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Parte prima
Testi dei problemi

1. (5/5/1976)

Studiare la convergenza (puntuale e uniforme) della serie di

funzioni

X
1 (14+x)"

IRE:

n

Calcolare la somma di tale serie.

2. (5/5/1976)

Calcolare
lim ”x+1 dxdy ,
e—0 y
€
dove
A, = {(x,y): x2+y2 =, 0sx<y? O<y<1} )

3. (5/5/1976)

Risolvere il sistema di equazioni differenziali
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con i dati iniziali u(0)=a, 2(0)=b .

4. (5/5/1976)

Sia f: R— R una funzione lipschitziana, crescente e tale che
f0)=0. Sia (u(x).v(x)) la soluzione del sistema di equazioni diffe-
renziali:

u' = f(v—u)
v = flu—v)
tale che u(0)=1, »(0)=0.

Dimostrare che lim u(x)=lim »(x).
X + oo X > +oo

5. (8/6/1976)

Studiare la convergenza della serie di funzioni

- 2n 2
z X log <1 + X__ ) .

1
n n

n

6. (8/6/1976)

Calcolare il volume dell’ellissoide (in R®) con semiassi @, b, c.
Trovare poi Pellissoide di massimo volume tra quelli per cui

a+2b+3¢=7.
7. (8/6/1976)
Sia
D ={(x,v,2): 0<x<I . z+/x<y<l . 0<z<I|
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e sia f: [0,1]>R una funzione continua. Provare che

)]
Mf(y)dxdydz :_;_ jﬂf(z)dt _
D

0

8. (8/6/1976)

Trovare tutte le funzioni u(x,v) di classe C' tali che

ou
— tu=y
ox
u(0,v)=¢”

9. (8/7/1976)

(a) Calcolare

lim ” — dxdy

Fo 4 oo

dove
D, ={(x): 0<v<l , x>0 . x?+22<r?)

(b) Usare il risultato precedente per calcolare

w2

arctg(sent
) arctglsend) ;-
sent

0

13
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10. (8/7/1976)

Calcolare

“(xy dvdz + yz dxdw) ,
S

dove S ¢ la superficie bidimensionale di R?% definita parametricamente
dalle equazioni

x=r2+s% | y=r—s , z=rs , W=rts

con 0<r<l |, 0ss<1.
11. (8/7/1976)
Calcolare la distanza fra i due insiemi

A= {(X,y): | x — —;1— |+ 12 g_l__}

B={(x,): x=31+1y-3I1<3} ,

ricordando che dist (4,B)=inf {dist(a,b): a€A . bDEB}.

12. (8/7/1976)

Sia f: R"—R una funzione di classe C'.
Dimostrare che f ¢ lipschitziana, con costante di Lipschitz K,
se ¢ solo se

IDf(x)|<K Vx€ER"

dove Df indica il gradiente di f.
Supponiamo che f sia K-lipschitziana: dire se ¢ sempre possibile
trovare un indice I E{],...,n} tale che
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|DJ1wy<Vf_ VxER"

n

13. (1/10/1976)

Si consideri il problema di Cauchy

Yix) =

y=x
v(0) =a (a>0) .

(i) Provare che tale problema ammette un’unica soluzione v, (x)

in un intorno di x = 0. Calcolare la derivata prima, seconda e terza di

y(x)in x=0.

(ii) Provare che la soluzione y,(x) ¢ definita su tutta la semiretta
{0, +oo[ ed ha limite per x—>+oo. Calcolare tale limite.

14. (1/10/1976)
Si consideri la successione di funzioni

1
fo(x. ¥)=
" x"+ vt tny

definite sul quadrante Q= {(x.y): x>0, y>0} .

(a) Dire per quali punti (x,v)EQ si ha

5 £ (o, 1) < oo

n=1

(b) Dire per quali insiemi 4 CQ si ha

z sup f, < +oo
=1

n
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15. (1/10/1976)

Dimostrare che la sola funzione continua f(x,1) tale che

a b
I [f(x,y)dxd_v:ab YaER , VbHER

0 G

¢ la funzione costantemente uguale a 1.
Dimostrare che se f € continua e f(x,v)=—f(v,x) allora

a a
() J Jf(‘x,y)dx dv =0 VaER
0 0

Esistono altre funzioni continue che verificano (*)?

16. (22/10/1976)

Si consideri la curva C di equazioni parametriche
X =1t — cost

1= 1+sen2¢t

y

con 0 < ¢ < 27,
(a) Tracciare un grafico approssimativo di C

(b) Scrivere I'equazione della retta normale a C nel punto

A = (x(0), ¥(0)) e nel punto B = <x (_;_r_) 3

(¢) Calcolare area del dominio D compreso fra queste due retic
e I'arco di curva C che ha per estremi i punti 4 ¢ B.

17. (22/10/1976)

Si consideri il problema di Cauchy
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y' = ly—x|
y(0)=a

(i) Discutere, al variare del parametro reale «, ’esistenza e 'uni-
cita locale e globale di soluzioni.

(ii) Determinare la soluzione del problema.
(iii) Dire per quali valori di a esistono soluzioni y(x) del problema
tali che

) _

lim
Ix|-> 4o X

18. (22/10/1976)

Si consideri il sistema di equazioni differenziali

u' =9 +av

u' —au

S
I

(i) Dire per quali valori del parametro reale a tutte le soluzioni
(u,v) del sistema sono coppie di funzioni periodiche.

(ii) Dire per quali valori di a il sistema ha qualche soluzione
(u,v) con u e v polinomi non costanti.

(Si consiglia di trasformare il sistema dato in un’equazione
equivalente del 4° ordine).

19. (14/1/1977)

Si consideri I’equazione differenziale
(*) vo=lvl+x?

(i) Trovare la soluzione y(x) di (*) tale che ¥(a) =0, con @ para-
metro reale.

(ii) Esistono altre soluzioni di (*) oltre a quelle trovate in (i)?
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20. (14/1/1977)

Si rappresentino graficamente gli insiemi

Ks.0) = {(xp2):x*+y2<|z|, s<z<t}
al variare dei parametri reali s e ¢t con s <0 <1t .
Dire per quali valori dei parametri s, ¢ la “superficie laterale” di

K(s,t) ¢ massima, oppure minima, sotto la condizione

volume (K(s,2)) = 1
21. (14/1/1977)

Studiare la convergenza della serie di funzioni

oo

n=0

22. (14/1/1977)

Sia f{x,») una funzione di classe C' su R?. Dimostrare che, se
J ¢ nulla nell’origine, esistono due funzioni A(x,v) e B(x,v) continue
su R? e tali che

fO,»)=xA(x, ) +vB(x,y) V(x,y)ER?

(si consiglia di considerare la funzione g(¢) = f(¢x, tv)) .

23. (4/2/1977)
Trovare le soluzioni y(x) di classe C! del problema
' +x)('=xy)=0

yixg) =¥,
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nel semipiano {(x,y) Ty > O} .

24. (4/2/1977)

Si consideri la tunzione
y

f(x’y) = J€~t7 dt

X

(a) Dimostrare che f ¢ di classe C , ¢ calcolarne 'estremo su-
periore e Pestremo inferiore su R?.

(b) Trovare i punti di massimo e minimo di f sul cerchio
{x2+y2 <1}

(¢) Dire se esiste

lim  f(x,v)

[(x,y)i—>+oe
25. (4/2/1977)

Studiare la convergenza della serie

T x"seny
n=0

al variare di x e v con x>0 e O0sy<27
26. (4/2/1977)

Sia f: [0,1}X]0,1] = R una funzione recale, ¢ siano f(t): [0,1] —~ R,
per 0 <t <1, le funzioni definite da

S0 =s(tx) .

(a) Provare che f ¢ separatamente continua se ¢ solo se ogni
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f(t) ¢ continua e (f(tn)) converge puntualmente a f([o) per ogniz, =t .

(b) Provare che f ¢ continua se e solo se ogni f{,, ¢ continua e
(f(fn)) converge uniformemente a /(fo) per ogni ¢, —{,.

27. (19/5/1978)

Calcolare Pestremo superiore e lestremo inferiore della fun-
zione

flx,v,z) = xv +yz +xz

sul piano {x +y+z= 3} .
Dire se esistono punti di questo piano in cui tali estremi sono
raggiunti.

28. (19/5/1978)

Calcolare

D
dove D ¢ il dominio di R?
! ! 2 2
D={(xy): —<r<— . 2x¥<y<3x?}
X X

29. (19/5/1978)

Sia f(x,») una funzione reale di classe C2.
Dimostrare che

A ,— R A —1/h? - 2
lim fQ2h, ¢ V=2f(he )+ £(0,0) :af (0.0)

h? 9x?
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30. (19/5/1978)

Si consideri il problema di Cauchy

, 1

y' = —_—
V24?2

y(x¢)=yo

(a) Dire per quali (x4,vq) il problema ¢ localmente risolubile.

(b) Sia xq = vy = 0, e sia Ja,b[ il massimo intervallo su cui esiste
V2

L

una soluzione. Provare che —a = b <

(¢) Provare che per x, > 1, 1, < —1 esiste una soluzione definita
su tutto R.

