse
% intersecano 7 nelle rette appartenenti al fascio di rette di 7 di centro il punto
zN 7 (fig. 10.3).

Sia W un sottospazio di dimensione 2 di V. L’insieme ¥ dei piani di A che
hanno giacitura W si dice fascio improprio di piani e W si dice giacitura del fascio.

Se 7 ¢ un piano del fascio ¥, di equazione

! A—

Figura 10.2
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s
/

———7£———_ ———_——-—-‘-
N

¢

Figura 10.3

Se 7 & un piano del fascio ¥, di equazione
AX+BY+CZ+D=0,
allora ogni altro elemento di ¥ ha equazione
AX+BY+CZ+t=0

al variare di teK.

10.4 Esempio

Siano z ed £ due rette sghembe di A, ¢ sia P€ A un punto non appartenente
az U4 (fig. 10.4).

" Fa
Vid Figura 10.4
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Esiste una e una sola retta contenente P e complanare sia con # che con £.
Per vederlo si osservi che esiste un unico piano // contenente sia # che P, e
un unico piano /4’ contenente sia £ che P. Poiché /£ € /£’ hanno in comune
il punto P e sono distinti (altrimenti £ e 4 sarebbero complanari), SN S’ &
una retta £ che contiene P e, per costruzione, ¢ complanare sia con % che con

4. L’unicita di Z segue da quella di Sfooedifpl.
Si noti che certamente Z non & parallela sia a z che a £, perché in tal caso
z ed 4 sarebbero parallele tra loro. Quindi £ interseca almeno una delle due rette.

Esercizi

1. Stabilire quali delle seguenti sono terne di punti allineati di A*(C):

a) {(2, 1, -3),d, -1,2), (i , 0, —L)}
2 2

by {1, 1, 1), 2, —1,3), 2,1, —5)}
¢) {G,0,0), A+1,2i 1), (1,2 —i)}
d {(1,0,0, 2, -1, - 1), (-2, -2, 1)}
e) {(1,0, -1), (2, 1, 2), (-1, —1, 3)}
f) {d-14,1, 2), 3, 6i, —3), -1, 3i, )}.
2. In ciascuno dei seguenti casi determinare, se esiste, il valore del parametro reale m
in corrispondenza del quale si ottiene una terna di punti allineati di A*(R):
a) {2, -1,2),(1,1, 1,2, —m+1, 4}
b) {3, 0, 0), (0, 1, 1), (m, m, m)}
o {1, —m,0), (m, 1, 1), 1, -1, —3)}
d) {1, m, 0), 2, V2, 1), 2, 110, 1)}.

3. Dopo aver verificato che ciascuna delle seguenti terne consiste di punti non allineati
di A*(R), determinare equazioni parametriche e cartesiane dei piani da esse rispetti-
vamente individuati:

a) {2, V2, 1), (1, 1,V2), (0, 0, 1)}
b) {(5, —-1,0), (1, 1, V5), (—3, 1, %)}

A {1, 1, 1,(-2,1,0), (2, 2}
d) {(, 1000, 0), (3,55, 2, 0), (1, 10°, 0)}.
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In ciascuno dei seguenti casi determinare un’equazione cartesiana del piano di A*(C)
passante per il punto Q e parallelo al piano //:

a) 0=(-1,2,2), f:X+2Y+3Z+1=0
b) 0=, i, 1), -//: 2X-Y=0

9 Q=(,1,i+1), A:iY-2Z+3i+10=0
d) @=(1-2i, 1, 7i), fri¥=3.

In ciascuno dei seguenti casi verificare se i tre piani di A’(R) di equazioni assegnate
appartengono o no a uno stesso fascio:

a) X-Y+Z=0, —-X+3Y-5Z+2=0, Y-2Z+1=0

b) 2X-3Y+3=0, X-Y+6=0, X-3Z=-1

) X-5Y+1=0, X-5Y=0, 2X+Z=0

d) X-Y+Z+5=0, 2X-2Y+2Z+77=0, -X+Y-Z=0.

In ciascuno dei seguenti casi determinare equazioni parametriche e cartesiane della retta
di A’(R) passante per il punto Q e parallela al vettore v:

a) 0=(1,1,0), v=2, —-1,v2) b) Q=(-2,2, -2), v=(1,1,0)
) Q0=(,2,3), v=(1,2,3) d) 0=(@,0,0), v=(1,0, 0
e 0=(1,1,0), v=(,1, -1).

Determinare equazioni parametriche di ciascuna delle seguenti rette di A*(C) assegnate
mediante equazioni cartesiane:

a) X—-iY=0, 2Y+Z+1=0
b)3X+Z-1=0, Y+Z-5=0

g X-1=0, Z-1=0

d) 2iX-((+2)Y+Z-3+i=0, Z+iY=2i

In ciascuno dei seguenti casi determinare equazioni parametriche della retta di A*(C)
passante per il punto Q e parallela alla retta 2:

a)Q0=(01,1,0, z:X-i¥=0,Z+1=0

b) 0=(1,0,0), 2z X+2Y-1=0,X=2

) 0=@2,1, -5, 2Y=2 X=iZ+7

d 0=(3,0,0, 2:3X-Y-Z+1=0,X-5Y+~2Z~-7000=0.

In ciascuno dei seguenti casi determinare un’equazione cartesiana del piano di A*(R)
passante per il punto Q e parallelo alle rette z ed 4:

a)Q=(1,-1,-2), z2X-Y-1=0, X+Z-5=0, 42:X=1,Z=2

b) 0=0,1,3), 2z:X+Y+5=0, X-Y+2Z=0,
2:2X+2Y-1=0, X-Y+2Z-1=0

) 0=@3,33), &X-2Y+1=0, X+Z+1=0,
L2i2X+2Z-1=0, X-2Y+1=0.
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10. In ciascuno dei seguenti casi verificare se le rette z ed 4 di A*(R) sono o no com-
planari e, nel caso lo siano, verificare se sono parallele o incidenti e, dopo aver verifi-
cato che sono distinte, determinare un’equazione cartesiana del piano che le contiene:

a) Zix=1+4t,y=—t,7=2+21, Lix=2—-t,y=—1+3tz=t
b)Z:2X+Y+1=0,Y-Z=2, Jix=2—-t,y=3+2t,z=1

) 2:2X+3Y~-Z=0,5X+2Z-1=0, £:3X-3Y+3Z-1=0,
5X+2Z+1=0

d)2:2X+Z—-1=0,Y-Z+1=0, 4:2X-Y+3Z=0,2X+Y-3=0
e) 2: X+1=0, Z2-2=0, £:2X+Y-2Z+6=0, Y+Z-2=0.

11. In ciascuno dei seguenti casi determinare la posizione reciproca della retta z e del
piano // di A’(R) e, se sono incidenti, determinare il loro punto di intersezione:

a)zox=1+t y=2-2¢1,7=1-4¢, /0:2X—Y+Z—1=0
byz:x=2—-t,y=1+2¢t,z=~1+ 3¢, //:2X+2Y—Z+1=0
O X+Z-2=0,Y=1, //:X—Y+ZZ—5=0

2 X+Z+1=0,X-Z=0, //:X+Z—I=0.

12. In ciascuno dei seguenti casi determinare un’equazione cartesiana del piano di A*(R)
contenente il punto Q e la retta 2 :

a) 0=@3,3,1), z:x=2+3t,y=5+1,2=1+7t

b)) 0=@2,1,0, 2:X-Y+1=0,3X+5Z-7=0
) Q0=(1,0,2), 2:Y+2Z-5=0,Z=1
d)0=(2,2,2), Z:ix=5+ty=—-3-312=3+31

13. In ciascuno dei seguenti casi determinare equazioni cartesiane della retta z di A*(R)
passante per il punto Q, contenuta nel piano // e incidente la retta £:

a) 0=(,1,0, f:2X-Y+Z-1=0, L1x=2~t,y=2+12=1t

b) 0=(-1, -1, —-1), ﬁ:X+ Y+Z+3=0, 4:X-2Z+4=0,
2Y-Z=0

) 0=(1,2,3), //:ZX— Y=0, &1 X+Z+1=0,2X+2Y-Z-3=0.

14. In ciascuno dei seguenti casi determinare equazioni cartesiane della retta Z di A’(R)
passante per il punto Q e complanare con le rette z ed 4. Stabilire se £ & incidente
oparallelaa z ea 42

a)0=(,1,2), 2:3X-5Y+Z+1=0,2X—-3Z+9=0,
2:X+5Y-3=0,2X+2Y-7Z+7=0

b)0=2,0, -2), 2. —X+3Y-2=0,X+Y+Z+1=0,
Lix=2—-t,y=3+5t,z=—1¢

0=, -1, -1, z:2X+Y+1=0, -2X+3Y+Z=0,
2 Y=2,7Z=1.
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15. In ciascuno dei seguenti casi determinare il valore del parametro reale & per cui le rette
%z ed 4 di A*(R) sono complanari. Determinare un’equazione cartesiana del piano
che le contiene e trovarne il punto comune nel caso siano incidenti:

a) z:x=k+t,y=1+21,z2= ~1+kt, L:x=2-24y=3+3t,z=1—-1¢
b)z:x=3-t,y=1+2t,z=k+1¢, Lix=1+t,y=1+21 z=1+ 3¢
Q) X—kY+Z+1=0,Y—-k=0, L X-Z+k=0,Y=1.

16. In A*(R) determinare un’equazione cartesiana del piano /¢ contenente la retta
comune ai due piani di equazioni

X+Y=3 2Y+3Z=4

e parallelo al vettore v=(3, —1, 2).

11 Applicazioni lineari

Siano V e W due K-spazi vettoriali. Un’applicazione
F: VoW
si dice lineare se per ogni v, v/ €V ¢ c€K si ha
FV+v)y=FW) +F(') [11.1]
F(cv) = cF(v). [11.2]
Le due condizioni [11.1] e [11.2] sono equivalenti all’unica condizione
Flev+cv)=cF(V)+cF(v') [11.3]

perogni v, vV eV e ¢, ¢’ €K. Infatti la [11.3] si traduce nella [11.1] prendendo
¢ = ¢’ =1enella[11.2] prendendo ¢’ = 0; viceversa, se Fsoddisfa le [11.1] e [11.2],
allora

F(ev+c'vy=F(cv) + F(c'v')= cF(v) + c'F(v'),

dove la prima uguaglianza segue dalla [11.1] e la seconda dalla [11.2].
Applicando ripetutamente la [11.3] si deduce che, se F ¢ lineare, per ogni v,,
Va5 eeny V€V € €, €y ..., €, €K 51 ha

Fle,vi+ v+ .. +¢,v) =, F(v) + ,F(v) + ... + ¢, F(v,). [11.4]

Si osservi che 1a [11.2], applicata a ¢ = 0 e v€V qualsiasi, implica che se F ¢
lineare

F@©)=0.

Un’applicazione lineare F: V — V & detta operatore lineare su V, oppure endo-
morfismo di V.
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Un’applicazione lineare F: V — K prende il nome di funzionale lineare su V.

Se G: U—>V ed F: V— W sono applicazioni lineari, la composizione Fe G:
U — W & un’applicazione lineare. La verifica ¢ immediata ed ¢ lasciata al lettore.

Diremo che un’applicazione lineare F: V — W & un isomorfismo se & un’appli-
cazione biunivoca.

L’applicazione inversa F~!: W~V & anch’essa lineare e quindi & un isomor-
fismo. Siano infatti w, w' €W, e v=F"'(w), v =F '(w"). Si ha

F'(W+w)=F(F(v) + Fv') = F~' (F(v + v)) =
=v+v =F Y(w)+F '(w').

Analogamente, se c€K,
F~Y(cw) = F ' (cF(v)) = F '(F(cv)) = cv = cF ™ '(w).

Un isomorfismo di uno spazio V in sé stesso & un automorfismo di V.

Nel seguito Hom(V, W) denotera ’insieme di tutte le applicazioni lineari di
V in W, End (V) ’insieme di tutti gli operatori lineari su V, e V" ’insieme di tutti
i funzionali lineari su V. Denoteremo poi con GL (V) il sottoinsieme di End (V)
costituito dagli automorfismi.

11.1 Esempi
1. Per ogni V ¢ W I’applicazione nulla 0: V— W, definita da
0(v)=0cW

per ogni V€V, & un’applicazione lineare.

In ogni spazio vettoriale V I’identita 1,, cio¢ ’applicazione che manda ogni
vettore in sé stesso, € un automorfismo. Se F, GeGL(V), allora anche F 'e
Fo G appartengono a GL(V).

Se ceK, I’applicazione c1y definita da

(cly) (v) =cv

¢ lineare. Se ¢ =0, allora 01, = 0. Se ¢ #0, allora c1y & un automorfismo il cui
inverso & ¢ '1,.

Se dim(V) = 1 gli unici operatori lineari su V sono quelli della forma c1,. Sia
infatti FEEnd(V)ed e€V, e # 0; poiché {e} & una base di V, si ha F(e) = ce per
qualche ceK, e quindi per ogni v=xe€V:

F(v) = F(xe) = xF(e) = x(ce) = c(xe) = cv.

2. Sia e = {e,, €,, ..., ¢,} una base del K-spazio vettoriale V, e

@,. VK"
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I’applicazione definita da
o (e + ... +x,8) =X, ..., X,),

cioé Papplicazione che associa ad ogni vettore v = x,e, + ... + x,e,€V la n-upla
(x;, -.-» X,) delle sue coordinate rispetto alla base e.

@, € un isomorfismo. Infatti, per ogni c€K, v=xe, + ... +x,e,, Vv =ye + ...
... +y,€,€V, si ha

CV+ V)=, +y) e+ . + (X, +1)e)=(x+ Y5 o0, X, + 1) =
= (X|, eeey xn) + (}’n eeey yn) = ¢e(v) + ¢e(vl)

o(cv) =(cxyy ..y CX) =Xy, «.ey X)) = C@(V),

e quindi ¢, & lineare. Inoltre, per le proprietd delle coordinate di un vettore
rispetto a una base, ¢, ¢ biunivoca.

¢, & Visomorfismo definito dalla base e.

Se ad esempio V = K", ed e ¢ la base canonica, allora ¢, ¢ I’identita di K” in
s¢ stesso.

3. Sia V un K-spazio vettoriale e siano U, W due sottospazi supplementari in
VY, cioé sia
V=U®W. [11.5]

Poiché ogni v€V si esprime in modo unico come v=u + w, ue U, we W, pos-
siamo definire ’applicazione

p: VoW
ponendo
pu+w)=w.

p & la proiezione di V su W definita dalla decomposizione [11.5].
p € ur’applicazione lineare. Infatti, se v=u+w, vV =u"+ W €V, ¢, ¢’ €K,
allora:
plecv+cv)=plcu+cw+c'w +cw)=plcu+c'n +cw+c'w)=
=cw+c'w =cp(v) +c'p(v').
Se in particolare W ¢ un iperpiano, allora U = {u) per qualche ue V\W, e
in questo caso p ¢& detta proiezione di V su W nella direzione {u).

Se {e,, ..., e,} ¢unabasedi Vel=<k<n,laproiezione di V su {e,, , ..., ,)
definita dalla decomposizione V = (e,, ..., €,> @ (€., ..., €,) &

plce, + ... +c,8)=0Cp 1€, + ... +C 0,

Se = ¢ il piano ordinario, Z una sua retta, V e W sono gli R-spazi vettoriali
dei vettori geometrici di e di & rispettivamente, e u € V\W & un vettore non paral-
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lelo a z, la proiezione di V su W nella direzione (u) & ’applicazione illustrata
dalla figura 11.1.

In modo simile, fissato un piano =« nello spazio ordinario X, detti V e W gli
spazi dei vettori geometrici di X e di x rispettivamente, e fissato u € VAW, si descrive
la proiezione p di V su W nella direzione {u) (fig. 11.2).

Le proiezioni qui descritte per i vettori del piano e dello spazio ordinari sono
basate sullo stesso principio geometrico con il quale abbiamo definito le proie-
zioni di uno spazio affine su un suo sottospazio alla fine del paragrafo 8.

4. Siano V uno spazio vettoriale su K ed e = {e,, ..., €,] una sua base. Per
ogni i =1, ..., n definiamo

7. VoK
ponendo
n,(ce,+ ... +ce)=c¢,

cioé associando ad ogni vettore la sua i-esima coordinata rispetto a e. E facile
verificare che 5, ¢ un funzionale lineare su V. Infatti, presi comunque

v=ce +..+ce, V=de+..+de,

Figura 11.1

Figura 11.2
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inVek, k€K, si ha

n,kv + K'vYy=n{lkc, + k'd)e + ... + (kc,+k'd)e,)=kc,+ k'd; =

=kn;(v) + k' n,(v').
5. Siano V uno spazio vettoriale su K e U, W sottospazi supplementari in V.

Definiamo un’applicazione

p: VoV
ponendo

pla+wy=u—w

perogniv=u+weV, uelU, weW.
Si verifica subito che p & un operatore lineare che ha le seguenti proprieta:

p(u)=u per ogni ueU,
pop=1,.

La seconda proprieta implica che p & invertibile, e quindi p € GL (V).
See={e,....,e,}] unabasedi Vel <k<n,

U=<(e,...e), W={(¢e,_,, ..., &),
allora

plce + ... +ce)=ce + ... +C8 — Cpi1€i;— .. — Cpl,.

6. Sia V uno spazio vettoriale su K, U un suo sottospazio, e consideriamo lo

spazio vettoriale quoziente V/U. L’applicazione

p: V—=>V/U
definita da

pv)y=v+U

¢ lineare. Essa & chiamata proiezione naturale di V su V/U. Lasciamo al lettore
il compito di verificare che p ¢ lineare.

7. Sia U un sottospazio del K-spazio vettoriale V. L’inclusione i di Uin V ¢
un’applicazione lineare. La verifica & immediata.

11.2 ProrosizioNE Siano F: V— W un’applicazione lineare di K-spazi vet-
toriali, vy, ..., v,€Vew,=F(v),i=1, .., n Sev,, ..., v, sono linearmente dipen-
denti, anche w, ..., w, sono linearmente dipendenti.

Egquivalentemente, se w,, ..., W, sono linearmente indipendenti, anche
Vi, ...y V, SORO linearmente indipendenti.
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Dimostrazione
Dimostriamo la prima affermazione. Siano ¢, ..., ¢,€K scalari non tutti
uguali a 0 tali che

v+ ... +¢,v,=0.

Allora si ha
aw + ... +c,w,=¢cF(v)+ ...+, F(v)=F(c,vi+ ... +¢c,v,)=F(0) =0,
e quindi w,, ..., w, sono linearmente dipendenti.

11.3 TeoreMA Siano V e W due K-spazi vettoriali, e = {e,, e,, ..., ¢,} una
base di V, e w,, W,, ..., W, vettori arbitrari di W. Esiste un’unica applicazione
lineare F: V— W tale che

F)=w, i=1,2,...,n

Dimostrazione
Se F esiste € unica, perché per ogni

V= Xlel + xZez + P + Xne,;ev
si deve avere, per la [11.4]:
F™=x,F(e)+ ... +x,Fle,))=x,w, +X,W, + ... +x,W, [11.6]

e i coefficienti x,, x,, ..., X, sono univocamente determinati perché e ¢ una base.
Sara pertanto sufficiente dimostrare che I’applicazione F definita dalla [11.6]
¢ lineare. Verifichiamo la condizione [11.1]. Se

A\ =X]e; +X292+ cee +X,,e,;
vi=ye +y,e,+..+y,.e,
sono elementi di V, si ha

Fv+v)=0+y)w+0at3)w+ ... + (X, +y,)w,=
=W, +X5W,+ ... +X,W,)+ (W + 3w+ L+ YW=
= F(v) + F(v').

Verifichiamo la [11.2]. Se ceK e v=x;e, + x,e,+ ... +x,e, si ha

F(cv)=cx,w, + cx,W, + ... +ex,w, =
=c(qw, +Xx,W, + ... +Xx,W,)=cF(v).

Quindi F ¢ lineare.
11.4 DEerFiNiziONE  Sia F: V— W un’applicazione lineare di K-spazi vettoriali.
Il nucleo di F &
N(F)={veV: F(v) =0},
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cioé N(F) ¢ il sottoinsieme di V costituito da tutti i vettori che vengono mandati
in0eWdaF.
L’immagine di F & il sottoinsieme di W

Im(F)= {w=F(v): veV}.

N(F) e Im(F) sono sottospazi vettoriali di V e di W rispettivamente (la verifica
di questo fatto é lasciata al lettore). Se hanno dimensione finita, la dimensione
di Im(F) si dice rango di F, e si denota con r(F), la dimensione di N(F) si dice
nullita di F.

Dalla [11.4] segue che se {e,, e, ..., €,} ¢ una base di V, allora

Im(F) = (F(e)), F(e), ..., Fle,)).

11.5 ProrosizioNE Un’applicazione lineare F: V— W di K-spazi vettoriali
e iniettiva se e solo se N(F) = (0).

Dimostrazione
Se F ¢ iniettiva, allora 0 & I'unico elemento di N(F), e quindi N(F) = (0).
Viceversa, supponiamo che N(F) = (0). Se v, v/ €V sono tali che
F(v)=F(’),
allora
Fv—-v)y=FN¥)—-FF)=0

e quindi v — v/ € N(F). Poiché 0 & I’unico elemento di N(F), si ha v — v/ = 0, cio¢
v =v'. Quindi F ¢ iniettiva.

Abbiamo il seguente importante teorema.

11.6 TeEorREMA Sia F: V- W un’applicazione lineare di K-spazi vettoriali,
con dim(V) = n. Allora N(F) e Im(F) hanno dimensione finita, e

dim [N(F)] + r(F) = n.

Dimostrazione

Poiché V ha dimensione finita, anche N(F), che & un sottospazio di V, ha dimen-
sione finita; sia s = dim(N(F)). Fissiamo una base {n,, ..., n;} di N(¥), ¢ siano
Viips .- V,€V tali che {n,, ..., n, v, ..., v,} sia una base di V. Per comple-
tare la dimostrazione del teorema sara sufficiente dimostrare che {F(v,,)), ...
<o F(v,)} & una base di Im(F).



11/Applicazioni lineari 139
Ogni vettore weIm(F) & della forma

w=F@n + .. +an+b,_ v, +..+b,v)=
=a,F(n) + ... +a.F) + b 1 F(vs, ) + ... +b,F(v,) =
:bs+lF(vs+l) + ... +an(vn)9

per opportuni scalari a,, @,, ... a,, b, ..., b,. Quindi F(v,, ), ..., F(v,) generano
Im (F).
Supponiamo che ¢, , ..., ¢,€K siano tali che

Cor1 F(Vsi)) + oo + 6, F(v,) =0.
Allora
F(cs+lvs+l + ..o+ Cnvn) =Cs+lF(vs+l) + .+ CnF(vn)z 0

e quindi ¢, ;v + -.. +¢,v,€N). Poiché {m,, ..., n;} € una base di N(F), esi-
stono d,, ..., d;€K tali che

C.

s+1Vse1 + ...+ CnVp = d]“l +_ b +dsns
cioé tali che
dn+ ... +dn,—¢ Vo, — ... —¢,V,=0.

Man,..., n, v, ..., v, sono linearmente indipendenti, e quindi tutti i coeffi-
cienti sono nulli; in particolare

Cop1= oo =C, =0

n

ed F(v,,), ..., F(v,) sono linearmente indipendenti.

Si noti che nell’enunciato del teorema precedente non si & supposto che W abbia
dimensione finita.
Si ha il seguente

11.7 CororLARIO Se U & un sottospazio del K-spazio vettoriale V di dimen-
sione finita, allora

dim(V/U) = dim (V) — dim(U). f11.7]

Dimostrazione
La proiezione naturale p: V— V/U ¢ suriettiva e ha nucleo uguale a U.

I1 corollario seguente fornisce una semplice caratterizzazione degli isomorfi-
smi, e segue immediatamente dal teorema 11.6. La sua dimostrazione viene lasciata
al lettore.
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11.8 CororrLarRiO Se 'V e W sono K-spazi vettoriali di dimensione finita tali
che dim(V) = dim(W), ed F: V—> W ¢é un’applicazione lineare, allora le seguenti
condizioni sono equivalenti:

1) N(F) =(0);
2) Im(F)=W,;
3) F é un isomorfismo.

Abbiamo il seguente teorema.
11.9 TEOREMA (DI OMOMORFISMO PER GLI SPAZI VETTORIALI) Sig F: VoW
un’applicazione lineare di K-spazi vettoriali. F definisce un isomorfismo
F’: V/N@F) - Im(F)
tale che
F=ioF' op, [11.8]
dove p: V— V/N(F) & la proiezione naturale e i: Im(F)— W & inclusione.

Dimostrazione
Siano v,, v,€V. Si ha F(v,) = F(v,) se e solo se F(v, —v,) =0, cio¢ se e solo
se v, — v, €EN(F), ovvero

F(v)) =F(v;) @ v,€lv, + N(F)] [11.9]
Possiamo quindi definire F': V/N(F)— Im(F) ponendo
F’' (v + N(F)) = F(v).

F’ & biunivoca perché, oltre ad essere ovviamente suriettiva, & anche iniettiva
per la [11.9]. La verifica della linearita di 7’ e della [11.8] ¢ lasciata al lettore.

11.10 DeriNizioNE  Siano V e W due K-spazi vettoriali. V e W si dicono iso-
morfi, oppure si dice che V & isomorfo a W, se esiste un isomorfismo V—->W.

Ogni spazio vettoriale & isomorfo a se stesso, perché 1y € un isomorfismo. Se
V ¢ isomorfo a W, anche W ¢ isomorfo a V, perché I’inverso di un isomorfismo
¢ un isomorfismo. Infine, poiché la composizione di isomorfismi & un isomorfi-
smo, se V ¢ isomorfo a W e W ¢ isomorfo a U, allora V ¢ isomorfo a U. Quindi
Pisomorfismo & una relazione di equivalenza tra spazi vettoriali.

11.11 TeoreMA Due K-spazi vettoriali di dimensione finita sono isomorfi se
e solo se hanno la stessa dimensione.

Dimostrazione
Supponiamo V e W isomorfi, e sia F: VW un isomorfismo. Poiché
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N(F) = {0), per il teorema 11.6 si ha
dim(W) = r(F) = dim (V).

Viceversa supponiamo dim (V) = 7 = dim(W), e siano {v,, ..., v,} € {w;, ..., W}
basi di V e di W rispettivamente. L’applicazione lineare F': V— W definita da

F(vi) = Wh i= 1’ vees 11,

& suriettiva perché w, ..., w, generano W. Per il teorema 11.6, dim(N(F)) = 0,
e quindi F & anche iniettiva. Dunque F & un isomorfismo.

Terminiamo questo paragrafo con la descrizione di alcune proprieta dell’in-
sieme dei funzionali lineari su uno spazio vettoriale.

Sia V un K-spazio vettoriale. E possibile introdurre in V*, 1’insieme dei funzio-
nali lineari su V, una struttura di K-spazio vettoriale definendo le operazioni nel
modo seguente.

Se L,, L,e V", definiamo L, + L,€V~ ponendo

(L +Ly)(v)y=L,(v)+ L,(v) perogni VeV,
Verifichiamo che L, + L, & lineare. Per ogni v, v €V, ceK si ha
L +L)V+V)=L(v+V)I+L,(v+vV)=
=L+ L (V) + L(v) + Ly(v') =

=L,(M)+ L) + L,(v) + L,(v') =
=L+ L)W + (L, + L) (V).

L+ L) (ev)=L(cv)+ Ly(ev) =cL, (V) + cL,(v) =
=c(L,(M) + L(v)) =
=c(L, + L)) (v),

e quindi L, + L, ¢ lineare.
Se LeV™ e ceK, definiamo c¢L €V~ ponendo
(cL)(v) =cL(v).

La verifica della linearita di ¢ & lasciata al lettore.
Il funzionale nullo 8¢ V™, definito da

O0(v)=0 perogni vevV,
soddisfa evidentemente
L+0=L perogni L€V

Lasciamo al lettore la facile verifica del fatto che V”, con le operazioni che
abbiamo definito, & un K-spazio vettoriale. V" si chiama spazio vettoriale duale
di V.
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Supponiamo che V abbia dimensione finita, ¢ sia e = {e,, ..., €,} una sua base.
Sia 1=<i=<n. Per il teorema 11.3 esiste un unico 5,€ V" tale che

n;(e) =5, [11.10]
dove
0 sei#j
6=
1 sei=j

¢ il simbolo di Kronecker. Otteniamo cosi n funzionali lineari 1, ..., 1,, che sono
gli stessi considerati nell’esempio 11.1(4).

11.12 TeoreMA Sia V un K-spazio vettoriale di dimensione finita, e sia
{e, ..., e,} una sua base. L’insieme {n,, ..., 1,} dei funzionali lineari definiti
dalla [11.10] é una base di V*; in particolare

dim(V") = dim (V)
e quindi V e V™ sono isomorfi.

Dimostrazione
Sia LeV” e ¢;=L(e), a,=L(ey, ..., a,= L(e,). 1l funzionale a;9, + &1, + ...
.. +a,n, soddisfa I’identita

@n+ ... tam)E)=@n)€)+ ... +t{@n) )+ ... +(@,n,)(e)=
=a;m(e) + ... +am(e) + ... +a,m,()=
=ane)=a, - i=1,..,n

e quindi a,9, + a,, + ... + a,n, ha gli stessi valori di L sulla base {e,...,e,}.
Dal teorema 11.3 discende che

an +a,+ ... +am,=L.
Quindi g, ..., 1, generano V”. Supponiamo ora che g,, ..., a,€K siano tali che

an+an+ .. +a,n,=0.

Allora, per ogni i=1,..., n:

0=0@)=(@n+ .. +amn)E€)=amn)+..+anmn,()=
= am;(e) = a;.
Quindi ¢, = ... =a4,=0, e pertanto 7, ..., 3, sono anche linearmente indi-
pendenti.

L’insieme di funzionali lineari {7,, ..., 1,} & la base duale della base {e,, ...
ey 8,1 di V.
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Se L=an+ ... +a,m,€V7, si ha

Lixe, + ... + x,e)={(an, + ... +a,0,) (x;e, + ... +x,¢,)=
=(@n)eae + ... +xe) + ... +(@n)xe + ... +x,e,) =
=ax, +@x,+ ... +a,X,

perché n,(x; e, + ... + x,&,)=x, i=1, ..., n. Quindi ogni funzionale lineare su V
si esprime in modo unico come un polinomio omogeneo di primo grado nelle coor-
dinate dei vettori rispetto alla base {e,, ..., e,}. I coefficienti del polinomio sono
le coordinate del funzionale rispetto alla base duale {v,, ..., 1,}.

In particolare, se V=K", e {E,, ..., E,} & la base canonica, ogni funzionale
lineare L su K” si esprime in modo unico come un polinomio omogeneo di primo
grado:

LX), X5 ooy X)) =01X + %, + ... +a,X,. [11.11]

Si osservi che se il funzionale L:V — K non ¢ nullo, la sua immagine ¢ un sot-
tospazio vettoriale di K diverso da {0), e quindi Im(L) = K; da cid e dal teorema
11.6 segue che dim[N(L)] =n —1.

11.13 ProposizioNE  Siano V un K-spazio vettoriale ed f, g€V~ tali che si
abbia f(v) =0 per ogni veN(g), cioe N(f) D N(g). Allora esiste ceK tale che

f=csg.

Dimostrazione

Se g =0, allora N(g) = V e quindi N(f) = V, cioé f = 0 = g. Supponiamo vice-
versa g # 0. In tal caso N(g) ¢ un iperpiano. Fissiamo e€ V\N(g), e sia ceK tale
che f(e) = cg(e). Siha V =({e) ® N(g) e quindi ogni ve V ¢ della forma v = xe + w,
per qualche weN(g) e x€ K. Pertanto

S =f(xe +w)=f(xe) + f(w) =xf(e) = xcg(e) = cg(xe) =
=cg(xe) + c0 = cg(xe) + cg(w) = cg(xe + w) = cg(v),
ciod f=cg.
Dati due K-spazi vettoriali V ¢ W, & possibile introdurre in Hom(V, W) una

struttura di K-spazio vettoriale definendo F + G ¢ ¢F, per ogni F, Ge Hom(V, W),
ceK, nel modo seguente:

F+GYW)=F®+GW)
(cF)(v)=cF(v) per ogni V€V,

Lasciamo al lettore il compito di verificare, in modo simile al caso di
V™ = Hom(V, K), che queste due operazioni definiscono su Hom (V, W) una strut-
tura di K-spazio vettoriale, in cui lo zero & I’applicazione nulla 0.
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Nel caso particolare V = K, lo spazio Hom (K, W) & isomorfo a W: un isomor-
fismo A: W— Hom (K, W) ¢ definito associando a we€ W ’applicazione lineare
A(w): K— W tale che A(w) (1) = w; lasciamo al lettore la verifica del fatto che A
& un isomorfismo. A si chiama isomorfismo canonico di W su Hom (K, W), per-
ché ¢ individuato univocamente da W.

11.14 Complementi

1. Sia V un K-spazio vettoriale. 1I duale di V”, cioé lo spazio Hom(V", K),
si chiama spazio biduale di V, e si denota con V™. Se dim(V) = n, allora segue
dal teorema 11.12 che

dim(V™) =dim(V") = dim(V) = n,

eitre spazi V, V", V™ sono tra loro isomorfi.

Se si sceglie una base {e,, ..., e,} di V, resta definita la base duale {g,, ..., 3,}
di V7, e un isomorfismo ¢:V — V™ ¢ definito ponendo ¢(e;)=1, i=1, ..., n.
L’isomorfismo ¢ dipende dalla base assegnata, cioé se si sceglie un’altra base di
V, si ottiene un isomorfismo diverso da ¢ (cfr. esercizio 6).

Per lo spazio V™ si ha una situazione diversa: & infatti possibile definire un
isomorfismo B:V — V™ in modo del tutto intrinseco, cio¢ indipendente da qua-
lunque scelta ulteriore, il quale per questo motivo si dice Pisomorfismo canonico
divVsuvV™,

B & ’applicazione che ad ogni v €V associa il funzionale 8(v): V" — K definito
nel modo seguente:

BWML)=L(v)
per ogni LeV™.

Verifichiamo che §(v) ¢ lineare:

BMW(L+c'LYy=(L+cL)YV)=(LY®)+ (L)) =
=cL(V)+L'(v)=cf) L)+ 'BMWI(L),

per ogni L, L'eV™, ¢, ¢’€K, e quindi 8(v) & un funzionale lineare su V",
Verifichiamo ora che 8:V— V™ ¢& lineare. Per ogni v, v'€V, ¢, ¢'€K, si ha

Blev+c'vVY(L)=L(cv+c'V)=cL(Vy+c'L{v)=
=cBMWYL)+ BV )WL) =[cB(M) + BN (L)
per ogni LeV™, e quindi B(cv + ¢'Vv') =cB(v) + ¢'B(v’), cioé B ¢& lineare.
Per dimostrare che 8 ¢ un isomorfismo ¢ sufficiente far vedere che N(8) = (0),

perché dim (V) = dim (V™). Supponiamo per assurdo che esista veV, v # 0, tale
che B(v)=0eV™. Allora si ha

BWMWL)=LM)=0
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per ogni LeV". Siano v,, ..., v,€V tali che {v, v,, ..., v} sia una base di V. Il
funzionale L € V" definito da

Lwy=1, L(v)=0, i=2,..,n,

da una contraddizione.

2. Sia V un K-spazio vettoriale, dim(V) = n. Se L€ V", i vettori del nucleo di
L, cioéiveV tali che L(v) =0, si dicono talvolta ortogonali a L. Se ® & un sot-
toinsieme di V”, un vettore v€ 'V si dird ortogonale a ® se v & ortogonale ad ogni
Led, cioé se L(v) =0 per ogni Le®d. L’insieme

$+t ={veV:veéortogonalea ®} =N, ,N{L)CV

¢ un sottospazio vettoriale perché & I’intersezione di una famiglia di sottospazi
vettoriali di V. Chiameremo ®* il sottospazio di V ortogonale a ®.

Supponiamo in particolare che ® sia un sottospazio vettoriale di V~. Sia
dim(®)=te {L,, ..., L} una base di &. Allora si ha

d+=N(L)N..NNL) [11.12]

dim@*)=n-t. [11.13]
Infatti, se veN(L)N ... NN(L), allora per ogni L =a,L, + a,L, + ... + a/L,
si ha
LMV)=a,L(V)+aLlLV)+ ... +aL(v)=0
cioé veN(L). Pertanto N(L) N ... N N(L) C ®'. L’inclusione opposta & ovvia-
mente vera, e la [11.12] segue.

Sia m = dim(® ). Osserviamo che &' coincide con il nucleo dell’applicazione
lineare

¢: V=K'

definita da ¢ (v) = (L(V), LAV), ..., L(v)). Dal teorema 11.6 segue che m=n —¢.
Supponiamo per assurdo che sia m > n — ¢. Scegliamo una base {e,...,e,} di V
tale che {e,, ..., €,} sia una base di ®*.

La matrice ¢ X n:

0 b 0 Ll(em+l) ... Ll(en)
0 ... 0 Lye,.) ... Lsye)

0 bl 0 Ll(em+1) b L[(en)

10
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ha rango non superiore a f — 1, perché ha m > n — ¢ colonne nulle. D’altra parte
le sue 7 righe sono linearmente indipendenti, perché sono i vettori delle coordi-
nate di L, ..., L, rispetto alla base {9, ..., 1,}, duale di {e,, ..., e,}. Abbiamo
una contraddizione, e quindi dev’essere m =n —t.

3. Siano dati due spazi vettoriali complessi V, W. Un’applicazione

F:V-W

si dice antilineare se soddisfa le seguenti condizioni:
F(v+v)=FM)+ F('), [11.14]
F(cv) =CF(v), [11.15]

per ogni v, v'¢V, c€C. Una condizione equivalente alle [11.14], [11.15] ¢ la
seguente:
Fev+c'v)=cF® +Cc' FQK')

per ogni v, V'€V, ¢, ¢’€C. La verifica dell’equivalenza ¢ lasciata al lettore.

Esercizi

1. Siano g: U—V, f: V=W applicazioni lineari. Dimostrare che

N(@ CN(f-9)
Im(f) D Im(f°g).

2. Dimostrare che, se F: V— W & un’applicazione lineare tale che N(F)=<0),e v, ...
..., V,€V sono vettori linearmente indipendenti, allora F(v,), ..., F(v,) sono linear-
mente indipendenti. .

3. Sia H c R’ il piano di equazione X; + X, — X; =0, e sia u = (0, 1, 1). Dopo aver veri-
ficato che R® = H® (u), trovare ’espressione analitica della proiezione p : R*—~ H
nella direzione (u).

4. Sia W il sottospazio di R* di equazioni cartesiane
2X|+X3=0, 'X2“3X4=0,

esia U= (1,0, 0, 0), (0, 1, 0, 0)). Dopo aver verificato che R* = U@ W, trovare
’espressione analitica della proiezione p : R® ='W definita dalla precedente decom-
posizione di R* in somma diretta.

5. Esprimendo i funzionali lineari su R® come polinomi omogenei in X;, X>, X; a coef-
ficienti reali, determinare le basi di (R®)" duali di ognuna delle seguenti basi di R*:

a) {(1,0,0),(0,1,0),0,0,1)] b {(z, 0, 0), (0,—‘17, o), (o, 0, _L)]
2 6

9 {1, -1,0,0,1,1),(,0,2} 4d) {(1,0,0),(1,1,0), (1,1, D}.
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6. Sia V un K-spazio vettoriale tale che dim(V) =1, e sia e€ V\{0}. Sia € V" il funzio-
nale duale di e, cioé il funzionale definito dalla condizione
7@ =1.

Dimostrare che per ogni a€ K*:

a) il funzionale lineare duale di e & { =a '3

b) se ¢, ¥ : V— V" sono gli isomorfismi definiti rispettivamente da ¢ (e} = 7,
Y(ae) = ¢, allora ¢ =a .

12 Applicazioni lineari e matrici. Cambiamenti di coordinate affini

Siano V e W due K-spazi vettoriali di dimensione finita, e v= {v,, ..., v,} ¢
w={w,, ..., w,} basi di V e di W rispettivamente.

Sia F:V— W un’applicazione lineare. La matrice m X n la cui j-esima colonna,
Jj=1,..., n, & costituita dalle coordinate del vettore F(v,) € W rispetto alla base w
¢ la matrice associata a F rispetto alle basi v e w, ¢ si denota con M,, ,(F). Espli-
citamente:

my My .. My,
my, m,, .. m,,
M, B =| - - -,
My, mmZ cee My,

dove
F(v}-) =My W+ MyW, + oo+ T, W,

Ovviamente M, ,(F) dipende, oltre che da F, anche dalle basi v e w. L’utilita
della matrice M, ,(F) sta nel fatto che, una volta assegnate le due basi v e w, da
essa si puo risalire all’applicazione lineare F, come chiarito dalla seguente propo-
sizione.

12.1 PrOPOSIZIONE Siano V e W due K-spazi vettoriali, v = {v,,..., v,} e
w={w, ..., w,} basi di V e di W rispettivamente, e F:V — W un’applicazione
lineare. Per ogni v=xv,+ ... + x,v,€V si ha

FWV)=yw + ... + Y, W,
dove
B g X1

=M, F)

Yn X,
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Dimostrazione
Si ha:
FW)=F( v, + v+ ... +x,V)=xF)+5,F(V)+ ... + x,F(v,) =
=x,(m Wy + my Wy + ... +m, W,)+
+2,(m W, + MWy + L M, W)+ L
e F X, (M, W+ MW+ M, W) =

n n n
= (Elmuxj) w, + ( Ex my X)Wy + .+ ( j§l My X)W,

Quindi il vettore colonna delle coordinate di F(v) ¢

n
X m,x;
» o X
n
Y2 X m,;x; X2
i=t
= . =M, (F)
n
X,
n L m,;x; "

mjtj

j=1
Abbiamo il seguente teorema.
12.2 TEOREMA  Siano V e W due K-spazi vettoriali, e siano v = {v,, ..., v,}
ew={w, ..., w,} basi di V e di W rispettivamente. L’applicazione
M, ,: Hom(V, W)—~M, ,(K)
F-M, (F)
& un isomorfismo di K-spazi vettoriali. In particolare
- dim[Hom(V, W)] = mn.

Dimostrazione

Siano F, GeHom(V, W), M=M, (F), N=M, (G), e ceK.

Sev=x,v,+ ... +Xx,v,, denotiamo con x = ‘(x, ... x,) ’n-vettore colonna delle
coordinate di v rispetto alla base v. Gli m-vettori colonna delle coordinate di F(v)
e di G(v) rispetto a w sono rispettivamente Mx ed Nx, mentre il vettore colonna
delle coordinate di (F+ G) (v) = F(v) + G(v) ¢ Mx + Nx = (M + N)x; quindi

M, (F+ G)=M, (F)+M, (G).

Inoltre I’m-vettore colonna delle coordinate di (cF) (v) =cF(v) ¢&
c(Mx) = (cM) x, e quindi

M, (cF) = cM, ,(F).

Pertanto M, , ¢ un’applicazione lineare.
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Sia A€M, ,(K) e definiamo
F,:V->W
ponendo
F v, + %5,V + oo +X,9) =AW, + (AP w,+ ... + (A"x)w,,

dove abbiamo denotato con x = '(x; ... x,) e AV, AD@, ..., A" le righe di 4. In
altre parole, il vettore colonna delle coordinate di F,(v) ¢ Ax.

Verifichiamo che F, € un’applicazione lineare. Consideriamo due vettori qual-
siasi V=V, + ... +X,V,, V =Xx]V,+ ... + x,v,di V. Si ha

Fiv+v)=AYX+x)w, + ... +A™X+x )W, =
= (AVX + AOX )W, + ... + (ADX + ADX YW, =
=AW, + ... + (AW, + (ADX)IW, + ... + (A"X )W, =
= F (V) + F(v').

Se c€K si ha inoltre

FevV)=AYex)w + ... + (AT ex)w,, =
=c(AYX)w, + ... +c(AMx) W, =
=c[(ADX)w, + ... + (A™X)W,] = cF (V).
Quindi F, & lineare. Per definizione si ha
M, F)=A.
D’altra parte, se A =M, ,(F) si ha evidentemente F, = F. In conclusione,
P’applicazione
M,, ,(K)— Hom(V, W)
A~ F,

¢ Pinversa di M, ,. L’ultima affermazione del teorema segue dall’esempio 4.15(7).

L’applicazione F, introdotta nel corso della dimostrazione del teorema 12.2
si dice applicazione lineare associata alla matrice A rispetto alle basi v e w. Essa
¢ definita, per ogni A€M, ,(K), ponendo

F,.xxvi+ ... +x,v)=y,w, + ... +y,W,,

dove y = Ax, essendo x = '(x;...x.), ¥y =", ... ¥)-

Si noti che M, , fa corrispondere all’applicazione lineare 0 la matrice nulla
m X n. Dalla definizione segue inoltre che per ogni v€V il vettore F,(v) ha per
coordinate polinomi omogenei di primo grado nelle coordinate di v.
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12.3 ProposizioNE  Siano U, V, W spazi vettoriali su K di dimensioni s, n
ed m, e siano u = {uy, ..., w},v={v, ..., v,} ew={w, ..., w,} loro rispettive
basi. Siano G:U—V ed F:V—W applicazioni lineari. Si ha

M, (FoG) =M, (F)M, ().

Dimostrazione
Seu=zu +2z,u,+ .. +zneU, siano

G)=xv,+5v,+ ... +x,V,
FG)=F-Gm)=y,w, +yw,+ ... +y,W,.
Ponendo z="'(z, z, ... 2), X="(x; X, ... X)), Y="(; ¥> ... ¥,)), si ha
x=M, ,(G)z
y=M, ,F)x=M, F) M, (G)2=[M, F)M,, (G

SeV=Wesev={v,..,v,}] ew={w, ..., w,} sono due basi di V, ad ogni
operatore lineare F su V ¢ associata una matrice quadrata M, ,(F) €M, (K).

Se v = w, dalla proposizione 12.3 segue che Fe GL(V) se ¢ solo M, ,(F)€GL,(K),
e in questo caso si ha

M, ,(F)=M, (F)"

Inoltre M, ,(F) =1, se e solo se F=1,.

Un caso particolare importante si ha prendendo due basi distinte ve w di V
e F = 1,, Papplicazione identitd. In questo caso M, ,(1y) ¢ detta matrice del cam-
biamento di coordinate dalla base v alla base w.

Per definizione la colonna j-esima di M, ,(1y) & costituita dalle coordinate di
v, rispetto alla base w, per ogni j=1, ..., n. Per ogni vettore v€V si ha

V=XV + X5V + o F XV, =YW W+ L+ Y,W,
e, posto X =(x;...x,), Y= "(); ... ), si ha
y = Mw,v(lv) X.

Quindi la matrice M, ,(1,) permette di ottenere le coordinate y di un vet-
tore v rispetto alla base w una volta note le sue coordinate x rispetto alla
base v.

Si noti che, per la proposizione 12.3:

M, QY M, (1) =M, (1) =1,
e quindi

Mv,w(lv) =Mw,v(lv)_l' [12.1]
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Supponiamo ora che lo spazio vettoriale V sia reale. Due basi e = {e, ..., €,}
ed f={f,..., f,} di V si dicono orientate concordemente se det(M, ,(1,)) >0,
e si scrive e ~_f. Altrimenti le due basi si dicono orientate discordemente.

Ogni base ¢ orientata concordemente a sé stessa perché M, (1,) = L,. Inoltre,
poiché M; (1) = M, ;(1y) "', il fatto che due basi siano orientate concordemente
o discordemente non dipende dall’ordine in cui esse sono state prese. Infine, se
e ed f sono orientate concordemente, e cosi pure fe g = {g,, ..., g,}, allora anche
e e g sono orientate concordemente. Infatti si ha

det(M, ,(1y)) = det (M, (1y) (M, ,(1y)) = det (M, (1)) det (M, ,(1y)) > 0.

Deduciamo che ~, & una relazione di equivalenza nell’insieme % di tutte le
basi di V. Ogni classe di equivalenza si chiama orientazione di V.

Quante sono le orientazioni di V? Certamente almeno due, perché se
e={e, ..., e,} &una base di V, esiste qualche base orientata discordemente da
e, ad esempio la base f= {—e,, e,, ..., ¢,}. Infatti

-1 0 ... O
01 ... O

Me,f(lv)=
00 .. 1

D’altra parte, le orientazioni non sono piu di due: infatti se esistessero tre basi
e, f e g orientate discordemente a due a due, si avrebbe 1’assurdo

0> det(M, ,(1y)) = det(M, ((1,)) det (M} (1)) > 0.

Quindi V possiede due orientazioni, cioé¢ 9 ¢ ripartito in due classi di equiva-
lenza rispetto a ~.. L’orientazione cui una data base e€ % appartiene ¢ I’orien-
tazione di V definita da e.

12.4 Esempi

1. Se V=K", W=K"e¢ ve wsono le basi canoniche di K” e di K” rispettiva-
mente, I’applicazione F, associata a una matrice A€M, ,(K) ¢ data da

F,(x)=Ax per ogni xeK",

se gli elementi di K” e di K” sono visti come vettori colonna.
Poiché le colonne di A sono i vettori F,(E,;), F(E,), ..., FE,), si ha

Im (Fy) = (Fy(Ey), FAE), ..., Fi(E,)).

In particolare r(F,) = r(A).
Si noti che le coordinate del vettore Ax sono m polinomi omogenei di primo
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grado in x,, X,, ..., X,. Viceversa, una qualunque applicazione lineare F:K" — K"
é della forma

Flxy, X5 ooy X)) = (F1(Xg5 Xoy ey X))y FolXyy Xay oees X5 ooes FrpllXyy Xy ooes X))

in cui ognuno degli F;(x;, x,, ..., X,) ¢ un funzionale lineare su K": infatti F; &
uguale alla composizione

7,0 F:K"—> K" =K,

che ¢ lineare. Ricordando la [11.11], vediamo che ognuno degli F;(x;, x,, ..., X,)
€ un polinomio omogeneo di primo grado in Xx;,X,, ..., X,.

Quindi ogni applicazione lineare F:K"—K™ & definita da m polinomi
omogenei di primo grado in x,, ..., X,, e la corrispondente matrice ha per prima,
seconda, ..., m-esima riga i coefficienti di F,(X;, X55 ..., X,)s Fy(X15 Xp5 o5 X,),5 «-.
ces Foi(xyy Xp5 ooy X,).

Ad esempio, alla matrice

1 2 2
A= eM, .(R)
3 1 -% 3

¢ associata I’applicazione lineare F,:R>*— R? cosi definita:
F (X1, X, X3) = (06, 4 2%, + V22X, 3x, + x, — x;,/2).
Viceversa all’applicazione lineare F:R*— R? seguente:
F(x;, Xy X35 X)) = (2%, = X3 + X4 X, — 32+ 3X,/2, X, — X, + X3 + 5x,)

€ associata la matrice

2 0 -1 1
3
0 1 -3 =
2
1 -1 1 5

2. Siano A eM,, ,(K), b= "'(b, ... b,) K", e consideriamo il sistema di m equa-
zioni lineari in # incognite

AX =b, [12.2]

dove X = '(X] ... X,). Un vettore x = '(x; ... x,) €K” & una soluzione del sistema
[12.2] se e solo se F(x) = b, dove F,:K"— K™ ¢ ’applicazione lineare associata
ad A. Affinché un x € K” siffatto esista € necessario e sufficiente che b€ Im(F,).
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D’altra parte, poiché Im (F,) ¢ generata dalle colonne di A, affinché beIm(F,),
cioé affinché il sistema [12.2] sia compatibile, € necessario ¢ sufficiente che

r(A)=r(Ab).

In questo modo abbiamo ottenuto una nuova dimostrazione del teorema’ di
- Kronecker-Rouché-Capelli.

Sappiamo che, se & compatibile, il sistema [12.2] possiede oo”~" soluzioni, dove
r =r(A). Cio puo essere dimostrato anche osservando che il sistema [12.2] pos--
siede un’infinita di soluzioni uguale alla dimensione dello spazio delle soluzioni
del sistema omogeneo associato

AX =0,
e che tale spazio coincide con N(F,). Per il teorema 11.6 abbiamo
dim[N(F)l=n—r(F)=n—r.
3. Sia V uno spazio vettoriale reale di dimensione 3, ¢ sia e = {e,, e,, €;}

una base di V. Consideriamo le seguenti basi, i cui vettori assegniamo in coordinate
rispetto a e:

V= {vl(ls 1, 0)9 v2(2‘9 1’ 1)3 V3(03 _23 1)}
w={w,(—1,0, D), w,(1, —2, —3), wy(1, 1, I)}.

Si ha
1 2 0 3 -2 -4
M, (ay=|1 1 =2 M, ()=M,,Q,) '={-1 1 2]
0 1 1 1 -1 —1
Similmente
-1 1 1

Me,w(lv) = 0 -2 1

M, (1) =M,, 1) '=
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Per calcolare M, ,(1,) conviene utilizzare la proposizione 12.3. Si ha

M, (1)) =M, ()M, (1)) =

1 ) 3 1 2 0 23 11
2 2 2 2 2
S S U T 6 S T T ) N (N e e
2 2 2 2 2
1 -1 1 0 1 1 0o 2 3
Infine, per calcolare M, ,(1y) possiamo utilizzare I’identita
Mv,w(lv) = Mw,v(lv) !
¢ calcolare P'inversa’di M, ,(1y), oppure scrivere
Mv,w(lv) = Mv,e(IV) Me,w(lv) =
3 -2 -4\ [-1 1 1 -7 19 -3
-1 1 2yl 0 -2 1]=]| 3 -9 2}
1 -1 —1/{1 =3 1 -2 6 -1

4. Siano V e¢ W spazi vettoriali reali, dim(V) =4, dim(W) =2, siano v =
= {v,, V,, V3, V,} e w= {w,, w,} basi di V e W rispettivamente, e sia F:V—>W
I’applicazione lineare tale che

13 -2 1
M, (F)= 2.
12 0 1 0
Siano
€= {el(la 19 19 2)9 e2(2, —la 39 0)9 e3(\/§3 13 0’ 0)! e4(19 —% s 13 5)}
f= {fl(za _3)9 fz(_ls 3)}

nuove basi di V e di W rispettivamente, assegnate mediante le loro coordinate
nelle basi v e w. Per la proposizione 12.3 si ha

Mf,e(F) = MI,W(IW) MW,V(F) Mv,e(lv)'
Poiché

2 -1
Mw,f(lw) =
-3 3
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1 1
3 3
Mf,w(lw) =Mw,f(lw)“l = _ i l
3 3
1 2 V21
1 -1 1-%
Mv,e(lv)= ’
1 3 0 1
2 0 0 5
si ottiene
1 242 1
1 1
3 3\f1t 3 -2 L\[1 -1 1 -1
Mf‘e(F)’:: 2 2 |=
1 20\ 0 1 I 30 1
3 3 2 00 5
1 242 1
1 o1 -L LNy oo 2L
3 6 2
1 -1 A1ty 3 0
3 6
2 00 5
(2 0 V2+1 1)
1 7 V2-1 2/

5. Nello spazio vettoriale M,(C) delle matrici 2 X 2 a coefficienti complessi
consideriamo le basi

0=y o 1=l ofa=(; o)== ()
e=11,= = = 1=
11 0 0 12 0 0) 21 l 0 22 0 1
0 1 0 -—i 1 0
e N e N
1 0 i 0 0 -1



156 Geometria affine

dove X,, £, e I, sono le matrici di Pauli (cfr. esercizio 13, § 4). Poiché

L=1,+1y X =l+tl, I=-ilp+ily, I;=1;-1y

si ha:
1 0 0 1
0 1 —i 0
M, )= s
0 1 i 0
1 0 0 -1
1 9 o L
2 2
o L L o
2 2
M, ()=M,,1) "= . .
0o -~ -1 o
2 2

In uno spazio affine A con spazio vettoriale associato V consideriamo due rife- .
rimenti affini, Fe, ... e, e Ff, ... f,, e un punto qualsiasi P€A.

Sia x = ‘(x;...x,) il vettore colonna delle coordinate di P nel riferimento
Ee, ...e,esiay="(y ...y,) quello delle coordinate di P€ A rispetto a Ff, ... f,.
Si ha

—
EP=xe,+ ... +x,e,
—
FP=yf + .. +y,f,.
Supponiamo di conoscere x € di voler trovare y.
Denotiamo con e = {e,, ..., e,] ed f={f,,..., £,} le due basi di V, con

A = (a;;) = M; ,(1y) e con ¢ = '(c, ... ¢,) il vettore delle coordinate di E rispetto
a Ff, ... f,. L’identita vettoriale

_— —> —>
FP=FE + EP,

espressa rispetto alla base f, ci da
y=Ax+ec. [12.3]

La [12.3] & la formula del cambiamento di coordinate affini dal riferimento
Ee, ... e, al riferimento Ff, ... f,.
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Come era prevedibile, la [12.3] dipende solo dalle basi e ed f e dai punti E ed
F, le origini nei due riferimenti affini assegnati.

Nel caso in cui lo spazio A & uno spazio affine reale, due riferimenti affini
Ee, ...e, e Ff ... f, si diranno orientati concordemente (orientati discordemente)
se le basi e ed f sono orientate concordemente (orientate discordemente).

Consideriamo I’insieme # di tutti i riferimenti affini di A, ein % diciamo
equivalenti due riferimenti se sono orientati concordemente. Procedendo in modo
simile al caso vettoriale, possiamo verificare che quella che abbiamo definito &
effettivamente una relazione di equivalenza, e che le classi di equivalenza sono
due. Esse si dicono le orientazioni di A. L’orientazione cui un dato riferimento
Ee, ... e,€ % appartiene & 'orientazione di A definita da Ee, ...e,.

12.5 Esempi

1. Se FEe, ... e, ¢ un riferimento affine dello spazio affine A e se un secondo
riferimento affine assegnato ¢ Fe, ... e,, cioé¢ & ottenuto solo cambiando la posi-
zione dell’origine e lasciando invariata la base dei vettori, la formula [12.3] si riduce
alla seguente:

y=x+c. [12.4]

Se invece il secondo riferimento & Ef, ... f,, cioé & ottenuto cambiando la base
dei vettori, ma non ’origine, la formula [12.3] diventa

y = Ax. [12.5]

Ogni cambiamento di riferimento affine si puo ottenere come la composizione
di uno del tipo [12.4] seguito da uno del tipo [12.5], o viceversa. La verifica &
lasciata al lettore.

2. Siano Fe,...e,, Ff, ...f, e Gg, ... g, tre riferimenti affini in A, e siano
X="0...x), y="(...v) e 2= (g, ... z,) 1 vettori delle coordinate di un punto
Pe¢ A rispetto ad ognuno dei riferimenti dati. Supponiamo che il passaggio dalle
coordinate x alle y sia dato dalla [12.3] e che qucllo dalle y alle z sia dato dalla
formula

z=By+d [12.6}

con B=(b;;), ed="'(d,...d,). Allora la formula che esprime il passaggio dalla
x alle z si ottiene sostituendo la [12.3] nella [12.6], e quindi &

z=BAXx + (d + Bc).
3. Con le notazioni della [12.3] la formula che esprime il passaggio dalle coor-
dinate y alle x, cioé¢ il passaggio inverso di quello dato dalla [12.3], &

x=A'y—-A"'e [12.7]
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Infatti, sostituendo la [12.3] nel secondo membro della [12.7] si ottiene P’iden-
tita x = x.

4. Sia A uno spazio affine reale di dimensione 3, e sia V lo spazio vettoriale
associato. Siano Ee, e,e, ed Ff,f,f, due riferimenti affini in A. Supponiamo che
fi=e +e, f=—e +e, f=¢ +e,+te,

e che F abbia coordinate (5, — 372, 1/2) nel riferimento Ee, e,e;.

Per conoscere la formula di cambiamento di coordinate dal riferimento
Ee, e,e, al riferimento Ff, f,f; occorre conoscere la matrice M; (1), nonché le
coordinate ¢, ¢,, ¢; di E rispetto a Ff,f,f;. Si ha

1 -1 1
M, 1)=|1 0 1
0 1 1
e quindi
-1 2 -1
Mf,e(lv)sz:,»,f(lv)‘l: -1 1 0f.
1 -1 1

Per determinare (c,, ¢,, ¢;) utilizziamo la matrice M; (1) che abbiamo appena
calcolato. Si ha

—s — 3 !
ofi+of, +efy=FE= - EF=— 561—;e2+—-e3 .

2
Pertanto

- =3 17
c — 1 2 -1 2
=M 0| > l=|-1 1 off =l
c 1 -1 1 2

_ 1 _1
2 2 -7

In conclusione, la formula del cambiamento di coordinate dal riferimento
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Ee,e,e, al riferimento Ff,f,f, &

17
» -1 2 -1\ /x 2
nl=l-1 1 ol|x]+]3

2
y3 1 —1 I x3

-7

ovVvero:
17

y,=—xl+2xz—x3+7

y2=_xl+X2+"lzi

y3=xl_x2+X3—?.

Esercizi

1. Sia F: R?— R’ I’applicazione lineare
Fxi, x3) = 0o + X2, X0~ 2X3, X1).
Determinare M, ,(F), dove
b={(1, 1,0, -1}, b ={d,1,1D,d, -2,0),©,0, 1)}.

2. Sia F: R>— R? I’applicazione lineare

2 2 2 2
Determinare M, ,(F), dove
bzi(l9 1)9 (19 _l)}a b/={(l, 03 1)9 (09 13 l)s (29 —l, _1)]'

3. Sia F : C*— C? Papplicazione lineare definita dalla matrice

2 1 -1
4= )
i i 1+i

rispetto alle basi b = {(1, i, i), (, 1, 1), (0,1, 0)} di C’ e b’ = {(1, 1), (i, —i)} di C*.
Determinare la matrice che rappresenta F rispetto alle basi canoniche.

X, 3x; 3x X:
F(a, x) = (— — = ' -, xn)

4. Siano v;=(—1, 1, 1), v,=(1, 1, 0), vs= (0, 2, 1)€ R% Dimostrare che non esiste
un’applicazione lineare F : R*— R’ tale che

F(v)=(1,0,0), F(v)=(0,10), F()=(,0, 1.
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5. Per ognuna delle seguenti coppie di basi b e b’ di R?, determinare M, , (1):
a) b={1,0), 0, )}, b’ =1{U,V3), 3 1}
by b=1{({1, -1, 1, D}, b ={(1,0), 1, 1}
9 b=1{2 1,22}, b ={(5 -V5), (55

6. Per ognuna delle seguenti coppie di basi b e b’ di C?, determinare M, , (1):
a)b={(1,1, G D}, b ={C 1,1 2}
b) b= (G D, (-1, D}, b"={G 0), 0, D}.

7. Per ognuna delle seguenti coppie di basi b e b’ di Q°, determinare M, , (1):

ayb=1{(1,0,1),(1,1,0, (0,1, D}, b ={1,11,(0,1,1),(0,0, 1)}

b) b= {(11 _1’ 1)3 (__19 1’ 1)9 (ly 11 l)}’
b’ ={(13,5, —6), 8, —10, —4), (-17,0, —7N}.

8. In un piano affine reale A si supponga fissato un riferimento affine Oij.
Determinare le formule di cambiamento di coordinate dal riferimento Qij al riferi-
mento O’i’j’ dove O’ =0'(1, 2), i’ =i+3j,j" =i+]j.

9. In un piano affine reale A si supponga fissato un riferimento affine Oij, e siano z,
2z’ ed 2" le rette di equazioni

2: X+Y=0, 2:X-Y-1=0, 2":2X+Y+2=0.

. — —_—
PostoO'=2znN2,U=2N2",U =2 N2z",sianoi’ =0'U, j'=0'U’. Dopo
aver verificato che i vettori i’ e j° sono linearmente indipendenti, determinare le for-
mule del cambiamento di coordinate dal riferimento Oij al riferimento O’i’j’.

10. Sia A uno spazio affine reale di dimensione 3, in cui sia fissato un riferimento affine
Oijk. Determinare le formule del cambiamento di coordinate dal riferimento Oijk
al riferimento O’i’j’k’, dove

0’=0’<1,—1r,l), i'=i+k, j=j-k k' =i+j+k.
3 3

11. Siano e = {e,, ..., €,}, b= {b,, ..., b,} due basi del K-spazio vettoriale V, ¢ siano
N= {9, ..e, M}, B={B, ..., B} le basi di V" duali di e e di b rispettivamente. Dimo-
strare che

My 7 (1v) = '[IM. ,(11)].

13 Operatori lineari

Sia V un K-spazio vettoriale di dimensione finita, e sia e = {e,, ..., e,} una
base di V. Per ogni operatore F€ End (V) scriveremo M, (F) invece di M, .(F), e
chiameremo M,(F) la matrice di F rispetto alla base e.
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Dal teorema 12.2 discende che I’applicazione
M,: End(V)—-> M, (K)
F— M, (F)
¢ un isomorfismo di K-spazi vettoriali. Si ha
M) =1,

e M (F)eGL,(K) se e solo se Fe GL,(V), cioé¢ un’operatore F & un automorfi-
smo se e solo se M, (F) ¢ invertibile. Quindi I’applicazione M, induce una biezione
che denotiamo con lo stesso simbolo:

M,: GL(V)—GL,(K).
Sia f= {f,, ..., f,} un’altra base di V. Dalla proposizione 12.3 deduciamo che
M (F) = M; (1) M (F) M, ((1y).
Poiché M; (1) = M, ((1,) ', otteniamo
M(F) =M, ,(1y) "' M (F) M, ;1) [13.1]
da cui segue immediatamente che
det (M, (F)) = det(M (F)),

cioé det(M,(F)) non dipende dalla base e, ma solo da F. Chiameremo pertanto
det (M, (F)) il determinante dell’operatore F ¢ lo denoteremo con det(F), senza
dover specificare la matrice M, (F) attraverso la quale ¢ stato calcolato.

13.1 DErINIZIONE Due matrici A, BeM,(K) si dicono simili se esiste
MeGL,(K) tale che B= M~' AM.

La similitudine é una relazione di equivalenza in M, (K). Infatti ogni matrice
¢ simile a sé stessa: A=1'41,. Se B=M"'AM, allora

A=MM YAMM HY=MM 'AMYM '=(M-"'BM!
e la relazione ¢ simmetrica. Se B=M 'AM e C= N"'BN, allora
C=N'MTAMYN=(MN) 'A(MN)

e la relazione & transitiva.

13.2 ProprosizioNE Sia V un K-spazio vettoriale, dim(V) = n, e siano A,
BeM,(K). A e B sono simili se e solo se esistono un operatore lineare F€End (V)
e basi e ed £ di V tali che M(F)= A ed M(F) = B.

11
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Dimostrazione
Se F, e, fesistono, allora dalla [13.1] segue che 4 e B sono simili. Supponiamo
viceversa che

B=M4AM. [13.2]

Sia e una base arbitraria di V e sia F = F, ’operatore associato alla matrice A
rispetto alla base e. Per ogni j =1, ..., n sia f; il vettore le cui coordinate rispetto
a e sono gli elementi della j-esima colonna di M, cioé f; = m,e, + m,e, + ...
... + m,e,. Poiché M ha rango #, i vettori f,, ..., f, sono linearmente indipen-
denti e quindi {f, ..., f,} & una base di V. Si ha inoltre

M=M, ,1,).
Dalla [13.2] discende che B = M (F).
13.3 DeriNizioNe  Sia V un K-spazio vettoriale, dim(V) = n. Un operatore

Fe¢End(V) si dice diagonalizzabile se esiste una base e di V tale che M ,(F) sia
una matrice diagonale, cioé della forma

A0 L0
0 A ... 0
0 0 ... A

n

per opportuni X;, Ay, ..., A, €K.

Se cio avviene e é una base diagonalizzante per F.

Una matrice A € M, (K) si dice diagonalizzabile se & simile a una matrice dia-
gonale.

Ovviamente, se FeEnd(V) ed e ¢ una base di V, F ¢ diagonalizzabile se ¢ solo
se M,(F) & una matrice diagonalizzabile. In particolare 4 € M, (K) ¢ diagonaliz-
zabile se e solo se 'operatore F,: K”— K” definito da A ¢ diagonalizzabile.

Se F: V—V & un operatore lineare diagonalizzabile ed e ¢ una base diagonaliz-
zante per F, si ha

Fle)=X e, i=1,..,n. [13.3]

Viceversa, se una base e soddisfacente la [13.3] esiste, allora la matricc M, (F)
& diagonale, e quindi F ¢ diagonalizzabile ed e ¢ una base diagonalizzante.

Si noti che, se dim(V) =1, allora ogni F€End(V) ¢ diagonalizzabile ed ogni
base di V ¢ diagonalizzante per F. Se dim (V) = 2 non tutti gli operatori 7€ End(V)
sono diagonalizzabili. Similmente non tutte le matrici 4 € M, (K) sono diagona-
lizzabili se n =2 (cfr. esempio 13.15(3)).
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In relazione al problema di stabilire Pesistenza di basi diagonalizzanti si pre-
sentano in modo naturale le nozioni di ‘‘autovettore’® e di ‘‘autovalore”.

13.4 DerINizioNE  Sia V un K-spazio vettoriale, e sia F€End(V). Un vettore
v €V si dice autovettore di Fse v # 0 ed esiste uno scalare €K tale che F(v) = Av.

A & I"autovalore di F relativo all’autovettore v.

1l sottoinsieme di K costituito dagli autovalori di F é lo spettro di F.

Se AeM,(K), un autovettore di A é un autovettore x€K" dell’operatore
F,.: K"—= K" definito da A, e un autovalore di A é un autovalore di F,.

Ad esempio, se F=1,, ogni v # 0 ¢ un autovettore di F con autovalore A =1.
Se F & un operatore tale che N(F) # (0), ogni ve N(F)\{0} & un autovettore
di F con autovalore A =0.

Diamo qui di seguito alcune semplici proprieta degli autovettori e degli auto-
valori di un operatore F€ End(V). Supporremo dim(V)=n=1.

13.5 PROPOSIZIONE L ’autovalore relativo a un autovettore v e univocamente
determinato.

Dimostrazione
Se Av = F(v) = pv per qualche A, p€K, allora (A — p)v =0 e, poiché v #0,
dev’essere A —u =0, cio¢ A = pu.

13.6 PROPOSIZIONE  Se v,, V,€V sono autovettori relativi allo stesso autova-
- lore A, allora per ogni c,, c,€K il vettore ¢, v, + ¢,v,, se non ¢é il vettore nullo, é
ancora un autovettore con autovalore A.

Dimostrazione
Si ha

F(c,v, + ¢,v,) =, F(v)) + ,F(v)) = ¢/ AV, + CAv, = A(c,V, + C,V,).

Dalla 13.6 segue che Pinsieme
V,(F) = {veV: v é un autovettore di F con autovalore L} U {0}

¢ un sottospazio vettoriale di V, detto ’autospazio relativo all’autovalore h.
Per una matrice 4 € M, (K) si definisce /’autospazio V,(A) relativo all’autova-
lore ) come il sottospazio V,(A4) =V, (F,) di K".

13.7 PROPOSIZIONE ~ Se v,, ..., v, €V sono autovettori relativi agli autovalori
A s .-es Ay, € Se questi k; sono a due a due distinti, allora v,, ..., v, sono linear-
mente indipendenti.



164 Geometria affine

Dimostrazione
L’asserzione ¢ banalmente vera se k =1, perché v, # 0. Procediamo per indu-
zione su k, e supponiamo k= 2. Se

v+ v, + ... +ov, =0, [13.4]

allora, applicando F a entrambi i membri, si ha anche

CIF(VI) + CZF(VZ) + ... + CkF(Vk) - 0,
cioé
MV + oAV, + ol o v, =0, [13.5]

D’altra parte, moltiplicando ambo i membri della [13.4] per A,, si ottiene
MOV +AGY, + ... + A6V, =0, [13.6]
e sottraendo la [13.6] dalla [13.5]:
G —A) v+ oy —A) v =0. [13.7]

Per lipotesi induttiva v,, ..., v, sono linearmente indipendenti, e quindi i coef-
ficienti del primo membro della [13.7] sono tutti uguali a 0. Poiché A, — A, # 0
per ogni j, si deduce che ¢, = ... = ¢, = 0. Quindi la [13.4] si riduce a ¢;v, =0,
e quest’identitad implica che anche ¢; =0, perché v, # 0.

13.8 ProPOSIZIONE ~ Se ogni ve V\{0} & un autovettore di F, allora esiste . K
tale che F=\1,.

Dimostrazione

Se dim(V) =1 ’asserzione & ovvia. Possiamo quindi supporre dim(V) = 2. Sia
{e,, ..., &,} una base di V. Dall’ipotesi segue che esistono i, A,, ..., A, €K tali che
F(e)=M\e, i=1,..., n. Siano 1 <i, j < n due indici distinti, ¢ sia v;; = e; + e;. Per
ipotesi esiste A;;€K tale che

F(v;) =X v, = ke, + A8

(A
D’altra parte si ha
F(v;)=F(e;+ e)=F(e) + F(e) = L,e; + Ase,

e, per I'indipendenza lineare di e; ed e;, deduciamo che A; = A; = 1,;. In conclu-
sione A, =X, = ... = A, e I’asserto & provato.

In pratica nella ricerca degli autovalori di un operatore o di una matrice si uti-
lizza il cosiddetto ‘‘polinomio caratteristico’’. La sua definizione si avvale del
seguente semplice risultato.
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13.9 ProposizioNE Sia V uno spazio vettoriale di dimensione finita e sia
FeEnd(V). Uno scalare A €K & un autovalore di F se e solo se ’operatore

F-Al,: V-V
definito da
(F— A1) (v) =F(v)—Av per ogni veV,
non & un isomorfismo, o, equivalentemente, se e solo se det(F —A1y)=0.

Dimostrazione
F— )1, non & un isomorfismo se e solo se N(F — A1y)) # (0), cioé se esiste
veV, v#0, tale che (F - A1) (v) =0, ovvero tale che

F(v) = \v. [13.8]

La [13.8] afferma che F possiede I’autovettore v con autovalore A.

Sia e = {e,, ..., ¢,} una base di V. La matrice associata all’operatore A1, ¢

e, se A =(a;)) = M (F), allora

a,— i a, e ap,

a Gp— A o Gy
M,F—-1y) =

a,, a,, cee Ay — A

13.10 DeriNizioNe  Sia A€ M, (K) e sia T un’indeterminata. 1l deferminante

a,—T a, cee iy

ay =T ... a,
P(T=14-TLl=

ayy > Lot Aun — T

& un polinomio di grado n in T, detto polinomio caratteristico di 4.
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Se FeEnd(V), e= {e,, ..., e,} e una base di V e A = M (F), allora P,(T) ¢
il polinomio caratteristico di F, e si denota con P(T).

La definizione di P(7") ¢ indipendente dalla base e, perché due matrici simili,
come sono quelle che rappresentano Fin due basi diverse, kanno lo stesso polino-
mio caratteristico.

Per vederlo, siano A e B due matrici simili, cioé si abbia B =M "' AM, per
qualche MeGL,(K). Allora

B-TL=M1AM—-TIL,=M"'(4 - TL)M.

Pertanto |IB—TL, I =IM'1A-TLI IMI=14A-TI,I.

Si noti che il coefficiente di 7" in P,(T) & (—1)", e quindi (—1)"P,(7T) & un
polinomio monico.

Dalla proposizione 13.9 deduciamo il seguente corollario.

13.11 CoroLLarI0  Sia V uno spazio vettoriale di dimensione finita n, e sia
FeEnd(V). Allora L€ K é un autovalore di F se e solo se A e radice di P-(T). In
Dparticolare F possiede al piit n autovalori distinti.

Dimostrazione

La prima asserzione & una riformulazione della proposizione 13.9. Poiché
P,(T) ha grado uguale a dim (V), I'ultima asserzione segue dal fatto che un poli-
nomio di grado n a coefficienti in K possiede al piu n radici in K.

11 corollario 13.11 fornisce un metodo pratico per calcolare autovalori ed auto-
vettori di un operatore. Rinviamo agli esempi alla fine del paragrafo per illustra-
zioni pratiche di questo metodo.

Il problema di stabilire se un operatore ¢ diagonalizzabile & un problema di
ricerca di autovalori e dei relativi autovettori. Si ha infatti:

13.12 ProrosizioNE  Sia V uno spazio vettoriale di dimensione finita. Un ope-
ratore FEEnd (V) ¢ diagonalizzabile se e solo se V possiede una base costituita
da autovettori di F.

Dimostrazione
Segue immediatamente dalla [13.3].

Il risultato seguente da una condizione necessaria e sufficiente affinché un ope-
ratore sia diagonalizzabile.

13.13 TeoremA Sia V un K-spazio vettoriale, dim (V) = n, e sia F€¢End (V).
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Se {As ..., A3 CK & lo spettro di F, allora si ha:
dim(V, (F)) + ... +dim(V, (F))<n [13.9]

e l'uguaglianza sussiste se e solo se F & diagonalizzabile.

Dimostrazione

Per ogni i =1, 2, ..., k poniamo d(/) = dim(V, (F)), e sia {e;, ... ey} una
base di V, (F). In virti della proposizione 13.12 sara sufficiente dimostrare che
i vettori

e“, ceey eld(l), 621, eevy 626(2), ceey efti’ ooy ekd(k)

sono linearmente indipendenti.
Supponiamo che si abbia

0 = Cueu + ene + Cld(l)eld(l) + CZIezl + ese + ch(z)eZd(Z) + e
v F € oot CrapyCram [13.10]

per opportuni scalari ¢;;.
Ponendo v; = ¢;,€;; + ... + Cyy;)€iaqy Si ha v;€V, (F) e la [13.10] pud essere
riscritta nella forma seguente: '

O=v+v,+ .. +V. [13.11]
Poiché v, = 0 se e solo se ¢;; = ¢;; = ... = ¢4y = 0, sara sufficiente dimostrare
chev,=v,= ... =v,=0. Sev,#0, allora v, ¢ un autovettore relativo a A, e dalla

[13.7] segue che {v,, v,, ..., ¥,}\{0} & un insieme di vettori linearmente indipen-
denti. Quindi il secondo membro della [13.11] puod essere uguale a 0 se e solo se
tutti gli addendi sono 0.

Un caso particolare importante del teorema 13.13 ¢ il seguente immediato
corollario.

13.14 Cororiario Se dim(V) = n ed Fe€ End(V) possiede n autovalori distinti,
allora F & diagonalizzabile.

Si noti che la condizione sufficiente di diagonalizzabilita espressa dal corolla-
rio 13.14 non & necessaria. Infatti I'operatore 1, ¢ diagonalizzabile qualunque sia
n = dim(V), ma possiede I’unico autovalore A =1.

13.15 Esempi e osservazioni

1. 1 corollario 13.11 fornisce un metodo pratico per calcolare autovettori e
autovalori di un operatore o di una matrice. Scegliendo una base di V ci si riduce
a considerare il solo caso delle matrici.
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Sia dunque assegnata A€M, (K). Si cominci con il calcolarne gli eventuali
autovalori, che si trovano calcolando il polinomio caratteristico P,(7T) e le sue
radici in K. Per ogni autovalore A €K, il sistema omogeneo di # equazioni nelle
n incognite X ='(X, ... X))

(A-AL)X =0

ha rango r < n e possiede quindi soluzioni non banali. Lo spazio delle soluzioni
¢ Pautospazio V, (A4). Se la somma delle dimensioni degli autospazi cosi trovati
al variare di A tra tutte le radici di P,(7) & uguale a n, allora 4 & diagonalizza-
bile, per il teorema 13.13. Una base diagonalizzante si ottiene scegliendo una base
di ciascun autospazio e prendendone I’unione.

Cid fornisce in linea di principio un metodo di calcolo di tutti i vettori di una
base diagonalizzante e della matrice del corrispondente cambiamento di base.

Si osservi che un operatore pud non avere autovalori, e quindi neanche auto-
vettori, perché il polinomio P,(7T) pud non avere radici in K. Se per6 K=C,
allora dal teorema fondamentale dell’algebra segue che P,(7T) possiede radici in
C, e pertanto: ogni operatore di uno spazio vettoriale complesso di dimensione
finita possiede almeno un autovalore, e quindi possiede autovettori. Cid non signi-
fica necessariamente che I’operatore sia diagonalizzabile (cfr. esempio 3).

Se K = R puo accadere che un operatore di uno spazio V non possieda autova-
lori (cfr. esempio 4). Se perd dim (V) & dispari, allora il polinomio caratteristico
ha grado dispari, e quindi possiede almeno una radice reale. In conclusione, ogni
operatore di uno spazio vettoriale reale di dimensione dispari possiede almeno
un autovalore e quindi possiede autovettori.

2. Il polinomio caratteristico della matrice identita n X n &
P (D=(010-1)".
Il polinomio caratteristico della matrice nulla n X 1 &
Py(T)=(—1D"T".
In entrambi i casi I’unico autospazio della matrice ¢ K”.
3. Se A = (a;) e M, (K) ¢ una matrice triangolare (superiore o inferiore), si ha
P =@, ~ )@y~ T)..@y—T).

Se a,,, ay, ..., a,, sono distinti, allora, per il corollario 13.14, A ¢& diagonaliz-
zabile perché possiede n autovalori distinti; altrimenti pud non esserlo.
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Ad esempio la matrice n X n, n= 2,

00
2 IR AT
1
0

ha polinomio caratteristico

P(y=(-D)'T"

e quindi possiede I’unico autovalore A = 0. Da ci0 segue che se A fosse diagona-
lizzabile sarebbe simile alla matrice 0. Ma 0 ¢& simile soltanto a sé stessa. Infatti
per ogni MeGL,(K) si ha

M- 1OM=0.
Quindi A non é diagonalizzabile.
La matrice
1 0 ...
011
B=A+L=|: - - - | eM, (K
1 1
0 1

ha polinomio caratteristico Pp(7T) = (1 — T)", uguale a quello della matrice I,. B
non ¢ diagonalizzabile, perché se lo fosse sarebbe simile a I, la quale invece ¢
simile solo a sé stessa: infatti M ~'I,M = I, per ogni M€ GL,(K).

4. La matrice
o1
A= €M, (R)
-1 0

ha polinomio caratteristico 1+ 7'2. Poiché questo polinomio non ha radici reali,
A non possiede autovalori né autovettori in R% Se perd A4 viene considerata come
una matrice ad elementi complessi, allora possiede i due autovalori distinti A = <+ i.
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Per il corollario 13.14, 4 ¢& diagonalizzabile in M,(C), ed ¢ simile alla matrice dia-
gonale

o, 2

Per trovare la matrice M tale che B = M ' AM, dobbiamo trovare una base
di C? costituita da autovettori di A4, il che equivale a trovare un autovettore per
ciascuno dei due autovalori. Possiamo procedere nel seguente modo.

Per la proposizione 13.9 gli autovettori relativi a A =1 sono gli elementi del
nucleo di A —il,, cio¢ sono le soluzioni del sistema omogeneo

—iX+ Y=0
-X-iY=0,

che ha rango 1, ed & quindi equivalente alla prima equazione. Soluzioni sono i
vettori della forma (¢, if), i quali, al variare di 7€C, descrivono Pautospazio
C*A). Prendendo ad esempio ¢ =1 si ottiene I’autovettore (1, i) relativo a A = i.
Analogamente, considerando il sistema omogeneo corrispondente a A + il,, otte-
niamo i vettori della forma (t, — if), e quindi (i, 1) & un autovettore relativo a
A= —1i. Labase b = {(1, i), (4, 1)} & diagonalizzante. Detta e la base canonica, si ha

1 i
M=Me,b(1)=( 1)

i
M 'AM =

5. Sia V un K-spazio vettoriale di dimensione finita. Sia F€ End(V) e sia A €K
un autovalore di F. La dim(V, (F)) si dice molteplicita geometrica di L per F. La
molteplicita algebrica di A per F ¢ la molteplicita #(A) di A come radice del polino-
mio caratteristico di F.

In generale la molteplicita geometrica e quella algebrica sono diverse. Cid accade
ad esempio per le matrici A e B dell’esempio 3. Per A si ha infatti, evidentemente,
#(0) = n, mentre per B si ha 2(1) = n. D’altra parte A non ¢é diagonalizzabile e
quindi dim(V,(A4)) < #. Similmente per B.

Per ogni FeEnd(V) e A€K autovalore di F sussiste la disuguaglianza

dim(V, (F)) <h(})), [13.12]

cioé la molteplicita geometrica non supera la molteplicita algebrica.
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Per dimostrarlo si supponga che d = dim(V, (F)) =1, e sia {e,, ... e,} una base
di V tale che {e,, ..., e,} sia una base di V,(F). Si ha

(ud B)
A=M,F)=
0 C

dove BeM, ,_,(K), 0e M, , ,(K) ¢ la matrice nulla, ¢ CeM,. ,, ,(K). Svilup-
pando |4 — T1,| con la regola di Laplace rispetto alle prime d righe si trova’

P(T)y= (- T)'p(T),

dove p(T) = P,(T) ¢ un polinomio di grado n — d. Pertanto A (X) = d.
Se il campo K & algebricamente chiuso e A, ..., A, sono gli autovalori di F,
si ha

RO + ... + O =n.

Pertanto, dalla [13.12] e dal teorema 13.13 segue immediatamente che se i/
campo K & algebricamente chiuso I’operatore F ¢ diagonalizzabile se e solo se per
ogni autovalore )\ di F si ha

dim(V,(F)) = h(),

cioé se e solo se la molteplicita geometrica e la molteplicita algebrica di ogni auto-
valore ) coincidono.

6. Se A = (a;)€ M,(K), allora si ha
P (T)=T*—tr(A)T + det(A4),

dove tr(A) = a,, + ay, & la traccia di A. La verifica & lasciata al lettore.

7. Sia
PM)=g,+g T+ ..+g, T"'+T"

un polinomio monico di grado n a coefficienti in K, e sia

0 0 ces O _go

1 0 ... 0 —-g
Me=101 ... 0 —g

00 ... 1 -g,_,

1l polinomio caratteristico di M, é uguale a (— 1)"P(T). Se n =1, Pafferma-
zione ¢& evidente: M, — T= — g,— 7. Procediamo per induzione su 7, e suppo-
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niamo # = 2. Si ha

l - T e 0 ""'g,
IMp—TLI=| o 1 .. 0 -g =
0 6 .. 1 -g_,-T

-T 0 -g 1 -7
1 0 -g 0o 1 ..

=-T Do FED& =
0 .. 1 -g_,~T 0 0 .1

=-T(=1D)"" g +&T+ ... +& T+ T+ (= 1)"gy= (- D" P(T),

dove il valore del primo determinante & dedotto dall’ipotesi induttiva.

Quest’esempio dimostra che per ogni polinomio monico di grado n=1in K[7']
esistono matrici quadrate di ordine # di cui esso, o il suo opposto, a seconda che
n sia pari o dispari, ¢ il polinomio caratteristico.

Esercizi

1. Sia F: R*-— R’ P’operatore lineare
Fx, y,)=x+y—2,y+z, 2x).
Determinare la matrice M, (F), dove b= {(1, 1, 0), (-1, 0, 1), (1, 1, I)}.
2. Sia F: R*— R’ PPoperatore lineare
Fx, 5, 2=Qx, x-y,y-2).
Determinare la matrice M, (F?, dove b= {(1, 1, 0), 2, -1, 1), (0, 1, —1)}.

3. Sia F: C*— C? I’operatore lineare definito dalla matrice

1 1 0
1 -1 =2
2 1 -3

rispetto alla base canonica. Determinare la matrice M, (F) che rappresenta F rispetto
al[a base b= {(_ 219 i, 1)9 ("" ls - 1, 1)9 (I’ 09 - l)}'
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4. Sia F: R*—> R?® I’operatore lineare definito dalla matrice

2 1 1
o 1 2
0 0 3

rispetto alla base canonica. Determinare la matrice M, (F) che rappresenta F rispetto
alla base b= {(1, 1, 0), (-1, 0, 1), (1, 1, 1)}.

5. Sia F: R*— R?® ’operatore lineare definito dalla matrice

1 2 1
1 -1 3
1 0 2

rispetto alla base canonica. Determinare la matrice M, (F) che rappresenta F rispetto
allabase b= {(—1,0, - 1), (1, I, 1), (1, —1, 0)}.

6. Sia F: C?®— C? ’operatore lineare definito dalla matrice:

—1 -1 1
2 1 2i
I+i 0 O

rispetto alla base canonica. Determinare la matrice M,(F) che rappresenta F rispetto
alla base b= {@i, I, — 1), (- 2,1, 0), 2i, I, D}.

7. Determinare autovalori e autovettori di ciascuna delle seguenti matrici di M>(R):

1 0 1 1
a) b)
0 -1 0 1
f1. 0 1 1
<) d) .
11 1 1

8. Determinare autovalori e autovettori della matrice

1 a
( 6 MZ(C)9
b 1

in cui a, b sono parametri reali.
9. Sia F: R*— R’ ’operatore lineare
Fix,9,20=(y—2, ~x+2y—-2z,x-y+22).

Dimostrare che F ¢ diagonalizzabile, trovando una base b di R? formata da autovet-
tori di F. Determinare la matrice che rappresenta F in tale base.
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10. Calcolare gli autovalori e la loro molteplicita algebrica e geometrica per ognuna delle
seguenti matrici di M;(R), e dedurre se sono o no diagonalizzabili:

-6 2 -5 -8 —13 -14
a)|—4 4 -2 b)l-6 -5 -8

10 -3 8 4 17 2

1 0 0 -5 .- 4 -1
alo -3 —15 d -4 1 -2

0 2 8 ' 8 -4 3

13 59 34 4 2 5
ol 10 40 24 Dl 0 —44 —120].