31. (6/6/1978)

Calcolare la minima e la massima distanza del punto (0.1.0)
dai punti della curva di R?

32. (6/6/1978)

Si consideri la successione di funzioni:

n

frlx) = ]

{

—Xxy

2l

b+ 2

dy

3
V

(a) Provare che ogni f, ¢ continua su R.
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(b) Studiare la convergenza puntuale ¢ uniforme della succes-
sione (f,).

33. (6/6/1978)

Si consideri il problema di Cauchy
YVEIL-@-x)@-—x-2)
y(0) = A

(a) Provare che per A = 1 esiste una ed una sola soluzione y(x)
definita su tutto R.

(b) Dire per quali valori di A il problema ha qualche soluzione
limitata.

34. (6/6/1978)

Si consideri Pequazione differenziale

(*) v = flxy)

dove f(x,y) ¢ una funzione di classe C! tale che

<1 V(x,»7)ER? .

of
|57“‘~”

(a) Provare che, se ogni soluzione v(x) di (*) ¢ periodica di pe-
riodo T, allora fix,v) & periodica (di periodo 7T) rispetto a x, per ogni
vER.

(b) Vale il viceversa?

35. (30/6/1978)

Determinare il massimo e il minimo della funzione
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Yo oxt

fx, )= J -et— dt

1

sull’insieme

A=A{xy: 1<x<2 , 1<y<2}.

36. (30/6/1978)

Si consideri la forma differenziale

x +qv rx + sy
w(x,y)Z—p—-—q—-—a’x + ——dy,
x%+y? x24p?

definita su R2 \ {(0, 0) }.
Dire per quali valori dip, g, r, s la forma w ¢ esatta su R? \ {(0, 0) },
e in tal caso calcolarne le primitive.

37.(30/6/1978)

Si consideri il problema di Cauchy

yi=(r—x)3
»0) =20

Dimostrare che la soluzione esiste su tutta la semiretta x <0,
e calcolarla (in forma implicita).

38. (30/6/1978)

Siano LER, B = {(x,y): X242 < l} e

L= {f:B_)R:ﬂaB =0 ¢ |f(x1,,V1)*f(x2»J’2)‘<L\/(~\'1“x2)2 +U’1_.1’2)2}




—_—e
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(funzioni L—lipschitziane nulle sul bordo di B).

(a) Provare che esiste CER tale che

l Hf(x,y)dxdy|<CL Vie¥

B

(b) Esibire una funzione f,E.#tale che

Ufo(x,y)dxdyI—g—L )
B
(c) Dimostrare che nel punto (a) la minima costante possibile
¢ C = 7/3.

39. (3/10/1978)
Sia 0<<g<1, ¢ si consideri I'insiecme di R?

D@={(x.y): x>0, y>0,xy>%* , Vx +Vy <da}.

Calcolare I'area di D(a) e dire per quale valore di a tale area ¢
massima.

40. (3/10/1978)

Studiare la convergenza puntuale ed uniforme della serie di
funzioni

n=1 n*

sulla semiretta {x>0} )

.41. (3/10/1978)

Risolvere il problema di Cauchy
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y'=lyl-x?

y()=0

42. (3/10/1978)

Sia f: R~ R. Dire che relazione ¢’¢ fra i due fatti

(a) f*(x) ¢ lipschitziana

(b) f(x) ¢ _;_ — holderiana, cioé [f(x)—f()|I<c|x—y[*'* .

43. (16/10/1978)

Studiare la convergenza puntuale e uniforme della successione
di funzioni

M x+y)
1+nr2" (x*+y?)

f(x y)=

44. (16/10/1978)

Calcolare I’area del dominio di R?

D={x.):x=>0 , p>0 . (x2+y?)><dx?y?}

45. (16/10/1978)

Fissato un numero reale a 2 0. studiare il comportamento per
x 2 0 delle soluzioni v(x) del problema

}7,:_1—_... 2
(1+x2)?

() =a
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46. (16/10/1978)

Siano f e g due funzioni convesse di classe C? su R, e sia & = fog
la funzione composta.

Provare che in generale # non ¢ una funzione convessa, mentre
lo € certamente se f € anche crescente.

47. (25/1/1979)

Studiare la convergenza della serie di funzioni

X
n+=

o 1 n
2 <x +—>
n=1 n

sulla semiretta {x>0} )

48. (25/1/1979)

Si scriva I'equazione del piano 7T tangente nel punto (1,1,1)
alla superficie di R3

x34+2yr 72343y +1=0
Calcolare poi il volume della porzione del cilindro {(x,y,z):
(x—1)2+(y—1)><1} compresa fra il piano T e il piano {z=0} .

49. (25/1/1979)

Data P’ellisse " di equazione

2 2
X2 A u>0) ,
A M

dire per quali valori di X e u essa contiene il cerchio C di centro
(1,0) e raggio 1.
Fra tali valori trovare quelli per cui I ha area minima, ricordando

che area(I') = ﬂ\/i;_.l .
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50. (25/1/1979)
Studiare il problema di Cauchy

y'=loglx| -y

Y(xo)=Yo (xo#0) ,

¢ dedurne che esiste una ed una sola funzione continua f: R - R,
derivabile per x # 0 e tale che

f(x)=loglx|—f(x) Vx#0 , f(0)=1
51. (29/1/1979)

Si consideri la curva di R3?

F={(x,_v,z): z=x*+y? " x +_V+Z:O} .

(a) Provare che I' esiste e trovarne la retta tangente in ogni suo
punto.

(b) Trovare i punti di massima e minima quota in T.
52. (29/1/1979)
Calcolare I'area del dominio di R?

D={(x,»):x>0 , [logx|<I , |y-—xlogx|<l} .

53. (29/1/1979)

Studiare la convergenza della serie di funzioni
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54. (29/1/1979)

Si consideri il problema di Cauchy

¥ = senx —y

r(Q)=a .

(a) Dimostrare che la soluzione yp(x) ¢ definita su tutto R.
(b) Dire se v(x) ¢ limitata su R™.

(¢) Dire se »(x) ha limite per x = +oo.
55. (9/5/1980)

Sia f(y)=e Ylogy.
Studiare la convergenza della successione di funzioni

f,(x)=f(nx)
sulla semiretta {x > O} .
Calcolare poi
1

lim an (x)dx

n—oo

0
56. (9/5/1980)
Calcolare
fydxxdy
x2+y?
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dove v ¢ il grafico della funzione y =cosx sull'intervallo [—m,7],
orientato nel verso delle x crescenti.

57. (9/5/1980)

Sia f: RZ=>R? definita da

flx,y)=(px+p), y(x—»)

con ¢, ¥ funzioni reali di variabile reale.
Dimostrare che f & differenziabile su R? se ¢ solo se ¢ e { sono
derivabili su R.

58. (9/5/1980)

Si consideri I’equazione differenziale

t 1
y ty=
1+¢2

Trovare una formula risolutiva di tale equazione. Dimostrare
che per ogni soluzione y(¢) esistono due costanti, 4 e B, per cui

lim [y(t) —(Acost + Bsent)]=0

{— + o0

59. (16/6/1980)

Si consideri la serie di funzioni

x+1

2
e " dr .

oM

s

x—1

Dimostrare che tale serie converge uniformemente sull’insieme
A= {|x1>2} e diverge sull’insieme complementare.
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60. (16/6/1980)

Si consideri la funzione

11 eAxytz
£, 1) = ]———[— dr

0

Dimostrare che f ¢ definita su R? ed ¢ differenziabile. Calcolare
poi il differenziale di f nel punto (1,2), I’estremo superiore e 'estremo
mreriore di f ed infine il seguente limite:

hm —_—
)= 0.0) VX242

61. (16/6/1980)

Si consideri I'equazione differenziale
(*) ) +x1y'—y=0

(i) Trovare tutti i polinomi che sono soluzioni di (*).

(ii) Dire per quali (xq,vq) 'equazione (¥) ha almeno una solu-
zione y(x) tale che y(xg)=v,.

62. (16/6/1980)

Sia f(x,y) una funzione continua.
Provare che se

lim fx, y)y=1

(e, p) 1= + e

allora

lim
F>+ o0 T

1
72

f/f(x. yydxdy=1,
B
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dove Br={(x,_v): x? +y2<r2}
Vale anche il viceversa?

63. (30/6/1980)

Provare che

lim [ 1 dxdy =0

rom gt T+ (ax +p)2 + (x+ ny)? 2
n

dove B, = {(x,y): x2+y2<n2} ,
64. (30/6/1980)

Trovare le soluzioni definite su tutto R dell’equazione differen-

ziale
y'=2y -yt
65. (30/6/1980)
Siano
+ o0 (tv)
N arctg(ry
lx =1 j tz

X

A= {(x,y):x>l . =0 }

Provare che

max f=1 |, inff=]— 21
A A
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66. (30/6/1980)

Sia ¢: [0,a}—[0,h] una funzione continua avente esattamente
N punti di massimo relativo. Dimostrare che il grafico I' di ¢ € una
curva rettificabile e che

lunghezza di ' <2Nb +a

67. (6/10/1980)

Dimostrare che

x}*+y?-3axy=z—a® Vx=20 Vy=20 Va=0

68. (6/10/1980)

(a) Dimostrare che esiste una costante reale ¢ tale che

—Ax*+vY) _ ¢
e dxdy = ——= YA>0
H VA

R2

(b) Dimostrare che

69. (6/10/1980)

Sia @ > 0 fissato. Studiare la soluzione y(x) del problema di
Cauchy

= tg(xy)
y(a) = n/a

tracciandone anche un grafico approssimativo. Mostrare in particolare

|
{
t
g




. e e emea-

S S
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che P'intervallo di definizione di v(x) ¢ del tipo 10,b[ cona < b <-i—a.