—18 —79 —46 0 16 44

11. Calcolare gli autovalori della matrice

0 1 0 O
0 0
€ M, (C).
0 0 0 1
1 0 0 O

12. Determinare a, b, c, d, e, f€R sapendo che (1, 1, 1), (1, 0, — 1), (1, — 1, 0)e R’ sono
autovettori della matrice

1 1 1
a b ¢
d e f

13. Sia A € M,(K). Dimostrare che se A possiede I’autovalore A, la matrice C = a4 + b1,
dove a e b sono scalari, possiede I’autovalore aA + b.

14. Siano A, Be M, (K). Dimostrare che se M€ GL,(K) ¢ tale che B = M "' AM, allora, per
ogni intero £ =0, si ha B* = M "' A* M. In particolare, se A e B sono simili, A* e B*
sono simili per ogni intero £k =0.

15. Utilizzare ’esercizio precedente per calcolare F*, dove F: R®— R? & I’operatore lineare
considerato nell’esercizio 9.
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14 Gruppi di trasformazioni. Affinita

It concetto di “gruppo’’, ed in particolare quello di ““gruppo di trasformazioni”’,
ha fondamentale importanza in geometria. Uno studio sistematico della teoria dei
gruppi non rientra perd negli scopi di un primo corso di Geometria; ci limiteremo
pertanto a dare le definizioni essenziali, che sono sufficienti a rendere naturale
la trattazione degli esempi geometrici pit importanti. Rinviamo il lettore al corso
di Algebra per maggiori dettagli.

14.1 DEerFINIZIONE  Un gruppo & una coppia ( &, +) costituita da un insieme
non vuoto & e da un’operazione binaria in &, cioé un’applicazione
.:Fx G & che associa ad ogni (g, g’)€ &' x & un elemento g-g'€ &, chia-
mato prodotto di g per g’, in modo che siano soddisfatti i seguenti assiomi:

Gl (Associativitd) (g-g’)-g” =g-(g’-g") per ogni g, g’, g"€ .

G2 (Esistenza dell’elemento neutro) Esiste ec  tale che e-g = g-e = g per
ogni g€ Y.

G3 (Esistenza dell’inverso) Per ogni g€ Gesiste g~ €Y tale che g-g™' =
= g -1 .g =e.

Un gruppo (¥, +) si dice commutativo o abeliano se soddisfa il seguente
assioma:

G4 (Commutativitd) g-g’'=g’'-g perogni g, g’'€¥.

In un gruppo abeliano I’operazione viene di solito denotata con il simbolo +
e chiamata somma.

Quando é chiaro dal contesto quale sia I’operazione definita in &, il gruppo
(4, ) si denota semplicemente con la lettera .

Un esempio importante di gruppo ¢ I’insieme .7 (8) di tutte le applicazioni biu-
nivoche di un insieme non vuoto S in sé stesso, dette anche trasformazioni di S.
Associando ad ogni (£, g) €.7(8S) x .7(8S) la trasformazione composta fo g€ 7 (S)
si ottiene un’operazione tale che gli assiomi G1, G2, G3 siano soddisfatti, con
e = 1, (la verifica, immediata, & lasciata al lettore). La coppia (7(8S), ©) & quindi
un gruppo, ¢ prende il nome di gruppo delle trasformazioni di S.

Se V ¢ uno spazio vettoriale, allora V ¢ un gruppo abeliano rispetto all’opera-
zione di somma tra vettori: gli assiomi sono soddisfatti perché (V, +) soddisfa
gli assiomi SV1, SV2, SV3, SV4. (V, +)si dice gruppo additivo dello spazio vet-
toriale V. ’

Dalle proprieta delle matrici che abbiamo studiato in questo capitolo segue che
I’insieme GL, (K) di tutte le matrici invertibili 7 X n a elementi in K & un gruppo
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rispetto all’operazione di prodotto righe per colonne; esso & chiamato gruppo
lineare generale di ordine n su K. L’elemento neutro di GL,(K) ¢ 1.

14.2 DermNizioNE  Un sottoinsieme & di un gruppo & si dice sottogruppo
di & se soddisfa alle seguenti condizioni:

SG1  Per ogni f, f'€.% il prodotto f-f € %,
SG2 L’identita e€ %
SG3 Se fe¢.% allora '€ %,

E immediato verificare che se ¥ C % € ¥, ed & & un sottogruppo di <,
allora % & un sottogruppo di Zse e solo se ¢ un sottogruppo di &, Inoltre, se
Fed F sono due sottogruppi di ¥, la loro intersezione %N %’ & ancora un
sottogruppo di & il quale, per quanto abbiamo appena osservato, & anche un
sottogruppo sia di Zche di &".

I sottogruppi di GL,(K) sono detti gruppi lineari di ordine n. Ad esempio,
Pinsieme SL,(K) costituito dalle matrici A €GL,_(K) tali che det(4)=1 & un
gruppo lineare, chiamato gruppo lineare. speciale di ordine n.

Un altro esempio di gruppo lineare ¢ O(n), che ¢ il sottogruppo di GL,(R)
costituito dalle matrici ortogonali; ricordiamo ¢he una matrice 4 € M, (R) si dice
ortogonale se 'AA =1,. Per la sua stessa definizione, una matrice ortogonale &
invertibile, e A ' = '4. Poiché det(‘4) = det(A4), per una matrice ortogonale si
ha det(A4)* = det(I,) =1, e quindi det(4) = x1.

Verifichiamo che O(n) & un gruppo. Se A4, BeEO(n), si ha

“(AB) (AB) = ‘B(4A)B='BLB="'BB =1,

cioé AB€O(n), e la condizione SG1 ¢& soddisfatta. La SG2 & ovvia. Per verificare
la SG3 consideriamo A € O(n); si ha

A NAT = (A U=AA="1,=],

e quindi anche A ~'€O(n).

O(n) si dice gruppo ortogonale di ordine n.

11 sottoinsieme di O (n) costituito dalle matrici ortogonali aventi determinante
uguale a 1 ¢ un sottogruppo, denominato gruppo ortogonale speciale di ordine
n, e indicato con SO(n). Si ha

SO(n) = O(n) N SL,(R).

I gruppi ortogonali e ortogonali speciali hanno grande importanza in geome-
tria euclidea, oltre che in meccanica classica, e su di essi ritorneremo piu diffusa-
mente nel capitolo 2.

Lo studio dei gruppi lineari complessi & rilevante in meccanica relativistica. Un
esempio importante di gruppo lineare complesso € U (n), il gruppo unitario di ordine
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n: esso consiste di tutte le matrici 4 = (a;) € GL,(C) unitarie, cio¢ tali che
*AA =1,

dove *A =4 = @;), la trasposta della matrice complessa coniugata di 4. La

verifica delle condizioni SG1, SG2, SG3 si effettua in modo simile a quanto gia

visto nel caso ortogonale.

. Poiché si ha det(*A4) = det(A4) per ogni A ¢ M, (C), dalla definizione segue che
det(A4) det(4) =1, e quindi ogni A €U (n) soddisfa

| det(4)] =1.

Le matrici A € U (n) tali che det(A4) = 1 costituiscono a loro volta un sottogruppo
di U(n), chiamato gruppo unitario speciale di ordine n, e denotato con SU (n).
Si ha evidentemente

SO(n) = SU(n) N GL,(R).

Altri esempi di gruppi lineari verranno introdotti piti avanti.

Un sottogruppo & del gruppo .Z(S) delle trasformazioni di un insieme S si
dice gruppo di trasformazioni di S.

Evidentemente .7 (S) stesso & un gruppo di trasformazioni di S. Un altro esem-
pio di gruppo di trasformazioni ¢ il sottoinsieme {15} costituito dalla sola
identita.

Sia s€8, e sia 7(8), Iinsieme di tutte le trasformazioni fe€_7(S) tali che
Sf(s)=s. Se f, g€ 7(8S), allora (fog) (s) = f(g(s)) = f(s) = s e quindi foge 7(S),.
Ovviamente 13€.7(S),, €, se f€ 7(S),, allora f~'(s)=s e quindi '€ 7(S)..
Dunque -7(S), ¢ un gruppo di trasformazioni di S; esso viene chiamato stabiliz-
zatore di s.

Se % & un gruppo di trasformazioni S ed s€S, I’intersezione .%* N _7(S), & un
sottogruppo di .% che si chiama stabilizzatore di s in %, e si denota con .

14.3 DEFINIZIONE Se & e ¢’ sono due gruppi, un’applicazione w»: G~ "
& un omomorfismo se w( f-g) = w(f)-w(g) per ogni f, g€ . Un omomorfismo
biettivo si dice isomorfismo; in questo caso anche w~' & un isomorfismo. Se un
isomorfismo w: G— " esiste, i due gruppi e &’ si dicono isomorfi.

Una classe importante di esempi € costituita dai gruppi di trasformazione lineari
di uno spazio vettoriale.

L’insieme GL (V) di tutti gli automorfismi di uno spazio vettoriale V & un gruppo
di trasformazioni di V (la verifica ¢ immediata) denominato gruppo lineare gene-
rale di V. Ogni gruppo di trasformazioni dello spazio vettoriale V che consiste
di trasformazioni lineari & un sottogruppo di GL (V).

Sia dim(V) = n=1esia {e, ..., e,} una sua base. Se si associa ad ogni auto-

12
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morfismo di V la matrice che lo rappresenta rispetto alla base {e,, ..., e,}, si
ottiene un isomorfismo di gruppi GL(V)— GL,(K). Cid segue subito dalla pro-
posizione 12.3. '

Le trasformazioni di uno spazio affine geometricamente interessanti sono le
““affinita’’, che ora introdurremo.

14.4 DerINIZIONE Siano V e V' due K-spazi vettoriali, A uno spazio affine
su'V e A’ uno spazio affine su V’. Un isomorfismo di A su A’ é un’applicazione
biunivoca f: A — A’ tale che esista un isomorfismo degli spazi vettoriali associati

¢: Vo V' soddisfacente alla condizione
P F(©Q) = (PO

per ogni P, Q€A. )

Un’affinita di A & un isomorfismo di A su sé stesso.

Segue subito dalla definizione che Pisomorfismo ¢: V— V' & univocamente
individuato da f; esso viene chiamato /’isomorfismo associato a f. Se f &€ un’affi-
nita, allora ¢ € GL(V): diremo ¢ automorfismo associato a f.

Se un isomorfismo f: A— A’ esiste, i due spazi affini A ¢ A’ si dicono iso-
morfi. L’identita 1,: A — A, I’applicazione inversa f *': A’ — A di un isomorfi-
smo fe la composizione gof: A~ A” di due isomorfismi f: A—>A’eg: A’ >A”",
sono ancora isomorfismi (le relative verifiche seguono facilmente dalla definizione
14.4 e sono lasciate al lettore). Pertanto /’isomorfismo & una relazione di equiva-
lenza tra spazi affini.

Un esempio importante di isomorfismo si ottiene considerando un riferimento
affine Ok, ... ¢, in uno spazio affine A sullo spazio vettoriale V, e 'applicazione
J: A— A"(K) definita da

SPKys ooy X)) = (X5 ooy X)),

cioé I’applicazione che associa ad ogni punto la #-upla delle sue coordinate. Per
ogni coppia di punti P(x,, ..., x,), Q(»,, -.., V) €EA, si ha

FBFD) = (= X1 oor 95— %) = 0. (PO),

dove ¢,: V— K" ¢& P’isomorfismo che associa ad ogni vettore la n-upla delle sue
coordinate rispetto alla base e = {e, ..., e,}. Poiché & biunivoca, f & un isomor-
fismo con associato P’isomorfismo ¢,.

Da questo esempio si deduce che ogni spazio affine di dimensione n su K @
isomorfo ad A" (K). Dalla transitivita della relazione di isomorfismo si deduce in
particolare che due spazi affini su K della stessa dimensione sono isomorfi.

Sia V un K-spazio vettoriale e sia A uno spazio affine su V. Un’affinita di A
puod essere intuitivamente pensata come una trasformazione che & compatibile con
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la struttura di spazio affine e pertanto lascia inalterate le relazioni geometriche
dipendenti dalle proprietd dei vettori.

14.5 LEemMmA  Fissato un punto O€A, per ogni O’ € A e per ogni ¢ € GL(V)
esiste una e una sola affinita f: A— A tale che f(O) = O’ e tale che ’automorfi-
smo associato a f sia ¢.

In particolare un’affinita f é univocamente individuata dall’automorfismo di
V ad essa associato e dall’immagine f(O) di un qualsiasi punto O€A.

Dimostrazione

Per ogni P€ A Pidentitd O’ f(P) = ¢(OP) individua univocamente un punto
f(P)eA. Otteniamo cosi un’applicazione f: A — A che, ¢ immediato verificarlo,
¢ un’affinitd di A avente le proprieta volute.

Se g: A— A ¢ un’altra affinitd con le stesse proprieta, per ogni P€A si ha

f(0) F(P)= ¢(OP) =g(0) g(P) = O g(P) = f(O) g(P),

e quindi f(P) = g(P).
L’ultima affermazione & un’ovvia conseguenza della prima.

Come abbiamo gid osservato, I’identitd 1,: A— A ¢& un’affinita, con automor-
fismo associato I’identita 1, € GL(V). Per ogni affinita di A, con automorfismo
associato ¢, la trasformazione inversa f~' & un’affinita con automorfismo asso-
ciato ¢ “!. Infine, se fe g sono affinitd con automorfismi associati ¢ e ¥ rispet-
tivamente, allora fog & un’affinita, con automorfismo associato ¢oy.

Vediamo dunque che I’insieme di tutte le affinita di A & un gruppo di trasfor-
mazioni; esso si chiama gruppo affine di A, denotato con Aff(A). Nel caso parti-
colare in cui A = A"(K), il gruppo Aff(A"(K)) viene chiamato gruppo affine di
ordine n su K, ¢ indicato con Aff,(K).

I sottogruppi di Aff(A) si chiamano gruppi di trasformazioni affini di A.

14.6 Esempi

1. E facile verificare con esempi che, se n =2, il gruppo GL,(K) non & abe-
liano. Ad esempio nel caso n=2si ha

b o -6
M [

per ogni a, b, ¢, deK. Una verifica simile si pud fare per » = 2 qualsiasi, dimo-



180 Geometria affine

strando che per le matrici elementari R}, i#j (cfr. 3.3(6)) si ha in generale
R[A # AR

Similmente accade per i gruppi O(n), n =2, ed SO(n), n = 3, i quali non sono
abeliani. Invece & facile verificare che SO(2) ¢ abeliano, utilizzando il fatto che
ogni A €SO(2) si esprime nella forma [2.6].

Per verificare ad esempio che O(2) non ¢ abeliano, & sufficiente osservare che

0 —-1\[1 0 0 1
S (R B
mentre
1 0Nl 0 -1 0 -1
(0 —I)(—i O)=(l O)
ove entrambi i fattori appartengono a O(2), ma non a SO(2).
11 sottoinsieme D, (K) di GL,(K) costituito dalle matrici diagonali invertibili &

un sottogruppo abeliano di GL,(K). Cid segue immediatamente dal fatto evidente
che, per ogni a,, ..., a,, by, ..., b,€K, si ha

diag(a,, ..., a,) diag(b,, ..., b;) =diag(a, b,, ..., a,b,),

dove abbiamo denotato con diag(c,, ..., ¢,) la matrice diagonale avente per ele-
menti diagonali ¢, ..., c,.

2. Un’importante classe di trasformazioni affini di uno spazio affine A su V
é quella costituita dalle ‘“traslazioni’.

Sia veV. La traslazione definita da v & Paffinita che associa ad ogni P€ A il
punto ¢,(P) tale che Pt (P)=v.

Verifichiamo che ¢, ¢ effettivaﬁl)ente un’afﬁnita.__lfer ogni Q¢€a, posto
P=t_J(Q), siha Q= t,(P) perché QP = — v e quindi PQ = v. Pertanto ¢, ¢ una
biezione, la cui inversa & £_, Si ha inoltre

P (D) = 1P P+ PO+ 01 ( Q)= —v+ PO +v=PD

e quindi £, ¢ un’affinitd con isomorfismo associato I’identita 1, € GL(V).
Viceversa, se f: A— A & un’affinita con isomorfismo associato 1,€ GL(V),
allora per ogni P, Q€A si ha

fPYF(©@) =PO [14.1]
€ quindi

Pf(P)=Qf(Q) =v

¢ indipendente da P. Si ha pertanto f=¢,. Quindi le traslazioni sono precisa-
mente le affinitd che hanno come isomorfismo associato 1, € GL (V).
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La [14.1] esprime la proprieta delle traslazioni di mandare ogni coppia ordi-
nata di punti in un’altra che definisce lo stesso vettore. Intuitivamente le trasla-
zioni possono quindi essere pensate come ‘‘movimenti rigidi’’ dello spazio.

L’identita ¢ una traslazione, quella #, definita dal vettore 0. Il prodotto di due
traslazioni ¢, e ¢, € f,ot,=1,,,, ancora una traslazione. Infatti per ogni P€A,
posto Q = £,(P), si ha

P(t,o1,(PY) = Pt(Q) = PO + QI(Q) = W + v.

La trasformazione inversa di ¢, & 7_,, come & gia stato verificato. Pertanto le
traslazioni di A costituiscono un gruppo di trasformazioni affini, il gruppo delle
traslazioni di A, indicato con 7.

Associando a una traslazione ¢, € T, il corrispondente vettore v€ 'V, si ottiene
una corrispondenza biunivoca

T,~V [14.2]

che al prodotto di due traslazioni fa corrispondere la somma dei vettori corrispon-
denti. La [14.2] & pertanto un isomorfismo del gruppo 7, sul gruppo additivo
di v.

3. Sia A uno spazio affine su V. Supponiamo assegnato un punto O€ A € con-
sideriamo il gruppo di trasformazioni affini Aff(A), = { fe Aff(A): f(O) = O}.
Per ogni fe Aff(A), denotiamo con ®(f)eGL(V) PPautomorfismo associato.
Otteniamo un’applicazione

®: Aff(A)o—> GL(V). [14.3]

Dal lemma 14.5 segue che ogni fe€ Aff(A), ¢ completamente individuata da
$(f), e, viceversa, che ogni ¢ € GL(V) ¢ immagine di qualche f€ Aff(A),. Quindi
& ¢ biettiva. Poiché la composizione di affinitd ha per automorfismo associato
la composizione dei corrispondenti automorfismi, 1’applicazione ® ¢ un isomor-
fismo di gruppi.

Se c€K & uno scalare non nullo, ’affinita & ~'(c1y) € Aff(A), si dice omote-
tia di centro O e fattore c, ¢ si denota con w, . Si ha quindi

—_ s —>
Ow, (P)=cOP.

Si ha IA = Wg, ;- Inoltre (“’o,c)_l =W, ! perché per ogni PeA il punto
0 = wy, . «(P) soddisfa la

— —
0Q=c 'OP
e quindi

_— —_— =
0w (Q) = cOQ = OP
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OVVero wp (Q) = P. Pertanto w, .°wg, . + = 1. Si ha poi

wO,co ("’O,d = wO, cd
.perché se P€A, posto Q = w, .(P), si ha
R —> —> —>
Ow, 4(Q) =dOQ = d(cOP) = (cd) OP.

In conclusione le omotetic di centro O costituiscono un sottogruppo di
Aff(A),.

4. Supponiamo fissato nello spazio affine A su V un punto C. Per ogni P€A,
il punto simmetrico di P rispetto a C (cfr. 7.5(4)) & il punto o.(P) che soddisfa
I’identita vettoriale

—> —>
Co.(P)=—CP.
Da quest’uguaglianza segue che, per ogni P, Q€A,

6e(P) 0(Q) = 0.(P) C + Co(Q) = CP~ CQ = — PQ

e quindi o.: A— A & un’affinitd con isomorfismo associato —1y.
Si calcola immediatamente che 0,00, =1,4.
Nelcaso incui A=A"e C=(c, ..., C,), si ha

UC(P) = (zcl T Xys eees ch _xn)
per ogni P=(x,, ..., X,)-

Un sottoinsieme S di A si dice simmetrico rispetto a un punto C€A se

0-(P)€S per ogni P€S. In questo caso C si dice centro di simmetria di S.
" Un insieme S pud non avere alcun centro di simmetria oppure averne pitt d’uno.

Ad esempio, ogni sottospazio affine di A é simmetrico rispetto ad ogni suo
punto.

Supponiamo infatti che il sottospazio S abbia giacitura W e sia C un suo punto.

-— — —> —_—

Se PeS, allora CP€W e 0-(P) soddisfa Co(P) = — CP, e pertanto Co(P)EW ¢
o-(P)€S. Dunque S ¢ simmetrico rispetto a C.

14.7 Lemma  Siano O€A e fe Aff(A). Esistono v, v' €V e ge Aff(A),, uni-
vocamente individuati da f, tali che

f=g°t,
f= tv’og'

[14.4]

Dimostrazione _
—_— — N
Poniamo v=— Of '(0), v' = Of(0O), g=f°t_,, € g =t_,.°f. E evidente
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che got,=f=1t,0g’. Inoltre si ha

8(0)=(f1.)(0)=f(f(OP=0
g 0)=(_,°NO)=¢ ,)SfO)P=0,

cioé g, g’ € Aff(A),. Si osservi anche che, per il lemma 14.5, g e g’ sono univoca-
mente determinate dall’appartenere ad Aff(A), e dall’avere lo stesso automorfi-
smo associato di f; pertanto g = g’. Infine le identitd 7, =g 'of, £,, = fog ! indi-
viduano univocamente anche ve v’.

Vediamo ora come si descrivono esplicitamente gli elementi di Aff, (K).

Sia £+ A"— A" un’affinita e sia ¢: K"— K" Pisomorfismo associato. Suppo-
niamo che 4 € GL,(K) sia la matrice che rappresenta ¢ nella base canonica, e che
f(0) = c. Per definizione di affinita, per ogni x€ A” I’identitd seguente ¢ soddi-
sfatta:

JX)—e=fx)-f0)=Ax—-0)=Ax.
L’affinitd f ¢ data dunque dalla formula
fX)=Ax+c. [14.5]
Viceversa, per ogni 4 €GL,(K), e¢€K", Papplicazione f, .. A"~ A" definita dalla
[14.5] & un’affinitd. Infatti si ha
—_—
Sa,eX) fa, (X)) = F4,c(X) = fu, (X)) = (AX; + ©) — (AX, + €) = A(X, — X;)

e quindi f, . ¢ un’affinitd, con isomorfismo associato quello definito dalla matrice
A rispetto alla base canonica di K”.

In conclusione Aff,(K) é uguale all’insieme di tutte le frasformazioni f, ..

Nel caso n =1, si deduce che le affinita di A! sono le trasformazioni del tipo
Sf(x)=ax + ¢ per qualche a#0, ¢ in K.

Date due affinita f, ., /3 4€ Aff,(K), il loro prodotto ¢

Se.a°Sa.e = Fpa,av0 [14.6]
mentre Pinversa di f, . €
(fad ' =fuae
Le affinita f; . sono le traslazioni di A" e vengono denotate con £ si ha dunque
t(x)=x+c.

Le affinita appartenenti allo stabilizzatore dell’origine Aff,(K), sono precisa-
mente quelle della forma f, ,, € corrispondono biunivocamente alle matrici
A€GL,(K). Si ottiene cosi un’identificazione tra Aff,(K), e GL,(K).
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Nel caso di A” il lemma 14.7 afferma che ogni affinita f, . € Aff, (K) pud sem-
pre ottenersi in uno dei due modi seguenti:

Sae=1toF 10 =f1.0°l e

Le affinita di uno spazio affine qualunque A si descrivono esplicitamente in un
modo del tutto simile al caso di A", una volta fissato un riferimento affine
Oe, ... e,. Abbiamo infatti il seguente teorema.

14.8 TEOREMA Nello spazio affine A su V sia fissato un riferimento affine
Oe, ... e,. Ogni gffinita f€ Aff(A), con automorfismo associato ¢, si esprime nella
forma

SPOy, ooy, X)) =Q( V1, oees Vi)

con

y=Ax+¢, [14.71
dove ¢="(c,...c))eK" & il vettore delle coordinate di f(O), e A =M. (p)€
€GL,(K).

Viceversa, ogni trasformazione f: A— A della forma [14.7] per qualche
AeGL,(K), ceK", & un’affinita.

Nel caso particolare in cui A = A” ¢ Oe, ... e, ¢ il riferimento affine standard,
si riottiene la descrizione delle affinitd di A” data in precedenza. La dimostrazione
del teorema ¢ essenzialmente identica a quella precedente, ed ¢ lasciata al lettore.

Si noti I’analogia della [14.7] con la formula [12.3] che esprime il cambiamento
di coordinate da un riferimento affine ad un altro. Le due formule descrivono perd
due operazioni di natura completamente diversa: la [12.3] da le coordinate di uno
stesso punto in riferimenti diversi, mentre nella [14.7] compaiono le coordinate di
due punti diversi in uno stesso riferimento.

Abbiamo il seguente corollario.

14.9 CoroLrarIio  Nello spazio affine A su V sia fissato un riferimento affine
Oe, ... e, L’applicazione

Aff(A)— Aff,(K) [14.8]
che associa a un’affinita f di A Uaffinita f, . di A" data dalla [14.7] & un isomor-
fismo di gruppi.

Dimostrazione
Dal teorema 14.8 segue che la [14.8] & biettiva, e pertanto sara sufficiente dimo-
strare che ¢ un omomorfismo. Se f, g€ Aff(A), con automorfismi associati ¢ € ¥
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rispettivamente, sono date dalla [14.7] e da
y=Bx+d

rispettivamente, il loro prodotto geof ha automorfismo associato y o ¢, che & rap-
presentato dalla matrice BA nella base e. Inoltre il punto (g°f) (O) ha coordinate
Bc + d. Quindi I’affinitd di A" che corrisponde a gof nella [14.8] & fz, g..q. PoOI-
ché a fe a g corrispondono rispettivamente f, . ed f; 4, confrontando con la [14.6]
si deduce che la [14.8] ¢ un omomorfismo, come si voleva.

I sottoinsiemi di uno spazio affine A vengono anche chiamati figure geometri-
che (affini) di A.

14.10 DermizioNE  Due figure geometriche F, ¥’ C A si dicono affinemente
equivalenti se esiste un’affinita che trasforma ¥ in ¥’, cioe se esiste f€ Aff(A) tale
che fF)=F".

Una proprieta affine di una figura F € una proprieta che é comune a tutte le
figure affinemente equivalenti a F.

Se ad esempio F & un insieme finito di punti, il numero di punti di cui consiste
€ una sua proprieta affine, perché ogni affinita ¢ una biezione. Se F & un sottospa-
zio affine, allora la sua dimensione & una proprieta affine, come affermato dalla
seguente proposizione.

14.11 ProrosizioNE  Sia F un sottospazio affine di A e f€ Aff(A). L’imma-
gine f(F) di F tramite f & ancora un sottospazio affine e dim(f(F)) = dim(F).

Dimostrazione

Supponiamo che F sia il sottospazio passante per Q€ A ed avente giacitura W
e che fe Aff(A) sia un’affinita con isomorfismo associato ¢ € GL(V). Allora ¢ (W)
¢ un sottospazio vettoriale tale che dim(¢(W)) = dim(W). Inoltre per ogni PeF

AN

si ha f(Q) f(P) = p(QP)€ ¢(W): quindi f(P) appartiene al sottospazio S pas-
sante per f(Q) e avente giacitura ¢(W). Viceversa, per ogni R€S si ha Qf (R) =
= o (f(Q) R)eW, ciot f'(R)€F, e quindi Ref(F). Percid f(F)=S, ¢ cid
prova Passerto. '

Abbiamo anche la proposizione seguente.

14.12 PROPOSIZIONE Sia A uno spazio affine su V di dimensione n, e siano
{Py Pyy .oy P} € {Qy, Oys -.., Q,} due (n +1)-ple di punti indipendenti. Allora
esiste un’unica affinita f: A— A tale che

fPY=Q, i=0,1,..,n
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Dimostrazione
Per Pipotesi di indipendenza, gli insiemi di vettori

{ﬁl’ —PSO_}))Z’ s }?I))n}
{QOQI’ QOQZ’ b QOQn}

cosgggiscong_d)ue basi di V. Pertanto ’unico operatore lineare ¢: V—V tale che
o(PyP)=Q,0, i=1,..., n, & un isomorfismo. Definiamo f: A— A mediante
la condizione:

Ouf (P = o(P,P)

per ogni P€A. Evidentemente f & una biezione, e soddisfa all’identita

FEFE)= QS (P') = QuF (B) = @ (PyP’) — p(P,P) =
= (PP’ — P,P) = ¢(PP’');

quindi f & un’affinita. Inoltre
—_ —
0SB = (PP = 0,
e quindi f(Py) = Q,. Infine per ogni i=1, ..., n si ha

0,/ (B) = o(P,B) = 0,0,

per la definizione di ¢; pertanto f(P;) = Q;
L’unicita di f segue da quella di ¢, dalla condizione f(P,) = O, e dal lemma
14.5.

14.13 CoroLLARIO Sia A uno spazio affine su V di dimensione n. Allora:

1) Per ogni 1<k < n + 1, due qualsiasi k-uple di punti indipendenti di A sono
affinemente equivalenti.

2) Due sottospazi affini di A sono affinemente equivalenti se e solo se hanno
la stessa dimensione.

Dimostrazione

1) Se {P,, ..., Pr_i} e {Qy ..., Qp_;} sono due k-uple di punti indipendenti,
esistono Py, ..., P, € Q ..., Q, tali che {P,, ..., P,} ¢ {Q,, ..., O,} siano due
(n + 1)-uple indipendenti. L’affinita f la cui esistenza & affermata dalla proposi-
zione 14.12 manda {P,, ..., P,_; } in {Q,, ..., Qr.1}-

2) Sei sottospazi affini S ed S’ di A sono affinemente equivalenti, allora, per -
la proposizione 14.11, hanno la stessa dimensione.

Viceversa, supponiamo che dim(S) = dim(S’) =s. E possibile trovare punti
indipendenti P,, P, ..., P,cS tali che S= PP, ... P. Similmente esistono
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Qps ---» Q, indipendenti tali che 8'= Q,0,...0,. Sia f un’affinita tale che
fP)=0,1i=0,..., s Allora f(S) =S’. Infatti, poiché f(S) contiene Q,, ..., Q,
ed ¢ un sottospazio affine, si ha f(S) D S’; ma dim[f(S)] = dim(S) = dim(S’), e
quindi f(S)=S8".

Esercizi

1. Dimostrare che i gruppi SO(2) e U(1) sono isomorfi.

2. Per ognuna delle seguenti matrici A determinare A , A, .

10 i 0 Lo
o, ) wl ) el
0o -1 0 i i1

(N2 V2 3 4i
2 2 55

9 \2i N2 K 4i 3
2 2 s 5

1 1+1)
0| :
(1—i -1

3. Dire quali delle matrici dell’esercizio precedente sono unitarie.
4. Sia A €U (n). Dimostrare che ciascuna delle matrici ‘A, A, A* & unitaria.

5. Dimostrare che se %z, 4, £ sono rette di un piano affine A che non appartengono
a uno stesso fascio, allora, date comunque tre rette z’, 4’, Z’ che non apparten-
gono a uno stesso fascio, esiste un’unica affinitd f: A — A tale che f(z)=2’,

f@)=4', f(5)=2".

6. In uno spazio affine A di dimensione 3 sia data una terna di piani /1, /£, //3 tali
che /21N /2, /s consista di un solo punto. Dimostrare che per ogni altra terna di
piani 28 %2, 2&3 tali che f‘ N fz N 2»3 consista di un solo punto, esiste f€ Aff(A)
tale che f(//, = i=1,2,3.

7. In ciascuno dei casi seguenti determinare I’affinita f : A2(Q) — A*(Q) che soddisfa le
condizioni assegnate:

a) f0,0=(, -1), f(,0=@3, -1, f0,1)=(,2)
b) f2, D=(1,2), f(~1, -D=(,1), f0O,)=@, -1
O fle)y=2', flay=4', f(£)=2,

dove

v X=1, 4 Y=X, L Y=-2,
2:2X-Y=0, 4:X+Y=0, Z:2X+Y=1.
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8. Dimostrare che, se A & un piano affine reale:

a) due semirette qualsiasi di A sono affinemente equivalenti (suggerimento: dimo-
strare che un punto e un vettore non nullo assegnati possono essere trasformati
in un altro punto e in un altro vettore non nullo arbitrari);

b) due segmenti qualsiasi di A sono affinemente equivalenti;
¢) due semipiani qualsiasi di A sono affinemente equivalenti;
d) due triangoli qualsiasi di A sono affinemente equivalenti.

9. Sia A uno spazio affine reale. Dimostrare che:
a) due semispazi qualsiasi di A sono affinemente equivalenti;

b) se U C A ¢ un sottoinsieme convesso, ogni sottoinsieme affinemente equivalente
a U é convesso. Quindi la convessitd € una proprieta affine;

¢) ogni affinita di A trasforma il punto medio di un segmento nel punto medio del
segmento immagine.

10. Sia b€ A" e c€K*. Dimostrare che wy, . = Tor -0~

11. Sia n=1 un intero. Due numeri interi a, b€Z si dicono congrui modulo n se b — a
¢ divisibile per #. Dimostrare che la congruenza modulo 7 ¢ una relazione di equiva-

lenza in Z.
L’insieme delle classi di congruenza (dette anche classi resto) modulo 7 si denota con

Z/nZ, e consiste degli n elementi 6, I, won=1,leclassidiQ, 1,..., n—1.
Dimostrare che la somma in Z induce in Z/nZ un’operazione rispetto alla quale Z/nZ
¢ un gruppo abeliano.

12. Sia ¥ un gruppo. Un sottoinsieme & di ¥ si dice sistema di generatori dii &
se ogni elemento di ¥ si pud esprimere come prodotto di un numero finito di ele-
menti di & e di loro inversi. Se & consiste di un numero finito di elementi, &
si dice finitamente generato. Se ¢ = {g} consiste di un solo elemento ¥ & detto
gruppo ciclico di cui g & un generatore.

Dimostrare che:

a) ogni gruppo ciclico ¢ abeliano;
b) Z (con P’operazione +) e Z/nZ, n =1, sono gruppi ciclici;
¢) ogni gruppo ciclico & isomorfo a Z oppure a Z/nZ per qualche n>1;

d) P’insieme delle radici n-esime di 1 & un sottogruppo ciclico di C (ogni suo genera-
tore & chiamato radice primitiva n-esima di 1).

13. Siano n =2 un intero. Nel prodotto cartesiano
Y4 4
— X —
nZ 2Z
definiamo un’operazione nel modo seguente:
@, 0) @, 0) = @ + @, 0)
@, 0) @, ) =@ + @, 1) =@, D) (-, 0)

(5!9 ?2 (529 T) = (5! - az; 6)'
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Dimostrare che:

a) con questa operazione _n_ZZ_ X % ¢ un gruppo il cui elemento neutro &
e=(0, 6); questo gruppo, indicato con D,,, ¢ detto gruppo diedrale di ordine 2n;
b) posto x = (T, 5) ey= (6, T), si ha
Dy=(x"=e, X, ..., X', ¥, XV, e, X' ¥);

¢) x genera un sottogruppo di D,, isomorfo a Z/nZ;
d) y genera un sottogruppo di D», isomorfo a Z/2Z;
e) D,, non é abeliano.

14. Sia r = 2 un intero. L’insieme o, di tutte le permutazioni di un insieme finito conte-
nente 7 elementi &€ un gruppo di trasformazioni che si chiama gruppo simmetrico su
n elementi. Dimostrare che g, non & abeliano se n = 3.



Capitolo 2
Geometria euclidea

15 Forme bilineari e forme quadratiche

In geometria affine hanno senso solo proprietd geometriche che non utilizzano
nozioni di natura metrica quali quelle di angolo, distanza, perpendicolarita. In
questo capitolo vedremo come in uno spazio affine reale sia possibile introdurre
una struttura piu fine, quella di spazio euclideo, in cui gli ordinari concetti metrici
sono definiti. Per far cid sono necessari nuovi argomenti di algebra lineare, e pre-
cisamente la teoria delle forme bilineari e delle forme quadratiche, che inizieremo
a studiare in questo paragrafo. Tratteremo anche aspetti della teoria non stretta-
mente necessari nel seguito, € perd di importanza fondamentale in matematica.

15.1 DeriNIZIONE  Sia V un K-spazio vettoriale. Un’applicazione
b: VX V—-K
si dice forma bilineare su V se ¢ lineare in ognuno dei due argomenti, cioé se sod-
disfa le seguenti condizioni:
FBI b(v+Vv,w)=b(v, w+b(,w)
FB2 b(v, w+w)=>b(v, w)+ b(v, w')
FB3 b(kv, w)=b(v, kw)=kb(v, w)
perogniv, v, w, wev, keK.
La forma bilineare b si dice simmetrica se
b(v, w)=b(w, v) perogniv, wevV;
b si dice antisimmetrica, o alterna, se

b(v, w)=—b(w, v) per ogni v, weV.
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Se b & antisimmetrica, allora b(v, v) = — b(v, v) = 0 per ogni v€ V. D’altra parte,
una forma bilineare b tale che
b(v,v)=0 per ogni véV
& antisimmetrica. Infatti, dalle FB1, FB2 segue che per ogni v, we€V si ha
O=b(v+w,v+w=>b(v, v+ b(v, W)+ b(w, v) + b(w, w) =
= b(v, w) + b(w, v).
15.2 Esempi

1. Un esempio banale di forma bilineare su uno spazio vettoriale V & Papplica-
zione identicamente nulla: 0(v, w) = 0 per ogni v, we V. 0 si dice forma bilineare
nulla. Essa ¢ simmetrica e antisimmetrica.

2. Sia A = (a;;) € M,(K); considerando i vettori di K" come degli n-vettori
colonna, otteniamo una forma bilineare su K" ponendo

b(x, y) = xAy = La;;x.y;
L7

per ogni X = '(x; ... x,), ¥y = (), ... y,). Dalle proprieta del prodotto di matrici
segue che in questo modo si € definita una forma bilineare (cfr. proposizione
2.2(1)). Se {E,, ..., E,} & la base canonica di K", si ha

bE, E)=aq;

per ogni 1 <i, j<n.
Se ad esempio si prende n =3 ¢

10 -2
4=l 0o o 1],
2

-1 x 0

allora la corrispondente forma bilineare su K* ¢
b(X, ¥) =XY, — 2X, 75 + X, /2 — X3 9, + WX ¥3.
Questa forma bilineare non ¢ simmetrica perché
b(E, E)=-2#-1=b(E,, E)).
Se A =1, matrice identita, si ottiene
b, Y)="Xy=x),+ 50, + ... +X,V,. [15.1]

La b definita dalla [15.1] & una forma bilineare simmetrica che & chiamata forma
simmetrica standard su K”.
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Se n =2k, cioé se n & pari, ¢ se si prende 4 =J,, dove

0 I
), = k €
-I 0

si ottiene
b(X, V) =X Vi1t oo FXIn— XtV1— oo — XV
che & una forma bilineare alterna, chiamata forma alterna standard su K".
Sia b: V X ¥ - K una forma bilineare. La bilinearita di » permette di definire

due applicazioni lineari di V in V nel modo seguente.
Per ogni veV Papplicazione b,: V— K definita da

b,(w)=>b(v, w), per ogni weV,
¢ un funzionale lineare. Infatti dalla definizione segue che

b, (c;w, + ;W) = b(v, ,W, + ;W) = ¢;b(v, W) + ¢, b(v, w,) =
=¢b, (W) + ¢, b, (W)

per ogni w;, w,€V, ¢, ¢,€K. Quindi, ponendo §,(v) = b, per ogni VeV, si ottiene
un’applicazione

8, VoV,
La §, ¢ lineare. Infatti per ogni v,, v,€V, ¢, ¢,€K si ha
[6,(c, v, + V) (W) = b, , 0, (W) = B(C; V) + C;V,, W) =

=¢,b(v;, W) + 6;b(v,, W) =¢; b, (W) + ¢, b, (W) =
=[c,6,(¥) + c;8,(v))] (W)

per ogni weV, cioe §,(c,v, + ¢, v,) = ¢;6,(v;) + ¢,6,(V.).
In modo simile si verifica che ponendo 6,(w) = b, dove b_: V—K & il fun-
zionale definito da

b.(v)=b(v, w) per ogni vevV,
si definisce un’applicazione lineare
8,: V=V,
Il lettore non avra difficoltd a dimostrare che 6, =6, se e solo se b & sim-

metrica.

15.3 DeriN1zioNE  Sia V un K-spazio vettoriale di dimensione n, {e,, ..., ¢,}
una sua base, e sia b: VXV~ K una forma bilineare su V.
La matrice di b (o che rappresenta b) rispetto alla base {e,, ..., e,} & la matrice
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A = (a;;) € M, (K) cosi definita:
a;=ble,e), 1=i,j=n.
La matrice A individua la forma bilineare b. Infatti per ogni v, weV
v=xe + ... +Xx,€, WwW=ye+..tye,
si ha

b(v, w)=b(xe, + ... +x,e,, ye,+ ... +y,e)=

= b(xe, yie,+ ... +y,e)+ ... + b(x,e,, y,e, + ... + y,e) =

=x,b(e, ye,+ ... +y,e)+ ... +x,b(e,, y,e;+ ... + y,e) =

=x,[b(e,, y,e)+ ... + b(e;, y,€)] + ... +x,[ble, y,e)+ ...
..t b(em ynen)] =

=x,[y b(e, e)+ ... + y,b(e,, el + ... + x,[y,b(e,, e) + ...
v +y,,b(e,,, en)] =

=L;xy;b(e, ¢)="xAy,

dove abbiamo denotato con x e y i vettori colonna delle coordinate di ve di w
rispettivamente.

Viceversa, se 4 = (a;;) € M,(K) € una qualunque matrice quadrata di ordine n
ed {e, ..., e,} € una base di V, ponendo

b(v, w)=Xaxy;="'xAy
i
per ogni v(x,, -.., X,), W(¥,, ..., Y€V, si definisce una forma bilineare su V.
Infatti, per ogni v, w, v'(x/, ..., x,)), W ({, ..., ¥,)€V, k€K si ha
bv+ VvV, W="X+x)VAy=XAy+ X' Ay=b(v, w) + b(v', w),
b(v, w+w)=XAF+y')=xAy+ XAy =b(v, w)+ b(v, w’),
bltkv, w)="(kx) Ay =k'x Ay = kb(v, W)
b(v, kw) = 'xA(ky) = k'x Ay = kb(v, w).
E evidente che la forma bilineare b cosi definita ha proprio 4 come matrice

rispetto alla base {e,, ..., e,}.
Si osservi inoltre che si ha

b(w, v)='yAx='x'4y
e quindi
b({v, w) = b(w, v)

per ogni v(x,, ..., X,), W(y,,..., V)€V se e solo se ‘A = A. In altre parole, la
forma bilineare b & simmetrica se ¢ solo se la matrice 4 & simmetrica. Analoga-
mente, b & antisimmetrica se e solo se 'A = — A, cioé se e solo se A4 & antisim-
metrica.

Riassumendo, possiamo enunciare la seguente proposizione.

13
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15.4 ProposizioNE  Sia V un K-spazio vettoriale di dimensione finita, e sia
e={e, ..., e,} una sua base. Associando ad ogni forma bilineare la sua matrice
rispetto a e si ottiene una corrispondenza biunivoca tra l'insieme Bil(V) delle forme
bilineari su V ed M, (K). Tale corrispondenza induce un’applicazione biunivoca
dell’insieme delle forme bilineari simmetriche (forme bilineari antisimmetriche)
sull’insieme delle matrici simmetriche (matrici antisimmetriche).

Ovviamente la corrispondenza biunivoca descritta dalla proposizione 15.4
dipende dalla base che si € scelta, cioé le matrici che rappresentano una data forma
bilineare rispetto a due diverse basi sono in generale diverse. Vediamo in che modo.

Supponiamo che b: V X V— K sia una forma bilineare e che e = {e,, ..., ¢,}
ed f={f, ..., £,} siano due basi di V. Siano

A =(a;)=(b(e, ¢))
B=(b,) =, 1)

le matrici che rappresentano b rispetto a e ed f rispettivamente. Se v, we 'V sono
due vettori qualunque, con coordinate rispetto alle due basi

v=xe+ ... +x.e,=x/f+ ... +x,f,
w=ye +..+ye=yf+..+yf,
si ha
b(v, w)="xAy="x'By’. [15.2]
Posto M =M, ,(1y), sihax = Mx’,y = My’ e, sostituendo nella [15.2], si ottiene
X'By’ ='(Mx"YAMy'y="x"("MAM)y’. [15.3]
Poiché la [15.3] € vera per ogni x’, y’ €K”, deduciamo che
B ="MAM. [15.4]

La [15.4] esprime la relazione esistente tra le matrici A e B che rappresentano
la forma bilineare b rispetto alle due basi e ed f rispettivamente.

Viceversa, se A & la matrice che rappresenta la forma bilineare b rispetto alla
base e, € se M€GL,(K) ¢ una qualunque matrice invertibile di ordine n, allora
esiste una base f tale che M = M, ,(1,). Pertanto B = ‘MAM ¢ la matrice che rap-
presenta b rispetto a f.

Diremo che due matrici A, B€ M,(K) sono congruenti se esiste M€ GL,,(K) tale
che

B ="MAM.

Lasciamo al lettore il compito di verificare che la congruenza di matrici & una
relazione di equivalenza in M, (K).
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In conclusione abbiamo dimostrato la seguente proposizione:

15.5 PRroposizioNE  Sia V un K-spazio vettoriale di dimensione n. Due matrici
A, Be M, (K) rappresentano la stessa forma bilineare b su V rispetto a due diverse
basi se e solo se sono congruenti.

Dalla proposizione 4.3(2) segue che due matrici congruenti hanno lo stesso
rango. Pertanto, per la proposizione 15.5, il rango r della matrice A che rappre-
senta una data forma bilineare b rispetto a una base qualsiasi non dipende dalla
base, ma solo da b: chiameremo r rango della forma bilineare b.

Se b ha rango r = dim (V) (r < dim(V)) la forma bilineare si dice non degenere
(degenere). La seguente proposizione da diverse caratterizzazioni delle forme bili-
neari non degeneri.

15.6 ProrosizioNe Sia V un K-spazio vettoriale di dimensione finita e sia
b: VX VK una forma bilineare. Le seguenti condizioni sono equivalenti:

1) b é non degenere.

2) Per ogni v#0 in V esiste weV tale che b(v, w) #0.

3) Per ogni w#0 in V esiste v#0 tale che b(v, w) #0.

4) L’applicazione 6,: V—> V"~ & un isomorfismo.

5) L’applicazione &,: V— V™ & un isomorfismo.

Dimostrazione

Scelta una base e = {e,, ..., e,} di V, sia 4 € M, (K) la matrice di b rispetto a e.

()=>(2) Se A harango n e x#0 ¢& il vettore delle coordinate di v, allora
xA #(0 ... 0), e quindi esiste y€ K" tale che 'x Ay # 0; il vettore w di coordinate
y & tale che b(v, w) #0. .

(2)= (1) Per ipotesi per ogni x # 0 esiste y tale che 'xAy # 0; cid implica
xA #(0...0) per ogni x # 0, e questo significa che A4 ha rango n.

(1) e (3) Sidimostra in modo simile.

2)=@4) Poiché dim(V) = dim(V"), ¢ sufficiente far vedere che N(5,) = (0).
Sia dunque veV tale che b, sia il funzionale nullo. Allora

0=>0,(w)=b(v, w)

per ogni weV. Cid contraddice la (2) a meno che v=20.

(4)=(2) PerogniveV,v#0, 5,(v)=>b,#0, e quindi esiste we V tale che
0 # b, (W) =b(v, w).

L’equivalenza di (3) e (5) si dimostra nello stesso modo.

D’ora in poi ci limiteremo a considerare le forme bilineari simmetriche, le quali
hanno una particolare importanza per gli argomenti geometrici che svilupperemo.
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15.7 DEFINIZIONE  Sia b una forma bilineare simmetrica su uno spazio vet-
toriale V, e sia veV. Un vettore we€V si dice ortogonale (0 perpendicolare) a v,
se b(v, w) = 0. In tal caso i due vettori v e w si dicono ortogonali (o perpendicolari).

Supponiamo assegnata in V una forma bilineare simmetrica &. Sia S un sot-
toinsieme di V; I’insieme dei vettori ortogonali ad ogni v€S si denota con S+*;
in simbok:

St ={weV: b(v, wy=0 per ogni veS}.

Py

E immediato verificare che S* & un sottospazio vettoriale di V. Infatti, se w,
w’'eS*, keK, allora

bv, w+w)=b(v,wy+b(v, w)=0+0=0
b(v, kw)=kb(v, wy=k0=0,

per ogni v€S. Chiameremo S* i/ sottospazio ortogonale ad S. Se S = {v}, & abi-
tuale scrivere v* anziché {v} .

Due sotfospazi U e W di V si dicono ortogonali se U C W+; dalla simmetria
di b segue immediatamente che questa condizione ¢ equivalente a W C U*. 1I sot-
tospazio V* & detto radicale di V. Dalla proposizione 15.6 segue che b & non
degenere se e solo se V* = (0).

Un vettore ve 'V ¢ isofropo rispetto alla forma bilineare simmetrica b se vev?,
cioé se b(v, v) = 0. Ovviamente 0 & isotropo. Se v€ V ¢ isotropo e k€K, allora si ha

blkv, kv)=k*b(v, v)=k*0=0

e quindi il sottospazio {(v) consiste di vettori isotropi.
Se v non & un vettore isotropo posto, per ogni weV,

a,(w)=b(v, w)/b(v, v), [15.6]
si ha

b(v, w—a,wW)v)=0
cioé w — g,(w) vev*. Poiché

w=a,Wv+Ww-a(w)v)

deduciamo che V = (v) + v*. D’altra parte {v) Nv* = (0) perché v non & iso-
tropo e pertanto (v) N v* & un sottospazio proprio di {v). Quindi per ogni vet-
tore non isotropo v€V si ha

V=(V)@Vl. [15.7]

Lo scalare a,(w) definito dalla [15.6] & detto coefficiente di Fourier di w
rispetto a v. Si noti che a,(w) & definito solo se v non & un vettore isotropo.
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Se V ha dimensione finita ed e = {e,, ..., €,} € una base di V tale che i vettori
che ne fanno parte siano a due a due ortogonali, cio¢ soddisfino la condizione
b(e, e)=0 per ognii#*i,

allora e & una base ortogonale, o diagonalizzante, per b.

Se e ¢ una base ortogonale, allora la matrice A = (a;;) che rappresenta b
rispetto ad e € una matrice diagonale, perché a;;= b(e;, e;) = 0 per ogni i #j. In
tale base la forma bilineare si esprime pertanto nel modo seguente:

b(v, Wy=aux;y1+ apX, ¥, + ... +,,X, Y, [15.8]

Si osservi che se una base ortogonale e esiste, essa non € unica: ad esempio
ogni base della forma {Ae;, A&y, ..., A,e,}, Ay, ..., A, €K¥, € ancora ortogonale.
Ponendo

g(v) =b(v, v) per ogni V€V
si definisce un’applicazione
qg: V—K,

detta forma quadratica determinata da (o associata a) b.
Se ad esempio b ¢ la forma bilineare (simmetrica) standard su K”, la forma
quadratica ad essa associata &

gX)=x?+x2+ ... + x2,

chiamata forma quadratica standard su K".

15.8 ProroSIZIONE  Sia V uno spazio vettoriale su cui sia assegnata una forma
bilineare simmetrica b: V X V— K. La forma quadratica q associata a b soddisfa
le seguenti condizioni:

qkv) = k*q(v)
2b(v, w)=gq(v+w)—q((v) —g(W)
per ogni k€K, v, weV,
Dimostrazione :
La prima proprieta é immediata conseguenza della FB3. Si ha poi
gv+w)y—g(¥)—gwW)=b(v+w, v+ Ww)—b(v, v) — b(w, w) =
=b(v, w)+ b(w, v) =2b(v, w).

Dalla proposizione 15.8 discende in particolare che una forma quadratica g
individua univocamente la forma bilineare simmetrica b cui & associata, perché
b si esprime per mezzo di g; segue da cid che ¢ equivalente assegnare su V una
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forma bilincare simmetrica oppure la forma quadratica ad essa associata. La forma
bilineare simmetrica b si dice forma bilineare polare della forma quadratica q.
Nel caso in cui V ha dimensione finita diremo che g sa rango r se r ¢ il rango di b.
Se {e,,..., e,} € una base dello spazio V, e se A =(g;;) ¢ la matrice (sim-
metrica) che rappresenta la forma bilineare simmetrica b, si ha, per ogni
V(X5 .oy X)EV:

gv) ='xAx = iz‘;a,.jx,.xj.

Quindi g(v) = Q(x), dove
OX)="'XAX =ZXa;X.X; [15.9]

¢ un polinomio omogeneo di grado 2 nelle indeterminate X}, ..., X,, che sono
state rappresentate complessivamente come un vettore colonna X = (X ... X,).
Diremo che Q(X) rappresenta la forma quadratica q nella base e.
Se ad esempio dim(V) =3 e la matrice di b rispetto alla base {e,, e,, e;} ¢

2 -1 5
1 Oi,
3
s L3
3

si ha
O(X) = 2X> - 2X, X, + 10X, X, + —32—X2X3 —3x2.

Si noti che ogni polinomio omogeneo di secondo grado in 7 indeterminate

oX)= I<iz<3j<anfoX}
puo rappresentarsi nella forma [15.9] per un’opportuna matrice simmetrica A,
e quindi, in una data base e di V, Q rappresenta una forma quadratica g la cui
forma bilineare polare ¢ quella rappresentata da A. La matrice 4 = (g;)) ¢ data
dalla seguente formula:

a; = q; i=1,...,n
a,'j=qij/2, l’#j.

Un polinomio omogeneo di secondo grado Q(X) pud sempre essere conside-
rato come un’applicazione Q: K”— K. Ovviamente Q & una forma quadratica il
cui polinomio associato rispetto alla base canonica é Q(X) stesso. Pertanto spesso
identificheremo il polinomio Q(X) con la forma quadratica Q. Un polinomio
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siffatto viene anche chiamato forma quadratica n-aria (binaria se n = 2, ternaria
se n =3 ecc.).

Se A & una matrice diagonale il polinomio [15.9] & privo dei ‘‘termini misti’’
q;;X; X}, i #j, € quindi ¢ della forma

OX)=a, Xt +a, X3+ ... +a,, X2 [15.10]

Pertanto una base e di V & diagonalizzante per la forma bilineare b se e solo se
il polinomio che rappresenta la forma quadratica g ¢ della forma [15.10]. Diremo
in tal caso che e ¢ una base diagonalizzante per q.

Evidentemente, due polinomi omogenei di secondo grado Q(X)="XAX e
R(X) = X BX nelle indeterminate X = (X, ... X,) rappresentano la stessa forma
quadratica su V in due basi diverse se e solo se le matrici simmetriche A e B sono
congruenti. Infatti, per la proposizione 15.5, I’essere congruenti ¢ condizione neces-
saria e sufficiente affinché le matrici A e B rappresentino la stessa forma bilineare
in due basi diverse.

Nel paragrafo 16 dimostreremo che ogni forma quadratica su uno spazio vet-
toriale di dimensione finita possiede una base diagonalizzante.

Supponiamo che sul K-spazio vettoriale V sia definita una forma bilineare sim-
metrica b: V X V- K, con forma quadratica associata g, e sia W un sottospazio
di V. Allora b induce un’applicazione

b': WXW-—-K

la quale evidentemente soddisfa ancora le condizioni della definizione, ed & per-
tanto una forma bilineare su W. Inoltre b’ & simmetrica perché b lo é. Nello stesso
modo vediamo che la forma quadratica g’: W — K associata a b’ coincide con
la restrizione di ¢ a W, e pertanto la restrizione di g a W ¢ ancora una forma
quadratica.

15.10 Complementi

1. Siano U e W sottospazi vettoriali di uno spazio V taliche V=U® W. Sup-
poniamo assegnate forme bilineari 2: U X U~ K, k: W x W — K. Definiamo z @ k:
V X V=K ponendo

(hDKk) ((w, w), (w', w))=h(u, u’) +k(w, w’).

L’applicazione h @ k & una forma bilineare, detta somma diretta di h e k. Se
h e k sono entrambe simmetriche (entrambe alterne) 2 @ k ¢ simmetrica (alterna).
Le verifiche sono lasciate al lettore.

2. Sia b: VX V—K una forma bilineare, e = {e,, ..., e,} una base di V e
A = (a;;) la matrice di b rispetto a e. Sia € = {n,, ..., 1,} la base di V" duale di
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e. Allora 'A & la matrice che rappresenta 1’applicazione lineare
0, V2 V7

rispetto alle basi e ed ¢€".
Ricordiamo che §, ¢ definita da 6,(v) = b,, dove b,€ V™ ¢ il funzionale

b,(w)y=>b(v, w), weV.

Per dimostrare I’affermazione precedente € necessario dimostrare che, per ogni
i=1,..., n,siha

5(e) = £ a,m, [15.11]

Ma per ogni i =1, ..., n abbiamo
[6,(e;)] (ej) =b(e, ej) = a;j,

mentre
n n
[E:i a;m] (ej = 1}-31 aizétj =a;;.

Poiché assumono gli stessi valori sulla base e, il primo e il secondo membro
di [15.11] sono uguali, e questo prova quel che si voleva.

Si verifica in modo simile che A ¢ la matrice che rappresenta I’applicazione
8,: V— V7 rispetto alle basi e ed €.

3. Sia U un K-spazio vettoriale tale che dim(U) = 2. Supponiamo assegnata
su U una forma bilineare simmetrica # non degenere tale che esista un vettore
isotropo rispetto ad # e non nullo. Allora # si dice forma iperbolica su U ¢ la
coppia (U, A) si dice piano iperbolico.

Se (U, A) ¢ un piano iperbolico, U possiede una base {u,, u,} formata da due
vettori isotropi tali che 4 (u,, w,) =1. Infatti, per definizione esiste u, # 0 iso-
tropo. Poiché # & non degenere, esiste ve U tale che #(u,, v) =1. I vettori u,, v
non sono proporzionali, perché si ha A(u;, ku,) = kh(u,, u,) = 0 per ogni k€K;
pertanto w, e ¥ sono linearmente indipendenti. Prendendo u, = v — A(v, v)u,/2 -
si ottiene la base richiesta.

Una base {u,, u,} con tali proprieta ¢ detta iperbolica. La matrice che rap-
presenta A rispetto a una base iperbolica ¢

0 1
( ) [15.12}
1 0

E evidente, viceversa, che se lo spazio vettoriale U ha una base {u;, u,} tale
che la matrice della forma bilineare sia la [15.12], allora (U, #) & un piano iper-
bolico.
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Ad esempio, la forma bilineare

h(x, ¥) =X, + X, ¥
su K? ¢& iperbolica, e la base canonica & iperbolica. Anche la forma bilineare

1 1
kX, ¥)=—xy, — — X,
( ) =5 Y1 D) 22
¢ iperbolica, e una base iperbolica ¢ {(1, 1), (1, — 1)}. Per la forma k la base cano-

nica & diagonalizzante.

4. Siano V uno spazio vettoriale e b: V X V— K una forma bilineare simme-
trica non degenere tale che V contenga un vettore isotropo u # 0. Allora esiste
-un sottospazio U di V contenente u ¢ tale che la coppia (U, by) sia un piano iper-
bolico.

Infatti, poiché b & non degenere, esiste veV tale che b(u, v) =1. Il vettore

b(v, v)
-
2

¢ isotropo e tale che b(u, w) = 1. Quindi il sottospazio U = (u, w) ha le proprieta
volute.

S. Siano V uno spazio vettoriale e g: V— K una forma quadratica. Uno sca-
lare o € K si dice rappresentabile mediante q se esiste veV, v # 0, tale che g(v) = a.

Se V ¢ uno spazio vettoriale complesso e g € non degenere, allora ogni €C
¢ rappresentabile mediante g. Infatti, fissata una base {e,,..., e,} tale che
b(e) #0, e detta 8€C una radice quadrata di ag(e,)”!, si ha

q(Be) =B*qle) = a.

Se K=R, V=R", n=1, g(x) = x>+ ... + x2, la forma quadratica standard,
allora, evidentemente, nessun numero « < 0 & rappresentabile mediante g. Invece
ogni numero reale o > 0 lo &: 1o si puo dimostrare esattamente come nel caso degli
spazi complessi, tenendo presente che « possiede una radice quadrata reale.

La nozione di rappresentabilitd di uno scalare mediante g & importante se K = Q.
L’insieme degli scalari rappresentabili mediante una data forma quadratica g su
un Q-spazio vettoriale, ad esempio su Q”, ha una notevole importanza aritmetica.

Se (U, k) & un piano iperbolico e ¢g: U— K & la forma quadratica associata ad
h, allora g(U\{0}) = K, e quindi ogni elemento di K & rappresentabile mediante q.

Infatti, se {u,, u,} ¢ una base iperbolica di U e a€K, si ha

q(ul+%u2) =a.

Dall’osservazione precedente e dalla 15.10(5) segue subito che se g & una forma
quadratica non degenera su uno spazio vettoriale V, tale che esista in V un vet-
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tore isotropo non nullo, allora ogni o €K & rappresentabile mediante g. In altre
parole, se O & rappresentabile mediante ¢, lo ¢ ogni a€K.

Prendendo ad esempio K = Q e V = Q?, otteniamo che ogni numero razionale
o pud esserc espresso nella forma

a= % «*-y?), conx, yeQ.

6. Sia b: V x Y = K una forma bilineare simmetrica non degenere su un K-spazio
vettoriale V, e sia U un sottospazio di V. Il sottospazio ortogonale U+ coincide
con P’ortogonale di §,(U) C V", cosi come ¢ stato definito in 11.14(3). Suppo-
niamo che V abbia dimensione finita. Poiché b ¢ non degenere, §, ¢ un isomor-
fismo, e quindi dim(U) = dim[§,(U)]. Dalla [11.13] segue pertanto che

dim(U*) = n —~ dim(U). [15.13]

Se U non contiene vettori isotropi non nulli, si ha UNU* = (0), e dalla
[15.13] segue allora che V= U@ U*. Prendendo in particolare U = (v}, dove v
¢ un vettore non isotropo, si ottiene P’identita [15.7] dimostrata in precedenza.

7. Sia b: V X V— K una forma bilineare simmetrica sullo spazio V, ¢ deno-
tiamo con I,(V) C V 'insieme dei vettori isotropi rispetto a b. I,(V) ¢ detto cono
isotropo di V (rispetto a b). Un sottospazio U di V si dice isotropo se U C 1,(V).
Ovviamente {0) & un sottospazio isotropo di V, che si dice banale. Se b ¢ dege-
nere, allora il suo radicale V* ¢ un sottospazio isotropo non banale.

Se U ¢ un sottospazio isotropo € u,, u,€ U, allora, poiché u, + u,€U, si ha

0=>b(u, +u,, u, +u)=2b(u,;, uy),

cio¢ u, e u, sono ortogonali. Da ci0 discende che U C U*. Viceversa, se UC U-,
allora ¢ evidente che U é isotropo.
La forma b si dice anisotropa se V non possiede vettori isotropi non nulli, cioé
se I,(V) = {0}. Ad esempio la forma bilineare standard su R” ¢ anisotropa.
Supponiamo b non degenere, € sia U un sottospazio isotropo. Allora si ha

dim(U) < % dim (V). [15.14]

Infatti U isotropo significa che UC U™, e quindi, per la {15.13], abbiamo
dim(U) = dim(U*) = dim (V) — dim (U),

cioé la [15.14].
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Esercizi

1. Stabilire quali delle seguenti sono forme bilineari su R”.

a) (x,y)=Z x; | 1 b) {x, ¥ =| ,2| Xj}’jl
=1 -

) {x,¥) = (;E. x,-) ( _‘Ely,) d) {x, y) = /J_r‘x,-’y/2

n

X VW= +y)-Zx- L y.
i=1 i i-1

2. In ciascuno dei casi seguenti determinare la forma bilineare polare della forma qua-
drica g: R*—R:

a) g(x, y)=3x*—8xy—3)° b) glx, p) =4x> - 9xy + 5y°
Q) qlx, ) =4x’ - 4xy + 7y d) gix, y=x"~2xy+y*
e) g(x, y) = 3x* +10xy + 3 f) q(x, y) = 6xy.

3. Determinare la matrice e il rango di ciascuna delle forme quadratiche dell’esercizio
precedente.

4. In ciascuno dei casi seguenti determinare la forma bilineare polare della forma qua-
dratica g:R*—R:
a) g(x, y, ) =xz+xy+yz b) q(x, y,2) =2xy +y" ~2xz
Q) g, ¥, )=x"-2x2-y' -2 d) q(x, y, 2) = 5x"+3y" + xz
) g(x, y,2)= — X'~ 4xy +3y* + 22

5. Determinare la matrice e il rango di ciascuna delle forme quadratiche dell’esercizio
precedente.

16 Diagonalizzazione delle forme quadratiche

In questo paragrafo considereremo il problema dell’esistenza di basi diagona-
lizzanti per una forma bilineare simmetrica su uno spazio vettoriale. Il risultato
principale sull’argomento ¢ il seguente teorema.

16.1 TeorEMA Sia V un K-spazio vettoriale, dim (V) =n=1, e sia b una
forma bilineare simmetricasu V. In 'V esiste una base diagonalizzante per b. Equi-
valentemente, ogni matrice simmetrica A€ M,(K), n=1, & congruente a una
matrice diagonale.

Data I’importanza del teorema, ne diamo due dimostrazioni.



204 Geometria euclidea

Prima dimostrazione

Procediamo per induzione su # = dim(V). Se n =1 non ¢’¢ niente da dimo-
strare. Supponiamo dunque n = 2, e che ogni forma bilineare simmetrica su uno
spazio di dimensione minore di n possieda una base diagonalizzante.

Se b ¢ la forma bilineare nulla non c’¢ niente da dimostrare, perché in una
qualsiasi base la matrice di b ¢ la matrice nulla, che & diagonale, e quindi ogni
base di V ¢ diagonalizzante. Possiamo dunque supporre che b non sia la forma
bilineare nulla, e quindi che esistano v, we'V tali che (v, w) # 0. Da cid segue
che uno almeno dei tre vettori v, w, v + w & non isotropo. Infatti, se ve w sono
entrambi isotropi, allora

b(v+w, v+ w)=>b(v, v) + b(w, w) +2b(v, w) =2b(v, w) #0.

Pertanto esiste un vettore e, €V tale che b(e, e,) = 0. Dalla [15.7] segue che
V =<(e;) @e;; in particolare dim(e;') =n — 1.

Per P’ipotesi induttiva la forma bilineare 4’ indotta da b su e;* possiede una
base diagonalizzante: sia essa {e,, ..., ¢,}. Allora e = {e;, e,, ..., €,} & una base
di V: infatti e,, ..., €, sono linearmente indipendenti e d’altra parte e, ¢ (e,, ...
...y €,) =ej", sicché e, e,, ..., e, sono linearmente indipendenti.

Inoltre b(e,, ¢;) =0 per ogni j=2,..., n, perché e;ce; . Infine b(e, ¢) =
=b'(e, ¢) =0 per ogni i #j, 2<1i, j<n, perché {e,, ..., e,} ¢ una base di e;*
diagonalizzante per b’. Quindi e ¢ una base diagonalizzante per 5.

Seconda dimostrazione (Lagrange)

Per induzione su #n = dim(V). Se n =1 non ¢’¢ niente da dimostrare. Suppo-
niamo n =2, e che ogni forma bilineare simmetrica su uno spazio di dimen-
sione minore di n possieda una base diagonalizzante. Scegliamo una base
b={b,...,b,} di V. Se b ¢ la forma bilineare nulla, allora b & diagonalizzante,
e non c’¢ niente da dimostrare. Se b non ¢ la forma bilineare nulla, allora pos-
siamo ottenere da b una nuova base ¢ = {¢,, ..., ¢,} tale che b(c;, ¢;) #0. Infatti,
se b(b;, b;) # 0 per gqualche J, sara sufficiente scambiare b, con b;. Se viceversa
b(b;, b)) =0 per ogni i, allora dev’essere b(b;, b)) # 0 per qualche i #j; scam-
biando ancora possiamo supporre b(b;, b,) #0, e la nuova base

e={b +byb,.. b,

ha la proprieta voluta. Nella base ¢ la forma quadratica g associata a » ha
Pespressione

qV(Yys oo Y =hy Y7+ 2',‘_\;2}3”)’1)’:‘ + szizhijyiyj, [16.1]

dove #;; = b(c; ¢;). Poiché &, = b(c, ¢,) %0, possiamo riscrivere la [16.1] nel
modo seguente:

GOV (Yys oees Y)) =y (3, + ?211;;‘ h,.¥;)* + (termini in cui non compare y,).
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Eseguiamo il cambiamento di coordinate
n
Z =nh + i?zhl_ll hllyis 2y =DVas eees 2y =Vps
che corrisponde al passaggio dalla base ¢ alla nuova base

d=1{d,..,d,}=
={c;, ~hi'hpei+¢ —hy'he + ¢, .y — B he e, )

In queste coordinate g ha la forma

qv@ys ooy 2N =My 2+ @ (25 . 20)s

dove ¢’'(z,, ..., Z,) € un polinomio omogeneo di secondo grado in z,, ..., z,, €
quindi & una forma quadratica sullo spazio {d,, ..., d,). Per Uipotesi induttiva
{d,, ..., d,) possiede una base {e,, ..., e,} diagonalizzante per q’. Pertanto la
base-{d,, e,, ..., e,} di V & una base diagonalizzante per q.

Il teorema precedente afferma l’esistenza di una base e rispetto alla quale
b ha la forma [15.8], con a,,, @y, ..., a,,€K. Dimostreremo che nei casi
K = R, C si possono ottenere risultati pit precisi. Iniziamo dal caso K = C (consi-
dereremo pili in generale il caso in cui K & algebricamente chiuso).

16.2 TEOREMA  Supponiamo che K sia algebricamente chiuso. Sia V un K-
spazio vettoriale, dim(V) = n =1, e sia b: V X V= K una forma bilineare simme-
trica. Esiste una base {e,, ..., e,} diagonalizzante per b tale che la matrice di b
sia della forma

L o
D= ( ' ) [16.2]
0, 0,

dove r & il rango di b e 0,eM, ,_(K), 0,eM,_, (K), 0;eM,_, , ,(K) sono le
matrici nulle.

Equivalentemente, ogni matrice simmetrica A € M,(K) di rango r é congruente
alla matrice [16.2].

Dimostrazione

L’equivalenza delle due affermazioni ¢ evidente. Dimostreremo la prima. Per
il teorema 16.1 esiste una base f = {f, ..., f,} tale che la matrice di b rispetto a
f sia diagonale della forma
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Salvo scambiare tra loro f,, ..., f,, possiamo supporre a,;, @, ..., a, diversi da
0,ea,,,,=..=4a,=0.Siano o, a, ..., €K tali che a?=a;, i=1,..., r
(gli «; esistono perché K ¢ algebricamente chiuso) e consideriamo i vettori

-1 — -1 — — '
e,=¢, 'f,..,e=0a"f,¢e, =f,,....,e,=1,.
Ovviamente e = {e,, ..., €,} € una base ortogonale. Inoltre
- - - -2, _ P —
b(e, e)=b(a'f, o7 'f) =726, £) = %a;=1, i=1,...,r
b(e, e)=b{, £)=0 i=r+1,.., n

Quindi e ha le proprieta volute.

Nella dimostrazione del teorema precedente si & utilizzato il fatto che K & alge-
bricamente chiuso per ottenere [’esistenza degli scalari ;. Nel caso K=R si
ottiene un risultato un po’ pit debole.

16.3 TeOREMA (SYLVESTER) Sia V uno spazio vettoriale reale, dim(V) = n =1,
e sia b: V X V—K una forma bilineare simmetrica. Esistono un numero intero
non negativo p<r, dove r é il rango di b, dipendente solo da b, e una base
e=f{e,..., e,} di V, tali che rispetto a e la forma b abbia la seguente matrice:

L, 0 0
0 -L_, o0, [16.3]
0o o0 0

dove il simbolo 0 denota matrici nulle di ordini opportuni.
Equivalentemente, ogni matrice simmetrica A€M, (R) é congruente a una
matrice diagonale della forma [16.3] in cui r = r(A) e p dipende solo da A.

Dimostrazione
L’equivalenza delle due affermazioni ¢ evidente. Dimostreremo quindi la prima.
Per il teorema 16.1 esiste una base f= {f, ..., f,} di V tale che

qW) =a Y + apyi + ... +a,,y;

per ogni v=y f + y,f,+ ... + y,f,€V. Il numero di coefficienti a; che sono
diversi da 0 ¢ uguale al rango r della forma g, e quindi dipende solo da g. Salvo
riordinare la base possiamo supporre che i primi r coefficienti siano diversi da
zero e che tra essi tutti quelli positivi figurino per primi. Si avra dunque

— 2 A2 2 2
=y eeey Gy =0y By 1y = — Ol igs eeey A= — Qf

per un opportuno intero p < r e opportuni numeri reali positivi o, o, ..., «,.
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Esattamente come nella dimostrazione del teorema precedente si verifica che
rispetto alla base
e, =f/0;, e,=1/0,...,e,=f/a, e,  =1,,..,¢e=f,
la matrice di b € la [16.3], e quindi la forma quadratica g associata a b &
g =xt+ . + X=X — =X [16.4]

per ogni v=xe, + ... +x,e,€V.

Resta da dimostrare che p dipende solo da b, e non dalla base {e,, ..., e,}.
Supponiamo dunque che in un’altra base b = {b,, ..., b,} 1a forma b si esprima
come

gW) =22+ ... +22—z4, - ... ~ 2}, [16.5]

per ogni v=2zb, + ... +z,b,€V, per un opportuno intero ¢ < r. Dobbiamo far
vedere che £ = p. Se p # ¢ possiamo supporre che sia £ < p. Consideriamo i sot-
tospazi

S = (e s €,)
T=<(b,,..., b,).
Poiché

dim@S) +dim(M)=p+n—t>n,

dalla formula di Grassmann segue che SN'T # (0), e quindi esiste vESN T, v Z 0.
Si ha quindi

v=x€+ ... +xe,=z,,b,,+ ... +2b,
Poiché v # 0, dalla [16.4] segue che
gy =xt+ ... +x}>0,
mentre dalla [16.5] si deduce che
qWv)y=-~z%,,— ... —72<0,

e cioé¢ una contraddizione. Quindi p = ¢.

L’espressione [16.4] si dice la forma canonica della forma quadratica q. Gli
interi p ed r — p si dicono rispettivamente indice di positivita e indice di negati-
vita, e la coppia (p, r — p) & detta segnatura, di b e di gq.

Una forma quadratica g sullo spazio vettoriale reale V si dice: definita posi-
tiva se q(v) = 0 per ogni v €V; definita negativa se g(v) > 0 per ogni v # 0; semi-
definita positiva se q(v) < 0 per ogni v # 0; semidefinita negativa se q(v) < 0 per
ogni vevV.

Evidentemente, se g € definita positiva (negativa) allora & anche semidefinita
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positiva (negativa). Se non & semidefinita positiva né semidefinita negativa, g si
dice indefinita.

Analoga terminologia si usa per la forma bilineare polare di q.

Le forme canoniche corrispondenti ai diversi casi, e le relative segnature, sono

le seguenti:

Forma quadratica Segnatura
definita positiva X+ ... +x2 (n, 0)
semidefinita positiva xf+ ... +x?, r=<n @, 0)
definita negativa —xt— ... =X ©, n)
semidefinita negativa —x?— ... —x, r=<n ©, )
indefinita X+x3+ XX} — ... —x}, O0<p<r=n (p,7r-p)

Una matrice simmetrica A € M,(R) si dira definita positiva o, rispettivamente
semidefinita positiva, definita negativa, semidefinita negativa, indefinita se la cor-
rispondente forma quadratica ¢ definita positiva, semidefinita positiva ecc.

Dal teorema di Sylvester discende anche che ogni classe di congruenza di matrici
simmetriche reali di ordine 7 contiene precisamente una matrice diagonale della
forma [16.3]. Si ha dunque una corrispondenza biunivoca tra tali classi di con-
gruenza ¢ le matrici [16.3], cioé le matrici [16.3] costituiscono un insieme com-
pleto di rappresentanti delle classi di congruenza di matrici simmetriche reali di
ordine 7.

In particolare una matrice simmetrica reale di ordine n & definita positiva se
e solo se & congruente alla matrice unita I, cioé se e solo se esiste Me€GL,(R)
tale che A = M1, M = 'MM. Abbiamo quindi il seguente corollario.

16.4 CoroLLaRIO Una matrice simmetrica A € M, (R) é definita positiva se
e solo se esiste una matrice M e GL,(R) tale che, A = 'MM.

Le forme bilineari simmetriche definite positive sugli spazi vettoriali reali sono
molto importanti in geometria euclidea, perché, come vedremo nei prossimi para-
grafi, esse permettono di introdurre tutte le nozioni di natura metrica. Anche altri
tipi di forme bilineari su spazi vettoriali reali hanno importanza in geometria e
in fisica. Un esempio particolare & lo spazio vettoriale reale R* dotato dalla forma
quadratica

2 2 2 2
A, X, X5 Xg) = X7+ X5 + X7 — X5,

che si chiama forma di Minkowski. ) € non degenere indefinita, di segnatura (3, ‘l).
La coppia (R*, X) & detta spazio di Minkowski ¢ ha importanza fondamentale in
relativitd ristretta.
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Esercizi

1. In ciascuno dei seguenti casi determinare un base rispetto alla quale la forma quadra-
tica assegnata su C? assuma la forma [16.2], e la relativa formula di cambiamento di

coordinate:
a) —x*+)° b) ix* — 2y?
c) 4x* + 9y? d) —x*—25y%

2. In ciascuno dei seguenti casi determinare un base rispetto alla quale la forma quadra-
tica assegnata su R® assuma la forma canonica, e calcolarne la relativa segnatura:
a) 4x* =5y’ +1227 b) —x*+92°
Q) —xt-y*+2? d) y*+167%.
3. Diagonalizzare ciascuna delle forme quadratiche dell’esercizio 2 (§ 15), determinando
il relativo cambiamento di coordinate e la segnatura di q.

4. Per ciascuna delle forme quadratiche dell’esercizio precedente, esprimere la matrice
B della forma diagonalizzata come B = '"MAM, dove A & la matrice della forma qua-
dratica assegnata.

5. Diagonalizzare ciascuna delle forme quadratiche dell’esercizio 4 (§ 15), determinan-
done la segnatura e le trasformazioni effettuate.

6. Per ciascuna delle forme quadratiche dell’esercizio precedente, esprimere la matrice
B della forma diagonalizzata come B = '‘MAM, dove A & la matrice della forma qua-
dratica assegnata.

17 Prodotti scalari

Sia V uno spazio vettoriale reale. Una forma bilineare simmetrica definita posi-
tiva su V si dice prodotto scalare. Se su V & assegnato un prodotto scalare, V si
dice spazio vettoriale euclideo.

Si noti che la definizione non richiede che V abbia dimensione finita, e infatti
esistono esempi di spazi vettoriali euclidei che non hanno dimensione finita (cfr.
esempio 17.8(2)). La nostra trattazione sara perd finalizzata al caso finito dimen-
sionale.

La forma bilineare standard [15.1] su R%, n>1, & un prodotto scalare che
chiameremo d’ora in poi prodotto scalare standard su R"; se x, y € R” denoteremo
il loro prodotto scalare standard con il simbolo x-y; si ha quindi

Xy =X Y+ XY, + ... +X,¥,="Xy.

Dotato del prodotto scalare standard, R” & uno spazio vettoriale euclideo,
denominato n-spazio vettoriale euclideo.
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Sia V uno spazio vettoriale euclideo qualsiasi; denoteremo il prodotto scalare
di due vettori v, weV con il simbolo {v, w), che si legge ‘‘v scalare w”’.
17.1 TEOREMA Se v, w€V, allora
(v, w2 =y, v) (w, w) (17.1]
e Puguaglianza vale se e solo se v e w sono paralleli.

Dimostrazione
Se w =10 la [17.1] & ovvia, essendo uguali a 0 entrambi i membri. Possiamo
dunque supporre w # 0. Per ogni a, b€R si ha

O0<<{(av+bw, av+ bw) =a*{v, v) +2ab{v, w) + b*{w, w)

e Puguaglianza vale se e solo se av + bw = 0, cioé se e solo se v e w sono paralleli.
Prendendo in particolare

a=(w, w), b=—(v, w),
si ottiene
0=<(w, w)2(v, V) — 24w, w) (v, w)? + (v, w)?(w, w).

Poiché w # 0, si ha {(w, w) > 0, e dividendo il secondo membro per {(w, w)
otteniamo

0<(w, w) (v, v) — (v, w)?,
cioé la [17.1].

La [17.1] & chiamata disuguaglianza di Schwarz.
Se veV, la norma, o lunghezza, di v si definisce come

vl =~/(v, v) .

Utilizzando la norma, la disuguaglianza di Schwarz si puo esprimere nella forma
equivalente

(v, wyl<lvillwl, [17.2]

ottenuta estraendo la radice quadrata da primo e secondo membro della [17.1].
La lunghezza di un vettore gode delle seguenti proprieta:

N1  Per ogni veV si ha ivll =0, e vale I'uguaglianza se e solo se v =0.

N2 PerognireR, veV, si ha lrvii=Irilvi.

N3 Perogniv,weV, sihallv+wl<lvll + Iwl e vale 'uguaglianza se e
solo se v e w sono paralleli.

La N1 & una formulazione della proprieta del prodotto scalare di essere defi-
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nito positivo. La N2 segue estraendo le radici quadrate del primo e secondo mem-
bro dell’uguaglianza seguente:

{rv, rv) =r*{v, v).

La N3 ¢ detta disuguaglianza triangolare e si dimostra nel modo seguente. Per
la [17.2] si ha

Iv+rwll=(v+w, v+w)=lIviZ+2¢v, w) + Iwl’<
<lvli2+20viiwl +Iwli2= (vl + wl)?

che & equivalente alla N3.

Per la N1 un vettore v ha lunghezza 0 se e solo se v=0.

Un vettore v lunghezza 1 si dice versore. Per la N2, se v#0, v/livil & un ver-
sore parallelo a v, che si dice ottenuto rormalizzando v.

Ricordiamo che due vettori v, w €V sono detti ortogonali, o perpendicolari,
se (v, w) = 0. Dalla definizione segue che il vettore 0 & perpendicolare ad ogni
altro vettore di V. Poiché il prodotto scalare ¢ definito positivo, 0 & 'unico vet-
tore perpendicolare a sé stesso. ‘

Un insieme finito {v,, v,,..., v,} di vettori non nulli di V & un insieme
ortogonale di vettori se i suoi elementi sono a due a due ortogonali, cioé se
(v, v)=0perognii=j 1<i, j=<t.

{Vi» V3 ..., V,} si dice insieme ortonormale di vettori se & un insieme
ortogonale ¢ se i suoi elementi sono versori. Se {v,, V,,..., v,} € un insieme
ortogonale, normalizzando i suoi elementi si ottiene un insieme ortonormale:
{vi/liv i, v/lv, 0, .., v, /1y .

Se V ha dimensione finita, una base ortogonale (una base ortonormale) di V
¢ una base {e,, €, ..., ,} che & un insieme ortogonale (un insieme ortonormale)
di vettori.

17.2 PrROPOSIZIONE Se {v,, V,, ..., V,} & un insieme ortogonale di vettori,
allorav,, v,, ..., v, sono linearmente indipendenti. In particolare, se V ha dimen-
sione finita, un insieme ortogonale di n = dim(V) vettori & una base ortogonale
diVv.

Dimostrazione
Se a,v, + a,V, + ... + a,v,= 0, allora, per ogni i =1, ..., £,

0=Av,, q,\vi+@,v,+ ...+ ayv)=
=@, {v;, V) + (v, V) + ... +a{v, V)=
=al{v;,, vV;).

Poiché (v,, v;) >0, dev’essere @,= 0. Quindi v, v,, ..., v, sono linearmente
indipendenti.
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Dal teorema 16.1 discende che V possiede basi ortogonali se ha dimensione
finita positiva; normalizzando (gli elementi di) una base ortogonale si ottiene una
base ortonormale, e quindi V possiede anche basi ortonormali. Questo fatto segue
anche direttamente dal teorema di Sylvester, visto che il prodotto scalare ha segna-
tura (n, 0).

See= {e; e, ..., ¢,} ¢ una base ortonormale di V, allora la matrice che rap-
presenta {,) rispetto alla base e & I,. Pertanto per ogni v=xe + ... + x,e,
w=ye+..+ye,siha

(V, WYy =X, + X305+ ... +X, P, =Xy

In altre parole in una base ortonormale il prodotto scalare di due vettori si
esprime come il prodotto scalare standard dei vettori colonna delle loro coordi-
nate. Nella pratica & conveniente utilizzare basi ortonormali anziché basi qualun-
que perché i calcoli con le coordinate dei vettori sono notevolmente piti semplici.

I risultato seguente descrive la matrice di un cambiamento di base ortonormale.

17.3 PrROPOSIZIONE Siano e = {e,, ..., ¢,}, = {f,, ..., £,} due basi dello spa-
zio vettoriale euclideo V, e supponiamo che e sia ortonormale. La base f ¢ orto-
normale se e solo se la matrice M, ;(1,) del cambiamento di coordinate da f a e
€ una matrice ortogonale.

Dimostrazione
Le colonne della matrice M = M, (1y) sono le coordinate dei vettori f, ..., f,
rispetto ad e. Pertanto f é ortonormale se e solo se

M;,-M;, = (f, ) =4, [17.3]

Le [17.3] esprimono precisamente la condizione ‘MM =1, cioé MeO(n).
Descriveremo ora un metodo molto semplice per costruire insiemi ortogonali
e trovare esplicitamente basi ortogonali (e quindi basi ortonormali), il cosiddetto
‘“‘procedimento di ortogonalizzazione di Gram-Schmidt’”. Tale procedimento
¢ basato sulla nozione di ‘‘coefficiente di Fourier’’, che abbiamo introdotto nel

n. 15. Ricordiamo che, se v & un vettore non nullo di V, per ogni w €V il coeffi-
ciente di Fourier di w rispetto a v & lo scalare

a,(w) = v, w)/{v, v).

Definiamo la proiezione ortogonale di w nella direzione di v come il vettore
a,(w)v. La terminologia ¢ giustificata dal fatto che

(W—a,(wW)v, v) ={w, v) —a,(w){v, v) =0,

cioé w — a,(w) v & perpendicolare a v (fig. 17.1).
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w—a,{w)v

a,{w)v v Figura 17.1

Nel caso particolare in cui v & un versore, per ogni w € V il coefficiente di Fou-
rier di w rispetto a v &:

a,(w) = (v, w);

la proiezione ortogonale di w nella direzione di v & (v, w)v ¢ w— (v, w)v ¢
ortogonale a w.

17.4 TEOREMA (DI ORTOGONALIZZAZIONE DI GRAM-SCEMIDT) ~ Sia v;, V,, Vs, ...
una successione (finita o infinita) di vettori dello spazio euclideo V. Allora:

1) Esiste una successione (corrispondentemente finita dello stesso numero di
elementi o infinita) w,, W,, W, ... di vettori di V tale che per ogni intero k=1
si abbia:

a) V), Vo eony Vi) =AWy, Way oo, W)
b) i vettori w,, w,, ..., w, sono a due a due ortogonali.

2) Se wy, u,, u,, ... e un’altra successione che soddisfa le condizioni (a) e (b) per
ogni k =1, allora esistono scalari non nulli ¢,, ¢, ... tali che w, =c,w,, k=1, 2, ...

Dimostrazione

1) Costruiremo gli elementi w,, w,,... per induzione su k. Prendiamo w, = v,,
che evidentemente soddisfa (a) e (b) per kK =1. Sia =1 e supponiamo di aver
costruito wy, ..., w, soddisfacenti alle condizioni (a) e (b) per k = ¢. Definiamo

t
Wi =V — §1' aw,(vr+1) w;
(dove X’ denota la somma estesa ai soli indici 7 tali che w; # 0).
Dalla definizione segue che v,,, ¢ combinazione lineare di w;, w,, ..., w,,, €
per Pipotesi induttiva i vettori v, ..., v, sono combinazioni lineari di w,, w,, ..., w,.

Quindi (v;, vy .oo; V> C{W,, Wy, ..., W, ). D’altra parte, sempre per la defi-
nizione di w,,,, abbiamo che w,,, ¢ combinazione lineare di w, w,, ..., w,, v, ;.
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Per I’ipotesi induttiva i vettori w;, w,,..., W, sono combinazioni lineari di
Vi, Vs, ..., V,, € quindi w,,; € combinazione lineare di v,, v,, ..., v,,,; dunque si
ha anche {(w,, w,, ..., W, > C{v,, V,, ..., v,, ;). Pertanto la (a) & soddisfatta
per k=t+1.

Si ha poi, per ogni i=1, ..., ¢, tale che w; #0:

AW, W)=V, | — }2_121' @ (Ve )W)y W) =LV, 0, W) — @, (V) (W, W,) =
=V W =V, W) =00
Essendo per P’ipotesi induttiva anche
(w;, w;)=0

perogni i #j, 1<i, j<t, la (b) & soddisfatta per k = ¢ + 1. Cid dimostra la parte
(1) del teorema.

2) Procediamo per induzione su k. Per k& =1 la conclusione & ovvia. Suppo-
niamo ¢ =1 e che esistano ¢,, ¢, ..., ¢, tali che u, = ¢, w, per ogni k<¢. Per la
(a) si ha

W, =216 Wi

per qualche ze(w,, ..., W), ¢,,,€R. Poiché, per la (b), sia u,,, che w,,, sono
ortogonali a z, anche u,,, — ¢,,;W,,, =z & ortogonale a z, cio¢ z ¢ ortogonale a
'sé stesso; quindi z = 0.