F4

70. (6/10/1980)

Sia M >0, e sia (f,,) una successione di funzioni reali definite su
{0,1] e tali che

lunghezza di T' (f,) <M VneN ,

dove I'(f,) indica il grafico di f,.
Provare che se (f,,) tende puntualmente su [0,1] a una funzione
continua f allora

lunghezza di T'(f) <M

71. (24/10/1980)
Studiare la convergenza della serie di funzioni

S log(l + x4+ p2")
n=1

72. (24/10/1980)

Calcolare

lim e’ ”e'xwy'dx dy

F> 4o
B)‘

dove B, = {(x,y): x24+y2 < r2} .

73. (24/10/1980)

Studiare il problema di Cauchy
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1
y' = arctgy - —
x

74. (24/10/1980)

(a) Sia £ R? - R? una funzione dj ctasse C! tale che
(det DF) (x, y) # 0 V(x,»)ER? .
Provare che gli eventuali zeri di F sono isolati.

(b) Sia f: R?—> R una funzione di classe C? tale che

fO,vY=0 = [Df(x,y)=(0,0) : (det Hessiano f)(x,y)=0]
Provare che f puo avere solo zeri isolati.

75. (23/1/1981)

Calcolare
1 ez‘l n 1
lim n —_—t dt

N —> oo

1/n

76. (23/1/1981)

Dire per quali funzioni u(x, y) di classe C! su R?\ {(O. 0)} la
forma differenziale

w = — dx + ulx,y)dy
x2+y?

risulta esatta su R? \ {(O, 0)) }
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77. (23/1/1981)

Si consideri il problema di Cauchy
y'=yp?—(arctg x)?
y1)=9

Studiare Pesistenza e I'unicitd locale ¢ globale della soluzione,
tracciandone poi un grafico approssimativo.

78. (23/1/1981)

Sia flx,y) una funzione continua tale che f(0,0)=0 e che

lim f(x,y)=0 |,

(X)) |—> + =
e si ponga per ogni nEN
[ (x,») = flnx, ny)

(a) Dimostrare che (f”) tende puntualmente a zero su R2.

(b) Dire in quali casi Ja convergenza ¢ uniforme.
79. (6/2/1981)

Calcolare estremo superiore e inferiore della funzione

. |
sul cerchio {x2+ 12 <—1 .
x4+, 7 }

80. (6/2/1981)

Studiare la convergenza della serie di funzioni
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E arctg [(x + )"+ (x—»)*"] .

n=1
81. (6/2/1981)

Studiare I’esistenza, l'unicita e il comportamento della soluzione
del problema di Cauchy

y'

Il
®
|
®

0 =0

tracciandone poi un grafico approssimativo.

82. (6/2/1981)
Dimostrare che per ogni funzione f di classe C' tale che f{0)=0
si ha
n

1y
lim n? J flxefdx = = 10) .
0

n—> oo

83. (24/5/1982)

Calcolare

1
lim / ——— T —dxdy,
R g I +x* + ‘yl

n

dove B, = {(x,y): x? +y2<n2} .

84. (24/5/1982)

Calcolare I’estremo superiore e I'estremo inferiore della funzione
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0 se (x,y) = (0,0)
fix,py =
4x3y ) ]
_— altrimenti
. (.X4 +y2 ’)2

sull'insieme D ={(x,»): Ix|<1 , |y|<2}.

85. (24/5/1982)

Si consideri il problema di Cauchy
v = |y|-arctge”
y(0) =y,

(a) Determinare ’'andamento della soluzione y(x) al variare di y,.
(b) Dimostrare in particolare che per un opportuno valore di y,

si ha

lim y(x)=
X— + o

w|:1

86. (24/5/1982)

Siano f,g: R— R due funzioni di ¢lasse C! tali che

V)P +[g0) =[] +[g'(x))*=1  VxeR |
f(0)=¢'(0)=1

Provare che

f(x)=cosx , g(x)=senx.
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27. (4/6/1982)

Studiare la convergenza della serie di funzioni

= (lo n)nx
s 08

n=3 n!

88. (4/6/1982)

Dimostrare che per ogni a>0 ¢ b >0 esiste una costante po-
sitiva C = C(a,b) tale che

Xipb <C-(x*TPp ) Vx>0 Wy =0

Determinare la migliore costante C(a,b).
89. (4/6/1982)

Sia N =1 un intero. Dire per quali valori del parametro a si ha

H (2 +32) Vdx dy < +oo

Da

dove D, = {(x,y): x=0 , O<y<x”'} .

90. (4/6/1982)

Studiare il problema di Cauchy
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tracciando poi un grafico approssimativo della soluzione y(x). Provare
che se a =1 allora v(x) ha almeno un flesso per x > 0.

91. (5/7/1982)

Disegnare la curva I' la cui equazione in coordinate polari ¢

p=1-—cosf <0<6<-7—r—> ,

-
'

¢ calcolare Varea della regione di piano compresa fra I' e I'asse del-
le ordinate. '

92. (5/7/1982)
Studiare la convergenza della successione di funzioni

fulx) = (—}12- + sen2x>

sull’intervallo {O,7], e calcolare

m

lim [ f, (o) dx .

N oo

0

93. (5/7/1982)

Studiare le soluzioni dell’equazione differenziale
y'=1-loglx +y)

¢ tracciarne un grafico approssimativo.

94. (5/7/1982)

Sia f(x,y) una funzione continua e verificante la condizione
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1fOe, )= fOG Yy ISL |y, =y, Vx,y,,7,€ER

Supponiamo inoltre che, se v(x) & una soluzione dell’equazione
differenziale

Y=Ly o,

allora per ogni ¢€R anche la funzione y(x+c) ¢ soluzione della stessa
equazione.
Provare che f ron dipende da x.

95. (8/10/1982)

Studiare la convergenza della serie di funzioni

|r2n~ yzn | 1yn

b8

n=1

96. (8/10/1982)

Studiare il problema di Cauchy

y'=sen(y —x)

y(0)=a

al variare del parametro reale a, tracciando poi un grafico approssi-
mativo delle soluzioni.

97. (8/10/1982)
Determinare la soluzione (x(t),y(¢)) del sistema di equazioni

differenziali

y+x'+y+2x=0

y=x"+3y+4x=0
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98. (8/10/1982)
Data la funzione

d senx —x
fx) = e,
X

b

determinare V'intervallo [a,b] tale Chej f(x)dx abbia il valore massimo

possibile. .

99.(22/10/1982)

Dire se la funzione

f(x,v) = xy explxy/(x*+y?)]

¢ limitata su R2?, e calcolarne il massimo e il minimo sull’insieme
{Go): Ixl+iyi<t) .

100. (22/10/1982)

Studiare la convergenza della serie di funzioni

n?

z

n=0 n!

101. (22/10/1982)

Calcolare il volume del solido ottenuto ruotando intorno all’asse
z 1l cerchio

{x,y2:v=0 , x2+22- 2 -1<0}.
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102. (22/10/1982)

Sia f: R—> R una funzione di classe C!, crescente ¢ tale che
f10) =0. Provare che tutte le soluzioni u(x) dell’equazione

u' = f(u)

sono definite in un intervallo del tipo |—ooq].

103. (21/1/1983)

Data la funzione

(x+y)sen [(x+v)?)
x2+y2

se (x,y) # (0,0)
fle, ) =

0 se (x,)=(0.0) ,

dire se si tratta di una funzione continua su R? e calcolarne estremo
superiore e inferiore sul cerchio {(x,y): x24I 1/2} .

104. (21/1/1983)

Studiare la convergenza della serie di funzioni

= lx—yl

Z __'y_ log(n +x? + %) .
n!

n=1

105. (21/1/1983)

Studiare le soluzioni dell’equazione differenziale

, X—y—2

x+y
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e tracciarne un grafico approssimativo.

106. (21/1/1983)

Sia f(x, ¥) una funzione di classe C! tale che per ogni (x9, Vo) ER?
le funzioni

of of
—_ Y r B — 4
£ t,yvo) 3y (xq, 1)

sono entrambe crescenti su R..
Si pud concludere che f € convessa su R??

107.(11/2/1983)

Scrivere I'equazione del pili piccolo cerchio di centro (0, 1) che inter-
seca I'iperbole di equazione xy = §/9.

108. (11/2/1983)
Studiare, nelle vicinanze del punto (1, 1), I'insieme

{(x,y):xsenx —yseny=0}.

109.(11/2/1983)

Considerato il problema di Cauchy

, <1 1)
y'=exp (———
Xy

y(H=2

dire se esso ha soluzione, e in caso affermativo tracciarne un grafico ap-
prossimativo e determinarne I'intervallo massimale di esistenza.
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110. (11/2/1983)

Sia (£, ) una successione di polinomi su R, tale che

Pn -0 uniformemente su R .

Provare che, per n abbastanza grande, tutti iPn sono polinomi costanti.

111.(11/5/1984)

Studiare la convergenza della successione di funzioni

fow=e — (14)

n

sulla semiretta {x =0 } .

112.(11/5/1984)

Calcolare

// ¢ 2dxd‘y,
b 1+

doveD={(x,y):0<y<e‘ ‘x‘}.

113. (11/5/1984)

Studiare le soluzioni dell’equazione differenziale

' xX-Y

T 1 +x2 + 2

I —
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114. (11/5/1984)

Sia ¥ (x) una soluzione non identicamente nulla dell’equazione diffe-
renziale

yEyE 0N

provare che y(x) non puo essere definita su tutto R.

115. (8/6/1984)

Si consideri il cono
C={Cx,y,2) /5T +)7 <z<1}.
Dire per quali valori del parametro reale « si ha

0<x3 4+’ +23LK2 V(x,y 2)EC.

116. (8/6/1984)

Studiare la convergenza della successione di funzioni

¥ sen(x" 1)

f,(x)=n? I — dt
0

sull’intervallo {0, 1] .

117.(8/6/1984)

Studiare il problema di Cauchy

1 1
y' =—1logy——Ilogx
x y
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per x < — . (Si consiglia di studiare preliminarmente insieme dei
e

punti (x, ) dove x log x =y log »).

118. (8/6/1984)

Siano a (x), b(x) funzioni continue e positive, ed ¥ (x) una funzione
continua definita per x = 0.
Si consideri I'implicazione

[y(x)<a(x)+b(x)J y@)dt Vx>0] =
; .

(*)

= [v(x)<a(x)exp f b(t)ydt V¥x=0].
4]

(i) Provare che (*) é vera quando a e b sono costanti.
(ii) Provare che (*) ¢ vera quando a(x)/b (x) & una funzione crescente.
(iii) L’implicazione (*) é sempre valida?

119. (3/7/1984)

Studiare la convergenza della serie di funzioni

Detta S(x) la somma della serie, calcolare anche

. S(x)
lim .
x>0 X

120. (3/7/1984)

Data la funzione
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f(x,y)=sen’x +yseny,

studiare 'insieme
T
{enixi<m, Iyi<—. fGx =1}

tracciandone anche un disegno approssimativo.

121.(3/7/1984)
Data 'equazione differenziale del secondo ordine
*) y'=e " “logx,

definita sul semipiano {(x, Yy x> O}, provare che:
(1) le soluzioni di (*) sono definite su tutta la semiretta JO, + oo ;
(i1) per ogni soluzione » (x) di (*) si ha

lim p(x)=—oo,

X 4+ oo

122.(3/7/1984)

Siaf : R" X R = R una funzione del tipo

(*) fx, v)=p(xy), conyg:R—>R diclasse C! .

(a) Provare che

) )
(*%) x o7 (x,y)=y o (x, ») V (x, y) ER?.
ox ay

(b) Provare che ogni f: R* X R = R di classe C! verificante (¥*) e
del tipo (*).

47
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123.(8/10/1984) .

Data la funzione

v :
flx,y)= J e~ dt, ‘]

X
dimostrare che essa assume massimo e minimo sul cono di R?

K={(x,»):0<x<y<2x},

e dire in quali punti cio accade.

124. (8/10/1984)

(a) Dimostrare che la funzione

fey=Y xternlyntx?

n=1

¢ definita e continua su tutto R.
(b) Dimostrare che f non ¢ derivabile per x = 0.

125.(8/10/1984)

Studiare la soluzione del problema di Cauchy

,_ seny
y'=

x+y

y@)y=1 ;

tracciandone anche un grafico approssimativo.
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126. (8/10/1984)

Data una funzione continua f(x) sull’intervallo {0, 1], sia y, (x) la so-
luzione del problema di Cauchy

yLx)=ny (x)+e " f(x) per0<x<]

v,(0)=0.

Studiare la convergenza della successione di funzioni (yn) sull’intervallo
(0, 1].

127.(22/10/1984)

Dire se esiste qualche funzione continua f : R? - R tale che per
(x, ¥) # (0, 0) si abbia

e =12+ logl(x — 1)? + 2]
Jo )= X1+ 1y]

128.(22/10/1984)

Calcolare
lim ff X edy
e=o0 o y(1+»?) '
dove
x? 1
D ={0ey): - <y<2x*, e<ya? +y7<—|
€ €

129.(22/10/1984)

Studiare il problema di Cauchy
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y'=yy'+x
y(©0)=0
') =C

al variare del parametro reale C, e tracciare un grafico approssimativo
della soluzione.

130. (22/10/1984)
Sia (f,) una successione di funzioni continue talj che
fn (x) ¢ periodica di periodo Tn ;
f, >/ uniformemente su R .

(a) Provare che se sup {Tn } < + oo allora anche f(x) é periodica.

(b) Cosa si pud dire se sup {Tn } =4 00 ?

131. (25/1/1985)
Studiare la convergenza della successione di funzioni

ny/x? + 7
1+ n?(x? + y2)

[, )=

132.(25/1/1985)

Calcolare

1
ff —logydxdy,
b X

doveD={(x,y):O<\/§<x<l} )
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133.(25/1/1985)

Studiare il problema di Cauchy
y'=logy - x
r)=e,

tracciando anche un grafico approssimativo della soluzione.

134. (25/1/1985)

Indicato con o il segmento {(x, y):x>0,y>0,x+y=1 }, si con-
sideri la funzione

f(x,y)=xlog<l +—l~)+ylog (1 +—1-> )
X y

(a) Provare che

inf f=1log 2, supf=log3.
14 a

(b) Generalizzare il risultato al caso
fix, y)=gx) +g0v),

cong : [0, 11~ R diclasse C? ¢ strettamente concava.

135.(11/2/1985)

Dire per quali valori del parametro reale o > 0 la funzione definita
per (x, ¥)# (0, 0) da

x| yl©
x4 4+ p?

flx, y)=

¢ estendibile con continuita a tutto R? .
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136. (11/2/1985)

Sia F: R?\ {(0,0)} - R? la funzione

I T Xy
( y) x2 +J/2 x2 +y2

Trovare I'immagine di F.

137.(11/2/1985)

Studiare la soluzione del problema di Cauchy

pe X
e? + x?
y(1)=0

tracciandone anche un grafico approssimativo.

138.(11/2/1985)

Data una funzione continua ¢ : R = R, definiamo una successione
(fn) di funzioni su R ponendo

fol¥)= 9(x) fw(x):j £, (0 dt.

0
(a) Calcolare esplicitamente f, (x) qualora (x) =1 .

(b) Supponendo ¢ limitata, studiare la convergenza della serie di fun-
zioni

*) AR

n=0

(c) Calcolare la somma della serie (*) quando

px)=e* senx.

e



Parte seconda
Risoluzioni dei problemi

Cominciamo con la convergenza puntuale.

Per x = 0 la serie ¢ banalmente convergente.

Per x # 0 la serie coincide, a meno del fattore x, con la serie geo-
metrica di ragione 1/(1 + x), cosicché & convergente se e solo se
1/1 1 + x| <1, cio¢ per |

x<-~2 oppure x>0.
La somma della serie ¢ data dalla funzione

0 se x=0
S(x) =
I se x< -2 oppure x>0 .

Passiamo ora alla convergenza uniforme.

Anzitutto mostriamo che la serie non € uniformemente convergen-
te su alcun intervallo del tipo [0, a] con a > 0: infatti il resto
n-esimo della serie ¢

0 sex =0
r, ()=
(1 +x)" sex<-2 oppure x>0,

sup Irn(x)|=1im r,(x)=1 VneN,

0sx<g x—0

Analogamente, si puo escludere la convergenza uniforme della se-
rie sugli intervalli [a, — 2| con a < — 2. Invece, si ha convergenza
uniforme sugli insiemi del tipo
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A, ==, ~2-8]U[5, +oo , 6>0

3

in quanto la successione

=
P, =

tende a zero per n > oo,

I1 ragionamento precedente pud essere raffinato per mostrare che
la serie converge uniformemente (anzi totalmente) su un insieme
A CRseesolose 4 CA4, U {0} per qualche 6 > 0.

2.  L’insieme AE corrisponde alla zona tratteggiata in figura:

Poniamo DE = {(x, V) € AE Iy =2 e }: st verifica allora facilmente
che De CA6 C De/ﬁ;infatti
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D’altra parte I'integrando € positivo su Ae, per cui

x+1 x+ 1 x+1
ﬂ dxdy <ﬂ dxdy < dxdy,
4 14
Y y D, /5 ]

D A
€ €

L . . x+1
e quindi bastera calcolare lim ﬁ dxdy.
D

€0

Si trova facilmente che

y? 2 4

x +1 11 5 € €
dxa’y=[ —j O+ Ddxdy = — = ———
D Yy J, 8 2
€

y 8

€
cosicché il limite cercato € —8- .