Si noti che la (b) del teorema 17.4 non afferma che {w,, w,, ..., w,} € un
insieme ortogonale di vettori, perché pud accadere che qualcuno dei vettori w,,
W,, ..., W, sia uguale a 0. Se w;, w,, ..., w, sono tutti non nulli, allora {w,, w,, ...
..., W, } € un insieme ortogonale di vettori.

Se V ha dimensione finita ¢ {v,, ..., v,} ¢ una base di V, il procedimento di
Gram-Schmidt applicato ai vettori vy, ..., v, fornisce vettori w,, ..., w,, a due a
due ortogonali, che generano V, e quindi tutti diversi da 0: dalla proposizione
17.2 segue che {w,, ..., w,} & una base ortogonale di V. Per ottenere una base
ortonormale non resta che normalizzare {w,, ..., w,}.

17.5 Esempi

1. Sia V uno spazio vettoriale euclideo, dim(V) =4, e sia {e,, e,, e;, ¢,} una
base ortonormale di V. Consideriamo i vettori

v1(09 1’ 09 1)’ V2(2’ la 0’ l)a V3(~—1, 0’ Oa 1), V4(0, Oa 1, 0)'
Il procedimento di Gram-Schmidt applicato a v;, v,, V5, v, da
W, =V,

_ {wy, V)

W, =V,
(W, wp)

w =v2—;w1=291,
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{w;, v3) {W,, V3) 1 -2
W3=V3—“ w]_ W2=V3——Wl—————w2—_—
(w;, W) {w,, W,) 2 4
1 1
=——e+—e,
2 72"
{(wy, v, (W,, V) {w;, vy
W4=V4_ 1 2 — =
{w;, w;) {W,, W) (w3, W)
0 0 0
=V, — W —— W, —— W; =V,
4 ) 1 4 2 12 3 4

I vettori w,, w,, W,, w, costituiscono una base ortogonale di V. Normalizzando
questi vettori si ottiene la base ortonormale

e, e, e, e,
{ + ’ el, - — ‘F Y e3 .

V2 V2 V22

2. Consideriamo R* con il prodotto scalare:
1 1
(x,y) = —2"351}’1 + ?xz}’z + X3Y3 + X4 Y4

Applicando il procedimento di Gram-Schmidt ai vettori
V]=(l, l, —la ’—1)3 v2=(1, 19 19 l),
v,=(-1, -1, -1, 1), v,=(,0,0,1)

otteniamo
w, =V,
o Kwpv)y -1 (4 4 2 2)
wZ_VZ—_—_Wl‘“VZ-_w]= Ty T s T s s
(v, v 3 3 3 3 3
(W, v3) (W,, v3) -1 —4/3
W3 = V3= W, — W, = V3 — w, ~ w, =
{w;, w,) (W,, W,) 3 8/3
1 1
=v.+—w, +—w,=(0,0, -1, 1),
M 2
(w,, V4) {w,, V4) <w3a A\
Wy=V,— w, - W, — 3=
(W, W) (W, wz) (wgs W;)
1/2 4/3 1
=V, - W, — W, — — Wy =
T Y S T

1 1 1 1 1
=V, + =W, ——W,——wW,;=|—, ——, 0, 0].
e o2 2" (2 2 )
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. 4 4 2 2 1 1
uindi I, 1, "‘l, -1 sy s —— s — ’(09 O, _19 1 s (_ s T T 7 Os 0)}
Q {( ) (3 3 3 3) ) 2 2
¢ una base di R* ortogonale rispetto a {,).

17.6 PROPOSIZIONE Sia V uno spazio vettoriale euclideo e W # {0) un suo
sottospazio vettoriale di dimensione finita. Allora ogni elemento v €V si puo espri-
mere in modo unico come

vV=w+ W, [17.4}
dove weW e w’' e W+*. Quindi si ha
V=W@W.
Dimostrazione
Sia {e,, ..., e,} una base ortonormale di W. Se veV, poniamo
w={(v,ede + ..+ (v, e)e
W =v—-w,
Evidentemente weW. Inoltre, per ogni i =1, ..., £
(W, ey=(v,e)—(w, e)=(v,e)—(v,e){e, e)=0,

e quindi w’, essendo perpendicolare a e, ..., €, & perpendicolare ad ogni loro
combinazione lineare, cioé w’'€ W+, Quindi v=w + w’ si esprime nella forma
voluta.

Se v=u+u’ per qualche ueW, u’eW+, allora

w—u=u"—wecWNw+*

e quindi w — u, essendo perpendicolare ad ogni elemento di W, & anche ortogo-
nale a sé stesso. Ma alloraw—~u=0=u’—w’', ciodw=uew’ =u’.

L’elemento w che compare a secondo membro della [17.4] si dice proiezione
ortogonale di v sul sottospazio W.

Esplicitando I’identita ivll> = (w + w’, w + w’) si ottiene immediatamente la
seguente:

IviZ=lwl?+ Tw’i?

che & detta identita pitagorica.

La disuguaglianza di Schwarz [17.1] permette di introdurre in uno spazio vet-
toriale euclideo V la nozione di ‘“angolo convesso di due vettori non nulli’’ nel
modo seguente.

Supponiamo che v, w€ V siano due vettori diversi da 0. La [17.2] si pud anche
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scrivere nella forma equivalente:
—lvillwll <=(v, wy<livlliwl

dalla quale, dividendo per vl lwll, si ottiene

vV, W

1= AeW [17.5]
vl lwii

Dalla [17.5] e dalle proprieta della funzione coseno discende che esiste un unico

numero reale 4, tale che 0 <6 < 7, ¢ tale che si abbia

(v, w)
cosf =
vl iwll
Potremo quindi scrivere
(v, w)=lvlliwl cosé. [17.6]
Chiameremo
(v, w)
# = arccos | ————— 17.7
(Hvﬂ Hw!) [ ]

I’angolo convesso (0 non orientato) tra i (o formato dai) vettori v e w. Dalla sua
espressione vediamo che I’angolo convesso formato dai vettori v e w non dipende
dall’ordine in cui essi sono presi. Si noti che dalla definizione segue che due vet-
tori non nulli v, w sono perpendicolari se e solo se il loro angolo convesso & 7/2.
Inoltre cosf = (v, w) se Vv € W sono versori.

Al lettore piu attento non sara sfuggito che la definizione [17.7] di angolo con-
vesso di due vettori, facendo ricorso alla funzione inversa della funzione cos@,
apparentemente utilizza la geometria euclidea elementare, nell’ambito della quale
le funzioni circolari vengono di solito definite. Questo rende inconsistente la nostra
pretesa di sviluppare la geometria in modo indipendente dalla geometria elemen-
tare. La contraddizione & pero solo apparente: infatti tutte le funzioni circolari
e le loro inverse possono essere definite in modo completamente autonomo dalla
geometria elementare, mediante serie di potenze. Rinviamo il lettore ai corsi di
analisi matematica per i dettagli. Per i nostri scopi sara sufficiente sapere che
le funzioni trigonometriche e le loro inverse si possono definire in modo pura-
mente analitico, cosicché la definizione di angolo convesso di due vettori di uno
spazio vettoriale euclideo qualunque data dalla [17.7] ¢ indipendente dalla geo-
metria euclidea elementare. L’angolo convesso cosi definito € un numero reale
compreso tra 0 e 7w, e non ha il significato geometrico che tale nozione possiede
nella geometria del piano ordinario. La relazione esistente tra questa definizione
ed il concetto di angolo che si da nella geometria euclidea elementare ¢ spiegata
nell’esempio 17.7. Avvertiamo il lettore che d’ora in poi faremo liberamente uso
delle principali proprieta delle funzioni trigonometriche.
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17.7 Esempio

Sia V lo spazio dei vettori geometrici del piano ordinario, in cui supponiamo
introdotta un’unita di misura per le lunghezze dei segmenti. Per ogni veV la lun-
ghezza di v, denotata con | v, si definisce come la lunghezza di uno qualsiasi
dei rappresentanti di v. Se v, weV sono entrambi non nulli, I’angolo convesso
(o non orientato) tra v e w si definisce come ’angolo convesso § (0 <80 <7 se
espresso in radianti) formato da rappresentanti di v e w applicati in uno stesso
punto (qui stiamo utilizzando la definizione di angolo della geometria euclidea
elementare). Queste definizioni sono state date senza utilizzare alcun prodotto sca-
lare su V. E possibile perd introdurre in V un prodotto scalare in modo che le
nozioni di lunghezza di un vettore ¢ di angolo convesso tra due vettori non nulli,
che si ottengono utilizzando il prodotto scalare, coincidano con quelle che abbiamo
appena introdotto geometricamente.

Per ogni v, weV poniamo

{lv[fw[cose sevZO0#w, [17.8]

altrimenti.

VX W=

Allora x definito dalla [17.8] & un prodotto scalare in V; lasciamo al lettore
Ia facile verifica di questo fatto.

Si osservi che se v e w sono versori allora il loro prodotto scalare coincide con
il .coseno dell’angolo da essi formato. Inoltre la norma Il vl di un vettore v coin-
cide con la sua lunghezza | v . Se due vettori v, w soddisfano v X w = 0 € nessuno
dei due ¢ 0, allora cosé = 0, cioé il loro angolo & 7/2; quindi il concetto di per-
pendicolarita di vettori cosi come viene definito dal prodotto scalare [17.8] coin-
cide con queIl_o_;xsuaIe

Siano v=0A4, w= OBGV v#0.

Sia P il piede della perpendicolare condotta da B sulla retta contenente i punti
OeA.E 1mmedlato verificare che il coeffic1ente di Fourier a,(w) ¢ il rapporto-
tgl) la l_uj)lghezza di OP e quella di OA preso con il segno + o — a seconda che
OP e OA siano orientati concordemente o _dLscordemente. La proiezione 9_r>togo—
nale di w nella direzione di v ¢ il vettore OP = q,(w)v, e w — a,(W) v = PB, che
¢ perpendicolare a v.

Consideriamo una base ortonormale {i, j} di V.

Se v = x,i + x,j, I’identita

Ivi2=x?+x3

¢ nient’altro che il teorema di Pitagora.
Notiamo anche che la disuguaglianza di Schwarz

lvxwl<lvl lwl

segue immediatamente dal fatto che lcosfl <1.
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Se si considera lo spazio vettoriale V dei vettori geometrici dello spazio ordi-
nario in cui sia stata introdotta un’unita di misura dei segmenti, la [17.8] defini-
sce anche in questo caso un prodotto scalare in V, per il quale valgono considera-
zioni del tutto simili a quelle fatte nel caso precedente.

Per le esigenze dell’algebra lineare e della geometria euclidea non ¢ sufficiente
disporre del concetto di angolo non orientato di due vettori, dato dalla [17.7],
e si rende necessaria ’introduzione di una nozione di ‘‘angolo orientato’’. La defi-
nizione di angolo orientato, come nel caso precedente, sara data ricorrendo alle
proprieta dei numeri reali nel modo seguente.

Definiamo in R la seguente relazione. Diremo che 8, ¢ € R sono congrui modulo
27, oppure che § & congruo a ¢ modulo 2, e scriveremo 6 = ¢ (mod. 27) se
6 — ¢ = 2kx per qualche k€Z.

Si verifica facilmente che la congruenza modulo 2 7 ¢ una relazione di equiva-
lenza. Le classi di congruenza verranno chiamate angoli orientati, o semplicemente
angoli. Dalla definizione segue subito che un angolo & un sottoinsieme di R della
forma

{...0—-47, 0—-2m, 0,0+27, 0+4mw, ...} ={0+2km: keZ} [17.9]

per qualche §€R. Poiché le classi di congruenza costituiscono una partizione di
R, ogni numero reale # individua un angolo [17.9] cui appartiene e uno solo. Gli
elementi di un angolo sono le sue determinazioni; per definizione, due determina-
zioni di uno stesso angolo differiscono per un multiplo intero di 2 7. Ogni angolo
possiede un’unica determinazione 6, tale che 0 <6, < 2, la cosiddetta determi-
nazione principale. Con abuso di linguaggio identificheremo spesso un angolo con
una sua determinazione, cioé con un numero reale, sottintendendo che due numeri
reali rappresentano lo stesso angolo se e solo se la loro differenza ¢ un multiplo
intero di 27.

Poiché ogni angolo possiede un’unica determinazione principale, si ha una cor-
rispondenza biunivoca tra ’insieme & di tutti gli angoli e ’intervallo chiuso a
sinistra [0, 2 7).

In precedenza abbiamo definito un angolo convesso come un numero reale nel-
Pintervallo [0, 7]. Ad ogni angolo {6 + 2k@: k€Z} si pud associare il numero reale

min{l6+2kwl: keZ},

che, & immediato verificarlo, appartiene a [0, 7], ¢ si dice ’angolo convesso
associato.

Gli angoli si possono sommare tra loro sommandone le determinazioni: se
{0+2k7m: keZ} e {n+2k7: k€Z} sono due angoli, la loro somma ¢ P’angolo

{0+ +2km: keZ}.
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Rispetto all’operazione di somma gli angoli costituiscono un gruppo &
il cui elemento neutro & I’angolo {2kw: k€Z}, e in cui Popposto dell’angolo
{0+ 2km: keZ} & (—0+2km: keZ}.

Per ogni #€R consideriamo la matrice

(cose - sin&)
R,=1 . .
sinf cosf
Dall’identita (cos#)*+ (sinf)*>= 1 segue che R,€ SO(2). Dalle proprieta elemen-
tari delle funzioni trigonometriche si deduce che per ogni (¢, b)€R? tale che
a, + b?> =1 esiste 6 €R tale che a = cos#, b = sinf, e quindi, poiché ogni matrice
in SO(2) é della forma [2.6], al variare di € R la matrice R, descrive tutto SO(2).
Infine, essendo le funzioni coseno e seno periodiche di periodo 2w, si ha
R, =R, se e solo se § e ¢ sono due determinazioni dello stesso angolo. Da cio
segue che associando ad ogni angolo la matrice R,, dove § & una qualunque deter-
minazione dell’angolo, si ottiene una corrispondenza biunivoca di <& su SO(2).

E facile verificare che questa corrispondenza & un isomorfismo di gruppi. Allo
scopo ¢ sufficiente osservare che, se ¢, §€R, allora

RQRG = R(p + 03
cioe:
(cosw - singo) (c050 - sine) (cos(qo +6) —sin(g+0)
6 =

. . [17.11]
sin(p + 6) cos(e + 0)

sing cos ¢/ \sind cos

La [17.11] segue immediatamente calcolando il prodotto a primo membro e
dalle ben note formule che esprimono cos{yp + 6) e sin{¢ + 6) in funzione di cos ¢,
cosf, sing, sinf.

Consideriamo ora uno spazio vettoriale euclideo V di dimensione 2, in cui sia
fissata una base ortonormale {i, j}. Siano u(y,, u,), v(v,, v,) due versori, e siano
¢, Y€R tali che

(u;, 1) = (cos g, sinyp)
(v, v) = (cosy, siny).
Definiamo I’angolo orientato formato dai versori u e v come ’angolo uv, una

cui determinazione ¢ y — ¢.
Se a, b€V sono due vettori non nulli, il loro angolo orientato ¢ definito come

T~
ab-—2_ b
fall bl
L’angolo orientato gode delle seguenti proprieta:
~a) aa=0,
b) ab=—ba,

c) ab + be = {Q,
/\\ A
d) (ra)(ub)=ab
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per oghi terna di vettori non nulli a, b, ¢ e per ogni A, u > 0. Le relative verifiche
sono lasciate al lettore. '

Si osservi che per la definizione di angolo orientato & stata fissata una base
ortonormale di V. In realtd la definiziofie dipende solo dall’orientazione di V defi-
nita dalla base fissata.

Infatti, sia {i’, §°} un’altra base ortonormale, concordemente orientata con
{i, j}, e sia

. (c'osoz - sma)
sino cosa
la matrice del cambiamento di coordinate da {i, j} a {i’, j'}. Se
u=cosei+singj=cose’i’ +sing’j’
v=cosyi+sinyj=cosy’i’ +siny’j’,
allora si ha
cosp’ cose —sina ) [cose cos(p + o)
(singo') B (sina cos a) (sin ga) B (sin (¢ + a))
e similmente
cosy’ cosay —sina\ fcosy B cos(Y + o)
(simp') N (sinoz cosa) (simb) B (sin(y’/ + a)) )
Quindisihay’' — ¢’ =W + a) — (¢ + o) = ¢ — ¢ (mod. 2 7), e pertanto le due
basi definiscono lo stesso angolo orientato tra u e v.

17.8 Complementi

1. L’insieme C dei numeri complessi & uno spazio vettoriale reale di dimen-
sione 2. La base {1, i} identifica C con R? associando ad un numero complesso
a+1ib la coppia (a, b). Se z=a+ibeC, il modulo di z, che & definito come

|2l =N =@+ B,

¢ uguale a (e, ). Ad ogni zeC* possiamo associare il numero complesso

2 -2 4 b che ha modulo 1, e quindi & della forma
Izl Iz izl

—2 = cosf +isinf.

Iz

L’angolo individuato da @ si dice I’argomento di z e si denota con arg(z); la
determinazione principale di arg(z) é talvolta chiamata argomento principale di z.
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Poiché z = Izl l—z- deduciamo da quanto detto che ogni numero com-

zl
plesso z # 0 si scrive nella forma seguente:
z=lzl(cosf + isinf) [17.12]

dove # ¢ una determinazione di arg(z). La [17.12] & una rappresentazione trigono-
metrica di z.

Sez, weC* allorasiha [zwl = Iz] | wl e arg(zw) = arg(z) + arg(w). Cid pud
essere verificato per mezzo delle rappresentazioni trigonometriche nel modo
seguente. Siano fcarg(z), ¢€arg(w). Allora:

zw= 1zl (cosf +isinf) | wl(cose +ising) =
=1zl lwl(cosf cosyp — sinf sin @ + i(cosfsing + sinf cos)) =

= Izl lwl [cos(f + ¢) +isin(6 + )].

2. Consideriamo lo spazio vettoriale R[.X'] dei polinomi a coefficienti reali in
una indeterminata X. Per ogni f(X), g(X)€R[X] poniamo

1
(f, &)= S FO)g(x) dx.

e

Dalle proprieta dell’integrale definito segue subito che ¢,) & un prodotto sca-
lare. Dotato di questo prodotto scalare, R[X] & uno spazio vettoriale euclideo
che non ha dimensione finita.

Esercizi

1. Dimostrare che in uno spazio vettoriale euclideo (V, { , )) sussistono le seguenti iden-
tita, per ogni v, weV:

a) Iv+wlP+ llv—wl2=2lvi?+21wl?
b) Iv+wl?>—llv—wli>=4¢v, w).

2. In ciascuno dei seguenti casi applicare il procedimento di Gram-Schmidt per determi-
nare una base ortonormale del sottospazio vettoriale di R’ (con prodotto scalare stan-
dard) generato dai vettori assegnati:

a) (1,1, 1,(,0,1),(3,2,3) by (1,1, 1, (-1, 1, -1, (1,0, 1).
3. Verificare che ponendo
(X, ¥)=Xi) + 20— iV — X + Xs )
si definisce un prodotto scalare su R°*.

4. Risolvere P’esercizio 2, sostituendo al posto del prodotto scalare standard il prodotto
scalare definito nell’esercizio 3.
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Verificare che ponendo
(X, ¥) =171+ 6X0)2 — 2X1 Y2~ 200V + Xa s — Xa Y3 — X3 Y2 + Xa s

si definisce un prodotto scalare su R*.

. Sia V uno spazio vettoriale euclideo di dimensione 4, in cui sia fissata una base orto-

normale e, e sia W il sottospazio generato dai vettori
wl(l’ 19 0) 1), wz(la "], 0’ —1)3 W3(3, 13 Oa 1)'

Determinare dim (W), trovarne una base ortonormale ed estendere tale base a una base
ortonormale di V.

In ciascuno dei casi seguenti determinare una base ortonormale del sottospazio vetto-
riale di R* generato dai vettori assegnati:

a) (2, 03 0: l)’ (1’ 29 29 3)9 (103 —19 ——_;—; 0): (59 29 2‘3 5)

b) (_19 0, l: I)a (23 13 la 4)9 (09 l, 33 6)
C) (1, 19 —l’ l), (_ 23 "29 2, —2)9 (23 la l’ 2): (33 13 19 1)
d) (la 19 0: ‘1), (_ 23 13 \/§9 5)9 (49 43 \'[§, 2)9 (_ 6’ - 39 0’ 3)-

Determinare una base ortonormale di R* applicando il procedimento di Gram-
Schmidt al sistema di vettori seguente:

(09 13 0’ l)a (23 13 09 1)9 ("la 09 09 1)9 (0, 09 19 0)'

. Utilizzando il procedimento di Gram-Schmidt, si ortogonalizzi la base canonica di R*

rispetto al prodotto scalare
(X, ¥) =20 + Xy + X +2X0Y2+ 2X3 Y3 + XY+ XaYs + 2XaYa

Dimostrare che i numeri complessi di modulo 1 costituiscono un sottogruppo del gruppo
moltiplicativo C*, isomorfo a SO(2).

Sia V uno spazio vettoriale euclideo e sia v€ V, v # 0. Dimostrare che ’applicazione
f.: V= (v), che ad ogni weV associa la sua proiezione ortogonale nella direzione di
v, & lineare.

Sia V uno spazio vettoriale euclideo e sia v un suo vettore non nullo. L’applicazione
DYooVt

definita da p.(w) =w — a,(W)v, si dice proiezione di V su v*. Verificare che p, &
lineare. .

Dimostrare che se due basi {i, j} e {i’, j’} di un piano vettoriale euclideo V sono
discordemente orientate, definiscono angoli orientati opposti.

18 L’operazione di prodotto vettoriale

Denotiamo con V uno spazio vettoriale euclideo di dimensione 3, con prodotto

scalare (,). Fissiamo una base ortonormale {i, j, k} di V.
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18.1 DEFINIZIONE ~ Siano v (x,, ¥, ;) € V,{Xy, ,, z,) due vettori di V. Il pro-
dotto vettoriale di v, per v, é il vettore v, \v, (si legga ‘‘v, vettore v,’’) le cui coor-
dinate sono

12— 2102 210 — X120 6105 — 1 %),

cioé i minori di ordine 2, presi a segni alterni +, —, +, della matrice

Xy N zr)
X, N %
L’operazione di prodotto vettoriale che abbiamo introdotto associa a una coppia
ordinata di vettori un terzo vettore, cioé & un’applicazione

VXV—=>V,

Poiché ¢ stata definita utilizzando le coordinate dei vettori, dobbiamo aspet-
tarci che quest’operazione dipenda dalla scelta della base ortonormale {i, j, k}.
Studiandone le proprieta vedremo che in effetti il prodotto vettoriale dipende solo
dall’orientazione di V definita dalla base.

Il teorema seguente descrive le principali proprieta del prodotto vettoriale.

18.2 TeorREMA  Per ogni scelta di v,, v,, v;€V e per ogni ccR si ha
1) v,Av,= —V,AY,

2) VIA(V, + V) = VAV, + VAV,

3) c(V;AVy) =(cVv))AV, =V A(CVy)

4) (v, v/{AV) =0

5) {v, VAV, =0

6) v, Av, 112 =lv, 12 llv, 117 = {vy, v,)?

7) v,Av,=0 se e solo se v, e v, sono paralleli.

Dimostrazione

Le dimostrazioni relative alle (1), (2), (3) ¢ (7) sono facili e vengono lasciate
al lettore.

La (4) si dimostra osservando che {v,, v, Av,) uguaglia il determinante della
matrice

X1 N7
X1 Y %],
X Y %

che ha due righe uguali e quindi ha determinante nullo. Nello stesso modo si dimo-
stra la (5).
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Per dimostrare la (6) scriviamo esplicitamente

v AV, 1% = (1,2, — 29,0 + (2%, — X,2)7 + (X, 7, — Y, x,)*

v, i ﬂvzuz - vy, v2)2 = (X% +y% + Z%) (x§ +y§ + Z%) = (X X+ Yy, + Z\Zy)z-
Svolgendo i calcoli si verifica che i secondi membri sono uguali.

Si osservi che la (6) puo anche esprimersi nella forma seguente:

(Vp V;) (Vl, Vz)

v, Av,li2= .
(Vy, Vi) (¥, V)

18.3 CoRoLLARIO

8) Se v, e v, sono linearmente indipendenti, ogni vettore ortogonale sia a v,
che a v, é un multiplo scalare di v,\v,.

9) Se v, e v, sono linearmente indipendenti, {v,, v,, Vv\AV,} & una base di V
concordemente orientata con {i, j, k}.

Dimostrazione
8) Poiché v, e v, sono linearmente indipendenti e dim(V) =3, si ha

dim({v;, v,}*) =dim({v,, v;)*) =1.

Per la (4) e la (5), v,Av,€{v,, v,}*, e per la (7), v,Av,#0. Quindi v,Av,
genera {v,, v,}*.

9) L’indipendenza lineare di v,, v,, v;Av, segue dal fatto che v,, v, lo sono
e che v;Av,€{v,, v,}*. Poiché dim(V) =3 si conclude che {v,, v,, v,Av,} &
una base.

Per dimostrare che {v,, v,, v;Av,} & concordemente orientata con {i, j, k}
basta osservare che la matrice del cambiamento di coordinate da {v,, v,, v,AvV,}
a {i, j, k} ha determinante uguale a llv,Av, %

Ora non ¢ difficile accertare in che modo v,Av, dipende dalla scelta della base
i, j, k}.

Se v, e v, sono linearmente dipendenti, il loro prodotto vettoriale ¢ v,Av, =0
e quindi é univocamente determinato da v, ¢ da v,.

Se viceversa v, e v, sono linearmente indipendenti, v, Av,|l & univocamente
individuato dalla proprieta (6), e v;Av, appartiene a {v,, v,}*, che ha dimensione
1. Vediamo dunque che una diversa scelta della base pud cambiare v, A v, nel suo

-opposto, e, per la proprieta (9), questo avviene se e solo se le due basi non sono
concordemente orientate. In conclusione v, Av, dipende solo dall’orientazione
dello spazio V definita dalla base {1, j, k}.

La proprieta (6) ha una interessante interpretazione, data dalla seguente pro-

posizione.

15
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18.4 PROPOSIZIONE Supponiamo che v e w siano linearmente indipendenti,
e scriviamo v=a + b, dove a & parallelo a w e b é ortogonale a w. Allora

Ivawll =libll lwl.

Dimostrazione
Si ha, utilizzando le proprieta (2), (7) e (6):

Ivawl =ll@+b)awl =ll@@aaw) + bAw)l =lbAwl =1bll Iwl.

Si noti che nel caso in cui V & lo spazio dei vettori dello spazio ordinario, la
proposizione 18.4 afferma che lvAwl & uguale all’area del parallelogramma
costruito sui vettori v e w (fig. 18.1).

Dati v,, v,, v;€V, il prodotto scalare {v,, v,Av,) ¢ detto prodotio misto di
V,, V, € V.

Se le coordinate dei vettori dati sono rispettivamente (x;, ¥;, 2;), (X, 2> 25),
(%5, 35 23), si ha

X g

Vi, A= | X, 2,

X3 V3 %3
Da quest’espressione di {v,, v,Av;) segue immediatamente che scambiando
fra loro due dei fattori il prodotto misto cambia di segno e che {v,, V,Av;) =0

se e solo se v, v, € v; sono linearmente dipendenti.
Concludiamo il paragrafo con un’identita dovuta a Lagrange.

18.5 ProProsizIONE (IDENTITA DI LAGRANGE) Per ogni v, w, a, b€V si ha

(v,a) (v, b)
{w, a) (w, b)

{vAw, aAb) = . [18.1]

a w Figura 18.1
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Dimostrazione
Se le coordinate dei vettori dati sono (v, v,, v3), (W, Wy, Wy), (ay, @, @),
(b, by, by), il primo membro della [18.1] &
a, a

b, b,

U, U a2, 4

b, b,

Uy s a 4

b, b,

v 7

3

W, W, W W, w W,

il secondo membro €&

(,a, + v,a, + v;a;) (W, b, + w, b, + Wy by) — (v, b, + 0,0, + v3b,) (W, a, +
+ W,a, + Wya).

L’identita [18.1] si verifica svolgendo i calcoli e confrontando le due espressioni.

19 Spazi euclidei

Sia E uno spazio affine reale con associato spazio vettoriale V. Diremo che
E & uno spazio euclideo se in V € assegnato un prodotto scalare definito positivo,
cioé se V & uno spazio vettoriale euclideo. Useremo la notazione (v, w) per il
prodotto scalare di due vettori ve win V.

Lo spazio affine numerico A”(R) diventa uno spazio euclideo se in R” si asse-
gna il prodotto scalare standard. Questo spazio euclideo, denotato con E”, viene
chiamato I’n-spazio euclideo numerico. 1l suo spazio vettoriale associato & I’n-
spazio vettoriale euclideo.

Un sistema di coordinate Oe, ... e, nello spazio euclideo E tale che {e, ..., e,}
sia una base ortonormale di V si chiama sistema di coordinate cartesiane oppure
riferimento cartesiano. Nello studio degli spazi euclidei € naturale utilizzare sistemi
di coordinate cartesiane: ci¢ facilita notevolmente i calcoli.

E opportuno notare sin d’ora che la formula del cambiamento di coordinate
da un riferimento cartesiano a un altro ha una forma particolare, dovuta al fatto
che le corrispondenti basi dei vettori sono ortonormali. Siano infatti Oe, ... e,
e O’e/...e, due riferimenti cartesiani in E, e¢ sia P€E un punto di coordinate
x = '(x, ... X,) rispetto al primo riferimento e x’ = '(x/ ... x,,) rispetto al secondo.
Allora si ha

x =Ax+¢c,

dove A = M,..(1,) ¢ una matrice ortogonale e ¢ = '(c, ... ¢,) ¢ individuato, come
sappiamo, dall’identita

14 1’ 1’
O'O=ce/+ ... +cye,.

Nel caso n = 2, cioé in cui E & un piano cuclideo, la matrice 4 & di una delle
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due forme [2.6] o [2.7] a seconda che i due riferimenti siano concordemente o
discordemente orientati.

Utilizzando il prodotto scalare definito nello spazio vettoriale associato V, &
possibile introdurre nello spazio euclideo E nozioni di natura metrica come distanze,
angoli, aree.

19.1 DeriNizioNE Siano P e Q punti dello spazio euclideo E. La distanza
tra P e Q, indicata con d(P, Q), é

d(P,0) = I1PQI.

Se in E ¢ fissato un sistema di coordinate cartesiane Oe, ... e,, € se i punti dati
sono P(x,, ..., x,) e Q(»,, ..., ¥,) rispettivamente, allora si ha

dP, Q) =\/(J’1 —x)’+(h—x)+ .+, —x:x)2~

Nel caso in cui E =V,, dove V & uno spazio vettoriale euclideo, si ha

dv, wy=llw-vl.

19.2 ProposizioNE La distanza gode delle seguenti proprieta:

SM1  d(P,Q)=0 per ogni P, Q¢E e d(P, Q) =0 se e solo se P= Q.
SM2  d(P, Q)=d(Q, P) per ogni P, Q¢cE.

SM3  d(P, Q) +d(Q,R)=d(P, R) per ogni P, Q, R¢E.

La proposizione segue immediatamente dalle proprieta del prodotto scalare.

Le tre proprieta della proposizione 19.2 possono essere prese come assiomi per
definire una classe pilt generale di spazi, gli ‘‘spazi metrici”’.

Precisamente, uno spazio metrico & un insieme X su cui sia definita una distanza,
ciog un’applicazione d: X X X — R che soddisfi alle tre condizioni SM1, SM2, SM3.

La 19.2 afferma che, con la distanza definita dalla 19.1, ogni spazio euclideo
¢ uno spazio metrico. Non & vero il viceversa: in generale uno spazio metrico non
¢ uno spazio euclideo, e infatti gli spazi metrici sono oggetti molto piu generali
la cui geometria non studieremo in questo corso. Per rendersi conto della loro
maggior generalita si pensi che ogni sottoinsieme di uno spazio metrico & ancora
uno spazio metrico; in particolare fufti i sottoinsiemi di uno spazio euclideo E
sono spazi metrici.

E anche possibile definire la nozione di angolo convesso di due rette utilizzando
quella di angolo convesso di due vettori, definito in V grazie al prodotto scalare.

Data una retta z in E, un vettore di direzione di # di lunghezza 1 si dira
versore di 7. Ci sono esattamente due versori di #z, ’uno opposto dell’altro.

Per definire I’angolo convesso fra due rette date # ed %, dobbiamo fissare
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vettori di direzione a e a, di z e di 2, rispettivamente. Definiamo quindi ’an-
golo convesso ¢ tra ¢ ed ¥, come angolo convesso tra a e a;, cio¢ mediante
le condizioni seguenti:

{a, a;)

fall a0

Questa definizione dipende dalla scelta di a e di a;: ’angolo ¢ cosi definito
viene sostituito da 7 — ¢ se uno dei due vettori viene moltiplicato per uno scalare
negativo. Si noti che anche per definire 1’angolo convesso di due rette nella geo-
metria euclidea elementare & necessario fissare un verso di percorrenza su ognuna
di esse, che & quanto fissarne vettori di direzione.

Due rette in E si dicono ortogonali (o perpendicolari) se il loro angolo con-
vesso & m/2, cioé se un (e quindi ogni) vettore di direzione di una delle due rette
& ortogonale a un {e¢ quindi ad ogni) vettore di direzione dell’altra.

E possibile definire angoli e distanze tra sottospazi di uno spazio euclideo E
in casi pit generali; non & perd nei nostri scopi sviluppare una teoria generale:
intendiamo piuttosto limitarci a considerare spazi euclidei di dimensione 2 o 3,
i quali, dovrebbe ormai essere chiaro al lettore, possiedono essenzialmente tutte
le proprieta geometriche del piano e dello spazio ordinari.

0<p=<m, cosg=

Sia E un piano euclideo in cui sia fissato un riferimento cartesiano QOij. Consi-
deriamo una retta %z, avente equazione cartesiana

AX+BY+C=0. [19.1]

Ricordando che a(— B, A) & un vettore di direzione di %, si deduce che i vettori

a
U= &——
fall

di coordinate

N ( -B A )
VA1 B VA + B
sono i versori di #.

Un vettore non nullo m si dice orfogonale (o perpendicolare, o normale) a
se m ¢ ortogonale a un (e quindi ad ogni) vettore di direzione di z. E evidente
che, essendo dim (V) = 2, due vettori qualunque ortogonalia 2z sono fraloro paral-
leli. Inoltre esistono esattamente due versori, ’uno opposto dell’altro, che sono
normali a Z, e si dicono versori normali a %.

Poiché a( — B, A) ¢ un vettore di direzione di #, il vettore n(4, B) & ortogo-
nale a %, e quindi i versori normali a % sono

n
+v=%
Inl
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¢ hanno coordinate

. ( A B )
VA*+ B T NAT+ B
Dato un punto Q(a, b) € z, un’equazione cartesiana di z si scrive nella forma
AX—-a)+ B(Y—-b)=0. [19.2]
Poiché la [19.2] ¢ individuata da a, b, A, B, vediamo che 2 ¢ individuata da
un suo punto Q(a, b) e da un vettore normale n{A4, B): una retta in E pud quindi
essere individuata assegnando un suo punto e un vettore ad essa perpendicolare.
Se z ed z, sono due rette di equazioni cartesiane [19.1] e
AX+BY+C =0 [19.3]
rispettivamente, il loro angolo convesso ¢, riferito ai vettori di direzione a(— B, A)
e a,(— By, A)), & definito dalle condizioni 0<g¢p<me
(a, a,) AA, + BB,
cosp = =
lallial ~A?>+B?> VA%2+ B?

In particolare z ed %, sono perpendicolari se e solo se

AA, + BB, =0.

Supponiamo data una retta # di equazione cartesiana [19.1], e un punto
Py(x,, yo) €E. Consideriamo la refta z, che passa per P, ed ¢ ortogonale a %; evi-
dentemente questa retta esiste ed & unica. Poiché z, non ¢& parallela a %, essa ha
uno ¢ un solo punto N in comune con z: N ¢ il piede della perpendicolare con-
dotta da Pya 2.

La distanza d(P,, N) si chiama distanza di P,da %, e si denota con d(P,, %).

E possibile calcolare d(P,, #) trovando un’equazione di Z,, e poi le coordi-
nate di N, e infine calcolando d(P,, N). Un metodo piu efficiente & il seguente.

19.3 PROPOSIZIONE La‘disz‘anza d(Py, %) di un punto P,(x,, y,)€E dalla
retta ¢ di equazione [19.1] é data dalla seguente formula:
[ (Ax, + By, + C) |

ey

d(Py, ) =

Dimostrazione
Si osservi che se v ¢ un versore normale a z e se Q(a, b) & un punto qualsiasi
di 2, allora
—
d(Py, )= 1{v, QP> |,
cioé d(P,, %) eguaglia il valore assoluto del prodotto scalare (v, _QTPT)) (fig. 19.1).
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P,
v
Q N z
Figura 19.1

Scegliamo v( A —, B ) come versore normale; poiché Q79:, ha

VA2 +B?  JA?+B?
coordinate (x, — a), (¥, — b),"tenendo presente che C = — (4a + Bb), otteniamo

AP, 7) = |A(x—a)+ B(y,~ b)| _ 1 (Axy + By, + C) |

Se z ed %z’ sono due rette parallele di E, la loro distanza d(z, £’) & per
definizione uguale a d(P, z'), dove P ¢ un punto qualunque di #. Per calcolare
d(z, z') ¢ sufficiente trovare un punto P€# e applicare la formula della proposi-
zione 19.3.

Sia E uno spazio euclideo di dimensione 3 con spazio vettoriale associato V.
Supponiamo fissato in E un sistema di coordinate cartesiane Oijk.
Consideriamo un piano // in E, di equazione cartesiana

AX+BY+CZ+D=0. [19.4]

Un vettore m si dice orfogonale (o perpendicolare, o normale) a // se & ortogo-
nale ad ogni vettore della giacitura di // Se inoltre m & un versore, esso viene
detto versore normale a /. .

Poiché dim (E) = 3, due qualsiasi vettori normali a /4 sono tra loro paralleli;
quindi // possiede esattamente due versori normali.

Fissiamo un punto Py(xo, Yo, Z)€ /£ € consideriamo I’equazione cartesiana
di /¢

AX-x)+B(Y ~y)+ C(Z—2z)=0. [19.5]

Ogni vettore appartenente alla giacitura di £ ¢€ della forma I{I)’, Pe /;
quindi dalla [19.5] vediamo che il vettore n(4, B, C) ¢ normale a /. Ne dedu-
ciamo che i due vettori ==v= +n/linll di coordinate

A B C
i 3 = E] ——
(x/A2+l?f+C2 NA? + B? + C? \/A2+32+Cz)

sono i versori normali a /,
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La [19.5] mostra inoltre che un qualsiasi piano & individuato da un suo punto
e da un vettore ad esso perpendicolare.

Passeremo ora in rassegna le principali formule che permettono di calcolare
distanze e angoli in E.

Angolo convesso tra due piani
L’angolo convesso fra due piani di E puo essere definito utilizzando i loro vet-

tori normali. Siano 4 e /, due piani, di equazioni cartesiane [19.4] e
AX+BY+CZ+ D, =0. [19.6]

L’angolo convesso di /o e /i, € ’angolo convesso tra i vettori n(A, B, C) ed
n,(4,, B;, C), cio¢ € ’angolo ¢ definito da 0<¢p <7 e da
_ (m,m) AA, + BB, + CC,

Inilinll ~A?+ B + C*VAZ+ B2+ C?

Si osservi che la definizione di ¢ dipende dai vettori n ed n,, ¢ quindi dalla
scelta delle equazioni [19.4] e [19.6]. Moltiplicando una o Paltra delle [19.4] e [19.6]
per un fattore di proporzionalita negativo, ¢ si cambia in 7 — ¢.

Se ¢ = w/2 i due piani si dicono perpendicolari od ortogonali. Cid avviene se
e solo se

os @ [19.7]

AA, + BB, + CC, = 0.

Angolo tra una retta e un piano
Sia /2 un piano di equazione [19.4], e sia Z una retta con vettore di direzione
a(l, m, n). L’angolo tra /o ed % ¢& ’angolo una cui determinazione &

T
P = T
v 2

dove y & ’angolo convesso tra i vettori n(4, B, C) e a. Quindi ¢ & definito dalle
condizioni
- T <p<

2

SRE

Al+ Bm + Cn
VAT+ B+ CNP+m? +n*

sing =

Se ¢ = = /2, allora /£ ed 2z si dicono perpendicolari (od ortogonali).
Si noti che ponendo sin ¢ = 0 si ritrova la condizione di parallelismo tra Sfred z

Al+Bm+Cn=0

gia data nella proposizione 10.2.
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Distanza di un punto da un piano

La distanza di un punto da un piano si definisce in modo simile al caso della
distanza punto-retta in un piano euclideo.

Sia // il piano, di equazione [19.4], e sia Py(x,, ¥, 2,) € E il punto. Conside-
riamo la retta #z passante per P, e perpendicolare a 4 e denotiamo con
N=/ Nz il piede della perpendicolare condotta da P, a /i . Definiamo la
distanza di P, da /¢ come

d(Py, fo)=d(Py, N).
Si dimostra che
| (Axy + By, + Czo+ D) |
d(PO’/’)z - 2 : 2 2
VA*+ B2+ C

La dimostrazione & simile a quella della proposizione 19.3 ed ¢ lasciata al lettore.

Distanza tra una retta e un piano paralleli

Se # e/ sono rispettivamente una retta e un piano paralleli, la loro distanza
d(z, /) € per definizione d(P, /), dove P ¢ un qualsiasi punto di z. Per calco-
lare d(z, /) € sufficiente trovare le coordinate di un punto P€z e applicare la
formula che da d(P, //).

Distanza di un punto da una retta
Sia z unaretta € sia Py€ E. Consideriamo il piano / passante per P, € per-
pendicolare a ¢ e sia N=2 N /. La distanza di Py da % ¢ definita come

d(Py, ) = d(Py, N).

Se  passa per il punto Q(a, b, ¢) e ha vettore di direzione a(/, m, n), €
Py Yo» z_o)EE, allora si ha la seguente formula:

2

'/yo—b —-c|? |x—a zg—cl|* |xy—a y,—b

(P, 7) = m n / n / m
NP+ m?+n?

Infatti

— —> —>
QP,= QN + NP,,
— —> .
e ON ¢ parallelo ad a, mentre NP, ¢ perpendicolare ad a.
Dalla proposizione 18.4 si deduce che
——
TanQP,l
tall

Esplicitando "uguaglianza si ottiene ’asserto.

d(P,, v) = INB,I =
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Distanza tra due rette

Date due rette non parallele 2 ed z, in E, definiamo la loro distanza, che
denoteremo con d(z, #,), nel modo seguente.

Supponiamo che % passi per il punto Q(a, b, ¢) e abbia a(/, m, n) come vet-
tore di direzione, e che %, passi per Q,(a;, b;, ¢;) e abbia vettore di direzione
a,(ly, my, ny).

Osserviamo che esiste una e una sola coppia di punti, N€ z ed N, € z,, tali che
la retta che li contiene sia perpendicolare sia a © che a z,. Infatti le due condi-
zioni di perpendicolarita sono

=
(NND a) = 0
. [19.8]
(NN, a,>=0
e scrivendo
—_— —>
ON = 0Q + ta,
5%1 = 661 + 44,
si ottiene
NN, =00, + t,a, — ta
e quindi le [19.8] diventano
—
{(QQ,+ta —ta,a)=0
—
(QQ, +t,a,—ta, a,) =0
cioé:
—
(QQ,, a) + ¢, (a;, a) —1(a,a)=0
[19.9]

—
(QQ,, a;) +t,{a;, a,) — 1(a, a,) =0.
Poiché a ed a, sono linearmente indipendenti, per il teorema 18.2(6) si ha

{(a, a) (a, a)

=flana,li*=0.
{(a, a;) {a, a))

Quindi il sistema [19.9] ammette una e una sola soluzione (z, ¢,), e ci0 signi-
fica appunto che esiste un’unica coppia (V, N,) che soddisfa alla condizione
voluta.

La retta 4 passante per N e per N, si chiama perpendicolare comune a %
ea % (fig. 19.2).

Cid posto, definiamo la distanza di ¢ da %, come

d(z, v) = d(N, N,).
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4
Q, N,
- = .- .

(0]
b N
a
z

Figura 19.2

Si ha la seguente formula che permette di calcolare agevolmente la distanza
di due rette assegnate:

a—a b-b c—q

[ m n
d _ l m n
@ 2)= [19.10]
'm n|? I n|? I m|?
+ +
m, hn Lon L m

La [19.10] si dimostra nel modo seguente.
Sia b un versore della perpendicolare comune a z e a %,. Si ha

(b, 00,) = (b, ONY + <b, NO,) = (b, NG,

e quindi

—> —
d(z, )= 1<b, NO,) | = 1<b, QO I.

D’altra parte, poiché b ¢ ortogonale sia ad a che ad a,, si ha

B aAa,
" lana,l
Quindi
s
d@, v) = [¢ana;, QO | .

lana,l
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Esplicitando quest’uguaglianza si ottiene la formula cercata.

Per trovare equazioni cartesiane della retta 4 perpendicolare comune a z ¢
a %, si procede nel modo seguente.

Conosciamo aAa,, vettore di direzione di £, le cui coordinate denotiamo con
(81> B,, B3). Denotando con P(X, Y, Z) un punto di coordinate indeterminate,
e imponendo le condizioni di complanaritd di # e di %, con la retta passante
per P_e avente vettore di direzione aAa, otteniamo le due seguenti equazioni:

X—a Y-b Z-c
B8, B, B; =0,

/ m n
X-a Y-b, Z-c
Iof B, B3 =0.

4 n, n

Poiché queste equazioni rappresentano due piani distinti e sono soddisfatte dai
punti di £, esse sono equazioni cartesiane di £.

19.4 Complementi

1. Supponiamo fissato in uno spazio euclideo E un riferimento cartesiano
Oe, ...e,, ed un punto C(c,, ..., ¢,). Sia r>0.

La sfera di centro C e raggio r ¢ il sottoinsieme S(C, r) di E costituito dai punti
P(x,, ..., x,) tali che d(C, P) = r, cioé¢ tali che

=)+ o+ (x,— ) =1 [19.11]

Hl disco di centro C e raggio r ¢ il sottoinsieme D(C, r) di E costituito dai punti
P(x,, ..., x,) tali che d(C, P) <r, cioé tali che

-y + .+ (x,— ) =<r

Nel caso in cui E sia un piano, S(C, r) e D(C, r) sono la circonferenza e il
cerchio rispettivamente, di centro C e raggio r.

Se dim(E) =1, D(C, r) ¢ il segmento di lunghezza 2r e di centro C, ed S(C,
r) & Pinsieme costituito dai suoi estremi.

Quando E = E”, si usano i simboli 8”~! e D" per denotare S(0, 1) e D(0, 1)
rispettivamente.

Dalla [19.11] deduciamo che S(C, r) & Pinsieme dei punti di E le cui coordinate
sono soluzioni dell’equazione

K =)+ . + (X, — ) =1 [19.12]

nelle indeterminate X, X,, ..., X,. La [19.12] & detta equazione carfesiana della
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sfera S(C, r). Portando r* a primo membro e svolgendo i calcoli troviamo che
la [19.12] & equivalente all’equazione

X+ ...+ X2+d X+ ... +d, X, +d=0 [19.13]

dove d;= —2¢, i=1,...,n, d=ci+ ... + ¢;— r’. A causa della loro defini-
zione e del fatto che r2 > 0, i coefficienti d,, ..., d,, d della [19.13] soddisfano la
condizione
d: da a2
—+——+ ...+
4 4
Viceversa, un’equazione della forma [19.13] i cui coefficienti soddisfano la con-
dizione [19.14] & equazione cartesiana di una sfera S, il cui centro C(c,, ..., ¢,)
e raggio p sono
d; d: d? d?
G=——,r=_|—+"24+ .. +—2—d.
2 4 4
Nel caso particolare n = 2, la [19.13] & ’equazione di una circonferenza ¢ ha
la forma, nelle indeterminate X, Y,

X+ Y +dX+d,Y+d=0 [19.15]

f 2 . . d, d,
con —4— + T —d > 0. Il centro della circonferenza é C|{ ——, — -2— , men-

-d>0. [19.14]

tre il raggio ¢

|4 4
r=_ |4 +—2_4d.
4 4

Le circonferenze verranno considerate nuovamente nel capitolo quarto da un
punto di vista diverso, come casi particolari di curve piane di secondo grado
(““coniche’).

2. Sia E un piano euclideo in cui sia assegnata un’orientazione (un piano eucli-
deo orientato) e siano £ ed £’ due semirette aventi origine nello stesso punto
O. Detti a ¢ a’ vettori di direzione di £ ed 4’ rispetti\/@mente, ’angolo aa’ si
dice ’angolo orientato tra 4 ed £’ e si denota con L.4°.

3. In un piano euclideo orientato E fissiamo una semiretta £ di origine O.
Per ogni punto P # O consideriamo la semiretta £, di origine O e vettore di
direzione 55 Lo scalare positivo p = |l 55 Il, e I’angolo 6 ——-.;'Z}P si dicono coor-
dinate polari di P, e rispettivamente il modulo e I’anomalia di P rispetto alle semi-
retta 4. Diremo che £ definisce in E un sistema di coordinate polari.

Le coordinate polari (p, 6) di un punto P # O lo individuano univocamente.
Infatti 0 individua una semiretta 4, di origine O, e P ¢ il punto di intersezione
di 4, con la circonferenza di centro O e raggio p (fig. 19.3).
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Quindi per ogni coppia di numeri reali (p, 8), con p > 0, esiste un unico punto
P le cui coordinate polari sono p e I’angolo definito da 6. Si conviene di estendere
le coordinate polari anche al punto O assegnandogli modulo p = 0 ed anomalia
indeterminata.

Consideriamo il riferimento cartesiano Oij appartenente all’orientazione asse-
gnata in E, avente origine in O e tale che i sia il versore di direzione di £ (Oij
& univocamente individuato da queste condizioni). Sia P # O un punto avente coor-
dinate polari (p, #) e coordinate cartesiane (x, y). Allora si ha

X = pcosf
g [19.16]
y = psind.
Viceversa:
p=xTt 5t
0 = e(y) arccos (Ff—y"——) , [19.17]

in cui si € denotato con e(y) = £1 a seconda che y = 0 oppure y < 0 (con questa
formula si individua una determinazione dell’angolo # compresa tra — 7 € 7).

Le [19.16] € [19.17] sono le formule di passaggio da coordinate polari a coor-
dinate cartesiane e viceversa. 1a verifica della validita di tali formule & lasciata
al lettore.

4. Sia E uno spazio euclideo di dimensione n, Oe, ... e, un riferimento carte-
siano, e siano Ay(a), ..., @%, A,(a}, ..., al), ..., A,(a}, ..., a®) €E punti indipen-
denti. Il volume dell’n-parallelepipedo determinato da A,, A,, ..., A, ¢ definito
come |det(M) I, dove

| (] 1 0 1 0

al—-ad ai—a ... a—a,

2 0 2 0 2_ 0

at—al a;—a; ... a,—a,
M=

¢

at—a% at—ad .. ai-a

In particolare, per n =1, 2, 3 parleremo di lunghezza, area, volume di un seg-
mento, di un parallelogramma, di un parallelepipedo rispettivamente. La lunghezza
di un segmento A(a)B(b) di una retta euclidea & | b — al, quindi coincide con
d(A, B).

L’area del parallelogramma individuato da A4 (a,, a,), B(b,, by), C(c,, ¢,) in un
piano euclideo &

b—a, b,—a,

G—a G-
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Figura 19.3

Il volume del parallelepipedo individuato da A(e,, a@,, a;), B(b,, b,, b,),
C(cy, ¢, ¢3), D(d,, d,, dy) in uno spazio euclideo di dimensione 3 &

by—a, by—a, by—a
Ci—a, C—a, C—a,
d~-a dy,—a, d,—a

Osserviamo che la definizione di volume di un z-parallelepipedo non dipende
dalla scelta del riferimento cartesiano Oy, ... e,. Infatti le righe della matrice M

_— — —
sono le coordinate dei vettori AgA,, AyA4,, ..., AyA, rispetto alla base {e,, ..., e,};
se Of, ...f, & un’altro riferimento cartesiano, le coordinate di A_(,Zl, A?‘lz,
cees A—;;Zl,, rispetto alla base {f,, ..., f,} si ottengono dalle precedenti moltiplican-
dole per una matrice ortogonale. Quindi la matrice N analoga di M nel riferimento
Of, ... f, si ottiene da M moltiplicandola a destra per una matrice ortogonale, che
ha determinante uguale a =+1; dunque

[det(M) | = | det(N) .

5. Sia E uno spazio euclideo. Un sottoinsieme S C E si dice limitato se € conte-
nuto in un disco, cioé se esistono C€eE ed r> 0 tali che SCD(C, r).

Un poliedro convesso & un sottoinsieme limitato di E che non ¢ contenuto in
un sottospazio affine proprio di E e che ¢ I’intersezione di un numero finito di
semispazi. Un poliedro convesso € un insieme convesso perché lo ¢ ogni semispa-
zio. La dimensione di E & detta dimensione del poliedro. Se dim (E) =1 si ottiene
un segmento. Se dim(E) = 2, 3 un poliedro convesso si dice poligono convesso
e solido convesso rispettivamente.

Lasciamo al lettore il compito di introdurre in modo appropriato tutte le nozioni
elementari relative ai poligoni convessi, come quelle di vertice, lato e angolo, di
n-agono regolare, di lati adiacenti o consecutivi ecc. in analogia con quanto vien
fatto in geometria euclidea elementare.

Supponiamo dim (E) = 3 e sia IT C E un solido convesso. Se £ & un piano di
E tale che IT sia contenuto in uno dei due semispazi definiti da /4, allora abbiamo
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le seguenti possibilita:
AN = Q;
ZNTI & un punto, che si dice vertice di II;
ANTI & un segmento, che si dice spigolo (o lato) di II;
AN TI & un poligono, che si dice faccia di I1.

Dal fatto che IT ¢ intersezione di un numero finito di semispazi segue che esso
possiede un numero finito v di vertici, s di spigoli, ed f di facce. E facile vedere
che ogni spigolo ¢ lato di due facce e ogni vertice & vertice di almeno tre facce
e di altrettanti spigoli.

Per ogni solido convesso IT sussiste la seguente relazione tra v, s ed f:

v—s+f=2. [19.18]

Questa notevole identita era gia nota a Cartesio nel 1640, ma la sua prima dimo-
strazione fu data da Eulero nel 1752.

Daremo una dimostrazione della [19.18] che ¢ simile a quella originale di Eulero.
Per semplificare ’argomentazione supporremo che sia possibile costruire il solido
IT partendo da una sua faccia e aggiungendone poi una alla volta in modo che
ogni nuova faccia che si aggiunge abbia solo lati adiacenti in comune con quelle
precedentemente inserite.

Si osservi che necessariamente f= 3. Ad ogni stadio del procedimento deno-
tiamo con & jl numero v — s + f — 1. Per una sola faccia si ha ® = 0. Procediamo
per induzione sul numero di facce inserite, dimostrando che finché il poliedro non
¢ stato completato, si ha ® = 0. Supponiamo che cio¢ sia vero a un dato stadio
della costruzione in cui restano da inserire almeno due facce ancora. Aggiungiamo
una nuova faccia F avente p lati, di cui g consecutivi siano in comune con le pre-
cedenti; pertanto g + 1 vertici di F appartengono alle precedenti facce. Abbiamo
quindi aggiunto 1 nuova faccia, p — g nuovi spigoli e p — g — 1 nuovi vertici. Deno-
tando con ®’ la quantita corrispondente di ® relativa alla nuova configurazione,
si ha

' =+(p-qg-1)-p-@+1=2=0,
come asserito. Osserviamo che quando si aggiunge I’ultima faccia non si modi-
fica né il numero dei vertici né quello degli spigoli, mentre il numero delle facce
aumenta di 1. Quindi per IT si ha ® =1, cio¢ la [19.18].

Gli analoghi in dimensione 3 dei poligoni regolari sono i ‘‘solidi regolari’’. Un
solido regolare & un solido convesso avente per facce poligoni regolari tutti uguali
tra loro. E un fatto notevole che, diversamente da quello che avviene per i poli-
goni regolari, esistono solo un numero finito, precisamente 5, di classi di similitu-
dine di solidi regolari (per la definizione di similitudine cfr. 20.10(2)): il fefrae-
dro, Vottaedro, il cubo, il dodecaedro, V’icosaedro (fig. 19.4).
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Tetraedro Ottaedro

=

Icosaedro

| S, A

\
\
A\

7

Dodecaedro Cubo Figura 19.4

\

Questi solidi erano noti fin dall’antichitd. Poiché la scuola platonica se ne inte-
ressO, in particolare Platone ne parla nel Timeo, essi vengono anche chiamati solidi
platonici; Teeteto li studio sistematicamente attorno al 380 a.C. e di essi tratta
il XIII libro degli Elementi di Euclide. (Per maggiori dettagli rinviamo il lettore

a [7]).

Esercizi

1. Sia E uno spazio euclideo in cui sia fissato un riferimento cartesiano Oe, ... e,, € sia
H C E un iperpiano di equazione

a X+ ...+a,X,+c=0.

Un vettore m si dice orfogonale ad H se & ortogonale ad ogni vettore della giacitura
di H. Dimostrare che:

a) due vettori ortogonali ad H sono proporzionali

b) il vettore m{a,, ..., a,) & ortogonale ad H.
2. In ciascuno dei casi seguenti calcolare la distanza del punto P dalla retta z in E%

a) P=(1,-3), 2:2X-Y+1=0 b) P=(1,4),4X-3Y+7=0.

16
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Determinare equazioni cartesiane della retta 2 di E’ passante per il punto
P=(1,0, —1), incidente la retta Z di equazioni X+ Y—-2=2Y—-Z=0¢ ad essa
perpendicolare.

Determinare un’equazione del piano /o di E?® contenente la retta z di equazioni
X-1 = Y-2 = l, e ortogonale al piano % di equazione 2X+2Y+ Z=0.

2 3 4
Determinare equazioni cartesiane della retta # di E* passante per il punto P = (1, 2, 1)
e incidente perpendicolarmente la retta

L X+1=Y-Z=X+ 2.

. Determinare equazioni cartesiane della retta % di E® passante per il punto

—&—=Y—2= _Z e incidente la

2
retta Z:X—-3Y—-Z=X+7Y+Z—6=0. Calcolare la distanza tra % ed £ .

P = (3, 2, 1), perpendicolare alla retta £ :

. Determinare il coseno dell’angolo convesso formato dalle due seguenti rette di E*:

2:X-3Y+Z-2=0=X-5Y+2Z+2
L2X-Y+Z+1=0=X-2Y+2Z-3.
Determinare equazioni cartesiane delle rette di E’ contenenti il punto P = (1, 1, 1),

parallele al piano // di equazione: Y+ v2Z —1 = 0, e formanti con I’asse X un angolo
convesso uguale a 7/3.

In ciascuno dei seguenti casi, dopo aver verificato che le rette z ed 2 di E’ sono
sghembe, trovarne distanza e perpendicolare comune:
a) 2:2X-Y-Z-1=0=X+Y-22Z
2 2X+Y-Z+2=0=Y+3Z-2
b) 2: Y+ X-3=0=2X—-Z+1
Lix=1-1y=3+3hgz=1-21

Determinare equazioni cartesiane delle circonferenze di E? di centro e raggio
assegnati:

Il
N|»—§|'—

a) C=@G, —4) r
b C=(,2) r

o C=d, -1) r

Determinare centro e raggio delle circonferenze di E* di equazioni:
a) X’+Y*—6X+8Y=0 b) X*+Y*+8X-10Y+32=0.

Sia E uno spazio euclideo. Dimostrare che un disco di E & un insieme convesso, e che
una sfera non € convessa. Dimostrare inoltre che il centro di un disco, o di una sfera,
¢ il suo unico centro di simmetria.
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20 Operatori unitari e isometrie

Sia V uno spazio vettoriale euclideo con prodotto scalare ¢, ). In questo para-
grafo supporremo che V abbia dimensione finita.
Un operatore T: V—V si dice unitario se

(T(v), T(w)) = (v, W) [20.1]

per ogni v, w€ V. A parole la condizione [20.1] si esprime dicendo che T preserva
il prodotto scalare.

20.1 TEoREMA Sia T: V—V un’applicazione. Le seguenti condizioni sono
equivalenti:

1) T é un operatore unitario.

2) T & un operatore tale che I\ T(v)Il = livll per ogni veV.

) TO)=0e kT(v)— T(W = v —wl per ogni v, weV.

4) T é un operatore, e per ogni base ortonormale f{e,, ..., e,} di V, {T(e,), ...
...; T(e,)} & una base ortonormale.

S) T é un operatore, ed esiste una base ortonormale {e,, ..., e,} di V tale che
{T(e), ..., T(e)} sia una base ortonormale.

Dimostrazione
L’implicazione (1) = (2) & ovvia, perché
ITW2= (T W), TW) = (v, v) = liviiz

Per dimostrare (2) = (1) osserviamo che si ha, per ogni v, weV:

'4(v,w)=(v+w,v+w)—(v—w,v—w) [20.2]
4(TN), T(w)) =T (V) + Tw), T(v) + T(w)) —
—(T() — T(w), T(v) — T(w)). [20.3]

Dalla linearita di 7 segue che il secondo membro della [20.3] & uguale a
(Tv+wW), T(v+wW)) —(T(v—w), T(v-w)),

il quale, poiché T"soddisfa la (2), & uguale al secondo membro della [20.2]: quindi
4{T(v), T(w)) =4(v, w), cioé¢ T soddisfa la (1).

(2)=(3) La dimostrazione ¢ lasciata al lettore.

(3)=(1) Per ogni veV si ha

T =1TE) -0l =0T - TO)I =liv-01=Ivi. [20.4]
Esplicitando I’uguaglianza

17— Tw)I2=lv—wl?
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per ogni v, w€V otteniamo
ITWI2 = 2(T(v), TW)) + ITwW) 12 = lIvI2—2¢v, w) + Iwl
. Utilizzando la [20.4] deduciamo che
(T(v), T(wW)) = (v, W) . [20.5]

per ogni v, WeV.

Per concludere & sufficiente dimostrare che T ¢ lineare. Sia {e,, ..., €,} una
base ortonormale di V. Dalla [20.5] segue che {T(e,), ..., T(e,}} ¢ una base orto-
normale, perché soddisfa '

(T(e), T(e;)) =(e, € =0, perognil=<i j<n.

Per ogni v=x,e, + ... + x,e, si ha quindi

1) = £ (T, T@)) Te) = £ v, e) Te) = ExTe),
cioe
T(E xe) = £xTe),

e pertanto T ¢ lineare.

(1)=(4) La dimostrazione ¢ lasciata al lettore.

4)=(5) Owvio.

(5)=(1) Sia {e,..., e,} la base ortonormale la cui esistenza ¢ affermata
dalla (5). Siano v=x,e,+ ... + x,e,, w=y,e, + ... +y,e,. Si ha

(TM), TwW)Y =Lx,Te) + ... +x,T(e,), wTle)+ ... +y,T(e)) =
= Zijxiyj<T(ei)3 T(e;)) =X.xy; =V, W).

La condizione (3) del teorema 20.1 puo essere considerata come una condi-
zione sullo spazio euclideo V,. Essa infatti afferma che 7 lascia fisso il vettore
0 e conserva la distanza tra vettori di V, senza supporre che 7 sia un’applicazione
lineare.

La condizione (2) del teorema afferma che 7 preserva la norma dei vettori.
Dalla (2) segue subito che se 7 ¢& unitario allora 7(v) =0 implica v =0, cioé¢
N(T) = (0). Quindi un operatore unitario e invertibile.

L’inverso 7 ~! di un operatore unitario T & ancora unitario e la composizione
dei due operatori unitari & ancora unitaria; la verifica & lasciata al lettore. Per-
tanto gli operatori unitari formano un sottogruppo di GL(V), che si chiama gruppo
ortogonale di V, e si denota con O(V).

Supponiamo che e = {e,,..., e,} sia una base ortonormale di V, e sia
A = M,(T) la matrice dell’operatore T rispetto a e. Poiché le colonne 4, ...
... A, di A sono le coordinate di 7'(e)), ..., T(e,) rispetto a e, € poiché rispetto
a una base ortonormale il prodotto scalare di due vettori € uguale al prodotto sca-
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lare standard delle loro coordinate, per la (5) del teorema 20.1 T & unitario se e
solo se

AupAgy =06,

per ogni 1 <i, j<n, cioé se e solo se ‘A4 =1,. Quindi abbiamo il seguente
" corollario:

20.2 CoroLrarRio Un operatore T: V—V & unitario se e solo se la matrice
di T rispetto ad una qualsiasi base ortonormale di V é ortogonale.
Pertanto, fissata una base ortonormale e di V, 'applicazione

M,: GL(V)—GL,(R)

che associa ad ogni operatore T la sua matrice M,(T) rispetto ad e, induce un
isomorfismo del gruppo O(V) sul gruppo O(n).

Si noti che un operatore unitario 7: V—V soddisfa la condizione
det(T) = =1 [20.6]

perché ogni matrice ortogonale ha determinante uguale a + 1. Gli operatori uni-
tari 7 tali che det(7) =1 costituiscono un sottogruppo di O(V), il cosiddetto
gruppo ortogonale speciale di V, che denoteremo con SO(V). Gli elementi di SO(V)
si dicono rotazioni di V. Dal corollario 20.2 segue immediatamente che, fissata
una base ortonormale e di V, ’applicazione M, induce un isomorfismo di SO(V)
su SO(n).

Gli operatori unitari godono della seguente proprieta relativa agli autovalori.

20.3 ProposizioNE  Sia T€ O(V). Se A€R é un autovaloredi T, allora) = +1.
Se A€O(n) e LeR & un autovalore di A, allora . = £1.

Dimostrazione

La seconda affermazione segue dalla prima, tenuto conto del corollario 20.2.
Supponiamo che A € R sia un autovalore di 7, e sia v€ V un autovettore di A. Poi-
ché T ¢ unitario si ha

vl =lTwyh =lavii=1al v

e quindi dev’essere A1 =1.
Una caratterizzazione degli operatori unitari, equivalente a quella del corolla-
rio 20.2 ma piu intrinseca, si ottiene introducendo il concetto di ‘‘operatore

aggiunto’® o ‘‘trasposto’’.

20.4 PROPOSIZIONE Per ogni operatore FeEnd(V) esiste un unico operatore
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G ¢End(V) tale che
(F(v), w) =(v, G(W)) [20.7]
per ogni v, wevV. L’opefaz‘ore G si dice trasposto o aggiunto di F.
Dimostrazione
Per ogni weV Papplicazione F,: V— R definita ponendo
F,(v) = (F(v), w) per ogni veV
¢ un funzionale lineare. Infatti si ha
F,=0b,,oF, perogniueV;

poiché b, ed F sono entrambe lineari, anche F,, lo é. Dato che il prodotto sca-
lare {, ) ¢ una forma bilineare non degenere, per la proposizione 15.6 esiste un
unico G(w)€V tale che si abbia ["uguaglianza di funzionali lineari

F,=(—, Gw)),
cioé tale che si abbia
F,(v)= (v, G(w)) per ogni veV.

L’applicazione G: V—V cosi definita soddisfa la condizione [20.7] ed & evi-
dentemente unica; per concludere ci resta da dimostrare che G ¢ lineare. Siano
w,, W,€V e ¢, ¢,€R; si ha, per ogni veV,

(v, Glyw,; + ;W)Y =F, ... (V) = (F(V), ¢, W, + ,W,) =
= {F(v), w;) + c,{F(v), w,) =
= ¢ F, (V) + &,F, (V) =
=c (v, G(w)) + v, G(wy)) =
=(v, G(w)) + ,G(Wy)),

e quindi G(c,w, + ¢,w,) = ¢,G(W,) + ¢,G(w,). Pertanto G ¢ lineare.

L’aggiunto di un operatore lineare F si denota solitamente con il simbolo 'F.
Dalla proprieta di simmetria del prodotto scalare segue subito che '(‘F) = F.
Diremo anche che F e 'F sono aggiunti (o trasposti) uno dell’altro.

Il motivo della terminologia che abbiamo introdotto si spiega subito nel seguente
modo.

Supponiamo che e = {e,, ..., €,} sia una base ortonormale di V, e siano
A =MJF), B=M/(F). Allora, per ogni v=xe + ... +Xx,e,, W=y + ...
.. +y,e,si ha

(F(v), w) = (Ax)-y = (AX) y = XAy = x.(Ay).

(F(v), w) = (v, G(W)) = x-(BY).
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e quindi
‘Ay = By. 20.81

Poiché € vera per ogni y, la [20.8] implica che ‘A = B. A parole: rispetto a una
base ortonormale il trasposto di un operatore & quello rappresentato dalla matrice
trasposta della matrice che rappresenta I’operatore.

FeEnd (V) si dice operatore simmetrico (o autoaggiunto) se F = 'F. Diremo
invece F antisimmetrico se F= — 'F.

Da quanto abbiamo visto si deduce che F ¢ un operatore simmetrico (antisim-
metrico) se € solo se rispetto a una base ortonormale si rappresenta con una matrice
simmetrica (antisimmetrica).

Ora possiamo dare una nuova caratterizzazione degli operatori unitari:

20.5 ProposizioNe Un operatore T: V—V ¢& unitario se e solo se
ToT=1,.

Dimostrazione
T & unitario se e solo se per ogni v, weV si ha

v, WY =(T(v), T(W)) =V, 'T(T(W)) = (v, (T°T)(w).
Poiché quest’uguaglianza ¢ valida per ogni v, weV, si deve avere
w=(TT)W)
per ogni weV, cio¢ 'ToT=1,.

La discussione precedente mostra che gli operatori unitari sono essenziamente
gli isomorfismi che rispettano la struttura di spazio vettoriale euclideo. E natu-
rale quindi utilizzare la nozione di operatore unitario per definire, in uno spazio
euclideo, delle particolari affinita che sono compatibili con la struttura metrica.

20.6 DerNizIONE  Sia E uno spazio euclideo su V. Un’affinita f: E—E si
dice isometria di E se I’automorfismo associato ¢: V =V é un operatore unitario.

L’identita 1,, e pit in generale ogni traslazione, ¢ un’isometria perché ’isomor-
fismo associato ¢ P’identita di V, che ¢ un operatore unitario. La composizione
di due isometrie & un’isometria perché I’automorfismo associato ¢ unitario, essendo
1a composizione di due operatori unitari. Analogamente I’inversa di un’isometria
¢ ancora un’isometria. Pertanto le isometrie di E costituiscono un sottogruppo
di Aff(E), cioé un gruppo di trasformazioni affini di E, indicato con Isom (E)
e denominato gruppo delle isometrie di E.

I sottogruppi di Isom(E) si dicono gruppi di isometrie di E.

Un’isometria f, con automorfismo associato ¢, si dice direfta se det(p) =1,
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e inversa se det(p) = —1. Le isometrie dirette costituiscono un sottogruppo,
Isom*(E), di Isom(E).

Le traslazioni sono particolari isometrie dirette, e quindi 7 ¢ un gruppo di
isometrie dirette di E.

Sia O€E, e consideriamo Io stabilizzatore Isom(E), di O in Isom(E). Le iso-
metrie dirette appartenenti a Isom(E),, si dicono rotazioni di centro O, e costi-
tuiscono il sottogruppo Isom(E), N Isom *(E). L’isomorfismo

®: Aff(A),— GL(V)
(cfr. esempio 14.6(2)) induce isomorfismi:
Isom(E), > O(V)
®o [20.9]
Isom(E), N Isom *(E) = SO(V).

Se si fissa anche una base e = {e,, ..., e,} di V, dal corollario 20.2 deduciamo
che la composizione M, ® induce isomorfismi:

Isom(E), > O(n)

[20.10]
Isom(E), N Isom *(E) — SO (n).

In particolare il secondo isomorfismo identifica il gruppo delle rotazioni di cen-
tro O con quello delle matrici ortogonali speciali di ordine ».
Dal teorema 14.8 e dal corollario 20.2 segue direttamente il seguente teoremas

20.7 TeoreMA  Sia E uno spazio euclideo in cui sia assegnato un riferimento
cartesiano O, ... e,. Ogni felsom(E), con automorfismo associato ¢, si esprime
nella forma

SPGps s X)) = QP15 «evs V)
con
y=Ax+ec, [20.11]

dove ¢ = '(c, ... ¢,)€R" ¢ il vettore delle coordinate di f(0), e A = M,(¢)€O(n)
& la matrice di ¢ nella base e.

Viceversa, ogni trasformazione f: E—E della forma [20.11] per qualche
A€O(n), ceR”, e un’isometria.

In particolare le isometrie (rispettivamente le isometrie dirette) di E" sono pre-
cisamente le affinita f, . tali che A€O(n) (rispettivamente A € SO (n)).

Il seguente teorema fornisce una caratterizzazione geometrica delle isometrie
analoga della condizione (3) del teorema 20.1.

20.8 TeoremA Sia E uno spazio euclideo. Un’applicazione f: E— E & un’i-



20/Operatori unitari e isometrie 249

sometria se e solo se

d(f(P), f(Q)=d(P, Q) [20.12]
per ogni P, Q€E.

Dimostrazione
Se f & un’isometria, con isomorfismo associato ¢: V—V, allora

d(f (P), /(@) =17 P) Sl = 1o@O)I = 1PQ1 = d(P, Q)

perché ¢ & un operatore unitario, ¢ per il teorema 20.1{2).
Supponiamo viceversa che la condizione [20.12] sia soddisfatta. Fissiamo arbi-
trariamente un punto O€E e definiamo un’applicazione ¢: V—V ponendo

©(OP) = £(0) 1 (P).

Poiché ogni vettore v eve V ¢ della forma v = OP I’applicazione ¢ & ben deﬁmta
— —
e tale che ¢(0) = (00) f(O) f(O) =0. Inoltre, se v= 0P, w= OQ si ha

lo®) — oW1 = 1p(OP) — (OO) I = 1 f(0) F(P) - F(O) F (DI =
=1£(QfP)I =10PI=1lv-wl.

Dal teorema 20.1(3) segue che ¢ & un operatore unitario.
Inoltre, poiché per ogni P, Q€E si ha

¢(PQ) = (00 — OP) = ¢(00) — ¢ (OP) = f(0) £(Q) - F(O) f (P) =
=@ (O,

f & un’affinita con isomorfismo associato ¢, e pertanto & un’isometria.

Il teorema 20.8 rende possibile lo studio delle isometrie in modo puramente
geometrico.

Il modo piu efficiente per trovare gruppi di isometrie di uno spazio euclideo
¢ quello di studiare le isometrie di una figura geometrica.

Sia F C E una figura geometrica. Un’isometria f€Isom(E) tale che f(F)=F
si dice isometria di F. E evidente che le isometrie di una figura F costituiscono
un gruppo di trasformazioni di F che ¢ un sottogruppo Isom(F) di Isom (E); esso
viene chiamato gruppo delle isometrie di F

Ad esempio, se O€E, allora

Isom (O) = Isom(E),,.
Se S(O, r) ¢ la sfera di centro O e raggio r >0, allora
Isom(S(O, 1)) = Isom(E),. [20.13]
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Infatti ogni f¢€Isom(E), trasforma S(O, r) in sé stessa, perché
r=d(0, P)=d(f(0), f(P))=d(O, f(P))

e quindi f(P)€S(0, r) per ogni P€S(0, r); dunque f€Isom(S(O, r)).

Per dimostrare il viceversa, osserviamo preliminarmente che per due punti qual-
siasi P, Q€S(O0, r) si ha d(P, Q) =d(P, O) + d(O, Q) = 2r e vale I’'uguaglianza
se ¢ solo se R, O, S sono allineati, cio¢ se e solo se R ed S sono diametralmente
opposti. Sia dunque f€ Isom(S(O, r)): allora, scelti P, Q€S(O, r) diametralmente
opposti, si deve avere d{( f(P), f(Q)) = 2r, sicché f(P), f(Q) €S(O, r) sono ancora
diametralmente opposti. Pertanto il punto medio O del segmento PQ viene tra-
sformato nel punto medio del segmento f(P) f(Q), che & ancora O. Quindi
f(O) = 0, cioé felsom(E),. Cid conclude la dimostrazione della [20.13].

Lo studio dei gruppi di isometrie delle figure euclidee costituisce un capitolo
classico e molto vasto della teoria dei gruppi. Intuitivamente il concetto di isome-
tria di una figura geometrica corrisponde a quello estetico e artistico di ““simme-
tria’’. Piu grande & Isom(F), piu la figura & ‘‘simmetrica’’, cioé possiede ‘‘sim-
metria’’. Storicamente la nozione di gruppo astratto € stata preceduta da quella
di gruppo di trasformazioni, ed in particolare di gruppo di isometrie. Alcuni esempi
di gruppi di isometrie verranno dati nel paragrafo 21.

20.9 DEerINizZIONE  Due figure geometriche F ed ¥’ di E si dicono congruenti
se esiste f€ Isom (E) tale che f (F) = ¥'. Le proprieta di una figura F che sono pos-
sedute da tutte le figure ad essa congruenti si dicono proprieta euclidee di F.

Ogni proprieta affine di una figura F C E & anche una proprieta euclidea per-
ché Isom(E) C Aff(E), e quindi ogni figura congruente a F ¢ anche affinemente
equivalente a F; in generale, perd, una proprietd euclidea non & una proprietd
affine. Ad esempio, la distanza di due punti P, Q€E ¢ una proprietd euclidea
di {P, O}, ma non ¢ una sua proprieta affine, perché un’affinita di E non tra-
sforma necessariamente P ¢ Q in punti che hanno la stessa distanza.

20.10 Complementi

1. Le condizioni (1), (2) (3) del teorema 20.1 hanno senso anche se V & uno
spazio vettoriale euclideo che non ha dimensione finita; anche la dimostrazione
della loro equivalenza non utilizza alcuna ipotesi su dim (V). Quindi le (1), (2) (3)
sono condizioni equivalenti per un operatore definito in uno spazio vettoriale eucli-
deo qualunque.

2. Nella geometria elementare si studiano anche proprietd che non dipendono
dalle distanze o dalle grandezze delle figure, ma solo dalla loro forma e dalle loro
proporzioni: le proprieta di similitudine. Queste proprieta vengono mantenute,
oltre che dalle isometrie, anche dalle omotetie (cfr. 14.6(3)), e quindi dalle affinita



20/Operatori unitari e isometrie 251

ottenute componendo un numero finito di isometrie e di omotetie in tutti i modi
possibili. Tali affinita si chiamano similitudini, e costituiscono un sottogruppo,
Simil(E), di Aff(E). Infatti ’identita &€ un’omotetia, e quindi una similitudine.
Inoltre la composizione di due similitudini ¢,°w,° ... °0, 0w, e 7,0 §,0 ... © 708 ¢.
gowe...o0owoTof°...o7;°{;, che ¢ una similitudine. L’inversa di una
similitudine o,°w,° ... 20, 02w, & w log o ... e og;!, che & una similitudine.
E evidente che Simil(E) contiene Isom(E) e tutte le omotetie.

Denoteremo con Simil *(E) il sottogruppo di Simil (E) costituito dalle simili-
tudini dirette.

Identifichiamo E? con C associando ad ogni (x, ¥) € E? il numero complesso
z=x+iy€C. Con questa identificazione & possibile dare una semplice descrizione
di Simil(E?) e di Simil* (E?) nel modo seguente.

Sia f(z) un’affinita di C, considerato come spazio affine complesso di dimen-
sione 1:

f@=az+b a beC, a#0. [20.14]

La [20.14] si puo interpretare come un’affinita del piano euclideo E2. Scrivendo
a=a +ia”, b=>b"+ib"” la [20.14], come affinita di E2, ha la forma

fOe, =@x—-a’y+b’',a"x+ay+b")
e quindi ¢ un’affinita diretta perché ha determinante

a’+a"?>0.

Con b =0 la [20.14] diventa
f@)=az [20.15]

Se a€R, la [20.15] rappresenta un’omotetia di E?, perché & della forma
fx+iy)=ax+iay.

Se lal =1, si ha a = cosf +isinf, ¢ la [20.15] diventa
SfOc+1iy)=xcosh — ysinf +i(xsinf + ycosb),

che rappresenta una rotazione. Poiché a= lal u, dove lul =1, per ogni a€C,
la [20.15] € in ogni caso la composizione di una omotetia e di una rotazione. Da
cid segue che le affinita [20.14] di C coincidono con le affinita dirette del piano
cuclideo E? che sono composizione di traslazioni, rotazioni € omotetie, cioé con
le similitudini dirette. Dunque Aff,(C) si identifica con il gruppo Simil*(E?).

Per ottenere anche le similitudini inverse di E? sara sufficiente comporre tutte
le affinita [20.14] con una particolare isometria inversa: ad esempio con il coniu-
gio, che associa ad ogni z=x + iyeC il suo coniugato z =x — iy.

Quindi, le similitudini inverse di E* corrispondono alle trasformazioni o di C
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o Figura 20.1

della forma
o(x)=az+b, a, beC, a#0.
3. Sia V sia uno spazio vettoriale euclideo, e sia ve V, v # 0. La riflessione defi-

nita da v (fig. 20.1) & ’applicazione p,: V— V seguente:

pv(u)=u—2—<v—’ﬂv.

v, V)
Ricordando la definizione di coefficiente di Fourier a,(u), possiamo scrivere
in forma equivalente

p,(w)=u—2q,(u)v.
Si verifica facilmente che p, ¢ lineare; inoltre, per ogni u€Vv:
lo,@I?=Hu—2a,@vl>=lul?-4a,)(u, v) + 4a,@?lvi?=lul?

€ pertanto p, ¢ un operatore unitario.
Dalla definizione segue subito, infine, che p? = 1,, cioé p, = p, .

4. In uno spazio euclideo E su V supponiamo fissati un riferimento cartesiano
Oe, ... e, e un iperpiano H di equazione

X + ... +a,X,+c=0.

Sia P(x,, ..., x,)€E. 1l punto simmeftrico di P rispetto ad H ¢ il punto p,(P)
definito dall’identita

— —
Np,(P)=— NP,
cioé
— —_—
Pp, (P)=—2NP,

dove N denota il punto di intersezione di H con la retta £ passante per P e per-
pendicolare ad H, cio¢ la retta per P avente vettore di direzione a(a,, ..., a,)
(fig. 20.2).

Se si fissa un punto Q(g,, ..., g,) € H qualsiasi,'si ha

— -
Ppy(P)=-2{QP, a)a/{a, a),
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e quindi

Opa(P) = QP + Ppy(P) = p,(OP),

dove p,: V-V ¢ la riflessione definita da a (cfr. (3)).
Tenuto conto che a,¢4, + ... + a,9,= — ¢, le coordinate di p,(P) sono

ax, + ... +a,x,+¢ . ]
—, i=1,..,n. [20.16}

Pu(P);=x;—2q; 7

i

E immediato verificare che p,(pg(P)) = P per ogni P€E e che p,(P) =P se
e solo se PeH.
Inoltre, per ogni P, P’ €E:

d(pu(P), pu(P")) = I py(P) py (P =l py(PYN + Npy(P")I =
—> —> —>
=INP- NPl =IP'Pt=d(P, P’),
e quindi Papplicazione
Py E-E

¢ un’isometria. py, & la riflessione definita da H (o che fissa H).

Nel caso n = 2 si ottiene la nozione di riflessione di asse una retta, che verra
ripresa nel paragrafo 21.

Da quanto visto segue che p%=1g e che p, fissa ogni punto di H.

Un sottoinsieme F di E si dice simmetrico rispetto all’iperpiano H se p,(P)€F
per ogni P¢F. In questo caso H si dice iperpiano di simmetria diF. Nel caso n = 2,
H ¢ una retta, che si dice asse di simmetria di F.

pulP) Figura 20.2
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5. Tra i gruppi di isometrie piti interessanti vi sono i cosiddetti ‘‘gruppi
discontinui’’.

Sia E uno spazio euclideo sullo spazio vettoriale euclideo V. Un softogruppo
¥ di Isom(E) si dice discontinuo se per ogni P€E esiste r > 0 tale che nessuno
dei punti g(P), g€ Y, sia contenuto nel disco D(P, r).

Ogni sottogruppo finito ¥ di Isom(E) & un gruppo discontinuo. Infatti, per
ogni P¢E, un qualsiasi 0 < r < min {d(P, g(P)): g€ ¥} soddisfa la condizione
della definizione.

Fissato un vettore non nullo veV, ’insieme di tutte le traslazioni della forma
t,,» H€Z, & un sottogruppo discontinuo Tg(v) di Isom(E). T (v) & un gruppo infi-
nito perché #,, = t,, se e solo se & =k.

Un gruppo finito di isometrie di E non puo contenere traslazioni diverse dall’i-
dentita, perché se contenesse la traslazione 7,, 0 # v€V, conterrebbe anche Tg(v),
che ¢ infinito.

Un gruppo discontinuo di isometrie di E che pud essere generato da riflessioni
si dice gruppo di Coxeter.

6. Siano V un K-spazio vettoriale e b: V X V— K una forma bilineare. Diremo
che un automorfismo f€ GL (V) preserva b se

b(f(v), f(W)) =b(v, w) [20.17]

per ogni v, wevV.

L’insieme di tutti gli automorfismi di V che preservano b & un gruppo lineare,
che si chiama gruppo ortogonale di V relativo a b, ¢ si denota con O,(V). Per
verificare che O, (V) ¢ effettivamente un gruppo si osservi che per ogni f€ O, (V)
ev’, w eV, detti v, weV i vettori tali che f(v)=v’', f(w)=w’, la [20.17] pud
anche scriversi

b(v', w)=b(f"'(v"), fT'(W')
e quindi £ '€ O,(V). Evidentemente 1, € O,(V); infine, se f, g€ O,(V), si ha

b((g°f) (v), (g°f) (W) =b(g(f (M), g(S (W) = b(S(¥), F(W))=b(v, W)

per ogni v, weV, e quindi gof€O,(V).

Queste nozioni generalizzano quelle di operatore unitario e di gruppo ortogo-
nale, che si ottengono prendendo come V e b uno spazio vettoriale euclideo e il
suo prodotto scalare rispettivamente.

Supponiamo V =K”, e b sia la forma bilineare associata a una matrice
A€M, (K), cioé definita da b(x, y) = 'xAy. Allora O,(K") consiste delle matrici
MeGL,(K) tali che

‘MAM = A. [20.18]
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Infatti MeO,(K") se e solo se per ogni x, yeK” si ha
XAy = ' (Mx)AMy) = 'x(‘MAM)y.

Poiché quest’identitd dev’essere vera ber ogni x, yeK”, M deve soddisfare la
[20.18].

Prendendo K=R e 4 =1, la [20.18] esprime la condizione che A € O(n), cioé
0,(R") =0(n) se b ¢ la forma simmetrica standard.

Se V=R" e b ¢ la forma bilineare simmetrica polare della forma quadratica

g =xI+ ... + X=X — ... — X,

il gruppo ortogonale di V relativo a b si denota con O(p, n — p). In particolare
03, 1) coincide con il gruppo degli automorfismi di R* che preservano la forma
di Minkowski, ed & detto gruppo di Lorentz.

Un altro caso particolare importante si ottiene prendendo la forma alterna stan-
dard su K*, k=1:

b(X, V) =X\ Vi1t oo XYy = X Yy — -os = XY= Xyy,

dove n=2ke

0 1
Jk=( ").
-, 0

1l corrispondente gruppo ortogonale si dice gruppo simplettico di ordine 2k
su K, e si denota con Sp(2k, K). Da quanto detto sopra segue che una matrice
M e GL,, (K) appartiene a Sp(2k, K) se e solo se soddisfa I’identita

MI M =M.

Esercizi

1. In ciascuno dei casi seguenti determinare ’isometria f: E' ~ E' individuata dalle con-
dizioni assegnate:

a) f(h)= f ed f & un’isometria diretta;

b) f(z) = — 2 ed f & un’isometria inversa.

2. In ciascuno dei casi seguenti determinare la riflessione di E’ definita dalla retta di
equazione assegnata:

a) X=0 b) X+Y¥Y=0 ) X-2Y=0
d) 2X-3Y=0 &) X+Y-1=0.
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3. In ciascuno dei casi seguenti dimostrare che esiste un’unica isometria f di E? che sod-
disfa le condizioni assegnate, e determinarla:

a) f(0,)=(, 1), f(, 0)=(2, 1) ed f & un’isometria diretta
b) £(0, 0)=(1, 1), £(1, 0) = (2, 1) ed f & un’isometria inversa
c) flascia fissa la retta z : X — 2Y =0 e non & I’identita

d) flascia fissi i punti (1, 7), (— 1, 4) e non & I’identita.

4. In ciascuno dei casi seguenti determinare la riflessione di E* definita dal piano di
equazione assegnata:

a) X-Y=0 b) X+Y+Z=0 ) X-Y+Z=0
d)2X-Z+1=0 ) 2X-2Y+Z-4=0.

5. In ciascuno dei casi seguenti dimostrare che esiste un’unica isometria f di E? che sod-
disfa le condizioni assegnate, ¢ determinarla:

a) f fissa I’asse X e ’asse Y ed € un’isometria diretta
b) f fissa I’asse Y e P’asse Z ed & un’isometria inversa.

6. Determinare equazioni cartesiane della retta z’ di E? simmetrica della retta z di

equazioni: X = Y = Z — 1 rispetto al piano // di equazione X+ Y+ Z=0.
2

21 Isometrie di piani e di spazi tridimensionali

In questo paragrafo tratteremo in maggiore dettaglio le isometrie di piani e
di spazi tridimensionali, particolarmente importanti a causa della loro relazione
con la geometria euclidea elementarc. Per ulteriori notizie il lettore pud consul-
tare [12], [1], [16].

Gli elementi di SO(2) sono le matrici della forma

( cosf —sinf
sind cosf

), 9¢R.

Per descrivere i rimanenti elementi di O(2), cioé quelli di determinante —1,
si puo utilizzare il fatto che, se A, BEO(2)\SO(2), allora ABeSO(2) perché

det(AB) = det(A)det(B)=1.
Da cio segue che ogni elemento A € O(2)\SO(2) puo ottenersi come prodotto
A=(AB)B"!

di una matrice di SO(2) per una fissata B '€ O(2)\SO(2). Prendendo ad esem-
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pio tale matrice come

o

si vede che tutti gli elementi di O(2)\SO(2) sono della forma

1 0 /cos 8 —sinf\/1 0

Ao = Ro = =
0 -1 \sinﬂ ’ cosf/\0 -1

(cose sinf

b e
sinf — cosf

In particolare:
1 0
Ay = )
0 -1

21.1 LEMMA

1) Ay=R,A,= A R_, per ogni 0€R.

2) A,°cA,=R,_, per ogni ¢, H€R.

3) Ogni matrice A, possiede gli autovalori A = +1, con autospazi di dimen-
_sione 1 tra loro ortogonali.

Dimostrazione
1) Segue subito da un calcolo diretto.
2) Per la (1) si ha

A,,pAe = (R,pAo) (AoR_g) =R (AA)R_;=R,R ;=R _,.
3) Si verifica subito che il polinomio caratteristico di 4, & T2 —1, sicché gli

autovalori sono A = + 1. Gli autospazi sono pertanto di dimensione 1, e definiti

rispettivamente dalle equazioni in coordinate X, Y
(cosd—1D)X+(sinf)Y=0, Ar=1 RL1]
(cosf+1) X + (sinf) Y=0, A=-—1. ’

Poiché (cosf —1) (cosf +1) + sin?8 = 0, i due autospazi sono ortogonali tra
loro.

Consideriamo un piano euclideo E con piano vettoriale euclideo associato V
e fissiamo un riferimento cartesiano Oe,e,. Sia C¢E, e sia 6: E—E una rota-
zione di centro C. Mediante I’isomorfismo [20.10] possiamo associare a ¢ un ele-
mento R,€S0 (2). 0 & detto I’angolo della rotazione o. Per distinguerla dalla

17
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matrice Ry, la rotazione di centro C corrispondente a R, si denotera con R ,.
Essa pud rappresentarsi come la composizione

— >
Reo=158°Rp oL _3E

e pertanto le coordinate y = ‘(y, y,) del trasformato R ,(P) di un punto P di
coordinate x = '(x, x,) sono

y=R,X—¢)+e¢c,

dove ¢ = (¢, ¢, sono le coordinate di C.

Urn’isometria p, di E, diversa dall’identita, che fissa tutti i punti di una retta
¥ ¢ detta riflessione (cfr. anche 20.10(3)). La retta z ¢& I’asse della riflessione.

Una riflessione & un’isometria inversa il cui quadrato & I’identitd. La figura 21.1
da un esempio di sottoinsieme del piano ordinario che & trasformato in sé stesso
dalla riflessione p,.

Una riflessione fissa ogni punto del suo asse. In particolare le riflessioni con
asse passante per ’origine si identificano con gli elementi di O (2)\SO(2), perché
fissano I’origine ma non sono rotazioni. Ognuna di esse & quindi rappresentata
da una matrice 4,, per qualche 6¢R.

Per distinguerla dalla matrice, denoteremo la riflessione corrispondente ad A4,
con il simbolo A4, ,. L’asse z, di A, , ¢ la retta per ’origine che ha per direzione
I’autospazio relativo all’autovalore A = 1, cioé la retta di equazione la prima delle
[21.1]. Un versore di direzione di %, € (cos(6/2), sin(6/2)) (fig. 21.2).

21.2 LEmmA
1) Siano % una retta di E, C€ ¢ un suo punto ed R, una rotazione di
centro C. Esistono rette 4 e Z contenenti C tali che

Reg=p,o0, = p,°p,-

Viceversa, per ogni coppia di rette z ed i passanti per un punto C, la com-
posizione p,° p, & una rotazione di centro C e p,op, =1 se e solo se ©=4.

AVAVAVAVAVAN

/\/\/\/\/\/ Figura 21.1
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R,{e,)
A.de) =R,(e,)

(2]

Ayle,) Figura 21.2

2) La composizione R 4R, , di due rotazioni di centro i punti C e D e di
angoli 0 e ¢ rispettivamente, é una rotazione di angolo 6 + ¢, a meno che non
si abbia 0 + ¢ =2kw, keZ; in questo caso R¢4° Ry, & una traslazione, che &
diversa dall’identita se e solo se C # D.

3) Se C e D sono due punti distinti ed % la retta che li contiene, e se le rota-
zioni Rc 4 ed Ry, , sono non banali e 0 + ¢ # 2k, allora le rotazioni R, 4,° Ry, ,
ed Rc _4°R,, _, hanno centri distinti e simmetrici rispetto a z.

Dimostrazione

1) Possiamo supporre C= O e quindi p, = A, , per qualche a€R. Per il
lemma 21.1(2) si ha Ry;= A,° A, , e pertanto R, ;= p,°p,, dove £ ¢ I’asse della
riflessione A4, ,_,; similmente

Roo= AO,9+01°AO,01 =pLp,

dove £ ¢& ’asse della riflessione Ap oo Supponendo C= O il viceversa & una
riformulazione del lemma 21.1(2).

2) Se C=D, si ha ovviamente R.,°R¢ ,= R¢y,,. Supponiamo C#D (e
quindi anche 8, ¢ # 2k 7) ¢ denotiamo con % la retta passante per C e per D.
Per la (1) esistono una retta £ contenente C e una retta 4 contenente D tali che

Reo=p,°P, Rp,=p.°p. [21.2]
Quindi
Rco°Rp ,=(pop)o(p,2p)=po(p,op)op.=pPrp, [21.3]

Se Z ed 4 sono parallele, p,°p, & una traslazione in direzione perpendicolare
a Z ed 4; se non sono parallele, allora, per la (1), p,°p, € una rotazione.
D’altra parte, siano ¢ = '(¢; ¢,) e d = '(d; d) le coordinate di C e di D rispet-
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tivamente. Utilizzando la [21.3] troviamo che per ogni P€E di coordinate
x = '(x; x,) il punto (Rc4°Rp ) (P) ha coordinate

y=R,[R,(x—d)+d—cl+c=R,, (x—d)+Ry(d—¢) +c. [21.4]

Questa ¢ una traslazione se € solo se § + ¢ = 2k 7; in caso contrario, per quanto
osservato in precedenza, la [21.4] & una rotazione di un angolo che per la sua espres-
sione & uguale a f + ¢. Se  + ¢ =2k si ha

y=x+[R,d~-¢)—(d-0)],

che non & I'identitad perché d — ¢ #0, ed R, =1L,
3) Siano 4 e Z le rette definite nella dimostrazione di (1), e tali da soddisfare
le [21.2]. Si ha

R 4= (Rc,o)_l =p,°p;
Ry _,=Rp,) '=prop,

e, per la [21.3],
R _¢°Rp  ,=p,opopop,= P.°Rcy°R, ,op,.

Da questa espressione si verifica subito che, detto Q il centro della rotazione
R¢y° Ry, il punto p,(Q) ¢ trasformato in sé stesso dalla rotazione R _4°R), ..,
e quindi ¢ il suo centro. Poiché R, ed R, , sono non banali, si ha £#2z =/
e quindi Q =2 NZ non sta su z. Pertanto i punti Q e p,(Q) sono distinti.

Una glissoriflessione ¢ un’isometria f di E ottenuta come la composizione
J=t,°p, di una riflessione p, di asse una retta # e di una traslazione z, # 1 tale
che il vettore v # 0 sia parallelo a z. Laretta z &’asse di f. E immediato verifi-
care che si ha anche f=p,o¢,.

Una glissoriflessione ¢ un’isometria inversa che non fissa alcun punto di E.

La figura 21.3 da un esempio di sottoinsieme del piano ordinario che ¢ trasfor-
mato in sé stesso da una glissoriflessione di asse la retta z.

Un teorema classico afferma che ogni isometria di E & di uno dei tipi che
abbiamo descritto.

21.3 TreOREMA (CHASLES, 1831)  Una isometria del piano euclideo E che fissa
un punto é una rotazione oppure una riflessione a seconda che sia diretta o inversa.

Una isometria di E che non fissa alcun punto é una traslazione oppure una
glissoriflessione a seconda che sia diretta o inversa.

Dimostrazione
Se fe Isom (E) fissa un punto, la conclusione segue dalla discussione precedente
il lemma 21.2.
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Supponiamo ora che f'sia una isometria diretta priva di punti fissi. Allora anche
f? & priva di punti fissi, perché se si avesse P = f2(P) per qualche P, il segmento
Pf(P) verrebbe trasformato da f nel segmento

SPYP=f(P)(P),

cioé nello stesso con gli estremi scambiati, e quindi il suo punto medio sarebbe
fissato da £, il che non & possibile.

Per ogni P¢E, consideriamo i tre punti P, f(P), f*(P), che sono distinti per
quanto appena visto, e facciamo vedere che sono allineati.

Se cosi non fosse (fig. 21.4) gli assi dei due segmenti Pf(P) e f(P)f*(P) si
incontrerebbero in un punto Q: poiché d(P, f(P)) = d(f(P), f*(P)), si avrebbe
anche

d(Q, P)=d(Q, f(P)=d(Q, f*(P)).

Poiché fpreserva I’orientazione, ne segue che il triangolo di vertici Q, P, f(P)
viene trasformato da f nel triangolo di vertici Q, f(P), f2(P), e quindi Q = £(Q),
una contraddizione.

Ne segue che i punti P, f(P), f*(P), ..., f(P), ..., sono allineati, sicché f agi-
sce sulla retta che li contiene come una traslazione. Poiché ¢ una isometria diretta,
S deve agire come la stessa traslazione su tutto il piano, e quindi € una traslazione.

Supponiamo infine che f sia una isometria inversa priva di punti fissi. Allora
f? & una isometria diretta e, ragionando come nel caso precedente, si dimostra
che f?={, per qualche v.

Consideriamo un punto P€E qualsiasi: le rette z,= Pf*(P)e z,=f(P)f(P)
sono parallele (ma non necessariamente distinte) e vengono scambiate da f. Quindi
ftrasforma in sé stessa la retta #, parallela ad z,e a %, ed equidistante da esse
(fig. 21.5).

Ma allora, poiché f? agisce su & come la traslazione ?,, f agisce su z come
la traslazione ¢,,,. La composizione 7_,,,° f fissa quindi tutti i punti di z e per-
¢io, non essendo Pidentita perché & una isometria inversa, essa & una riflessione.
Da cio segue che f=¢,,°(f .,,°f) ¢ una glissoriflessione.
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Q Figura 21.4

f(P) 3(P)

. . %
f2(P) Figura 21.5

I gruppi discontinui di isometrie del piano euclideo E si suddividono in tre classi:
i gruppi finiti, i cosiddetti gruppi dei fregi, ed i gruppi cristallografici piani. 11
loro studio si effettua attraverso quello delle figure di cui essi sono gruppi di iso-
metrie. '

Esiste una loro classificazione completa; noi c¢i limiteremo a considerare i sof-
togruppi finiti di Isom(E).

Uno di questi ¢ il gruppo Isom(I1,) delle isometrie di un poligon6 regolare II,,
di n = 3 lati, che supponiamo inscritto nella circonferenza S di centro ’origine
e raggio 1 di E (fig. 21.6).

Isom(Il,) contiene la rotazione ¢ = R,,,,, ¢ quindi anche le rotazioni

a’=1, o0, 02, ..., 6" L.

Poiché evidentemente ogni f€Isom(IL,) deve fissare O, e quindi deve essere
una rotazione di centro O oppure una riflessione di asse una retta per O, dedu-
ciamo che non ci sono altre rotazioni in Isom(I1,).

Inoltre, se per ogni lato / di IT, consideriamo il diametro 2, di S che lo biseca,
la riflessione p, di asse #, sta in Isom(IL,). Per ogni vertice v di II,, anche la
riflessione p, di asse il diametro %, di S che contiene v appartiene a Isom(I1,).
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Figura 21.6

Se n & dispari, allora, per ogni vertice v, si ha p, = p,, dove / ¢ il lato opposto a .

Sia p una delle riflessioni che abbiamo descritto.

Se o €Isom(Il,) &€ un’isometria inversa, allora oo p & un’isometria diretta, e
quindi oo p = ¢’ per qualche i; ne segue che o= g'op~' = g’op, perché p~' = p.

Pertanto Isom(II,) consiste dei seguenti elementi:

n—1

6°=1,0,0%..,0

p, G°p, 6%op, ..., a" 'op,

che, & facile verificarlo, sono tra loro tutti distinti.

Possiamo concludere che Isom (I1,) ¢ isomorfo al gruppo diedrale di ordine
2n, denotato con D,,.

Si osservi che Isom(I1,) € generato da p e da o: cio € evidente dal modo in cui
abbiamo descritto i suoi elementi. Perd & anche possibile generare Isom(I1,)
mediante p e oo p, perché o = (6°p)°p. Notando che o° p € una riflessione, per-
ché & una isometria inversa che fissa O, ne deduciamo che Isom(I1,) puo essere
generato da due riflessioni, e quindi & un gruppo di Coxeter.

Si noti che {1, g, 0%, ..., 6" '} & un sottogruppo di Isom(I1,), isomorfo al
gruppo ciclico Z/nZ. E facile verificare che esso si identifica con il gruppo delle
isometrie di un poligono non regolare P,, a 2 lati contenuto in IT,. La figura
21.7 si riferisce ai casi #n = 3, 4; in essa P, e P; sono i poligoni corrispondenti alle
regioni punteggiate.

Un altro sottogruppo finito di Isom (E) ¢ il gruppo delle isometrie di un trian-
golo isoscele T, non equilatero: Isom(T) & isomorfo a Z/2Z, perché, oltre all’i-
dentita, contiene solo una riflessione (fig. 21.8).

Se consideriamo un rettangolo F che non sia un quadrato, otteniamo come
Isom (F) un sottogruppo finito di Isom(E) diverso da quelli considerati in prece-
denza: se F ¢ centrato nell’origine, Isom(F) ¢ il sottogruppo di O(2) costituito
dall’identita, dalle due riflessioni p,, p, di assi gli assi coordinati, e dalla rota-
zione R, ..
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Figura 21.7
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Figura 21.8

Questo gruppo ¢ il cosiddetto gruppo quadrinomio, o di Klein, ed & isomorfo
a D,, il gruppo diedrale di ordine 4.

E chiaro che se si considerano poligoni regolari centrati in un punto qualsiasi
C¢E, anziché nell’origine, si ottengono sottogruppi finiti di Isom (E) isomorfi a
quelli che abbiamo descritto, ma contenuti in Isom(E). anziché in Isom(E),,.

I gruppi finiti di simmetrie che abbiamo considerato furono studiati sistemati-
camente da Leonardo da Vinci nel corso delle sue indagini architettoniche sulle
simmetrie di un edificio, e sul modo in cui esse vengono modificate dall’aggiunta
di absidi e nicchie.

II seguente teorema afferma che non ci sono altri sottogruppi finiti di Isom (E).

21.4 TEOREMA  Ogni sottogruppo finito non banale di Isom(E) ¢ isomorfo
a Z/nZ, per qualche n= 3, oppure a uno dei gruppi diedrali D,,, n=1.

Dimostrazione .
Sia ¢ un sottogruppo finito non banale di Isom (E). Come abbiamo gia osser-
vato in 20.10(5), & non pud contenere traslazioni non banali, e conseguente-



21/Isometrie di piani e di spazi tridimensionali 265

mente non contiene neanche glissoriflessioni, perché il quadrato di una glissori-
flessione ¢ una traslazione non banale. Quindi, per il teorema 21.3, ¥ pud
contenere unicamente rotazioni e riflessioni.

Supponiamo dapprima che ¥ consista unicamente di rotazioni.

Siano R4 Rp € % due rotazioni, diverse dall’identita, tali che C # D.

Se 8 + ¢ =2k, allora R 4° R, , € una traslazione non banale, e cid ¢ impos-
sibile. Supponiamo invece 8 + ¢ #2kw. < contiene la composizione

F=Rcp) "°(Rp,) " "°Rcs°Rp .

Poiché (Rcy) '=R. _ped (Rp ) ' =R, _,, dal lemma 21.2 segue che g, =
=(Rce) '°(Rp,) '€ g =Rc4°R,, sono rotazioni di angoli ~f0—-p e+ ¢
rispettivamente, e di centri diversi. Quindi, sempre per il lemma 21.2, f=g,°g,
¢ una traslazione non banale. Poiché cid & impossibile, si deve avere C= D.

Il sottogruppo & consiste dunque di rotazioni aventi tutte lo stesso centro C.

Sia R=R € Y tale che v abbia il piu piccolo valore positivo. Se R¢ ;€ &
con § > 0, deve essere R , = R* per qualche intero k > 0, perché altrimenti per
qualche k si avrebbe Rc o R * =Ry 4, € ¥ con 0< 0 — kvy <+, e cid contrad-
dice la minimalita di v. Quindi gli elementi di ¥ sono le potenze di R, e &
€ un gruppo ciclico.

Supponiamo ora che ¥ contenga almeno una riflessione. Il sottoinsieme di
tutte le isometrie dirette appartenenti a & costituisce un sottogruppo di ¥, il
quale, per la prima parte della dimostrazione, ¢ un gruppo ciclico costituito da
tutte le potenze di una rotazione R di un certo angolo 27/n:

R,R*..,R"=1

(se n=1 ¥ non contiene rotazioni diverse dall’identitd). Supponiamo che ¥
contenga m riflessioni, e sia p una di esse.

Gli n prodotti po R, poR?, ..., poR""!, p sono isometrie inverse distinte tra
loro e quindi sono altrettante riflessioni. Ne segue che n < m.

D’altra parte, se si moltiplica p a destra per le m riflessioni distinte di & si
ottengono altrettante rotazioni distinte: se ne deduce che m < n.

In conclusione n = m, e gli elementi di < sono

R, R ..., R =1,
p°R, poR?, ..., poR", p.

Quindi ¥ ¢ isomorfo a D,,.

Passiamo ora al caso tridimensionale. Il punto di partenza nello studio di SO (3)
¢ il seguente lemma.

21.5 Lemma Ogni ReSO(3), R #L,, possiede I’autovalore ). =1 con auto-
spazio di dimensione 1.
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Dimostrazione

Poiché ¢ una matrice quadrata reale di ordine dispari, R possiede almeno un
autovalore A (cfr. 13.15(1)). Per la proposizione 20.3 sappiamo che A = +1.

Se A = — 1, sia x€ R?® un autovettore relativo a L. Per ogni yex* si ha

—Ry.x=Ry-(—x)=Ry-Rx=y-x=0 [21.5]

e quindi Ryex*; ne consegue che R trasforma x* in sé stesso e definisce un ope-
ratore unitario R’ su x*. Scegliendo una base ortonormale di R? il cui primo vet-
tore & x/lixll, si vede che 1= det(R) = (—1)det(R’). Si deduce da cia che R’ ¢
una riflessione del piano x*. Poiché R’ possiede I’autovalore 1, anche R ha 1
come autovalore.

Sia W C R? il corrispondente autospazio; come in [21.5] si verifica che
R(W+)=W+, sicché W & un autospazio di R. Poiché det(R)=1, se
dim (W) = 2 R induce I’identitd anche su W+*. Cid significa che W* C W, cioé
W = R?, ovvero R =1, contro I’ipotesi. Quindi dim(W)=1.

Dal lemma 21.5 discende che una rotazione R lascia fissi tutti i punti di una
retta passante per 0 che si dice asse della rotazione. Se si sceglie una base ortonor-
male {m, e,, e,} di R® orientata concordemente alla terna canonica {E,, E,, E,}
e tale che n appartenga all’asse, R induce sul piano (e,, e,) una rotazione di un
certo angolo 8, 0 <0 < 2. Sostituendo la base {n, ¢, e,} con {—n, e,, ¢,}, ’an-
golo di rotazione # si muta in 2« — 6. Quindi, a meno di tale sostituzione, cioé
a meno di scambiare n con — n, si pud sempre supporre 0 < < x. Chiameremo
0 angolo convesso della rotazione R.

Si noti che ogni rotazione R € SO(3) individua univocamente la coppia (n, 6)
a meno che non si abbia # = 7: in questo caso # = 27 — # e quindi n e — n defini-
scono lo stesso angolo. _

Viceversa, ogni coppia (n, 6) €S2 x [0, 7], dove S? denota la sfera unitaria in
E3, individua un elemento R €SO(3) cosi definito:

R(n) =n, R(e,) = (cosf) e, + (sinf)e,, R(e,) = — (sinf) e, + (cosh) e, [21.6]

dove e,, e, sono univocamente determinati dalla condizione che {n, ¢,, ,} sia una
base ortonormale. :
Possiamo riassumere quanto dimostrato sopra nella seguente proposizione:

21.6 ProposizioNE  La [21.6] definisce un’applicazione p: 8* X [0, 7] — SO(3)
la cui restrizione a S X (0, ) & biunivoca, e tale che

p(, 0)=1;
pm, m)=p(—n, 7) per ogni neS.

Mentre le rotazioni attorno allo stesso asse si compongono sommando gli angoli
di rotazione, le rotazioni attorno ad assi diversi hanno una legge geometrica di
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composizione pili riposta, il che rende la struttura di SO (3) piu complicata di quella
di SOQ).

Esiste una descrizione molto esplicita di SO(3), dovuta a Eulero, ottenuta per
mezzo di particolari rotazioni.

Per ogni €R, siano

1 0 0
X,=|0 cosf —sinf

0 singd cosé

cos§ —sinf O
Z,=| sing cos6 O
0 0 1

Queste matrici rappresentano rotazioni di un angolo # attorno agli assi X e
Z rispettivamente. Poiché consideriamo orientazioni fissate degli assi X € Z, non
abbiamo la possibilita di ridurre I’angolo 6 ad un angolo convesso, cio¢ in [0, 7],
come si ¢ fatto nella dimostrazione della proposizione 21.6; pertanto, per poter
ottenere tutte le rotazioni attorno a tali assi occorre considerare 8 € R qualunque.

21.7 TeoreMa (EULERO, 1776)  Ogni R€SO(3) é della forma
R = th o Xe o Z¢

dove0< @,y <2m, 0<0 <. Gliangoli ¢, 0, Y sono detti angoli di Eulero della
rotazione R, e sono da essa univocamente determinati.

Dimostrazione

Una rotazione R, dovendo preservare [’orientazione, ¢ completamente deter-
minata dalle immagini dei vettori e, = (1, 0, 0) ed e; = (0, 0, 1).

Per visualizzare il ragionamento pensiamo il vettore e, applicato nel punto

= (0, 0, 1) (fig. 21.9a) ed R(e,) applicato in R(e,).

Apphcando prima X, e poi Z, per opportuni § ¢ ¢ tali che O0<f=<m,
0 < ¢ <2, possiamo ottenere una rotazione che trasforma e; in R(e;); f ¢ ¢
sono univocamente determinati e corrispondono rispettivamente alla “latitudine”
ed alla “‘longitudine®’ di R(e;).

Il vettore (Z,°X,) (e,), applicato in R(e;), forma un angolo ¥ con R(e;).
Facendo precedere la trasformazione Z,° X, da Z, si ottiene

(Z,°X4°Z) (e)) = R(ey),
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{a) _ (b}

{c} {d} Figura 21.9

mentre

(Z,°Xy°Z,) () = (Z,°X,) (e5) = R(ey),

e quindi Z_°X,°Z,= R.
Le figure 21.9b, ¢, d illustrano la successione delle trasformazioni effettuate.

Sia E uno spazio euclideo tridimensionale.

La classificazione delle isometrie di E ¢ simile a quella data dal teorema 21.3
per le isometrie del piano. Oltre alle rotazioni, riflessioni e traslazioni, si hanno
i seguenti altri tre tipi di isometrie.

Una glissoriflessione & definita come la composizione di una riflessione con
una traslazione in una direzione parallela al piano di simmetria della riflessione.
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Una glissorotazione ¢ la composizione di una rotazione con una traslazione
in una direzione parallela all’asse della rotazione.

Una riflessione rotatoria ¢ la composizione di una rotazione con la riflessione
rispetto a un piano perpendicolare all’asse della rotazione.

Nel 1776 Eulero dimostrod che ogni simmetria di E é di uno dei sei tipi che
abbiamo descritto, e cioe le rotazioni, le traslazioni, le riflessioni, le glissorifles-
sioni, le glissorotazioni e le riflessioni rotatorie.

Non daremo la dimostrazione di questo risultato. E abbastanza curioso il fatto
che I’analogo, e piu semplice, teorema 21.3 che classifica le isometrie piane sia
stato dimostrato solo nel 1831, cioé cinquantacinque anni pit tardi.

22 Diagonalizzazione di operatori simmetrici

Nelle pagine precedenti abbiamo introdotto due diverse relazioni di equivalenza
tra matrici quadrate: la similitudine e la congruenza. Ricordiamo che due matrici
A, BeM,(K), n=1, sono dette simili (rispettivamente congruenti) se esiste
MeGL, (K) tale che B=M"'AM (B="MAM). A

La similitudine ¢ stata introdotta allo scopo di studiare le matrici che rappre-
sentano un operatore su di uno spazio vettoriale rispetto a due diverse basi; la
congruenza & stata invece definita per descrivere le matrici di una forma bilineare
rispetto a basi diverse.

In corrispondenza alle due nozioni si hanno due diversi problemi di diagona-
lizzazione, che possono cosi enunciarsi: data 4 € M, (K), trovare una matrice dia-
gonale BeM,(K) simile (oppure congruente) ad A.

Il secondo problema, quello dell’esistenza di matrici diagonali in una data classe
di congruenza, equivalente al problema della diagonalizzazione delle forme bili-
neari, & risolubile se ci si limita a considerare forme bilineari simmetriche, e cioé
matrici A simmetriche: & quanto afferma il teorema 16.1.

Come sappiamo, facili esempi mostrano che il primo dei due problemi non
ammette soluzione in generale, cioé non tutte le classi di similitudine contengono
una matrice diagonale (cfr. esempio 13.15(3)).

In questo paragrafo considereremo un’altra questione, piut particolare ma molto
importante in geometria euclidea, vale a dire il problema di diagonalizzare matrici
simmetriche reali per mezzo di matrici ortogonali.

Se AeM,(R) ed MeO(n), si ha

M 'AM ='MAM [22.1]

e quindi la matrice [22.1] & simultaneamente simile e congruente ad A. Parlando
di diagonalizzazione di una matrice per mezzo di matrici ortogonali, non & dun-
que necessario specificare se ci si riferisce alla similitudine o alla congruenza per-
ché le due nozioni sono equivalenti. Il limitarsi a considerare le matrici M€O (n)
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¢ equivalente a considerare, in uno spazio vettoriale euclideo di dimensione finita
V, solo basi ortonormali; quindi la diagonalizzabilita di una matrice simmetrica
A per mezzo di matrici ortogonali significa che sia la forma quadratica definita
da A che Poperatore di matrice A4 rispetto a una base ortonormale di V sono dia-
gonalizzabili in una base ortonormale.

Una semplice, ma fondamentale, proprieta delle matrici simmetriche reali &
descritta dal seguente lemma.

22.1 Lemma Il polinomio caratteristico di una matrice simmetrica
A €M, (R) possiede solo radici reali.

Dimostrazione

Possiamo considerare A4 come una matrice di numeri complessi e quindi come
un operatore 7,: C"— C". Sia A €C una radice del polinomio caratteristico di 4,
e sia x€ C” un corrispondente autovettore. Si ha

Ax = hx. [22.2]

Prendendo i complessi coniugati di primo e secondo membro, si ha anche

AX = AX. [22.3]

Consideriamo lo scalare XA x, e scriviamolo in due modi diversi utilizzando
la [22.2] e la [22.3]:

XAX = X(AX) = XAx = AXX [22.4]

KAX = (KA)x = (AN x = 'AX) x = AKX [22.5]
Osservando che

XX =X X + XX, + ... +X,X,

¢ un numero reale positivo, perché x # 0, dalle [22.4] e [22.5] deduciamo che A = X,
cioé che A ¢ reale.

22.2 TEOREMA (SPETTRALE) Siano V uno spazio vettoriale euclideo di dimen-
sione finita e T: V— V un operatore simmetrico. Esiste una base ortonormale di
V rispetto alla quale la matrice che rappresenta T e diagonale.

Dimostrazione

Procediamo per induzione su # = dim(V). Se n =1 non ¢’¢ niente da dimo-
strare; supponiamo quindi # = 2 e che il teorema sia vero per spazi di dimensione
n — 1. Poiché ’operatore T & simmetrico, il polinomio caratteristico di 7 possiede
radici reali, per il lemma 22.1. Quindi 7 possiede un autovalore }; sia e, un cor-
rispondente autovettore, che possiamo supporre di norma 1, e sia U = ¢;* il com-
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plemento ortogonale di e,. Per ogni u€U si ha
(T(u), e,)=(u, T(e)) =<(u, Le;) =i{u, ) =10=0,

e quindi T(u)€U, cio¢ T induce un operatore 7y: U—U. Poiché Ty(u) = T'(u)
per ogni u€U, Ioperatore Ty & simmetrico. Per I’ipotesi induttiva, U possiede
una base ortonormale {e,, ..., ¢,} che diagonalizza 7},. Allora {e,, e,, ..., e,} &
una base ortonormale di V che diagonalizza 7.

Il teorema spettrale pud enunciarsi nella forma equivalente seguente.

22.3 TeEorREMA Per ogni matrice simmetrica reale A€M, ,(R) esiste una
matrice ortogonale M€ O(n) tale che M ~'AM sia diagonale.

Dimostrazione

A ¢ la matrice di un operatore simmetrico 7, di R” rispetto alla base cano-
nica. Dal teorema spettrale segue che 7, ¢ diagonalizzabile in una base ortonor-
male, e quindi I’asserto.

Un enunciato equivalente del teorema spettrale si puo dare in termini di forme
quadratiche:

22.4 TEOREMA Per ogni forma quadratica q: V — R su uno spazio vettoriale
.euclideo di dimensione finita, esiste una base ortonormale diagonalizzante.

La dimostrazione del teorema 22.4 ¢ simile alla precedente ed ¢ lasciata al lettore.

La principale applicazione geometrica del teorema spettrale é un elegante teo-
rema di classificazione delle coniche euclidee, che dimostreremo nel capitolo 4,
e piu in generale un teorema di classificazione delle quadriche in uno spazio eucli-
deo di dimensione qualunque.

11 seguente risultato & implicito nel teorema 22.2 nel caso finito-dimensionale:

22.5 ProposizioNE Sia T: V=V un operatore simmetrico sullo spazio vet-
toriale euclideo V. Se A, p. sono due autovalori distinti di T, ogni autovettore rela-
tivo a A e ortogonale ad ogni autovettore relativo a p.

Dimostrazione
Siano v, we 'V autovettori relativi a A e a p rispettivamente. Si ha:
(T(v), w) =(hv, W) =LV, W) v, T(W)) = (v, pw) = p(v, W)

e, poiché T & simmetrico, si deduce che

Ay, w) = plv, w).

Poiché A # u, si deve avere (v, w) =0.
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22.7 Complementi

1. Come abbiamo ricordato all’inizio di questo paragrafo, non tutte le matrici
A€M, (K) sono simili a una matrice diagonale. Tale circostanza fa sorgere il pro-
blema di trovare una classe di matrici, da chiamarsi forme canoniche, il piu pos-
sibile semplici, tra le quali rientrino le matrici diagonali come casi particolari, e
tali che ogni classe di similitudine ne contenga una. Tali matrici, se esistessero,
potrebbero essere prese come rappresentanti delle classi di similitudine, e quindi
fornirne una classificazione esplicita. Tra tutte le soluzioni note di questo pro-
blema la piti importante ¢ la cosiddetta forma canonica di Jordan, a cui accenne-
remo brevemente, rinviando il lettore a testi specializzati di algebra lineare per
le dimostrazioni (cfr. ad esempio [6]).

Un blocco di Jordan di ordine n &€ una matrice # X n a elementi in K della forma

A0 ... O
1 » ... 0O
01 .. 0
00 1 A

per qualche A € K. Denoteremo un blocco di Jordan siffatto con il simbolo J, ;.
Una matrice 4 € M, (K) si dice in forma canonica di Jordan se & della forma
seguente:

Jure 0 . O
0 J, - O

ny,

0 0 .. J..

per opportuni interi positivi n,, ..., n, tali che n, + ... + n,=n, e A, ..., A, €K,
Si dimostra facilmente che gli scalari A, ..., A, sono gli autovalori di 4.

Se, in particolare, k = n ed n;=1 per ogni j=1, ..., n, allora A = diag(A, ...
..., A,) € una matrice diagonale.

Si ha il seguente risultato:

TEOREMA DI JORDAN  Supponiamo K algebricamente chiuso. Sia V un K-spazio
vettoriale di dimensione finita, e sia T: V— V un operatore. Esiste una base e di
V tale che la matrice M (T) sia in forma canonica di Jordan.

Una conseguenza immediata del teorema di Jordan ¢ che ogni MeM, (K) &
simile a una matrice in forma canonica di Jordan.
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Esercizi

1. In ciascuno dei casi seguenti determinare una matrice A€ SO(2) che diagonalizzi la
matrice simmetrica assegnata:

6 2 5 -13
Gl )
2 9 -13 5

1
7 -2 1 £y
c) d) .
_, 5 Ly
3 2

2. In ciascuno dei seguenti casi determinare una trasformazione ortogonale di R? che
diagonalizzi la forma quadratica assegnata:

a) q(x, X, X3) = 2X] +2X.06 + 2X X5 + 2X5 + 2X,%3 + 2X3
b) g, X2, X3) = — 2X0 + 2X1X — 2X2 — 23X — 2x3

c) q(xi, X, X3) =Xi + 44X, — X3 + X3
e trovarne la corrispondente forma diagonale.

3. Dimostrare che se 4 € M, (R) & una matrice antisimmetrica, ogni radice non nulla del
suo polinomio caratteristico & un numero complesso puramente immaginario.

23 11 caso complesso

Abbiamo visto che in uno spazio vettoriale euclideo & possibile definire tutti
i concetti di natura metrica della geometria euclidea utilizzando il prodotto sca-
lare. In un campo K diverso da R in generale non ha senso parlare di positivita
e quindi non ¢& possibile introdurre la nozione di prodotto scalare in uno spazio
vettoriale su un campo qualsiasi. Nel caso K = C & pero possibile aggirare questa
difficolta in un modo molto semplice, modificando la definizione di forma bili-
neare simmetrica in quella di ‘‘forma hermitiana’’.

23.1 DErNizZIONE Sia V uno spazio vettoriale su C. Un’applicazione
h: VX V—C ¢ una forma hermitiana su V se soddisfa le seguenti condizioni:

A(V+v' ,wy=h(v, W+ h(v', w) [23.1]
h(v, w+w)=h(v, W)+ h(v, w’) [23.2]
h(cv, wy=c h(v, w) [23.3]

h{v, w)=h(w, v). [23.4]

13
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La [23.1] e la [23.3], insieme, affermano che A (v, w) & C-lineare in v, menire
la [23.2] afferma che A(v, w) & additiva in w. Dalla [23.4] deduciamo che si ha

h(v, cw) = h(cw, v) =ch(w, v) =Th(v, w). [23.5]

La [23.2] e la [23.4] insieme ci dicono quindi che Z(v, w) & antilineare in w
(cfr. complemento 11.14(3)).

Dalla [23.4] segue anche che A(v, v)€R per ogni veV.

La forma hermitiana # si dice semidefinita positiva (semidefinita negativa) se
h(v, v} =0 (h(v, v) = 0) per ogni v€V; A si dice definita positiva (definita nega-
tiva) se h(v, v)>0 (h(v, v) <0) per ogni v#0.

Supponiamo che V abbia dimensione finita e sia e = {e,, ..., €,} una sua base.
Per ogni 1 <i, j<n poniamo &;;= h(e;, ¢;). La matrice

H= (hij)eMn(C)
¢ detta la matrice che rappresenta h rispetto alla base e. Per la [23.4] si ha

hj,.zﬁ,.j per ogni 1 <i, j=<n,

ovvero H="H.-

Una matrice He M,,(C) tale che H = 'H si dice hermitiana. Quindi la matrice
che rappresenta una forma hermitiana rispetto a una qualunque base € una matrice
hermitiana. Si noti che se la matrice A ¢ hermitiana, allora in particolare #,,€R
per ogni i =1, ..., n. Se H & simmetrica a elementi reali, allora & hermitiana.

Come nel caso delle forme bilineari, la matrice di una forma hermitiana rispetto
a una base e determina la forma. Infatti, per ogni

v=xe+ .. +x,.e, W=ye-+..+ye, [23.6]
si ha
h(v, wy=h(xe;+ ... +x,e, ye,+ ... +y,e)=
= Eijxiyik(ei: ej) = 'xHy.
Viceversa, data una matrice hermitiana H¢€ M, (C) e una base e di V, ponendo
h(v, w)= xHy

per ogni v, we 'V come in [23.6], si definisce una forma hermitiana su V. La veri-
fica & lasciata al lettore.

Nel caso particolare in cui H ¢ la matrice nulla, si ottiene corrispondentemente
la forma hermitiana nulla: h(v, w) = 0 per ogni v, weV.

Molte definizioni e risultati dimostrati in precedenza per le forme bilineari sim-
metriche si estendono al caso delle forme hermitiane.

Due vettori v, weV si dicono ortogonali o perpendicolari se h(v, w) = 0. Se
S CV, definiamo

S+ = {weV: w ¢ ortogonale ad ogni v€S}
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e chiamiamo S* sotfospazio ortogonale a S; si verifica immediatamente che S+
& un sottospazio vettoriale di V.

Una base e = {e,, ..., e,} di V si dice diagonalizzante o ortogonale per h se
i vettori e, ..., &, sono a due a due ortogonali.

23.2 TeEorREMA Sia V uno spazio vettoriale complesso di dimensione finita
maggiore di zero, e sia h una forma hermitiana su V. Esiste in V una base diago-
nalizzante per h.

Lasciamo al lettore il compito di dimostrare il teorema 23.2 adattando oppor-
tunamente le dimostrazioni dell’analogo teorema 16.1.

Il caso piu importante che verra esaminato ¢ quello in cui / ¢ definita positiva.
Una forma hermitiana /# definita positiva sara anche chiamata prodotto hermi-
tiano su V. Uno spazio vettoriale complesso su cui € assegnato un prodotto her-
mitiano si dice spazio vettoriale hermitiano.

Ponendo

X, Y)=XY=xJ, + %V, + ... +X,¥, [23.7]

si definisce un prodotto hermitiano su C”, il prodotto hermitiano standard. La
verifica del fatto che la [23.7] & un prodotto hermitiano & lasciata al lettore. C”
dotato del prodotto hermitiano standard € detto n-spazio vettoriale hermitiano.

Gli spazi vettoriali hermitiani sono I’analogo complesso degli spazi vettoriali
euclidei € la teoria sviluppata in quel caso si generalizza ad essi con pochi cambia-
menti. Ad esempio, in uno spazio vettoriale hermitiano le nozioni di norma, o
lunghezza, di un vettore, di coefficiente di Fourier ¢ di proiezione di un vettore
lungo la direzione di un vettore non nullo si definiscono esattamente come in uno
spazio euclideo.

Conseguentemente la nozione di base ortonormale si da come nel caso eucli-
deo. Dal teorema 23.2 discende immediatamente [’esistenza di una base ortonor-
male, che si ottiene a partire da una base ortogonale normalizzandone gli elementi,
cioé dividendo ogni vettore della base per la sua norma. Il procedimento di Gram-
Schmidt si estende senza cambiamenti agli spazi vettoriali hermitiani.

Fissiamo uno spazio vettoriale hermitiano V di dimensione finita, ¢ denotiamo
con (v, w) il prodotto hermitiano di due vettori.

Se e = {ey, ..., €,} € una base ortonormale di V, la matrice che rappresenta il
prodotto hermitiano rispetto ad e ¢ I,,. Pertanto il prodotto hermitiano di due vet-
toriv=xe,+ ... +x,e, W=y e, + ... +y,e, &

{v, w) = xy,

cioé uguaglia il prodotto hermitiano standard delle loro coordinate.
Anche la disuguaglianza di Schwarz si estende agli spazi vettoriali hermitiani,
ma la dimostrazione ¢ un po’ diversa dal caso euclideo.
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23.3 TeoreEMA (DISUGUAGLIANZA DI SCHWARZ) Per ogni v, weV si ha
v, w)l < fivillwl [23.8]
e vale Puguaglianza se e solo se v e w sono paralleli.
Dimostrazione

Se w = 0 la [23.8] & ovvia. Possiamo quindi supporre w = 0. Per ogni a, b€C
si ha

0= <(av+bw, av+bw) =(av, av) + (av, bw) + {(bw, av) + (bw, bw) =
=aa{v, v) + ab{v, w) + ab{w, v) + bb{w, w).

Sostituendo i valori @ = (w, w) ¢ b=~ (v, w) si ottiene

O<lwllviz—20wl2{v, w) (v, w) + w2 (v, w) (v, w).
Poiché (v, w) (v, w) = I{v, w)|?, si ha

w2 1¢v, w) I2< lwll*livi?
e dividendo per lwll? si ottiene la [23.8]. L’uguaglianza & vera se e solo se
av + bw =0, che ¢ soddisfatta se ¢ solo se v e w sono proporzionali.

La norma dei vettori gode delle proprieta N1, N2, N3 (cfr. § 17). La N1 & ovvia

e la N2 segue dall’identita

(rv, rvy = | rl?¢v, v).

La N3 ¢ la disuguaglianza triangolare e si dimostra nel seguente modo. Espli-
citiamo

Iv+wl2=(v+w, v+ w)={(v, v) + (v, W) + {w, v) + {(w, w)
e osserviamo che

(v, WY + (W, v) = (v, W) + (v, w) <21y, wil.
Utilizzando la [23.8] otteniamo quindi

fv+wlil<liviiz+21¢v, w)l + Iwl?<
<lUvi?+28vliwl+ w2 =(vi+ Iwl)?,

cioé la N3.

23.4 DeriNizIONE  Un operatore T: V — V si dice unitario se soddisfa la con-
dizione

(T(v), Tw)) =(v, w) perogniv, weV,
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Abbiamo il seguente risultato, del tutto simile al teorema 20.1, che caratterizza
gli operatori unitari:

23.5 TeoREMA Sia T: V—V un’applicazione. Le seguenti condizioni sono

equivalenti:

1) T e un operatore unitario.

2) T & un operatore tale che | T(v)Il = vl per ogni veV.

3) TO)=0e IT(v)— Tw)l = iv—wll per ogni v, weV.

4) T & un operatore e per ogni base ortonormale {e,, ..., e,} diV, {T(e), ...
..., T(e,)} & una base ortonormale.

5) T é un operatore ed esiste una base ortonormale {e,, ..., e,} di V tale che
{T(e), ..., T(e,)} sia una base ortonormale.

La dimostrazione del teorema 23.5 ricalca esattamente quella del teorema 20.1,

cui rinviamo il lettore.
Si noti che dal teorema precedente segue che un operatore unitario 7 ¢ inverti-

bile, cioé T€GL(V).

23.6 CoroLrARIO Sia T: V—V un operatore unitario.
1) Ogni autovalore ). di T & tale che 1L1 =1.
2) Se v e w sono due autovettori relativi ad autovalori distinti A, p rispettiva-

mente, allora v e w sono perpendicolari.

Dimostrazione
1) Sia veV un autovettore relativo a A. Si ha

v, VY = (T ), TW) = {Av, Av) = AA(V, V).

Poiché (v, v) #0, dev’essere AL = 1, cioé 1Al =1.
2) Si ha

(v, W) =T (), T(W)) = (v, pw) = A (v, w). [23.9]

Se (v, w) #0, dalla [23.9] segue Az = 1; ma si ha anche M=1,e quindi A= s
cioé A = pu, che & contro P’ipotesi.

Gli operatori unitari sono strettamente in relazione con le matrici unitarie.

23.7 CoroLLARIO Un operatore T: V— 'V & unitario se e solo se la matrice
che rappresenta T in una qualunque base ortonormale di V & unitaria.

Dimostrazione
Sia e = {e,, ..., e,} una base ortonormale di V, e sia A =(q;)eM,(C) la
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matrice che rappresenta ’operatore T rispetto a e. Allora 7 ¢ unitario se e solo
se si ha

5, = (e, &) = (T(e), T(e)) ='ApA;, 1=<i,j=n,

d_ove Agy ---s A, sono le colonne di A. Pertanto abbiamo ‘A4 = I,, ovvero
UA =1,.

La principale differenza tra operatori unitari nel caso reale ed in quello com-
plesso riguarda la loro diagonalizzabilita. Il risultato seguente vale infatti per gli
operatori unitari complessi, ma non per quelli reali.

23.8 TeoreMA Sia T: V-V un operatore unitario, e supponiamo
dim(V) = n = 1. Esiste una base ortonormale di V che diagonalizza T.

Dimostrazione

Per induzione su #. Se n =1 non ¢’¢ niente da dimostrare. Supponiamo n = 2
¢ che il teorema sia vero per spazi di dimensione minore di n. Sia e, €V un auto-
vettore di T e sia A il relativo autovalore. Possiamo supporre lle l =1. Sia
U =e;*. Poiché M =1, per ogni ueU si ha

(T(u), e) = {T(u), Ahe;y = A{T(w), T(e)) = Au, e, =10 =0.
Quindi T trasforma U in sé stesso, e induce un operatore unitario
Ty: U—U.

Per l’ipotesi induttiva U possiede una base ortonormale {e,, ..., e,} rispetto
alla quale Ty € diagonale. Allora {e,, e,, ..., e,} ¢ una base ortonormale di V che
diagonalizza T.

Il teorema 23.8, tenuto conto del corollario 23.7, afferma in particolare la dia-
gonalizzabilita di ogni matrice unitaria mediante una matrice unitaria. Precisa-
mente si ha:

23.9 CoROLLARIO Per ogni A €U(n) esiste M e U (n) tale che M~'AM sia dia-
gonale, o, equivalentemente, tale che *MAM sia diagonale.

Dal corollario segue in particolare la diagonalizzabilita di ogni matrice A € O(n).
Si faccia per0 attenzione: una matrice ortogonale non ¢ in generale diagonalizza-
bile per mezzo di matrici reali, perché non possiede, in generale, autovalori reali.
Ad esempio le matrici R,€0(2), 0 <8 < 7, non hanno autovalori reali.

23.10 DerINizioNE  Un operatore T: V — V si dice hermitiano se soddisfa la
condizione

{T(v), wy=(v, T(wW)) per ogniv, WwevV,
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Supponiamo che e = {e,, ..., e,} sia una base ortonormale di V, e sia 4 la
matrice che rappresenta un operatore hermitiano 7 rispetto a e. Si ha, per ogni
v=xe+ ... +x,e, w=ye + ... +y,e,:

(T(v), w) ='(AX) ¥ = 'X'AY
- _ [23.10]
v, T(w)) = x(4y) = XAy

e quindi X'4y = 'xAy. Poiché quest’uguaglianza & vera per ogni x, yeC?”,
dev’essere 'A = A4, cioé¢ A & una matrice hermitiana.

Se viceversa 4 € M,(C) ¢ una qualsiasi matrice hermitiana e T ¢ ’operatore
rappresentato da A nella base ortonormale e, allora dalle [23.10] segue che T &
hermitiano. Abbiamo pertanto la seguente proposizione:

23.11 ProrosizioNE Un operatore T: V—V ¢& hermitiano se e solo se la
matrice A che rappresenta T rispetto a una qualunque base ortonormale & una
matrice hermitiana.

Gli operatori hermitiani sono gli analoghi, per gli spazi vettoriali hermitiani,
degli operatori simmetrici nel caso euclideo. Abbiamo la seguente estensione del
lemma 22.1:

23.12 LemMa  Tutti gli autovalori di un operatore hermitiano T: V — V sono
reali.

Dimostrazione
Sia A€C un autovalore di 7, e sia v€V un autovettore relativo a A. Si ha

ALY, V) = (A, V) = (T(¥), v) = (v, T(V)) = (v, Av) = ALy, v).
Poiché (v, v) 0, si deduce che A = A.

[l teorema spettrale, che abbiamo dimostrato per gli operatori simmetrici, si
estende a quelli hermitiani:

23.13 TEOREMA (SPETTRALE) Sia T: V—V un operatore hermitiano. Esiste
una base ortonormale di V che diagonalizza T.

La dimostrazione ¢ identica a quella del teorema 22.2 e pertanto la omettiamo.

23.14 Complementi

Sia #: V x V— C una forma hermitiana sullo spazio vettoriale complesso V.
Separando la parte reale da quella immaginaria, per ogni v, w € V possiamo scrivere

h(v, w)=s(v, w) +ia(v, w)
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con s(v, w), a(v, w)€R. Segue subito dalle [23.1] e [23.2] che s(v, w) € a(v, w)
sono additive sia rispetto a v che a w. Inoltre, per ogni c€R, v, weV, si ha

s(ev, w) +ia(cv, w) = h(cv, w) = ch(v, w)=cs(v, w) +ica(v, w)
per la [23.3], e
s(v, cw) +ia(v, cw) = h(v, cw) =ch(v, w) = cs(v, W) +ica(v, w).
Quindi s{v, w) e a(v, w) sono due forme bilineari su V considerato come uno

spazio vettoriale reale.
Per la [23.4] si ha anche

s(w, v) +ia(w, v) =s{v, w) —ia(v, w)
e quindi
s(w, v) =s(v, w)
a(w, v) = —a(v, w)
per ogni v, weV. Pertanto
s: VXV->R
¢ una forma R-bilineare simmetrica, mentre
a: VXV—-R

¢ un forma R-bilineare antisimmetrica.
Inoltre, esplicitando le identita
hiv, wy=ih(v, w)

h(v, iw) = —ih(v, W)

si ottiene
a(v, w)y=— s(@iv, w) =s(v, iw) [23.11]
s(v, wy=a(iv, w)= —a(v, iw) [23.12}

per ogni v, weV,
Infine, esplicitando I’identita

h(iv, iw) = h(v, w)

si ottiene
s@iv, iw) =s(v, W) [23.13]
a(iv, iw) = a(v, w) [23.14]

per ogni v, wevV,
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Dalla [23.11] segue che s individua a, mentre la [23.12] mostra che, d’altra parte,
a individua s.

Viceversa, data una forma R-bilineare simmetrica s: V X V — R soddisfacente
la [23.13], ponendo

h(v, wy=s(v, w) +is(v, iw)

si definisce una forma hermitiana #: V x V — C. Verifichiamo la [23.3] e 1a [23.4].
Si ha, per ogni c=a+ib€C, v, weV:

hicv, w) =s(av, w) +is(av, iw) + s(ibv, w) + is(ibv, iw) =
=qh(v, W)+ b[s(iv, w) +is(v, iw)] =
=qh(v, W)+ b[s(— v, iw) +is(v, w)] =
=ah(v, W)+ ibh(v, w) = ch(v, w)

e la [23.3] & soddisfatta. Inoltre

h(w, v) =s(w, V) +is(w, iv)=s(v, w) +is(iv, w) =
=5(v, W) +is(—v, iw) = A(v, W),

e anche la [23.4] ¢& verificata.
In modo simile si dimostra che, data una forma R-bilineare antisimmetrica
a: V x V— R soddisfacente la [23.14], ponendo

h(v, w)y=a(v, w) +ia(v, w)

si definisce una forma hermitiana su V.

Riassumendo possiamo dire che assegnare una forma hermitiana sullo spazio’
vettoriale complesso V & equivalente ad assegnare su V una forma R-bilineare sim-
metrica soddisfacente la condizione [23.13], oppure una forma R-bilineare anti-
simmetrica soddisfacente la [23.14].

Esercizi

1. Stabilire quali delle seguenti sono forme hermitiane su C*

a) (X, y) =xp + by + boy b) (x, ¥)=ilxl Iyl
c) {x,y) =X1;1 + 2ix1}_’2— 2ix2jl d) (x,y)=1 +X|J_’| +x1)_’z
€) (X, ¥)=x; 1 + 2X:)2.

2. Stabilire quali delle seguenti matrici sono hermitiane:

1 1+i 0 i
(L) o)
1—i -1 i 0
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0 1 i i1 i
o | 1 2 1+i £ |-1 2 2
-i 1-i 0 i -2 0

3. Utilizzando il procedimento di Gram-Schmidt, ortonormalizzare la seguente base di
C? rispetto al prodotto hermitiano standard:
b= {(i9 - iy 0)9 (03 i9 0): (03 i7 i)}-

4. Per ciascuna delle seguenti matrici hermitiane A determinare una matrice unitaria M
tale che *MAM sia diagonale:

V3 1

1o 2 2
a)(—1 1) b) 1 V3
2 2,



Capitolo 3

Geometria proiettiva

24 Spazi proieftivi

La geometria euclidea studia proprieta che, nella loro formulazione ¢ dimo-
strazione, fanno ricorso a misurazioni e a confronto di lunghezze e di angoli. Anche
nella geometria affine reale si ricorre a misurazioni, sebbene le distanze si con-
frontino solo lungo rette parallele. Per diversi secoli la geometria ¢ stata studiata
esclusivamente da un punto di vista metrico, e solo in tempi relativamente recenti
ci si & accorti che esistono proprieta geometriche che possono essere formulate
senza ricorrere a misurazioni o al confronto di grandezze. Alcune di queste pro-
prietd vengono studiate dalla ‘‘geometria proiettiva’’.

Questa geometria ha le sue origini nelle regole della prospettiva, che gli artisti
del Rinascimento (Brunelleschi, L.B. Alberti, Piero della Francesca e altri) stu-
diarono scientificamente e utilizzarono in modo sistematico. Tali regole sono basate
sull’idea di “‘punti di fuga”, verso cui concorrono i contorni degli oggetti cosi
come essi appaiono da un punto di osservazione.

Precursore della geometria proiettiva fu Girard Desargues (1593-1650), il quale
per primo considero rette e piani paralleli come casi particolari di rette e piani
incidenti. La nascita della geometria proiettiva come una parte organica della mate-
matica risale alla prima meta del secolo xix con I’opera di Gaspard Monge
(1746-1818) e di J.V. Poncelet (1788-1867). Gli spazi ambiente in cui essa viene
studiata costituiscono un modello matematico astratto di spazio in cui valgono
proprieta di natura grafica simili alle regole del disegno prospettico. Gli spazi proiet-
tivi nascono dall’esigenza di una geometria da cui venga eliminata la nozione di
parallelismo, che in geometria affine comporta il dover tenere conto di casi d’ec-
cezione quando si considera intersezione di sottospazi. La geometria proiettiva
consente inoltre di interpretare geometricamente e rendere pill trasparenti certe
parti dell’algebra lineare, come ad esempio la teoria dei sistemi di equazioni lineari
omogenee.
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24.1 DeriNizIONE  Sia V un K-spazio vettoriale di dimensione finita. Lo spa-
zio proiettivo associato a V & linsieme P (V) i cui elementi, chiamati punti di P(V),
sono i sottospazi vettoriali di dimensione 1 di V.

Se K=R (K=C), P(V) si dice spazio proiettivo reale (spazio proiettivo
complesso).

La dimensione di P (V) & definita come dim(V)— 1 e si denota corn dim (P (V)).
Se ha dimensione 1 (dimensione 2), P(V) & una retta proiettiva (un piano
proiettivo).

Ogni v€V\ {0} genera il sottospazio di V di dimensione uno
(v)={Av: LeK};

quando lo considereremo come un punto di P(V) denoteremo questo sottospazio
con il simbolo [v]. Due vettori v,w € V\ {0} definiscono lo stesso punto di P(V),
cioé [v] = [w], se ¢ solo se esiste LK, A # 0, tale che w=Av.

Se dim(V) = 0, cio¢ V = {0}, si ha P(V) =0, perché V non possiede sottospazi di
dimensione 1. Quindi, per definizione, @ & uno spazio proiettivo di dimensione — 1.

Se dim (V) =1, P(V) possiede un solo punto, V stesso, ¢ dim(P(V)) = 0: uno
spazio proiettivo di dimensione 0 consiste dunque di un solo punto.

Gli esempi pit1 importanti di spazi proiettivi si ottengono considerando V = K"+,
Lo spazio P(K"*') si denota con P”(K), o semplicemente con P” se non c’é pos-
sibilita di equivoco. E uno spazio proiettivo di dimensione 7, che si chiama I’n-
spazio proiettivo numerico.

Per ogni (x;,X;, ..., X,) # (0, 0, ..., 0) denoteremo con [x,,X,, ..., X,] il punto
corrispondente di P”. Si ha

[Xs X1 s Xl = [Pos V15 --es V)

se e solo se esiste A # 0 in K tale che y,=Ax;, i=0,..., n.

24.2 DeFN1zIONE  Sia P = P(V) e sia {e,, -.., e,} una base di V. Diremo che
{e,, ..., €,} definisce in P un sistema di coordinate omogenee (0 un riferimento
proiettivo). Tale sistema verra denotato con e,... e,. Sia

V=Xx,e,+x€ + ... +x,e,€V\{0]}.

Gli scalari x,, ..., x, si dicono coordinate omogenee del punto P = [v] €P rispetto
al riferimento e, ... e, Scriveremo Plx,, ..., x,] per denotare il punto P€P di
coordinate omogenee X, ..., X,,.
I punti

FlL, 0,..., 0] =[e], ..., F0,...,0, 1]=I[e[,

U, 1, ..., 1]=[e,+ ... +¢,]
si diranno rispettivamente punti fondamentali e punto unitd del riferimento
€ ... €,
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Poiché [v] =[Av], e
AV =2AXx,€, + Ax,€+ ... +Ax,e,

per ogni ve V\ {0}, A # 0, le coordinate omogenee di un punto P = [v] € P rispetto
a un dato riferimento proiettivo sono determinate da P solo a meno di un fattore
di proporzionalita non nullo. In altre parole, se x,, ..., X, sono coordinate omo-
genee di P, lo sono anche Ax,, ..., Ax, per ogni A # 0 in K.

Se invece della base {e,, ..., e,} di V si considera la base proporzionale
{ueg ..., pe,} per un qualsiasi g # 0 in K, si ha

V=Xx,e,+x€ + ... +x,e,

pv = x(pey) + x(pe) +... +x,(ne,)

per ogni veV\ {0}. Dunque le coordinate omogenee di [v] = [uv] rispetto ai due
riferimenti sono le stesse. Per questo motivo si considerano identici due sistemi
di coordinate omogenee se sono definiti da basi di V proporzionali; in simboli

€...€,= (Il’eO) b4 (M’en)'

In P” il riferimento determinato dalla base canonica di K™*! si dice riferimento
proiettivo standard. Rispetto ad esso le coordinate omogenee di P =[x, ..., x,]
SONo Xy, ..., X,, € si dicono coordinate omogenee standard di P. 1 punti fonda-
mentali di questo riferimento sono [1,0, ..., 01, ..., [0, ..., 0,1], e il punto unita
ét,..., 1.

Un sottospazio vettoriale W di V definisce a sua volta uno spazio proiettivo
P (W) contenuto in P = P(V) , che é detto sottospazio proiettivo (o sottospazio
lineare) di P. In particolare P stesso € un sottospazio proiettivo (improprio) di
sé stesso.

Si ha dim[P(W)] = dim(W) —1, e quindi

dim (P) — dim [P(W)] = dim (V) — dim (W);

il numero dim(P) — dim [P(W)] ¢ detto codimensione di P(W) in P.
I sottospazi di codimensione uno si dicono iperpiani. Se dim(P) = n, le rette
ed i piani di P sono i sottospazi di codimensione # — 1 ed n — 2 rispettivamente.
Nello spazio proiettivo P = P (V) supponiamo assegnato un sistema di coordi-
nate omogenee e, ... €,, € sia

Xy + ... +a,X,=0 [24.1]

un’equazione lineare omogenea nelle indeterminate X, ..., X,, a;€K, tale che
(ag, ..., a) #(0, ..., 0).
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In V la [24.1] rappresenta, rispetto alla base {e,, ..., e,}, un iperpiano vetto-
riale, cioé un sottospazio vettoriale H C V di codimensione 1. I punti P = [v]€P
le cui coordinate omogenee soddisfano la [24.1] sono quelli tali che veH, v # 0,
e quindi la [24.1] & soddisfatta dalle coordinate di tutti e soli i punti delP’iperpiano
P(H) di P. La [24.1] & un’equazione cartesiana dell’iperpiano P (H).

Si osservi che, poiché la [24.1] ¢ un’equazione omogenea, una (n + 1)-upla
(Xgs ---» X,) EK"*I\ {0} & una sua soluzione se e solo se lo & (Ax,, ..., AX,) per ogni
A # 0 in K; quindi ha senso dire se le coordinate omogenee di un punto P€P sod-
disfano la [24.1] oppure no.

Se 0 <i=<n, Piperpiano di P di equazione cartesiana X, = 0 ¢ detto i-esimo
iperpiano coordinato e consiste di tutti i punti la cui i-esima coordinata omoge-
nea & uguale a 0 (questa condizione ¢ indipendente dalla scelta della (# + 1)-upla
di coordinate omogenee del punto).

Gli iperpiani coordinati di P”, rispetto al riferimento proiettivo standard, si
indicano con H,, H, ..., H,. Si ha quindi

H,;= {[xg, ..., x,]€P": x,= 0}.

Ad esempio, ogni iperpiano di P' ha dimensione zero e pertanto consiste di
un solo punto; in particolare H, = {[0,1]}, e H, = {[1,0]}.
Piu in generale consideriamo un-sistema di ¢ equazioni lineari omogence

a,Xo+ ... +a,X,=0
[24.2]

a0 Xy + ... +a,X,=0.

Sia W il sottospazio vettoriale di V di cui le [24.2] sono equazioni cartesiane
nella base {e,, ..., ,}. L’insieme dei punti P€P le cui coordinate omogenee sono
soluzioni di tutte le equazioni del sistema [24.2] ¢ P(W). Le [24.2] si dicono per-
tanto equazioni cartesiane del sottospazio proiettivo P(W) nel riferimento
N

Poiché tutti i sottospazi proiettivi sono della forma P (W) per qualche sotto-
spazio vettoriale W C V, ogni sottospazio proiettivo possiede equazioni cartesiane,
essendo cid vero per ogni W. E evidente che un sottospazio proiettivo P (W) non
possiede un unico sistema di equazioni cartesiane: due sistemi di equazioni lineari
omogenee in n + 1 indeterminate X,, ..., X, sono infatti equazioni cartesiane
dello stesso sottospazio se e solo se sono equivalenti.

Detta A = (a;;) la matrice dei coefficienti di [24.2], ed r=r(A), si ha

dim(P(W)) =dim(W) -1 =dim(V)—r—1=dim®P)-r=n-r,

ovvero P(W) ha codimensione r in P.
Siano P(W,) e P(W,) due sottospazi proiettivi di P, aventi come equazioni
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cartesiane, nel riferimento e, ... e, rispettivamente i sistemi
A,X=0, [24.3]
A4,X=0, [24.4]

dove A, ed A, sono matrici, rispettivamente # X (n +1) ed s X (n + 1), a elementi
inKe X=X, ... X,).

L’intersezione P(W,) N P(W,) ¢ ancora un sottospazio proiettivo, e preci-
samente

P(W)NP(W,)=P(W,NW,). [24.5]

Infatti P(W,) N P(W,) & il luogo dei punti le cui coordinate omogenee sono
soluzioni di entrambi i sistemi [24.3], [24.4]; questo luogo coincide con
P (W, N'W,), e le equazioni dei sistemi [24.3], [24.4] costituiscono un suo sistema
di equazioni cartesiane.

Si ha in particolare P(W,) N P(W,) = @ se e solo se W, N W, = (0), il sotto-
spazio vettoriale nullo di V, cio¢ se e solo se il sistema delle [24.3], [24.4] non
possiede soluzioni non banali.

I due sottospazi P(W)) e P(W,) di P si dicono incidenti (sghembi) se
P(W) NPW,) # O (se P(W,) N P(W,) = ©). In particolare un punto P e un sot-
tospazio P(W) sono incidenti se P€P(W).

Piu in generale, consideriamo una famiglia qualunque {P(W)},., di sottospazi
proiettivi di P. L’intersezione N, ;P (W, ¢ ancora un sottospazio proiettivo di
Pesiha

N;,/P(W)=P(N,. ,W).

Infatti N, , P (W) ha per elementi i sottospazi vettoriali di dimensione 1 di V
che sono contenuti in ognuno dei W,.

Se J & un sottoinsieme non vuoto di P, ’'intersezione di tutti i sottospazi proiettivi
che lo contengono, denotata con L(J), si dice sottospazio generato da J: L(J)
¢ un sottospazio proiettivo di P e per definizione & il piil piccolo sottospazio che
contiene J. Ovviamente L(S) =S se e solo se S & un sottospazio proiettivo.

Se J={P,,..., P} consiste di un numero finito di punti, scriveremo
L(P, ..., P)invece di L({P,, ..., P,}). Diremo che P,, ..., P, generano L(P,, ..., P,).

Si ha

dim(L(P,, ..., P)) st —1. [24.6]
Infatti, se P, = [v|], P,=[v,], ..., P,=[v], allora
LP,, ..., P)=P{vy, ..., VD),

e la dimensione del sottospazio vettoriale (v,, ..., v,) non supera #, dal che segue
la [24.6].
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Se nella [24.6] vale il segno di uguaglianza i punti P,, ..., P, si dicono linear-
mente indipendenti: altrimenti P,, ..., P, si dicono linearmente dipendenti. Que-
sta definizione ¢ motivata dal fatto evidente che P, ..., P, sono linearmente indi-
pendenti se e solo se lo sono i vettori v, ..., V,.

Due punti sono linearmente indipendenti se € solo se sono distinti. In questo
caso lo spazio che essi generano ¢ una retta; quindi per due punti distinti Pe Q
passa una e una sola retta, cioé L(P, Q).

Tre punti sono linearmente indipendenti se e solo se non sono allineati, cioé
non giacciono su una retta. In questo caso lo spazio che essi generano ¢ un piano,
ed & Punico piano che li contiene.

Segue dalla definizione che se i punti P,, ..., P, sono linearmente indipendenti,
allora t < n +1, e ogni sottoinsieme di { P,, ..., P,} & costituito da punti linear-
mente indipendenti.

I punti P, ..., P, si diranno in posizione generale se sono linearmente indipen-
denti (e in questo caso f<n +1) oppure se t>n+1 e n+1 tra essi, comunque
scelti, sono linearmente indipendenti. In quest’ultimo caso L(P,, ..., P,) =P.

Poiché ogni sottospazio vettoriale di V possiede una base, ogni sottospazio
proiettivo S di P puo essere generato da un numero finito, pari a dim(S) +1, di
suoi punti linearmente indipendenti.

Supponiamo ad esempio che dim(S) = k, e siano [vgl, [v], ..., [v.] €S lincar-
mente indipendenti. Poiché [v], [v], ..., [v,] generano S, per ogni P€S si ha

P=vo+ Ay, + ...+ 4]

per opportuni Ag, A, ..., A,€K non tutti uguali a 0, e definiti univocamente da
Vg Vys ..., V€ da P a meno di un comune fattore di proporzionalita. Se rispetto alla
base {eye,, ..., e,} di V le coordinate dei precedenti vettori sono rispettivamente

(pOO’pOI’ sy pon)’ (p]()’ pll’ i p]n)’ ey (pk‘o! pkl’ s pkn 3 < P: P[xo’xl’ s X,,],
allora si ha

Xo= AP + MPro+ o + MDio
X1 = MoDor + MPy + -os + MDD
[24.7]

Xy = MPon + MP1n + oot MDD

Le [24.7] sono equazioni parametriche del sottospazio S. Esse dipendono, oltre
che dalla scelta dei punti [v,], [v;], ..., [v,] che generano S, anche da quella dei
vettori vy, Vi, ..., v,, € quindi dalla scelta di coordinate omogenee di [v],
vils - [Vl

Nel caso particolare k =1 si ottengono equazioni parametriche della retta che
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contiene i punti [vy], [v,]:

Xo = MoDPoo + Ay Dyo
X = AP + MiDy;

X, = AoPon + M Dy

Se P & un piano proiettivo ed z una sua retta assegnata mediante due punti
distinti P[pg, 01, P:1, Qlde 4,1, 421, Z possiede ’equazione cartesiana

XO Xl X2
Py Py D, |=0. [24.8]
4 41 9>

Infatti il primo membro della [24.8] non ¢ identicamente nullo perché P # Q,
e quindi la [24.8] & ’equazione di una retta. Questa retta contiene sia P che Q:
infatti se si sostituiscono le coordinate di P, o quelle di Q, al posto di X,, X|,
X,, il primo membro ¢ il determinante di una matrice avente due righe uguali,
quindi si annulla. Dunque la [24.8] & un’equazione cartesiana della retta passante
per I punti Plpy, D1, D)l e Qlgo, 91595]-

Similmente si dimostra che se P & uno spazio proiettivo di dimensione 3 e
P[po, Pi» P2 P31, Qldos q1» @35 &1s Rlro, 1y, 1y, 15] sono tre suoi punti non alli-

neati, un’equazione cartesiana del piano L(P, Q, R) ¢ la seguente:
X, X, X2 X,
bPo Pi P DPs
49 4 2 4

nh n n n

=0.

Se S, ed S, sono due sottospazi proiettivi di P, il sottospazio L(S, U S,) gene-
rato dalla loro unione ¢ il sottospazio somma di S, ed S, e viene denotato con
con il simbolo L(S,, S,).

Se S, =P(W)), S,=P(W,), si ha

L(S,, ) =P(W, +W,). [24.9]

Infatti ogni sottospazio proiettivo P(W) contenente S,US, contiene
P(W, + W,) perché W deve contenere sia W, che W,: quindi

P(W, + W) CL(S, Sy.

19
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D’altra parte, poiché W, + W, contiene sia W, che W,,
PW,+ W) DL(S, Sy,

e la [24.9] & vera.
Per ogni coppia di sottospazi S, ed S, di P sussiste la seguente identita:

dim[L(S,, S))] = dim(S,) + dim(S,) — dim(S, N S,). [24.10]

La [24.10] & detta formula di Grassmann proiettiva. Essa ¢ un’immediata con-
seguenza della formula di Grassmann vettoriale, tenuto conto della [24.5] e della
[24.9].

Se ad esempio si considerano una retta z € un punto P€P, L(z, P) ¢ un piano
se P¢#z,ed & laretta z se Pcz.

Se 2, ed z, sono due rette, L(z,, %,) ha dimensione 3, 2, 1 a seconda che

%, ed %, siano rispettivamente sghembe, incidenti e distinte, coincidenti.

La formula di Grassmann & uno strumento molto utile per studiare le proprieta
di incidenza di sottospazi proiettivi. Si noti che, poiché dim{[L(S,, S,)] < dim(P),
dalla [24.10] segue la disuguaglianza

dim(S, N S,) = dim(S,) + dim(S,) — dim (P). [24.11]

In particolare, se dim(S,) + dim(S,) = dim(P), i sottospazi S, ed S, sono inci-
denti, perché dim(S;N S,)=0 se e solo se ;N S, # . Quindi due sottospazi
proiettivi sghembi in P hanno dimensioni la cui somma non supera dim(P) — 1.
Come conseguenza abbiamo la seguente proposizione:

24.3 PROPOSIZIONE

1) In un piano proiettivo due rette qualsiasi si incontrano.

2) In uno spazio proiettivo di dimensione 3 una retta e un piano qualsiasi si
incontrano, e due piani distinti qualsiasi hanno in comune una retta.

In un piano proiettivo non ha dunque significato parlare di parallelismo tra
rette, né in uno spazio proiettivo tridimensionale ha senso il parallelismo tra piani
O tra rette e piani.

La proposizione 24.3 pud anche essere dimostrata utilizzando equazioni carte-
siane: nel caso (1) il sistema costituito dalle equazioni cartesiane delle due rette
possiede soluzioni non banali perché & un sistema di due equazioni omogenee in
tre incognite, e quindi le due rette hanno punti in comune. In modo simile si ragiona
nel caso (2). '

Torniamo al caso generale. Quando ’intersezione di due sottospazi proiettivi
S, ed S, di P ha la dimensione pili piccola possibile, compatibilmente con la
[24.10], S, ed S, si dicono in posizione generale.

Pertanto, se S, S, ¢ P hanno rispettivamente dimensione 4, k ed n, S, ed S,
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CP (J)
Figura 24.1

sono in posizione generale se e solo se dim(S,NS,)=#4+ k—n nel caso
h+k=n, oppure S;NS, =0 se h+k<n.

Ad esempio, due rette di P2 sono in posizione generale se sono distinte, e
quindi hanno in comune un punto; due rette di P”, n = 3, sono in posizione gene-
rale se sono sghembe.

Sia J un sottoinsieme dello spazio proiettivo P e P€P un punto qualsiasi. Il
cono proiettante J da P ¢ ’unione C,(J) di tutte le rette che contengono P ed
almeno un punto di J (fig. 24.1), cioé

Co() = Uge, L (P, Q).

24.4 PROPOSIZIONE

1) Se S e un sottospazio proiettivo di P, allora Cp(S) = L(S, P) per ogni P€P.
In particolare, se S é un punto e P# S, Cp(S) é la retta che contiene S e P.

2) Se S, ed S, sono sottospazi proiettivi di P, allora

L(S,, Sz) = Up.es., PzeszL(Pla Pz) = UMzCP(SI)'
La dimostrazione ¢& lasciata al lettore.

Sia H C P un iperpiano e P€ P\ H. La proiezione di P su H di centro P ¢é’ap-
plicazione

Tp g P\N{P} > H
definita da
WP,H(Q) =L{P, ONH.

A parole, 7, ;; ¢ Papplicazione che associa a un punto Q s P il punto di inter-
sezione di H con la retta congiungente P e Q. Per ogni sottoinsieme J di P tale
che P¢J si ha quindi

Tp (J) = HO Co(J),

cioé¢ w, ,(J) € lintersezione con H del cono proiettante J da P. L’insieme
Ty 4 (J) viene chiamato proiezione di J da P in H.
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Ad esempio, se in P" si considerano I'iperpiano Hy e P=[1, 0, ..., 0], per ogni
0 = [% Xy ..., X,] # P si ha

“TP,HO(Q) = [0, xls eesy n]'

Infatti la retta L (P, Q) consiste dei punti

D" + [on, ”‘xls cses ["'an

al variare di [A, pu]€P’, e il punto 7, , (Q) = H,N L(P, Q) si ottiene in corri-
spondenza a [A, p] =[— x;, 1].

L’operazione di proiettare un sottoinsieme di P in un iperpiano & la versione
geometrica astratta dell’operazione grafica di rappresentare un oggetto tridimen-
sionale J su di un piano H cosi come esso appare da un punto di osservazione
P. Questa & la costruzione su cui si basa il disegno prospettico.

24.5 Esempi e osservazioni

1. Sia V un K-spazio vettoriale e ~ la relazione di equivalenza in V\ {0} cosi
definita: v ~ w se e solo se v = Aw per qualche A €K. Allora I’insieme quoziente
[V\{0}]/ ~ ¢é in corrispondenza biunivoca naturale con P(V).

Infatti le classi di equivalenza in V\ {0} sono i sottospazi vettoriali di dimen-
sione uno di V privati di 0, € quindi ogni classe di equivalenza individua un ele-
mento di P(V); viceversa, ogni elemento [v] e P(V) & una classe di equivalenza cui
¢ stato aggiunto 0, e quindi individua un elemento di [V\ {0}]/ ~.

Per questo motivo si usa talvolta definire P(V) come [V\{0}]/ ~.

2. Un punto di P?, n =1, é essenzialmente una (n + 1)-upla ordinata di sca-
lari non tutti nulli, assegnati a meno di un comune fattore di proporzionalita non
nullo. Un sottospazio proiettivo di P” pud vedersi come ’insieme delle soluzioni
non banali, prese ognuna a meno di un fattore di proporzionalitd, di un sistema
di equazioni lineari omogenee in # + 1 incognite. La geometria proiettiva dei sot-
tospazi di P” pud quindi interpretarsi come lo studio delle proprieta degli insiemi
di soluzioni non banali di sistemi di equazioni lineari omogenee in 7 + 1 incognite.

3. Se dim(P) = 3, i sottospazi proiettivi non vuoti di P sono, oltre ai punti e
a P stesso, i piani e le rette. La seguente tabella mostra quali sono le intersezioni
di due sottospazi di P che si trovano in posizione generale:

| retta  piano

retta o punto
piano punto retta

Se dim(P) = 4 i sottospazi non vuoti di P sono, oltre ai punti e a P stesso,
le rette, i piani, e gli iperpiani, che hanno dimensione 3. La seguente tabella mostra
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le intersezioni di due sottospazi di P in posizione generale:

| retta piano  iperpiano
retta /)] /] punto
piano (4} punto  retta
iperpiano punto retta piano

4. Sia n la dimensione di P =P (V). Un riferimento proiettivo ¢;...e, di P
determina gli #» + 1 punti fondamentali F, = [e,], F; = [e]], ..., F, =[e,], e il punto
unita U=[e, + ... +e,]€P.

E immediato verificare che i punti F,, F,, ..., F,, U sono in posizione generale.

Viceversa, assegnando una (n + 2)-upla ordinata di punti in posizione generale
P, P, ..., P,, NeP, esiste un unico sistema di coordinate omogenee di cui essi
sono i punti fondamentali.

Infatti consideriamo vettori vy, ..., v, €V tali che [v] =P, i =0, ..., n. Poiché
P, P, ..., P, sono linearmente indipendenti, {v,..., v,} & una base di V.
Quindi, se scegliamo un vettore n€V tale che [n] = N, abbiamo

n=2XVo+ ... +A,v,

per opportuni A, ..., A, €K, tutti diversi da zero per la condizione che P, P,, ...,
P,, N siano in posizione generale.

I sistema di coordinate (A,V,) ... (A,v,) ha le proprieta volute. La sua unicita
segue da quella di A, ..., A,.

5.Sia n=1 e siano X,, X, ..., X, indeterminate. Denotiamo con K[X,,
Xi, ...» X145 0 pit brevemente con K[X],, il K-spazio vettoriale i cui elementi
sono il polinomio 0 ed i polinomi omogenei di grado d = 1 nelle indeterminate
Xy Xis ...y X,. Gli elementi dello spazio proiettivo P(K[X],) si chiamano iper-
superfici di grado d di P". Lo spazio P(K[X],) ¢ il sistema lineare delle ipersu-
perfici di grado d di P". Se F(X)¢€K[X],, I’equazione

FX)=0 [24.12]

si dice equazione dell’ipersuperficie [F(X)] € P(K[X],). Per definizione, ogni altra
equazione della stessa ipersuperficie ¢ della forma

aFX)=0

per qualche o € K*. Le ipersuperfici di grado d =1, 2, 3, si dicono rispettivamente
iperpiani, quadriche, cubiche ecc. Se n = 2 le ipersuperfici si chiamano curve alge-
briche piane, e verranno studiate nel capitolo 4. Se una (n + 1)-upla di scalari non
tutti nulli x,, x;, ..., x, &€ soluzione della [24.12], diremo che [x,, x,, ..., x,] €P”
¢ un punto dell’ipersuperficie di equazione [24.12]. Questa definizione & ben posta,
cio¢ non dipende dalla scelta della (n + 1)-upla di coordinate omogenee del punto:
infatti per una proprieta dei polinomi omogenei (cfr. proposizione A.12), ogni
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altra (n + 1)-upla ad essa proporzionale Ax,, Ax, ..., AX,, A # 0, ¢ soluzione della
[24.12].

6. Sia V uno spazio vettoriale di dimensione finita e sia 1 <k <dim(V). La
grassmanniana dei k-spazi di V & Pinsieme i cui elementi sono i sottospazi vetto-
riali di dimensione 4 di V, e si denota con G,(V). Se V = K” la grassmanniana
si denota di solito con G(k, n) anziché con G, (K"). Gli spazi proiettivi sono casi
particolari di grassmanniane, essendo P(V) = G, (V). Le grassmanniane furono
introdotte per la prima volta nel 1844 da H.G. Grassmann. '

In virtt della corrispondenza biunivoca esistente tra sottospazi vettoriali di
dimensione & di uno spazio vettoriale V e sottospazi proiettivi di dimensione k£ — 1
di P(V), la grassmanniana G,(V) pud anche interpretarsi come I’insieme i cui ele-
menti sono i sottospazi proiettivi di dimensione k£ —1 di P(V).

L’esempio pitt semplice di grassmanniana che non & uno spazio proiettivo &
G2, 4), la grassmanniana delle rette di P>.

E possibile rappresentare G (2, 4) come un’ipersuperficie quadrica di P° asso-
ciando ad ogni retta di P? le sue ““coordinate pliickeriane’’, nel modo seguente.

Siano Plx,, x,, X, X3, Ol¥e, Y15 Y2, ¥;1€P? due punti distinti e consideriamo
la matrice

(x° i % x3) [24.13]
Yo N V2 Vs

Poniamo, per ogni coppia di indici 7, j tali che 0<i<j < 3:

X, X

D=
! Yi Y

=Xy — X Y.

Poiché la [24.13] ha rango 2, i p;; non sono tutti uguali a zero, e quindi defini-
scono un punto [Py, Pos Poss Pizs Pi3» Pl €P° le cui coordinate omogenee p,;,
Por» Poss Pias Pr3» Pos si dicono coordinate pliickeriane della retta L(P, Q); esse
prendono il nome da J. Pliicker (1801-1868) che per primo le utilizzod.

A priori la definizione del punto [py, Pos Poss Przs Pi3s Pl €P° sembra dipen-
dere non solo dalla retta L (P, Q), ma anche dalla scelta dei punti P, Q e da quella
di loro coordinate omogenee. E facile perd convincersi del contrario. Innanzitutto
notiamo che se le coordinate omogenee di P o di Q vengono moltiplicate per un
fattore di proporzionalitad € K*, le coordinate pliickeriane di L (P, Q) vengono
anch’esse moltiplicate per lo stesso fattore, e quindi il punto di P° che esse defi-
niscono non cambia. Se poi il punto P viene sostituito da un altro punto
P'lxg, x{, %", x;"1€ L(P, Q) diverso da Q, allora esistono due scalari A #0, u
tali che

X =N\ +py, i=0,..,3.
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Sostituendo nella [24.13] le coordinate x3, x/, x;, x; al posto di x,, x;, X;, X3,
e calcolando le nuove coordinate pliickeriane p;;, Py, Pos» PiasPis> Pass Si trova
pii=\p; e
Similmente si procede se Q ¢ sostituito da un altro punto Q' € L(P, Q).
Pertanto possiamo affermare che il punto [py, Doy Poss Pras Piss D]l €P°
dipende solo dalla retta L(P, Q).
Osserviamo che le coordinate pliickeriane py;, Doys Doss Pr2s Pi3» P23 della retta
L(P, Q) soddisfano I’identita
PoPxs— PoPi3 + PPz = 0. [24.14]
Infatti il primo membro ¢ il determinante
Xo X1 X3 X3
Yo Y1 2 D3
Xo X X, X3
Yo Y1 V2 X3
sviluppato secondo i minori delle prime due righe, con il metodo di Laplace, ed
¢ nullo perché ha due righe uguali. Pertanto il punto [py, Py, Po3> P12s Pi3> Dol
appartiene alla quadrica di P® di equazione

X Xp3 — X Xi3 + X3 X1, =0, [24.15]

nota come quadrica di Klein.

Non ¢ difficile verificare che ogni punto C[py;, Py,s Poss Pizs Pi3s D3] aDParte-
nente alla quadrica di Klein proviene da una e una sola retta di P*. A tale scopo
non ¢ restrittivo supporre p,, # 0 (se p, = 0 si pud ragionare in modo simile
rispetto a un’altra coordinata). Consideriamo i punti di P?

P =10, poi> Pz Psls @ = [— Poi> 05 P12 P13l-

Le coordinate pliickeriane di L (P, Q) sono, tenuto conto della [24.14],

Dé1s Poi Pos» PorPras PoiPizs PorPass

e quindi, poiché p,, # 0, C ¢l punto associato alla retta L(P, Q). Se &z ¢ un’al-
tra retta le cui coordinate pliickeriane sono proporzionali a quelle di C, essa non
¢ contenuta nei piani coordinati di equazioni X; = 0 ed X, = 0, perché altrimenti
sarebbe p,, = 0. Siano [0, a,, a5, a;] € [ b,, 0, b,, b;] i punti di intersezione di
z con i due piani. Si ha

[Do1> Pozs Poss Pras Pi3s Pasl = @by, @b, asby, a,b,, a b;, a,b; — a,b,].

Poiché a,b, # 0, si deduce che [0, a,, a,, a;] =P (confrontando le prime tre
coordinate) e che [— by, 0, b,, b;] = O (confrontando la prima, quarta e quinta
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coordinata), e quindi z = L(P, Q). In conclusione: /e coordinate pliickeriane di
retta stabiliscono una corrispondenza biunivoca tra insieme delle rette di P* e
i punti della quadrica di Klein in P>,

In modo simile & possibile introdurre coordinate pliickeriane per i sottospazi
proiettivi di dimensione ¥ —1=1 di uno spazio P”. Per ulteriori dettagli rinviamo
il lettore al classico trattato [2], oppure a [8].

7. Sia J un sottoinsieme dello spazio proiettivo P (V). Il sottoinsiemie di V
C(J)={veV\{0}:[v]eJ} U {0}

¢ il cono su J in V. Questa terminologia ¢ motivata dal fatto che C(J) € un’u-
nione di sottospazi vettoriali di dimensione 1 di V. Lasciamo al lettore il compito
di verificare che se J = P(W) & un sottospazio proiettivo di P, allora C(J) =W.
Si ha inoltre

cihHhnNncW=cand

chucW)y=cyuld)

per ogni coppia di sottoinsiemi 7, J di P.

Esercizi

1. In ciascuno dei seguenti casi determinare un’equazione cartesiana della retta di P*(C)
contenente i punti assegnati:

a) [-1, 1, 11, {1, 3, 2i] b) [1, —-1,1], [i, 1, 1]
¢} [1, 1, 2i], [1, —2, 2i].
2. Verificare che le seguenti rette di P*(C):
IXi— X +3iX =0, X +Xi—-iX;=0, 5X+X +3iX;=0,
hanno intersezione non vuota.

3. Verificare che i punti 4 =[1, 2, 2], B=[3, 1, 4], C=[2, —1, 2] di P*(R) sono alli-
neati, ¢ determinare un’equazione cartesiana della retta che li contiene.

4. In P*(R) siano P=11, 1, 0, 0], e H il piano di equazione
2Xo— Xi + X5=0.
Determinare la proiezione 7w, 5 da P in H di ognuno dei seguenti punti:
0,=11,0,0,01,0.=1[1,1, 1,11, Os=11, -1, -1, 1], Q.= [1, 1, —1, —1].
5. Verificare se le rette di P*(R)
2:X%-Xi+X=0, X-2X;+X;=0
4:X%+X-3X=0, Xi—-2X-2X:=0

sono sghembe oppure incidenti.
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6. Dimostrare che, dati comunque due rette %, %’ sghembe in P*(K) e un punto
P¢ 2 U z’, esiste un’unica retta £ contenente P ed incidente sia z che z’.

7. In P*(R) determinare equazioni cartesiane della retta £ contenente P e incidente sia
%z che %’ in ciascuno dei seguenti casi:
a) 2: X —-X+2X;=0, 2X,+X, =0
272X, -3X+X:=0, Xo+X;=0, P=]0,1,0,1]
b) 2: X, - Xi+X3=0, Xo+X;-2X;=0
22X - X+ X:=0, Xo+X,—X;=0, P=]1,1,2, —3].

8. Dimostrare che, date comunque tre rette %, ', £” di P*(K), non contenute in uno
stesso iperpiano e a due a due sghembe, esiste un’unica retta 4 incidente z, z‘ed 2”.

9. Sia P uno spazio proiettivo in cui sia assegnato un riferimento proiettivo eye, ... e, €
siano

Pl [P:o, Dits vees pln]s Pz[pzo, pZIs ey Pzn], eves Pn[pn(): Dnis eees prm]

punti linearmente indipendenti. Dimostrare che

Xo X| aee X,,
Do Pu eee Din
Px  Pun ... P2a|=0
17»0 pni LS prm

& un’equazione dell’iperpiano L(P,, P,, ..., P,).

10. Siano F,, Fy, Fy, Fi, Fis, Fy i sei punti fondamentali del riferimento standard di P°.
Verificare che F;; & il punto della quadrica di Klein che corrisponde alla retta
L(F, F)) di P°, dove F,, Fi, F>, F; sono i punti fondamentali del riferimento proiet-
tivo standard di P>.

25 Geometria affine e geometria proiettiva

Gli spazi proiettivi furono inizialmente definiti come ‘‘ampliamenti’’ di spazi
affini, ottenuti aggiungendo ad essi certi ““punti impropri”’. Per illustrare la costru-
zione geometrica su cui si basa tale definizione, consideriamo P'(R), visto come
I’insieme delle rette di A2(R) passanti per origine (fig. 25.1).