Posto
w=u+v, zZ=u-—7v

il sistema dato diventa

con le condizioni inizialiw(0) =a + b, z(0) =a — b.
Si ha allora

wix)=a+b , z(x)=@-b)e **
da cui, essendou=(w +z)/2ev=(w —2)/2,

at+b a-b
u(x)= 2 + > e

a+b a—2»b

=T T Ty ¢
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4.

Osserviamo anzitutto che la soluzione (u(x), v(x)) ¢ definita
su tutto R: infatti le funzioni che compaiono al secondo membro
del sistema sono lipschitziane in (v, v) uniformemente rispetto ad
x. Consideriamo ora la funzione

S(x)=u(x) —v{x),
osservando che essa ¢ una soluzione dell’equazione differenziale
8'(x)=f(=8(x)) - f(8(x)) .

Tale equazione soddisfa le ipotesi del teorema di Cauchy-Lips-
chitz ed ha fra le sue soluzioni la costante nulla (in quanto f(0) =
=0), pertanto, essendo 6 (0) =1 > 0, si puo concludere che

(D 6(x)>0 Vx€&eR.
D’altra parte I’ipotesi sulla f implica
(2) f(&)>0 per t>0, f(#)<0 per t<0,
quindi per (1) si ha
u'(x) =f(~ 8(x) <0
v'(x) =f(8(x)) >0
Cosl, u € decrescente ¢ v é crescente, e ricordando (1) si ha
0<o(x)<u(x)<1 Yx>0.

Le funzioni u e » ammettono allora limite finito, £ e &, per
x >+ oo esiha
Se fosse £ > & siavrebbe poi

lim «'(x)=f(¢, -2 )<0,

x— + oo
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da cui

lim u(x)=—o0 |
xX— + oo

quindi deve essere necessariamente L, =L,
Osserviamo che le ipotesi su f sono sovrabbondanti: basta che f
sia lipschitziana e verifichi (2).

Per la convergenza puntuale, si osservi che le funzioni

x2n x2
f,x)= \/—n- 10g<1 +—\*/—’7>

sono positive su R, quindi Ia serie data risultera convergente op-
pure divergente verso -+ oo |
Usando la nota disuguaglianza

log(l +) <t

con t =x2 \/7, si ottiene

2n 2

— <x

Vi

2n+2

(1) £, )<

e quindi, per il teorema del confronto, si ha la convergenza per
[x]<1.
D’altra parte, essendo

log(1 + t)_1

lim
t—0 t
si ha
£ () log(1 + 1
lim —2—— = {im M:l

nme 1 ame AT ’

n
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pertanto la serie diverge per x = 1, e anche per |x|> 1 in quanto
IxI=1 = fn(x)>fn (.

Per quanto riguarda la convergenza uniforme, dalla (1) si ricava
che,posto4, =[—-1+6,1 — 8] per0 <6 <1,siha

sup f, <(1--68)*"*? V¥neN,
A
3

quindi si ha la convergenza uniforme su ogni intervallo 4 s con

0 < 6 < 1. D’altra parte non si ha convergenza uniforme su j—1,11,
altrimenti si avrebbe convergenza anche negli estremi — 1 e 1, il
che non é.
Pii in generale si puo affermare che la serie converge uniforme-
mente su un insieme A C R se e solo se A §A5 per qualche
6€10,10.

Indicando con

2

X
(x,5,2): + + <1

E= a? b? c?

Iellissoide dato, e con S la sfera unitaria di R3, si ha subito (usan-
do il cambiamento di variabili X = x/a, ¥ =y/b, Z = z/c) che

4
vol(E)=// ldxdydz=/// abedfdydi=—rabe
E S

Si deve ora massimizzare la quantita f(a, b, ¢) =abc sull’insieme
A={@b,c)ER® :a=>0,b>0,c>0,a+2b+3c=7}.

Dato che 4 ¢ chiuso e limitato e che f ¢ continua, il massimo esi-
ste. Inoltre f € non negativa, ed € f(a, b,c) = 0 per a = 0 oppure
b = 0 oppure ¢ = 0, quindi il massimo di f su A € un massimo lo-
cale di f sull’iperpiano

H={(a,b,c):a+2b+3c=7}.
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Usando il metodo dei moltiplicatori di Lagrange, ci si riduce a ri-
risolvere il sistema

be = X
ac = 2\
ab = 3\
a+2b+3c=17.

FE’ facile vedere che deve essere

In corrispondenza a tali valori dia, b, ¢ si trova il volume massimo
686

243

cercato che € .

Perx > 0siha
Vx+z<y = [y-z20e x<(-12)*],
dunque

D={(x,y,z):O<y<1,0<z<y,0<x<(y——z)2}.

Applicando il teorema di Fubini-Tonelli si trova allora

MD £0) dxdya’z=f:) f(y)U a’x>a’z]dy=

y, ov-2)?

0.

_ [ r
If(y) 3dy.

0
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8.

Detta u(x, y) una soluzione del problema e fissato y € R, poniamo
v(x)=ulx,y).

La funzione v verifica allora
, ou
V() =5 y) =y - ule )=y - o),

e quindi v risolve
v'(x)=y —v(x)

v(0) = ¢
La soluzione (unica) di questo problema di Cauchy ¢
v(x)=y + (e —y)ye *,
dunque la funzione
u(x,y)=y + (" —yye ~

¢ I'unica soluzione del problema proposto.

(a) Posto per ognir =0
A, ={x,»):0<x<r, 0<y<l1},
si verifica subito che

A CD CA4 Vrz1.
r—1 r 14

L’integrando ¢ positivo, dunque il limite cercato coincide con il
limite per r >+ oo della funzione crescente

| B
= ——dxdy .
f(r) IL 1+x2 +)/2 xay
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Per il teorema di Fubini-Tonelli si ha

1 v 1
0= ([ Teea o)

da cui, usando la sostituzione ¢ =xA/1 + y?,

! 1 r
f(r): J ——_:}2- arctg -—-.—_.——z—dy
o VIt VIit+y

In vista del limite per r & + oo, una buona stima della funzione
arctg (r/A/T + ¥7) ¢

2

r
_< -
arctg \/-2. arctg m

™
<> Vvreplj.

Allora si ha

cosicché

T dy T
lim f(r)=—f ——— = — log(l +/7).
o Vity 2

Fo> 4w 2
(b) Applicando ancora il teorema di Fubini-Tornelli, ma nell’altro
verso rispetto a prima, si ottiene
70 ,[1___1 dy|dx = [ s arctg —m—
ry= 5 S dyidx = f s arctg -
Io Io L+x% +y s V1+x V1+x

ovvero, eseguendo la sostituzione 1/x =tgt,

/2 arctg (sent
g( ) dt
sen ¢

£ = [

arctg 1/r

61

dx
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Confrontando con quanto trovato nella parte (a) si pud allora
concludere che

™12 arctg(sent) T —
— dt=—1log(l +/2).
fo sen t 2 og(l +v'2)
10. Ricordando che ds A dr = — dr A ds e sostituendo, l'integrale

diventa

jj [(#2 +52)(r —5) (dr —ds) N (sdr +rds) +
[o,1]1X[o0,1]

+(r—s)rs 2rdr + 2sds) A\ (dr + ds)]| =

U [r* —s* +2rs(r* —2rs +5*))dr Nds=
[0.1]X [0.1]

1 1 1
= j “ r* +2r3s — 4r%s? + 2rs3 —s4)dr:,ds=—1—8—.
ollo

11. I dueinsiemi 4 e B sono indicati in figura:
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Le equazioni degli archi di parabola che compongono il bordo di
A sono le seguenti:

1
A= |x ==+, |y|<—\/_}
3,4 =1x =1-)2 ||<1—|
2 ""l-x -~y y\\/'s—‘ s

ed i punti di intersezione sono

o) ool

Consideriamo la retta di coefficiente angolare — 1 e passante per §
Q : essa ha equazione ¥

4+3
=—y — .
4 5
Posto
4 +./5
C=ly<-x+ ——5—\—/— }
proviamo che C D 4. Scrivendo A come <

A=A, UA, :(A N{x <—:—}>u<A N {x >—:—}>

1

4
¢ chiaroche 4, C C,perchéind,; é x<—,ys——="
1 p 1 5 Y \/5

Basta allora provare che 4, C C: scelto (x, y) €A, siha

1
Iyl<\/—§, e anche x <1 — »?, da cui

x+y<1l+y-—»%.
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1 1
La funzione p(¥) =1 + » — »? ha, sull’intervallo [_ﬁf]’

_ _ 4 +./5 _
massimo per y = —=, e tale massimo vale ——— . Allora in
N 5
A, siha
4 +./5
x+y< )
5
cioe 4, C C.
Poniamo ora
D={y>-x+3}
¢ chiaro che B C D, perché in B ¢
B-x)+@B—-»<|x-3I+1y-3I<3,
equindix +y = 3. AlloradaAd CCe B C D segue
dist (4, B) = dist (C, D) .
Quest’ultima, come ¢ facile vedere, € uguale a
11 —/5 —
dist (C, D) = dist (Q, H) = ——10—‘/— V2,

dove H, la proiezione di ¢ su D, ha coordinate

(19ﬁ\/? 11+\/5_>
0’ 10 '

D’altra parte Q € A, H € B, dunque
dist (4, B) < dist (Q, H) ;

11 —+/
la distanza cercata ¢ allora ——1(-)—5— V2.




Risoluzioni dei problemi 65
12. Supponiamo che f verifichi la condizione
(D) I Df(x)I <k Vx&R",

dove Df = (D,f, .. ., D_f) ¢ il gradiente di f. Fissati x, y in R"
consideriamo la funzione (di una sola variabile reale)

pe)=flx+1t( —x)).
Chiaramente ¢ ¢ derivabile, e si ha
P(O=Df(x+t(y —x))* (¥ —x)

(dove a * b ¢ il prodotto scalare di a e ). Grazie alla (1) e alla
disuguaglianza di Schwarz si ha allora

1O (OI<kl|y—x|
e quindi

1

[fO) = fE)=1p(1) - 0)I= f ¢'(1) a’tl<
0

1
< f OO dt<kl|y— x|,
0

cosicché frisulta k-lipschitziana.
Viceversa, sia f una funzione k-lipschitziana di classe C'. Avendo
fissati x ed # in R”, consideriamo la funzione (di una variabile)

V()=f(x +th).
Si ha
LY@ = YO =11 +th)y - fx)| <k ltllnl,

¢ quindi

| Y'(0) <k|hi.
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D’altra parte y'(¢) =Df (x + th) « h, pertanto

| Df(x) * h| <k |h|.

Per P’arbitarieta di % (si scelga 7 = Df (x)) si ottiene allora

IDf(x)I<k.

Il secondo quesito ha in generale risposta negativa. Ad esempio,
la funzione

fx) =1+ Ix|?
¢ 1-lipschitziana, in quanto

X
e
VIt Ixiz

IDf(x)]=

mentre per

P, =(2,0,...,0), P2=(O,2,0....0),...,Pn=(0,O,...,2)
ed n =2 2 risulta

Df(P)=—m>— vie{l...n}
,.f(,.)—ﬁ - {1...n}.

13. (a) L’equazione ha senso per y # x?. Siccome nel punto iniziale
(0, @) si ha y > x?%, possiamo limitarci a considerare ’equazione
nell’insieme aperto

A={(x,y):y>x2}.

In tale insieme la funzione f(x, y) = 1/(y — x?) ¢ di classe C! e
quindi localemnte lipschitziana in y. Per il teorema di Cauchy

esiste allora una ed una sola soluzione Y, (x) del problema, definita
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in un intorno del punto x = 0. Inoltre, dal fatto che f(x, y) ¢ di
classe C™ in A si deduce facilmente che anche ya(x) ¢ di classe
c” .

Dall’equazione si ha subito che

1
W = —
v, (0) p
Derivando membro a membro I’equazione si ottiene poi per ogni

soluzione y (x)

2x —y'
o —x?)?

o

e anche
=2 -y - x?) +20Qx - y')
(J/ . x2 )3 ’
pertanto
1x; —_ 1 111 — 2 3
Y, O="—35 7, (0)~a7+;5— :

(b) Sia A € 10, + oo ] I'estremo superiore dell’intervallo massimale
di definizione [ di v, (x). 11 grafico della funzione y, sta tutto
all'interno dell’ insiemé A, dove ¢ f(x,y)> 0, dunque si ha subito
che y, € crescente su [0, )\[ In particolare. esiste

u=lim ¥y (x),
x—>a”

edéa<u<x+oo,

Proveremo che A = u = + o, mostrando che altrimenti si pervie-
ne ad una contraddizione.

Se fosse A < + oo, u < + oo allora necessariamente il punto
(A, u) dovrebbe appartenere alla parabola y = x? (altrimenti per
il teorema di Cauchy-Lipschitz si potrebbe prolungare ancora
la soluzione y_ in un intorno destro del punto x = A, contraddi-
cedo la massimalita di /). Ma allora, essendo y _(x) > x? perx <A,
si avrebbe
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p=y,(x)  p—x> A -x?
< = <2
A—x A—x A —x AVx<h,

(H

e d’altra parte, applicando il teorema di Lagrange, si ha per ogni
x <A

oy, () ) = 1
Nex e T ey g

conx <f <A, e quindi

, =y, (x)
lim ————— =400,
X+ A

in contraddizione con (1).

Se invece si avesse A < + oo, u = 4+ oo vorrebbe dire che la retta
x = A é un asintoto verticale per la funzione crescente ¥, s quindi
necessariamente

limsup y) (x) =+ oo,
xX—= A
in contraddizione col fatto che

lim ' (x)=lim —— =0
x> A" Ve ) x—>a" y, (x) - x?

Non puo infine essere A = 4 oo, u <+ oo perché y_(x) > x? per
ogni x.

In conclusione 1'unico caso possibile ¢ X = u = 4 o, come si vo-
leva dimostrare.

Si potrebbe anche provare che y (x) ¢ asintotica alla parabola
¥ =x?, nel senso che

lim (v, (x) —-x%)=0.

xX—> 4 oo

1
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Un grafico approssimativo della soluzione per a = 1 ¢ il seguente:

>

14. (a) Per x ed y positivi si ha

X YTy 2 /XT + " =/ [max {x, y}]" = max{x, y},

e quindi

(1) T ) <

max {x, y}

Per il criterio della radice, si ha allora la convergenza della serie
per ogni (x, y) tale che
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(2) max {x,y}>1,

cioe al di fuori del quadrato 7 = {0, 1] X [0, 1]. Viceversa, per
(x, ¥) & T siha

x"+ytdny <2 +n,

quindi f (x, y) = 1/(2 + n) e la serie ¢é divergente. Allora la (2) &
condizione necessaria e sufficiente per la convergenza della serie
data.

(b) Cerchiamo ora i sottoinsiemi 4 CQ per cui sia

oo

(3) Z'szlpfn<+°°.

n=1

Dato che la convergenza totale (3) implica la convergenza unifor-
me e quindi la convergenza puntuale, occorrera anzitutto che A
sia esterno al quadrato 7. Dalla disuguaglianza (1) segue poi facil-
mente la (3) non appena esista un § > 0 per cui

4) max {x, ¥} >1+8 V(x,»)€A4,
cioé se A ha distanza positiva da 7. Viceversa, se la (4) ¢ violata

vuol dire che si puo trovare una successione di punti (x,, ¥, ) in
A tali che per h = o<

h’

(x,,¥,)~>(x,») con max {x,y}<l )

Ma allora per la continuita di f, si ha

sup f, Zsupf, (x,.y,)=f, x,¥) VneEN,

b

X, )=
[, ¥) S n

quindi non si puo avere la (3).
In conclusione si ha la (3) se e solo se vale (4).
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15. Sia f(x, ) una funzione continua tale che

a b
(1) []f(x,y)dxdy=ab Y (a, b) ER? .
9Jo

Derivando ambo i membri di (1) rispetto alla variabile q, ed uti-
lizzando il teorema di Fubini-Tonelli ¢ il teorema fondamentale
del calcolo integrale, si ha allora

b
I f(x,a)dx=>b VaER VbHER
(V]

da cui, derivando rispetto a b,
f(b,a)=1 V(a, b)ER?,

che ¢ la tesi.
Supponiamo ora che

(2) [, y)=—f0, x) Vx, ).

Eseguendo il cambiamento di variabili ¥ =y, ¥ = x si ottiene
a a a a a a

f fx, yydxdy = [ / 13, %)z dy =~ / / f& ¥ dzdy,
0 0 (0] [ (0] 0

da cui

a a
(3) 2[ f f(x,»)dxdy=0 VYa€ER,
0 Q

che € la tesi.
La (3) puo essere verificata anche da funzioni che violano (2):
ad esempio, la funzione

xy se xy<0
fx,y)=

0 se xy=0
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16.

¢ nulla nel primo e nel terzo quadrante, quindi verifica (3), ma

f,»=f, x).

Si possono dare esempi anche con funzioni il cui supporto interse-
ca questi quadranti, come

27X

y sen se y>x>0

flx, )=

0 altrimenti

Se & @ > 0, si ha infatti

a

‘I Y 27x
f <J fx ) a’x)dy =f y G sen a’x)dy =0.
o\l o o o h%

(a) La curva C & di classe C! ed ha per tangente in (x(¢y), y(¢o)) la
retta

x = x(ty) +x'(tg) (t — to)

= y(to) + () (t —t5) .

=
|

Poiché

il

x'(t)y=1+sent , »'(t)=2cos2t,
nell’intervallo [0, 2] si ha

x'(t)=0 per t =1t

»'(#)=0 per t = fy, b, 15, Iq



¢
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I punti della curva che corrispondono ai valori 0, t;, ty, t3, £, t4
e 2w del parametro ¢ sono (nell’ordine):

7 3
A= (1.1, P1=<—71—l/—,2>, P2=(-—7r+‘/ ,0),

4 2 4 2
5 V2 ) _ (3 > <7 \/'2‘>
= | — —_— =|— =f— —_—— O
Py <47r+2 ,2,P<27r,1,P4 47r 5
A'=Qr—-1,1).