Per ogni [x,, x,] € P'(R), il punto (Ax,, Ax,) descrive, al variare di L€R, la cor-
rispondente retta per ’origine in A%2(R). In particolare il punto H, = [0, 1]¢P'(R)
corrisponde alla retta di equazione X, = 0. Si consideri in A*(R) la retta z di
equazione X,=1. Per ogni [x,, x,1€P'(R)\ {H,}, la corrispondente retta di
A%(R) non ¢& parallela a # e interseca z nell’unico punto (1, x; 'x;). Viceversa
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{1,x)

[1,x]

(0,11 v Figura 25.1

ogni (1, x)€ z appartiene a un’unica retta per I’origine, quella corrispondente
al punto [1, x] € P'(R)\ { H,}. Si ha quindi una corrispondenza biunivoca tra %
e P'(R)\ {H,} ovvero tra z U {H,} ¢ P'(R).

Possiamo pensare H, come un ‘‘punto all’infinito’’ o “‘punto improprio’’ che
viene aggiunto a z per ottenere P!(R). Infatti la retta [0, 1] pud essere consi-
derata come la posizione limite della retta [1, x] quando lx| tende all’infinito.
Si osservi che si pud far tendere lx| all’infinito in due modi, facendo avvicinare
X Verso + oo oppure verso — oo, ottenendo in entrambi i casi la stessa retta [0, 1]
come posizione limite.

Questa costruzione geometrica, risalente a Desargues, si pud ripetere utilizzando,
invece del punto H, e della retta %, un qualsiasi punto H€P'!(R) ¢ una retta di
AZ%(R) non passante per I'origine e avente direzione H.

E facile generalizzare I’esempio precedente. Consideriamo lo spazio
P = P"(K), identificato con I’insieme delle rette di A"*! passanti per ’origine
(fig. 25.2): ogni punto [x,, X, ..., X,] €P" corrisponde alla retta di A"*' costituita
dai punti (Ax,, AX,, ..., Ax,) al variare di A €K (questi punti sono, con I’eccezione
di (0, ..., 0), le (n + 1)-uple di coordinate omogenee di [x,, Xxi, ..., X,]). I punti
Pe H, corrispondono alle rette contenute nell’iperpiano affine di equazione
X, =0.

Figura 25.2
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Si consideri P’iperpiano affine A di equazione X, =1, cioé I’insieme dei punti
di A**! della forma (1, y,, ..., V), Vi» ---» ¥, € K. Le rette per ’origine non appar-
tenenti ad H, non sono parallele ad A, e quindi ognuna di esse ha in comune con
A uno e un solo punto. Si ottiene cosi una corrispondenza biunivoca

Jji A—=P"\H,
tale che

j(l, yl’ cees yn) = [13 yl’ e y)}]

X, X, X,
+-1 1 2 n
J ([xo, Xis sees X,t]) = (1, 70 N 70 3 seey 70)

L’applicazione j induce pertanto una corrispondenza biunivoca tra AU Hj e
P”. Si noti che gli elementi di H, sono le direzioni delle rette di A, essendo essi
i sottospazi vettoriali di dimensione 1 di K”*! contenuti nella giacitura di A, che
& appunto I’iperpiano vettoriale di equazione X, = 0. Anche in questo esempio
H, e A possono essere sostituiti da un qualsiasi iperpiano P(H) di P” e da un
iperpiano affine di A”*! avente giacitura H e non passante per I’origine.

Se nella costruzione precedente identifichiamo A con A”, utilizzando I’applica-
zione biunivoca che associa ad ogni (¥, ..., y,)€A” il punto (1, y,, ..., V) €A,
I’applicazione j viene a corrispondere all’applicazione biunivoca

Jo: A" P\H,
definita da

JoWs ey ) =L y1s s 2L
la cui inversa ¢

Jo 1iP™\H,— A"
definita da

a1 xl xn
Jo [ (Ixes X5 -ees X,1) = ?0 s eees 70 .

La j, & 'applicazione di passaggio a coordinate omogenee (la j; ', di passizg-
gio a coordinate non omogenee) rispetto a x,. 1 punti di H, sono chiamati punti
impropri (i punti di P"\H,, punti propri), e Hy ¢ detto iperpiano improprio,
rispetto a x,.

La definizione di queste applicazioni utilizza il fatto che le n + 1 coordinate
omogenee di un punto [x,, X, ..., X,]€P"\H,, pur non essendo univocamente
determinate, individuano univocamente gli 7 rapporti x,/x,, X3/Xg, «..; X,/ X,

Nel caso di P!(K) si denota talvolta il punto H, = [0, 1] con il simbolo « e
si identifica P'(K) con KU {oo} per mezzo dell’applicazione j: K—P!'(K)\ {oo};
cio ha il significato di assegnare la “‘coordinata non omogenea oo’ al punto [0, 1].
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Considerando, invece di H,, uno qualsiasi degli iperpiani H,, i=1, ..., n, e
procedendo come nel caso precedente, si ottiene ’applicazione biunivoca

Jis A" P"\H,
definita da

jl(yos ceos Vic1s yi+l9 b 4 n) = [y()s cery yi—ls la y{+1, ceey }’,,]

per ogni (Vg «--s Vi_ps Yia1s --+» Y €A". La j; & Papplicazione di passaggio a coor-
dinate omogenee (1a j;”', di passaggio a coordinate non omogenee) rispetto a x,.
I punti di H, sono detti punti impropri (i punti di P"\H,, punti propri), ¢ H, ¢
denominato iperpiano improprio, rispetto a x;.

Le costruzioni precedenti possono essere generalizzate in uno spazio proiet-
tivo qualunque. Consideriamo un K-spazio vettoriale V, dim(V) =n +1=2, e sia
H C Vuniperpiano. SianoP=P(V)e H=PH). Dati P=[u], P’ = [u’']€P\H,
definiamo un’applicazione lineare ¢,p.: V/H — H nel modo seguente (fig. 25.3).

Siav + He V/H. I sottospazi {(u) e {u’) di V non sono paralleliav + H, non
essendo contenuti in H, e pertanto ognuno di essi ha in comune con v+ H un
unico punto. Esistono dunque h, h’ ¢H tali che

v+ hedu)

v+h'elu’).
Poniamo

@pp (V+H)=h' - h.

Si osservi che h e h’ a priori dipendono non solo da {u), (u’) e dalla classe
laterale v + H, ma anche dal suo rappresentante v. E perd facile verificare che
h’ — h ¢ indipendente dal rappresentante: infatti, se v+ H = w + H per qualche

Figura 25.3
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weV,sihaw=v+k, keH, e
v+h=w+h-k, v+h'=w+h’ —k;
pertanto ¢pp (W + Hy=(h’ — k) — (W — k) =h’ — h. Quindi ¢,,.(v + H) dipende
soloda P, P’ ev+ H.
L’applicazione ¢pp. ¢ lineare. Siano infatti v, + H, v, + HeV/H, k,, k,cK. Se
v, +hedu), v, +hieu), ’
v,+h,e(u), v,+hjelu’),
allora
kv + kv, + (kb + kb)) =k (v, + h) + k,(v, + hy) €{u),
Koy + kv, + (e by + kghy) = ky (v, + () + Ky (v, + )€ u’y,
e quindi
@pp- (kv + kv, + H) = kb + kb — (KB, + khy) =
=k,(h; — b)) + k,(h; —hy)=
=k;@pp (V) + H) + k, 0pp. (v, + H).

Abbiamo il seguente teorema.

25.1 TeEorREMA Siano V, H, P e H come sopra.

1) Associando ad ogni (P, P')e(P\H)Xx (P\H) [I’applicazione lineare
epp- € Hom(V/H, ), si definisce su P\ H una struttura di spazio affine con spa-
zio vettoriale associato Hom (V/H, H). Per ogni sottospazio proiettivo S = P(W)
di P non contenuto in H, SN (P\ H) é un sottospazio affine di P\ H avente per
giacitura il sottospazio vettoriale Hom(V/H, W N H) di Hom(V/H, H).

2) Assegnato in V, un iperpiano affine A di giacitura H e non contenente 0,
si definisce su P\H una struttura di spazio affine con spazio vettoriale associato
H facendo corrispondere ad ogni (P, P'Ye P\H) X (P\H),con P=[u], P’ =[u’],
il vettore a’ —acH, dovea=AN{u),a" =AN{u’).

Dimostrazione

1) Siano P =[u}€P\H, ¢ pcHom(V/H, H). Consideriamo un vettore
veéV\H, e sia heH tale che v + h€ (u); poniamo P’ =[v+ h+ ¢(v+ H)].

E immediato verificare che ¢pp = ¢.

Poiché dim(V/H) =1, ogni vettore di V/H ¢ della forma av+ H, a€K, ¢
av + ahe{u). Di conseguenza

[av+ah+ plav+H)]=[av+ah +ap(v+H)] =
=la(v+h+ v+ H))] =P,

cioé¢ P’ dipende solo da P e da ¢, e pertanto I’assioma SA1 & soddisfatto.



302 Geometria proiettiva

Per verificare ’assioma SA2 consideriamo tre punti P={u}], P’ =[u’],
P” =[u"]¢P\H. Sia v+ HeV/H, e siano

v+hedu), v+hedw), v+h"e{u”).
Allora
pp(V+H)=h"—h, ¢pp(v+H)=h"-h", ¢,.(v+H)=h"-h
e quindi
[epp + @ppd](V+H) = @pp. (V+H) + 0pp-(v+ H)y=h"—h+h”-h" =
=h"—h = ¢pp- (v + H).

Dunque @pp + @p-pr = @pp- € ’assioma SA2 ¢ soddisfatto.

Se P=[u], P’ =[u'}eSN(P\H), allora ¢p.(v+H)eWNH per ogni
v + He V/H. Infatti, essendo {u) ed <{u’) contenuti in W, se v+ hecu) e
v+h'edu’y allora ¢pp.(v+H)=h"-h=(v+h')—(v+h)eW. Quindi
©pp € Hom(V/H, W N H). Viceversa, se PESN(P\H) e P’ e¢P\H soddisfa
¢pp € Hom (V/H, W N H), allora, per ogni v+ H, ¢pp (v + H)¢ WNH e quindi
v+hedu), v+h' e{u’) con h'—heWNH. Poiché u) CW, si hav+heW
€ pertanto

v+h =(@+h)+((h —h)eW.

Dunque anche P’€ SN (P\H), e la (1) & dimostrata.

2) Poiché P e P’ non appartengono ad H, (u) e {u’) non sono paralleli ad
A, equindia=AN{u) ea’=AN<Ku’) sono ben definiti. Inoltre a’ —acH,
perché la giacitura di A & H. La verifica degli assiomi SA1 ed SA2 ¢& lasciata al
lettore.

Si osservi che dim(H) = n e che, essendo dim(V/H) =1, si ha

dim[Hom(V/H, H)] = dim(V/H) dim(H) = dim (H) = n.

P\ H ¢ dunque uno spazio affine di dimensione 7 sia nel caso (1) che nel caso
(2). La struttura di spazio affine definita in 25.1(2) dipende da A, oltre che da
H, mentre la struttura definita in 25.1(1) dipende solo da H.

Nel caso (2), associando ad ogni a€ A il punto [a] € P\H, si ottiene una corri-
spondenza biunivoca j: A = P\H, che abbiamo gia considerato in precedenza nel
caso di P" e di H = H,, in cui A era 'iperpiano di equazione X, =1. L’applica-
zione j & un isomorfismo di spazi affini sy_{l, con isomorfismo associato I’iden-
tita 1,, perché per ogni P, P'€A si ha PP’ = j(P)j(P').

Come applicazione de} teorema 25.1 daremo una dimostrazione dell’analogo
proiettivo del teorema di Pappo in cui si utilizza la sua versione affine (cfr. teo-
rema 9.4).
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25.2 TeOREMA (DI PAPPo-PascaL)  Siano P = P(V) un piano proiettivo, ¢
ed ¢’ due rette distinte di P, e P, Q, R, P', Q', R’ sei punti distinti tali che
P, O, Rez\(eNz'),P,Q',R'ez’\(z N&'). Allora i tre punti

L(P,Q)NLP’', Q), L(Q, RYNLQ',R), L, RINLP’, R

sono allineati. La retta che li contiene é detta retta di Pascal della configurazione
(fig. 25.4).

Dimostrazione

Sia 4 laretta che contiene L(P, Q')NL(P’', Q) e L(Q, R')NL(Q’, R). Per
il teorema 25.1, P\.z ¢ un piano affine,e £/=2NEP\L), £ =2 NP\1)
sono duerette di P\.2. Siha P, Q, Re£, P',Q',P' € £, PQ"IP"Q, PRI P'R.
Per il teorema 9.4 si ha anche PR’ | PR, e pertanto L(P, R’)NL(P’, R)e 4.

Si consideri uno spazio affine A sul K-spazio vettoriale V. Siano P, P, €A,
e Ay A €K tali che A, + A, =1. Resta definito un punto di A, che denoteremo
con A, P, + A, P;, mediante una delle due condizioni equivalenti:

P — s —
Py(AgPy + M P)) = A Py P, [25.1]
_—s —
P, (Mg Py + A Py) = AP, P,

L’equivalenza delle due condizioni [25.1] segue subito dail’identita vettoriale

APy P, — AP, Py= PP,

Si noti che, se Py=P,, allora 4, P, + A, P, = P, = P,. Se invece P, # P,, allora
%P, + A, P, appartiene alla retta P, P,; viceversa, se P¢ P, P,, allora P,P = A P, P,
per qualche A €K, e quindi P = (1 — 1) P, + A P,. Dunque ogni punto della retta
P,P, ¢ della forma A,P, + A, P, al variare di A, A, €K tali che &, + &, =1, i quali
sono univocamente determinati dal punto.

L’osservazione precedente pud essere utilizzata per definire un K-spazio vetto-
riale V ponendo

V=VU(K*xA)

Retta di Pascal

Figura 25.4
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e definendo le operazioni in V nel modo seguente:

h k
(iz+k, P+ Q) se h+k#0
h, PY+(k, Q)= h+k h+k
—>
hQP se h+k=0
hk, Py=(hk, P) se h#0
Ok, P)=0¢V

(h, P)+v=(h, Q) con ;3_Q>=h“v;

le operazioni in V sono quelle che vi sono gia definite. Lasciamo al lettore il com-
pito di verificare che V & un K-spazio vettoriale. V ¢ chiamato spazio vettoriale
universale di A.

25.3 Lemma Sia {e,, ..., e,} una base di V e sia O€A. Per ogni heK*,
{(h, O),e,, ..., e,} &una base di V; in particolare dim(V) = dim(V) + 1.

Dimostrazione
Supponendo che

ath, O)+a,e, + ... +a,e,=0,
si ha

ath, O)=—(aq,e, + ... +a,e)eV
e pertanto = 0. Di qui

a.e + ... +ae, =0,

e anche g, =a,= ... =a,=0 per Pindipendenza lineare di e, ..., €, Quindi
(h, O), e, ..., e, sono linearmente indipendenti.

Per dimostrare che (&, O), e,, ..., e, generano V si consideri un elemento qual-
siasi (k, P)eK* X A. Si ha

(k, P)=kh '(h, O)+aje, + ... +a,e,,
dove a,, a,, ..., a,€K sono definiti dalla condizione
OP =k '(ae, + ... +ae,).
Poiché anche V = (e, ..., &,) C{(h, O), e, ..., e,), si ha
((h, O), e, ..., 8> =V.
V & un sottospazio vettoriale di V. L’iperpiano affine V, = {1} x A di V ha
giacitura V, perché ¢ della forma

V,={(1, O)+v: veV},



25/Geometria affine e geometria proiettiva 305

e si identifica in modo ovvio con A. Consideriamo lo spazio proiettivo P(V) e
il suo iperpiano P (V). Dal teorema 25.1(2) segue che P (V)\P(V) & uno spazio affine
su V e che si ha un isomorfismo

J: V= P(V\P(V).
Identificando V, con A otteniamo una corrispondenza biunivoca
AUPV)->PV). [25.2]

Dalla costruzione fatta segue che la biezione [25.2] & univocamente determi-
nata da A. Cio giustifica il considerare P (V) uguale ad A U P(V) per mezzo della
[25.2]. Quindi A U P(V).€ uno spazio proiettivo, di cui P(V) ¢ un iperpiano.

Nel caso in cui A ¢ la retta ordinaria e V & lo spazio dei suoi vettori geometrici,
P(V) & un punto ¢ A U P(V) ¢ una retta proiettiva reale che si chiama retta ordi-
naria ampliata. Similmente, se A ¢ il piano ordinario (Io spazio ordinario) e V
¢ lo spazio dei suoi vettori geometrici, A U P (V) & un piano proiettivo reale (uno
spazio proiettivo reale di dimensione 3) che si chiama piano ordinario ampliato
(spazio ordinario ampliato).

25.4 Esempi e osservazioni

1. Un modello geometrico di P'(C) pud essere ottenuto per mezzo di un’ap-
plicazione chiamata ‘‘proiezione stereografica”’.

Consideriamo in E3, con coordinate x, y, z, il piano // di equazione Z=0¢e
la sfera S di centro I’origine e raggio 1, e denotiamo con N il punto (0, 0, 1)€S2.

Per ogni P(x’, y’, z’)€S*\ {N} denotiamo con ¢(P) il punto di // allineato
con N e con P. Si ottiene cosi una corrispondenza biunivoca

o: S\ [N} =/,

chiamata proiezione stereografica di S? su L/ (fig. 25.5).
Poiché la retta NP ha equazioni parametriche

x=x't, y=y't, z=@@ -1t+1,

o{P)

\/ Figura 25.5
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si ha

_ x’ ’
G(xlyyls Z’)=//0NP=(1_Z, 3 1)—;z' ,0).

o ¢ un’applicazione biunivoca perché possiede I’inversa:
2u 2v ur+ 0% -1 )
w40+l W+ or+1l ] wrtvr+1)

o ' u, v, 0)= (

L’applicazione ¢ consente di rappresentare la sfera S2 come il piano e cui
¢ stato aggiunto il punto N, il quale pud interpretarsi come ‘‘punto all’infinﬁg;’
di /4, perché all’allontanarsi di Q¢€/ dall’origine 0, ciog al tendere di 10QI
all’infinito, o~!(Q) si avvicina a N.

Se identifichiamo /¢ con C, facendo corrispondere al punto (#, v, 0) il numero
complesso z = u + iv, otteniamo un’applicazione biunivoca

o: S?=»P({C)=CU {x}
incui g(N)=o0 ¢
x’ .y x +iy’
o(x',y', z)= +1 =
1-z’ 1-z’ 1-z’

La sfera fornisce in questo modo un modello geometrico di P'(C), chiamato

sfera di Riemann.

se 7/ #1.

2. Un’ulteriore descrizione geometrica degli spazi P” = P"(R) pud essere data
nel modo seguente.

Identifichiamo P*(R) con I’insieme i cui elementi sono le rette per I’origine di
E"*! e consideriamo la sfera §" C E**', di centro P’origine e raggio 1. Definiamo
un’applicazione

k: S"—>Pp”
ponendo
k(x) =retta per Porigine che contiene x.

Poiché ogni retta z passante per ’origine incontra S” in due punti simmetrici
rispetto ad essa (cioé antipodali o diametralmente opposti) {x, — x}, I’applica-
zione k & suriettiva, e tale che kK '(2) consiste di due punti per ogni z eP”.
k fa dunque corrispondere biunivocamente P”(R) all’insieme i cui elementi sono
le coppie di punti antipodali {x, — x} di S” in altri termini, possiamo rappre-
sentarci P"(R) come I’insieme quoziente S”/=, dove X=y se e solo se y= — x.

Un altro modello di P”(R) si ottiene considerando il semispazio X di E**!
definito dalla condizione x, =0, e la restrizione di k alla ‘‘semisfera”
X' =8"NZ. Sia M=X'NH, dove H & iperpiano di equazione X, =0.

Le rette z di E"*! passanti per I’origine che non sono contenute nell’iper-
piano H, cio¢ tali che & ¢ H,, incontrano X’ in un solo punto; se invece %€ H,,
allora zN X’ & una coppia di punti antipodali appartenenti a M.
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L’applicazione & induce pertanto una biezione di X'\ M su P"\ H; inoltre £
induce una applicazione di M su H, in cui due punti hanno la stessa immagine
se e solo se sono diametralmente opposti.

P"(R) puo essere dunque rappresentato come I’insieme che si ottiene da X'’
facendo coincidere tra loro punti diametralmente opposti di M.

Nel caso n =1, X’ & una semicirconferenza, e P’ si ottiene da essa “‘incollan-
done’’ gli estremi (fig. 25.6). '

La figura 25.7 si riferisce al caso n=2.

Nel caso n = 3 ’applicazione k induce una biezione di P3*(R) su SO(3). Per
dimostrarlo utilizzeremo 1’applicazione p: 8% x [0, 7] — SO(3) descritta nella pro-
posizione 21.6. Denotiamo con k’: £’ —P? la restrizione di &, e definiamo
un’applicazione

h: £'—>80(3)
ponendo

p&/Ixl, wlxll) sex=0
k(t’ Xps X2 x3) =
) I sex=0
dove x = '(x; X, Xx;). Si noti che 4 & ben definita perché 0 < Ixll <1. La restri-
zione di # a £’ \M ¢& biunivoca, perché Ixll <1 se (¢,x,, x,, ;) €X'\ M.
Dalle proprieta di p segue che su M si ha

h(o, X], xzs x3) = h(09 .yla y2v J’3)

se e solo se (¥,, ¥5, ¥3) = (— X;, —X,, — X;). Confrontando con Papplicazione k’,
vediamo che 4 induce una biezione P3(R)— SO(3).

3. Un altro modo di descrivere P!(R) si ottiene considerando la circonferenza
C C E? di raggio 1 e centro nel punto (1, 0) (fig. 25.8).

Le rette per Porigine diverse dali’asse X, =0 (cio¢ quelle che rappresentano
i punti di P'(R)\ {H,}) incontrano C in due punti, di cui uno ¢ (0, 0) e l'altro
¢ variabile; invece la retta X, = 0 incontra C solo in (0, 0). Facendo corrispon-
dere alla retta # variabile la sua intersezione vy (z) con C, diversa da (0, 0), si
definisce una corrispondenza biunivoca

v: PIRN{H} » C\ {(0, 0)}.

Ponendo vy (H,) = (0, 0), - si estende a una corrispondenza biunivoca y: P!(R) — C.
In questo modo si ottiene una circonferenza come modello geometrico di P!(R).

4. Denotiamo con y,, ..., ¥, le coordinate di un punto variabile in A” = A"(K),
€ con X,, X, ..., X, le coordinate omogenee di un punto variabile in P”.
Si consideri un iperpiano H di A”, di equazione

aY +..+a,Y,+a,=0. [25.6]
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Figura 25.6

k(Q) =k(Q’)

Figura 25.7

L’applicazione j,;: A —P"\ H, trasforma i punti di A nei punti propri dell’i-
perpiano H di P” di equazione
Xy +a, X, + ... +a,X,=0. [25.7]
Infatti, se (y,, ..., y,) soddisfa la [25.6], allora [1, y,, ..., y,] soddisfa la [25.7].
Viceversa, se [xy, X;, ..., X,] € H & un punto proprio, allora X #Z 0, [xg, Xp5 coer X] =
= o1/ Xgs <5 X/ X0)s € (Xy/Xg, ..., X,/X,) soddisfa la {25.6].

H & la chiusura proiettiva (o proiettificazione) di H.
Pil1 in generale, si consideri un sottospazio affine S di A”, definito dal sistema

di equazioni lineari

a, i+ ... +a,Y,+¢,=0

a, Y+ ...+a,Y, +¢,=0.
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iz}

Figura 25.8

L’applicazione j, trasforma i punti di S nei punti propri del sottospazio S di
P” di equazioni cartesiane

a“Xl + ... +(11"X,,+C|X0=0

o, X+ ... +a,X, +c,X,=0.

La verifica & simile al caso dell’iperpiano.

11 sottospazio S si dice chiusura proiettiva (o proiettificazione) di S.

Consideriamo alcuni casi particolari. Il caso n =1 non & molto significativo,
perché un sottospazio affine S A' & ridotto a un punto, e S =j,(S). Quindi
’unico punto improprio di P! non & punto improprio di alcun sottospazio affine
S#=A.

Passiamo al caso n=2. Sia # una retta di A2, di equazione

AX+BY+C=0. [25.8]

Jo trasforma i punti di z nei punti propri di P? appartenenti alla retta z di
equazione

AX, + BX, + CX,=0. [25.9]

La retta {25.9] ¢ la chiusura proiettiva di #; essa consiste dei punti di j,(2) e del
punto [0, — B, A], il suo punto improprio, che ¢ la sua intersezione con la retta
impropria H,. Si osservi che (— B, A) ¢ un vettore di direzione di %.

Ogni retta di P? diversa dalla retta impropria, e quindi definita da un’equa-
zione della forma [25.9] con (4, B) # (0, 0), & la chiusura proiettiva di una retta
di A2, precisamente della retta z di equazione [25.8].

Mediante la corrispondenza j, le rette di P? passanti per un punto proprio
Jo(Q) sono le chiusure proiettive delle rette di A? del fascio proprio di centro Q.
Invece le rette passanti per un punto improprio [0, /, m] sono tutte, meno una,
le chiusure proiettive delle rette di A2 del fascio improprio di direzione {(/, m)).
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Fa eccezione la retta impropria, I’unica retta di P?-che non ¢ la chiusura proiet-
tiva di alcuna retta di A%
Consideriamo ora il caso n = 3. Se // ¢ un piano di A* di equazione

AX+BY+CZ+D=0, [25.10]
I’equazione
AX,+BX,+ CX,+ DX;=0 [25.11]

definisce la chiusura proiettiva /: di £ in P _
I punti impropri di 4 sono i punti della retta H,N /4, ovvero i punti
[0, I, m, n] tali che /, m, n siano soluzioni non banali dell’equazione

AX, + BX, + CX, =0,

cioé tali che (/, m, n) sia un vettore non nullo della giacitura di /4. In particolare
’insieme dei punti impropri di £ coincide con la retta P(W), dove W ¢ la giaci-
tura di /.

Se una retta # di A® ha equazioni cartesiane

AX+BY+CZ+D=0,

[25.12]
A, X+B,Y+C,Z+D, =0,
la chiusura proiettiva di #z ¢ la retta z di P*® di equazioni cartesiane
AX,+ BX,+ CX, + DX, =0,
[25.13]

A, X, + B X, + C, X, + D, X, =0.

Essa consiste dei punti di j,(2) e del suo punto improprio, che ¢ [0, /, m, n],
dove (I, m, n) & un vettore di direzione di z: infatti [0, /, m, n} & il punto impro-
prio comune ai piani [25.13].

Ogni piano di P? diverso da H, ¢ la chiusura proiettiva di un piano /£ di A%,
Se una sua equazione ¢ la [25.11], /4 ¢ il piano di equazione [25.10].

Nello stesso modo si vede che ogni retta di P* non contenuta in H, & la chiu-
sura proiettiva di una retta z di A3. I piani contenenti la retta data sono tutti
e soli i proiettificati dei piani di A* del fascio di asse z.

Invece i piani che contengono una retta di P? contenuta in H, sono tutti, ad
ed eccezione di H,, proiettificati dei piani // di A’ appartenenti al fascio impro-
prio di giacitura corrispondente alla retta impropria data.

5. Sia A uno spazio affine sul K-spazio vettoriale V. Dati punti P,, P, ...
...y P €A escalari Ay, Ay, ..., A €K tali che A, + A, + ... + A, =1, resta univoca-
mente determinato un punto, che denotiamo con A, Py + A, P, + ... + L, P, dalla
seguente condizione:

PGPyt NPyt oo + WP = M PP, +3,PyPy + ... +MPoP,.  [25.14]
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E immediato verificare che la [25.14] ¢ equivalente ad ognuna delle seguenti
condizioni:

> — —_— —_—
PPyt NP+ oo + P = MPPy + oo + M PP+ M PP + ..
e+ MPP, j=1,.., k.

Per definizione il punto A Py + AP, + ... + A, P, appartiene al sottospa-
zio affine PyP,... P, viceversa, ogni punto PeP,P,... P, ¢ della forma
P=2P;+ AP + ... + AP, per opportuni Ay, A, ... A, €K tali che A, + A, + ...
e A =1

—_— —— —

Se Py, P,, ..., P, sono punti indipendenti, i vettori PyP,, PyP,, ..., P,P, sono
linearmente indipendenti e pertanto Ay, Ay, ..., A, sono univocamente determi-
nati dal punto AP, + A P, + ... + A P,. Se, in particolare, k =n = dim(A), e
P, P, ..., P,€A sono indipendenti, ogni punto P€A individua univocamente
n+1 scalari Ag, A, ..., A, tali che A, + A, + ... + A, =1 e tali che

P=)\.0P0+)»1P1+ coe +}\.”P”.

Gli scalari Ay, Ay, ..., A, si dicono coordinate bariceniriche di P rispetto a
P, P, ..., P,. Sinoti che Ay, ..., A, sono le coordinate di P nel riferimento affine
Pye, ... e, dove ;= PP, e hy=1 -4, — ... — &,.

Se Py, P,, ..., P, sono punti indipendenti, il punto

B=(k+1)'Py+k+1)'P+ ..+ &k+1)'P,

¢ detto baricentro di P,, Py, ..., P,. Se K=R il baricentro di due punti distinti
P, Q ¢ il punto medio del segmento PQ.
Se K=R i punti della forma A Py + AP, + ... + M Py, con Ag+ ... + A, =1
€ Ay, Aps -ers A =0, sono i punti del k-simplesso individuato da P,, P, ..., P,.
Le coordinate baricentriche furono introdotte per la prima volta nel 1827 da
A.F. Moebius.

6. Le coordinate omogenee risultano utili anche in geometria euclidea, perché
spesso permettono di esprimere in modo pitl semplice relazioni e grandezze metri-
che. Si considerino ad esempio una retta z di E* e due punti distinti (x, y, 2)
(x’,y’,2')di %. La chiusura proiettiva di z (rispetto a jy) ha coordinate pliic-
keriane:

Pu=X —X, Dp=Y -y, Pu=2 —2

Po=xy' —x'y, py=x2"—-x'z, Puy=yz'-y'z
Denotiamole rispettivamente con

I, m, n,

L, M, N,
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e chiamiamole coordinate pliickeriane di %. Dalla definizione segue che (/, m, n)
¢ un vettore di direzione di %, mentre (L, — M, N)=(x, y, A", ¥’, z2').

Sia z’ un’altra retta di E® avente coordinate pliickeriane /", m’, n’, L', M",
N’, e supponiamo che z’ non sia parallela a #. Si ha

IL" + LI’ —(mM’' + Mm')+nN’ + Nn’

l

In particolare le rette # ed %’ sono incidenti se e solo se

d, t')=

2 2

+

2

I n m n

II nl

l m

" m’ m’' n’

IL" + LI" —(mM’ + Mm’)+nN’ + Nn' = 0.
La verifica di questi fatti ¢ lasciata al lettore.
Esercizi

1. Determinare il punto improprio (rispetto a xy) di ciascuna delle seguenti rette di
A*(C):

a) 3X+Y+1=0 b) X-2Y-1=0
Q) 2iX+3Y+9=0 d) X+1=0
&) Y+6=0 f) X—2Y=0.

2. Determinare equazioni in coordinate omogenee di ciascuna delle rette considerate nel-
’esercizio precedente.

3. Detezrminare equazioni in coordinate non omogenee di ciascuna delle seguenti rette
dl:;.?Xo—4X.+X2=O b) 2X, - X2 +iX,=0
c) iX, +2iX,— X, =0 d) -DX+2X;,=0.
4. Determinare coordinate omogenee del punto comune alle chiusure proiettive di cia-
scuna delle seguenti coppie di rette di A*(C):
a) 3X+iY+1=0, X-Y=0
b) —iX+({i+1)Y-1=0, 2-2X=0 c) X-3Y=i, X-3Y+4=0.

5. Determinare un’equazione cartesiana del piano di P*(R) passante per il punto
[1, 1, 0, 1] e per i punti impropri delle rette z ed 4 di A*(R) di equazioni:

2:X+Y+Z-1=2X-Y-Z=0, 1:2X-Y-2Z+1=Y+Z-1=0.
6. Sia A uno spazio affine su V avente dimensione n, e siano Py, P, ..., P,€ A punti
indipendenti. Dimostrare che )
a) {{1, Py, (1, P), ..., (1, P,)} & una base dello spazio universale V;
b) se Pe A ha coordinate baricentriche Ao, A4, ..., A, rispetto a P, P, ..., P,

allora Aq, Ayy ey Ay sono le coordinate di (1, P) rispetto alla base {(I, P),
(l, Pl)9 oy (1$ Pn)} di V-
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26 Dualita

Sia V un K-spazio vettoriale di dimensione finita. Lo spazio proiettivo
P =P(V"), dove V' = Hom(V, K) ¢ lo spazio vettoriale duale di V, si dice spazio
proiettivo duale di P =P (V).

P e P” hanno la stessa dimensione perché dim (V) = dim (V™).

Per definizione, due funzionali F, F’: V— K, entrambi non nulli, definiscono
lo stesso elemento di P”, in simboli [F] = [F’], se e solo se F’ = AF per qualche
A # 0. Poiché in tal caso si ha N(F) = N(F’), I'iperpiano N(¥F) di V dipende solo
dal punto [F]€P~. Quindi si definisce un’applicazione, detta di dualita,

6: P” — {iperpiani di P}

ponendo 6([F]) = P(N(F)).

§ ¢ injettiva, perché due funzionali non nulli che hanno lo stesso nucleo sono
proporzionali e quindi definiscono lo stesso punto di P”. Poiché ogni iperpiano
di V ¢ il nucleo di un funzionale lineare, & & anche suriettiva, e quindi ¢ un’appli-
cazione biunivoca. Essendo univocamente definita da P, é identifica in modo intrin-
seco, cioé dipendente solo da P, ’insieme {iperpiani di P} con lo spazio proiet-
tivo P”. In particolare é permette di considerare {iperpiani di P} come uno spazio
proiettivo.

Diremo che un numero finito di iperpiani H,, H,, ..., H, di P sono linearmente
indipendenti o viceversa linearmente dipendenti a seconda che i punti §~'(H)),
6~ (H,), ..., 8 (H) di P” siano linearmente indipendenti o linearmente
dipendenti.

Supponiamo fissata una base {e,, ..., ,} in V, e sia {7, ..., 1,} la basedi V~
duale di {e,, ..., ¢,}, definita, lo ricordiamo, dalle condizioni %,(¢;) = §;;, 0 <,
Jj < n. Il riferimento proiettivo 1, ... 3, di P~ si dice riferimento proiettivo duale
del riferimento e, ... e, di P. I due sistemi di coordinate omogenee sono duali
’uno dell’altro.

Sia H CP un iperpiano di equazione

a,Xo+a X, + ... +a,X,=0.
Allora H=P(N(F)), dove FeV ¢ il funzionale
F(x,e,+xe,+ ... +Xx,8)=ayXx,+ax + ... +a,x,

e quindi H = 6([F1). Gli scalari a,, a,, ..., a, sono coordinate omogenee di [F]

rispetto al riferimento proiettivo 1, ... 5, di P” e vengono anche chiamati coor-

dinate omogenee dell’iperpiano H. Denoteremo H anche con Hla,, ..., a,].
Gl iperpiani coordinati del riferimento e, ... e, sono le immagini tramite é



314 Geometria proiettiva

dei punti fondamentali del riferimento duale 7, ... 7,. Si ha cio¢

HO =H0{l, o,.., O] = 6(["70])9

H,=H,0, ..., 0, 11=06(n,]).

Sia S un sottospazio di P di dimensione k¥ < n — 1. L’insieme A,(S) i cui ele-
menti sono gli iperpiani di P che contengono S si dice il sistema lineare di iper-
piani di centro S. Se k=n—2, A,(S) ¢ un fascio di iperpiani.

Ad esempio se P & un piano e P€P & un suo punto, ’insieme delle rette che
passano per P & un fascio di rette; se dim(P)=3 ed £ ¢ una retta, A;(2) é un
fascio di piani. Queste nozioni sono simili a quelle di fascio di rette e fascio di
piani studiate nel capitolo 1.

Se dim (P) = 3 ¢ P€P ¢ un suo punto, A,(P) é anche chiamato stella di piani.

26.1 ProrPosIzZIONE Supponiamo che il sottospazio S di P abbia dimensione
k, ed equazioni cartesiane

a,X, +a,X, +..+a,X, =0
azoXo + CIZIX, + ...+ aan,, = 0

[26.1]
a, 0 Xo+ a,,i aXit e ta, X, = 6,
che scriveremo in breve
Fi (X, ....X,) =0
F, (X, ..., X,) =0
F,,_k(XO; v X = 0
Allora il sistema lineare A,(S) consiste degli iperpiani di equazione

MF (X s X))+ MF(Xgs oo X)) + el

cee + A F (X s X)) =0, [26.2]

dove A, Ay, ...s M,_, €K sono scalari non tutti uguali a 0.

Dimostrazione
Ogni iperpiano della forma [26.2] appartiene a A, (S), cio¢ contiene S, perché
le coordinate di ogni punto di S annullano i polinomi F,, F,, ..., F,_, ¢ quindi
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annullano il primo membro della [26.2]. Viceversa, sia H un iperpiano contenente
S, di equazione:

a5 Xo+ @, X, + ... +a,X,=0. [26.3]

Il sistema [26.1] e quello costituito dalle equazioni [26.1] e dalla [26.3] sono
equivalenti. Quindi la [26.3] ¢ combinazione lineare delle equazioni [26.1], cioé
¢ della forma [26.2], come si voleva.

Denotiamo con H,, H,, ..., H,_, gli n — k iperpiani definiti dalle equazioni del
sistema [26.1]. Osserviamo che ogni iperpiano A definito dalla [26.2] ha coordinate
omogenee che sono combinazioni lineari di quelle di H,, H,, ..., H,_,. Cio
significa che 6~ ' (H) appartiene al sottospazio L (6 '(H)), 8 "'(H,), ..., 6 '(H,_}))
di P”. Pertanto la proposizione 26.1 afferma che

MM =L (HY, §7 ' (H), ..., 7 (H,_).

Poiché 6~ '(H), 6~'(H,), ..., 6 '(H,_,) sono linearmente indipendenti, si
deduce, in particolare, che 8 ~![A,(S)] ¢ un sottospazio proiettivo di P~ di dimen-
sione n — k — 1. Si ottiene cosi una corrispondenza tra sottospazi di dimensione
k di P e sottospazi di dimensione n — k — 1 di P”. Questa corrispondenza & biuni-
voca perché un sistema lineare ¢ individuato dal suo centro. Inoltre, se SC S’,
tra i sistemi lineari corrispondenti si ha I’inclusione opposta A, (S") C A,(S).

Abbiamo pertanto il seguente teorema:

26.2 TeoreMA Sia dim(P) = n. L’applicazione é: P~ — {iperpiani di P} defi-
nita pin sopra € una biezione che fa corrispondere ad ogni sottospazio proiettivo
di dimensione n — k —1 di P~ un sistema lineare di iperpiani di P di centro un
sottospazio proiettivo di dimensione k. Si ottiene in questo modo una corrispon-
denza biunivoca tra sottospazi di P~ e sottospazi di P che rovescia le inclusioni.

Se k = dim(S), allora n — k — 1 ¢ la dimensione del sistema lineare A,(S). Ad
esempio, i fasci di iperpiani di P hanno centro di dimensione n — 2, e pertanto
hanno dimensione n — (n — 2} —1=1, cioé corrispondono alle rette di P".

Se P¢P, allora A,(P) ha dimensione n — 1, cioé corrisponde a un iperpiano
di P”. Otteniamo cosi una corrispondenza biunivoca:

6": P— {iperpiani di P"} [26.4] .
P e A P)

(per ulteriori informazioni sull’applicazione 8°, cfr. 26.5).
Si ha dim[A, (S)] = n se e solo se A;(S) =P, e cid avviene se e solo se S = 0.
Diremo P” = A,(Q) il sistema lineare improprio.
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26.3 Esempi

1. Sia P un piano e sia PeP. Ogni retta del fascio A;(P) si pud esprimere
come combinazione lineare di due rette distinte #, 4 passanti per P. Se z ed
4 sono assegnate mediante equazioni cartesiane:

aQXo+a, X, +a,X,=0, per &,
b, Xo+ b X, +b,X,=0, per 4,
ogni altra retta di A,(P) ha equazione
AMag X+ a0, X, + a0, X)) + p(by X + b X, + ,X,) =0

con (A, p) # (0, 0).
Se z ¢ una retta di P, il sistema lineare A, (%) ha dimensione 0, ed z ¢ il suo
unico elemento.

2. Supponiamo che dim(P) = 3. Se P¢P, il sistema lineare A, (P), la stella di
centro P, ha dimensione 2. Se invece z C P & una retta, A, (%) € un fascio di piani
e quindi ha dimensione 1. Infine, se £ CP ¢ un piano, A,( ) ha dimensione 0,
e consiste del solo piano Y2

In particolare, a punti, rette e piani di P corrispondono rispettivamente piani,
rette ¢ punti di P”.

Siano Plx,, ..., x,]€P e H]a,, ..., a,] un iperpiano di P. La condizione che
PeH, cioé che P e H siano incidenti, & equivalente alla seguente identita:

apXo + a1 %, + ... +a,x,=0. [26.5]

Fissati a,, @y, ..., a,, la [26.5] é una condizione sulle coordinate di punto,
soddisfatta da tutti e soli i punti P[x,, ..., x,] € H. D’altra parte, se teniamo fissi
Xgs Xp5 -+ X, 12 [26.5] si puo considerare come una condizione sulle coordinate
di iperpiano, che ¢ soddisfatta da tutti e soli gli iperpiani H€ A, (P).

Supponiamo assegnata una configurazione di punti e di iperpiani di P, in modo
che certe relazioni di incidenza tra di essi siano soddisfatte. Tali relazioni si espri-
mono come identita della forma [26.5] nelle coordinate dei punti e degli iperpiani
della configurazione stessa. Se le coordinate di ogni punto della configurazione
si interpretano come coordinate di iperpiano, e quelle di ogni iperpiano della stessa
come coordinate di punto, si ottiene una nuova configurazione di punti e di iper-
piani che viene chiamata configurazione duale della precedente. I suoi punti e i
suoi iperpiani si diranno duali dei corrispondenti iperpiani e punti della configu-
razione di partenza. Poiché la [26.5] & simmetrica nelle coordinate di punto e di
iperpiano, tutte le incidenze che sono soddisfatte dai punti e dagli iperpiani della
configurazione data sono anche verificate dai corrispondenti elementi della con-
figurazione duale. Possiamo utilizzare questa osservazione per ottenere da ogni



26/Dualita 317

proposizione vera che riguarda configurazioni di punti, iperpiani e loro incidenze
una nuova proposizione, ancora vera, riguardante le configurazioni duali di iper-
piani, punti ¢ loro incidenze, come espresso dal seguente principio di dualitd:

Ad ogni proposizione vera riguardante punti e iperpiani di P e loro incidenze
corrisponde una proposizione ancora vera riguardante iperpiani e punti di P e loro
incidenze, che si ottiene dalla precedente scambiando tra loro le parole ‘‘punto’’
e “‘iperpiano’”. Le due proposizioni si dicono duali 'una dell’altra.

Una coppia di proposizioni duali ¢ la seguente:

n punti indipendenti generano un n iperpiani indipendenti hanno
iperpiano in comune un punto.

Per riconoscere che le due proposizioni sono duali, le possiamo cosi riformu-
lare: la prima afferma che esiste un unico iperpiano incidente n punti indipen-
denti, mentre la seconda afferma che esiste un unico punto incidente # iperpiani
indipendenti. Secondo il principio di dualita, dal fatto che la prima proposizione
¢ vera discende che lo ¢ anche la seconda. Ovviamente in questo caso noi gia sap-
piamo che entrambe le proposizioni sono vere senza dover ricorrere al principio
di dualita; ma cid non sempre avviene, e il principio fornisce in generale un modo
di dedurre nuove proposizioni geometriche.

Similmente possiamo riconoscere che le due seguenti proposizioni sono duali:

Due punti distinti generano una Due iperpiani distinti hanno per
retta. intersezione un sottospazio di
codimensione 2.

La prima proposizione afferma che esistono n — 2 iperpiani indipendenti inci-
denti due punti distinti (e la cui intersezione ¢& la retta da essi generata), mentre
la seconda afferma che esistono # — 2 punti indipendenti che sono incidenti due
iperpiani distinti.

Una proposizione si dice autoduale se coincide con la sua duale.

Dimostreremo un teorema classico riguardante le configurazioni di rette e di
punti in un piano proiettivo, il teorema di Desargues, la cui versione affine & stata
dimostrata nel paragrafo 9.

26.4 TEOREMA (DI DESARGUES-VERSIONE PROIETTIVA)  Sia P = P (V) un piano
proiettivo e siano P,, ..., Ps€P punti distinti tali che le tre rette L(P,, P,), L(P,,
PJ), L(P;, Py) abbiano in comune un punto P,, diverso da P, ..., P,.

In tali ipotesi i punti

L(P,, PYNL(P,, P), L(P,, PYNL(P;, P), L(P, PY)NL(P, Py

sono allineati (fig. 26.1).
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\
\
A\
\
P\

Py

Ps

Figura 26.1

Dimostrazione
Siano v,, vy, ..., Vg€V tali che P,=[v], i=1, ..., 6. Per ipotesi esistono sca-
lari &, ..., ag€K tali che

Vo=V, + 0V, = ,V, + 0 Vs = 03 V5 + O V.

Poiché P, ¢ diverso da Py, ..., P, gli «, ..., o, sono tutti diversi da zero. I
tre punti L(P,, P,)N L(P,, Py, L(P,, P,)N(Ps, P), L(P,, P,y N L(P,, P,) sono
rispettivamente associati ai vettori

OV — Q3V; = — 0V, + 0V
— 0V, + OV = Qs Vs — OV
— oV, + 0,V =0V, — O Vs

Questi tre vettori sono linearmente dipendenti perché la loro somma ¢ 0, e quindi
i tre punti corrispondenti sono allineati.

Il teorema 26.4 si pud anche enunciare cosi: sotto le ipotesi dette, sono alli-
neati i tre punti di intersezione delle coppie di lati ordinatamente corrispondenti
dei due triangoli di vertici P,, P,, P, e P,, Ps, P,.

Lasciamo al lettore il compito di verificare che il teorema di Desargues &
autoduale.
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26.5 Complementi

Sia P = P(V). Lo spazio proiettivo (P~ duale di P", coincide con spazio proiet-
tivo P(V™) associato al biduale di V, e si dice spazio proiettivo biduale di P.
L’isomorfismo canonico 8: V— V™ di V sul suo biduale induce una corrispon-
denza biunivoca b: P — (P~)", che associa ad ogni P = [v] € P il punto [8(V)] € (P")".
Consideriamo I’applicazione di dualita di P™:
§":(P”) — {iperpiani di P"}
e la composizione
8’ ob: P— {iperpiani di P”}.
E facile vedere che &’ o b coincide con ’applicazione &~ definita dalla [26.4].
Se infatti P = [v]€P, allora, poiché 8(v) (F) = F(v) per ogni FeV", si ha

@ °b)(P)=8"(BM] = {[F1€P": FEN(@B(V)} =
= {IF]GP'Z F(v) :O} =A1(P)= 6"(})),

Esercizi

1. Dimostrare che, se S ed S’ sono due sottospazi proiettivi di P, allora
M) N A(S") = ALL(S, S')).

2. Sia dim(P) = 3. Formulare la duale di ognuna delle seguenti proposizioni:

a) Dato un punto e una retta che non lo contiene, esiste un unico piano contenente
entrambi.
b) Due rette incidenti sono complanari.

¢) Date comunque due rette sghembe ed un punto fuori di entrambe, esiste un’u-
nica retta contenente il punto e incidente le due rette date.

d) Assegnati comunque tre punti linearmente indipendenti, esistono tre rette distinte
ognuna delle quali ne contiene due.

27 Cambiamenti di coordinate omogenee e proiettivita

Siano V un K-spazio vettoriale di dimensione finita e P = P (V) lo spazio proiet-
tivo associato, e sia dim(P) = n.

Supponiamo assegnati due riferimenti proiettivi in P, rispettivamente dalle basi
e={ey,e,.., e} edf=(f,f,..., £} diV,esiad=M_(>1,)eGCL,, (K} la
matrice che esprime il cambiamento di coordinate dei vettori di V dalla base e
alla base f. Si ha

y = AX [27.1]
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per ogni vettore
vV =X8+Xx€ + ... +x,e, =y 8+ + ... +y.1,

diV.Sia P=[vleP.Sex="'(x, X ... Xx,) siinterpreta come una (n + 1)-pla
di coordinate omogenee di P nel riferimento proiettivo e, ... e,, una (# + 1)-upla
di coordinate omogenee di P, nel riferimento f,...f,, €y ='(y, »; ... »,) data
dalla [27.1].

Osserviamo che se x viene sostituita da una (n + 1)-upla proporzionale Ax, cio¢
da un’altra (n + 1)-upla di coordinate omogenee dello stesso punto P nel riferi-
mento e, ... €,, si ottiene al posto di y la (7 + 1)-upla Ay, che rappresenta ancora
P nel riferimento f, ... f,.

La matrice 4 non ¢ univocamente determinata dai due riferimenti proiettivi
assegnati, perché questi individuano le due basi e ed f di V solo a meno di un
fattore di proporzionalitd. Una diversa scelta delle due basi avra ’effetto di sosti-
tuire A con una matrice ad essa proporzionale a4, o # 0, dalla quale si otterra
una formula analoga alla [27.1]:

y=aAx. 4 [27.2]

E evidente che la [27.2] e la [27.1] sono equivalenti perché, date coordinate
omogenee X di un punto P€P nel riferimento e, ... ,, entrambe forniscono coor-
dinate omogenee y di P nel riferimento f;... f,.

Quanto fin qui detto & riassunto nella seguente proposizione:

27.1 PROPOSIZIONE Siano e, ... e, ed £, ... f, due riferimenti proiettivi in P.
Esiste una matrice A€ GL,, ,(K), individuata solo a meno di un fattore di pro-
porzionalita non nullo, tale che, se P€P ha coordinate omogenee X nel riferimento
€, ... &,, allora coordinate omogenee y di P nel riferimento §, ... £, sono date dalla
SJormula [27.1].

La [27.1] ¢ la formula del cambiamento di coordinate omogenee dal riferimento
€, ... e, al riferimento f,... f,.

Siano e,...e,, f,...f, g...g, riferimenti proiettivi in P, corrispondenti a
coordinate omogenee di punto x, y, z, € siano y = AXx, ¢ z = By le formule che
esprimono i rispettivi cambiamenti di coordinate omogenee di punto. Sostituendo
nella seconda il valore di y dato dalla prima si ottiene la formula

z = (BA)x
che esprime il cambiamento di coordinate omogenee da e,...e, a g,...g,. La
formula

x=A"y

esprime il cambiamento di coordinate da f,...f, a e;... e,.
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Supponiamo fissato in P un riferimento proiettivo e,...e,. In pratica un
nuovo riferimento proiettivo viene spesso assegnato mediante una (n + 2)-upla

ordinata _
Polpoo, seey pOn]9 Pl [pl()’ ey pln], sees Pn[pnOs sees prm]s M[m09 esey mn]

di punti in posizione generale (cfr. esempio 24.5(4)).
Siano Ag, ..., A,€K tali che si abbia

}\'O(pom o3 pOn) + ...+ 7\'11(17110’ sy pnn) = (mO’ R mn)'

Allora la formula del cambiamento di coordinate dal riferimento e, ... e, al nuovo
riferimento & la [27.1] in cui A = B!, dove

MoDo -+ AyDuo

hoDoi -+ AyDpy
B= . .

}"Op Oon e }"np nn

Infatti i vettori di V le cui coordinate rispetto a {e,, ..., €,} sono le colonne
di B costituiscono una base di V che individua il nuovo riferimento. Quindi B
¢ la matrice che esprime il cambiamento di coordinate inverso, cioé¢ quello che
fa passare dal riferimento individuato da Py, ..., P,, M al riferimento e,...e,.
27.2 Esempio

Sia P una retta proiettiva in cui sia assegnato un riferimento proiettivo, e siano
P,[h, pils Py, py], M Ay, p;] punti distinti. Siano o, 8€K tali che

()= wel.)

e, per ogni punto Plx,, x;]1€P, siano y, 6€K tali che

(o)) vl

Allora P ha coordinate omogenee v, é nel riferimento individuato da P,, P,,
M. Calcolando «, 8 e v, 6 con la regola di Cramer ed eliminando i denominatori
otteniamo

Mo
[T

Ay Ay
Hs H

X

Xi M

[y, 8] = [ ] . [27.3]

l"q Xo

B X

Passiamo ora a considerare le trasformazioni di uno spazio proiettivo.

21
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27.3 DerINIZIONE ~ Siano P =P (V) e P’ = P(V ') due spazi proiettivi. Un’ap-
Dplicazione biunivoca f: P — P’ ¢ un isomorfismo di P su P’ se esiste un isomor-
fismo ¢: Vo V' tale che

J(I¥D = [e(W]

per ogni [v]eP. L’isomorfismo f si dice indotto da ¢. Se un isomorfismo f esiste,
P e P’ si dicono isomorfi.
Una proiettivita di P & un isomorfismo di P in sé stesso.

E evidente che ogni isomorfismo di spazi vettoriali ¢:V— V' induce un iso-
morfismo di P su P’.

Lasciamo al lettore il compito di verificare, nel modo consueto, che /’isomor-
fismo & una relazione di equivalenza tra spazi proiettivi.

Due spazi proiettivi isomorfi hanno evidentemente la stessa dimensione. D’al-
tra parte, poiché ogni K-spazio vettoriale di dimensione » +1 & isomorfo a K**!,
ogni spazio proiettivo di dimensione 7 ¢ isomorfo a P”. Da cid segue che due
spazi proiettivi della stessa dimensione sono isomorfi.

Se una proiettivita f: P— P ¢ indotta da ¢, essa € anche indotta da A ¢, per
un qualunque A € K*: infatti si ha

[Ae) W] = [A(e(W)] = [eM] =S (VD

per ogni ve V\{0}. Viceversa, se y: V—V induce f, allora y = A per qualche
A €K*, Infatti per ogni ve€V esiste L € K* tale che ¢(v) = Ay (v), ovvero tale che
(¥ ~'og) (v) = Av; ne consegue che ogni veV\{0} & un autovettore di ¢ o, e
quindi ¢~ 'e g = A1, per qualche A €K*, cioé ¢ = A ¢. Quindi ’automorfismo che
induce una data proiettivita é individuato solo a meno di un fattore di proporzio-
nalita non nullo.

L’identita 1, € una proiettivita, perché & indotta da 1. Se f, g: P—P sono
proiettivita indotte da ¢, ¥ € GL(V) rispettivamente, la loro composizione go f &
una proiettivita, indotta da Yo ¢. L’inversa f~! della proiettivitd f & ancora una
proiettivita, indotta da ¢ "'. Le proiettivita di P costituiscono dunque un gruppo
di trasformazioni chiamato gruppo proiettivo di P, e denotato con PGL (P).

11 gruppo proiettivo di P” si denota con PGL, . , (K), e si chiama gruppo lineare
proiettivo di ordine n + 1.

Associando ad ogni ¢ € GL(V) la proiettivitd indotta di P = P(V), si ottiene
un omomorfismo suriettivo di gruppi

w: GL(V)—>PGLP(V)).

Osserviamo che ¢ € GL(V) ¢ tale che 7(¢) = 1; se e solo se ¢ = A1, per qual-
che A €K*. Quindi

{eGL(V): w(p)=1p} = {Aly: AeK*]. [27.4]
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Il primo membro della [27.4] ¢ un sottogruppo di GL(V) (il nucleo di ).

Se nello spazio proiettivo P(V) & assegnato un riferimento proiettivo, associato
alla base {e, ..., ¢,} di V, ed fePGL(P(V)), allora, per ogni automorfismo
p€GL(V) che induce f, diremo che la matrice 4 € GL,, ; (K) associata a ¢ rispetto
alla base {e,, ..., e,} definisce f rispetto al riferimento proiettivo e,...e,. La
matrice A non & univocamente determinata. Un’altra matrice B€ GL,,, , (K) defi-
nisce la stessa proiettivita rispetto allo stesso riferimento proiettivo se e solo se
B =AA, per qualche AeK*. La verifica ¢ lasciata al lettore.

La seguente proposizione fornisce un procedimento geometrico per individuare
un isomorfismo di spazi proiettivi, e in particolare una proiettivita.

27.4 ProposizioNE  Supponiamo che P =P(V) ¢ P’ =P(V’) abbiano
dimensione n. Date comunque una (n + 2)-upla ordinata P,, ..., P,, P, di punti
di P in posizione generale, e una (n + 2)-upla ordinata Q,, ..., Q,, Q,., di punti
di P’ in posizione generale, esiste uno ed un solo isomorfismo f: P—P’ tale che
fP)=0,i=0,..., n+1.

In particolare, una proiettivita che lascia fissi n + 2 punti di P in posizione gene-
rale é identita.

Dimostrazione

Supponiamo P;,=[v], Q,=[w], i=0,..., n+1. Poiché dim(V)=n+1=
=dim(V’), {vg, ..., V,} € {Wg, ..., w,} sono basi di V e di V"’ rispettivamente,
e quindi si ha

Vorr =MV AV L H ALY,
Woi1 = BoWo + Wi + ... + 1, W,

per opportuni g, ..., A,, Ho, .5 4, €K che sono tutti non nulli per I'ipotesi che
le due (n + 2)-uple siano in posizione generale. Sostituendo A;v; al posto di v, e
w;w; al posto di w;, i =0, ..., n, possiamo supporre che tutti i coefficienti siano
uguali a 1, cioé che si abbia
Vol =V +V + L4V, (27.5]
W, =We+ W + ... +W,
Poiché {v,, ..., v,} € una base di V, per il teorema 11.3 esiste un’applicazione
lineare ¢: V>V’ tale che p(v)=w,, i=0,..., n.
Per le [27.5] e per la linearita di ¢ si ha ¢(v,,;) =w,,;. L’isomorfismo f
indotto da ¢ ha le proprieta volute.
Supponiamo ora che f': P— P’ sia un’altro isomorfismo avente le stesse pro-
prietd. Consideriamo la composizione g = f’ ~!o f: P — P, che supporremo asso-
ciata a y€GL(V). Si ha g(P)=P,, i=0, ..., n + 1, e pertanto

yvV)=a;v, i=0,...,n+1,
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per opportuni «;€ K*. Quindi

Ui V1 = V() =¥ (Vo + ¥+ .. + V) = Eo‘//(vi) =
=Vg+ ... +Q,V,. - [27.6]
D’altra parte si ha

Oy Vo1 =0 (Yot Vi + o V) [27.7]

Confrontando [27.6] e [27.7] deduciamo che
O£0=011=...= n+1-

Quindi Y(v)) = a,V,, cioé ¥ = o, 1,. Dalla [27.4] segue che g = 1, cio¢ f = f~!,
e ’unicita di f é dimostrata.

In particolare una proiettivitad di una retta proiettiva ¢ individuata una volta
assegnate le immagini di tre suoi punti distinti; una proiettivita di un piano proiet-
tivo ¢ individuata dalle immagini di quattro punti, a tre a tre non allineati.

Una proiettivita f: P (V) — P(V), essendo indotta da un automorfismo ¢: V-V,
trasforma ogni sottospazio S = P(W) di P(V) nel sottospazio f(S) = P(¢(W)), che
ha la sua stessa dimensione. Poiché ¢ induce un isomorfismo di W su (W), f
induce un isomorfismo di S su f(S).

27.5 DerRINIZIONE Due sottoinsiemi (o figure) F ed F’ dello spazio proiet-
tivo P si dicono proiettivamente equivalenti se esiste f€¢ PGL (P) tale che f(F) = F’.

Le proprieta che sono comuni a tutte le figure proiettivamente equivalenti ad
una figura F si dicono proprieta proiettive di F.

Ad esempio, due sottospazi proiettivi S ed S’ di P(V) aventi la stessa dimen-
sione sono proiettivamente equivalenti. Infatti, se S = P(W), S’ = P(W'), esiste
¢ € GL (V) tale che o(W) = W', e allora f(S) = §’, dove f ¢ la proiettivita asso-
ciata a ¢.

Per la proposizione 27.4 due sottoinsiemi di P costituiti ognuno da k punti in
posizione generale sono proiettivamente equivalenti se k<dim(P) +2. Se
k > dim (P) + 2, cid non € vero gia nel caso di 4 punti di una retta proiettiva. Sorge
allora il problema di descrivere le classi di equivalenza proiettiva di k-uple di punti
di uno spazio proiettivo P, quando £ > dim (P) + 2, cioé di classificare tali classi
di- equivalenza.

Come vedremo tra poco, la soluzione completa di questo problema puo essere
data nel caso di quaterne di punti distinti di una retta proiettiva per mezzo della
nozione di ““birapporto”’. Il risultato che otterremo sara applicato nel capitolo 4
alla classificazione delle cubiche piane proiettive.

27.6 DerNizioNE  Sia P una retta proiettiva, e siano P,, P,, P;, P,cP, con
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P,, P,, P, distinti. Il birapporto di P,, P,, P;, P, é
B(P,, Py, Py, P))=y/y,€KU {oo},

dove ¥y, ¥, sono coordinate omogenee di P, nel riferimento proiettivo in cui P,
e P, sono i punti fondamentali e P, é il punto unita.

Osserviamo che nella definizione si ¢ supposto che P,, P,, P, siano distinti,
ma non si & fatta alcuna ipotesi su P,.

Se in P & fissato un riferimento proiettivo rispetto al quale i 4 punti assegnati
sono P;IA;, ul, i =1, ..., 4, allora, tenuto conto della [27.3], abbiamo la seguente
espressione del loro birapporto:

lxl M A A

M Pt Ty M

P, P,, P,, P)= 27.8

B(P,, Py, Py, P)) ENTENEY [27.8]
Ho Ba | | Py Y3

Considerando invece coordinate non omogenee z; = p,/A; dei punti P, si
deduce dalla [27.8] la seguente espressione:

(ze—2) @z —2)
(zZ,—2)(z3—2)

Il secondo membro della [27.9] ha senso solo se nessuno degli z; & o, cioé se
A;#0perognii=1,..., 4. Altrimenti si utilizzera la [27.8], che definisce in ogni
caso un elemento di KU {oo}.

Si noti che i valori (P, P,, P;, P)) =0, o0, 1 sono assunti in corrispondenza
a P,= P,, P,, P, rispettivamente.

Il significato proiettivo del birapporto ¢ dato dal seguente teorema.

3(PlsP29 P3’ P4)=

[27.9]

27.7 Teorema Siano P =P (V) e P’ = P(V’) rette proiettive, e siano P,, P,,
P, P,cP, ’Ql, O, 05, Q,€P’, con P, P,, P, distinti e Q,, Q,, Q, distinti.

Esiste un isomorfismo f: P—> P’ tale che f(P)=0Q, i=1,..., 4, se e solo se
ﬁ(Pn Pz, P3,_P4) = B(Qn Qz, Qsa Q4)-
Dimostrazione

Per la proposizione 27.4 esiste un’unico isomorfismo f: P—P’ tale che
fP)=0,i=1, 2, 3. Siano P,=1[v], i=1, ..., 4, Q;=[w]. Come nella dimo-
strazione della proposizione 27.4 possiamo supporre che f sia indotto da un’ap-
plicazione lineare ¢: V— V"’ tale che ¢(v) =w, i =1, 2, 3. Se P, ha coordinate
omogenee y,, ¥, hel riferimento definito in P dai punti P,, P,, P,, allora f(P,)
ha le stesse coordinate omogenee y,, ¥, nel riferimento definito in P’ dai punti
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0., Oy, Q,. Quindi si ha
B(Py, Py, Py, P)=y,/y,=B(Qy, O, O3, f(PY)).

Ma f(P,) = Q, se e solo se Q, ha coordinate omogenee y,, y,, ¢ questa condi-
zione ¢ equivalente a

B(Q1, C2s O3 Q) =31/,

11 birapporto di quattro punti di una retta proiettiva P dipende dall’ordine in
cui essi vengono considerati. Se P,, P,, P;, P,€P sono distinti il birapporto di
una loro qualsiasi permutazione ¢ definito, e posto 8 =g8(P,, P,, P;, P), si ha

8 =B(Pan,Ps,R;)=3(P2,P1aP4,P3)=
={3(P3,P4,P,,P2)=8(P4,P3,P2,P,)
1/18 =6(P1,P2,P4,P3)=B(P2,P1,P3,P4)=

ﬁ(P4,P3,Pl,P2)=6(P3,P4,P2,P|)
B(P13P39P23P4)=8(P39P13P4!P2)=
=6(P2,P4sP1,P3)=B(P4:P2,P3:P;)
1/(1-B) = B(P,, P;, P, P) = B(P3, P, P,, P) =
=6(P4,P2,P],P3)=6(P2,P4,P3,P|)
(6—1)/3=B(P1,P4,P2,P3)=3(P4,P|,P3,P2)=
=B(P2,P3,P|,P4)=3(P3,P2,P4,P])
{3/(6_1)=B(P19P4sP33PZ)=6(P43PbP29P3)=
=3(P3,P2,PI,P4)=6(P2,P3,P4,P1).

1-8
[27.10]

Quindi i 24 birapporti che si possono ottenere a partire da 4 punti distinti si
riducono a 6, e sono in generale distinti (cfr. 27.10(3)). Dunque a una quaterna
di punti distinti di P non ¢ associato un solo valore del birapporto. Si pud perd
ricorrere al seguente lemma.

27.8 LemMA  Si consideri la funzione razionale
@B -B+1)°
B* (B —1)?
che & definita per ogni 3¢ C\{0, 1}. Si ha j(B) =j(B’), B, B’ €C\{0, 1}, se e solo
se B'e{B, 1/8, 1-6, 1/1-8, (B —-1)/8, 8/(8 — 1)}.

Dimostrazione
Si calcola facilmente che

Ji@®=j@ H=ij0-p)=j1/(1-B)=j(B-1)/8)=j®B/B—-1).
D’altra parte, per ogni fissato 3€C\{0, 1} si ha j(8) =j(8’) se e solo se
q@B)=0

Jj(®) =
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dove
gX)=(X>~-X+1 - j@ XX -1~

Il primo membro ¢ un polinomio monico di sesto grado in X. Poiché le sei
costanti

B, 178, 1-8, 1/1-8, (8-1)/8, B/(8—1) [27.11]

sono radici di g(X), se sono distinte esse sono tutte le radici di g(X) e il lemma
segue in questo caso. Con un calcolo diretto si verifica subito che le [27.11] non
sono distinte nei casi seguenti:

B=~1,2,1/2, —¢, —€2,
dove

2 2
¢ una radice cubica primitiva di 1. Nei casi 8=—1, 2, 1/2 si ha j(8)=27/4 ¢

gX)=(X+1)*(X -2 (X -1/2)%,

mentre per 8= —¢, —€*si ha j(B)=0¢e
gX)=X*-X+1) =X+’ (X + ).

In entrambi i casi le radici di g(X') sono solo quelle appartenenti all’insieme
dei valori [27.11]: il lemma & dimostrato.

Dal lemma segue che se 8 ¢ il birapporto di 4 punti distinti di una retta proiet-
tiva P presi in un certo ordine, allora j(8) non dipende dall’ordine in cui i punti
sono stati scelti. Di conseguenza, per una quaterna non ordinata di punti distinti
{P,, P,, P,, P,} & ben definito j(8(P,, P,, Ps, P,), che & detto modulo della
quaterna {P,, P,, P,, P,} ed & denotato con j(P,, P,, P;, P,). Si noti che, poiché
B(P,, P,, P,, P)€K, dall’espressione di j(B) € dal fatto che K ¢ un campo segue
che anche j(P,, P,, P;, P)€K.

27.9 TEoREMA Due quaterne non ordinate di punti distinti { P,, P,, P,, P},
{ Qi Q,, O, O, di una retta proiettiva P sono proiettivamente equivalenti se e
solo se

J(Pyy Py, Py, PY=j(Qis Oss Q55 Q). [27.12]

Dimostrazione
Se {P,, P,, P, P,} e {Q,, 05, O;, O,} sono proiettivamente equivalenti allora
esiste f€ PGL(P) tale che { f(P), f(Py), f(Py), f(P)} = {Q, O, O, Qu}. Per



328 Geometria proiettiva

il teorema 27.7 si ha in tal caso:
B(P,, Py, Py, P)=B(f(P), f(P), f(Py), f(P))

e quindi j(Py, P,, Py, P)=j(f(P), f(P), f(Py), f(P))=Jj(Q,, Oy, Os5, Q).
Viceversa, se la [27.12] & verificata, allora, per il lemma 27.8 e per le [27.10], pos-
siamo supporre, dopo aver eventualmente permutato i punti Q,, che si abbia:

B(Ph P23 P3, P4) = B(Ql’ Q29 QS’ Q4)'

Dal teorema 27.7 segue che {P,, P,, P;, P,} ¢ {Q,, O,, O;, O,} sono proietti-
vamente equivalenti.

Il teorema precedente risolve il problema di classificazione che ci eravamo posti:
esso infatti afferma che le classi di equivalenza proiettiva di quaterne di punti
distinti di una retta proiettiva sono in corrispondenza biunivoca con I’insieme dei
valori assunti dal modulo, cioé sono classificate da tale insieme.

Dalla dimostrazione del lemma 27.8 segue che in una retta proiettiva
ci sono al pit due classi di equivalenza proiettiva di quaterne di punti tali che tutti
i loro possibili birapporti siano meno di 6; esse possono esistere in corrispondenza
ai valori j(P,, P,, P;, P))=27/4, 0. 11 primo di tali valori viene assunto per
8=-1, 2, 1/2, il secondo per 8 = — €, — €2. Ovviamente, nel secondo caso una
quaterna siffatta non puo esistere se e¢ K, in particolare se K = R. Una quaterna
{P,, P,, P,,P,} di punti di P si dice armonica se j(P,, P,, P,, P,) = 27/4, e si dice
equianarmonica se j(P,, P,, P;, P,) = 0. Per informazioni sulle quaterne armo-
niche rinviamo il lettore a 27.10(5).

27.10 Complementi

1. Abbjamo visto come ad ognuna delle tre geometrie, ’affine, I’euclidea ¢ la
proiettiva, siano associati dei gruppi di trasformazioni: il gruppo Aff(A) per la
geometria di uno spazio affine A, il gruppo Isom (E) per quella di uno spazio eucli-
deo E, e il gruppo PGL (P) per la geometria di uno spazio proiettivo P. In corri-
spondenza a questi gruppi abbiamo introdotto delle relazioni di equivalenza tra
figure geometriche. Due figure equivalenti possono essere considerate come due
diversi rappresentanti di una stessa entita (la classe di equivalenza) nella geome-
tria che si sta studiando e si pud quindi affermare che la geometria (affine, eucli-
dea o proiettiva) consiste dello studio delle proprieta delle figure che sono inva-
rianti per equivalenza, cio¢ di quelle proprieta che una figura ha in comune con
tutte quelle ad essa equivalenti. In questo modo il gruppo di trasformazioni dello
spazio determina le proprietda geometriche che si vogliono studiare.

Piu in generale possiamo considerare un qualunque gruppo ¥ di trasforma-
zioni dello spazio e associare ad esso una “‘geometria’’, che definiremo come I’in-
sieme delle proprieta e delle grandezze calcolate nello spazio che sono invarianti
rispetto a tutte le trasformazioni del gruppo.
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Ad esempio, se si considera uno spazio euclideo E, il gruppo Aff(E) ne defini-
sce la geometria affine, mentre Isom(E) ¢ il gruppo della geometria euclidea di
E. Un’altra geometria ¢ quella definita dal gruppo Simil (E) delle similitudini. Nel
caso in cui E ¢ il piano o lo spazio ordinario, la geometria del gruppo Simil (E)
coincide con la geometria euclidea elementare.

Se ¥ ¢ un sottogruppo di ¥, ogni proprieta‘t (o quantita) invariante rispetto
a & lo & anche rispetto a <. Quindi quella di ¢, ¢ una geometria pi “‘ricca”
cioé in cui le figure hanno pit proprieta, di quella di <. Si pensi ad esemplo a
uno spazio euclideo E: il gruppo Isom (E) ¢ un sottogruppo di Aff(E), e cid corri-
sponde al fatto che ogni proprieta affine di una figura geometrica di E ¢ anche
una proprieta euclidea.

La stretta relazione esistente tra gruppi di trasformazioni e geometria fu messa
in evidenza per la prima volta da F. Klein nel 1872, in una conferenza tenuta
presso I’Universita di Erlangen e rimasta famosa con il nome di ‘‘Programma di
Erlangen’. Per una discussione approfondita di quest’argomento si rimanda a [10].

2. Il gruppo PGL(C) delle proiettivita di P'(C) pud essere descritto come il
gruppo delle “‘trasformazioni lineari fratte’> di CU {o}.
Siano a, b, ¢, deC tali che ad — bc # 0. Ponendo

f(=d/c)=o
S (®)=a/c,
e per ze€C\{—d/c}:

f@)="2+t2

27.14
+d [ 1

si definisce un’applicazione biunivoca f: C U {0} = CU { o}, chiamata trasfor-
magzione lineare fratta (TLF) o trasformazione di Moebius di parametria, b, ¢, d.
La biunivocita di f discende dal fatto che essa possiede I’inversa, data da

—dz—b
cz+a

S (@)=

che & ancora una TLF.
La composizione della [27.13] con un’altra TLF,

az+ 8
gR=—1,
yZ+ 9o

& ancora una TLF, perché si ha
(cxa+ Bc)z+ (ab + Bd)
(ya+6c)z+yb+dd

€°f=
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(aa+B¢)(yb+6d)— (b +Bd) (ya+ dc) = (b — Bvy)(ad — bc) # 0.

L’identitd di CU {e} & una TLF, ottenuta in corrispondenza a a=d =1,
b=c=0.

Segue che le TLF costituiscono un gruppo di trasformazioni di CU {}.

Si noti che questo gruppo non ¢ abeliano. Infatti, considerando ad esempio
f@=1/z, h(z)=z+1,siha

1

Jh@) = —~ ¢—+1—h(f(z))

Z+l

Identificando C U {o} con P! = P¥(C), una TLF pud considerarsi come una
trasformazione di P! in sé stesso. In coordinate omogenee la TLF [27.13] si
esprime nel modo seguente:

S (s x:1) = [ex, + dxy, ax; + bxo]

e quindi & la proiettivita definita dalla matrice

(5 o)
b al

Pertanto il gruppo delle TLF coincide con il gruppo PGL,(C) delle proietti-
vita di P'.

Poiché numeratore e denominatore della [27.13] possono essere moltiplicati

per un comune fattore di proporzionalitd senza modificare la trasformazione f,
ogni TLF pud essere scritta nella forma [27.13] con

ad — bc=1. [27.14]

Diremo f normalizzata se a, b, ¢, d soddisfano la condizione [27.14]. Osser-
viamo che la [27.14] individua a, b, ¢, d a meno di moltiplicazione per —1.

Le TLF si classificano per mezzo dei loro punti fissi, o poli, cioé dei punti z
tali che f(z) = z. Dall’espressione della [27.13] segue che o & un polo se e solo
se ¢ = 0. Gli altri eventuali poli si ottengono esplicitando la condizione f(z) = z,
e quindi sono gli z€ C che soddisfano I’identita

'y (@d-a)z—b=0. [27.15]

Dunque una TLF diversa dall’identita ha almeno uno e al pin due poli. Se ha
un solo polo, f si dice parabolica.

Quando ¢ = 0, cioé quando uno dei poli € oo, la [27.13] si riduce alla forma
(in questo caso si puo supporre d =1)

Sf@)=az+b, : [27.16]
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cioé & un’affinita di C. Le affinitd costituiscono un sottogruppo Aff,(C) di
PGL,(C) che si identifica al gruppo Simil* (E?) (cfr. 20.10(2)).

Dalla [27.15] discende che la [27.16] non ha altri poli oltre oo, cioé & parabo-
lica, se e solo se a =1, cioé se ¢ una traslazione. In caso contrario la [27.16] ha
il polo b/(1 — a). Otteniamo quindi che ogni similitudine diretta di E* diversa da
una traslazione ha un punto fisso.

Si osservi che ogni similitudine di E? trasforma rette in rette, perché ¢ una par-
ticolare affinita. E anche facile vedere che una similitudine trasforma circonfe-
renza in circonferenze. Infatti cio € vero per le isometrie e per le omotetie, e quindi
anche per le similitudini che, per definizione, sono composte di isometrie e
omotetie.

Viceversa non ¢& difficile dimostrare che un’affinitd di E* che trasforma rette
in rette € circonferenze in circonferenze ¢ una similitudine (per maggiori dettagli
cfr. [5]).

Per descrivere la geometria definita in C U {o} dal gruppo di tutte le TLF sara
opportuno considerare circonferenze e rette di E? simultaneamente: un sottoin-
sieme di E? sara detto cerchio di Moebius se ¢ una retta oppure una circonfe-
renza. Un cerchio di Moebius ha equazione della forma

E(G*+y)+Ax+By+C=0 [27.17]
con A, B, C, E€R tali che
A+ B*—4EC>0.

La [27.17] rappresenta una retta oppure una circonferenza se E = 0 oppure E # 0
rispettivamente. Ponendo z = x + iy e utilizzando le identita

= +Z z2—z
Z=x+ )7 x=z2z, y= zz,

la [27.17] puo essere riscritta nella forma equivalente:
. Exz+A@Z+72)/2+B(z—-2)/2+C=0. [27.18]
La TLF
f@)=1/z

¢ chiamata inversione. Si ha f() =0, f(0) = e f=f"}. Sostituendo 1/z al
posto di z nella [27.18] e razionalizzando otteniamo

CZ+A@zZ+2)/2-Biz—-2)/2+E=0.

Questa & Pequazione dell’immagine del cerchio di Moebius [27.18] tramite f,
€ rappresenta una circonferenza eccetto quando C = 0, nel qual caso ¢ una retta:
cid avviene precisamente se la [27.18] & un cerchio di Moebius passante per I’ori-
gine. Vediamo quindi che Uinversione trasforma cerchi di Moebius in cerchi di
Moebius.
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Passiamo ora a considerare una TLF [27.13] qualsiasi. Essa puo anche essere
espressa nella forma

f@y=L 4 bezad
c c(cz+d)

Ponendo

zy=cz+d

z2,=1/z,

a bc — ad

Z3 = —C_ + —T" ZZ

abbiamo

S @) =2,(2,(z,(2))

cioé f(z) ¢ la composizione di un’affinita con I’inversione seguita da un’altra affi-
nitd. Poiché I’inversione e le affinita trasformano cerchi di Moebius in cerchi di
Moebius, deduciamo che ogni TLF trasforma cerchi di Moebius in cerchi di
Moebius.

PGL, (C) possiede diversi sottogruppi notevoli dal punto di vista geometrico,
che hanno la proprieta di trasformare in sé regioni particolari del piano.

Ad esempio il sottogruppo PGL,(R) di PGL,(C), che consiste delle TLF
[27.13] in cui a, b, ¢, d€R, trasforma RU {oo} in sé stesso, perché ¢ il gruppo
delle proiettivitd di P!(R). Consideriamo il sottogruppo PGL," (R), costituito
dalle f€ PGL,(R) tali che ad — bc > 0. Moltiplicando numeratore ¢ denominatore
per (ad — bc) "2, si pud normalizzare f (2) in modo che si abbia ad — bc =1. Si
calcola facilmente che si ha (denotando con Im(u) la parte immaginaria di un
numero complesso u):

Im(f(z)) = Im(z)
e quindi il gruppo PGL,(R) trasforma in sé il semipiano
h={zeC: Im(z) >0},

e ne costituisce un gruppo di trasformazioni. La geometria definita in h da
PGL,(R) ¢ un modello di ‘‘geometria non euclidea’’ nota come geometria iper-
bolica.

Identificando C U {oo} con la sfera di Riemann per mezzo della proiezione
stereografica, le TLF si identificano con trasformazioni di S?, che in alcuni casi
sono rotazioni. Si dimostra che una TLF corrisponde a un elemento R€SO(3)
se ¢ solo se ¢ della forma normalizzata

uz +v

J@)=—"" [27.19]
— 07 +u
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con uui + v9 =1, e che ogni elemento di SO(3) proviene da una TLF di questa

forma.

Pertanto SO(3) ¢ isomorfo al sottogruppo di PGL,{(C) costituito dalle TLF
[27.19]. La geometria della sfera S* definita dal gruppo SO(3) coincide quindi
con la geometria di CU {oo} definita dal gruppo delle [27.19]. Essa costituisce
un modello di geometria non euclidea chiamata geometria ellittica. 1 due numeri
complessi #, v che appaiono nella [27.19] si dicono parametri di Cayley-Klein della
rotazione R; essi sono individuati da R solo a meno di moltiplicazione per —1.

Per ulteriori dettagli sulla geometria del gruppo PGL,(C) e dei suoi sotto-
gruppi rinviamo il lettore a [4], [5], [6], [7], [12], [13], [14].

3. Sia assegnata un’affinita di A*(K):
Tp e A" A" Ty .(x) = ¢+ Bx,

dove ¢ ='(c; ... ¢,)€K", B=(b;;)€GL,(K).
Consideriamo P’applicazione di passaggio a coordinate omogenee:

Jo: AT P™N\H,.

Poniamo x" =*(1 x; ... x,), ¥ '='(1 y, ... ¥,), e sia

1 0 ... 0
¢ by ... b,
a=|: - . |€GL,.. (K.
¢, b, ... b,
Si ha
y' =Ax’.

La proiettivita f: P”— P* definita dalla matrice A trasforma in sé stessi H, ¢
P"\H,. Ci0 segue subito dalla forma di 4.

E anche immediato verificare che I’affinita T} . coincide con la restrizione di
fad A", cioé con jj'lofoj,.

Vediamo quindi che il gruppo Aff,(K) puo considerarsi come un sottogruppo
di PGL,,(K), precisamente quello rappresentato dalle matrici A della forma
detta sopra.

4. Se fePGL(P(V)) ¢ una proiettivita, indotta da ¢ € GL(V), i punti fissi di
/f, cioé i punti PeP tali che f(P) = P, sono tutti e soli quelli della forma P = [v],
dove v€V & un autovettore di ¢. L’esistenza di autovettori di ¢ ¢ quindi equiva-
lente all’esistenza di punti fissi di f. Deduciamo che se P & uno spazio proiettivo
complesso, ogni proiettivita di P possiede almeno un punto fisso. Similmente, se
P é uno spazio proiettivo reale di dimensione pari, ogni proiettivita di P possiede
almeno un punto fisso. Quest’ultima affermazione segue dal fatto che un opera-
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tore di uno spazio vettoriale reale di dimensione dispari possiede almeno un auto-
vettore (cfr. 13.15(1)).

Una proiettivita di uno spazio proiettivo reale di dimensione dispari pud non
avere punti fissi. Un esempio & dato dalla seguente proiettivita f: P'(R)—P!(R):
f([xm xl]) = [_' xp XO].
5. Siano P,, P,, P,, P, punti distinti di una retta proiettiva P. La quaterna
ordinata (P,, P,, P;, P,) é& detta armonica se
B(Pl’ Pz’ Ps’ P4)=_1-

In tal caso i punti P,, P, si dicono coniugati armonici rispetto a P;, P,. Dalle
[27.10] segue che anche P;, P, sono coniugati armonici rispetto a P;, P,.

Se i punti di una quaterna armonica vengono permutati in tutti i modi possi-
bili, i valori assunti dal birapporto sono solo tre, e precisamente — 1, 1/2, 2. Cid
segue subito dalle espressioni [27.10] di tali birapporti. Si ha inoltre in tal caso

j@, Py, Py, P)=27/4.

Se P, ¢ il baricentro dei punti P, e P, nella retta affine P\{P,} (il punto medio
del segmento P, P; se K=R), ¢ possibile scegliere il riferimento in modo che
Pl =Pl[ls 0]3 P4=P4[Oa I]a P3=P3[l’ 1]3 P2=P2[23 1]3 < quindi

B(Pls P4a P3s PZ):‘I/Z’
da cui si deduce che
6(P13 Pz, P3s P4)=_1

" e quindi P;, P,, P;, P, ¢ una quaterna armonica.
Un altro modo di costruire quaterne armoniche ¢& il seguente. Sia P un piano
proiettivo, e siano O,, 0,, O,, O, punti a tre a tre non allineati.
Siano P, = L(O,, O)N L(O,, O), P,=L(0,, O)NL(O,, O)esia z = L(P,, P,).
Consideriamo i punti di 2

Py=2 NL(O, O), P,=r NLO, Oy).

Allora P,, P,, P,, P, ¢ una quaterna armonica su z (fig. 27.1).

Per dimostrarlo fissiamo in P coordinate omogenee in modo che O,, O,, O,
siano i punti fondamentali e O, il punto unita. Si calcola subito che P, = P,[1, 1, 0],
P,=P,0, 1, 11, P, = P;[1, 2, 1], P,= P,[1, 0, —1]. Poiché si ha

1,2, )=(01,1,0+(,1,1)
(ls 09 _1):‘(1’ 1’ 0)_(09 l’ 1),
otteniamo

B(P;, st Pz’ P4)=—1-
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0,

0,

o, Os

P, P, P P, z Figura 27.1

La configurazione di rette che abbiamo appena descritto & detta guadrilatero
completo.

Esercizi

1. Determinare la formula y = Ax del cambiamento di coordinate dal riferimento stan-
dard di P*(R) al riferimento individuato dai punti P,, Pi, P,, M in ciascuno dei casi
seguenti:

a) Po=[1,1, -1, A=[2,1,0], P,=1[0,1, 1], M=[1, 1, 0}
b) P,=11, -1,0}, P,=[0, 1, 1], P,=[2,0, 1], M=1l, 2, 2]
) P=1[1,1,1], P,=[1,0, 1], P,= [1, % R 0], M=14,2,2].

2. Decterminare la proiettivita £ di P'(R) che soddisfa le condizioni seguenti:
SaAL =11, -1, f@2, =101 11, f{1, —-1D=12, 1].
3. Determinare la proiettivita f di P>(R) che soddisfa le condizioni seguenti:
f@&=2z, f(H=4', [fdi,2,11=[1,0,0], dove:
2 Xo—-Xi=0, 2:X+X =0, L X%+X+X=0, 2:X+X,=0.
4. Determinare i punti fissi delle seguenti proiettivita di P*(R):
a) fxos x1, ) =[x +15x1+ 63, — 2x0+ 8x, + 22,4 % — 18Xx; — 5x3))
b) f(lxo, x1, 1) = o — x1, X0 + 3%, 2X2].
5. Dimostrare la seguente identita:
B(Py, P, U, V) B(P, Py, U, V) B(Ps, P, U, V)=1

dove P\, P,, P;, U, V sono punti distinti di una retta proiettiva P.
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6. Dimostrare che le seguenti TLF:

1 1 z—1 z
Z, Y l~z, Ey >
z 1-z z z-1

costituiscono un sottogruppo di PGL,(C), isomorfo a o;.



Capitolo 4
Curve algebriche piane

28 Generalita

Uno dei concetti primitivi della nostra intuizione spaziale & quello di linea, o
curva, piana. Gia i geometri dell’antica Grecia consideravano curve piane parti-
colari, ottenute come ‘‘luoghi geometrici’’: ad esempio la circonferenza come luogo
dei punti equidistanti dal centro. Per questa via furono studiate diverse curve,
in modo spesso ingegnoso.

La nozione stessa di curva ha subito un’evoluzione. Inizialmente, ad esempio
nella scuola pitagorica (sec. vi a.C.), una curva era definita in modo empirico
come aggregato di piccoli corpuscoli. Successivamente, con Platone e Aristotele,
tale definizione lascio il posto ad altre, ad esempio a quella di luogo descritto da
un punto che si muove in un piano.

Ancora nel secolo Xvi veniva chiamata ‘‘curva piana’’ qualsiasi linea che si
potesse tracciare con un tratto di penna.

Tali definizioni sono prive di significato per la matematica di oggi; d’altra parte,
alla definizione rigorosa si & giunti solo attraverso approssimazioni successive, di
cui le precedenti sono esempi. Questa evoluzione ¢ avvenuta di pari passo all’ac-
crescersi delle nostre conoscenze sulle curve.

Per uno studio il piti generale possibile occorrerebbe considerare curve defi-
nite in un piano euclideo, o in un piano affine o proiettivo sul campo K. Tuttavia,
per semplicitd, considereremo solo i piani numerici A%(K), E2, P*(K), ai quali
d’altra parte & sempre possibile ricondursi mediante la scelta di un sistema di coor-
dinate; I’estensione al caso generale & trattata nei complementi (cfr. 28.4(1)).

La definizione intuitiva di ‘“‘luogo generato da un punto mobile’’ corrisponde
a quella di curva definita in A%2(K) da equazioni parametriche, come luogo dei
punti P(x, ») di coordinate

x=a(), y=48(,
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dove a(?) e B(¢) sono opportune funzioni non entrambe costanti di un parametro
t variabile in K, o in un suo sottoinsieme. Si pensi ad esempio alle equazioni para-
metriche di una retta.

Un altro punto di vista & quello di definire una curva mediante un’equazione
cartesiana. Il caso pili importante ¢ costituito dalle curve algebriche, che sono otte-
nute uguagliando a zero un polinomio e comprendono come casi particolari le
rette. Il loro studio corrisponde a quello delle soluzioni di un’equazione polino-
miale in due o tre variabili. E soprattutto su questo secondo punto di vista che
c¢i concentreremo in questo capitolo.

Due polinomi non costanti f(X, Y), g(X, Y)€K[X, Y] si diranno proporzio-
nali se esiste o€ K* tale che g = of. E evidente che la proporzionalita ¢ una rela-
zione di equivalenza in K[X, Y].