Nei punti P, P,, P; e P, la tangente alla curva ¢ orizzontale, men-
tre nel punto P ¢ verticale. Si ha poi

x()>0 per t€[0,2n]\ {1}
(>0 per t€[0,¢,[ U )y, 43] U 14, 27)
Yy <o per tE€Jty,t, [ U 1ts, ta].

11 grafico della curva C ¢ allora simile a quello in figura (in partico-
lare C € un grafico cartesiano rispetto a X).

Ve \

P, X

fye)

b) La retta normale alla curva C nel punto (x(¢y), y(#,)) ha coef-
ficiente angolare uguale a x'(74)/y' (o), se & ¥'(ty) # O, dunque
le normali in A e B hanno equazioni
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1 +1 +1 T
= —— _— M =X ——
YETETS Y 2

rispettivamente.
¢) L’intersezione fra le due normali € il punto

pe 71 4-7r>
"( 37 6 )

dunque il dominio D racchiuso fra la curva C e i segmenti AP,
PB ¢ del tipo indicato in figura:

A B

T-| P T2 ’E

>?

o
s

Si ha allora
area (D) = area (D~) —area (T, UT,)

ove D e il dominio racchiuso dalla curva C e dai_ segment1 AA
AB e BB mentre T, e T, sono i due trapezi AAPP e PPBB. En-
trambi questi trapezi hanno la base maggiore uguale ad 1 e la base
minore uguale a (4 — 7)/6, mentre le loro altezze hanno somma
1 + 7/2: si ha allora

1 4 -7 m 5 w 7?
area(TIUT2)=?<l+ ><1+— =6_+___.

6 3 24




17.
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Per calcolare larea del dominio D possiamo usare la formula
seguente:

area (5) = [ ydx .
3D

Sui segmenti AZ e BB si ha x = costante, mentre su ABey= 0,
dunque la forma differenziale y dx ¢ nulla su questi tre segmenti, ¢
di conseguenza si ha

area (13)= f ydx,
r

ove I" indica I'arco della curva C di estremi A e B. Si ha dunque:

- w2
area (D)= I Y x'(t) dt =
0

/2 8 T
= (1 +sen2t)(1 +sent)dt=—+— -
o 3 2

In conclusione

(i) La funzione | ¥ — x| che compare al secondo membro dell’equa-
zione differenziale ¢ lipschitziana in y con costante di Lipschitz 1:
infatti si ha

Ny =xl— 1y, = xSy —x) =y —x)= 1y, =, I

Di conseguenza, per ogni valore di ¢, il problema di Cauchy ha una
ed una sola soluzione, definita su tutto R.

(ii) Ponendo

z(x)=yx)—-x,
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il problema dato si traduce in

!

z = |zl -1
(1)

z(0)=a
L’equazione z' = |z| — 1 ammette le due soluzioni costanti z = 1
e z = — 1, che rappresentano le soluzioni di (1) nei casi a = 1
ed a = — 1 rispettivamente. Di conseguenza ogni altra soluzione
di (1) avra un grafico che non interseca le duerettez=lez = |,

grazie al teorema di unicitad.
Cosi, se ¢ a > 1, la soluzione di (1) resta sempre maggiore di 1, e
quindi € anche soluzione dell’equazione

(2) Z’=z-1,
e analogamente se ¢ 2 < 1 si haz (x) < 1, quindi z risolve
3) Z'=—z-1.

Ora si verifica facilmente che le soluzioni di (2) e di (3) sono ri-
spettivamente le funzioni della forma

(4 zx)=1+Cye*
e
(5) z(x)= -1+ Cye*

al variare delle costanti C; ¢ (.
Utilizzando la condizione iniziale z(0) = a si trova che

(6) z(x)= 1+(@—1)¢e* se a>1

(7) z(x)= ~-1l+@a+ e *se a<l].

Resta da esaminare il caso in cui — 1 <a <'1.

Detta z_ la soluzione di (1), si ha |Za(x)| <1 per ogni x, e quindi
z;(x) = lza(x)l —~ 1 <0. Dunque z, ¢ decrescente su R, fraidue
valori
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2, = lim z;(x)=supza , &= lim 2,"1(x)=infz‘z

X — oo xX—> + oo
Ma allora da (1) si ricava

im z (x)=1¢1-1, Ilim z)(x)= 12, |-

X — —oo X— + oo

3

e quindi necessariamente (v. il teorema dell’asintoto nell’ Appen-
dice).

10, 1= 18, 1=1

In conclusione, essendo £, > £,,siha &, =1 e £, =1, cioé la
funzione z (x) decresce da 1 a — 1 quando x varia da — o a + oo .
In particolare esiste uno ed un solo punto X, per cuie

z,(x)=0,
e quindi z, ¢ della forma (4) per x < < x, (cioe dove ¢ positiva), e
della forma (S)perx=x .
Piu precisamente, se € @ > 0, deve essere X, 2 0, e quindi z ,(xX)e
data dalla (6) per x < X,, mentre per a < 0 si ha X, <0, coswche

z, (x) € data dalla (7) per x = =X, .
Allora si ha, in particolare,

log se 0<a<1

I —a

log (1 +a) se —~1<a<0.

Infine, ricavando le costanti C; e C, in (4) e (5), si trovano fa-
c11mente le espressioni di z . (%) per x = x, quando a > 0 e per

x <x, quando a < 0. :
In conclusione, ricordando la posizione iniziale y = x + z, si ha .

per a=1, yx)=x+1+@— 1e*

3

1

—a

X+1—-(1—-a)e* per x< < log

per 0<a<l, y(x)=

e~ * altrimenti ;

e
YT




[ —————
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e* per x<log(l +a)

per —1<a<0, yx)=
x -1+ (1 +a)e* altrimenti;

per as<—1, yx)=x -1+ +a)e ~ .,

(i) Per |41 < 1siha x — 1 <p(r)<x+1 e quindi lim 2 =

x> £ X

1.

L. X
Pera > 1, si ha invece lim A )=+c>o
x—= 4o X
mentre pera <— 1 lim 4 (X): oo
X > —— 00 X

Un grafico approssimativo delle soluzioni ¢ il seguente.

y=x41

y=x-1

a>1 /

Ial</ a<~—1
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18. Derivando membro a membro la prima equazione e sostituendovi
la seconda, si ricava

u" =W —au)+av’,

da cui, procedendo allo stesso modo, si perviene alla seguente
equazione del quarto ordine nella sola incognita u:

(D) u —u" +a*u=0.

Fra le soluzioni di (1) vi sono le esponenziali (complesse)
u(x)=e |

dove A € una radice (complessa) dell’equazione

(2) M -\ +a2=0.

Queste esponenziali sono tutte periodiche se e solo se (2) ha solo
radici immaginarie pure (cioe A =ib, con b € R). Se a # 0, I'equa-
zione (2) non ha radici immaginarie, perché

(ib)* — (ib)? +a* =b* + b2 +42>0.

Se a = 0, ’equazione (1) ha come soluzioni tutti i polinomi di
primo grado, che non sono periodici se non sono costanti.

In conclusione, non ¢ possibile trovare alcun valore reale del para-
metro a per il quale tutte le soluzioni del sistema siano periodiche.

(ii) Cominciamo col caso a # 0. Se N > 1 ¢ il grado di un poli-
nomio, la sua derivata ha grado N — 1.

Sia (u, v) una soluzione polinomiale del sistema, e sia NV il grado di
u. Dall’equazione

v'=u'—au

segue che v'' ha grado N, quindi v ha grado N + 2. Ma dall’altra
equazione si ottiene che "' ha grado N + 2, quindi u ha grado
N + 4, assurdo. Il caso a = 0 ¢ analogo .
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19.

20.

(i) La funzione |y!+ x2, che compare al secondo membro della
equazione differenziale (*), & chiaramente lipschitziana in y, con
costante di Lipschitz uguale ad L. Pertanto le soluzioni di (*) sono
definite su tutto R. Si ha poi, se ¥(x) € una di tali soluzioni,

y'(x)>0 Vx#0,

cosicché ¥ (x) ¢ una funzione strettamente crescente su R. In parti-
colare, se ¥, ¢ 1a soluzione che si annulla nel punto x = a, si avra

ya(x)<0 per x <a , ya(x)>0 per x>a.

Di conseguenza y, risolve le equazioni lineari

y'=—y+x? per x<a, V' =y+x? perx=>a,
e quindi con facili calcoli si trova

(x? —2x +2) — (@ —2a+2)e " per x<a

v, (x)=
—(x* 4+2x+2)+ (@ +2a+2)e* 7% per x=a.

(ii) Come si € visto, ogni soluzione di (*) € crescente su R.

Da (*) si ricava poi, per ogni soluzione y (x),

lim Y'(x)= HT y'(x)=+ o0,

X — — 00
e quindi necessariamente

Iim yx)=—0o, lim y(x)=+0c .

x—>—o° x— + o

Allora esiste uno (ed un solo) numero reale a per cui ¥(@)=0. In
altre parole y (x) € del tipo individuato in (i).