28.1 DErINIZIONE Una curva algebrica di A%2(K) é una classe di proporzio-
nalita di polinomi non costanti di KIX, Y. Se f(X, Y) é un rappresentante della
curva, I’equazione

fX, Y)=0 [28.1]

si dice equazione della curva, oppure equazione che definisce la curva. I/ sotto-
insieme & C A*(K) costituito dai punti le cui coordinate soddisfano I’equazione
~ [28.1] é il supporto della curva. Il grado di f(X, Y) si dice grado della curva.
Le curve algebriche di A*(K) di grado 1, 2, 3, 4, ... si chiamano rette, coniche,
cubiche, quartiche ecc.
Se K = R e si considera E? al posto di A*(R) si ottiene la definizione di curva
algebrica di E2.

Per semplicita spesso si denotera la curva algebrica di equazione [28.1] ed avente
supporto % semplicemente con la lettera %, sottintendendo che un’equazione
della curva sia stata assegnata. Parleremo quindi di % come della curva di
A%2(K) (o di E?) definita dal polinomio f(X, Y), o dall’equazione [28.1]. Deno-
teremo con gr( %) il grado di %,

La definizione di curva algebrica di P*(K) si da in modo simile, ma richiede un
commento preliminare. Consideriamo il piano proiettivo P*(K). Se f(X,, X,, X,)
¢& un polinomio a coefficienti in K, non ha senso dire che le coordinate omogenee
di un punto soddisfano 1’equazione

f(X09 X]a XZ) = 09

perché in generale, assegnati x,, x;, x, € K non tutti e tre nulli, e A # 0 in K, pud
accadere che si abbia f(x, X, x) =0 e f(hx, Ax,, Ax,) #0. Se ad esempio
fXy, X,, X)=X,+1,siha f(~1,0,0)=0¢ef(1,0,0)=2.

Ci0 non si verifica se il polinomio che si considera € omogeneo. Infatti, se
F(X,, X,, X;)eK[X,, X,, X,] ¢ omogeneo di grado n, allora, per ogni x,, x,,
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x, €K, A€K*, si ha
F(Axy AXps AX)) = M F (x5, X1y Xy)

(cfr. A.12(1)) da cui si vede che il primo membro si annulla se e solo se si annulla
il secondo. Ha dunque senso dire che le coordinate omogenee di un punto
PeP*K) annullano il polinomio omogeneo F(X,, X;, X;). Per questo motivo nel
definire curve piane proiettive utilizzeremo solo polinomi omogenei.

Due polinomi omogenei non costanti F(X,, X, X,), G(X,, X, X)) €K[X,, X,
X} si dicono proporzionali se esiste o €K* tale che G = oF.

28.2 DErFNIZIONE  Una curva algebrica di PX(K) é una classe di proporzio-
nalitd di polinomi omogenei di K[X,, X,, X,]. Se F(X,, X,, X,) & un rappresen-
tante della curva, ’equazione

F(X,, X;, X))=0 [28.2]

si dice equazione della curva, ovvero equazione che definisce la curva. Il softoin-
sieme £ CP*K) costituito dai punti le cui coordinate soddisfano la [28.2] & il
supporto della curva. Il grado di F si dice grado della curva.

Come nel caso affine, una curva algebrica di P%K) & individuata da una sua
equazione; spesso denoteremo semplicemente con % la curva individuata dalla
[28.2] e avente supporto uguale a %, sottintendendo che una sua equazione sia
stata assegnata; il grado di ¥ si denotera con gr ().

Una curva algebrica definita in A2(K) (rispettivamente, in E2; in P%K)) & detta
affine (euclidea; proiettiva).

Le definizioni 28.1 e 28.2, associando strettamente una curva alla sua equa-
zione, permettono di mantenere un legame tra ’algebra e la geometria, che si per-
derebbe se si definisse una curva semplicemente come un sottoinsieme di A%2(K),
E? o P?(K), identificandola con il suo supporto.

Consideriamo ad esempio una retta affine z di equazione

AX+ BY+ C=0. [28.3]
La z ha lo stesso supporto della curva piana definita dall’equazione
AX+BY+C)'=0 [28.4]

per un qualsiasi # = 2, perché la [28.3] ¢ 1a [28.4] hanno le stesse soluzioni. Ma
la [28.3] e 1a [28.4] definiscono due diverse curve, di gradi 1 e n rispettivamente.
Consideriamo un altro esempio. Per ogni numero reale ¢ > 0, ’equazione

X*+Y*+c=0 [28.5]

non ha soluzioni reali, e quindi definisce in A*?(R) una curva che ha per supporto
I’insieme vuoto. Due diversi valori di ¢ > 0 definiscono due curve aventi lo stesso
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supporto O, e tuttavia diverse perché i corrispondenti polinomi non sono propor-
zionali. In questo esempio la curva ha un contenuto esclusivamente algebrico, in
quanto il suo supporto & vuoto.

L’equazione

X2+ Y:=0, [28.6]

definisce invece una curva di A%(R) il cui supporto & ridotto -al solo punto
{(0, 0)}. Questo esempio, come il precedente, ¢ molto lontano dal concetto intui-
tivo di curva da cui eravamo partiti.

Il fenomeno che si presenta con gli esempi [28.5] e [28.6] dipende dalle pro-
prieta algebriche di R, e precisamente dal fatto che R non ¢ algebricamente chiuso.
I problema non si presenterebbe se invece di A%(R) si stesse considerando A%(C):
Ie equazioni [28.5] e [28.6] possiedono infinite soluzioni in A2(C), proprio per-
ché C & algebricamente chiuso. Piu in generale, lo studio delle curve algebriche
in un piano affine A%(K) ¢ pill naturale e facile nel caso in cui K ¢ algebricamente
chiuso perché situazioni particolari come quelle illustrate dagli esempi [28.5] e [28.6]
non si presentano. Faremo pertanto questa ipotesi nell’affrontare lo studio di pro-
prieta generali delle curve algebriche piane. Faremo poi vedere come sia possibile
analizzare le proprieta delle curve di A?(R) e E? considerandone i ““punti com-
plessi>’ (cfr. § 29). Studieremo inoltre la teoria classica delle coniche reali sia dal
punto di vista affine che da quello euclideo.

Nell’insieme delle curve algebriche affini (euclidee; proiettive) si introduce la
nozione di equivalenza affine (di congruenza; di equivalenza proiettiva). Poiché
una curva non si riduce al suo supporto, cio€ non € un sottoinsieme del piano,
ma ¢ definita da un’equazione, I’equivalenza va definita in relazione alle equa-
zioni delle curve. Vediamo in che modo, cominciando dal caso affine.

Consideriamo un’affinita 7: A2(K)— A%(K) definita da

T(x, Y)=(a;x + apy + ¢, @y x + any + ¢,),

esia ¥ la curva di A%(K) di equazione [28.1].
La curva & di equazione

g(X, v)=0
dove
geX, Y)y=fa, X+a,Y+c, 0y X+a,Y+cy) [28.7]
& detta trasformata di € tramite T, e si denota con
D =T (%) [28.8]
Se ’affinitd inversa di T ¢

T7'(x, ¥) = (byx+bpy+d, by x+bpy+d)
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allora si ha

g X+b,Y+d, byX+b,Y+d)=f(X,Y) [28.9]
e quindi

£ =T(9D), [28.10]

cioe ¥ ¢&la trasformata di & tramite T.

Dall’identita [28.7] si deduce immediatamente che, se P(x, y)€ &, cioé se
(x, ) € soluzione della [28.7], allora T(P)€ £. Viceversa, dalla [28.9] segue che
per ogni Q€ ¥ siha T~Y(Q)€ <. Quindi le relazioni [28.8] e [28.10] sono veri-
ficate dai supportidi £ edi 9, ein particolare i supportidi £ edi < sono
affinemente equivalenti.

Consideriamo una proiettivitd 7: PXK)— P%K) definita da

T(Ixgs X15 X)) = [GgoXo + oy X1 + gu Xy AroXg + X + A1y X, AyeXg+ Ay X, +
+ aZZXZ]Q

esia ¥ la curva di PXK) di equazione [28.2]. La curva & di equazione
F(aoo'Xo + amX, + a()zXz, an}Xo + a”X‘ + alzXz, amXO + a21X1 + aszz) = O

si dice trasformata di % tramite T ~'. Scriveremo

D =T (%).
Come nel caso affine, si verifica che
E=T(2D)

e le stesse relazioni sono soddisfatte dai supporti di & edi <.

28.3 DEFINIZIONE  Sia £ una curva di A*(K) (di E%; di P*(K)). Una curva
9 si dice affinemente equivalente (congruente; proiettivamente equivalente) a
Z se esiste un’affinita (un’isometria; una proiettivitd) T tale che & = T( D).

Nell’insieme di tutte le curve affini (euclidee; proiettive) quella che abbiamo
introdotto & effettivamente una relazione di equivalenza. La verifica si fa nel modo
usuale, ed & lasciata al lettore.

Dalle osservazioni che precedono la definizione si deduce che i supporti di due
curve affinemente equivalenti (congruenti; proiettivamente equivalenti) sono essi
stessi affinemente equivalenti (congruenti; proiettivamente equivalenti).

Nello studio delle curve algebriche piane affini (euclidee; proiettive) & naturale
considerare le proprietd che una curva ha in comune con tutte quelle ad essa affi-
nemente equivalenti (congruenti; proiettivamente equivalenti). Esse vengono deno-
minate proprieta affini (euclidee; proiettive).
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Ad esempio il grado di una curva ¢ una proprieta affine (euclidea; proiettiva)
cioé due curve affini (euclidee, proiettive) equivalenti hanno lo stesso grado.
Supponiamo assegnata una curva £ di A%2(K) avente equazione [28.1]. Per
denotare ’operazione di passaggio da % auna curva & affinemente equlva-
lente a £ & spesso conveniente considerare il cambiamento di variabili:
X=a,Y +a,Y +¢
[28.11]
Y=0,X"+a,X +c
corrispondente all’affinitd 7T considerata, in cui X’ ¢ Y’ sono nuove indetermi-
nate, ed effettuare la sostituzione [28.11] nel polinomio f. Si otterra il polinomio

gX', Y)=f(a,X +a,Y +¢, a0, X +a,Y +¢)
e ’equazione
gX’, Y)=0

¢ un’equazione di & = T~ ( %) nelle nuove indeterminate X’, Y.
Ponendo 4 = (g;)), ¢ = '(¢; ¢;), X' ='(X’ Y’) scriveremo anche

gX)=f(AX" +¢).
Considerazioni simili possono essere fatte nel caso proiettivo.

Uno dei problemi piti importanti che si pongono nello studio delle curve alge-
briche & quello della classificazione, in breve il problema di catalogare la totalita
delle curve in un modo conveniente che tenga conto delle loro proprieta geome-
triche.

A tal fine ¢ utile la nozione di equivalenza di due curve rispetto alle trasforma-
zioni del piano in cui sono definite, introdotta nella definizione 28.3. Infatti &
naturale cercare di classificare le curve a meno di equivalenza, individuando le
classi di equivalenza mediante loro particolari rappresentanti. Cid conduce alla
ricerca di una lista di cosiddette forme canoniche delle curve di dato grado, cioé
una lista di curve particolari, che abbiano equazione abbastanza semplice, nelle
quali ogni altra curva possa essere trasformata per mezzo di affinitd, o isometrie
O proiettivita.

Ad esempio, esiste una sola classe di equivalenza affine di rette, perché ogni
retta di A%2(K) pud essere trasformata in ogni altra. In questo caso il problema
della classificazione ¢ banale: ogni retta ¢ equivalente, ad esempio, alla retta di
equazione X =0. Lo stesso € ovviamente vero nel caso euclideo e in quello
proiettivo.

Le coniche si possono classificare in modo completo, anche se meno banal-
mente, e ciO verra fatto nei paragrafi 30 e 31. Naturalmente la lista delle forme
canoniche sard diversa a seconda che si stia considerando il problema nel caso
affine, o euclideo, o proiettivo.
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Per le curve di grado superiore a due il problema & ben piu difficile, anche
perché il punto di vista della riduzione in forma canonica mediante trasforma-
zioni non conduce a una classificazione soddisfacente. Gia per curve euclidee di
grado tre tale riduzione ¢ piuttosto complicata, ¢ le difficoltd aumentano note-
volmente con I’aumentare del grado. Nei casi affine e proiettivo la situazione non
¢ molto migliore (fanno eccezione le cubiche proiettive, della cui classificazione
ci occuperemo nel § 36).

Questa circostanza impone un approccio totalmente diverso alla classificazione
delle curve piane, che viene trattato in corsi piti avanzati.

In modo simile a come si € fatto per le rette nel paragrafo 25, & possibile defi-
nire la ‘‘chiusura proiettiva’’ di una curva affine o euclidea. Sara sufficiente con-
siderare il solo caso affine perché quello euclideo rientra in questo come caso par-
ticolare.

La chiusura proiettiva della curva £ di A*(K) di equazione [28.1] ¢ la curva
algebrica & * C P(K) definita dall’equazione [28.2], dove F(X,, X, X,) ¢ il poli-
nomio omogeneizzato di f(X, Y). Le curve £ e % * hanno lo stesso grado.

Segue dalla definizione che per ogni punto P(x, y)¢ Z il punto Jo(P)=
=1, x, y]€P? appartiene a £ * e che ogni punto di ¥ * N P>\H, ¢ immagine
tramite j, di un punto di &.

I punti di £ * N H, si dicono punti impropri di & rispetto a x,: sono i punti
[0, x;, x,] le cui coordinate omogenee soddisfano 1’equazione

F@, X, X))=0.
Scrivendo
JX,Y)=F,+F(X,Y)+ .. +F,_ (X, Y)+F (X, Y),
dove F, (X, Y)eK[X, Y] & omogeneo di grado k, otteniamo

F(Xp, X1, X)) =FoXg + Fi(X,, X) X5 '+ ... + F, (X, X)) X, +
+ F (X, X).

Allora
F(Oa Xls Xz) =F,,(X;, Xz),

e quindi le coordinate [0, x,, x,] dei punti impropri di % sono le soluzioni non
banali dell’equazione

Fn(Xls XZ) = 0

dove F,(X, Y) e il polinomio omogeneo costituito dai monomi di grado massimo
di f(X, Y).

Viceversa, supponiamo data una curva % di P?(K) di equazione [28.2], dove
F(X,, X,, X,)€K[X,, X|, X;] & un polinomio omogeneo non costante. La curva
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¥E'* di A2(K) di equazione [28.1], dove f(X, Y) ¢ il polinomio deomogeneizzato
di F, ha per supporto & N (P\H,).

Le due curve % e % * hanno lo stesso grado se € solo se X, non divide F. Se
X/ divide F, ma non lo divide XJ*', allora gr(£'*) =gr(£*) —r.

Una curva affine & C A*(K) & simmetrica rispetto a un punto C (detto cen-
tro di simmetria, o semplicemente centro, della curva) se C=1(¥ ), dove
T: A>— A? ¢ la simmetria di centro C (cfr. 14.6(4)). Se C= (0, 0), la simmetria
T corrisponde al cambiamento di variabili

X=-X
Y=-Y'.

Ne consegue che se & ha equazione f(X, Y) = 0, allora % & simmetrica rispetto

a (0, 0) se e solo se f(— X, — Y) = 0 & un’equazione di %. E immediato verificare

che cio equivale alla condizione che tutti i monomi di f abbiano grado pari. Piu
in generale, se C = (x,, ¥o) la condizione di simmetria ¢ che

f@x— X, 2y,— Y)=0

sia un’equazione di %,

Una curva euclidea % C E? & simmetrica rispetto a una retta %, denominata
asse di simmetria di %, se & = T(¥), dove T: E*> E? ¢ la simmetria di asse
z (cfr. esempio 20.10(4)). Supponiamo che # contenga I’origine, e abbia
equazione

aX+bY=0.

Normalizzando quest’equazione in modo che si abbia @ + b* =1, la simme-
tria T & data dal cambiamento di variabili

X=(010-2a)X"—2abY’
Y=—2abX' +(1-2bH)Y".
Se % ha equazione f(X, Y) =0, la simmetria di £ rispetto a z si esprime
con la condizione che
S- 2¢) X’ —2abY’, —2abX’' +(1-2b)Y')=0

sia ancora un’equazione di %Z.
In particolare la condizione che % sia simmetrica rispetto all’asse X = 0 (@ =1,
b=0) & che

S(=X,Y)=0

sia ancora un’equazione di £ cid equivale alla condizione che in tutti i monomi
di £ la variabile X appaia con grado pari. Similmente, % & simmetrica rispetto
all’asse Y =0 se e solo se in tutti monomi di f la Y ha grado pari.
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28.4 Complementi

1. Il concetto di curva algebrica piana pud introdursi in un qualunque piano
affine, euclideo o proiettivo.

Sia A un piano affine su K (rispettivamente, un piano euclideo).

Consideriamo I’insieme _% i cui elementi sono le coppie (Oe,e,, f(X, Y)),
dove Oe,e, & un riferimento affine (un riferimento cartesiano), ed f(X, Y)¢
¢K[X, Y] & un polinomio non costante.

Due elementi (Oe, e,, f(X, Y)), (O’e/e], g(X, Y)) di % sono equivalenti se

gX, Y)=af(@X+a,Y+c, ayX+a,Y+c),
per qualche o # 0, essendo
x=aux' +a,y’ +¢

y=ayx'+ayy’ +c

rolanl

le formule di cambiamento di coordinate dal riferimento O’e/e, al riferimento
Oe,e,. '

E una conseguenza delle proprieta dei cambiamenti di coordinate affini (di coor-
dinate cartesiane) il fatto che in questo modo si & definita una relazione di equiva-
lenza tra gli elementi di %,

Una classe di equivalenza in % & una curva algebrica di A. Diremo che la
curva algebrica rappresentata dalla coppia (Oe,e,, f(X, Y)) ha equazione

SX,Y)=0 [28.12]

nel riferimento Oe,e,. Il grado di una sua qualunque equazione ¢ il grado della
curva, € I’insieme % dei punti le cui coordinate nel riferimento Oe, e, soddi-
sfano la [28.12] é il suo supporto.

Dalla definizione segue che una curva algebrica in A & individuata da una sua
equazione in un dato riferimento.

Consideriamo ora il caso proiettivo. Sia P = P (V) un piano proiettivo, dove
V ¢ uno spazio vettoriale di dimensione 3 sul campo K. Consideriamo 1’insieme
i cui elementi sono le coppie (ee,8,, F(X,, X,, X,)), costituite da un sistema
di coordinate omogenee e,e, e, ¢ da un polinomio omogeneo non costante F(X,,
X, Xy) di K[X,, X, Xl

Due elementi (e, e, &,, F(X,, X;, X)), (g €/ e, G(X,, X,, X)) di si
dicono equivalenti se

G(Xy, X, X)) = aF(ayXy+ g X, + 0, X,, @, X, + a0, X, +
' a1, Xy Uy Xy + @y X, + a, X))

I alal

dove a€K* e A = (g;;) definisce il cambiamento di coordinate dal sistema eje; e,
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al sistema e,e, e,. Segue dalle proprieta dei cambiamenti di coordinate omogence
che la relazione cosi definita ¢ una relazione di equivalenza in &4
Una classe di equivalenza in & & una curva algebrica di P. L’equazione

F(X,, X, X;)=0 [28.13]

¢ una equazione della curva algebrica rappresentata dalla coppia (e,e, e,, F(X,
X, X)) e insieme % dei punti le cui coordinate omogenee nel riferimento
e,¢,e, soddisfano la [28.13] ¢ il suo supporto. 1l grado di una sua qualunque
equazione & detto grado della curva.

2.Sia ¥ C A*(K) la curva piana di equazione f(X, Y)=0, e siano
A =(a,;)€GLAK), c="'(c; ¢), X' ="(X" Y’). L’equazione

fAX +¢)=0 [28.14]

puo interpretarsi in due modi.
Per la definizione 28.3, la [28.14] pud essere considerata come ’equazione
di una curva piana & affinemente equivalente a %, e precisamente

¥ = Ty, ( ). D’altra parte possiamo interpretare la sostituzione
X=4X"+¢

come un cambiamento di coordinate affini, e quindi, per quanto visto in (1), la
[28.14] pud anche vedersi come un’equazione della stessa curva £ in un nuovo
riferimento.

Un’osservazione del tutto simile puo farsi per curve euclidee o proiettive.

3. Una generalizzazione naturale della nozione di curva algebrica piana & quella
di ““ipersuperficie algebrica’ di A"(K), E" o P*(K).

Un’ipersuperficie algebrica di A"(K) ¢ una classe di proporzionalita di poli-
nomi non costanti di K[X, ..., X,]. Se f(X,, ..., X,)€K[X], ..., X,] & un polino-
mio non costante, ’equazione

Xy X)=0 [28.15]

& un’equazione dell’ipersuperficie rappresentata da f, e il suo grado ¢ detto grado
dell’ipersuperficie. 1l supporto dell’ipersuperficie di equazione [28.15] & I’insieme
9 costituito dai punti P€ A" le cui coordinate sono soluzioni della [28.15]. In
modo simile si definisce un’ipersuperficie algebrica di E".

Un’ipersuperficie algebrica di P"(K) ¢ una classe di proporzionalita di poli-
nomi omogenei non costanti di K[X,, X, ..., X,]. Le nozioni di equazione,
grado, supporto si danno in modo del tutto analogo al caso delle curve piane.
Si osservi che questa definizione di ipersuperficie algebrica di P” & equivalente
a quella che abbiamo dato nell’esempio 24.5(5).

Un’ipersuperficie di A%, E? o P? & detta superficie, rispettivamente affine,
euclidea o proiettiva.
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Un’ipersuperficie di supporto £ viene di solito denotata con la lettera 2,
restando con cid sottinteso che una sua equazione ¢ stata assegnata. Un’ipersu-
perficie di grado 1 & un iperpiano, e se ha grado 2, 3, ..., si dice quadrica, cubica ecc.

11 lettore non avra difficolta a estendere al caso delle ipersuperfici algebriche
le definizioni di equivalenza affine, congruenza e equivalenza proiettiva.

Esercizi

1. Determinare chiusura proiettiva e punti impropri delle curve di A*(C) di equazioni

seguenti:
aQ) X+2Y*~1=0 b) X*Y*~1=0
Q) 3Y+XY+XY*=0 d) X’°Y-XY*+X*-Y=0.

2. Stabilire quali delle seguenti curve di E* sono simmetriche rispetto all’origine o
rispetto agli assi coordinati:

a) XY+Y*-Y=0 b) X+ Y+XY=0
Q) 1+X*+Y*=0.
3. Dimostrare che se f(X, Y)GR[X, Y] soddisfa f(X, Y)=f(Y, X), allora la curva

% CE? di equazione f(X, Y)=0 & simmetrica rispetto alla retta di equazione
X-Y=0.

29 Curve algebriche reali

Nel paragrafo 28 abbiamo considerato semplici esempi di curve di A*(R) il cui
supporto & ridotto a un solo punto, o addirittura ¢ @. Questi esempi dipendono
dal fatto che R non ¢& algebricamente chiuso; essi non si presentano per curve piane

complesse.
Precisamente, consideriamo in A%XC) una curva algebrica % di equazione
fX, Y)=0. [29.1]

e supponiamo che il polinomio f(X, Y) abbia grado m =1 nella variabile Y, cio¢
si scriva nella forma

X, V) =fX)+ LX) Y + . + (X)) Y™

con f(X), f1(X), ..., [,(X)eC[X]. Nel caso in cui f(X, Y) sia costante rispetto
a Y scambieremo la X con la Y nelle considerazioni che seguono.

Sia A il sottoinsieme finito di C costituito dalle radici di f,,(X). Per ogni
x€C\A il polinomio in Y

Jo, N=f ) +/i)Y+ ... +f,0) Y™ [29.2]
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ha grado m e quindi, per il teorema fondamentale dell’algebra, possiede m radici
7,00, ..., ¥,(x), non necessariamente distinte. I punti (x, y,(x)), (x, y,(x)), ...
wens (%, ¥,(¥)) di A%(C) appartengono alla curva %. Al variare di xeC\A4 si
ottengono cosi tutti i punti di %, con I’eccezione, al pitl, di un numero finito -
di punti, corrispondenti alle radici dei polinomi f(x, Y') per x€ A4, che non abbiamo
considerato. Poiché x, variando in C\ A, descrive un ente a due dimensioni reali,
anche la curva % ¢, dal punto di vista reale, un ente a due dimensioni. In partico-
lare deduciamo che il supporto di una curva affine complessa contiene infiniti punti.

Un ragionamento simile porta a dimostrare che anche il supporto di una curva
proiettiva complessa contiene infiniti punti. Supponiamo infatti che la curva ¥
di P%(C) abbia equazione

F(X,, X,, X,)=0.

Se si suppone che il supporto di £ non si riduca alla retta X, = 0, nel qual caso
essa ha infiniti punti, passando a coordinate non omogenee si trova che il sup-
porto di % contiene quello della curva affine di equazione

F(, X, Y)=0,
il quale, per quanto appena visto, contiene infiniti punti.
29.1 DErINIZIONE Una curva algebrica ¥ di A*(C) si dice reale se puo
essere definita da un’equazione
JX, Y)=0, [29.3]

dove f(X, Y)eRI[X, Y.
Se ¥ & una curva di A*(C), di equazione

JX, Y)=0
con f(X, Y)eCIX, Y1, la curva Z di equazione
fx, Y)=0,

dove f_ (X, Y) é il polinomio complesso coniugato di f(X, Y) (cioé il polinomio
avente per coefficienti i coniugati dei coefficienti di f), é detta curva complessa
coniugata di %.

Definizioni analoghe si danno di curva proiettiva reale e di curva proiettiva
complessa coniugata di una curva di P*(C).

Si noti che la [29.3] & equivalente ad una qualsiasi delle equazioni
af(X, Y)=0

a € C*, e che quindi una curva reale pud anche essere definita da un polinomio
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a coefficienti non reali; tuttavia, perché la curva sia reale deve esistere un polino-
mio a coefficienti reali che la definisce. -

Per definizione, una curva ¥ &reale seesolose ¥ = ¥ .

Poiché C? ¢ anche uno spazio vettoriale reale di dimensione 4, il piano affine
complesso A2(C) pud essere considerato come uno spazio affine reale di dimen-
sione 4. Per ogni punto P(x’ +ix”, y' +iy”")€A%(C), (x', x", y', ¥") & la qua-
terna delle coordinate reali di P nel riferimento affine reale di A?(C) avente come
origine 0 e come base dei vettori

{a, 0, G, 0), (0, 1), (0, )}.
A?(R) ¢ un sottospazio affine reale di A%2(C) avente equazioni
X"=0, Y =0.

Consideriamo una curva algebrica % di A%(C). 1l sottoinsieme % N A%(R),
costituito dai punti di £ a coordinate reali, & ’insieme dei punti reali di %,
Dalla definizione segue che i punti reali di £ dipendono dalla posizione di %
rispetto al piano A%(R).

Ad esempio, la retta

iX+iY+1=0 [29.4]
non ha punti reali, mentre la retta

iX+Y+1=0 [29.5]
possiede 1’unico punto reale (0, — 1). Nessuna delle due ¢ una retta reale. Invece

iX+iY+i=0
coincide con la retta di equazione

X+Y+1=0, [29.6]

che € una retta reale, e ha infiniti punti reali. Si noti che le [29.4], [29.5] e [29.6]
sono affinemente equivalenti: esse differiscono solo per la loro posizione rispetto
ad A*(R).

La [29.3] puo essere considerata in due modi: come I’equazione di una curva
algebrica %’ di A%(R), oppure come quella di una curva algebrica reale % di
AZ%(C). Il supporto di % ' & I’insieme dei punti reali di Z. 1 puntidi Z\% "
vengono chiamati punti non realidi & e di % '. Molto spesso & conveniente
interpretare una curva di A2(R) come una curva reale di A%(C), considerandone
anche i punti non reali. Cid vale anche per le curve di E2. Un esempio tipico &
fornito dalle circonferenze, che possono essere caratterizzate da alcune condizioni
di cui una riguarda i loro punti non reali (cfr. 32.3(2)).

Consideriamo un’affinita 7: A2(C)— A?(C), definita da

T(x, y) = (a;x + a,y + ¢, ayX + apy +¢y), [29.7]
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dove A = (a,) €GL,(C), ¢, c,€C. E evidente che in generale T(A2(R)) non & con-
tenuto in A%(R), cioé un’affinitd complessa non trasforma punti reali in punti
reali. Le curve [29.4], [29.5] e [29.6] esemplificano questo fatto, essendo curve
affinemente equivalenti ma con insiemi di punti reali di natura completamente
diversa tra loro. Gli stessi esempi mostrano anche che un’affinita in generale non
trasforma curve reali in curve reali.

Abbiamo pero il seguente risultato:

29.2 TeoreMA Sia T: A*(C)~ A%(C) affinita definita dalla [29.7]. Le con-
dizioni seguenti sono equivalenti:

1) T(A%(R)) = A%(R).

2) AeGL,(R), ¢, c;€R.

3) La trasformata T(¥) di ogni curva reale & C A*(C) & una curva reale.

Dimostrazione

L’equivalenza di (1) e (2) e 'implicazione (2) = (3) sono evidenti. Per dimo-
strare che (2) < (3) si osservi che le rette reali X = 0 ¢ Y = 0 sono trasformate rispet-
tivamente nelle rette:

aX+a,Y+c =0
ayX+a,Y+c,=0.

Perché queste siano reali dev’essere verificata la (2).

Consideriamo ora il caso proiettivo. Il piano proiettivo complesso P%(C) con-
tiene come sottoinsieme P2(R), che si identifica con il sottoinsieme costituito dai
punti [x,, x,, X,] € P2(C) tali che x,, x;, x,€ R. L’analogia con il caso affine non
si estende oltre, perché il piano proiettivo complesso non puo essere in alcun modo
considerato come uno spazio proiettivo reale.

Consideriamo una curva proiettiva % C P%(C), di equazione

F(X,, X,, X,)=0. [29.8]

Similmente al caso affine, i punti di & N P*(R) si dicono punti reali di ¥%.

Se F(X,, X, X9 €R[X,, X, X,l, la [29.8] pud essere interpretata sia come
’equazione di una curva reale £ di P2(C) sia come I’equazione di una curva
% ' di P*(R) il cui supporto coincide con I’insieme dei punti reali di Z.

If seguente risultato & Panalogo proiettivo del teorema 29.2.

29.3 TeoreMA Sia f: P*(C)— P2(C) una proiettivita. Le seguenti condizioni
sono equivalenti:

1) f(P*(R)) = P*(R).

2) f puo essere definita da una matrice A € GL,(R).

3) La trasformata f (%) di ogni curva reale % C P*(C) é una curva reale.
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La dimostrazione del teorema 29.3 & simile a quella di 29.2, ed ¢ lasciata al
lettore.

29.4 Esempi
1. Consideriamo la conica reale di equazione
X+ Y*=0. [29.9]
Poiché
X2+ Y =(X+iY)(X-1iY),
il supporto della [29.9] si decompone nell’unione dei supporti delle due rette

X+iY=0

X-1Y=0,
che sono due rette non reali, complesse coniugate, il cui unico punto reale &
Porigine.
2. Consideriamo la conica reale ¥ di equazione
X+ Yi=c, [29.10]

dove ceR. Se ¢ =0 otteniamo I’esempio (1). Se ¢> 0 e consideriamo E? in
A2(C), allora i punti reali di & sono quelli della circonferenza di centro I’ori-
gine e raggio Ve. Se invece ¢ < 0, allora % non ha punti reali (¢ una “circonfe-
renza di raggio immaginario’).

Si noti che i due casi ¢>0 e ¢< 0 sono affinemente equivalenti in A2(C).
Infatti la sostituzione

X=iX* Y=iY*
trasforma la conica [29.10] nella conica di equazione
X*¥ 4+ Y*=—c.

Questo mostra che le coniche [29.10] con ¢ # 0 sono tutte tra loro affinemente
equivalenti in A%(C). Cio che le differenzia & la loro posizione rispetto a A%(R).

Una situazione simile a questa si ha per tutte le coniche reali, che verranno
discusse in maggiore dettaglio nei paragrafi successivi.

3. Considereremo ora alcuni esempi di curve affini reali di grado tre, le cosid-
dette parabole cubiche di Newton. Queste sono cubiche reali £ di equazione

Y’=aX3+bX*+cX +d, [29.11]

a, b, c, deR, a#0, il cui luogo dei punti reali ha una forma che dipende dalle
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radici A, g, v del polinomio aX?® + bX?+ cX + d. Tali radici corrispondono ai
punti (%, 0), (g, 0), (v, 0) di intersezione di % con I’asse Y = 0.

Si possono presentare i seguenti casi:

A, u, v sono reali e distinte. Si ha la cosiddetta parabola campaniforme con
ovale (fig. 29.1a).

A, u, v sono distinte, e due delle tre radici sono non reali e complesse coniu-
gate. Si ha la parabola campaniforme senza ovale (fig. 29.1b).

A, u, v sono reali e due di esse sono uguali tra loro (A = p). Si ha la parabola
campaniforme puntata (fig. 29.1¢), oppure la parabola nodata (fig. 29.1d) a
seconda che A = u < v oppure A =p>v.

A =pu = v reale. Si ha la parabola cuspidata (fig. 29.1¢e).

Un’importante generalizzazione delle nozioni introdotte in precedenza é la
seguente.

Una curva % di A2(C) & definita su K se pud essere definita da un’equazione
[29.3] tale che f(X, Y)eK[X, Y1. I punti di £ N A%(K) si dicono punti K-
razionali di &. Nel caso particolare K = R si riottengono le nozioni di curva reale
e di punti reali.

Un caso importante ¢ K = Q. Esso corrisponde allo studio geometrico delle equa-
zioni polinomiali su Q, e delle loro soluzioni in Q e in Z. Vediamo alcuni esempi.

Consideriamo la curva % di equazione

X1 ryi=1, [29.12]

il cui supporto nel piano euclideo € la circonferenza di centro ’origine e raggio
1. Un punto Q-razionale della {29.12], che possiamo scrivere nella forma

(£p/r, £q/1), P, q, r€N, [29.13]
da luogo a una terna di numeri naturali (p, g, r) tali che
pPr+g=r

cioé a una ferna pitagorica. La ricerca delle terne pitagoriche si pud quindi ricon-
durre a quella dei punti Q-razionali della curva [29.12].

Si dimostra che esistono infinite terne pitagoriche, e questo pud essere fatto
facilmente con il seguente ragionamento geometrico.

Consideriamo una retta z del fascio di centro il punto (1, 0). z ha equazione

X+AY—-1=0.

Calcoliamo le intersezioni di z con %. Sostituendo X =1— A Y nella [29.12]
otteniamo I'equazione in Y

M+1)Y2-2)Y=0.



29/Curve algebriche reali 353

(b)

>
Il

o

(d)

(e} Figura 29.1
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La radice Y = 0 corrisponde al punto (1, 0), mentre I’altra radice corrisponde
a un altro punto di intersezione di z con %, le cui coordinate sono

(= A)/(A+ 2D, —20/(1+ 21?).
Notiamo che anche il punto di coordinate
2= 1D/(1 + 23, 20/(1+ 1Y)

appartiene a %. Al variare di A in N si ottengono in questo modo infiniti punti
della forma [29.13], e quindi le infinite terne pitagoriche

(Ar—1, 2%, 1+2%), AeN.
Un altro esempio & costituito dall’equazione
X*-2Y%=1, [29.14]

interessante per il fatto che ogni sua soluzione (x, y) soddisfa la condizione

cosicché, al crescere di y, | x/y | costituisce un’approssimazione via via migliore
di 2. E noto che la [29.14] possiede infinite soluzioni in Q? (¢ addirittura in Z2),
ognuna delle quali fornisce nel modo detto un’approssimazione razionale di V2.
Le approssimazioni che cosi si ottengono sono molto accurate. Ad esempio, la
soluzione (1393, 985) fornisce il valore

1393/985 = 1,4142131.

La [29.14] ¢ I’equazione di un’iperbole, che € una conica affine di un tipo par-
ticolare (cfr. §§ 31 e 32).
Si osservi anche che, al contrario della [29.14], la curva
X2-2Y%=0
ha (0, 0) come unico punto Q-razionale, perché /2 & irrazionale.
Consideriamo ora la curva %, di equazione
X"+Y"-1=0, n=3.

Per nessun valore di »=3 sono noti punti Q-razionali (x, y)e%, tali che
x#0#y. Un celebre problema posto da Fermat ¢ di stabilire se £, possiede
punti Q-razionali per qualche n = 3, ovvero, equivalentemente, di stabilire se per
qualche n = 3 equazione

X"+ Y"=2"

possiede o meno soluzioni in numeri interi (x, y, z) tali che xyz # 0. Un recente
risultato (G. Faltings, 1983) implica che tali soluzioni, se esistono, sono al pil
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in numero finito. Questo problema, nonostante la sua semplice formulazione, si
& rivelato molto difficile, avendo resistito a tutti i tentativi di soluzione da piu
di tre secoli.

30 Classificazione delle coniche proiettive

L’equazione di una conica ¥ di P?=P*(K) pud scriversi nella forma
an X1 +2a,X, X, + @, X3+ 200y X0 Xy 4 20, X0 X, + 03 X 5= 0, [30.1]
con a;, €K, non tutti nulli.
Poniamo
Ay =4y Qg =04y, Gy =04y
e consideriamo la matrice simmetrica
dyo o A
A=la, a, apl.
Ay @ day

Indicato con X il vettore colonna (X, X, X,) delle indeterminate, la [30.1]
pud anche scriversi, concisamente,

'XAX =0. [30.2]

Consideriamo ora una matrice MeGL,(K). Se nella [30.1], oppure nella
[30.2], sostituiamo MX al posto di X, otteniamo ’equazione

‘X BX =0, [30.3]

dove B="'MAM. Per la definizione 28.3, la conica & di equazione [30.3] &
proiettivamente equivalente alla conica £, e viceversa ogni conica proiettivamente
equivalente a % si ottiene in questo modo per qualche M¢ GL,(K).

Osserviamo che det(B) = 0 se e solo se det(A4) = 0; pil precisamente, 4 ¢ B
hanno lo stesso rango. Pertanto i/ rango di A é una proprieta proiettiva deila conica
&% esso si dice rango di %, e si denota con r(%). In particolare I’annullarsi o
meno di det(A) & una proprieta proiettiva di %. Si noti che sussistono le disugua-
glianze

1<r(%)=<3
perché uno almeno dei coefficienti a;, ¢ diverso da zero.

30.1 DeFNIZIONE La conica & @ non degenere se det(4) # 0, degenere se
det(A4) = 0; ¢ semplicemente degenere se r(%£) =2, doppiamente degenere se

r)=1.
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Consideriamo il problema di classificare le coniche di P2, cioé di trovare dei
particolari tipi di equazioni [30.1] (dette forme canoniche) tali che ogni conica
di P? sia proiettivamente equivalente ad una di esse. Tratteremo i casi K algebri-
camente chiuso e K= R.

30.2 TEOREMA Supponiamo K algebricamente chiuso. Ogni conica & di
P2(K) é proiettivamente equivalente a una delle seguenti:

X2+ X?+ X2=0 conica generale;
Xi+Xi=0 conica semplicemente degenere;
X2=0 conica doppiamente degenere.
e queste tre coniche sono a due a due non proiettivamente equivalenti.

Dimostrazione

Come abbiamo visto, una proiettivitd di matrice M trasforma la conica di equa-
zione [30.2] nella conica [30.3]. Poiché B = ‘MAM ¢& congruente ad A4, per il teo-
rema 16.2 esiste M€ GL,(K) tale che B sia una delle matrici:

1 00 1 00 1 00
01 0,01 0}, |0 O O}
0 0 1 000 0 00

I tre casi corrispondono a r(%) =3, 2, 1 rispettivamente, e sono le matrici
delle tre coniche dell’enunciato. Pertanto £’ ¢ proiettivamente equivalente ad una
di esse. Poiché tali coniche hanno ranghi diversi, esse sono a due a due non proiet-
tivamente equivalenti.

Il teorema precedente pud anche enunciarsi cosi: se K & algebricamente chiuso,
in P2(K) esistono precisamente tre classi di equivalenza proiettiva di coniche,
ognuna delle quali é individuata dal rango delle coniche che vi appartengono.

Se K non ¢ algebricamente chiuso la situazione & in generale diversa. Il teo-
rema seguente afferma che nel caso K =R le classi di equivalenza proiettiva di
coniche sono cinque.

30.3 TeoreMA Ogni conica € di P*(R) é proiettivamente equivalente a una
delle seguenti:
X2+ X?—~X32=0 conica generale;

X3+ X2+ X2=0 conica generale a punti non reali;

Xi—Xi=0 . . .
coniche semplicemente degeneri;
X3+X31=0
- X2=0 conica doppiamente degenere.

Queste cinque coniche sono a due a due non proiettivamente equivalenti.
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Dimostrazione

Utilizzando il teorema di Sylvester e ragionando come nella dimostrazione del
teorema 30.2, si deduce che ogni conica £ di P?(R) & proiettivamente equiva-
lente ad una delle cinque coniche dell’enunciato.

Per dimostrare che due qualsiasi di esse non sono proiettivamente equivalenti
si osserva che due delle equazioni della lista rappresentano coniche di diverso rango,
oppure di stesso rango ma aventi supporti diversi: la conica generale a punti non
reali ha supporto @, il che non avviene per la conica generale; le due coniche sem-
plicémente degeneri hanno supporto costituito rispettivamente da due rette distinte,
e da un solo punto.

30.4 Osservazioni

1. Dai teoremi precedenti si deduce, in particolare, che una conica proiettiva
doppiamente degenere ha per supporto una retta: infatti il polinomio che la defi-
nisce ¢ il quadrato di un polinomio di primo grado, sia nel caso reale che in quello
di K algebricamente chiuso.

Una conica semplicemente degenere & invece definita da un polinomio che, nel
caso di K algebricamente chiuso, si spezza nel prodotto di due polinomi distinti
di primo grado, e quindi la conica ha per supporto 'unione di due rette distinte.
Nel caso reale, come gia osservato nel corso della dimostrazione del teorema 30.3,
lo stesso avviene per la prima delle due coniche semplicemente degeneri (di eq.
X?%— X?=0), mentre altra (di eq. X2+ X?=0) ha per supporto un solo
punto.

2. Per ogni MeGL,(K), lIa [30.3] si pud pensare come I’equazione di ¥
stessa rispetto a un diverso sistema di coordinate (cfr. 28.4(2)).

Con ovvie modifiche, la dimostrazione del teorema 30.2 pud essere adattata
per dimostrare che, nel piano proiettivo P?(K), per ogni conica esiste un oppor-
tuno riferimento nel quale essa ha una delle tre equazioni elencate.

Un’osservazione simile puo farsi nel caso di P2(R).

3. Dal teorema 30.3 segue che se una conica non degenere di P?(R) possiede
un punto, allora ne possiede infiniti.

Infatti, poiché due coniche proiettivamente equivalenti possiedono supporti
proiettivamente equivalenti, € sufficiente verificare I’asserzione per un rappresen-
tante di ogni classe di equivalenza proiettiva di coniche non degeneri, cioé per
le coniche non degeneri elencate nel teorema 30.3, il che ¢ immediato.

30.5 Complementi

Quasi tutte le considerazioni fatte per le coniche proiettive si estendono alle
quadriche di P*(K), n= 3. Una quadrica .2 di P"(K) ha un’equazione della
forma

0(X)=0, [30.4]
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dove X='(X, X; ... X)), e OQ(X) ¢ un polinomio omogeneo di secondo
grado, che, come sappiamo (cfr. § 15), si pud esprimere nella forma

Q(X) ='XA4X,

con A€M, (K) simmetrica. Se MeGL,_,(K), e se sostituiamo MX al posto di
X nella [30.4], otteniamo una nuova quadrica 2’ di equazione
'XBX =0,

dove B = '‘MAM. &' ¢ proiettivamente equivalente a .2, e ogni quadrica proiet-
tivamente equivalente a.Z¢ ottenuta in questo modo per qualche matrice M. Poi-
ché il rango di A e quello di B sono uguali, deduciamo che r(A4) & una proprieta
proiettiva di .Z; esso si chiama dunque rango di <2, e si denota con r(<). Diremo
Z non degenere (o viceversa degenere) se r(Z)=n+1 (se r(Z) < n).

I teoremi 30.2 e 30.3 possiedono le seguenti generalizzazioni al caso delle iper-
superfici quadriche di P*(K).

Se K & algebricamente chiuso, ogni quadrica 2 di P"(K) & proiettivamente
equivalente alla quadrica di equazione
X3+ X3+ .. +Xi=0,

dove r+1=r(9).
Ogni quadrica 2 di P"(R) é proiettivamente equivalente a una e una sola qua-
drica della forma

X2+ X34 .+ X2_ X2 — .. —X2=0,

per quaiche 0<p<r=<n, tali che 2p=r—1.

Le dimostrazioni sono del tutto simili a quelle dei teoremi 30.2 e 30.3.

Esercizi

1. Classificare le seguenti coniche di P*(R), determinandone rango ed equazione
canonica:

a) Xi- X+ X, X,=0 b) Xo X, + X X+ Xo X, =0
) Xe+ X+ X2 -2X X, +2X0 X2 - 2X: X2 =0.

2. Classificare ciascuna delle coniche dell’esercizio precedente in P*C).
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31 Classificazione di coniche affini e coniche euclidee

In questo paragrafo studieremo le coniche affini e vedremo come esse possono
essere classificate nei casi K algebricamente chiuso e K = R. Ci occuperemo dello
stesso problema anche nel caso delle coniche euclidee.

Una conica % di A*= A*(K) ha un’equazione della forma

ay X +a, Y+ 20, XY + 20y, X + 205, Y + 0y =0, [31.1]

dove a;,€K € ay;, ay, a;, non sono simultaneamente nulli.

Come nel caso proiettivo, porremo a,, = a;5, @1y = @y, @y = 4, € considere-
remo la matrice simmetrica 4 = (g;,). Possiamo anche rappresentare I’equazione
[31.1] in forma pitt concisa scrivendo:

dyp dy Qo 1
1 X Y) |ay ay ay X|=0. [31.2]
dy Oy 04p Y

Consideriamo M = (m,) € GL,(K), ¢,, ¢,€K. Effettuando nella [31.1] la sosti-
tuzione
X=m X' +m,Y +c¢
[31.3]
Y=m X +mypY +¢,
otteniamo I’equazione di una'conica & affinemente equivalente a %, e ogni
conica affinemente equivalente a % si ottiene in questo modo per qualche M,
Cps G-
Per rappresentare in modo conveniente ’equazione di & esprimiamo le [31.3]
nella forma matriciale

()= (oo ) () + (2

o nella forma equivalente

1 1
X|=M|Xx"|, [31.4]
Y Y’
dove
1 0 o

[31.5]

X
I
Ky
3
3

G My my
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Eseguendo la sostituzione [31.4] nella [31.2] otteniamo I’equazione di < nelle
nuove variabili X', Y':

1
a x'vy) Bl|x'|=0, [31.6]
y’
dove
B="'MAM. [31.7}

Dalla [31.7] si vede che B ¢ A hanno lo stesso rango, e quindi i/ rango di A
& una proprieta affine della conica %, che chiameremo rango di &, e denoteremo
con r(%).

La conica £ & non degenere, degenere, semplicemente degenere, doppiamente
degenere, a seconda che si abbia rispettivamente r(%) = 3, r(¥) < 3, r(¥) =2,
r&)=1.

Denotiamo con A4, la seguente sottomatrice di A:

a;,; a4y
A= (
a4y ay

e con B, la corrispondente sottomatrice di B. Allora
B, = '"MAM. [31.8]

Per vederlo si osservi che la sostituzione [31.3] si puo ottenere come composi-
zione delle due sostituzioni successive

() -(-)+ Q)
()= o ) ()

La prima sostituzione, che € una traslazione, non modifica i termini di secondo
grado dell’equazione di . Osservando poi che A, ¢ la matrice simmetrica della
forma quadratica su K? definita dai termini di secondo grado della [31.1], si
deduce che la seconda sostituzione cambia A, in B, secondo la formula [31.8].

Dalla [31.8] deduciamo che A, ¢ B, hanno lo stesso rango e quindi i/ rango
di A, & una proprietd affine di %.

Se det(4y) #0, & & una conica a centro, e se det(4y) = 0 & una parabola.

Nel caso particolare K =R la formula [31.8] implica che il segno di det(A4,)
¢ lo stesso di quello di det(B,), e quindi anche det(A4y) > 0 e det(4,) < 0 sono pro-
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prieta affini di . Se la conica & di A*(R) di equazione [31.1] & a centro, allora
¥ & un’ellisse o un’iperbole a seconda che det(A,)>0 o det(A,)) <O0.

Dimostreremo ora il teorema di classificazione delle coniche affini nei casi K
algebricamente chiuso e K=R.

31.1 TEOREMA Ogni conica di A*(K) & affinemente equivalente a una delle
seguenti:
1) K algebricamente chiuso:

X +Y?2-1=0 conica a centro

X’+Y2=0 conica a centro degenere

Y2-X=0 . parabola

Y’-1=0 parabola degenere

Y2=0 conica doppiamente degenere
2) K=R:

X2+ Y2~1=0 ellisse
X*+ Y?2+1=0 ellisse a punti non reali
X*+Y*=0 ellisse degenere

X2—-Y?>-1=0 iperbole

X*-Y?*=0 iperbole degenere
Y?2-X=0 parabola
Y2-1=0
} parabole degeneri
Y’+1=0
Y:=0 conica doppiamente degenere.

Le coniche di ognuno dei gruppi precedenti sono a due a due non affinemente
equivalenti.

Dimostrazione

Parte della dimostrazione sara data nei due casi simultaneamente. Supponiamo
che ¥ abbia equazione [31.1]. Per trasformare % in una delle coniche dell’e-
nunciato abbiamo a disposizione una sostituzione [31.3], o, equivalentemente, una
successione finita di tali trasformazioni. Procederemo in diversi passi.

Passo 1: eliminazione del termine 2a,XY
Per il teorema 16.1 € possibile trovare una matrice M€ GL,(K) tale che la
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sostituzione

=)

trasformi Pequazione [31.1] nella [31.6] in cui B, sia una matrice diagonale.
Possiamo quindi supporre a,, = 0, cioé che % abbia equazione

a, X 4+ apY? + 200X + 20, Y + 4y =0. [31.9]

Notiamo che % ¢ una conica a céntro se e solo se @,;@, #0.

Passo 2: eliminazione di termini di primo grado e del termine costante
Supponiamo che % sia a centro. Allora, mediante la traslazione

X=X -2
ay
Y=Y - 22
ax

I’equazione [31.9] si trasforma nella seguente:
@, X' P+ a,Y' P+ ¢yy=0, [31.10]

dove ¢y €K si esprime per mezzo dei coefficienti della [31.9].
Se £ non ¢ una conica a centro possiamo supporre, salvo scambiare fra loro
le variabili, che a,;, =0 e a,, #0. La traslazione

X=X’

Y=Y -2
a

trasforma la [31.9] nella seguente:
a4, Y P+ 200X +dy=0,
per un opportuno dg,. Se a, = 0 otteniamo 1’equazione
4, Y'?+dyy=0, [31.11]
mentre, se a, # 0, possiamo eseguire [ulteriore traslazione
dyo
2a,,

X' =X" -

Yl —_ Yl/’
ottenendo la nuova equazione

an Y " + 20, X" =0. [31.12]
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Passo 3: normalizzazione dei coefficienti

Dobbiamo distinguere il caso K = R da quello in cui K & algebricamente chiuso.

K algebricamente chiuso. Se % & una conica a centro e quindi & stata trasfor-
mata nella conica di equazione [31.10], possiamo supporre che ¢, sia — 1 oppure
0 (se ¢, # 0 basta moltiplicare primo e secondo membro della [31.10] per — ).

Eseguendo la sostituzione

X

X' =
Vay,
Y

Y =
Vay,

otteniamo rispettivamente la prima e la seconda equazione della lista (1).
Se % non & a centro ed & stata trasformata nella conica di equazione [31.11}
possiamo supporre che dy, sia —1 oppure 0. Mediante la sostituzione

X =X
Y

Y =
Vay,

ci si riconduce alla quarta e alla quinta equazione rispettivamente (nel caso
d,, = 0 & sufficiente moltiplicare primo e secondo membro della [31.11] per a5').

Se infine & ¢& stata trasformata nella conica di equazione [31.12], la sosti-
tuzione

X" = X
—2a,
Y
Y!l —
Vay,

trasforma la [31.12] nella terza equazione dell’enunciato (parabola).

K=R. Se ¥ ¢una conica a centro e quindi ¢ stata trasformata nella conica
di equazione [31.10], possiamo supporre che ¢, sia —1 oppure 0 ed eseguire la
sostituzione

X
X' =—=
Vil
yro Y
Via,,l

con la quale ci si riconduce a una delle prime cinque equazioni della lista (2).
Se la conica % non ¢ a centro, ed & stata trasformata nella conica di equa-
zione [31.11], possiamo supporre che dy, sia —1 oppure 0 ed eseguire la sosti-
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tuzione
X' =X
A
Vlia,l

con la quale ci si riconduce a una delle ultime tre equazioni della lista (2).
Infine, se ¥ ¢ stata trasformata nella conica di equazione [31.12], possiamo
supporre a,, > 0. La sostituzione

X" = X
- 2a01
Y
Y” —
Vay,

trasforma la [31.12] nella sesta equazione della lista (2) (parabola).

L’ultima asserzione del teorema segue dall’osservare che, in ognuno dei casi
(1) e (2), due coniche diverse della lista possono distinguersi una dall’altra attra-
verso r(A), o r(Ay, oppure attraverso il fatto che hanno diverso supporto. I teo-
rema 31.1 & dimostrato.

Confrontando gli enunciati dei teoremi 30.2, 30.3 e 31.1 vediamo che le possi-
bili forme canoniche delle coniche affini sono pilt numerose di quelle delle coni-
che proiettive. Cid non sorprende se si osserva che la riduzione in forma canonica
si & ottenuta, sia nel caso affine che in quello proiettivo, essenzialmente operando
sulla matrice simmetrica 4 associata a una equazione di % mediante una oppor-
tuna trasformazione della forma [31.6]. La matrice M€ GL,(K) pud essere scelta
in modo arbitrario nel caso proiettivo, e invece della forma particolare [31.5] nel
caso affine. Pertanto, avendosi nel caso proiettivo pill matrici a disposizione che
in quello affine per eseguire la riduzione, due matrici A e B riducibili una all’altra
nel senso affine lo saranno anche in quello proiettivo, ma il viceversa non sara
necessariamente vero.

Si noti che le classi di equivalenza affine di coniche di A2(K) sono in numero
finito in ognuno dei casi considerati.

31.2 Osservazioni

1. Una conica a centro & cosi chiamata perché possiede un centro di simme-
tria, cioé esiste un punto C(x,, y,) € A rispetto a cui % & simmetrica. Il centro
di simmetria ¢ unico.

Se ¥ ha equazione [31.1], il centro C ha per coordinate la soluzione (Xos Vo)
del sistema

a,1X+a,2Y+ am:O a2]X+a22Y+a20=0 [31'13]

(il sistema [31.13] ha un’unica soluzione per P’ipotesi det(4,) # 0).
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Per dimostrarlo si effettua la sostituzione

X=2x—- X'
[31.14]
Y=2y,- Y’

sul primo membro della [31.1]. Si vede subito che il polinomio che cosi si ottiene
¢ proporzionale al primo membro della [31.1], ed ¢ effettivamente uguale ad
esso (ma come polinomio nelle nuove variabili) se e solo se (x, ¥, ¢ solu-
zione del sistema [31.13]. Pertanto (x,, ¥,) € I'unico centro di simmetria di ¥

(cfr. 28.4(3)).
Le rette che passano per il centro di % si dicono diametri della conica.

2. 1l significato geometrico della distinzione delle coniche di A*(R) in ellissi,
iperboli € parabole si pud spiegare facilmente se si considerano i punti impropri
di %, Per ottenerne le coordinate bisogna risolvere I’equazione omogenea di
secondo grado

a, X+ apXi+2a,X,X,=0, [31.15]

il cui discriminante & — det(A,). Quindi le soluzioni dell’equazione [31.15] sono
rispettivamente reali e distinte, reali e coincidenti, oppure complesse coniugate
(non reali) a seconda che ¥ sia un’iperbole, una parabola o un’ellisse, ovvero
abbia due, uno, nessun punto improprio reale (ossia, nel caso dell’ellisse, abbia
due punti impropri complessi non reali).

In altre parole, la distinzione in tre tipi di coniche corrisponde ad altrettanti
possibili comportamenti all’infinito.

3. Nella dimostrazione del teorema 31.1 I’ipotesi K algebricamente chiuso
oppure K = R ¢& stata utilizzata solo nel passo 3 (normalizzazione dei coefficienti).
Dalla dimostrazione di 31.1 segue pertanto che, qualunque sia il sottocampo K
di C, ogni conica di A%(K) & affinemente equivalente a una delle coniche [31.10],
[31.11], [31.12].

Passiamo ora a considerare il caso delle coniche euclidee. Le definizioni di rango,
di conica non degenere, degenere, semplicemente o doppiamente degenere, hanno
ovviamente senso anche in questo caso. Ha pure senso la definizione di conica
a centro, di parabola, di ellisse e di iperbole.

31.3 TEOREMA Ogni conica ¥ di E* é congruente a una delle seguenti:

2 2
X4 Y 1 @=zb>0  eliisse
a*>  b?
2 2
X + Y 1 (@=b>0) ellisse a punti non reali

a? b?
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2 2
Lz + X0 @=b>0 ellisse degenere
a b?
2 2
Lz__z_—_-l (>0, b>0) iperbole
a b?
X? Y?
== (a=bh>0) iperbole degenere
a b*
Y?-2pX=0 (p>0) parabola
Y?—a*=0 @=0)
} parabole degeneri
Y*+a*=0 (@>0)
Y2=0 conica doppiamente degenere.

Le coniche precedenti sono a due a due non congruenti.

Dimostrazione

Supponiamo che % abbia equazione [31.1]. Un’isometria modifica I’equa-
zione di % mediante la sostituzione [31.3] in cui M & una matrice ortogonale.

Potremo quindi procedere come nella dimostrazione del teorema 31.1, avendo
perd a disposizione solo cambiamenti di coordinate in cui la matrice M ¢& orto-
gonale.

Per il primo passo della dimostrazione (eliminazione del termine 2a,,XY’) pos-
siamo utilizzare il teorema spettrale (teorema 22.3) per diagonalizzare la matrice
A,: questo teorema afferma che esiste M€ O(2) tale che la sostituzione [31.3] tra-
sformi ’equazione [31.1] nella [31.6] in cui B, ¢ una matrice diagonale; gli ele-
menti diagonali di B, sono gli autovalori di A,.

Possiamo quindi supporre che % abbia equazione [31.9] con a;, ed a,, non
entrambi nulli. Il secondo passo della dimostrazione del teorema 31.1 si pud ripe-
tere parola per parola anche nel nostro caso. Possiamo quindi ricondurci ad un’e-
quazione della forma [31.10], [31.11] o [31.12].

A questo punto non ¢ difficile riconoscere che queste equazioni, ove si sosti-
tuiscano le variabili X', Y’ ed X”, Y” con X, Y, sono quelle dell’enunciato.

Consideriamo infatti la [31.10]. Se ¢, # 0 possiamo dividere per =1 e otte-
nere I’equazione di un’ellisse, o di un’ellisse a punti non reali, o di un’iperbole
a seconda del segno dei coefficienti di X* e di Y?, ¢ a meno di uno scambio di
assi (che ¢ un’isometria). Se invece c,, = 0 otteniamo un’ellisse degenere oppure
un’iperbole degenere. '

Le equazioni [31.11] e [31.12] si trattano allo stesso modo.

Il terzo passo della dimostrazione del teorema 31.1 (normalizzazione dei coef-
ficienti) non ha senso nel caso euclideo, perché le trasformazioni utilizzate non
sono ortogonali e quindi le equazioni [31.10], [31.11] e [31.12] non sono ulterior-
mente riducibili. Questo conclude la dimostrazione.
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Dal teorema 31.3 segue che in E? ci sono infinite classi di congruenza di coni-
che, contrariamente a quanto avviene per le classi di equivalenza affine, che sono
in numero finito: esse sono rappresentate dalle coniche dell’enunciato al variare
dei parametri @, b € p che vi compaiono.

Nel prossimo paragrafo studieremo le principali proprietd geometriche delle
coniche euclidee.

31.4 Complementi
Una quadrica 2 di A"(K) ha equazione

I=<i<j=<n

Zn: @;X;+2 T a; X X;+2 _El a0, X; + ag =0, [31.16]
i=1 i=

in cui non sono tutti nulli i coefficienti dei termini di secondo grado, cio¢ i coeffi-
cienti @;;, con 1 <i=<j<n. Ponendo a;;=a;;, per 0<i<j<n, all’equazione
[31.16] & associata la ma}trice simmetrica A = (;). Con notazione matriciale pos-
siamo riscrivere I’equazione [31.16] nella forma seguente:

1
X,
XX, ..X)A|X,]|=0. [31.17]

X,
Ponendo X = '(X; ... X,), e introducendo nuove variabili Y = (Y; ... Y,), una
affinitd di A"(K) corrisponde alla sostituzione X = MY + ¢, dove MeGL,(K),

¢="Yc, ...c,)€K", e trasforma I’equazione [31.16] in quella di una quadrica affi-
nemente equivalente a .Z. Scrivendo la sostituzione nella forma equivalente

1 1
X, Y,
X 2 = M YZ
X’l Yn

dove

- {1 0
M (C M € GLn+ 1 (K)9
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e sostituendo nella [31.17], la nuova quadrica ha equazione

1
Y,
Y, Y..v)B|lrl=0, [31.18)

dove

B=(b;)="MAM.

Quindi r(B) = r(A). Segue da cid che il rango di A & una proprieta affine di.
2, che si chiama rango di 2, e si denota con r(Z). Diremo 2 non degenere
o viceversa degenere a seconda che sia 7(Z)=n +1 oppure r(Z)<n.

Le quadriche affini ed euclidee rispettivamente di A*(K) ¢ di E” si possono
classificare con metodi sostanzialmente simili a quelli visti per le coniche. Il teo-
rema di classificazione, che include anche i casi degeneri, ha un enunciato un po’
pit lungo a causa delle numerose possibilita che si presentano. Si trova comun-
que che le classi di equivalenza affine di quadriche di A"(K), K algebricamente
chiuso, e di A"(R), sono in numero finito. Limitandosi a considerare i soli casi
non degeneri, si hanno i seguenti risultati:

Ogni quadrica non degenere di A"(K) é affinemente equivalente a una e una
sola delle seguenti:
1) K algebricamente chiuso:

£X2-1=0

i=1

n-1
TXi~-X,=0;

i=1

2) K=R:

1
A
>

[4 n
LXiI- L Xi=1, P

i=1 j=p+1

P n—~1
EX}- T X}-X,=0, p=0,...,n

i i=p+1

i

{se p=0 si intende che la prima sommatoria non compare).
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Ogni quadrica non degenere di E" é congruente a una e una sola delle seguenti:

oz ...za,>0

P n
X2 ¥ o, X?=1 p=0,..,n
Ela' P T Ay = ... 2,>0,
P 5 ”il XZ X 0 (XlZ .oe Zozp>0 0 n
aX—— (629, Qrid = b=0,.., n
,'§1 et Y " ’ ap+12 .ee ZOC,,_1>0,

Diamo un cenno della dimostrazione dell’esistenza, senza discutere I’unicita

delle equazioni.

Iniziamo dal caso affine. Per il teorema 16.1 & possibile trovare una matrice
MeGL,(K) tale che la sostituzione X = MY trasformi la quadrica 2 in una di
equazione [31.18] tale che b;;=0 per 1 <i,j=<n, i#], cioé tale che

by by .- Dbon
by by ... 0

Se tra i coefficienti b,,, by, ..., b,, ve ne sono r non nulli, possiamo supporre
che siano i primi r, a meno di permutare le variabili. Poiché det(B) # 0 perché
per ipotesi .Z & non degenere, dev’essere r = n — 1; cid si verifica sviluppando
det(B) secondo 'ultima colonna.

Eseguiamo la traslazione

Y, =2, —&, j=1,...,r
Ji

Y,=Z, (nel caso r=n—1).

L’equazione [31.18] si trasforma nella
jf;)lbﬂZf + Cee=0 [31.19]

se r = n, oppure nell’altra,

2 b”Z}+ 2by,Z,+ dy =0, [31.20]
ser=n-—1.

Supponiamo di essere nel caso [31.19]. Poiché £ ¢& non degenere si ha

¢ # 0. Dividendo per — ¢,, possiamo supporre ¢, = — 1. Se K ¢ algebricamente
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chiuso la sostituzione

Qn’

z . J=1..
T by

trasforma la [31.19] nella prima delle due quadriche dell’enunciato (1). Se invece
K =R allora la sostituzione

Z, = X j=1
} r—l bj} I 3 b
seguita, se necessario, da una permutazione delle variabili, trasforma la [31.19]
nella prima quadrica dell’enunciato (2) per qualche p.
Supponiamo ora di essere nel caso [31.20]. Poiché .2 ¢ non degenere dev’es-
sere b, # 0. Dividendo per — 2b,, possiamo supporre b,, = — 1/2. Mediante la
traslazione

ooy H,

Z=T, Jj=1,..,n-1,
Z,=T,+dy

la [31.20] si trasforma nell’equazione
n-1
.ZlbgT}— T,=0. [31.21]
-

Se K & algebricamente chiuso, la sostituzione

T X =1 1
= — J=1..,n-1,
/b,

TR = Xn

trasforma la [31.21] nella seconda quadrica dell’enunciato (1). Se invece K=R,
la sostituzione

T d =1 1
j = "3 =1,...,n—1,
NI !

T,=X,

seguita, se necessario, da una permutazione delle variabili, trasforma la [31.21]
nella seconda quadrica dell’enunciato (2) per qualche p. Questo conclude la dimo-
strazione del teorema di classificazione nel caso affine.

Nel caso euclideo si procede in modo simile, utilizzando il teorema spettrale
invece del teorema 16.1, fino a ridursi a una delle equazioni [31.19] e {31.21]. A
questo punto, dopo aver eventualmente permutato le variabili, ¢ facile ricono-
scere in queste equazioni quelle dell’enunciato.
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Esercizi

1. Sia % una conica a centro di A¥K), di equazione f(X, Y) = 0. Dimostrare che:
a) le coordinate xo, ¥ del centro C sono individuate dalla condizione di annullare
entrambe le derivate parziali fx ed fy di f; b) C = (0, 0) se e solo se f non contiene
termini di primo grado. c) Dedurre che la traslazione X =X’ —x, Y=Y’ — y, tra-
sforma % in una conica la cui equazione & priva dei termini di primo grado.

2. Per ciascuna delle seguenti coniche % di A*(R), determinare se % & a centro
oppure no, e nel caso lo sia, determinare le coordinate del suo centro C; determinare
inoltre le coordinate dei punti impropri (eventualmente non reali) di %

a) X+ Y +XY+X+Y=1

b) 5X2-26XY+5Y2+72=0

) X'+ Y?-2XY-2Y=0

d) 3X*-8XY—-3Y*+10=0

€ 2Y +2V3XY-2V3X+2Y-5=0

f) 9X2+16 Y +24XY - 40X +30Y =0
2 2X2+4XY+5Y2-12=0

h) 3X242XY+3Y2+2V2X-2V2Y=0.

3. Si considerino le coniche di E? le cui equazioni sono quelle assegnate nell’esercizio
precedente. Per ognuna di esse determinare un’isometria diretta che la trasforma in
forma canonica, e la forma canonica ottenuta.

4. Dopo aver verificato che ciascuna delle seguenti coniche di A*(R) ¢ degenere, deter-
minare equazioni cartesiane delle rette in cui si decompone:

a) X’- Y’ +2X-2Y=0

b) X2+ Y2+2XY+%X+%Y—1 -0
Q) 3X —-V2Y2+(3V2Z-1DXY=0

d) 2X2+2Y2+4XY=0.

32 Geometria delle coniche euclidee

Le ellissi, iperboli e parabole euclidee furono studiate fin dall’antichitd come
luoghi geometrici e come sezioni di un cono circolare con un piano, e da cio¢ deriva
il loro nome. Le studieremo nelle forme canoniche date dal teorema 31.3, limi-
tandoci a considerare le coniche non degeneri a punti reali.
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Ellisse
Sia ¥ Uellisse di E* di equazione
X? y?
2 T b [32.1]

cona=b>0.
Se a = b ’equazione [32.1] diventa

X2+ Y =2a

e % & una circonferenza di centro I'origine e di raggio a.
Il supporto dell’ellisse [32.1] & contenuto nel rettangolo delimitato dalle rette
di equazioni

X=xa, Y==xb,
cioé nel sottoinsieme di E? costituito dai punti P(x, y) tali che
Ixl=sa, Ilyl=b.

Infatti, se P(x,y) & tale che lx|>a, allora x*/a*>1 e quindi, essendo
y2/b? =0, la [32.1] non pud essere soddisfatta dalle coordinate di P.

I punti di coordinate (+ a, 0) ¢ (0, + b) appartengono a % essi sono i vertici
di %

Dalla forma dell’equazione [32.1] segue immediatamente che £ & simmetrica
rispetto all’origine e rispetto agli assi coordinati.

Se ¥ ¢ una circonferenza, ogni retta per I’origine & un suo asse di simmetria:
la verifica & un facile esercizio.

Si chiamano semiassi i quattro segmenti di estremi ’origine e uno dei vertici.
I numeri a e b sono le lunghezze dei semiassi.

Per avere un’idea della forma di % si pud risolvere ’equazione [32.1] rispetto
ayY:

Y= % Nrasyes B22]

Se P(x, y)€ %, al variare di x tra — a e 0 i due valori della y dati dalla [32.2]
variano tra 0 e + b, mentre quando x varia tra 0 ¢ a essi variano tra + b e 0.

La forma dell’ellisse & quella che si vede nella figura 32.1.

Posto

c=+a>-b?, [32.3]
i punti di coordinate (x ¢, 0) sono i fuochi dell’ellisse, e il numero
e=c/a

¢ la sua eccentricita.
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y

(0,b)

/ (—c,0) (c,0) ‘\ x

{—a,0) (a,0)

(0, - b)

X=—ale X=ale Figura 32.1

Si ha sempre 0 <e <1. Se ¥ ¢ una circonferenza, e solo in quel caso, e = 0
e i fuochi coincidono tra loro e con il centro.

Se e # 0, le due rette di equazioni x= & a/e sono dette direttrici dell’ellisse
(quella con segno = nell’equazione si dice relativa al fuoco (< c, 0)).

Iperbole
Sia ¥ Piperbole di E? di equazione
X y?
T 1, [32.4]

con a>0, b>0. £ & detta iperbole equilatera se a = b.

Come nel caso dell’ellisse, si vede che P’iperbole di equazione [32.4] & simme-
trica rispetto all’origine e rispetto ai due assi coordinati.

L’asse di simmetria ¥ = O incontra % nei punti (= a, 0), che si chiamano vertici
di % Invece I’asse di equazione X = 0 non incontra %,

Dall’equazione [32.4] segue subito che nessun punto P(x, ¥) per cui si abbia
kx| < @ appartiene a % quindi % & contenuta nei due semipiani Z_ e T v
definiti rispettivamente dalle condizioni x < — @ e x = a. I sottoinsiemi £ NX,
e £NX_ sono i rami dell’iperbole.

Risolvendo la [32.4] rispetto alla Y troviamo

Y=:|:% X2 —a?.

Poiché per ogni x tale che |x| = 1lal si ha

RN

a

bx
<|a,
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Nl

70)(3’0 (810)\ |

Y=-bX/a
X=—ale X=ale Figura 32.2

% & contenuta nel sottoinsieme di E? definito dalla disequazione
1Yl SIMI .
a
Le due rette di equazioni

Y=¢i’£
a

sono gli asintoti di £ . La forma dell’iperbole ¢ illustrata nella figura 32.2.
Posto

c=~a*+b*, [32.5]

i punti di coordinate (% ¢, 0) si dicono fuochi di ¥ .
Il numero

e=c/a

& Peccentricita di %, e le rette di equazioni

X=x4
e

sono le sue direttrici (quella con segno =+ nell’equazione si dice relativa al fuoco
(£ ¢, 0)). Si noti che e>1.
Parabola
Consideriamo la parabola ¥ di E? di equazione
Y2=2pX, . [32.6]

con p>0.
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Poiché nella [32.6] unico termine in cui compare la Y & Y2, % & simme-
trica rispetto all’asse Y = 0. Questa retta incontra % nell’origine, che ¢ detta
vertice di Z.

Dall’equazione [32.6] segue immediatamente che % non ha punti P(x, y) tali
che x< 0, e quindi & contenuta nel semipiano definito dalla condizione x = 0. Risol-
vendo la [32.6] rispetto a Y otteniamo

Y==2+V2pX.
Deduciamo che se x varia da 0 a + o e P(x, y)€ %, allora y variada 0 a + o
(fig. 32.3).
11 punto di coordinate (p/2, 0) ¢ il fuoco di %, e la retta di equazione
X=-p/2

¢ la sua direttrice. L’eccentricita di % & per definizione e =1.

Descriveremo ora alcune proprieta geometriche di ellisse, iperbole e parabola,
le cosiddette proprieta focali, che permettono di ottenerle come luoghi geome-
trici. La prima caratterizzazione riguarda ellissi e iperboli.

32.1 ProrosizioNE L’ellisse [32.1] (I’iperbole [32.4]) ha per supporto il luogo
dei punti di E? le cui distanze dai due fuochi hanno somma (differenza) costante
(costante in valore assoluto), uguale a 2a.

Dimostrazione
Denotiamo con F ed F’, rispettivamente, i due fuochi (= ¢, 0). Per un punto
P(x, y) la condizione

ld(P, F) £d(P, F')l =2a [32.7]
si traduce nella condizione

Vix—co +y* £V(x+ ) +y* =2a. [32.8]

Portando il secondo radicale a secondo membro ed elevando due volte al qua-
drato per eliminare i radicali, si arriva all’identita
2 2
LA SR [32.9]
a? @-cd
la quale rappresenta la [32.1] oppure la [32.4], a seconda che ¢ sia dato dalla [32.3]
oppure dalla [32.5].

Per concludere resta da verificare che il luogo rappresentato dalla [32.9], il quale
certamente contiene quello rappresentato dalla [32.7], coincide con esso. A que-
sto proposito notiamo che il procedimento di passaggio dalla [32.8] alla [32.9]
€ reversibile, a meno di ambiguita dei segni dei radicali. Pertanto basta osservare
che la condizione ¢ < a (¢ > @) & compatibile solo con la [32.7] in cui si prenda
il segno + (il segno —).
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X=-p/2

(p/2,0) X

Figura 32.3

Un’altra caratterizzazione delle coniche come luoghi geometrici ¢ data dalla
proposizione seguente.

32.2 ProposizioNE  L’ellisse [32.1], l’iperbole [32.4], la parabola [32.6] hanno
per supporto il luogo dei punti le cui distanze da un fuoco e dalla relativa diret-
trice hanno rapporto costante, uguale all’eccentricita della rispettiva conica.

Dimostrazione
Consideriamo il caso di ellisse e iperbole. Per un punto P(x, y) la condizione
dell’enunciato €

JaFo TS

IxFalel
che ¢ equivalente a quella che si ottiene elevando al quadrato:
xF )+ y*=(exFa)’
ovvero a
xX*(1-e)+y*=2(c—ead)x+a*—c?,
che & appunto I’equazione [32.1] oppure [32.4].
Nel caso della parabola si procede nello stesso modo.
32.3 Complementi

1. La proposizione 32.2 si presta a fornire una nuova rappresentazione anali-
tica delle coniche, nel modo seguente. Supponiamo che la conica % abbia eccen-
tricitd e > 0, e siano F ed z rispettivamente un suo fuoco e la relativa direttrice
(fig. 32.4). Sia £ la retta per F perpendicolare a z, e F,= z N 4. Si ha

d=d(F, v)=d(F, Fy.
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P

v

Fy

Figura 32.4

Poniamo
e

n=FF,/IFE.
Per ogni P€E? abbiamo

—  — — —

(FP + PFy)-n = FFy-n = | FF,ll = d,
cioe

— —

PFyen=d— FP-n;

s )
poiché | PF,-n| = d(P, ), otteniamo
—_—
d(P,z)=1d— FP-nl.

Da quest’identita e dalla proposizione 32.2 deduciamo che i punti P€¢ £ sono
precisamente quelli che soddisfano la seguente equazione:

—> —
{FPIl=eld— FP-nl. [32.10]

Supponiamo F=0 e che la retta % abbia equazione X =d. Allora
n=E, =(1, 0), e, dette (p, 9) le coordinate polari di P, la [32.10] si traduce nel-
I’equazione in p, 6:

p=eld—pcosbl. [32.11]

Per eliminare dall’equazione il segno di modulo, dobbiamo distinguere due casi.
Se P ed F sono nello stesso semipiano rispetto a #, allora pcosf < d, ela [32.11]
¢é equivalente a

p =e(d — pcos?),

che, risolvendo rispetto a p, pud essere riscritta nella forma

p=—20 132.12]
ecosf +1
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Se invece P ed F'sono in semipiani distinti, allora pcos8 > d, e la [32.11] & equi-
valente a

p=e(pcosf —d),
che, risolta rispetto a p, prende la forma

p=—¢ [32.13]

ecosf —1
Questo secondo caso & possibile solo se e > 1, cioé se £ & un’iperbole: in tal
caso % possiede due rami, di equazioni rispettivamente [32.13] e [32.12]. Se invece
0<e<l, allora € ¢ un’ellisse oppure una parabola: in questo caso £ possiede
un solo ramo, situato nello stesso semipiano di F rispetto a £, e avente equazione
[32.12]. Riassumendo abbiamo il seguente risultato.

Sia % una conica di eccentricita e, avente un fuoco f nell’origine e per relativa
direttrice la retta ¢ di equazione X =d. Se 0 <e <1, £ & un’ellisse 0 una para-
bola, e i suoi punti hanno coordinate polari che soddisfano I’equazione

ed
ecosf +1

Se e> 1, & é un’iperbole, i cui due rami, giacenti nei due semipiani definiti
da %, sono costituiti dai punti le cui coordinate polari soddisfano le equazioni

- ed
ecosf +1

__ e
ecosf —1

dette equazioni polari della conica.

2. Consideriamo una circonferenza %'C E? di centro il punto (x,, Yo) € raggio
r> 0; essa ha equazione

X-x)’+(Y-y)*=r’, [32.14]
cioé

X2+ Y7+ 20y, X + 20y, Y + ag = 0, [32.15]
dove ay = — Xy, G = — ¥y, @ = X5+ y5— r’. In particolare si ha

ay +al—a,>0. [32.16]

Viceversa una conica di equazione [32.15] e tale che sia verificata la [32.16]
¢ una circonferenza. Infatti la [32.15] si pud scrivere nella forma [32.14] con
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{c) {d)

(e} Figura 32.5

Xo=— @y, Vo= — g, I =0} +ay — dy, € quindi % & una circonferenza di
centro (x,, y,) € raggio r.

Si noti che i punti impropri della circonferenza [32.15] sono i due punti non
reali [0, 1, +i], che sono chiamati punti ciclici del piano euclideo E2.

Si verifica subito che una conica % di equazione

a, X +ap Y +2ap XY + 200, X + 205, Y + 0y =0

passa per i punti ciclici se e solo se a;; = ay, a,=0. Quindi, supponendo
a,, = a,, =1 dopo aver eventualmente diviso per @,,, se anche la [32.16] ¢ soddi-
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sfatta % & una circonferenza. Se invece si ha
ay +ay—ayn=0,

% & una circonferenza degenere (caso particolare dell’ellisse degenere), e se si ha
a3 +ai —an<0,

% & una circonferenza di raggio immaginario (caso particolare dell’ellisse a punti

non reali).
In particolare una conica non degenere con almeno un punto reale e passante

per i punti ciclici é una circonferenza.

3. Nel caso particolare di E? il teorema di classificazione delle quadriche eucli-
dee (cfr. 31.4) afferma che ogni quadrica non degenere di E® a punti reali ¢ con-
gruente a una delle seguenti 5 forme canoniche (fig. 32.5):

Xy z*_|

a) 7 + ? + - @a>b>c>0) ellissoide

x? y? 72 iperboloide iperbolico
b) - + B - - =1 @>b>0, c>0 (a una falda)

x y: z? iperboloide ellittico
<) " ——b—z————c—2—=1 @>0, b>c>0) (a due falde)

X? y?
d) " b2 -Z=0 (a>b>0) paraboloide ellittico

a

X2 y? paraboloide
e) 7 - P Z=0 (@, b>0) iperbolico.

Esercizi

1. Dimostrare che una circonferenza ha ogni retta contenente il suo centro come asse
di simmetria.

2. Calcolare coordinate dei fuochi, eccentricita ed equazioni delle direttrici delle coniche
di equazioni

2 2 2
a) X . X b) Xy ¢) Y’=4X.
9 4 2
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33 Intersezione di due curve: proprieta elementari

In questo paragrafo supporremo K algebricamente chiuso, salvo avviso con-

trario.
Consideriamo una curva algebrica affine % di grado »n in A? = A%(K), di
equazione
f(X, Y)=0. [33.1]

¥ si dice irriducibile se f (X, Y) & un polinomio irriducibile di K[X, Y]; altri-
menti si dice riducibile.
Sia data una curva % riducibile; se il polinomio f si fattorizza come

S, Y)=f(X Y).. (X, Y), [33.2]

allora, dette %, ..., %, le curve di equazioni

SilX, Y)=0,
[33.3]

fiX, Y)=0,

sussiste, tra i supporti, la relazione
¥=%U..U%.

Infatti, stante la [33.2], ogni soluzione (x, y) dell’equazione [33.1] & necessa-
riamente soluzione di almeno una delle equazioni [33.3], e viceversa. Scriveremo

F=- .t %, [33.4]

per esprimere il fatto che si ha la decomposizione [33.2].

Se la [33.2] & la decomposizione di f(X, Y) in fattori irriducibili, le curve irri-
ducibili %, ..., %, si dicono componenti irriducibili di %.

Se f;(X, Y) & un fattore multiplo di f(X, Y) di molteplicitd u;, la corri-
spondente componente irriducibile di % & detta componente multipla di molte-
plicita p,.

La curva £ si dice ridotta se non possiede componenti multiple.

Ad esempio, una conica ¢ irriducibile se ¢ solo se¢ € non degenere. Una conica
semplicemente degenere possiede due componenti irriducibili distinte che sono due
rette, mentre una conica doppiamente degenere € non ridotta, essendo costituita
da una retta con molteplicita 2.

Utilizzando i risultati dell’appendice 4 (pp. 435-37) ¢ immediato verificare che
una curva % ¢ irriducibile se e solo se lo & ogni curva ad essa affinemente equi-
valente. Quindi riducibilita e irriducibilita sono proprieta affini.
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Analogamente, sono proprieta affini di una curva numero, grado ¢ moltepli-
cita delle sue componenti irriducibili.

Con ovvie modifiche, le nozioni che abbiamo introdotto per le curve affini (irri-
ducibilita, componenti irriducibili ecc.) si possono dare per le curve algebriche
proiettive. Si dimostra allora che riducibilita e irriducibilitd, numero, grado e mol-
teplicita delle componenti irriducibili di una curva € di P* sono proprieta
Dproiettive.

Evidentemente i/ grado di una curva é uguale alla somma dei gradi delle sue
componenti irriducibili, purché ogni componente venga contata un numero di volte
pari alla sua molteplicita: infatti la stessa proprieta vale per i polinomi.

La teoria delle curve algebriche piane dipende in buona parte dallo studio delle
intersezioni di due curve. Cid corrisponde algebricamente a risolvere un sistema
di due equazioni polinomiali. In quanto segue ci limiteremo a trattare aspetti ele-
mentari dal problema.

33.1 TEorReMA Siano £ e & curve algebriche piane, affini o proiettive,
di gradi n ed m rispettivamente. Se € e < non hanno infiniti punti in comune,
esse hanno al piu nm punti in comune.

Se ¥ e D sono curve proiettive, esse hanno almeno un punto in comune.

Dimostrazione

Se ¥ e < sono curve affini aventi un numero finito di punti in comune,
anche le loro chiusure proiettive hanno un numero finito di punti in comune. Pos-
siamo dunque limitarci a dimostrare 1’asserto nel caso proiettivo. E evidente inol-
tre che non & restrittivo sostituire & ¢ & con due curve loro trasformate mediante
una (e la stessa) proiettivita.

Siano dunque %, P CP% e {P,, ..., Py} = £N D. Perogni j #k, sia ¢,
la retta per P; € P,. Poiché esiste almeno un punto di P2 non appartenente alla
curva riducibile %'+ 9 + L &y, possiamo supporre, eventualmente utilizzando
una proiettivita per trasformare & e &, che [0, 0, 11¢ £+ D + L, z,.

Siano

F(Xoa XI: Xz) = 09 G(XOs Xl’ XZ) = 0
equazioni di & edi & rispettivamente, dove
F(X,, X, X)) =A,(Xy X)+A,_(Xp X)X, + ... + A X3,
G(X,, X, X)) =B, (X,, X))+ B,_(X,, X)X+ ... + By X7,
con A4,, B, €K[X,, X;] omogenei di grado %, k rispettivamente.
Sia R(X,, X,) il risultante di F e G rispetto a X,. Poiché [0, 0, 1]¢ £U , si
ha 4,B, # 0, e di conseguenza, per ogni x,, X, €K, i polinomi in X, F(x,, x;, X;) e

G(x,, x;, X5) hanno grado effettivo n ed m rispettivamente. Pertanto, per ogni
X X, €K, R(xy, xy) & il risultante di F(x,, X, X)) € G, X;, X))-
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Se Xy X1» X1 € Z'N I, si ha R(xy, x;) = 0 perché F(xy, x;, Xp) € G(xg, Xy, X)
hanno la radice comune x,. Viceversa, ad ogni (x, x;) tale che R(x;, x)=0
corrisponde almeno una radice comune x, di F(xy, X;, X3) € G(x, X;, X,) che defi-
pisce un punto [x, X, x1€ N . Quindi, poiché R(X,, X,) ha almeno una
radice, N I = 0.

Poiché¢ £N D & finito, R(X,, X,) non si annulla identicamente. Dal teorema
A.18 segue che R(X,, X;) ¢ omogeneo di grado nm. Poiché R(X,, X)) possiede
al pitt nm radici distinte, per concludere la dimostrazione sara sufficiente far vedere
che, per ogni radice (x, x;) di R(X, X)), esiste al pill un punto [x, X,
xleEN .

Ma se [xg, X5 X1, [Xgs X5 V51€ N g, X, # ¥,, la retta che contiene questi due
punti passa per [0, 0, 1], e cio contraddice I’ipotesi.

E possibile che due curve % e & abbiano meno di nm punti in comune anche
nel caso proiettivo; cio apparira chiaro man mano che procederemo nella discus-
sione, e diversi esempi ci si presenteranno. Nel caso particolare in cui & ¢ una
retta, il teorema afferma che ¥ e < hanno al piu # punti in comune.

Ovviamente nel caso affine due curve possono non avere alcun punto in comune
(si pensi a due rette parallele).

Si noti anche che se K non ¢ algebricamente chiuso due curve proiettive possono
non avere punti in comune. Ad esempio la conica X7 + X? + X7 =0 di P*(R)
pon ha punti reali e quindi ha intersezione vuota con ogni curva.

E possibile introdurre in modo opportuno una nozione di “‘molteplicita di inter-
sezione”’ di due curve in un loro punto comune. Una versione pill precisa del teo-
rema 33.1, il teorema di Bezout, afferma che due curve proiettive che non hanno
infiniti punti in comune ne hanno precisamente nm, purché ognuno di essi venga
contato con la sua molteplicita di intersezione. La dimostrazione del teorema di
Bezout ¢ alquanto pil delicata e verra data solo nell’ipotesi che una delle due curve
sia una retta.

Consideriamo ora il caso in cui & ¢ <& hanno infiniti punti in comune.

33.2 TeorReMA Siano ¥ e & curve algebriche piane, affini o proiettive,
con & irriducibile. Se ¥ e <& hanno infiniti punti in comune, & & una com-
ponenté irriducibile di € .

Dimostrazione

Daremo la dimostrazione nel caso affine, lasciando al lettore Ia facile estensione
a quello proiettivo.

Supponiamo dapprima che & sia una retta 2, di equazione

aX+bY+c=0 [33.5]
e che % abbia equazione [33.1]. I punti di z N %€ corrispondono alle solu-
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zioni del sistema costituito dalla [33.1] e dalla [33.5]. Supponiamo b#0 (il
caso b=0 si tratta nello stesso modo, scambiando X e Y). Sostituendo
Y=—b"'aX ~ b~ 'c nella [33.1] otteniamo un’equazione in X:

AX"+ A X" '+ ... +A4,=0, [33.6]
dove

AX + A X"+ . + A, =f(X, —b"'aX—b"'0). 133.7]

Ogni soluzione della [33.6], sostituita nella [33.5], fornisce le coordinate di uno
dei puntidi 2N %, e tutti i punti di z N ¥ sono ottenuti in questo modo. La
condizione che z e % abbiano infiniti punti in comune & pertanto equivalente
a quella che il polinomio [33.7] sia identicamente nullo.

Draltra parte, # & una componente irriducibile di % se e solo se il polinomio
Y+ b laX + b~ 'c divide f(X, Y), cioé se si ha

f(X, V)= +b 'aX+b '0)h(X, Y)

per un opportuno 4(X, Y)€K[X, Y]. Sostituendo a primo e secondo membro di
questa identitd — (b 'aX + b~ '¢) al posto di Y, si deduce che la condizione detta
& equivalente alla condizione

X, - 'laX+b ') =0.

Ma il primo membro ¢ il polinomio [33.7], il cui annullarsi equivale alla condizione
che # e ¥ abbiano infiniti punti in comune. Cid dimostra il teorema nel caso
incui & ¢ una retta.

Consideriamo ora il caso generale. Supponiamo che £ e & abbiano rispetti-
vamente equazione

fX, Y)=0, gX,Y)=0,

con f(X, Y), g(X, Y)eK[X, Y] non costanti, e g(X, Y) irriducibile. Se f(X, Y)
& costante rispetto a ¥, % consiste di un numero finito di rette parallele all’asse
Y. In questo caso & interseca una almeno di queste rette in infiniti punti, e quindi
la ha come componente irriducibile. Ma &, essendo irriducibile, coincide con una
di tali rette, e quindi & una componente irriducibile di %.

Se (X, Y) non ¢ costante rispetto a Y, consideriamo f(X, Y) e g(X, Y) come
elementi di D[Y], dove D = K[X], e denotiamo con F il campo dei quozienti di
D. Supponiamo per assurdo che g(X, Y) non divida f(X, Y). Allora f(X, Y) e
g(X, Y) sono privi di fattori comuni non costanti rispetto a Y, cioé¢ in D[Y] non
hanno fattori comuni non costanti. Per la proposizione A.16, f(X, Y) e
g(X, Y) non hanno fattori comuni non costanti in F[Y], cioe MCD(/f, g) =1 in
F[Y]. Per le proprieta del MCD esistono A, BeF[Y] tali che

1=Af+ Bg. [33.8]
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Poiché F & il campo dei quozienti di K[.X], esiste #€ K[X ], & # 0, tale che AA
e Bh appartengano entrambi a K[X']. Moltiplicando primo e secondo membro
della [33.8] per 4 si ottiene I’identita

h=(Ah)f+ (Bh)g. [33.9]

Dalla [33.9] deduciamo che ogni punto comune a ¥ e & appartiene alla
curva & diequazione A= 0. Quindi & e ¥ hanno infiniti punti in comune,
perché infiniti ne hanno & ed Z; poiché ¥ & un’unione di rette parallele
all’asse Y, ragionando come sopra si deduce che < ¢ una retta. Per la prima
parte della dimostrazione & ¢ una componente irriducibile di %, e questa &
una contraddizione.

33.3 COROLLARIO Se due curve (affini o proiettive) di gradi m ed n rispetti-
vamente hanno mn + 1 punti in comune, allora hanno una componente irriduci-
bile in comune.

Dimostrazione

Siano % e & le due curve. Dal teorema 33.1 discende che esse hanno in
comune infiniti punti. Poiché & ha un numero finito di componenti irriduci-
bili, una almeno di esse, 2, ha infiniti punti in comune con %. Per il teorema
33.2 &’ & una componente irriducibile di %.

Consideriamo una curva % C P? di grado n di equazione

F(Xy X, X)) =0 [33.10]

e sia # una retta, assegnata mediante due suoi punti distinti P = [p,, p,, p,l, €
0 =1q,, gy, @]. 1l punto variabile su z ¢é

[Apo+ G0 Ap; + pq1, ADy + p@s). [33.11]
Denoteremo tale punto con AP + pQ. Esso appartiene a % se e solo se

FQupy +0do, APy + pqy MD2 + 1) =0 [33.12]
ovvero, piu sinteticamente, se

FAP+pQ)=0.

La [33.12] ¢ un’equazione omogenea di grado » in A, g, le cui soluzioni, sosti-
tuite nella [33.11], determinano i punti di z N %. Segue dal teorema 33.2 che -
il primo membro della [33.12] si annulla identicamente se e solo s€ z & una com-
ponente irriducibile di %,

Assegnando due ulteriori punti P’ [py, p{, P;1, Q' lag, g/, q,’'1 € z, ed espri-
mendo il punto variabile su z come

AP +p' Q' =[Np;+u'qs, Apl +u'ql, M, +p'q;)], [33.13]

25
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si ottengono i punti di z N % anche sostituendo nella [33.13] le soluzioni dell’e-
quazione

FQ'P' +u'Q")=0. [33.14]

Ma AP+ puQ=2A"P’ +p’ Q' se e solo se esiste una matrice A = (,) € GL,(K)
tale che

oA =a, N+ agp’ [33.15]
ap=ay\’ + app’

per qualche « # 0. Quindi, a meno di un fattore «”, la sostituzione [33.15] tra-
sforma I’equazione [33.12] nella [33.14]. Poiché la [33.15] ¢ invertibile, essa fa cor-
rispondere biunivocamente i fattori irriducibili dei due polinomi FALP + uQ) e
F(O' P’ + u’ Q"), e quindi le soluzioni delle due equazioni si corrispondono biuni-
vocamente in modo che quelle tra loro corrispondenti (che definiscono lo stesso
punto di z N ¥') abbiano la stessa molteplicita. In particolare la molteplicita della
radice della [33.12] corrispondente a un determinato punto di # N % dipende solo
dal punto e non da P e Q.
Le osservazioni precedenti consentono di dare la seguente definizione.

33.4 DEFINIZIONE  Siano ¢ e & una retta e una curva di P2. Con le nota-
zioni testé introdotte, diremo che ¢ e ¥ hanno molteplicita di intersezione
I(%, v; Py nel punto P, = AP + p, Q€ 2, se (g, o) & una radice di molteplicita
I(%, %; Py del polinomio FOLP + pn.Q), convenendo di porre I(€, %; Py =0 nel
caso in cui P,g €N, e (%, v; P)=wse ¢t C %,

Come abbiamo appena verificato, la molteplicita di intersezione cosi definita
non dipende dalla scelta dei due punti P e Q su %, e quindi la definizione & ben
posta. 1l seguente teorema € un caso particolare del teorema di Bezout, cui abbiamo
accennato precedentemente.

33.5 TEorREMA Siano % C P? una curva di grado n ed % una retta che non
é sua componente. Allora
L I(%, 2, P)=n. [33.16]

Py€z

Dimostrazione

Supponiamo che % abbia equazione [33.10] e che z sia individuata dai punti
Pe Q. La sommatoria a primo membro della [33.16] consiste di infiniti addendji,
di cui solo un numero finito sono diversi da zero, ed ¢ uguale alla somma delle
molteplicita delle radici del polinomio F(AP + Q). Poiché questo polinomio &
omogeneo di grado n, ’asserto segue dalla proposizione A.13.
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La nozione di molteplicita di intersezione di una retta e di una curva in un punto
si pud dare anche nel caso affine, in modo simile al precedente.
Se la curva % C A? ha equazione [33.1], e la retta z ha equazioni parame-

triche
X=a+ Lt [33.17]
Y=>b+ Mi,

sostituendo le [33.17] nella [33.1] si ottiene I’equazione in ¢
fla+Lt, b+ M)=0,

le cui soluzioni, sostituite nelle [33.17], determinano le coordinate dei punti di inter-
sezione di ¥ ed 2.

33.6 DEFINIZIONE Siano % e £ rispettivamente una retta e una curva di
A2 Con le notazioni introdotte sopra, diremo che z e ¥ hanno molteplicita di
intersezione I(%, #; P,) nel punto Py= (a + Lt,, b+ Mt)€ z se t, & una radice
di molteplicitd I(¥, %; P,) del polinomio f(a + Lt, b + Mt), convenendo di porre
I(%, ; Py)=0 nel caso in cui P)¢ £N v, e (%, 4; P)=xse 1 C %.

Riducendosi al caso proiettivo si puo verificare che la definizione 33.6 & ben posta.
Consideriamo infatti le chiusure proiettive Z'* ed z*di % edi % rispettiva-
mente. La curva % * abbia equazione [33.10]. La retta z* ha equazioni parame-
triche

Xp=A
xi=ak+ Ly [33.18]
X, =bA+Mp

perché contiene [1, a, b] e il punto improprio [0, L, M]. Sostituendo le [33.18] in
F(X,, X;, X)) si ottiene un polinomio omogeneo in A e u

F(h, ak + Ly, bh + Mp)
tale che
F(,a+Lt, b+ M) =f(a+ Lt, b+ Mi). [33.19]

Poiché I(¥Z *, z*; P,) & per definizione la molteplicita della radice (1, #,) per
F(\, ah + Lu, b\ + My), vediamo che

(%, v P)=I(E*, v* Py) [33.20]

e quindi la definizione di I(£, z; P,) ¢ ben posta perché I(£ *, z*; P,) dipende
soloda %, z e P,
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Si osservi che, posto P,, = [0, L, M1, il punto improprio di z, I(¥*, &*; P,)
¢ uguale alla massima potenza di A che divide F(A, aA + Lu, bX + My). Dalla [33.19}
segue che il grado in ¢z di f(@+ Lt, b+ Mp) & n—I(£*, z*; P,). In particolare
Panalogo del teorema 33.5 non € necessariamente vero nel caso affine, perché in
generale si pud avere I(Z'*, z*; P,)>0.

1l teorema seguente & una conseguenza immediata di quanto abbiamo osservato
e del teorema 33.5.

33.7 TeoREMA Siano ¥ C A? una curva di grado n ed % una retta non con-
tenuta in €. Allora

LI(%, 2, P)<n
Pey

e 'uguaglianza vale se e solo se il punto improprio di z non é punto improprio

di ¥

33.8 Osservazioni

1. Dalla [33.20] segue che le definizioni 33.4 e 33.6 sono equivalenti, nel senso
che, per calcolare la molteplicita di intersezione di una curva (affine o proiettiva)
¢ di una retta in un punto proprio P, si pud utilizzare indifferentemente una delle
due definizioni, a seconda che si vogliano utilizzare coordinate omogenee o coor-

dinate non omogenee.
Il teorema 33.7 ¢ le osservazioni che lo precedono mostrano inoltre che, con

le notazioni introdotte poc’anzi, si ha
I(E*, v*; P)=n—grlf(a+ Lt, b+ Mi)}] [33.21]
dove a secondo membro si intende il grado in ¢z di f(a + Lt, b + Mt).

2. Se ¥ e 9 sono curve affini o proiettive, Z una retta che non & compo-
nentené di % nédi I, e Pyez,si ha

I(Z, 2, P)+ (D, v; Py=I(E + D, z; Py). [33.22]

Consideriamo il caso affine (nel caso proiettivo la dimostrazione ¢ simile): sup-
poniamo che & e & abbiano equazioni

fX,Y)=0, gX,Y)=0

rispettivamente, ¢ che z abbia equazioni parametriche [33.17].
La [33.22] esprime semplicemente il fatto che la molteplicita di una radice ¢,
del polinomio

Sfla+ Lt, b+ Mt) g(a+ Lt, b+ Mi)

.uguaglia la somma delle molteplicita di 7, per ognuno dei fattori f(a + Lt,
b+ Mt)e g(a+ Lt, b+ Mt).
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Terminiamo il paragrafo con un utile risultato che mette in relazione le molte-
plicita di intersezione di curve e rette proiettivamente equivalenti.

33.9 PROPOSIZIONE Siano % e & rispettivamente una retta e una curva di
P2, e sia T:P>—P? una proiettivitd. Per ogni P€ si ha
I(¥%, v P)=I(T(%), T(2); T(P)). [33.23]

Dimostrazione

Se P£2 N, T(P)¢T() N T(¥) e quindi primo e secondo membro della
[33.23] sono uguali a 0.

Supponiamo che P[p,, p,, pl€ 2z NE esia Qlgy, g;, g;] # P un altro punto
di #. Sia N = (n;,) € GL,(K) una matrice che rappresenta 7. Se % ha equazione
[33.10], T(%¥) ¢& la curva di equazione

G(X, X X)) =0,
dove

G(X,, X, X)) = G(X)=F(WN"'X).
Inoltre si ha

. Do
TP)=IN|p }||=
P>

= [Py + Mo\ Py + BeaDay NigPo + NyDy + NPy oDy + Ny Dy + Ny Dyl

o
TQ@=|N|a||=
7P}

= [nyqo + No1 @y + N @y, NigGo + Ny Gy + NGy AnGo + N3G+ Npq).

Poiché T'(2) ¢ la retta che contiene T(P) e T(Q), i suoi punti sono della forma

Do . q,
AT+ pTQ =AN|[p ||+2|N|a ||=NAP+pQ), (b, p) #(0, 0).
b, q,

Si ha quindi
GAT(P)+pT(Q)=GWNAP+pQ) =FIN'(NOLP +pQ))) =
= FOP+ p0).
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Da quest’identita segue che la molteplicita della radice (A, p) = (1, 0) per il poli-
nomio G(A T(P) + p T(Q)) e quella della stessa radice (1, 0) per F(AP + pQ)) sono
uguali perché i due polinomi coincidono. Ma queste due molteplicita sono rispet-
tivamente I(T(%), T(z); T(P)) e I(%, %; P), e quindi la [33.23] & vera.

34 Proprieta locali delle curve algebriche piane
In questo paragrafo, come nel precedente, supporremo K algebricamente chiuso.

34.1 DEFINIZIONE  Sia % una curva algebrica (affine o proiettiva) e sia P
un punto del piano. La molteplicita m (£ )di & in P(odi Pper ¥)eil
minimo delle molteplicita di intersezione in Pdi € con %, al variare di ¢ tra
tutte le rette del fascio di centro P; in simboli:

mP(% ) =min,, I(%, %; P).

Poiché esistono rette contenenti P e non contenute in %, si ha m (%€ ) # o,
€ precisamente

0<m, (¥ )<eg(¥), [34.1]

ed mp(% ) =0 se e solo se P¢ Z.

Se m,,(fg y=1, P & un punto semplice, o non singolare, dii %.

Se m,(¥€ ) >1, Psi dice punto multiplo, o singolare, di % diremo anche che
P & un punto m-uplo di % se mp(fg ) = m (in particolare doppio, triplo ecc.
sem=2,3,...). :

La curva % si dice non singolare se tutti i suoi punti sono semplici, e singo-
lare se possiede almeno un punto singolare.

Se ¥ & una curva affine e & * CP? ¢ la sua chiusura proiettiva, dalla
[33.20] discende che per ogni Pe £ si ha m, (%) = m, (%€ *).
Sia % una curva affine, di equazione

fX, Y)=0, [34.2]
e sia P=(a, b)c %. Una retta z passante per P ha equazioni parametriche
X=a+ Lt _
[34.3]
Y=b+ Mt

dove (L, M) # (0, 0). Il punto Pe¢ £ Nz corrisponde alla radice =0 del
polinomio

a(t)=f(a+ Lt, b+ Mt),
e I(¥%, ; P) uguaglia la molteplicita di tale radice.
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Per il Iemma A.9, t =0 ¢ una radice multipla se e solo se «’ (0) = 0, cioé se
e solo se

Sxla, b)L + fy(a, D)YM =0, [34.4]

dove fy ed fy denotano le derivate parziali di (X, Y) rispetto a X e a Y rispetti-

vamente. Si vede dunque che, se f,(a, b) ed fy(a, b) non sono entrambe uguali

a 0, Punica retta 7 passante per P per la quale si abbia I(%, 7; P)=2 ¢ quella

per cui L ed M soddisfano la [34.4]; ogni altra retta 2z per P soddisfa I (%, %

P) =1. In questo caso P ¢ un punto semplice; in caso contrario ¢ un punto multiplo.
Riassumendo:

34.2 ProPosIZIONE Sia £ C A? la curva di equazione [34.2]. Un punto
Pe A? é semplice per E'se e solo se Pe £ e almeno una delle derivate parziali
di f(X, Y) é diversa da zero in P.

Viceversa, P & singolare per £ se e solo se f(X, Y) ed entrambe le derivate
parziali prime di (X, Y) si annullano in P.

Se P = (a, b) & semplice per £ C A%, I’unica retta 7 tale che I(Z, 7; P) =2
si dice retta tangente a £ in P.
Risolvendo la [34.4] si deduce che 7 ha il vettore di direzione

(L9 M) = (fY(a9 b)9 _fX(a’ b»

e quindi la retta tangente a % in P ha equazione cartesiana

Jx(a, b) (X — a) + fy(a, b)(Y — b) = 0. [34.5]
Consideriamo ora il caso di una curva proiettiva % C P?, di equazione
F(X,, X, X)) =0, [34.6]

esia P=[p,, p;, Pl € % Unaretta 2z passante per P ha equazioni parametriche
Xo=APo+ 1o
X, =Ap, +pgq,
X, =Ap, + 1y,

dove QO = [qy, Gy, g.] # P ¢ un altro punto di . Sostituendo nella [34.6] otte-
niamo un’equazione omogenea in A, u:

AQ\, ) =0,
dove
AQ, ) = FApy+ 1o, Ap; + p1qy, ADy + 1q)-
Il punto Pe £ N ¢ corrisponde alla radice (A, u) = (1, 0), ovvero, deomoge-
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neizzando A (A, p), alla radice £ = 0 del polinomio

A(l, O=F(p,+tqe, p1+1tq, D, + 1q,),

e I(¥, z; P) & pari alla molteplicita di tale radice.
Dal lemma A.9 si deduce che ¢ = 0 ¢ una radice multipla del polinomio 4(1, 7
se e solo se dA(1, f)/dt = 0. Questa condizione equivale alla seguente:

Fy(P)q, + Fi(P)q, + F,(P)q,=0, [34.7]

dove F,(P) denota la derivata parziale d F/3.X; calcolata nel punto P.
Si vede dunque che P ¢ punto singolare per % se e solo se

Fy(P)=F|(P)=F,(P)=0. [34.8]

Infatti in questo caso, e solo in questo, la [34.7] ¢ soddisfatta da ogni QeP? e
quindi I( &, z; P)>1 per ogni retta z passante per P.
Si noti che, posto # = gr(F), si ha

Fy(Xo, Xi, X)X+ Fi(Xo, X1 X)X, + Fy (X, X, X)X, = nF(X,, X, X))
[34.9]

(cfr. proposizione A.12(3)) e quindi le condizioni [34.8] implicano anche F(P) = 0,
cioé¢ Pe Z.
Possiamo riassumere quanto detto pit sopra nel seguente enunciato:

34.3 ProposizioNE Sia £ CP? la curva di equazione [34.6). Un punto
PcP? ¢ semplice per € se e solo se Pe€ £ e almeno una delle derivate parziali
prime di F(X,, X,, X,) non si annulla in P.

Viceversa, il punto PcP? & singolare per E se e solo se tutte e tre le deri-
vate parziali prime di F(X,, X,, X,) sono nulle in P.

Supponiamo che P sia un punto semplice per % C P2, e consideriamo la retta
7 di equazione

Fy(P)X, + F,(P)X, + F,(P)X, = 0. [34.10]

Dalla [34.9] si deduce immediatamente che P¢€ 7. La [34.7] implica poi che 7
€ unica retta tale che

I(%, 7; P)>1.
7 si dice retta tangente a £ nel suo punto semplice P.

34.4 ProrosizioNE Una curva irriducibile (affine o proiettiva) possiede al
piu un numero finito di punti singolari.
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Dimostrazione
Sia ¥ affine di equazione [34.2]. Per la proposizione 34.2, i punti singolari
di & sono i punti comuni a £ e alle curve %y e %, di equazioni rispettive

X, Y)=0,
£(X, Y)=0.

Sara quindi sufficiente dimostrare che Z'N % ¢ finito. Poiché & ¢ irriduci-
bile e gr(%,) <er(¥6), %, non pud essere una componente di % Dal teorema
33.2 discende che % e % hanno solo un numero finito di punti in comune.

Se & ¢ proiettiva di equazione [34.6], ed ¢ diversa dalla retta %, di equazione
X, =0, allora % & 1a chiusura proiettiva della curva affine & di equazione

F(, X, Y)=0,

che & ancora una curva irriducibile. I sipporti di & e di & differiscono solo per
i punti di £N 2, che sono in numero finito; inoltre un punto di < ¢ singolare
per < se e solo se lo & per %. Poiché per la prima parte della dimostrazione <
possiede al piit un numero finito di punti singolari, lo stesso & vero per Z.

Se Pe % & un punto singolare, ogni retta # contenente P & tale che
(%, v; P)=zmp(¥)=2.

Per questo motivo si conviene di considerare tangente a € ogni retta pas-
sante per P.

34.5 DEFINIZIONE ~ Sia € una curva algebrica (affine o proiettiva) e sia P &
un suo punto. Una retta v tale che (6, %; P)> m,(%) & detta tangente prin-
cipale a < in P.

Si noti che se P & un punto semplice, la nozione di tangente e quella di tan-
gente principale coincidono.

Sia % una curva affine e sia £ * C P? la chiusura proiettiva di %, Una retta
z C A? la cui chiusura proiettiva sia una tangente principale a % * in uno dei
punti impropri di £ si dice asintoto di &. La curva £ non possiede asintoti pre-
cisamente quando i suoi punti impropri hanno come unica tangente principale
la retta impropria.

Ad esempio, una parabola non degenere non ha asintoti. Infatti, essendo non
singolare ed avendo un unico punto improprio, & intersecata con molteplicita 2
dalla retta impropria, la quale & la sua tangente in quel punto. Una conica a cen-
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a centro possiede due asintoti perché interseca la retta impropria in due punti distinti
e quindi non puo6 averla come tangente.

Passiamo ora a studiare la struttura di un punto singolare di una curva %,
calcolandone la molteplicita e le tangenti principali.

Consideriamo ancora una curva affine % di equazione [34.2] e un punto
P =(a, b)e Z. Sostituiamo in £ (X, Y) le espressioni a secondo membro nelle equa-
zioni parametriche [34.3] di una retta z passante per P. Utilizzando il teorema
di Taylor otteniamo I’identita:

Sfla+Lt, b+ Mt)=[fy(a, )L + f (a, )Mt +
+ Sxx(@, DYL* + 2fyy(a, B)LM + f,,(a, b)M* ;
21!

2y

r

)> (;)fx' wi(a, D)L *M*

k=0

+ ... [34.11]
r!

dove fy(a, b), fyx(a, b), ..., fx (@, b), ... denotano le derivate parziali di
. f(X, Y) rispetto alle variabili indicate, calcolate nel punto P = (q, b).

Dalla [34.11] si deduce che la condizione necessaria e sufficiente affinché # = 0
sia una radice di molteplicitd m per f(a + Lt, b + Mt) &

r

r (fz)fx' wye(@, BYL*M* =0 [34.12]

k=0

per r=1,..., m—1, ¢

I (;’:) Fn epi(@, BYL™*M* 0. [34.13]

Quindi m,,(ﬁo// ) = m se e solo se la [34.12] ¢ soddisfatta per ogni scelta di L,
M e la [34.13] & soddisfatta per almeno una scelta di L, M. Queste condizioni
sono evidentemente equivalenti all’annullarsi in P di tutte le derivate parziali di
f(X, Y) fino all’ordine m — 1 incluso, e al non annullarsi in P di una almeno delle
derivate parziali di ordine m.

11 caso di una curva proiettiva di equazione [34.6] viene trattato in modo simile
utilizzando il polinomio F(p, + tq,, p, + tq,, P, + tq,). Precisamente, il teorema
di Taylor da

jziF}k(P)quk
F(po+ 140 p1+ 14, P2+ 1q) = [EF(P)g]1 + % £+ ..
) [34.14]
dove F,(P), F;,(P), ... denotano le derivate parziali di F(X,, X, X)) rispetto alle
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variabili corrispondenti agli indici, calcolate nel punto P. Anche in questo caso
la condizione m,(%) = m & equivalente all’annullarsi in P di tutte le derivate
parziali di F di ordine minore o uguale ad 72 — 1 ed al non annullarsi in P di almeno
una delle derivate di ordine m.

In questo caso la sola condizione di annullamento in P delle derivate parziali
di ordine uguale a m — 1 implica Pannullamento di tutte le derivate parzali di ordine
inferiore. Infatti, poiché F & omogeneo, le sue derivate parziali sono polinomi omo-
genei. Per la proposizione A.12(3) si ha

(m— 2)Fi.i2 1,,,_2(X0» X, X)) =
= Fi.i, e i ,o(XOa X, X)XO + F'i,i2 A | (Xo, X35 X)X, +
+ F'i,iI JON 22()(09 Xla XZ)XZ'

Se ognuno degli addendi a secondo membro, che sono derivate parziali di ordine
m—1di F, si annulla in P, cid & vero anche per il primo membro, e dunque
F,, i, ,(P)=0. Pertanto ogni derivata parziale di ordine m — 2 si annulla in P.
In modo simile si dimostra che sono nulle le derivate parziali di ordine inferiore
am-—2.

Possiamo dunque enunciare il risultato seguente:

34.6 PROPOSIZIONE

1) Sia £C A? la curva di equazione [34.2]. Un punto P€£ ha molteplicita
m per & se e solo se in P si annullano tutte le derivate parziali di f(X, Y) fino
all’ordine m —1 e almeno una delle derivate di ordine m non si annulla.

2) Sia £C P? la curva di equazione [34.6]. Un punto P ha molteplicita
m per & se e solo se in P si annullano tutte le derivate parziali di F(X,, X, X,)
di ordine m — 1, e non si annulla almeno una delle derivate di ordine m.

Supponiamo che £ sia affine di equazione [34.2], e che il punto P = (a, b)
abbia molteplicita mp(fg Yy=m.

Le tangenti principali sono le rette z il cui vettore di direzione (L, M) annulla
il primo membro della [34.13]: poiché questo & un polinomio omogeneo di grado
min L, M, deduciamo che esiste almeno una tangente principale, e che ve ne sono
al piut m = mp(ﬁf ) distinte, ed esattamente m P(% ) se il primo membro della
[34.13] ha radici tutte distinte.

Nel caso in cui % ¢ proiettiva di equazione [34.6], e il punto P & di molteplicita
m, valgono analoghe osservazioni relativamente al coefficiente di ™ nella [34.14].

Otteniamo la seguente

34.7 PropPoSIZIONE-DEFINIZIONE ~ Sia P un punto di molteplicita m P(SK ) per
la curva piana (affine o proiettiva) %. Il numero £ di tangenti principali distinte
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a &in P é tale che
1< &<mu(%).

Sef=m P(Sf )= 2, P si dice punto multiplo ordinario.
Un punto doppio ordinario si dice nodo.

In un punto doppio non ordinario P la curva & possiede un’unica tangente
principale 7, ed essa & tale che I(%%, 7; P) = 3. Un punto doppio non ordinario
P tale che

1(55, 7, P)=3

¢ detto cuspide ordinaria.
I1 calcolo delle tangenti principali a una curva affine di equazione [34.2] in un
suo punto P = (a, b) si effettua, molto semplicemente, come segue.
Supponiamo dapprima P = (0, 0), e scriviamo il polinomio f(X, Y) come
somma di polinomi omogenei

fX, )=F,+F X, )+ FX, V) + ...,

dove F,=f(0,0)=0, e F(X, Y), r=1, & somma di tutti i monomi di grado r
di f(X, Y). La[34.11] si ottiene sostituendo X = Lt, Y = Mt; uguagliando i coef-
ficienti di ¢ si deduce

k=0

x (;) Fyr 10, O)L7*M*
F.(L, M) =

r!
Pertanto, posto m = my, (%), si ha
FX, Y)=..=F, (X, Y)=0, F (X, Y)#0,

cioé my g () eguaglia il minimo grado dei monomi non nulli di f X, Y).
Segue inoltre che le tangenti principali a £ in (0, 0) hanno equazioni
MX — LY =0, al variare di (L, M) tra le radici dell’equazione omogenea

F, (X, Y)=0. [34.15]

Cio equivale a dire che le equazioni delle tangenti principali si ottengono egua-
gliando a zero i fattori lineari del polinomio F,,(X, Y). Quindi la curva di equa-
zione [34.15] si decompone nell’unione delle tangenti principali di Z.

Se F,,(X, Y) si decompone in m fattori lineari distinti, e solo allora, I’origine
¢ un punto m-uplo ordinario per Z.

Nel caso generale P = (a, b) poniamo

SWUH+a, V+by=gU, V)=G,+ G(U, V)+ G,(U, V) + ...,
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ed esprimiamo f(X, Y) nel modo seguente:

fXN=f(X-a+a, (Y-b)+Db)=g(X~a, Y-b)=
=G+G(X-a, Y-D+GX—a, Y-b+ ..,

dove G, =g(0, 0)=f(a, b)=0. Sostituendo X=a+ Lt, Y=>5b+ Mt a primo
membro si ottiene la [34.11]. Confrontando con I’ultimo membro e uguagliando
i coefficienti di ¢/, si deduce

z (;)fx'-kyk(a, b)L"*M*

k=0

G.(L, M) =
r!
Pertanto si ha
GX-a,Y-b)=6G,X-a, Y-b)=..=G,_,X—a, Y-Db=

e G,(X—a, Y— b) non ¢ identicamente nullo.
La curva di equazione

G, (X-a, Y-b)=0

si decompone nell’unione delle tangenti principali a £ in P.

Consideriamo alcuni esempi di curve affini con diversi tipi di singolarita nel-
P’origine. Nelle figure 34.1a-e ne ¢ rappresentato il supporto reale.

a) X*—X?+ Y*=0: la curva possiede un nodo nell’origine, con tangenti
principali X - Y=0e X+ Y=0.

b) X 3— Y?=0: la curva possiede una cuspide ordinaria nell’origine, con tan-
gente principale Y= 0.

) 2X*—3X*Y+ Y?-2Y3+ Y*=0: anche questa curva possiede un punto
doppio nell’origine, con unica tangente principale 7 : Y = 0. Si calcola facilmente
che I(%, 7;-0) = 4, e quindi 0 non & una cuspide ordinaria. Questa singolarita &
chiamata tacnodo.

d) (X*+ Y?)?+3X*Y— Y?=0: lorigine & un punto triplo ordinario, con
tangenti principali Y =0, Y —V3X=0, Y++3X=0.

&) (X?+ Y?H*—4X?Y?=0: Porigine & un punto quadruplo non ordinario,
con due tangenti principali: X=0¢ Y=0.

Un punto semplice P di una curva affine o proiettiva % & un flesso se
I(%Z, 7; P)= 3. Un flesso si dice di specie k(=1) se
(%, 1; P)=k+2.

Un flesso di specie k =1 (risp. k = 2) si dice ordinario (non ordinario).
Unaretta ¢ € una curva non singolare che coincide con la sua tangente in ogni
suo punto; quindi ogni suo punto P ¢ un punto di flesso perché I'(z, z; P)= o
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(a) ) (b)

{c) {d)

(e} Figura 34.1
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Poiché in ogni punto P di una curva % si ha I(%, 7; P) < gr(¥¥ ) a meno
che 7 non sia contenuta in %, una conica irriducibile non possiede punti di flesso,
e una cubica irriducibile puo possedere solo flessi ordinari.

La curva affine £ di equazione

Y-X%1=0, k=1

ha nell’origine un flesso di specie k.
Sia % CP? una curva proiettiva di equazione [34.6], avente grado n = 3.
L’hessiana di € ¢ la curva di equazione

H(X)=0,

dove H(X) ¢ il determinante della matrice 3 X 3

Fo(X) Fu(X) FpX)\
FoX) F,(X) F,(X)|. [34.16]
Fy(X) Fy(X) Fu(X)
La [34.16] e H(X) si dicono rispettivamente matrice hessiana ¢ determinante
hessiano di F(X). Si ha
gr(HX))=3(n-2).

L’hessiana di una curva serve a individuarne i punti di flesso.

34.8 ProposizioNE [ flessi di una curva proiettiva & sono i punti non sin-
golari che la curva ha in comune con la sua hessiana.

Dimostrazione
Consideriamo un punto semplice P = [p,, p;, P, € %, e un punto qualunque

Q= [qu qh CIZ]GPZ. Si ha
FOP+pQ) = FION + ER(PIGAT h+ o BE,P)agh 0+ .
s b

Il punto P ¢ un flesso di % se e solo se
iEjF}j(P)qiqj =0
per ogni Q tale che

cio¢ per ogni Q appartenente alla retta tangente 7 in P, che ha equazione

EF(P)X,=0.
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Quindi P ¢ un flesso se e solo se 7 ¢ una componente della conica I' di equazione
LF,(P) XX, = 0.
L]

Se P ¢ un flesso, I' & degenere, cio@ H(P)=0.

Viceversa, supponiamo H(P) =0, cioé I' degenere. Applicando due volte la
proposizione A.12(3), si trova

EE;(P)P;P,' = I?Foj(P )PAD, + [?'F L P)pip: + [§F 2/ (P)plp, =
=n-DEFP)p,=nn-1)FP)=0,

e quindi P¢T. Inoltre la tangente a I' in P ha equazione
LF,(P)p,X;=0.
Poiché si ha
gﬂ;(P)p;X} = -DIFP)X,
latangente aT' in P ¢ 7. Il fatto che I & riducibile implica che 7 ¢ una componente

di I'. Quindi P ¢ un flesso.

Dalla proposizione precedente ¢ dal teorema 33.1 segue immediatamente il
seguente corollario.

34.9 CoroLLArRIO  Una curva proiettiva di grado n = 3, se non ha infiniti flessi,
ne ha al pin 3n(n — 2) e, se & non singolare, ne ha almeno uno.

Il risultato seguente esprime la relazione esistente tra le proprieta locali di due
curve proiettivamente equivalenti.

34.10 ProPOSIZIONE  Signo £C P* una curva e T : P>— P2 yna proiettivita.
1) Per ogni PeP? si ha

m9(~§o//) = m'r(.p)(T(-Sg )

in particolare P & punto semplice (punto multiplo) per € se e solo se T(P) & punto
semplice (punto multiplo) per T(¥£).

2) Una retta ¢ & tangente (tangente principale) a & in P se e solo se T(z)
2 tangente (tangente principale) a T(£) in T(P).

3) Pe £ & un flesso di specie k per & se e solo se T(P) é un flesso di specie
k per T(Z).
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4) P¢ % éun punto multiplo ordinario (non ordinario) per £ se e solo se T(P)
2 un punto multiplo ordinario (non ordinario) per T(%).

Dimostrazione
1) Poiché le rette del fascio di centro P e quelle del fascio di centro T(P) si
corrispondono biunivocamente, per la proposizione 33.9 si ha

mp(%) = minpézl(% z; P)= minr(mer(z)I(T(%), T(); T(P) =
= mT(P)(T(%))-

Le (2) e (3) sono una conseguenza immediata della (1) e della proposizione 33.9.
La (4) segue dalla (2) e dal fatto che le rette del fascio di centro P e quelle del
fascio di centro T'(P) si corrispondono biunivocamente.

34.11 Complementi

1. Siano € e 2 due curve (affini o proiettive). Per ogni punto P del piano
si ha

mp(E) + mp(D) = mp(E + D). [34.17]

La dimostrazione & un facile esercizio (si applichi la [33.22]).

Dalla [34.17] discende che, data una curva qualsiasi %, i suoi punti singolari
sono singolari per qualche sua componente irriducibile, oppure appartengono ad
almeno due componenti, 0 a una componente multipla.

Supponiamo in particolare che £ sia ridotta. Dalla proposizione 34.4 segue
che le componenti irriducibili di % hanno al pili un numero finito di punti singo-
lari; d’altra parte i punti di intersezione di tutte le possibili coppie di componenti
irriducibili distinte di £ sono in numero finito. Deduciamo quindi che ogni curva
ridotta possiede al pitt un numero finito di punti singolari.

Dalla [34.17] segue anche che se una curva (affine o proiettiva) ¥ di grado
n si decompone in n rette, non necessariamente distinte, passanti tutte per un punto
P, allora m,,(%) =n.

Viceversa, se una curva (affine o proiettiva) Z di grado n possiede un punto
P di molteplicita n, Esi decompone in n rette, non necessariamente distinte, pas-
santi per P.

Infatti ogni retta che contiene P e un altro punto di £ ha almeno n + 1 inter-
sezioni con & e quindi, per il corollario 33.3, ¢ una componente irriducibile di
%. Ne segue che ogni componente irriducibile di £ & una retta contenente P, e
quindi ’asserto.

Supponiamo % affine di equazione [34.2]. La condizione che 0 = (0, 0) sia un
punto n-uplo per £ equivale, per quanto appena visto, alla condizione che f(X,
Y) si decomponga nel prodotto di # fattori lineari omogenei, e cid ¢ equivalente
alla condizione che f(X, Y) sia un polinomio omogeneo.
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o,

Figura 34.2

2. Sia £'C P? una curva proiettiva di equazione [34.6] e sia P = [P 1> 2]
un punto di P2. Sostituendo

X +tP=(Xy+1tpy, X +1p, X, + Do)

al posto delle variabili X = (X, X;, X,) in F(X), otteniamo il polinomio
FX +tP)in X,, X;, X,, t. Uguagliando a zero il coefficiente di ¢ in F(X + {P)
si ottiene una curva I'" = I'5(%), detta Ur-esima polare di P rispetto a £.

Se % ha grado n, T ha grado n — r e ha equazione

; > !Fi‘...f,(X)P;] ;= 0.

In particolare, I'" & definita per 0<r<n—1. Si haT' = %, e la prima polare
T'' di P& la curva di equazione

EF,(X)p;=0. [34.17]

La piti importante proprieta di I'! & la seguente: “n T'L(Z) consiste dei punti
Q€% che sono singolari oppure tali che la tangente a € in Q contenga P.

Infatti Qe £ NTH(E) se e solo se F(Q) =0=LF(Q)p,. Cid avviene pre-
cisamente se '

F(Q)=F(Q)=F(Q)=0,
ciog se Q & singolare per %, oppure se P appartiene alla tangente in Q, che ha
equazione

ZF:(Q)X, =0.

Quindi le tangenti condotte da P a % in suoi punti non singolari sono le rette
congiungenti P con i punti non singolari di £ che stanno su I'L(%). Da cid
segue che il numero di tali tangenti & al pitt #(n — 1). Segue anche che, se P¢ %,
allora PeT'L(%).
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Ad esempio, se £ & una conica irriducibile T'L(¥) & una retta. Se Pc%,
I'L(%) ¢ la tangente a &’ in P. Se invece P¢%, allora TL(Z)NE = (Q,, Q,),
e le rette L(P, Q) ed L(P, Q,) sono tangenti a & (fig. 34.2).

Esercizi

1. Verificare che gli asintoti di un’iperbole come sono stati definiti nel § 32 sono asintoti
anche nel senso della definizione data in questo paragrafo.

2. Nel piano affine A*(C) si considerino le curve di equazioni:

a) Y2(X-2Y)—(X*+Y)=0
D X-Y+X-Y —4X=0
) XX (X*-Y)—-4XY+Y'=0
d) X’ (X*+ Y) - XY-4Y’=0
e) XY’ - X' —-Y' - XY=0

f) Y+ X*+X°=0

g) Y—4X*—-X*=0.

Di ognuna di esse studiare le proprieta locali nell’origine e all’infinito.
3. Determinare equazioni cartesiane delle rette polari dei seguenti punti di P*(C): F, =

=[1,0,0], ,=[0,1,0}, »,=[0,0, 1], U=1, 1, 1], P[l, 2, 3], rispetto a ciascuna
delle coniche di equazioni seguenti, in coordinate non omogenee:

a) X*+2Y’—-4=0 b) X?-3XY+Y=0
c) XY=4 d) X’+Y*-2XY=0.

4. Determinare equazioni cartesiane delle rette tangenti alla conica % di equazione
X¢— X7+ X3 =0 e passanti per il punto [1, 0, 1].

5. Sia % una conica a centro di AXK). Dimostrare che la polare del centro di % &
la retta impropria.

35 Sistemi lineari di curve piane

Anche in questo paragrafo supporremo che il campo K sia algebricamente
chiuso.

Sia n =1 un intero. La totalita delle curve di grado n di P? = P*(K) si dice i/
sistema lineare di tutte le curve di grado n, e si denota con A,.

Denotiamo con K[X], C K[X] = K[X,, X, X,] lo spazio vettoriale costituito
dal polinomio 0 e da tutti i polinomi omogenei di grado ». Dalla definizione 28.2
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segue che una curva di P? = P2(K) di grado n pud identificarsi con un elemento
dello spazio proiettivo P(K[X],). Quindi A, = P(K[X],) & uno spazio proiettivo.

Nel caso » =1 otteniamo il sistema lineare delle rette.

La base di K[X], costituita da tutti i monomi monici di grado n individua
come coordinate di un polinomio i suoi coefficienti. Quindi le coordinate omoge-
nee di una curva Z€A,, rispetto al riferimento proiettivo individuato dai
monomi monici, sono i coefficienti di uno qualsiasi dei polinomi che la defini-
scono. La dimensione di A, & uguale a

3
dim(K[X],) -1 = (”;’l> —1= -’-’(”T"Ll

In particolare, il sistema lineare delle rette ha dimensione 2, quello delle coni-
che ha dimensione 5, quéllo delle cubiche ha dimensione 9 ecc.

Un sistema lineare di curve di grado n ¢ un sottospazio proiettivo A di A,. Se
ha dimensione 0, A consiste di una sola curva; se ha dimensione 1, il sistema lineare
& un fascio, se ha dimensione 2 ¢ una refe.

Un sistema lineare di dimensione r puo essere individuato da (r + 1) sue curve
indipendenti di equazioni

Fy(X)=0, ..., F.(X)=0. [35.1]

Ogni altra curva del sistema ha equazione

LAF,(X) =0
J

per opportuni (A, ..., A,) # (0, ..., 0). Un caso particolare che abbiamo gia incon-
trato in precedenza & quello di un fascio di rette, individuato da due sue rette distinte
qualsiasi.

Un sistema lineare A pud essere assegnato anche come intersezione di iper-
piani di A,. L’equazione di un iperpiano di A, ¢ lineare omogenea nei coefficienti
della curva variabile, e viene chiamata condizione lineare sulle curve del sistema

lineare A,,. .
. X nn+3 . A nn+3
Poiché A, ha dimensione —LZ—) , comunque si assegnino M < —L——)—
condizioni lineari, esistono curve di grado n che le soddisfano. Tali condi-
zioni individuano quindi un sistema lineare A di dimensione pari almeno a
n(n+3
nmtd
2

11 pit1 naturale tipo di condizione lineare si ottiene imponendo il passaggio per

un punto assegnato P[p,, p,, p,l- Sia
FX)= X Ui;kX(i)X{Xf
+itk=n

i

il polinomio omogeneo di grado # in X, X,, X; i cui coefficienti sono delle inde-
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terminate U, ;. Chiameremo F(X) il polinomio omogeneo generico di grado n.
La condizione di passaggio per P ¢ F(P) =0, cioé

o= Uinpopips =0,
che & appunto una condizione lineare omogenea nei coefficienti U, ;. Quindi le
curve di A, che contengono P sono quelle le cui coordinate u,, sono soluzioni
dell’equazione precedente: esse costituiscono pertanto un iperpiano di A,,.

Piu in generale, imponendo il passaggio per un punto assegnato P con molte-
plicita almeno r, dove r > 1, si ottengono r(r + 1)/2 condizioni lineari corrispon-
denti all’annullarsi in P di tutte le derivate parziali di F(X) di ordine r — 1, rispetto
alle variabili X, X, X,.

Si ha quindi la seguente proposizione.

35.1 ProposizioNE Comunque si assegnino punti distinti P, ..., P, e interi
ryy ooy 121, tali che

= X 5

n(n+3) ri+1
2 j=1 ’

esistono curve di grado n passanti per P,, ..., P, con molteplicita almeno r,, ..., r,
rispettivamente, e la loro totalita costituisce un sistema lineare di dimensione
almeno uguale a

n(n+ 3) _ 2*': rj+1‘
2 j=1 2

Dalla proposizione 35.1 discende in particolare che esistono curve di grado n
. n(n+ 3) . . .
passanti per M < —2——— punti comunque assegnati. In particolare, per 2 punti
passa una retta, per 5 punti passa almeno una conica, per 9 punti passa almeno
una cubica ecc.
Il sistema lineare descritto dalla proposizione 35.1 si denotera con

A, (Pp, Py ..., PD). [35.2]
Se

J

n(n+3 t {r.
dim[A, (P}, Py, ..., PP)] = Lz_l -z (%;rl),

diremo che i punti Py, ..., P, aventi rispettivamente molteplicitd r,, ..., r, impon-
gono condizioni indipendenti alle curve di grado n.
Pil in generale, assegnato un sistema lineare A di curve di grado n, i punti
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P, ..., P, di rispettive molteplicita r,, ..., r,, impongono condizioni indipendenti
a A se '

H
dim[A, (P}, Py, .., PN Al =dim(A) ~ (r;;l) :
pa

Se r,= ... =r,=1 diremo semplicemente che i punti P,, ..., P, impongono
condizioni indipendenti a A.

E evidente che, se P,, ..., P, impongono condizioni indipendenti a A, cid
avviene per ogni loro sottoinsieme.

Un punto P appartenente a tutte le curve di un sistema lineare A si dice punto
base di A. Se tutte le curve di A hanno una componente irriducibile &, in
comune, la curva &, si dice componente fissa di A.

Ad esempio, i punti P,, ..., P, sono punti base del sistema [35.2]. Essi si
dicono punti base assegnati del sistema lineare [35.2], ed r,, ..., r, le loro molte-
plicita.

Non sempre i punti base di un sistema lineare coincidono con quelli assegnati.
Ad esempio, dati 3 punti base P, P,, P; su una retta %, tutte le coniche che li
contengono hanno z come componente, € quindi z ¢ una componente fissa di
A, (P,, P,, P;), e ogni altro punto di # ¢ un punto base non assegnato del
sistema lineare A,(P;, P,, Py).

I punti base di un fascio A sono esattamente i punti di intersezione di due sue
curve qualsiasi. Infatti, se

% F(X)=0 e %:FX)=0
sono due curve del fascio, ogni altra curva €€ A ha equazione
AF(X) + uF,(X)=0 [35.3]

e quindi contiene ogni P€ %, N %,. Viceversa, se P & un punto base di A allora
in particolare appartiene a %, e a %,.

Se alle curve del fascio A si impone il passaggio per un punto qualsiasi Q diverso
dai punti base, si ottiene dalla [35.3] un’equazione lineare omogenea in A, g, che
ammette un’unica soluzione. Quindi esiste un’unica curva di A che contiene Q.
In altre parole, Q impone una condizione a A.

Pil in generale, sia A un sistema lineare di curve di grado # di dimensione r > 1.
Se si scelgono punti distinti Py, ..., P, in modo sufficientemente generale, essi
impongono condizioni indipendenti a A.

Basta infatti scegliere P, che non sia punto base di A, P, che non sia un punto
base di ANA,(P,), P; che non sia un punto base di AN A, (P,, P,) ecc.

Se il sistema A ¢ individuato dalle r + 1 curve [35.1], e se P,, ..., P, impongono
condizioni indipendenti a A, allora la curva appartenente a A e contenente
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P,, ..., P, ha equazione F(X) = 0, dove F(X) ¢ il determinante della matrice

F(X) ... F(X)
Fy(P) ... F(P)
Fy(P) ... F/(P)

Infatti dalla sua espressione si vede che il polinomio F(X) & combinazione lineare
di Fy(X), ..., F.(X), e quindi definisce una curva ZeA. Inoltre £ contiene
P, ..., P, perché per ogni i =1, ..., r, F(P;) ¢ il determinante di una matrice
avente due righe uguali.

Le proprieta dei fasci di curve consentono di dimostrare il seguente teorema:

35.3 TEOREMA Se due curve proiettive di grado n hanno in comune N (< n?
punti distinti, e se mn di essi appartengono a una curva irriducibile di grado m < n,
allora i rimanenti N — mn punti appartengono a una curva di grado n — m.

Dimostrazione

Siano £, e %, le due curve di grado n, e sia < la curva irriducibile di grado
m che contiene gli mn punti dell’enunciato. Fissato arbitrariamente un punto P€ &
diverso da questi 7n punti, esiste una curva & del fascio individuato da % e
% che contiene P. Poiché % ha mn +1 punti in comune con &, essa ha una
componente irriducibile in comune con <. Ma & ¢ irriducibile, e quindi
¥ = D+ £, dove ¥ ¢ una curva di grado n — m. Poiché % contiene gli N punti
%N %, e Z contiene mn di questi e nessuno dei rimanenti N — mn (perché
altrimenti Z sarebbe componente irriducibile di %, e di %, il che contraddi-
rebbe il fatto che %, e %, hanno solo un numero finito di punti in comune), que-
sti sono contenuti in %,

Terminiamo il paragrafo con un teorema che descrive la trasformazione di A,
indotta da una proiettivita di P2

35.4 TeoreMA Sia T: P?— P? una proiettivita. Per ogni n =1 Uapplicazione
di A, in sé stesso che associa ad ogni curva €€ A, la trasformata T(Z') é una
proiettivita.

Dimostrazione
Supponiamo che si abbia
T~ (xg5 X5 X) = (oo X + o1 Xy + Ap Xy AipXg + Gy Xy + Ay X X +
+ ay X + a,X).
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Per ogni curva Z€ A, di equazione

I uXoXiX5=0

i+jt+k=n
la trasformata 7(%) ha equazione

T v XX Xf=0,

i+j+k=n
dove
ok )
L v X X1 X = XL Up(@nXyt dn X + 4 X5 (a0 X, + an X, +
i+j+k=n i+j+k=n

+ @, XoY (@ X, + @y X, + 0 X)*.

I coefficienti v, sono espressioni omogenee di primo grado degli u;; a coef-
ficienti polinomi omogenei di grado n negli a,,. Cid equivale a dire che la trasfor-
mazione che muta gli u;; negli v;; ¢ una proiettivita.

La proiettivita di A, indotta da una proiettivita di P? induce, come ogni altra,
un isomorfismo di ogni sottospazio di A, sulla sua immagine. Quindi sistemi
lineari vengono trasformati in sistemi lineari della stessa dimensione. Un caso par-
ticolare di cui faremo uso nel paragrafo 36 si ottiene per n = 1: ogni proiettivita
T: P2— P? induce una proiettivita di A,, e, per ogni P€P?, questa induce un iso-
morfismo del fascio di rette A,(7(P)) sul fascio di rette A;(P).

35.5 Complementi

1. Condizione di tangenza a una retta in un suo punto. Sia % una retta di
equazione

00X0 + a}Xl + azXz = 0

e P=[p,, b\, P;] un suo punto. Imponiamo ai coefficienti del polinomio gene-
rico F(X) la seguente condizione di proporzionalita:

[ay, a,, a)] = [Fo(Do, P15 P2)» Fi(po» Dy, D2)s ¥y (Do, D15 PI)]. [35.4]
La [35.4] ¢ la condizione che la matrice
( Fo(po 1> P Fi(Do, D1 P2 Fy(Dy, D1s Do) )
a a, a,

abbia rango 1, ed equivale all’annullarsi dei suoi minori di ordine 2. Se ad esem-
pio g, # 0 questa condizione equivale alle due seguenti condizioni lineari omo-
genee sui coefficienti di F(X):

a,¥o(py, P1s D)) — @ ¥ (Do, P1» P =0

a,¥o(Do, P1s DY) — a¥> (Do, Py, P) =0.
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E facile verificare che queste due condizioni sono linearmente indipendenti.
Dunque le [35.4] individuano un sistema lineare ®, ,, di curve di grado n, avente
i nn+3)
dimensione ——2—— - 2.
Se % F(X)=0 ¢ una curva appartenente a ©®,,,, allora, per un opportuno
a#0,si ha

nF(P) = Fy(P) p, + F\(P) p, + F,(P) p, = aayp, + aa,p, + aa,p, = 0,

e quindi & contiene P. Inoltre, per la [35.4], z & tangente a % in P oppure P
& singolare per %.

Viceversa, & evidente che ogni curva di grado » avente £ come tangente in P
oppure singolare in P appartiene a ©, ,.

2. Sistemi lineari di curve affini. La teoria dei sistemi lineari, pur appartenendo
alla geometria delle curve proiettive, pud utilmente applicarsi allo studio delle curve
affini ed euclidee, utilizzando il passaggio da coordinate omogenee a non omo-
genee e viceversa. Accenniamo brevemente al caso dei fasci, lasciando al lettore
il caso generale.

Siano f(X, Y), g(X, Y)eKI[X, Y]digradined m rispettivamente, n = m = 0.
Al variare di f€K I’equazione

fX, Y)+1g(X, Y)=0 [35.5]

definisce una curva di grado n di A2(K) la cui chiusura proiettiva & la curva di
grado n

F(X,, X,, X)) + tX0""G (X X,y Xy) =0, [35.6]

dove F e G sono i polinomi omogeneizzati di f e g. La [35.6] definisce un fascio
di curve di grado n di cui la [35.5] & I’equazione in coordinate non omogenee.
Se ad esempio g & costante, il fascio [35.6] ¢ quello individuato dalla curva
F(X;, X, X;) =0 e dalla retta impropria contata n volte.

Queste osservazioni si applicano anche al caso di un campo K qualsiasi, ¢ al
caso euclideo. Ad esempio, siano &, & C E? due circonferenze aventi in comune
i due punti P, Q¢cE?, e £*, 2 * C P*(C) le loro chiusure proiettive. Poiché
£* N G * consiste dei punti ciclici e di P e Q, ogni conica reale non degenere
del fascio di coniche A individuato da £ *, & * possiede punti reali e passa per
i punti ciclici, quindi & la chiusura proiettiva di una circonferenza di E? passante
per P e Q. Per questo motivo A si dice fascio di circonferenze.

Analogamente, se f(X, Y) =0 & Pequazione di una parabola % di E?, e
aX + bY + ¢ € un polinomio non nullo di grado minore o uguale a 1, ’equazione

X, Y)+t@@X+bX+¢c)=0 [35.7]

rappresenta ovviamente ancora una parabola per ogni 1€ R, perché i termini di
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secondo grado del primo membro sono gli stessi di quelli di £(X, Y). Abbiamo
quindi un fascio di parabole. Dal punto di vista proiettivo la [35.7] si interpreta
osservando che la sua chiusura proiettiva & la curva di equazione

F(X,, X, X)) + 1 X,(@X, + bX, + cX)) =0. [35.8]

Poiché le coniche di equazioni F(X,, X, X9) =0¢e Xy(a X, +bX, +cX))=0
hanno per tangente la retta impropria # nel punto improprio di %, cid avviene
anche per la [35.8], perché entrambe appartengono al sistema lineare ©, , (cfr.
complemento 1).

In modo simile si dimostra che se & & un’ellisse, o un’iperbole, allora per € R
la [35.7] & ’equazione di un’ellisse, rispettivamente di un’iperbole, e quindi si ha
un fascio di ellissi, rispettivamente un fascio di iperboli.

3. Generazione proiettiva delle curve piane. Sia r=0 un intero. Per ogni
i=0,..., rsiano F;(X), ..., F;(X) polinomi omogenei di grado »; linearmente
indipendenti, e sia A, il sistema lineare di curve di grado n; di equazione

MF (XY + ... + 1, F,(X)=0.

Sia G(X) il determinante della matrice

Foo(X) ... Fo(X)
FioX) ... F,(X)

Fo(X) ... F(X)

che ¢ un polinomio omogeneo di grado ny+n, + ... +n,.

Sia £ C P? la curva piana di equazione G(X) = 0. Un punto P appartiene a
% se e solo se la matrice [35.9], calcolata in P, ha rango < r. Cid & equivalente
all’esistenza di una soluzione non banale del sistema di equazioni lineari omoge-
nee di cui essa ¢ la matrice dei coefficienti, cio¢ all’esistenza di /,, ..., /,€K non
tutti nulli tali che si abbia simultaneamente

LEoP)+ ... + LF,(P)=0, i=0,...,r.

Quindi Pe % se e solo se P appartiene simultaneamente alle r +1 curve di
equazioni

LEoX) + . +LF,(X)=0, i=0,...,r.

Questa descrizione di £’ & una sua generazione proiettiva per mezzo dei sistemi
lineari Ay, -..5 Ag-
Ad esempio, dati Fy,(X), Fy, (X) omogenei di grado n, F,(X), F;;(X) omoge-
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nei di grado m, linearmente indipendenti, la curva di grado n + m di equazione
Fp(X) Fyy(X) — Fyy (X) Fo(X) = 0 [35.10]
& il luogo dei punti di intersezione variabile delle curve dei due fasci
AoFoo(X) + A Fp (X) =0
MFoX)+ 4 F(X)=0

per stessi valori dei parametri A,, A,. Nel caso n = m =1 la [35.10] € una conica.

Esercizi

1. Siano (a, @, @), (bo, by, b2), (Co, €1, 2}, (do, A, d), (&0, €1, €), (fo, S, f) sei punti
di P?(K). Dimostrare che esiste una conica che li contiene se e solo se & soddisfatta
la condizione

@ @wa @@ 4@ aan @&
b3 beb, bob, bi bib, b}
2 e CC € GG G
& dod, dody @ didy a3 |=O
& e ee, & ee 6

o fofi Sofe ST S Si

2. Siano (@, ai, @), (b, b1, b), (Co, €1, C2), (do, d1, @), (€0, €1, €;), cinque punti di
P*(K). Dimostrare che essi impongono condizioni indipendenti al sistema lineare delle
coniche se e solo se la matrice

a& @, G alz a,a; a22
b boby bob, b} bib, b3
2 el G € oc c
di dod, dod, di did; d;

2 2
el e ee e ee e

ha rango massimo. Dimostrare che se questa condizione & soddisfatta, allora la conica
che contiene i cinque punti assegnati ha equazione

X2 XX, X X. X! XX X3}

@ aa  aa @ a@; a

b} by, byb, bt bb, b2
G e Cc ¢ ac o |7 0.
d? dod, dod» d* did, di

& ee ee, e ee e
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3. Siano P, P, P;, P,¢P?>(K) punti distinti e non allineati. Dimostrare che P, P,,
P;, P,impongono condizioni indipendenti alle coniche, e che pertanto A, (P., P, P, P)
¢ un fascio di coniche.

4. Dimostrare che se P,, P, Py, P,€P?*(K) sono punti distinti e a tre a tre non allineati,
allora Py, P,, P;, P, sono gli unici punti base del fascio di coniche A,(P,, P,, P;, P,).

5. Dimostrare che un fascio di coniche di P*(K) privo di componenti fisse contiene al
piu 3 coniche degeneri, e che se il fascio ha 4 punti base (distinti), allora le sue coniche
degeneri sono esattamente 3 (cfr. fig. 35.1).

Figura 35.1

6. Dimostrare il seguente teorema di Poncelet:
Se una curva proiettiva irriducibile £ di grado n = 3 & intersecata in n punti distinti
da una retta %, le n tangenti a %’in questi punti incontrano %'in altri M < n(n — 2)
punti che appartengono a una curva di grado n — 2.
(Suggerimento. Considerare il fascio determinato da % e dalla curva costituita dalle
n tangenti, e imporre alle curve del fascio il passaggio per un punto di 2. Quindi uti-
lizzare il complemento 35.5(1).)

36 Cubiche

In questo paragrafo supporremo K = C.

Nello studio delle cubiche proiettive complesse si presentano fenomeni geome-
trici nuovi rispetto al caso delle coniche. In questo paragrafo ne illustreremo alcuni
aspetti, iniziando da quello della classificazione. Il primo passo per classificare
le cubiche proiettive non singolari & costituito dal seguente teorema.

36.1 TEOREMA Ogni cubica non singolare £ C P*=P?*(C) ¢é proiettiva-
mente equivalente a una cubica di equazione affine:
Y2=X(X-1D(X-0), [36.1]
per qualche ce C\{0, 1}.

Dimostrazione
Poiché & non singolare, £ possiede almeno un flesso P. Con una proiettivita
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possiamo trasformare P nel punto [0, 0, 1] in modo che la tangente di flesso sia
la retta di equazione X, = 0. In coordinate affini la curva trasformata di % ha
equazione:

Y?=g(X) [36.2]

dove g(X) & un polinomio di grado 3. Se g(X) avesse una radice multipla «, la
curva [36.2] sarebbe singolare in (o, 0). Quindi g(X) & della forma

gX)=aX— o) (X —a) (X — ),
con a #0, e o, a,, a;€C distinti. L’affinita corrispondente alla sostituzione:

X=(,—a) X +q
Y=vVala,— o)’ Y’

trasforma la [36.2] nella [36.1], con ¢ = (o; — o))/ (o, — @¢)).

Dal corollario 34.9 segue che una cubica possiede al pit1 9 flessi distinti, se non
ne possiede infiniti. Per le cubiche non singolari abbiamo il seguente risultato pit
preciso:

36.2 TEOREMA

1) Una cubica non singolare % possiede esattamente nove flessi, che hanno
la proprieta che una retta che ne contiene due, ne contiene un terzo.

2) Dati comungque due flessi A e B di £, esiste una proiettivita p: P*— P?
che trasforma ¥ in sé stessa e scambia tra loro A e B lasciando fisso il flesso
allineato con A e B.

Dimostrazione
Grazie al teorema 36.1, & sufficiente dimostrare il teorema per le cubiche della
forma [36.1], o, equivalentemente, della forma

f(X,Y)=0,
dove

X Y)=Y’-X3+(c+1) X?—cX.
Si calcola facilmente che, in coordinate non omogenee, I’hessiana di f(X, Y) &
AX, V)=8[(Y?+cX)BX—-(c+1)—(c+DX-04
¢ il risultante di fe h/8 rispetto a Y &

RX)=3X*—4(c+1) X3+ 6cX*- 2
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Calcolando il discriminante di R(X) si trova
Alc+1)—40r=c'(c—-1)*#0,

e quindi R (X') ha quattro radici distinte, nessuna delle quali ¢ 0. Poiché f(X, Y)
e h(X, Y) contengono la Y solo in grado 2, per ogni (x, y) che li annulla entrambi,
anche (x, — ») ha la stessa proprietd. Quindi ognuna delle radici di R (X)) corri-
sponde a due punti propri distinti in comune a % e alla sua hessiana, perché ogni
punto siffatto (x, y) soddisfa la condizione y # 0. Se ne deduce che, oltre al punto
improprio [0, 0, 1], £ possiede altri 8 flessi, cioé¢ % ha in totale 9 flessi.

Siano ora assegnati due flessi di % Possiamo supporre che uno di essi sia [0,
0, 1], e l’altro sia (x, y), y # 0. Allora (x, — y) ¢ un flesso ed ¢ allineato con [0,
0, 1} e (x, y). La prima parte del teorema ¢ cosi dimostrata.

Siano A e B due flessi qualsiasi di Z, e sia C il terzo flesso allineato con A
e B. Possiamo supporre C=1[0, 0, 1], e quindi A =(x, y), B=(x, —»). La
proiettivita

‘P(Xo, X]s XZ) = (X09 X|3 - XZ)s

ha la proprieta voluta.
Il seguente & un risultato classico sulle cubiche non singolari:

36.3 TEOREMA (SALMON, 1851) Sia & una cubica non singolare di P? e sia
P un suo flesso. & possiede esattamente quattro tangenti distinte che contengono
P, inclusa la tangente in P. Il loro modulo ¢é indipendente dalla scelta di P.

Dimostrazione

Supponiamo dapprima che % sia la cubica [36.1], per qualche ¢ %0, 1, e che
P =10, 0, 11. & possiede quattro tangenti distinte passanti per P: le rette Y = c,
Y=1, Y=0, e la retta impropria.

Sia ora % una cubica non singolare qualsiasi e sia ¢: P2~ P? una proietti-
vita che trasforma % in una cubica [36.1], in modo che ¢(P) = [0, 0, 1]. Poiché
le tangenti a % passanti per P e quelle a (%) passanti per [0, 0, 1] si cor-
rispondono biunivocamente (cfr. proposizione 34.10), la prima parte del teorema
¢ dimostrata.

Inoltre il birapporto delle 4 tangenti in P ¢ lo stesso delle loro trasformate,
prese nello stesso ordine, perché ¢ induce un isomorfismo dei due fasci di rette
di centro P e [0, 0, 1] rispettivamente.

Il modulo comune delle quaterne di tangenti passanti per i flessi di una cubica
non singolare & di P? si chiama modulo della cubica, e si indica con j(%£).
Se la cubica % ha equazione [36.1], allora ¢ = 8(0, o, 1, ¢). Poiché la corri-
spondenza che alle rette del fascio di centro [0, 0, 1] associa il loro punto di inter-
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sezione con la retta X, = 0 & un isomorfismo di rette proiettive, segue che ¢ &
anche il birapporto delle quattro corrispondenti rette tangenti a £ e passanti per
[0, 0, 1] (Y= 0, la retta impropria, ¥ =1, ¥ =¢). Quindi

(&) =jo=E=et )’
c*(c —- 1)?

Dimostreremo che il modulo j(¥) individua la classe di equivalenza proiet-
tiva della curva.

36.4 COROLLARIO Due cubiche non singolari € e &' di P? sono proiettiva-
. mente equivalenti se e solo se j(£)=j(£").

Dimostrazione
Se e ¥ sono proiettivamente equivalenti, allora entrambe sono equiva-
lenti a una stessa cubica della forma [36.1], e quindi

i) =i =i&").

(4

Viceversa, supponiamo che la cubica £ abbia equazione [36.1] ¢ £” abbia
equazione
Vi=X(X-~-1)(X-c¢), [36.3]

con j{c) =j(c'). Se c #’, allora ¢’ & una delle seguenti cinque espressioni in ¢:

1 1 ¢c - c—1

¢’ I-c I1-¢’ c¢-1° c

Sara sufficiente determinare una proiettivita che trasforma la [36.1] nella [36.3]
nei due casi ¢/ = ¢!, 1—¢; negli altri casi le proiettivita si ottengono compo-
nendo opportunamente queste due.

Se ¢’ = ¢}, la proiettivitd corrispondente alla sostituzione di (¢X, ¢**Y) al
posto di (X, Y) trasforma la [36.1] nella [36.3].

Se ¢’ =1- ¢, si considera invece la proiettivita corrispondente alla sostituzione
di (-X+1,1iY) al posto di (X, Y).

Sia _# = {classi di equivalenza proiettiva di cubiche non singblari}.

11 corollario 36.4 stabilisce una corrispondenza biunivoca tra _# e il sottoin-
sieme di C costituito da tutti i valori j(¢), c€ C\{0, 1}. Ogni j(c) proviene da al
piu 6 valori distinti di ¢: poiché C ¢ infinito, in particolare anche _# & infinito.

Si osservi la differenza tra questo caso € quello delle coniche: abbiamo infatti
dimostrato nel paragrafo 30 che esiste un’unica classe di equivalenza proiettiva
di coniche non singolari.
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Terminiamo lo studio dell’equivalenza proiettiva di cubiche, considerando le
cubiche singolari. Ci limiteremo al caso irriducibile.

Per il teorema 33.5 una cubica irriducibile possiede al pit un punto singolare,
il quale deve essere un punto doppio, altrimenti la cubica si spezzerebbe nell’u-
nione di tre rette passanti per quel punto.

Se % ha un punto doppio ordinario P, con una proiettivita possiamo tra-
sformarlo nel punto [0, 0, 1] in modo che le tangenti principali siano le rette di
equazioni X, =0 e X, = 0. Allora ¥ ha equazione affine

XY+aX*+bX*+cX+d=0 [36.4]

con a # 0. La proiettivitad corrispondente alla sostituzione

X=va 'd X',
Y=ad Y’

trasforma la {36.4] nella
XY +X3+1=0,

che non dipende da a, b, c, d. Se ne deduce che tutte le cubiche irriducibili con
un nodo sono proiettivamente equivalenti tra loro.

In particolare ogni cubica irriducibile con un nodo ¢ proiettivamente equiva-
lente alla cubica di equazione

Y2=X*(X-1)

che ¢ irriducibile, ha un nodo nell’origine e un flesso in [0, 0, 1]. Quindi futte
le cubiche irriducibili con un nodo possiedono almeno un flesso.

Se % ha un punto doppio non ordinario P, la tangente principale incontra
% in P con molteplicita 3. Quindi P & una cuspide ordinaria. Con una proietti-
vitd possiamgq trasformare P nel punto [0, 0, 1] in modo che la tangente princi-
pale sia la retta di equazione X, = 0. Allora % ha equazione affine

Y+aX?}+bX?>+cX+d=0, [36.5]

con a # 0. La proiettivitd corrispondente alla sostituzione

x=x-L
3a
2

y=v -2 1¢
3a

trasforma la [36.5] nella

Y +aX'?+6=0
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per un opportuno §€C. Con [ulteriore sostituzione

x =YaTX
Y =Y-5

si ottiene I’equazione
Y+ X3=0, [36.6]

che non dipende da a, b, ¢, d. Deduciamo quindi che futte le cubiche irriducibili
con una cuspide ordinaria sono proiettivamente equivalenti tra loro.

In particolare ogni cubica irriducibile con un punto doppio non ordinario &
proiettivamente equivalente alla curva di equazione

Yz — X3,

che ¢ irriducibile, ha una cuspide ordinaria nell’origine, € un flesso in [0, 0, 1].
Deduciamo quindi che futte le cubiche irriducibili con una cuspide ordinaria pos-
siedono almeno un flesso. Riassumendo, abbiamo il seguente teorema.

36.5 TEOREMA
1) Esistono due classi di equivalenza proiettiva di cubiche irriducibili e singo-
lari, che sono rappresentate dalle curve di equazioni:

Yz — XZ(X_ 1) [36.7]
Y?=X3 [36.8]

Le curve della classe [36.7] hanno un nodo, quelle della classe [36.8] una cuspide
ordinaria.
2) Ogni cubica irriducibile ha almeno un flesso.

11 teorema precedente completa la classificazione proiettiva delle cubiche irri-
ducibili. La classificazione proiettiva delle cubiche riducibili si fa facilmente uti-
lizzando quella delle coniche e viene lasciata al lettore.

La classificazione delle cubiche affini e di quelle euclidee ¢ pili complicata, e
la sua trattazione esula dagli scopi del presente volume. Essa si ottiene, in modo
analogo al caso delle coniche, suddividendo le cubiche secondo il loro comporta-
mento all’infinito. Le possibilita che si presentano quando si ha un solo punto
all’infinito sono esemplificate, nel caso euclideo, dall’esempio 29.4(3) (parabole
cubiche di Newton).

Su una cubica non singolare ¢ possibile definire in modo puramente geome-
trico una struttura di gruppo abeliano, una volta fissato un suo punto di flesso.

27
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Figura 36.1

Consideriamo infatti una cubica non singolare % di P2 e sia O un suo flesso.
Definiamo un’applicazione

+:Ex €~ %

nel seguente modo. Per ogni A, Be % sia R(A, B) il terzo punto di intersezione con
% della retta L(A4, B) (o della tangente in 4 se 4 = B), convenendo di conside-
rare ogni punto di intersezione con la sua molteplicita (fig. 36.1). Definiamo
A+ B=R(R(A, B), O).

36.6 TeorREMA  Con l’operazione + introdotta sopra, la cubica non singolare
¥ & un gruppo abeliano, il cui elemento neutro & O.

Dimostrazione

E immediato verificare che O ¢ un elemento neutro rispetto a +, e che per
ogni A€%, —A = R(A, 0). 1l fatto che I’operazione sia commutativa & ovvio.
Resta quindi solo da verificare I’associativita di +.

Dobbiamo verificare che, dati comunque tre punti A, B, C€%, si ha

A+B+C)=A+B)+C,
cioé che
R(A,B+C)=RA+B,C). [36.9]
Considerata la cubica
D=LA, B)+L(A+B,C)+L(O,B+C),
si ha
“NY={0,A,B,C,A+B,B+C,R(A,B),R(A+B,C),R(B, C)}.

Daremo la dimostrazione nel caso in cui questi 9 punti sono distinti. Poichéi 3
punti B, C, R(B, C) sono allineati, dalla proposizione 35.3 segue che i rimanenti 6
sono su una conica. Ma di questi, O, A + Bed R(A, B) sono su una retta; ancora
dalla proposizione 35.3 segue che gli altri 3 punti, A4, B+ Ced R(A + B, C), sono
allineati, cioé la [36.9].
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Dalla definizione di + sulla cubica non singolare £ segue subito che 3 punti
A, B, CeX¥ sono allineati se e solo se A + B+ C=O.

36.7 Esempi

1. Una cubica non singolare £ proiettivamente equivalente alla cubica di
equazione

V2=XX-1)(X+1)

si dice armonica.
Se invece £ & proiettivamente equivalente alla cubica di equazione

Yi=XX-1)(X-1-¢),

dove e #1 & una radice cubica di 1, & si dice equianarmonica.
Le cubiche armoniche ed equianarmoniche hanno modulo rispettivamente
uguale a j(—1) =27/4, j(1+ ¢ =0.

2. Le cubiche non singolari del fascio
Yi=tX(X-1)(X-0
hanno tutte lo stesso modulo j(¢). Invece le cubiche non singolari del fascio
Yi=XX-1)(X-1

hanno modulo variabile j (7).

Esercizi

1. Determinare I’hessiana della cubica % di equazione
Xi+Xi+X3i=0
e dimostrare che % ha i seguenti flessi:
0,1, —11, [0, 1, — €], {0, 1, — €]
[-€,0,1],[—-1,0, 1], [—¢ 0, 1]
[1, —¢ 0}, [1, — €, 01, [1, =1, 01,
dove € #1 & una radice cubica di 1.

2. Dimostrare che le cubiche passanti per i 9 punti dell’esercizio precedente sono precisa-
mente quelle appartenenti al fascio

X3+ X+ X))+ mXo X, X, =0.
3. Determinare le cubiche singolari che appartengono al fascio dell’esercizio precedente.

4. Un fascio di cubiche tale che ogni cubica del fascio abbia per flessi i punti base & un
Jfascio sizigietico. Dimostrare che il fascio dell’esercizio 2) ¢ sizigietico.
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5. Dimostrare che la cubica armonica di equazione affine
Y2=X(X*~1)
ha la proprieta di essere I’hessiana della propria hessiana.
6. Dimostrare che una cubica irriducibile con una cuspide possiede un unico flesso.

(Suggerimento. E sufficiente dimostrare che la cubica di equazione affine Y?= X3
possiede un unico flesso.)

7. Dimostrare che una cubica irriducibile con un nodo possiede tre flessi, che sono allineati.
(Suggerimento. E sufficiente dimostrare I’asserto per la cubica di equazione
XY+X3+1=0)

8. Siano F(X) = 0, G(X) = 0 le equazioni di due coniche prive di componenti in comune,
LX) =0, M(X) =0 le equazioni di due rette distinte, e % la cubica di equazione

"

‘ FX) GX)
LX) M(X)

% & proiettivamente generata dal fascio di coniche .
AFX)+pGX)=0

e dal fascio di rette
ALX)+puMX)=0

(cfr. complemento 35.6 (3)). Dimostrare che % passa per i punti base del fascio di
coniche e per il centro del fascio di rette.

Si supponga che il fascio di coniche abbia 4 punti base distinti dal centro O del
fascio di rette. Dimostrare che ogni conica del fascio interseca % in altri 2 punti alli-
neati con O.

9. Dimostrare che su una cubica non singolare ¥ su cui sia fissato un flesso O, esistono
4 punti distinti A tali che 24 = O.
(Suggerimento. Utilizzare il teorema di Salmon.)



Appendici

A Domini, campi, polinomi

In quest’appendice sono trattati alcuni argomenti di algebra che vengono uti-
lizzati in questo testo. L’esposizione non sara completa di tutte le dimostrazioni,
per alcune delle quali rinvieremo a un testo di algebra.

Definizioni

Fra le strutture algebriche maggiormente usate in geometria troviamo quelle
di ““campo’’ e di ‘“‘dominio’*.

Un campo & una terna (K, +,-) costituita da un insieme non vuoto K e da due
operazioni binarie su K, cio¢ due applicazioni

+:KxK—=K, --:KxK-K

chiamate somma e prodotto, che associano ad ogni coppia (a, b) €K X K un ele-
mento @ + b€ K, chiamato ‘‘somma di a pilt 5>’ € un elemento ab, chiamato ““pro-
dotto di @ per b”’, in modo che siano soddisfatti i seguenti assiomi:

K1 (Commutativita della somma) a+ b= b + a, per ogni a, beK.

K2  (Associativita della somma)a + (b + ¢c)=(a+ b) + ¢, perognia, b, ceK.

K3  (Esistenza dello zero) Esiste un elemento 0€Ktalechea +0=0+a=a,
per ogni a€K.

K4  (Esistenza dell’opposto) Per ogni a€K esiste a’ €K tale che a + a’ = 0.

K5 (Commutativita del prodotto) ab = ba, per ogni a, beK.

K6 (Associativita del prodotto) a(bc) = (ab)c, per ogni a, b, ceK.

K7  (Esistenza dell’unitad) Esiste un elemento 1€K tale che al = la = a, per
ogni aeK.

K8 (Esistenza dell’inverso) Per ogni a €K, a # 0, esiste un elemento a* € K
tale che aa* =1.
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K9  (Distributivita della somma rispetto al prodotto) a(b + ¢) = ab + ac, per
ogni a, b, ceK.
K10 (Non-esistenza di divisori dello zero) Se ab=0¢ b #0, allora a =0.

Sela terna (K, +, -) soddisfa gli assiomi K1, ..., K7, K9, K10, ma non necessa-
riamente K8, essa si dice dominio (o domlmo d mtegrzta)

Quando non vi sia possibilita di equivoco sulle operazioni che vi sono defmlte
il campo, o il dominio, (K, +,-) si denotera semplicemente con la lettera K. Deno-
teremo il sottoinsieme K\ {0} con K*.

Con le usuali operazioni ’insieme Z dei numeri interi relativi ¢ un dominio.
Sono campi Q, R e C, gli insiemi dei numeri razionali, reali e complessi rispetti-
vamente, con le operazioni usuali. Z, = Z/pZ, I'insieme delle classi resto modulo
un numero primo p = 2, dotato delle operazioni indotte dalla somma e dal pro-
dotto in Z, & un campo.

Sia K un dominio. Le seguenti proprieta seguono facilmente dagli assiomi e
la loro dimostrazione verra omessa.

i) Esiste un unico zero, cioé se 0’ ¢ Ksoddisfaa + 0’ = 0’ + a = a per ogni ae K
allora 0’ =0.

1i) Esiste un unico elemento unita, cioé se u €K soddisfa au = ua = a per ogni
a€K allora u=1.

iii) Per ogni a € K ’elemento ¢’ € K di cui ¢ asserita ’esistenza nell’assioma K4
& unico; esso si dice I’opposto di a, e viene di solito denotato con — a; si scrivera
b — a invece di b + (— a).

iv) Un elemento a € K & detto invertibile se esiste a* €K tale che aa* = a*a=1.
L’elemento a* & univocamente determinato da a, si chiama Pinverso di a, ¢ si denota
con g %; talvolta si scrive a/b invece di ab™!.

Se n€N e a€K, scriveremo na per indicare la somma
a+ ...+a (naddendi)

intendendo O0a=0. Se n€Z, n<0, a€K, poniamo per definizione na = an =
=(-n)(-a).

Se per ogni intero n > 0 si ha n1 # 0 il dominio K ha caratteristica 0. Se invece
esiste p > Otale che p1= 0, allora K ha caratteristica positiva; il pit piccolo intero
p con tale proprieta & la caratteristica di K.

Z, Q, R e C hanno caratteristica 0. Un esempio di campo di caratteristica posi-
tiva ¢ il campo Z, delle classi resto modulo p, dove p =2 ¢ un numero primo.

Un softodominio di un dominio D & un sottoinsieme F di D sul quale le opera-
zioni definite in D inducono altrettante operazioni in modo che esso sia ancora
un dominio. Un sottocampo di un campo K & un sottodominio F di K che ¢ un
campo. Se F & un sottocampo di K, K & un’estensione di F. Ad esempio Q ed R
sono sottocampi di C e Q & anche un sottocampo di R. Altri esempi di sottocampi
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di C sono:
Q[i] = {a + ib: a, beQ}
Q[nl={a+~n b: a, beQ}, n intero positivo

non divisibile per un quadrato

Z ¢ un sottodominio di ognuno dei campi Q, R, C.
Un sottoinsieme F di un campo K € un sottocampo se e solo se verifica le seguenti
condizioni:

SK1 O, 1€F.
SK2 Se a, beF alloraa— beF.
SK3 Sea, beFe b#0, allora ab~'€F.

E evidente che ogni sottocampo soddisfa le SK1, SK2, SK3. Viceversa, se F
verifica queste condizioni, dalla SK1 segue che F #0; dalla SK2 con a= 0 segue
che per ogni b€F anche — b¢eF, e dalla SK3 con @ = 1 segue che b~'€F se b #0.
Quindi si ha pure a + beF e abeF per ogni a, b€ F. Le due operazioni inducono
dunque operazioni su F in modo che K3, K4, K7 e K8 siano soddisfatti. Gli altri
assiomi sono soddisfatti perché lo sono in K. Quindi F ¢ un sottocampo di K.

Un sottodominio di un dominio D ha la stessa caratteristica di D. In partico-
lare, ogni sottocampo di C ha caratteristica 0. Dalle SK1, SK2, SK3 discende imme-
diatamente che ogni sottocampo di C contiene Q. Ogni dominio contenente Q
ha caratteristica 0.

In un dominio si mantengono le usuali notazioni e convenzioni sugli esponenti:
si scrive ¢”" per denotare

aa...a
(n fattori)

e, se a # 0 & invertibile, a~" denota con (a~')".

Un importante esempio di dominio € costituito dai polinomi in una indetermi-
nata a coefficienti in un dominio.

Siano D un dominio e X un’indeterminata. Per ogni successione finita a,,
a, ..., a, di elementi di D, I’espressione

fX)=a+aX+aX*+ ... +a,X"

definisce un polinomio in X a coefficienti in D, di cui a,, a,, ..., a, sono i coeffi-
cienti, e a,, a, X, ..., @,X" i monomi, o termini. Un’altra espressione g(X) = b, +
+b, X+ ... +b,X", b, ..., b,eD, definisce lo stesso polinomio se e solo se
f(X) e g(X) hanno gli stessi termini con coefficienti diversi da 0. Il polinomio
a coefficienti tutti nulli si dice polinomio nullo, e si denota con 0. Se f(X) #0,
il grado di f(X) & il pil grande intero d tale che a, # 0, e si denota con gr( f(X)).
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Un polinomio f(X) di grado d si dice monico se a,= 1; f(X) si dice costante se
¢ 0 oppure se ha grado 0. L’insieme di tutti i polinomi in X a coefficienti in D
si denota con D[X]. La somma di due polinomi

fX)=agta X+a,X*+ ... +a,X", gX)=by+bX+ ... +b,X",
si definisce come il polinomio
fX)+gX)=a,+by+(a; +b)X+ ...
e il loro prodotto come
F(X) g(X) = ayb, + @by + a,b) X + (ayh, + a,b, + a,b) X* + ...
Segue subito dalla definizione che, se f, g, f+ g #0:

gr(f+g) =max{gr(f), gr(g)},
gr(fg) = gr(f) + er(g).

Con le operazioni di somma e di prodotto che abbiamo definito, D{X] & un
dominio. La verifica ¢ immediata ed & lasciata al lettore.

Se D ¢ un dominio ed X, X, ..., Xy sono indeterminate, un polinomio in
X, ..., Xy a coefficienti in D ¢ definito induttivamente come un polinomio in X,
i cui coefficienti sono polinomi in X, ..., X,_, a coefficienti in D. L’insieme di
tali polinomi si denota con D[X, ..., Xy_;, Xy]. In simboli,

DIX}, -oes Xno1» Xad =DIX,, ooy Xno 11X

Ogni f(X,, ..., X)) €D[X,, ..., Xy_1» X3l & in modo unico somma finita di
monomi, cioé di termini della forma

i in
a ..., X . Xy

dove g; ..., €D* ¢ il coefficiente del monomio, i; il grado rispetto a X, ¢
iy + ... +iyil grado (o grado totale) del monomio; se a; ...,; =1 il monomio si
dice monico. 11 grado di un polinomio non nullo f(X,, ..., Xy) rispetto a X; &
il massimo dei gradi rispetto a X dei suoi monomi; il grado (o grado totale) di
f(X ..., Xy) & il massimo dei gradi dei suoi monomi, e si denota con
gr(f(X,, ..., Xy)). Per definizione il polinomio nullo ha grado indeterminato.

Siano D e D’ due domini, con unitd 1,€D e 15. €D’ rispettivamente. Un’ap-
plicazione f: D— D’ si dice omomorfismo se soddisfa le condizioni

fla+by=f(@+ fb), f@b) =@ f(B) per ogni a, beD.
fp) =1

(Avvertenza: taluni autori non richiedono quest’ultima condizione nella defi-
nizione, e chiamano ‘‘omomorfismi unitari>> quelli che noi abbiamo chiamato omo-
morfismi.)
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L’identitd 1,: D—D e la composizione gof: D—>D” di due omomorfismi
f:D—-D’eg: D’ —D” sono omomorfismi.

Un isomorfismo & un omomorfismo f: D — D’ che possiede un omomorfismo
inverso. Due domini D e D’ si dicono isomorfi se esiste un isomorfismo f: D—D".

L’identita, I’inverso di un isomorfismo e la composizione di isomorfismi sono
isomorfismi. Pertanto I’isomorfismo € una relazione di equivalenza tra domini.

Si osservi che un omomorfismo f: D— D’ in cui D & un campo, ¢ iniettivo.
Infatti, se esistesse x€D* tale che f(x) =0, si avrebbe I’assurdo 1,. = f(lp) =

=fex =) fxH=0f(x"").

1l campo dei quozienti di un dominio

Sia D un dominio. E possibile costruire un campo contenente D, che ¢ in un
certo senso il pill piccolo campo con questa proprietd, in un modo che genera-
lizza la costruzione del campo dei numeri razionali a partire da Z.

A.l1 TEOREMA Per ogni dominio D esiste un campo L, unico a meno di iso-
morfismi, e chiamato campo dei quozienti di D, tale che

1) D é isomorfo a un sottodominio D’ di L;

2) ogni elemento di L é della forma a/b, dove a, beD’.

Dimostrazione
Sia S il sottoinsieme di D x D costituito da tutte le coppie (a, b) tali che b # 0.
Definiamo una relazione ~ in S ponendo (a, b) ~ (c, d) se e solo se ad — bc = 0.
E facile verificare che ~ ¢& una relazione di equivalenza. Denotiamo con L I’in-
sieme delle classi di equivalenza, e con S(a b)€L la classe dell’elemento (a, b).
Definiamo operazioni in L nel modo seguente:
S(a, b) + S(c, d)= S(ad + bc, bd)
S(a, b) S(c, d) = S(ac, bd).
Queste operazioni sono ben definite perché non dipendono dai rappresentanti
delle classi che intervengono nella definizione. Infatti, se
S(a, b)=S(a,, b)), S(c, d)=S(cy, dy),
allora
ab,=ab, cdi=cd

e quindi
(ad + be)b,d, = ab,dd, + bb, cd, = a, bdd, + bb,c,d = (a,d, + b,c,)bd
ach,d, = a,c,bd.

E facile verificare che L, con queste operazioni, soddisfa gli assiomi di campo,
se si prendono come zero e unita rispettivamente S(0, 1) ed S(1, 1). Il sottodomi-
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nio D’ costituito dagli elementi della forma S(a, 1), a€D, soddisfa le condizionij
(1) e (2) per la definizione stessa di L.

Se H & un campo contenente un sottodominio D” tale che esista un isomorfi-
smo i: D— D" e soddisfacente la condizione (2) rispetto a D”, allora I’applicazione

Sf:L—H,
definita ponendo
f(S(a, b)) = i(a)/i(d),

¢ un omomorfismo suriettivo di campi, ¢ quindi € un isomorfismo.

In pratica ¢ pitt comodo denotare un elemento S(a, b) del campo dei quozienti
L di un dominio D con il simbolo a/5.

Come abbiamo detto prima, il campo dei numeri razionali Q ¢& il campo dei
quozienti di Z. Un altro esempio importante di campo dei quozienti si ottiene con-
siderando D = K[X], dove K & un campo ed X ¢ un’indeterminata. Il campo dei
quozienti di D si chiama campo delle funzioni razionali in X a coefficienti in K,
e si denota con K(X'). I suoi elementi sono frazioni della forma f(X)/g(X), dove
SX), g(X)eK[X], g(X)#0.

Piu in generale, il campo dei quozienti di K[X], ..., X,], dove K & un campo
e X, ..., Xy sono indeterminate, si chiama campo delle funzioni razionali nelle
indeterminate X, ..., Xy a coefficienti in K, e si denota con K(Xj, ..., X,).

Proprieta di divisibilita e di fattorizzazione

Sia D un dominio. Dati a, b€ D diremo che a divide b, oppure che b é divisibile
per a, in simboli a| b, se esiste c€D tale che b = ac. In particolare, a & invertibile
se e solo se a|l.

Si ha che a|b e b|a se e solo se b = ea, dove e€D ¢ un elemento invertibile.
In questo caso a e b si dicono associati.

Un elemento a€D ¢ irriducibile se & divisibile solo per i suoi associati e per
gli elementi invertibili; altrimenti & riducibile.

Una espressione a = q, ... a, ¢ una fattorizzazione di a, di cui gli g; si dicono
Sattori. )

D si dice dominio a fattorizzazione unica se in esso sono soddisfatte le seguenti
condizioni:

DFU1 Ogni elemento non invertibile a € D si puo fattorizzare come il prodotto
a, ... a, di un numero finito di elementi irriducibili di D. '

DFU2 Sea,...a,= b, ... b, in cui gli g; ¢ i b, sono irriducibili e non inverti-
bili, allora r = s ed ¢ possibile riordinare gli a; in modo che g; sia associato a b,,

Jj=1,...,r.
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E ovvio che ogni campo K & un dominio a fattorizzazione unica. Facendo uso
della teoria elementare della divisibilita si dimostra che Z & un dominio a fattoriz-
zazione unica.

Sia B un dominio. Le definizioni precedenti applicate a D = B[X, ..., X,]
danno luogo alle nozioni di divisibilita tra polinomi, polinomi associati, polinomi
irriducibili.

Ogni polinomio di grado 1 a coefficienti invertibili in B ¢ irriducibile.

L’irriducibilita di un polinomio in generale dipende da B. Ad esempio, X* +1
¢ irriducibile come polinomio di R[X], ma in C[X] si fattorizza come

X?+1=(X+1)X-i).

Si osservi che se K & un campo, K[X'] contiene infiniti polinomi monici irridu-
cibili. Infatti, K[X ] contiene qualche polinomio monico irriducibile (i polinomi
X —a, a€K). D’altra parte, se f,(X), /,(X), ..., [,(X)€K[X] fossero tutti i poli-
nomi monici irriducibili, il polinomio monico

SH(X) fo(X) ... (X)) +1

sarebbe irriducibile, perché non divisibile per alcuno di essi, e divérso da f;(X),
LX), - [(X). Quindi f,(X), £,(X), ..., [,(X) non esauriscono tutti i polinomi
monici irriducibili, che sono pertanto infiniti.

Si ha il seguente importante teorema.

A.2 TEOREMA (DI FATTORIZZAZIONE UNICA) Se D & un dominio a fattorizza-
zione unica e X & un’indeterminata, D[X] ¢ anch’esso a fattorizzazione unica.
In particolare, se K & un campo e X, ..., X, sono indeterminate, K[X|, ..., X,\]
& un dominio a fattorizzazione unica.

Per la dimostrazione del teorema A.2 rinviamo il lettore a [15].
Raccogliendo i fattori che ricorrono piti volte nella fattorizzazione di un poli-
nomio f€K[X,, ..., X\, si pud scrivere

f=8...8"

dove g, ..., g, sono irriducibili e distinti. L’esponente ¢; si dice molteplicita di g;
in f. Se ¢;> 1, g; € un fattore multiplo di f. Si ha I’identita:

gr(f)=eegr(g) + ... +egr(g).

A.3 ProprosizioNE  Siano K un campo e X un’indeterminata. Per ogni f,
g€KI[X1], esiste he K[X] tale che:

) Alf, kg

2) se k|f, k|g, allora k|h;

3) esistono A, BeK|[X] tali che h = Af + Bg.
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h é detto massimo comun divisore (MCD) di f ¢ g, e si denota con MCD(f, g);
esso ¢ individuato a meno di un fattore costante.

Per la dimostrazione della proposizione rimandiamo il lettore a [15].

Radici
Siano D un dominio e X un’indeterminata. Per ogni

fX)=a+a; X+ ... +a,XeD[X]
e per ogni a€D, il valore di f(X) in a & ’elemento di D
f@=ay+aa+a,a*+ ... +a,a°

ottenuto per sostituzione di a al posto di X. Si definisce in questo modo una appli-
cazione f:D— D, detta funzione polinomiale definita da f.

Se D’ € un dominio contenente D come sottodominio, allora D[X]C D’ [X],
cioé ogni f(X)eD[X] ¢ anche un elemento di D’ [X]. Pertanto ha senso parlare
della sostituzione di un elemento @’ €D’ in £(X) al posto di X, e del valore f@a),
che & un elemento di D’. Quest’osservazione si applica ad esempio al caso
D’ = D[X] e permette di considerare i/ polinomio f(g(X)) ottenuto per sostitu-
zione di un polinomio g(X)€DI[X] al posto di X in f(X).

Sia f(X') un polinomio di grado positivo. Un elemento o € D tale che f (o) = 0
¢ una radice di f(X).

A.4 PRoOPOSIZIONE o €D e una radice di f(X) se e solo se il polinomio X — o
divide f(X).

Dimostrazione

Se X —« divide f(X), allora f(X)=(X —a)g(X), e quindi « & una radice
di f(X).

Supponiamo viceversa che « sia un radice di f(X'). Se a = 0, f(X) ha termine
costante uguale a 0, ¢ quindi & divisibile per X.

Se invece « # 0, introduciamo una nuova indeterminata Y e sia

F¥)=f(Y +)eD[Y].

Siha f(O) = 0 e quindi f~(Y) = Y& (Y) per un opportuno g(Y )€ D{[Y]. Sostituendo
Y = X — a otteniamo

fX)=FfX-a)=X-)FX - 0)=(X - a) g(X),
dove abbiamo posto g(X) = g(X — ).

o €D ¢ una radice multipla di f(X) se (X — ) & un fattore multiplo di f(X),
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cioé se si ha
fX)=(X-a)gX) [A.1]

per qualche e = 2. Il massimo intero e per cui esiste una fattorizzazione [A.1] si
dice molteplicita della radice o per il polinomio f(X). Se ha molteplicita e =1,
o & una radice semplice. A un « che non ¢ radice di f, si conviene di attribuire
molteplicita e = 0.

Si noti che e & la molteplicita di o per f(X) se e solo se il polinomio g(X)
che figura nella [A.1] soddisfa g(or) # 0; poiché g(X ) ha grado uguale a gr(f) — e,
si ha e gr(f).

A.5 Cororrario Un polinomio f(X)€eD[X] di grado positivo d possiede
al piu d radici in D, se ognuna di esse viene contata con la sua molteplicita.

Dimostrazione

Per induzione su d. Se d = 1 P’asserto ¢ evidente. Supponiamo d = 2 e che f(X)
possieda le radici distinte «,, ..., @, di.molteplicita e, ..., e,.

Scriviamo

JX)=X-a)"g(X)
per un opportuno g,(X)eD[X] di grado d — e, che soddisfa g, («,) # 0. Per ogni
j=2,..., tsiha

0 =f(aj) = (aj —oy)g (aj)'

Poiché o;# «; € D ¢ un dominio, ¢ g,(a) =0. Per lipotesi induttiva,
e+ ... +e=<d-e, ¢ quindi

etet+ .. +e=d.

Il numero di radici che un polinomio ha in D dipende da D. Si pensi al polino-
mio X2 +1, che in C ha le radici =i, ma non ne ha in R.

Supponiamo che K sia un campo. Se ogni f(X) € K[X] non costante possiede
almeno una radice in K, il campo si dice algebricamente chiuso. Dalla proposi-
zione A.4 si ottiene facilmente per induzione il seguente risultato (la dimostra-
zione ¢é lasciata al lettore).

A.6 TEOREMA Supponiamo che K sia un campo algebricamente chiuso. Ogni
polinomio f(X)€K[X1di grado d ha esattamente d radici, se ognuna di esse viene
contata con la sua molteplicita. Pertanto f(X) si fattorizza come

fX)y=aX-a)...(X-a,), a#0,

dove oy, ..., a;€K sono le sue radici, non necessariamente distinte.
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Si noti che un campo algebricamente chiuso K possiede infiniti elementi. Infatti
segue dal teorema A.6 che gli unici polinomi monici irriducibili in K[X ] sono della
forma X — «a, a€K, e, come gia osservato, i polinomi monici irriducibili song
infiniti.

R non ¢ algebricamente chiuso, perché esistono polinomi non costanti a coef-
ficienti reali che non hanno radici reali, come i polinomi aX?+ bX + ¢, in cui
b*—4ac<O.

Si ha il seguente classico risultato, dimostrato per Ia prima volta da Gauss nel
1799.

A.7 TEOREMA (FONDAMENTALE DELL’ALGEBRA) Il campo C dei numeri com-
Dlessi é algebricamente chiuso.

Per la dimostrazione di questo teorema il lettore puo consultare, per esempio,
[La].

Il risultato seguente viene solitamente chiamato principio d’identita dei
polinomi.

A.8 TeoreMmA Siano Kuncampo, Z,, ..., Z,, indeterminate, ed f (ZI s eees Zp)E
€KIZ,, ..., Z,). Se esiste un sottoinsieme infinito J C K tale che

Slagy ooy a) =0
per ogni (ay, ..., a)€JY, allora f(Z,, ..., Z,) = 0.

Dimostrazione

Per induzione su N. Il caso N =1 é conseguenza del corollario A.5.

Supponiamo N = 2 e che il teorema sia vero per polinomi in N — 1 indetermi-
nate a coefficienti in K. Scriviamo

SXps ey X)) =fo+ iXn+ ... +[,X8, d=0

dove f;€K[Xj, ..., Xy_;]. Se f# 0 possiamo supporre che sia f, # 0. Per I'ipotesi
induttiva esiste (o, ..., an_ )€ JV! tale che f (o, .., y_;) # 0. Pertanto, per
il corollario A.5, esistono al piti d valori di «,, per i quali f (05 .0y ap) = 0. Cid
¢é contrario all’ipotesi, e quindi f= 0.

In particolare, se K ¢ infinito e f(X') € K[.X] soddisfa f (o) = 0 per ogni a €K,
allora f = 0. Questo non & vero se non si suppone K infinito. Ad esempio, si con-
sideri K = Z/(p), p numero primo. Il polinomio X? — X¢ K[X] non ¢ nullo, ma
ha per radici tutti gli aeK.

Derivate e teorema di Taylor

La nozione di derivata di un polinomio puo essere introdotta in modo formale
senza far uso di alcun concetto del calcolo infinitesimale. Cid consente di esten-
dere tale nozione a polinomi a coefficienti in un dominio qualunque.



A/Domini, campi, polinomi 43]

Consideriamo un dominio D, e sia

fX)=a, X +a;, X'+ ... +a; X+ a,eD[X].

La derivata di f(X) ¢ il polinomio
f(X)=da, X "+(d-a,_ X >+ .. +a,.

Per indicare la derivata di f(X) si usa anche il simbolo df/dX.

La derivata k-esima di f(X) & il polinomio d*f/dX* (indicato anche con
f®(X)) definito induttivamente nel modo seguente:

d‘f  d(f“ (X))
dx* dx :

Se f(X;, ..., X)) €D[X,, ..., X\1, la derivata parziale di f rispetto a X, che si
indica con df/8 X, ¢ definita come la derivata di f considerato come un polino-
mio in X; a coefficienti nel dominio D[X, ..., X;_;, X, 1, ..., Xpl-

Analoga definizione si da delle derivate parziali successive di f.

E un facile esercizio dimostrare che le derivate parziali successive di un polino-
mio f sono indipendenti dall’ordine in cui si eseguono.

(Suggerimento: ¢ sufficiente dimostrarlo per i monomi.)

A9 LemMa «a €D é una radice multipla del polinomio f(X) se e solo se a
e radice di f(X) e di f'(X).

Dimostrazione
Supponiamo che o sia una radice di molteplicita 2 =1 di f(X). Si ha

fX) =X - a)gX).
Derivando primo e secondo membro si oftiene I’identita

S X)=h(X-a)'gX)+ X~ a)g (X).
Se h=2, f' (@) =0. Se invece h =1,

S (@) =g(@)#0.

Le derivate di un polinomio sono state definite in modo puramente formale,

senza far uso di concetti del calcolo infinitesimale. Sempre in modo formale &
possibile dimostrare il teorema di Taylor per i polinomi in una o pit indetermi-

nate, purché il dominio D contenga Q. Ricordiamo che questa condizione ¢ in
particolare soddisfatta da ogni sottocampo di C.

A.10 TeoreMA (D1 TAYLOR) Supponiamo che il dominio D contenga Q. Per
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ogni f(X)eDI{X] di grado d e per ogni a€D si ha

” )
7@ 5 gy .+ L@
21 d!

fSX)=f@+f @X-a+ X - a).

Dimostrazione
Consideriamo il polinomio (Y + a), che supponiamo abbia la forma

fY+a)y=a+a, Y+ ... +a,Y" [A.2]
Derivando successivamente otteniamo
f(Y+a)=a +2a,Y+ ... +da, Y,
frY+a)=2a,+6a,Y+ ... +d(d—1)a, Y2,

fOY+a)y=d! a,
Ponendo Y = 0 in ognuna di queste identita otteniamo
a=f@, a=f@, a=f"@?2,.., a=Fa)/d

(poiché D contiene Q si puo dividere per 2!, 3!, ..., d!).
Sostituendo nella [A.2] e ponendo Y = X — a otteniamo la’ conclusione.

Polinomi omogenei

Siano K un campo e X, ..., Xy indeterminate. Un polinomio non nullo
F(Xp, .-y X3) €KX, ..., X\ si dice omogeneo se tutti i suoi monomi hanno lo
stesso grado.

Si denotera con K[Xy, ..., X)l, 'insieme costituito dal polinomio nullo e dai
polinomi omogenei di grado d. K[Xj, ..., Xy], ¢ uno spazio vettoriale su K in cui
i monomi monici di grado d costituiscono una base.

A.11 LEMMA Per ognid=0

N+a’)

dimy (K[ X, ..., Xplo) = ( d [A.3]

dove

N+d\ _ N+dYN+d-1)...(N+1)
d | d!

. N
convenendo di porre ( 0 ) =1.

Dimostrazione
Procediamo per doppia induzione su N e su d.
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Se N = 1]a[A.3] ¢ evidente, perché per ogni d = 0 esistono d + 1 monomi monici
di grado d in X, X, e precisamente X¢, X{'X,, ..., X, X7 !, X?.

Supponiamo sia N = 2 e di aver dimostrato la [A.3] per N—1.Sed=01a [A.3]
¢ ovvia. Supponiamo d =1 e che la [A.3] sia stata dimostrata per d — 1.

L’insieme T dei monomi monici di grado d in X, ..., X, si suddivide nell’u-
nione disgiunta 7=7"UT", dove T’ ¢ Pinsieme di quelli in cui compare X,
e T” & costituito dagli altri monomi. Denotiamo con # I la cardinalita di un
insieme finito I. Dividendo ogni monomio di 7’ per X, T’ corrisponde biuni-
vocamente all’insieme dei monomi di grado d ~1 in X, ..., X. Per Pipotesi
induttiva su d, abbiamo quindi

# T = dim(K[ X ..., Xal,) = (N:;fl 1).

D’altra parte, 7” ha cardinalita uguale a quella dell’insieme dei monomi di
grado 4 in X, ..., X,_,, che, per 'ipotesi induttiva su N, &

. (N+d-1
pr= (N8,
In conclusione:

dim (K[ Xp, ..., Xpld = #T=#%#T + #T" =
_(N+d-1\ (N+d-1\_(N+d
T\ d-1 d “\d )

Nella proposizione seguente si enunciano alcune importanti proprieta dei poli-
nomi omogenei. :

A.12 PROPOSIZIONE
1) Un polinomio non nulio F(X,, ..., X\) EK[X,, ..., X\] é omogeneo di grado
d se e solo se sussiste I’identita

F(tX, 5 ..y tX3) = OF Xy, ... Xp) [A.4]

Jra polinomi di K{X,, ..., X\ 1, dove t é un’indeterminata.

2) Supponiamo che f, geK[X,, ..., X\] e che g1 f. Se f & un polinomio omo-
geneo, anche g lo é.

3) (Identita di Eulero) Se F(X,, ..., Xy) & omogeneo di grado d, allora

N 3F
T X,—— =dF. [A.5]
3x,

i=0 f

Dimeostrazione

1) La condizione & evidentemente necessaria. Per dimostrarne la sufficienza,

28
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scriviamo
F=F +F,+..+F,

dove F; # 0 ed & omogeneo di grado d;, con d, < ... <d,. La [A.4] si traduce nel-
Pidentita

tFi+ ... +1%F,=tF, + ... + t°F,.
Quindi si deve avere " = ¢4, ..., t* =¢?. Cio implica r=1e d, =d.

2) Sia f= gh, e supponiamo che g non sia omogeneo. Esprimiamo g e /# come
somma di polinomi omogenei:

g=G;+G,+..+G,,

con G;#0, G;,,#0,r>0, gr(G)=J, ¢
h=H+H,  +..+H,,

con H,#0, H,, ,#0, k=0, gr(f;) =i. Si ha quindi
f=GH;+(GH; + G, H)+ ... + G, H;

con GH;#0, G, H,, #0e gr(GH)=i+j<i+j+r+ k=2gr(G;,, H, ).
Dunque f non ¢ omogeneo, ¢ cid contraddice I’ipotesi.

3) Derivando primo e secondo membro della [A.4] rispetto a ¢ si ottiene ’identita

AF(UX,, ..., tX
T X, X, M _ dtVF(Xy, ..., X))
i=0 X,

La conclusione si ottiene ponendo 7 =1.

Sia f(X), ..., Xp€K[X,, ..., X)] di grado d. Il polinomio omogeneizzato di
fX, ..., X ¢ il polinomio F(X,, X, ..., X)) €K[X;, X, ..., X\ cosi definito:

F(X,, X X)——X“f( X, X“")
s X1s ooes Xn) = X§ X, Y eees X, .

E facile verificare che F & omogeneo di grado d. Viceversa, se F(Xy Xy -.es
X €KXy, X, ..., XAl € un polinomio omogeneo, il suo deomogeneizzato ¢é il
polinomio F(1, X, ..., Xp») €KX, ..., Xyl.

Si deduce immediatamente che, dato f(X,..., X)€K[X,, ..., Xil, se si
considera il suo omogeneizzato, e di questo il deomogeneizzato, si riottiene
f(){b e XN)'

E ugualmente semplice verificare che, se F(X;, X, ..., X)) €K[X,, X, ..., Xi]
¢ un polinomio. omogeneo, I’omogeneizzato del suo deomogeneizzato coincide
ancora con F se e solo se X, non divide F.
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Per i polinomi omogenei in due indeterminate, si ha il seguente risultato.

A.13 PropPOSIZIONE Se K é un campo algebricamente chiuso ed F(X,,
X,) €KXy, X|] & un polinomio omogeneo di grado positivo d, esistono d coppie
(@, b)eK?, i=1,..., d, tutte diverse da (0, 0), tali che

F(Xo, XI) = (a,X, - biXO) .ee (aXm - bd'XO)' [A.6]

Le coppie (a;, b;) sono univocamente determinate a meno del loro ordine e di
Jattori di proporzionalita non nulli oy, ..., o, tali che o, ... o, =1; esse si dicono
radici del polinomio F(X,, X)).

Dimostrazione
Supponiamo che r sia la molteplicita di X, come fattore di F(X,, X,) (even-
tualmente r = 0). Si ha allora

F(X,, X)) = X3G(Xy, X))

dove G ¢ un polinomio omogeneo di grado d — r. Il polinomio G(1, X,) ha grado
d — r e, poiché K ¢ algebricamente chiuso, si fattorizza come

G, X)=aX,=-Db)...(X,=Db,_), a#0.
Quindi, omogeneizzando, otteniamo
GX,, X)=aX;—- b Xy ... X, — b,. . Xp)
¢ in corrispondenza abbiamo la fattorizzazione
F(Xy X)) =aXy(X;— b Xy) ... (X, = b;_,.Xp),

che ¢ quanto si voleva dimostrare. L’unicita delle radici segue dal teorema di fat-
torizzazione unica per K[X,, X;l.

La fattorizzazione [A.6] pud esprimersi nella forma equivalente
a, b
X, X,

a b
Xo X

a; by

F(Xp, X)) = X x
0 1

Sostituzioni lineari

Spesso ¢ utile considerare una N-upla di indeterminate X, ..., X, come
un ‘‘vettore colonna’’; denotiamolo con X. Conseguentemente I’anelio dei
polinomi in X, ..., X, a coefficienti nel campo K verrd denotato con K[X]
¢ un polinomio in X, ..., X, si indichera con f(X). Con queste notazioni, se
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A = (a;;)€GL,(K) ¢ ceK", si ha

an X+ ... +an Xyt

ay X+ ... F Xyt
AX + ¢ = . . [A.7

A Xy + oo F Ay Xyt Cn

Se f(X)eKIiX], denotiamo con f(4AX + ¢)€K[X] il polinomio ottenuto da f
sostituendo 4 X + ¢ al posto di X. Otteniamo cosi un’applicazione
K[X] - K[X] [A.8]
SX)y~»f(AX +¢)

che & un omomorfismo: infatti segue subito dalla definizione che

fAX+o)+gAX+o)=(f+9AX +¢),
JAX +)g(AX +¢)=(fe)(AX + ),
perché queste proprietd sono vere per i monomi.

Inoltre, la {A.8] & un isomorfismo perché possiede un’invérsa, che ¢ la trasfor-
mazione

KX}~ KIX]
X))~ f(A7 X~ Ac).
Cio segue dal fatto che si ha
A'"AX +e¢)—-A4e=X.
Poiché i polinomi [A.7] sono di primo grado, si ha

grlfAX + o)l = gr [f(X)].

Draltra parte, ragionando nello stesso modo con la trasformazione inversa, si trova
anche

g/ XN =grlf(AX + o),

e quindi f(X) e f(AX + ¢) hanno lo stesso grado.
Se ¢ =0, i polinomi [A.7] sono omogenei. Per questo motivo, se f(X) ¢ un
polinomio omogeneo, anche f(4X) & omogeneo ¢ dello stesso grado di f(X).
Si noti che, poiché la [A.8] &€ un omomorfismo, essa rispetta la decomposi-
zione in fattori. In particolare, se

SX) =fi(X) ... £iX)
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¢ la decomposizione in fattori irriducibili del polinomio f(X), allora
fAX+)=fi4X +¢)..[i(AX +0)

¢ la decomposizione in fattori irriducibili di f(AX + ¢).

Consideriamo nuove indeterminate Y, ..., Y, ed un polinomio f(Y )¢ K[Y],
dove abbiamo denotato con Y il vettore colonna delle indeterminate Y, ..., Y.
Sostituendo Y = AX + ¢ nel polinomio f(Y) otteniamo il ‘polinomio in X

geX)=f(AX +¢).
Si verifica immediatamente che le derivate parziali prime di g(X) sono date
dalle seguenti espressioni:
9g(X) X aF

=Ta,—(AX+0),
3x, =3y,

X) N 8F
9:X) _ 50 2 ax+o.

aXy =1 "3y,

Il risultante di due polinomi

Sia D un dominio a fattorizzazione unica. Descriveremo un procedimento ele-
mentare per stabilire se due polinomi di D[X ] hanno fattori comuni non costanti.
Iniziamo dalla seguente proposizione.

A.14 ProrosizIoONE Due polinomi f, g€ DX, di gradi n ed m rispettiva-
mente, possiedono un fattore non costante in comune se e solo se esistono A,

BeKI[X] tali che gr(A) < gr(f), gr(B)<gr(g), e Bf = Ag.

Dimostrazione
Se f e g hanno un fattore non costante in comune #, allora

f=Ah’ ngﬁ’

con gr(4) < gr(f), gr(B) <gr(g), e Bf = Ag.

Viceversa, supponiamo verificata la condizione dell’enunciato. Ognuno dei fat-
tori irriducibili di g divide Bf. Poiché gr(B) < gr(g), uno almeno dei fattori non
costanti di g divide f, e quindi f e g hanno un fattore non costante in comune.

Supponiamo che f, g€ D[X] siano della forma seguente:

f=aq+a X+ .. +aX", a,#0
g=b,+b, X+ ..+b,X", b, #0.
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Chiameremo risultante di f e g il determinante R(f, g) della matrice
(m + n) X (m + n) seguente:

a, a;, ... a, 0

0 a a .. a, 0 .. 0

0o .. a, a, a,

b, b ... b, 0

0 b, b, b, O 0 [A-9]
0 ... b, b, ... b,

le cui prime m righe sono formate dai coefficienti q,, ..., a,, mentre le successive
n righe sono formate dai coefficienti b, ..., b,

A.15 TEOREMA fe g hanno un fattore non costante in comune se e solo se
R(f, g)=0.

Dimostrazione
Supponiamo che fe g abbiamo un fattore non costante in comune. Allora esi-
stono A, BeD[X], della forma
A = —Of, _azX_ ces _aan_I
B=8+BX + o + 8, X", [A.10]
con o; # 0 € B, # 0 per almeno un j e un k, e tali che Bf = Ag. Quest’identita
implica che
4B, = — by
a; Bl + aoﬁz = - b; (x, - boaz

[A.11]

a,8,= —b,qa,.

Le [A.11] esprimono D'esistenza della soluzione non banale 8, 8,, ..., B
ay, ..., o, di un sistema di equazioni lineari omogenee la cui matrice dei coeffi-
cienti ¢ la trasposta della [A.9]. Da cid segue che R(f, g =0.
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Viceversa supponiamo R(f, g} =0. Allora il sistema [A.11] nelle incognite
B> Bas «+es Bms Oy, -.., 0, ha una soluzione non banale in F, il campo dei quozienti
di D, e quindi anche in D, perché il sistema & omogeneo. Dalla forma delle equa-
zioni [A.11] discende che la soluzione ¢ tale che a; # 0 # 8, per qualche j, k. Cio
implica che i polinomi [A.10] soddisfano Bf = Ag: dalla proposizione A.14 segue
che f e g hanno un fattore non costante in comune.

Un’utile conseguenza del teorema A.15 ¢ il risultato seguente:

A.16 ProposizioNE  Siano f, g€ DX esia D’ un dominio a fattorizzazione
unica (ad esempio un campo) contenente D. Se f e g hanno un fattore non costante
in comune in D’ [X, allora ne hanno uno anche in D[X].

Dimostrazione
Entrambe le condizioni sono equivalenti all’annullarsi di R(f, g), il quale
dipende unicamente dai coefficienti di fe di g.

1l risultante R(f, f') di un polinomio f e della sua derivata si dice discrimi-
nante di f, e si indica con A(f). Si ha Ia seguente proposizione.

A.17 ProposizioNE f€D[X] ha un fattore multiplo non costante se e solo
se A(f)=0.

Dimostrazione

Supponiamo A(f) = 0. Dal teorema A.15 segue che fed f’ hanno un fattore
non costante g in comune, che possiamo supporre irriducibile. Si ha f=gh e
S =g h+gh'; poiché g|f’, si ha anche g|g’h. Dal fatto che gr(g’) <gr(g) e
g ¢ irriducibile, segue che g|A. Quindi g*|f.

Viceversa, se esiste g non costante tale che f= g2k, allora f* =2gg’k + g*k’,
cosicché g| f e g|f’. Dal teorema A.15 segue che A(f) =0.

Nel caso in cui D =K, un campo algebricamente chiuso, dal teorema A.15
discende che R(f, g) = 0 & una condizione necessaria e sufficiente affinché fe g
abbiano una radice in comune. La proposizione A.17 implica invece che I’annul-
larsi di A(f) & condizione necessaria e sufficiente affinché fabbia una radice mul-
tipla. Infatti i soli fattori irriducibili non costanti di un polinomio di K[.X'] sono
della forma (X — o), a €K, e i loro associati.

Siano f, geK[X, ..., X], N=2. Se si considerano come polinomi in X, a
coefficienti in D[X), ..., Xy_,1, il loro risultante R(f, g) viene chiamato risultante
di f e g rispetto a X,,. R(f, g) appartiene a D[X], ..., Xy_,], € viene percio anche
detto il polinomio ottenuto eliminando X vdafeg.

La costruzione di R(f, g) € una generalizzazione del metodo di eliminazione
di Gauss-Jordan per risolvere i sistemi di equazioni lineari. Tale costruzione pu®
essere estesa a pill polinomi simultaneamente.



440 Appendici

Nel caso in cui i due polinomi considerati sono omogenei, anche il loro risul-
tante lo &. Piu precisamente si ha il seguente teorema.

A.18 TEOREMA Siano
F=A,+A,  Xy+ ... + A X},
G=B,+B,_Xy+ .. +BX}

dove, per ogni j=0, ..., n, k=0, ..., m, A; e B, sono omogenei di grado j e k
rispettivamente in X, ..., Xy, e AyBy#0. Allora il risultante R(F, G) di F e
G rispetto a X, & un polinomio in X,, ..., Xy_, omogeneo di grado mn, oppure
R(F, G)=0.

Dimostrazione
Ponendo R(¥, G) =R(X,, ..., Xy_1), si ha

RUX, ..., tXn_1) =

t"A,, f"-IA,,. | . Ao 0 FN 0

0 174, Ay e Ag O L 0

1 o . A, T Ae Ao
"B, t" 'Bp_y ... B, 0 .. 0

0 "B, " 'Bn,_y .. By 0 ... 0

0 .. 0 t"B, (" 'B, By

Moltiplichiamo la i-esima riga degli 4 per #"~"*! e la j-esima riga dei B per ¢"~/*!.
Otteniamo

f‘gR(tXb ceey {XN-I) =

A, T A tmA, 0 ... 0
0 mmlAg, A 1" "4, O ... O
= 0 .. A4, t4, f_
tirmpB, ("tmIBL . "By 0 .. 0
0 m'B, L 1By 0 ... 0
0 0 "*'B, ... tB,

= tQR(Xh eeey XN-I)’



B/Permutazioni 441

dove

p=m+(m—l)+...+1+n+(n—1)+---‘*‘l:(m;l)—'_(n;l)

g=n+m+@n+m—1)+ ... +1=(’”+”+1).

2
Deduciamo
R(tXl, ceny tXN—l) = tlI—PR(Xl, ceny XN~1) = tm"R(Xl, eees XN—])

e la conclusione segue dalla proposizione A.12 (1).

A.19 Esempi
1. Nel caso n=m =2, cioé¢ se
F=A,+ A Xy+ A X},
G =B, + B, X+ B, X3,
si ha

4R(F, G)=(2A,B,— A,B, +2A,B))* — (4A,A, — A)(4B,B, — B?).

2. Nel caso m =1, cioé se
F=A,+A, Xy+ ... + A X5,
G =B, + B, X,,
si ha
R(F, G)=(— By)"F(— B//By) =
=A,B7— A\ByB] ™'+ A,BAB7* + ... + (= 1)"A4,B..

B Permutazioni

In quest’appendice esponiamo alcune proprieta delle permutazioni degli insiemi
finiti, che vengono utilizzate nella definizione e nello studio dei determinanti.

Sia _# un insieme finito. Una permutazione di _# & una corrispondenza biu-
nivoca p: _#—_¥ Supponiamo che _# consista di » elementi. Dopo averli nume-
rati, si puod identificare / con ’insieme {1, 2, ..., n} dei primi » numeri natu-
rali. Ci limiteremo quindi a considerare le permutazioni di {1, 2, ..., n}. Esse
costituiscono un gruppo rispetto alla composizione, consistente din! =1-2- ... -n
elementi (la verifica & lasciata al lettore); denoteremo tale gruppo con il simbolo
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0,. Un elemento p€ o, viene spesso indicato con una tabella:

( 1 2 n‘)
p() p®2 .. pn

in cui sotto al numero I compare la sua immagine p(i). Ad esempio, la permuta-
zione identica 1 ¢ rappresentata da

( 1 2 ... n )
1 2 ... n)
Questa notazione non richiede che nella riga superiore della tabella i numeri
1, 2, ..., n siano disposti in ordine crescente: ad esempio, per ogni p€ g, 1a tabella
(p(l) p2) .. p(n))
1 2 ... n
rappresenta la permutazione p~'.
Siano a,, a,, ..., a, elementi distinti di {1, 2, ..., n}. La permutazione k defi-
nita da
k(@)=a, k(ay=a, .. k(a_)=a, k(@)=a,
k(b)=b perogni b¢la,a,... a)},

¢ un ciclo di lunghezza r, e si denota con (¢, @, ... a). In particolare:

L 2 ) (1 2 ... n—1 n)
e N = .
( 2 3 .. n 1

Ad esempio (1 3 2 6)€eo, ¢ la permutazione

(123456)
36 2 45 1)°

Ogni ciclo di lunghezza 1 & la permutazione identica. Un ciclo di lunghezza
2 si dice trasposizione. Una trasposizione scambia tra loro due elementi e lascia
fissi tutti gli altri. In particolare una trasposizione & inversa di sé stessa.

Due cicli (a, a, ... a)e (b b2 ... b)) si dicono disgiunti se

{a, a5, ..., a,} N {b, by, ..., b} =O.
B.1 PRrROPOSIZIONE

1) Ogni permutazione p€ o, é prodotto di cicli a due a due disgiunti.
2) Ogni permutazione p€ o, é prodotto di trasposizioni.
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Dimostrazione
1) Sia g,€{1, ..., n} qualsiasi, e siano @, =p(a)) @, =p(a), a,=p(a), ....
Nella successione

ays Gy, Q35 Gy .o [B-1]

il primo elemento che viene ripetuto ¢ a,, perché se la prima ripetizione fosse
a,=a, 2<k<r, si avrebbe a,_, = g,_,, ¢ la ripetizione non sarebbe la prima.
La [B.1] & dunque della forma

a]s a29 ey ar’ als a29 cees

e quindi p permuta ciclicamente gli elementi q,, 4,, ..., a,.

Consideriamo il ciclo (¢; a, ... @).Ser=n,allorap=(a, a, ... a,)
e ’asserto & vero. Altrimenti esiste b, € {1, ..., n}\{a,, ..., a.}. Ragionando come
prima si ottiene un ciclo (b, b, ... b,) disgiunto dal precedente. Procedendo
in questo modo otterremo un numero finito di cicli disgiunti K|, X, ..., K; tali
che

p=K°o...°K,°K,. [B.2]

2) In virta della (1), & sufficiente dimostrare 1’asserto nel caso in cui p =
=(a, a, ... a)éunciclo. A questo scopo ¢ sufficiente osservare che

(@ a .. a)=(a a)(a a_)° .. °@ a)o(a a).

Icicli XK, K,, ..., K;, essendo disgiunti, sono a due a due permutabili, cioé la
scrittura [B.2] ¢ indipendente dall’ordine in cui vengono presi. Se nella [B.2] com-
paiono dei cicli di lunghezza 1, questi possono essere omessi perché corrispon-
dono alla permutazione identica. Pertanto ogni permutazione si scrive in modo
irridondante come prodotto di cicli disgiunti di lunghezza almeno 2.

Si noti che I’espressione di una permutazione come prodotto di trasposizioni
non & unica. Ad esempio si ha

1 2 3)=@1 31 2)=2 3)o(1 3).

B.2 TeorEMA Sia p€o,. Supponiamo che
p= TIOTZO oo oTh=SIOS2° 08,

dove T, ..., Ty, S, ..., S, sono trasposizioni. Allora h=k (mod. 2), cioé h e k
hanno la stessa parita.

Dimostrazione

Poiché 1=pop ! = §,08,0 -+ c§,0T,o - o T,o T, & sufficiente dimostrare
che la permutazione identica non puo essere ottenuta come prodotto di un numero
dispari di trasposizioni.
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Sia
1=R,°...°R,, [B.3]

con R, R,, ..., R, trasposizioni. Supponiamo che si abbia R;= (1 a;), per ogni
J=1,..., m. Allora, poiché 1(a;) = a;, la trasposizione (1 ;)= (a; 1) compare
un numero pari di volte in [B.3], e quindi il numero m di fattori & pari. Se per
qualche j si ha R; = (b, a;), con b; #1# a;, allora, poiché

(bj’ aj) =( bj)o(l aj)°(1 bj)s

possiamo sostituire R; con il prodotto a secondo membro senza cambiare la
parita del numero di fattori della [B.3]. Ci si pud quindi ridurre al caso prece-
dente, in cui ’asserto ¢& gid stato dimostrato.

B.3 DerNizioNE  Sia p€o,. Sep=ToT,o ...°T,, con Ty, T, ..., T, traspo-
sizioni, il segno di p & e(p) = (- D" :

Dal teorema [B.2] segue che la definizione di segno di una permutazione p ¢&
ben posta, perché la parita di # dipende solo da p. Il segno e(p) gode delle seguenti
proprietd, che discendono immediatamente dalla definizione.

B.4 PROPOSIZIONE

1) eQ)=1.

2) e(p~") = e(p) per ogni p€a,.

3) e(poq) = e(p) ().

4) €(T) = —1 per ogni trasposizione T€o,.



Risoluzione degli esercizi

§2
0 000
24 +9V2 14 5010
a)(—8+5\/7) b)(—Zl) 9 0000
10 020

A+ A=A+ A=A+"'A;A-A)="A-A=-(A-"A).

Siha A= 1 A+'A)+ L(A —'A) e il primo addendo ¢ una matrice simme-
2 2

trica, mentre il secondo & una matrice antisimmetrica.

L o =
2 2|, 2
1 5 23 9
2 2
31y /0 0
9 (1 o) (o o)
1 0/ \o o
L o -1
2 2
olt -t ol+|+ o 1
2 2
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10. ¢), d) e h) non sono ortogonali, tutte le altre lo sono.

§3
1. a) Soluzione generale: (7¢, 4¢, t)
b) (_ 2t| - 5{2 — 4t3, _l— (tl —-6L+ tg), tl, b, t3> C) inCOmpatibile;
2
d) incompatibile e) 5-26—-286,4,3—206, t).
S SR
12 6 1 2 21
4. ¢) e) — < )
1 9 \2+i -2
- 0
4
5.3 (0, 1,0 b) (1, -1 ) (V2, 1, 0).
0 2 1 0
1 01 2 1 0
6. a) 1 =RuR, (—) R2(2) = ( ) ( )
—- 0 2 1 0 0 2
2 0 1

1 —1
b) ( )=R2(2)R,2(1)R.(— DRy, =

2 0

1 0\ /1 I\ /=1 O\ /0 1
—(0 2)(0 1)( 0 1) (1 o>'

C) ( )=Rz| (_) R2 (‘*) R12(5)R|(3)

12 3 3

210

o110 =R,(2)R11(1)R,2(1)R2(—;-) R,
0 0 2

1 30
e) |2 1 1 |=RuRy@)R(— T)R2(3) Rs1 (2) Ry (1).

2 ~-10
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§4
1. a) base b) dipendenti e non generano
¢) base d) dipendenti e generano

e) 11 sistema omogeneo
1 2 3 0
1 a + 2 a, + 3 a; = 0

3 0 -3

o

possiede soluzioni non banali se e solo se i vettori dati sono linearmente dipendenti.
Risolvendo si trova che il sistema possiede o' soluzioni, sicché i vettori sono linear-
mente dipendenti; il sottospazio che essi generano ha dimensione 2 e quindi non & I’in-
tero spazio R®.

f) indipendenti g) dipendenti e generano
h) base i) dipendenti e non generano.
3. a), i).

1
4. U contiene i = %[(i +P+i—-Dei= —;[(i + ) — (i — I; inoltre U + W contiene

k =(j + k) — . Quindi U + W =V perché contiene i, j, k. La somma non ¢ diretta
perché dim(U) = dim (W) = 2, e quindi, per la formula di Grassmann, dim(U N'W) =1.

6. 1vettori (1, 1, 0) e (0, 0, 1) appartengono a U e sono linearmente indipendenti: poiché
dimU) =<2, {{1, 1, 0), (0, 0, 1)} ¢ una base di U. Si ha WN U = {0) perché ogni
multiplo non nullo di (1, 0, 1) & della forma (¢, 0, £), ¢ > 0, € questo vettore non appar-
tiene a U perché la sua prima coordinata & diversa dalla seconda. Quindi
U + W =U® W; poiché U ® W contiene propriamente U, si ha dim (U @ W) = 3, cioé
UBW=V.

11. GL,(K) non contiene la matrice nulla.
12. Identificando M,(K) con K~”, 7 si identifica con Pinsieme delle soluzioni del-
I’equazione di primo grado omogenea a;, + @» + ... + @, = 0. Quindi 9, & un sot-

tospazio vettoriale. Poiché P’equazione precedente possiede oo™~ soluzioni, si ha
dim(%)=n*—~1.

14. Supponiamo per assurdo che esistano 7 successioni a, = {ay, @1, 1z ...}, A2 = { a2,
@1y Ay oow )y eeey 8= {Qu0, Gu1, Gn2, ---} che generano Sk. Allora, per ogni (b, by, ...
vy b €K™ esistono xi, X, ..., X, €K tali che

b= X4 + X4 + ... + X,4,,
dove

b = {b09 bl, sy b,,, 0, 0, ...}.
Da cio segue che

(bo, by, ..., ba) = xi(aw, an, Gz, -.., @1s) + X2{@a0, Aoy Aoy oens Br0) + ...
e +x,,(a,,o, Anis Anas ooey ann)s



17.

18.

1.

2.
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cio¢ gli n vettori
(aIOa iy, iz ooy aln)s (0209 A2yy A2y -ees aZn)s ceey (a,,o, Anis An2s <ooy a,,,,)
generano K"*': cid & assurdo, perché K™'! ha dimensione n +1.

Ogni polinomio f(X)€R[X] pud identificarsi con un elemento di C,; e quindi
R[X1 pud considerarsi come un sottoinsieme di Cy, 5. Poiché le operazioni in R[X ]
sono quelle indotte dalle operazioni in Cy s, R{X] € un sottospazio vettoriale di C, .
Poiché R[X] non ha dimensione finita, neanche C, , ha dimensione finita.

I polinomi 1, X, X2 ..., X costituiscono una base di K[X]. .

§5
a) 3 b) 3 c) 2.

§ 6

a) Il determinante della matrice dei coefficienti delle incognite & 2 + m, e si annulla
per m = — 2. Quando m # — 2 il sistema & compatibile, per il teorema 5.7, e possiede
Punica soluzione (1, 1 — m), che pud essere calcolata con la regola di Cramer o con

il metodo di eliminazione. Quando m = — 2 il sistema diventa '

2X-Y=-1
-2X+Y=1,

ed & ancora compatibile; esso possiede le infinite soluzioni (¢, 27+ 1), t€R.
b) Compatibile solo se m = 1 , ed in questo caso la soluzione & (L . 0).
3 2

b) Se m #0, 2 il sistema possiede ’unica soluzione

( 1-m 2 l-m )

2-m 2-m " 2-m)’

se m = 0, possiede le o' soluzioni (1+¢, 1, — f), t€R; se m =2, & incompatibile.
¢) Se m=—1 il sistema & incompatibile; se m =2, possiede le o? soluzioni

(i —-s5—1,8, t), s, t€R; se m# —1, 2, possiede "unica soluzione
2

1 1 1
(2(m +1)  2m+1) 2(m+1))'
e) Incompatibile se m #2. Se m =2 possiede le o' soluzioni (1, — 21, ), t€R.

f) Incompatibile se m=—1. Se m# —1, 1 il sistema possiede I’unica soluzione
(3m+2 s m s L );sem:l,possiedele o' soluzioni 2 +¢, ¢, 1— 8, t€R.
m+1 m+1l m+1

g) Se m = 0 il sistema possiede le o' soluzioni (¢, 0, 0), € R; se m =1, possiede le o'
soluzioni (— 31, 1, £), t€R; se m # 0, 1 il sistema possiede 1’unica soluzione (0, 0, 0).
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4. a) (1,V/2,+/2) b) (1, i, —2i) 0@, 1,1, —1.
6. T minori di ordine massimo di A presi a segni alterni sono:
o;=(—1)ydetfAl 2 ... n—U1l .. { .. ml, i=1,..n

Gli o non sono tutti uguali a 0 perché r(4)=n—1. Per ogni j=1, ..., n—1si ha

a;, o + a;0 + ... +ao,= det(B),

dove
a1 aj2 oo i
ay a e i
B =
an-11 an-12 eee Ay 1n

Poiché B ha due righe uguali, det(8) =0, e quindi (a4, ..., @) & soluzione della
J-esima equazione del sistema.

§8
-y 1-y
1. a) (_9 Y, z) b) (_9 Vs z)
2 2
(x 2y 2 2x 4y 1 2ix iy i)
gl——-———+—, ——+—+—, +—+z——
5 5 5 5 5 5 5 5 5

d) (x, 1— 2x, 4ix + 2iy + z — 2i).

§9

1. a), ¢).
X Y

2.a) 2X+3Y=6 b) - + —— =1
NT 172

¢) La retta cercata appartiene simultaneamente ai due fasci individualida 4 ed 47,
eda Z e Z’. La condizione che la retta di equazione

(+3HX+5Y+(61-8)=0,

variabile nel primo fascio, appartenga al secondo &

1+ 3¢ 5 61-8
10 -1 -2 |=0
1 -1 -5

cioé ¢ = 7. Pertanto 2 ¢& la retta di equazione 22X+ 5Y + 34 =0.



450 Risoluzione degli esercizi

.y x=2Lio y=-1i4 b) x= - —521 y=-L 7L
13 13 2 2
3-+5

4 (ﬁ, )

2 2

5 (z 2) (; E) (1 13_)

"\a’8/°\27 a)7\4a" 8

§10

1. a).

2.ay m=2 b) m =% ¢) nessuno d) nessuno.

3.a) x=2t+u, y=\/§¢‘+u, z=l+(\5—-l)u;
C-VDX+2(1-V)Y+(2-V)(Z-1=0

b) x=5-4ft-8u, y=-1+21+2u4, z=\/§t+—:—u;

T-2V5(X=5+Qx-8V5)(Y+1)+8Z=0
Q) x=1-3f+u, y=l+u, z=1-t+u; X+2Y-3Z=0.
d)x=t, y=u, z=0; Z=0.

4. a) X+2Y+3Z~-9=0 b)2X-Y-i=0
) iY—-2Z+3+2i=0 d) Y-1=0.

5. a), b), ¢) no; d) si.

6.a) x=1+2f, y=1—1, z=v28; X+2Y-3=0, X-~2Z-1=0
b) x=-2+1, y=2+1, z=-28; Z=-2; X-Y+4=0
) x=1+¢, y=2+2t, z=3+3t; 2X-Y=0, 3X-Z=0
dyx=¢t, y=0, z=0; Y=0, Z=0
e) x=1+¢t, y=1+t, z=—-t X-Y=0, X+Z-1=0.

7. a) x=it, y=t, z=-1-2¢
b) x=t, y=4+3f z=1-3¢
¢ x=1, y=t z=1

d)x=i—li+(1—i)t, y=2+t z=-it.
2 2

8. a)x=1+it, y=1+¢t, z=0
by x=1, y=0, z=t
¢ x=2+it, y=1, z=-5+1¢ |,
d) x=3+W2+51 y=@V2+11t, z=141

9.a) X+Z+1=0 b) X-Y+2Z-5=0 ) X-2Y+3=0.
10. a) sghembe b) sghembe c) parallele; 3 X -3Y+3Z-1=0
d) sghembe e) incidenti; 2X —-3Z+ 8=0.
11.a) 2C A b) incidenti, & N £ = {(- 6, 17, 23)

¢) incidenti, N // ={(-2, 1, 49} d) parallele.
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12. ) 2X+Y-Z-8=0 b) 7X-Y+10Z-13=0
) Y+3Z-6=0 d) 3 X+2Y+Z-12=0.

13.2) 2X-Y+Z-1=0, X-Z—-1=0
B) X+Y+Z+3=0, X+10Y-TZ+4=0
0 2X-Y=0, 2X+2Y-Z-3=0.

14. a) —13X+25Y—-8Z+4=0, 3X+7Y-7Z+4=0
b) 3X+7Y+4Z+2=0, 13X+2Y-3Z-32=0
c)4X+6Y+Z+3=0, 2Y-3Z-1=0.

16. 2X -3Z-2=0.

§ 11
— X+ X3 — X: — X1 — X+ X
3. p(x;, X2, X3) = (x,, 1+t X2— X3 , 1= X 3) -
2 2
X3
4. p(xi, X2, X35 X)) = [~ 7 s 33Xy, X3, X
X\ .
5. a) {Xi, X5, X3} b) 7 L N2X,, —6X;

C) {2X|+X2—X3, 2X1+2X1—X3, —Xl"‘Xz_+X3}
d) (X — X, Xo — X, X6

§ 12
1. La matrice cercata ha per colonne le coordinate rispetto a b’ dei vettori
F1, )=, -1, 1) e F(O, —1)= (-1, 2, 0). Quindi
X1 N
My (F)=|X% )|,
X Vs

dove xi, yi, X2, 2, X3, ¥3 sono i coefficienti delle combinazioni lineari seguenti:

1 1 0 2
x|1l]l+x|-2|+x|0})=1-1
1 0 1 1
1 1 0 (—-1
nilj+wml-2]+»mt 0= 2
1 0 1 0
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Risolvendo i due sistemi cosi ottenuti si trova:
1 0
Mgga(F)-—- 1 -1].

0 0
2.
1 0
My y(F)=|1 1.
0 -1
i (——3—2i 4-2i -—-4-i
3. — .
2 \-1-4i 2i -—2—3i)

4. 1 vettori v;, v;, v; sono lincarmente dipendenti. Se F esistesse, anche le loro imma-
gini E;, E,, E; sarebbero linearmente dipendenti, il che & falso perché {E,, E,, E;} &
una base di R®.

1 \/37)

5. a) Mb,b' = (
NI

b) Detta e la base canonica, si ha

RIS
1 1\ /1 1 2
Mb,b' = Mb,eMe,b' = ( ) ( ) =
-1 1 0 1 1
- 1
2
_ 25 0
2 -1/ N5 A5
C) Mb‘b' = Mb‘eMe.b' = ( ) ( . ) =
12 \ovs w3 L3S S
2 2
{21 1-2i 1 1 1
6. a) Mb,b'=—_( ) b) Mb,b'=—( )
2 \1-2i 2-i 2 \-i i
1 0 1 11 -6 7
Tay M =—[1 0 -t -1l 19 12 -1
2 2
1 2 1 —18 2 17
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453
X 1 3x 1
. ¥=-—+—--—, yY=——-————
2 2 2 2 2 2
1 3x 3
PV SRR VI L |
5 5 5 5 5

10.x’=2x—y—z—ﬂ-—, '=x-2, I =-x+y+z+T.

11. POStO M,’[,(lv) = (73;.1'), Mp,q(lv') = (mkl)9 Si ha

n n
b=Zne, =L mp,  JI=L..,n
= -

Calcolando in b; primo e secondo membro della seconda identita troviamo #,(b,) =
= my;,. D’altra parte

n
(b)) = TI'(E: n;;e;) = ny;,

e quindi m;; = n; perogni j, I=1, ..., n.

§ 13

1. Detta e la base canonica, la matrice cercata &
My(Fy =M, 1) M.(F) M, ,(1).
Si ha:

M@F)=10 1, 1

2 0 0 0 1 1
-1 2 -1
My () =M.,1)'=| -1 1 0,
1 -1 1

e quindi
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. Procedendo come nell’esercizio precedente si deduce che
1 1 1
1 1
e = - 2 1
2 2 2
_1 1 _3
2 2 2
quindi 1 6 -2

My(F?) = My(F)? = % 11
3 4 4
2
7 — 8i 6i
.M@F)=|12i 10 -9
251 24 -20
0 1 -1
5. My(F)=]-3 1 -1

10.

1 1 -2

. b= {(l, E, -1)’ (13 Ia 0)3 (_13 03 1)}’

2 0 O
MF)=10 1 0
0 0 1

a) Il polinomio caratteristico della matrice assegnata 4 ¢ T° - 672 +12T -8 =
= (T - 2), e quindi P'unico autovalore & A = 2, con molteplicita algebrica h(2)=3.
La matrice A — 2L ha rango 2 ¢ quindi dim(R3) = 3 — 2 =1. 4 non & diagonalizza-
bile perché la somma delle dimensioni degli autospazi & minore di 3.

b) A=2,3, hQ)=1, hkQB)=2, dim(R;)=dim(R})=1; A4 non ¢& diagonaliz-
zabile. .

QAr=1,23 h()=hQ)=h@B)=1, dimR})=dimR})=dim(R})=1; 4 &
diagonalizzabile.

dri=-1,1, AE=D=2, hr()=1, dim(R)=dim(R})=1; 4 non & diago-
nalizzabile.

e A=7,0, A(M=1, r(O)=2, dim(R)=dim(R})=1; 4 non & diagonaliz-
zabile.

f)A=-4,4, h(-H=2, h@=1, dim(R2)=dim(R3)=1; 4 non & diago-
nalizzabile.
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11, +1, +i.
13. IC-— @A+ DLl =1@A+bL)—(@r+ b LI = la(4d - ALY =a"l(4 — AL)] =0.

15. La matrice che rappresenta F rispetto alla base canonica &

Posto B = M,(F), si ha A = MBM ™', dove
1 1 -1

M=M,®=| 1 1 0
-1 0 1

e quindi A° = MB’M ™. Poiché

-1 1 -1 32 0 O
M= 1 0 11, B=to 1 0]
-1 1 0 0 0 1

si ha
-30 31 -31
A’=| -3t 32 -131
31 -31 32
e quindi

F’(x,y,2)=(-30x+31y—31z, —-31x+32y—-3lz, 31x-31y+322).

§ 14

1. Gli elementi di U(1) si possono identificare con i numeri complessi di modulo 1. Defi-
niamo f: U(1) = SO(2) ponendo

a -—-b
f(a+ib)=( )
b a

E immediato verificare che f & un isomorfismo di gruppi.
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_ _ i 0
2.a) A=A=4A=%4 by A=4, A=*A=( )
0 -—i
_ 1 —1i
c)A=4, A=*A=( )
—-1i 1
( V2 V2i
A=W, A== 2 2
V2i V2
2 2
3 4i
_ 5 5
e A=A, A=*4=
4i 3
5 5
_ 1 1-1i
f)‘A=A=( ) *4 = A.
1+i -1

3. a), b), d), €).

7.8 f(x, »=Qx+y+1,3y-1)

b) f(x, y)= (—ix+1y+i, ~3—x—3y+i)
2 47 4 2 4 4

X
C)f(x,y)=(—————+_, _____ )

10. oy, & individuata dalla condizione
y—b=c(x-b),
dove y = s, (X), € quindi
y=b{-o¢)+cx,
cio¢

Wh,e = Lcl,b1-0)
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§ 15
1. ¢©), e).
9 9
2. a) 3xx0—4xy: — 4%y — 3 b) 4xix — ;x.yz - ?xlyl + 30y
Q) 4xixy—2x 2= 2% + Ty ) d) X% — X1 Y2 — X Y1 + Y1 Ys
&) 3x1x +S5x Y+ 500+ 30 f) 3xiy:+ 3%y
_ s -2
3 4 2
3. a) ( ),r=2 b) ,r=2
-4 -3 9 5
2
1

1 1 1 1 1 1
4. 2) —xi+— X+t — X+ XN+ — YL+ — 0
2 2 2 2 2

b) xin+t i+ Y- — X%
C) X1 X2 — X1Z2— X2Zi — N1V — U2z

i
d) Sxixa+ 33y +;x,z2+—;‘—x2z,

e) — X1 —2x1Y:—2Xo01 + 3y + 221 2.

s L 1
2 2 0 1 -1
1 1
5. — O — 1, r=3 b) 1 1 0], r=3
2 2
{ -1 0 0
L1y
2 .2
1
5 0o —
1 0 -1 2
c) 0 -1 01,r=3 d)f 0 3 0 {,r=3
-1 -1 L o o
-1 = 0 2

e)|—2 3 0}, r=3.
0 0 2

457
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§ 16

L a) {(G, 0), 0, D}, x=ix", y=y’

b) {(‘/—+£1 0) (0,-i—)}, x= (—\/—i—+—\—[-_2—i)x’, y=Ly’
2 V2

. .
c) (L, ) (0, L)} x=Lx’, y=Ly'
(\2 3 2 . 3

d) {G, 0), ©, 5D}, x=ix", y=5iy.

(/1 1 1
2. —,0,0}, [0,0,—1], [0, —, 0]§, (2,1
? \(2 ) ( 2\/§> ( V5 )} @D

r

b) <00 3) (1, 0, 0), (010)} (1, 1)

\

9 {(0,0,1),(1,0,0, (0, 1,0}, (1,2

d) [(o, 1,0, (o, 0, f) a,o0, 0)}, (2,0).

3. a) Seguendo il procedimento utilizzato nella seconda dimostrazione del teorema 16.1,

si effettua il cambiamento di coordinate x = x’ + 4 y', y' =y, il quale trasforma ¢
nella forma diagonale: 3

q(x’, y')=3x"? ~l35—y'2.

La segnatura ¢ (1, 1).

b) 4x’2—1—16y’2, x=X’+%y’, y=y, ({1

c) 4x'*+6y"? x=x’+%y', y=y',(2,0.

d P, x=x"+y’, y=y', (10.

16 2

e) 3x,‘2__3—y x=x,—%y,3y=y,s (1’ 1)’

f) In questo caso é evidente che il cambiamento di coordinate x = x' —y’,y=x’ + y’,
trasforma la forma quadratica nella forma diagonale 6x’> — 6y’2. Segnatura: (1, ).

4
30 1 0 3 a4 [1 =

o L0
0o -2 4 1) \=4 -3/ 10 1
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4 0 1 o0y 4 -2 9
2\ 1 2
o) 1] 1|o 9 8
0 - S -2 s
16 8 2 0 1
1 0 B
40 4 -2 -
c)( )_1 ( ) :
0 6 1 4 f\-2 7\01
2

10y /1 0\/ 1-1y /1 1
2 (0 o)-( ) L))
0o/ \1t 1/\-1 1/\o1
3 s
)-(eal
o -18 3\ 3,
3

2o DG o ()

5. a) Una prima sostituzione x = x’, y =y’ — x’, z = z’ riduce g alla forma q(x’, y’, 7') =
=—x"2+x"y’ +y'z’. Procediamo come nella dimostrazione del teorema 16.1.

e . : 1 ..
Con la sostituzione x’ =x” + —y”,y’ = y”,z’ = z” la forma si riduce alla seguente:
2

"2

qix”, y", x")=—x"? +711—y + y” z”. Infine, la sostituzione x” =X, y”" =y — 2%,

z” = Z da luogo alla seguente espressione per g:

L - " 1 ., .
g%, 7, )= -+ :yz -2
Scambiando tra loro 7 e # otteniamo g(%, 7, %) = —1—)?2 — $*— 2% dove si & posto

=9, J=%, Z=%. Segnatura (1, 2).

EN

2

b) x'*+y'*=z'% x=z'-y’, y=x'"+y' —-z', z=y’,segnatura (2, 1)

) x'*—y?-27"% x=x"+z', y=y', z=2z',segnatura (1, 2)
72 12 1 r2 ’ 1 ’ ’ ’
d) 5x"°+3y —Ez , X=X —Ez, y=y’, z=z’', segnatura (2, 1)

e) 2x' 2+ 7y'*-z'% x=gz', y=y', z=x —2y’,segnatura (2, 1).

6. a) La matrice M ¢& ottenuta come prodotto delle matrici corrispondenti alle successive
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sostituzioni effettuate; pertanto

10 o\/f!
M=}-11 0 0
0 0 I 0
1 1 -1
2
=1L -1,
2
0 0 1
Si ha dunque:
1 4% 0 1
4 2
0 -1 0j= 1
0 0 -1 -1
1 0 0 0
b)|0 1 O[=1(-1
0 0 -1 1
1 0 0 1
)0 -1 0l=10
0 0 -2 1
5 0 0 1
afo 3 of=f o
20 10
2 0 O 0 0
e)lo 7 0l=10 1
0 0 -1 1 0

0

0\ /0 1
=211 0
0 0 1/\0 0

=)
\———/ S r——"
|
[ = S
|
[~ =
| |
© © N = _ O
e S
e ISR
S © — (=
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0
o =
1
o
2
1
— -1 -1
2
o o0 1
-1 1
1 -1
1 0
0 1
1 0
0 1
0o —-L
10
1 0
0 1
0 1
10
0
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§ 17

6. dim(W) = 2; base ortonormale di W:

FEE B E e %)
vil—,—,0,— ), o[—,——=,0, ——|§;
NERRNE] NE) J6 V6 V6

vettori che la completano a una base ortonormale di V:

. 1 1
v3(09 09 1: O)a V4(0, _—2—9 09 ;)'

o (oo gg) - )
) V5T NS/ N3 VI3 VI3 NIB )
V33 V33 3V33 g )}

4

)(\/150\/— \/35) (G-}

8. {(0,—2,0,—2),(1,0,0 0), (0 ~i22— 0, \/2’2) 0,01, O)}

2 2
9. "{(1, 0, 0, 0), (—é 1,0, o), ©,0, 1,0 (o, 0, —é, 1)}
§ 19
2 a)—% )%.

3. X-Y-2Z-3=X+3Y-2Z-2=0.
4. 5X-6Y+2Z+7=0.
5. X+Y-3=0,Z=1.

X-3 -1 4
6. 2: s de, H)=—x.
3 5 V10
9. a) Perpendicolare comune: ~§£+L=6Y+ 3= ——6—Z—+l dz, &)= —5—.
2 2 5 42
10. a) X*+ Y ~6X+8Y+24=0 b) X’+Y*-2X—-4Y+3=0

0 X7+ Y2—2X+2Y+%=0.
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11.a) C=3, —4),r=35 by C=(-4,95),r=3.

§ 20

1. a) Poiché & un’isometria diretta, f ¢ della forma f(x) = x + ¢ per qualche c€R. Per
la condizione f(1) = Z_ devessere ¢ = —;L —1. Pertanto f(x) =x + % -1.
2

b) f)=—-x+7—-2.
2.8 f(x, ) =(—-x) b) f(x, =(ry, — %)
4 4 3
o) fx, y)~(SX+5y,5x Sy)
d) £(x, ) = (—5—x+—y, 2,3,
13
e) fO,)=(-y+1, —x+1).
.a) f, =G+, y+1) b) flr, )=(x+1, —y+1)
C)f(x,y)—( x+4y,ix——3-y)
5 575

5

d) fx, y) = (—iX+iy—£,ix+ Ly 4)-
5 s 55 5 s

4. a) f(x, y, D=, x, 2)

2 2 2 2

b) f(x, y,2) = <___y‘_z’*_x+l——z,———x_ly i)
Q flx y, 2= (—+2‘-y—lz,lx+l+lz, —-x+£y+ Z)

3033 33 373
D £y, 2 ( 34, 4,4 +iz+z)

5 5 5 5

e) f(x,, 2= ( + 3, 4,,16 8 (x4, 16

9 9 9 9 9 9 ¢ 9

—ix+iy+lz+§).
9 9 9 9

5. a) f ¢ I’identita. b) fx,y, )=(-x,, 2).

6. z incontra // nel punto P = ( - L, — i, i) . La retta z’ contiene P ed il sim-
4

2 4
metrico di un qualsiasi punto di #, ad esempio di (0, 0, 1), il cui simmetrico &

Q= (— l, - l, i). Pertanto 2’ ¢ la retta di equazioni cartesiane:
3

3 3

5X-2Y+2=0, X-Z+1=0.
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L’esercizio pu0 essere risolto calcolando direttamente la trasformata di Z rispetto
alla riflessione definita da // (cfr. esercizio 4(b)). Si trovano per la retta z' le equa-
zioni 5X-4Y+2Z=0,X-Z+1=0.

§ 22
2 1 R SR U

1. a) V; \E b) \E V2
1 2 IR I O

V5 NG V2 V2
1 __3 R .

V10 V10 V2 V2

c) d)

3 i IR S

V10 V10 \2 V2

2. a) La trasformazione ortogonale ¢ quella che fa passare dalla base canonica ad
una base ortonormale costituita da autovettori della matrice di g. Gli autovalori
sono A =1, 4. L’autospazio R} ha dimensione 2, ed una sua base ortonormale &

{ ( B ) (—_—2 , L s ——1——) L’autospazio R} ha dimensione 1 e un suo
N RN V6 V6 6
1 1 1 L .
versore ¢ [—— , — , —|}. Quindi la trasformazione ortogonale &
(\5 V3 J3)
-2 1
X 0 —_— = i
‘ V6 3
x 1 1 1 y
2 1= ey e e 2
V2 6 V3
X 1 1 1 y
- - Ry 3
’ V2 V6 V3
La corrispondente forma diagonale & g(y1, y2, y5) = y* + y3 + 43
b) Forma diagonale: g(y,, ¥2, ¥5) = — 2y* — 3y3 + yi. Trasformazione ortogonale:
1 2
X — 0 - - y
l V3 V6 '
el L L L},
’ Viovz Ve T
¥ 1 1 1 y
3 - 2 __1
V3ov2 o Vel \
c¢) Forma diagonale: g(y,, y, y3) = — yi — y3 + 3% Trasformazione ortogonale:
1, L
Xy V2 v2 1 [
X | = 0 1 . 0 V2
X3 L B ]

- o L
V2 V2
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§ 23

1. ¢), €).
2. a), ©), ).

5 e
{(\6 a3 \wr e

4. a) A possiede gli autovalori A =0, 2. I corrispondenti autovettori (Lz, - —\}—_) e
2

V2

(é, —\;—i) costituiscono una base ortonormale di C? rispetto al prodotto hermitiano

standard; pertanto la matrice cercata é&:

U
e N2 2
R E O
N2 2
V3 i
by M| 2 2
i 3
2 2
§ 24

1.a) Qi-3)X+QRi+1)X, -4X:=0
b) —(1+DX-2X\+1+D)X,=0
€) 2iX, - X;=0.

3. 66X +2X,~-5X,=0.

4. mu(@)=11,2,0,0], 7pu(@)=I[11, -1, -1, ®u(@)=0[3,5,1, -1],
Tp,u(Qd) = Q..

5. z ed 4 sono sghembe.

6.4 =L(P, 2)NL(P, 2').

7. a) L(P, %) ¢ il piano contenente P e due punti di 2, per esempio [0, 0, 2, 1] e
[1, — 2, 1, 0]. Similmente L (P, £’) ¢ individuatoda Peda [0, 3, 2,01, {2, 1,0, —2}e z’.
Quindid = L(P, )N L(P, 2’y haequazioni 3X, +2X, + X, —2X:=0, 3X, - 2X, +
+3X+2X,=0.

b) 4 ha equazioni cartesiane: 4X;, —3X,+ X+ X;=0, 7X-3Xi+ X2 +2X;=0.
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§ 25
1. a) [0, 1, - 3] b) [0, 2, 1] o [0, -3, 2i] 4 [0, 0, 1].
2. a) 3X|+X2+X0=0 b) X|_2X2_X0=f0

€) 2iXi +3X,+9X,=0 d) X, +X,=0.

3.a) —4X+Y+7=0 b) 2X-Y+i=0

0 2iY-X+i=0 d) 2Y+1-i=0.
4. a) [3.+i, ~1, —1] b) [1, I, 1] c) [0, 3, 1].

5. La giacitura del piano di A*(R) cercato & generata dalle direzioni di z ed 4. Impo-
nendo il passaggio per il punto assegnato, si ottiene il piano di equazione in coordi-
nate omogenee: X; — Xo — X5=0.

§ 27
1 -2 2 1 2 -2
l.a) A={-2 1 -1 by A=|-1 -1 2
1 -2 -1 1 1 -1
-1 2 1
gA={ 1 -2 1
1 0 -1

2. f([x, x1]) = [xo = 3x1, X% + xi].
4. a) f possiede i 3 punti fissi [3, 2, — 4], {4, 2, - 5], [1, 1, —2].
b) f fissa tutti i punti della retta di equazione X, + X, =0, e il punto [0, 0 1].

§ 28

1. a) X, X, +2X}-X3=0, [0,1,0]
b) XX3-Xs=0, [0,1,0], 10,0, 1] -
¢) 3X2X:+ XX X+ X, X3=0, [0, 1,0l [0, 0, 11;
d) X*X, - X, X3+ XX, - X, X2=0, [0,1,0}1 00,0, 11,10, 1, 1].

2. a) e b) non sono simmetriche rispetto all’origine né rispetto ad alcuno degli assi coor-
dinati; ¢) & simmetrica rispetto all’origine e rispetto ad entrambi gli assi coordinati.
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§ 31

2. a) Poiché

| N
1 — 2 2
2
=_3_>0, _1_ 1 ..L =_1_¢0,
[ | 4 2 2 2
2 B
2 2

¥ & un’ellisse non degenere, in particolare ¢ una conica a centro. Inoltre il punto
(=1, —1) appartiene a .%, e quindi % & un’ellisse a punti reali. Le coordinate del
centro sono la soluzione del sistema

X+—1—Y+L=0, Lxy Y+l=0,
2 2 2 2

e quindi C= (—- —;—, _L . I punti impropri [0, X;, x;] hanno per coordinate le

soluzioni delP’equazione X?+ X3+ X,X,=0, e sono pertanto [0, —1 ++3 i, 2},
[0, 1 +vV3i, — 2.

b) Iperbole non degenere. C = (0, 0). Punti impropri: [0, 5, 1], {0, 1, 5].

¢) Parabola non degenere. Punto improprio: [0, 1, 1].

d) Iperbole non degenere. C = (0, 0). Punti impropri: [0, 3, 1}, [0, —1, 3].

e) Iperbole non degenere. C = (— /3, 1). Punti impropri: [0, 1, 0], [0, —1, V3].
f) Parabola non degenere. Punto improprio: [0, 4, — 3].

g) Ellisse a punti reali. C = (0, 0). Punti impropri: [0, — 2 + ive, 21, [0, 2 +iv6, — 2].

_N2 V2

h) Ellisse a punti reali. C= ( > 5 ) Punti impropri: [0, ~1+2v2, 3],

[0, 1+2v2, —3].

3. a) Poiché il centrodi ¥ & C= (— , ——1—) la traslazione

1
3 3
x-x -1, y-y-1
3 3
trasforma % nella conica di equazione

X'+ Y’2+X'Y'—i=0,
3

che ha centro nell’origine. Gli autovalori della matrice 2 | della forma qua-
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dratica X'+ Y2+ X’ Y’ sono A =

R%a: ((—l, l))9 R§/Z= ((1, 1)>~

La base ortonormale [(—L .
V2

3
2

B

E ’

467

, con autospazi

1 L )} consiste di autovettori ed &

vz

concordemente orientata con la base canonica. In corrispondenza otteniamo la rotazione

X’—‘ } s !
l 1

5 2
1

_X”+X”
V2. V2

di matrice \/li
7

2

V2
1

2

3

2

X"+
3

Sostituendo troviamo la conica di

. 3
y”?- 4. 0. La forma canonica & pertanto — X" +
8

equazione

2

Y =1.

L’isometria cercata € la composizione della traslazione e della rotazione effettuate,

”

Y”
+
V2 V2
X’ 3 YI
V2 V2
r2 Y/Z

Forma canonica; —— — ——
4 9

1, _

39

_X”

V2
X +
V2
1.

cioé: X = +

H

b) Isometria: X =

X Y
V2 V2o
5

Traslazione: X' = X" + —, Y’
8

XI
==+
V2

¢) Rotazione: X =

Forma canonica: Y"? = 2 X”.

. X’ 2
d) Isometria: X =~— — = Y,
v5 V5
A r2 Y/ 2
Forma canonica: -2— -

2
e) Isometria: X = X _‘/_3
2 2

V5
L

Forma canonica: 3X'* - Y’ ?=1.
4 3

Forma canonica: Y2 —2X’ =0.
2 Y’
g) Isometria: X=—"-X"+—, Y
V5 Vs
72 Y/ 2
2 2

Forma canonica: + 1.

Y=-2Xx"+

Y -V3, Y=

f) Isometria: X=—X'+—Y’, y___-_l
5 5 5

XI
V5

YII
V2
Yr

V2

1

.

Y‘I
V2
1

— Y” —_—

2V2

Y
V5

By X

+—+1.

x+ty.
5

+—=Y".

2
V5
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4 ’ Xr Y‘I V‘i
h) Isometria:X:—)L——L———‘/Z Y= 4—4 =

vz v o2 v2 vz o2

Forma canonica: 2X’2+ Y2 =1.

4.8) X+Y+2=0, X—Y¥Y=0 b)2x+2v-1=0, X+¥ 1.0
) Y-3X=0, X+V2yY=0 d) X+Y=0.
§ 34

2. a) La curva contiehe I’origine perché la sua equazione non ha termine costante; i termini
di grado piu basso sono quadratici, e quindi I’origine ¢ un punto doppio per %. Poiché
X?+ Y*=(X+iY) (X —1iY), le tangenti principali nell’origine hanno equazioni:
X +iY =0, X—iY = 0. Le coordinate [0, x;, x,] dei punti impropri sono radici dell’e-
quazione ottenuta annullando i termini di grado massimo, cioé di X7(X; ~2X3) =0,
e quindi i punti impropri sono: [0, 1, 0], [0, 2, 1]. Poiché la retta impropria interseca

% in 0, 2, 1] con molteplicita 1, il punto [0, 2, 1] & semplice per £ e la retta impro-
pria non é la tangente. Quindi % ha un asintoto in corrispondenza a questo punto,
ed esso ha equazione X — 2Y = ¢ per qualche c€C. Per determinare c si considerano
le intersezioni di % con la retta variabile di equazione precedente, e si ottiene Iequa-
zione in Y

(c=5Y>~4cY-c"=0.

Poiché il grado di quest’equazione si abbassa per ¢ = 5, la retta di equazione X —2Y =35
ha due delle sue tre intersezioni con % raccolte nel punto improprio, e quindi & Pasin-
toto cercato.

Procedendo in modo simile con ’altro punto improprio si trova che esso & semplice
per %, con tangente la retta impropria.

b) L’origine & un punto semplice, con tangente di equazione X = 0. L’unico punto
improprio & [0, 1, 1], che ¢ un punto doppio ordinario con tangenti principali la retta
impropria e la retta di equazione X — Y — 2 =0, che & pertanto un asintoto di &

¢) L’origine & un punto triplo ordinario, con ‘tangenti principali:
Y=0, 2X-Y=0, 2X+Y=0.
Punti impropri: [0, 0, 11 {0, 1, 1] e [0, 1, — 1] semplici, con tangenti rispettivamente

la retta impropria e le rette X — Y = %, X+Y=- —3—.

2

f) L’origine € un punto doppio non ordinario (che non é una cuspide ordinaria), con
tangente principale Y = 0. L’unico punto improprio & [0, 0, 1], che & semplice con tan-
gente la retta impropria: ¢ un flesso di specie 3.

3. a) FeiXo=0, Te:Xi=0, TpiXp=0, Ty:-4X+X+2X,=0,
Tp: —2X+ X, +3X,=0.
b) FriX,=0, Ty:2X,-3X;=0, Tp:-3X+X=0,
Ty Xo— X -2X,=0, Tp:3X-5Xi-5X,=0.
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4. Le rette cercate sono le tangenti a % nei due punti & N5 La polare I'x ha equa-
zione X, + X, =0, e interseca % nei punti [1, V2, 1]; le corrispondenti tangenti
hanno equazioni X, ¥ V2 X, + X, = 0.

§ 35

1. Il determinante si annulla se e solo se esiste una relazione di dipendenza lineare tra
le colonne della matrice, cioé se e solo se esistono oy, 2 0o, 202, Q1, 20, €K
non tutti nulli tali che si abbia:

a @ A, a

2
B bob, bubs :
2 2
aw| @ |+200 ] 4200 ]| 2 | +an] O |+

d; dod, dyd, h
e [14] €€, e
V3 Johi Jof2 S

o a 0

bib, 2 0

2

+ 20l|2 a& + O G = 0

d\d, d; 0

e e ezz 0

fifz P 0

Questa condizione equivale all’appartenenza dei 6 punti assegnati alla conica di
equazione

(Xmon + 2a0|X0X1 + 20102X0X; + ot,.X.2 + 20112X1X2 + aanz = 0.

5. Supponiamo che le coniche del fascio abbiano equazione

AF (X, Xiy Xo) + uG(Xo, X1, X)) =0, (A, weK\{(O, 0)}.

Se
F(X,, X1, X3) ='XAX, G(X,, X, Xo) = XBX,

dove A = (a;)) ¢ B = (b;;) sono le matrici delle due coniche, allora
AF (X, Xy, X2) + pG(Xo, X1, Xo) = 'X(AA + pB)X

e le coniche degeneri corrispondono alle coppie (A, u) tali che
det(AA + pB) =0.

Questa ¢ un’equazione omogenea di grado 3 in A, g, che ha al pili tre soluzioni distinte:
quindi le coniche degeneri del fascio sono al piu 3.
Se il fascio ha 4 punti base distinti P,, P,, P;, P,, allora questi punti sono a tre a tre
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non allineati, e le tre coniche riducibili
L(P,, P;) + L(P;, Py, L(Pl, P) + L(Ps, Py, L(P,, P)+ L(P,, P;)

sono distinte e appartengono al fascio.

§ 36

1. L’hessiana ha equazione X, X, X; = 0. Quindi i flessi sono i 9 punti di intersezione di
% con le rette X, =0, X, =0, X,=0, e si verifica immediatamente che essi coinci-
dono con i punti assegnati.

3. Sono le 4 cubiche di equazioni seguenti:
X()Xl Xz = 0,
X+ X+ X) (€ X0+ Xy + Xo)(Xo + €X, + €€X) =0,
Xo+ €X + EXNEX+ X+ EXYEX + €X + X)) =0,
(EX() + X| + Xz)(Xo + le +X2)(Xo + X] + EXz) = 0,

ognuna delle quali & riducibile in 3 rette distinte. Queste 12 rette si ottengono congiun-
gendo in tutti i modi possibili 2 dei 9 punti base del fascio.

4. E sufficiente dimostrare che Phessiana di ogni cubica del fascio contiene i punti base.
L’hessiana della cubica corrispondente ai valori /, m dei parametri ha equazione
61X, mX, mX,
mX, 6lX, mX, | =0.
le vaO 6IX2

E immediato verificare che le coordinate di ognuno dei punti base annullano il deter-
minante a primo membro.
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tra una retta e un piano, 232
di Eulero, 267
Applicazione:
antilineare, 146
di dualita, 313
di passaggio a coordinate omogenee (non omo-
genee), 299
lineare, 132
associata ad una matrice, 149
Area di un parallelogramma, 238
Argomento (principale) di un numero complesso,
221 :
Asintoto, 393
di un’iperbole, 374
Asse(i):
coordinati, 110
di simmetria di una curva, 344
di una riflessione, 253, 258
di un fascio di piani, 127
Automorfismo di uno spazio vettoriale, 133
Autospazio, 163
Autovalore, 163
Autovettore, 163

Baricentro, 311

Base (finita), 56
canonica di K?, 59
duale, 142

ortogonale (o diagonalizzante), 197, 275

ortonormale, 211, 275
Birapporto, 325

Campo, 421
algebricamente chiuso, 429
dei quozienti di un dominio, 425
delle funzioni razionali, 426
Caratteristica di un dominio, 422
Centro:
di simmetria di una curva, 344
di simmetria di un insieme, 182
di una conica, 364
di un fascio di rette, 112
Cerchio, 236
di Moebius, 331
Chiusura proiettiva:
di una curva affine, 343
di un iperpiano, 308
di un sottospazio affine, 309
Ciclo, 442
Circonferenza, 236, 372
Classe resto, 188
Codimensione di un sottospazio:
proiettivo, 285
vettoriale, 63
Coefficiente:
di Fourier, 196
di una combinazione lineare, 53
di un polinomio, 423
Cofattore, 79, 82
Combinazione lineare, 53
Complemento algebrico, 79, 82
Componente:
di un vettore di K=, 19
fissa, 406
irriducibile, 381
multipla, 381



476

Condizione(i):
di complanarita di due rette, 125
di parallelismo di due piani, 122
di parallelismo retta-piano, 125
di tangenza, 408
indipendenti, 406
lineare, 404
Configurazione duale, 317
Conica, 338
a centro, 360
degenere (semplicemente o doppiamente), 355,
360 .
Cono:
isotropo, 202
proiettante, 291
su un insieme, 296
Coordinate:
affini, 92
baricentriche, 311
omogenee (o proiettive), 284
di iperpiano, 313
standard, 285
pluckeriane, 294
polari, 237
Cubica:
armonica, 419
equianarmonica, 419
Curva(e) algebrica(e):
affine, 338
affinemente equivalenti, 341
complesse coniugate, 348
congruenti, 341
hessiana, 399
irriducibile (riducibile), 381
non singolare (singolare), 390
proiettiva, 339
proiettivamente equivalenti, 341
proiettificata di una curva affine, 343
reale, 348
ridotta, 381
simmetrica rispetto ad una retta, 344
simmetrica rispetto ad un punto, 344
Cuspide ordinaria, 396

Derivata di un polinomio, 431
Determinante, 73

di Vandermonde, 88

hessiano, 399
Determinazione (principale) di un angolo, 219
Diametri di una conica, 365
Dimensione:

di uno spazio affine, 91

di uno spazio proiettivo, 284

di uno spazio vettoriale, 58

di un sistema lineare di iperpiani, 315
Direttrice(i):

Indice analitico

di un’ellisse, 373
di un’iperbole, 374
di una parabola, 375
Direzione:
di una retta, 93
di un fascio improprio di rette, 113
Disco, 236
Discriminante, 439
Distanza:
tra due punti, 228
tra due rette, 231, 234
punto-piano, 233
punto-retta, 230, 233
Disuguaglianza:
di Schwarz, 210
triangofare, 211
Dominio, 422
a fattorizzazione unica, 426

Eccentricita:
di un’ellisse, 372
di un’iperbole, 374
di una parabola, 375
Ellisse, 361
Endomorfismo, 132
Equazione(i):
di una curva, 338 sg.
di una retta affine, 101
di una retta proiettiva, 289
di un iperpiano, 104, 286
di un’ipersuperficie, 346
di un piano, 121
di un sottospazio affine, 101, 104
di un sottospazio proiettivo, 286, 288
lineare (di primo grado), 33
omogenea (non omogenea), 33
Equipollenza, 14
Estensione di un campo, 422

Fascio:
di circonferenze, di ellissi, di iperboli, di par
bole, 409 sg.
di curve, 404
di iperpiani, 314
di piani (proprio, improprio), 127
di rette, 314
improprio, 113
proprio, 112
sizigizietico di cubiche, 419
Fattorizzazione, 426
Figura(e):
affinemente equivalenti, 185
congruenti, 250
geometrica affine,. 185
proiettivamente equivalenti, 324
Flesso, 397



Indice analitico

Forma:
bilineare (simmetrica, antisimmetrica, alterna),
190
alterna standard, 195
anisotropa, 202
degenere (non degenere), 195
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quadratica, 197
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iperbolica, 200
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omogenee, 320
di Grassmann:
proiettiva, 290
vettoriale, 63
Funzionale lineare, 133
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di un’iperbole, 374
di una parabola, 375

Generazione proiettiva delle curve piane, 410
Giacitura:
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Glissoriflessione, 260, 268
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Gruppo(i), 175
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di Coxeter, 254
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di isometrie, 247
di una figura, 249
di Lorentz, 255
discontinuo, 253
di trasformazioni, 177
affini, 179
finitamente generato, 188
lineare, 176
generale, 176
proiettivo, 322
speciale, 176
ortogonale (speciale), 176, 244 sg., 254
quadrinomio (o di Klein), 264
simplettico, 255
unitario (speciale), 177

Identita:
di Eulero, 433
di Lagrange, 226
pitagorica, 216
Immagine di un’applicazione lineare, 138
Indice di positivita (negativita), 207
Insieme:
convesso, 99
limitato, 239
ortogonale (ortonormale) di vettori, 211
Inviluppo convesso, 99
Iperbole, 361
Iperpiano(i):
affine, 94
coordinato, 105, 286
di simmetria, 253
improprio, 299
proiettivo, 285
Ipersuperficie, 293, 346
Isometria, 247
Isomorfismo:
di domini, 425
di gruppi, 177
di spazi affini, 178
di spazi proiettivi, 322
di spazi vettoriali, 133

Lunghezza di un segmento, 238

Massimo Comun Divisore, 428
Matrice(i), 21
antisimmetrica, 25
associata a un’applicazione lineare, 147
congruenti, 194
dei coefficienti di un sistema, 35
diagonalizzabile, 162
di Pauli, 66
di una conica, 355
di una forma bilineare, 192
di una proiettivita, 323
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di un cambiamento di coordinate, 150 di uno spazio affine, 157
di un operatore lineare, 160 di uno spazio vettoriale, 151
di Vandermonde, 88
elementare, 44 Parabola, 360
hermitiana, 274 cubica di Newton, 351
hessiana, 399 Parallelepipedo, 98
invertibile, 28 Parallelogramma, 98
nilpotente, 31 Permutazione, 441
orlata, 36 Perpendicolare comune, 234
ortogonale, 29 Piano(i):
quadrata, 22 affine, 92
simili, 161 coordinati, 120
simmetrica, 25 ordinario, 13
definita, semidefinita, indefinita, 208 ampliato, 305
trasposta, 22 perpendicolari (o ortogonali), 232
triangolare, 25 proiettivo, 284
unitaria, 177 Polare, 402
Metodo: Poliedro convesso, 239
delP’inversa, 44 Poligono convesso, 239
di eliminazione di Gauss-Jordan, 38 Polinomio, 423
di Laplace, 84 caratteristico, 165
Minore(i), 78 costante, 423
orlati, 85 generico, 405
Modulo: irriducibile, 427
di una quaterna di punti, 327 monico, 423
di una cubica, 414 omogeneizzato (deomogeneizzato), 434
Molteplicita: omogeneo, 432
algebrica (geometrica) di un autovalore, 170 Principio:
d’intersezione retta-curva, 386 sg. d’identita dei polinomi, 430
di una componente irriducibile, 381 di dualita, 317
di una curva in un punto, 390 Prodotto:
di una radice, 429 di matrici, 24
di un fattore, 427 hermitiano, 275
di un punto base, 406 misto, 226
scalare, 209
n-spazio numerico: standard, 209
affine, 92 vettoriale, 224
proiettivo, 284 Proiettivita, 322
vettoriale, 18 Proiezione, 134, 291
Nodo, 396 naturale, 136
Norma (lunghezza) di un vettore, 210 ortogonale, 212, 216
Notazione a blocchi, 29 parallela, 109
Nucleo di un’applicazione lineare, 137 stereografica, 305
Proposizione autoduale, 318
Omomorfismo: Proprieta:
di domini, 424 affine, 185, 341
di gruppi, 177 di similitudine, 250
Omotetia, 181 euclidea, 250, 341
Operatore(i) lineare(), 132 focale, 375
aggiunti (trasposti), 246 proiettiva, 324, 341
antisimmetrico, 247 Punto(i):
autoaggiunto (simmetrico), 247 allineati (o collineari), 95
diagonalizzabile, 162 base, 406
unitario, 243, 276 ciclici, 379
Operazioni elementari, 38 complanari, 95

Orientazione: fondamentale, 284
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indipendenti, 95
in posizione generale, 288
K-razionale, 352
linearmente indipendenti, 288
medio di un segmento, 97
multiplo (singolare), 390
ordinario, 396
proprio (improprio), 299
reale di una curva, 349 sg.
semplice, 390
simmetrico:
rispetto a un iperpiano, 252
rispetto a un punto, 95
unita, 284

Quadrica, 293

di Klein, 295
Quadrilatero completo, 335
Quaterna:

armonica, 328

equianarmonica, 328

Radicale, 196
Radice di un polinomio, 428
Rami di un’iperbole, 373
Rango:
di una conica, 355, 360
di una forma bilineare, 195
di una matrice, 67
Rappresentazione trigonometrica di un numero
complesso, 222
Regola
del parallelogramma, 15
di Cramer, 82
Rete di curve, 404
Retta(e):
affine, 91
di Pascal, 303
ortogonali (o perpendicolari), 229
proiettiva, 284
tangente, 392
principale, 393
Riferimento:
affine, 92
standard, 93
cartesiano, 227
proiettivo, 284
duale, 313
standard, 285
Riflessione, 252
rotatoria, 269
Risultante di due polinomi, 438
Rotazione, 245, 248

Scalare, 16
Segmento, 97
orientato, 13
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Segnatura di una forma quadratica, 207
Semiassi di un’ellisse, 372
Semipiano, 109
Semiretta, 97
Semispazio, 109
Sfera, 236
di Riemann, 306
Simbolo:
di Kronecker, 25
di sommatoria, 73
Similitudine, 251
Simplesso, 99
Sistema:
di equazioni lineari, 33
a gradini, 36
lineare:
di curve, 404
di iperpiani, 314
Solido convesso, 239
regolare, 240
Soluzione generale di un sistema, 40
Somma diretta, 52
Sottocampo, 422
Sottodominio, 422
Sottomatrice, 70
Sottospazio(i):
affine, 93
generato da un insieme finito di punti, 94
incidenti (sghembi), 107
paralleli, 105
proiettivo (o lineare), 285
generato da un s.i., 287
incidenti (sghembi), 287
in posizione generale, 290
somma di due sottospazi, 289
vettoriale, 50
generato da un insieme finito di vettori, 54
isotropo, 202
ortogonale a un s.i. di V°, 145
ortogonali, 196
somma (diretta) di, 52
supplementari, 52
Spazio(i):
affine, 91
numerico, 92
euclideo, 227
numerico, 227
metrico, 228
ordinario, 13
ampliato, 305
proiettivo, 284
biduale, 319
duale, 313
numerico, 284
vettoriale, 17
biduale, 144
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duale, 141 di Pappo-Pascal, 303
euclideo, 209 di Poncelet, 412
hermitiano, 275 di Salmon, 414
isomorfi, 140 di Sylvester, 206
numerico, 18 di Talete, 115
quoziente, 106 di Taylor, 431
universale, 304 fondamentale dell’algebra, 430
Spettro, 163 spettrale, 270, 279
Stabilizzatore, 177 Terne pitagoriche, 352
Stella di piani, 314 Tetraedro, 98
Struttura: Traccia di una matrice quadrata, 65
di gruppo su una cubica, 418 Trasformazione, 175
di spazio affine, 91 lineare fratta (o di Moebius), 329
di spazio vettoriale, 18 Traslazione, 180
Successione, 20 Trasposizione, 442
di Fibonacci, 66 Triangolo, 98
limitata, 21
Supporto di una curva, 338 sg. Versore, 211
di una retta, 228
Tacnodo, 397 normale a una retta, 229
Tangente, 392 normale a un piano, 231
principale, 393 Vertici:
Teorema: di un’ellisse, 372
di Bezout, 383 di un’iperbole, 373
di Chasles, 260 Vettore(i):
di Desargues, 117, 318 applicato, 13
di Eulero, 267 colonna, 22
di fattorizzazione unica, 427 di direzione di una retta, 93
di Gram-Schmidt, 213 geometrico, 14
di Jordan, 272 isotropo, 196
di Kronecker-Rouché-Capelli, 71 linearmente indipendenti (dipendenti), 54
di Laplace, 83 ortogonali, 196, 274
di omomorfismo per gli spazi vettoriali, 140 riga, 22

di Pappo, 116 Volume di un parallelepipedo, 238