Indicata con K I'unione del paraboloide {z = x? + p? 3 edelsuo
simmetrico {z < — x* — »? }, il solido K (s, 1) ¢ la parte di K com-

[
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presa fra i piani z =5 e z = f. La sezione di K(s, t) all’altezza z ¢
un cerchio di raggio+/| z| , dunque il volume di K (s, t) ¢

' _7T t—ﬂ. 2 2
ﬂlzldz—g[zlzl]s—?(t +5%) |

Vs, t)= J

S

La superficie laterale S(s, ¢) ¢ uguale a S(0, r) + S(0, — s). Dato
che K(O, t) € generato dalla r9_.tazione intorno all’asse z del do-
minio {(x,z2) ER? : 0<x <\/T,x* <z<t},siha

t

5(0,1) = j 2mx/T ¥ () dx=%[(\/1 Ta) - 1)

0

e quindi

S, l‘)=-g— (WTFa0® +/T-45° -2] .

Di questa funzone dobbiamo cercare massimo ¢ minimo sulla
varietd {(s, £) : s <0 <1, V(x, 1)=1}.
Applicando il metodo dai moltiplicatori di Lagrange si ottiene

VIit+dr = 2Nt
| -4s5 = —22As
2
s2 + 2 = =
T
s<O<t
dacuiN# 0et=—s=—=. L’unico punto stazionario ¢é

NG

77

Sul bordo della varieta si ha




82 Risoluzioni dei problemi

21.

che € minore di

s 1 1 > _m N 4 \? .
VT T3 N
La massima superficie laterale si ha dunque per — s =¢ =

mentre il minimo non esiste: ¢’¢ solo 'estremo inferiore
2
S0, {/— ).
T

Essendo

fn (x'y):en Iyl enxz(ex+ ly I)n ,

la serie converge in un punto (x, y) se e solose exp(x + |y ) <1,
cioé per

x+ ly|<0.
Studiamo ora la convergenza uniforme su un generico insieme

A CR?,
Supponiamo dapprima che

(D sup (x+ lyh=-86<0.
(x,y)eA4

Si ha allora

£, ) <(e®)"  V(xy)EA,

e quindi la convergenza su A € uniforme, anzi totale.
Viceversa, supponiamo che (1) sia violata. Si ha allora, grazie al




22.
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fatto che la funzione esponenziale ¢ crescente,

sup  f (x,y)=exp[n sup (x+Iyh]Ze® =1,
(x,y)EA x,y)€4

e quindi non pud aversi convergenza uniforme su A, perché
questa comporta in particolare la convergenza a zero della succes-
sione (sup f, ).

A

In conclusione la (1) € condizione necessaria e sufficiente per la
convergenza uniforme su A.

- Per ogni fissato (x, y) consideriamo la funzione

g)=f(tx, ty);

tale funzione risulta di classe C! e si ha
g'(t)=xf, (tx, ty) +yf, (&, 1y) .

Essendo g(0)=£(0, 0) =0, si puo scrivere

1

f(x,y)=g(1)=j g(t)dt=xA(x,y) +yB(x,y),

0

dove

1 1
A(x,y)=j f(tx, tp)dt, B(x,y)= f £, (tx, ty) dt.
0

0

Le funzioni 4 e B sono continue in quanto fx ed /. sono continue,
e quindi siano nelle condizioni di applicare il seguente ben noto
teorema: se Y (¢, z) € una funzione continua su {a, #] X £ con
 aperto di R¥, allora la funzione

b
0(z)= f Y(t, 2)dt

¢ continua su £2 .
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23. Osserviamo subito che si tratta di una equazione differenziale non

in forma normale.
Sia y(x), una sua soluzione C!, definita in un intervallo 7 e tale che
y(x) > 0 per ogni x. Poiché é

O -x)0'+xy)=0,

in ogni punto x € [ st deve avere

(1) y'(x)y=x
oppure
(2) y'(x)=—-xy(x).

Dato che x e — xy(x) hanno segno opposto se x # 0, in ogni pun-
to di 7\ O} ¢ verificata una sola tra (1) e (2). Sia dunque x, €
eI\ {0 }, e per fissare le idee supponiamo x4 > 0. Se in x, € veri-
ficata (1) si ha y'(x,) > 0, se ¢ verificata (2) allora y'(x,) < 0.
Ma y’ ¢ continua, e non pud annullarsi altro che per x = 0, pertan-
to ha segno costante su / N {x >0 }: cio significa che la stessa
equazione verificata in x, deve essere verificata in tutto
1N {x>0}.

Analoghe considerazioni mostrano che in tutto I N {x < 0} &
verificata una sola tra (1) e (2).

Le soluzioni positive di (1) sono le funzioni

2

(3) y(x)=A——)*Cz~— . IxI</ZA

con A > 0, mentre quelle di (2) sono le funzioni

(4) y(x) =Be* 2

conB>0.

Le soluzioni dell’equazione di partenza saranno allora le funzioni
del tipo (3) e del tipo (4), e inoltre tutte quelle funzioni di classe
C! che si ottengono raccordando in x = 0 funzioni del tipo (3)
con funzioni del tipo (4).

Perché il raccordo sia una funzione continua, occorre che sia
A = B. La derivata risulta automaticamente continua anche in
x =0, perché & nulla sia per funzioni di tipo (3) che di tipo (4).
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In conclusione, per un dato punto (xq, ¥o) con ¥4 > 0 passano
4 soluzioni di classe C! : due sono

2

X U,
J’1(x):A0_T per|x|<\/2A0 )
Va(x)=By /2 )

2
X
ove A, =T°+y0 e By, =Yy e~ *3/2 Le altre due, per xo == 0 sono

Ag <12 per x <0
yix) =
x2
AO*T per 0<x<y/24,
%2
BO__2_ per —+/ ZBO <x<0
Valx) =
By e 12 per x>0 ,

mentre per x, < 0 sono

x .
AO—‘Z— per —+/24, <x<0
y3(x) =
Ages’ 12 per x>0
By e¥ /? per x <0
Ya(x) = 5
Bo—xz— per 0<x <y/2B,.

Le quattro soluzioni sono indicate in figura, nel caso xo <0 .
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y—Bexz/2

Yo
y=A—X2/2

Xo X

24. (a) Posto

z

¢(z)=I et dt,

0

si ha f(x, y) = ¢(¥) — ¢(x). La funzione ¢ & di classe C* , dunque
lo € anche f. Si ha inoltre

max(x,y) + o
If(x,y)i=f e~ dt< f e~ dt=\/T,
min(x,y) — o
te 2 ro—
1) lim f(n,—n)=—] e dt =—\/7
n—+ ®
+ oo R
) lim  f(- n,n)=f e " dt =T
n-—> 4 o e

[ e EEE—
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L’estremo superiore e 'estremo inferiore di f sono allora /7 e
NG Y
—/T.

(b) Dato che Df(x,y) = (— e=* e~ yz) non & mai nullo, i punti
di massimo e minimo per f si trovano sul bordo I' del cerchio.
Cominciamo con il massimo. Scelto (x, y) € I,se x > 0 allora
(x, y) non pud essere di massimo, in quanto (— x, y)&€ e

F=x )=o) —0(=x) > o) —0x)=f(x, ),

per la crescenza di ¢. Possiamo allora limitarci a considerare i punti
di I' per cui x < 0. Se ora ¢ y <0, come prima si ottiene f(x,—y)>
> f(x,y). 1l punto di massimo si trova quindi sull’arco ' N {x <0,
y=20 }: questo puo essere parametrizzato come

T
{(cosO,sen@) : 7<0 <7r} .
Ora,

d 1 2
(3) —C—Z?f(cos f,sen §)=— (e~ %" % sen B + &% ¢ cosf)

¢ dobbiamo trovare per quali valori di 6 tale derivata si annulla,

s
sempre nell’intervallo ? m|. Osservato che cid non accade

. . - 2
per 6 = , possiamo dividere per e”°s" ¢ cos 6 ottenendo la

w|=1

condizione
tg 0 + €920 =0 |

37
Questa equazione ¢ soddisfatta per 6 = 7 e la funzione tg 6 +

2 . , . . . .
+ ¢°"% ¢ crescente (perché somma di funzioni crescenti) su

T 3w
[—, m|, dunque 8 = T ¢ l'unico zero della derivata (3): il

2
7 V2
punto di massimo cercato € allora <—— —\-/i—- , l-/2-— )-Per quanto ri-
guarda il minimo, basta notare che f(x, y) = —f(», x), dunque
minf=f<' —\/z>:wmaxf.

2 2
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25.

(c) 11 limite non esiste, come si ricava da (1), (2). Altre dimostra-
zioni (piu rapide) del punto (b) si possono ottenere con il metodo
dei moltiplicatori di Lagrange oppure sfruttando la concavita di
f sul secondo quadrante e la sua simmetria rispetto alla retta
x+y=0.

Anzitutto si vede immediatamente che la serie converge in ogni
punto delle tre rette

So={r=0} . S,={r=r} . 8, ={p=2r].

Inoltre, scrivendo la serie nella forma sen y Z x"  si vede che
n

essa converge anche in ogni punto del rettangolo

Q={0<x<1, 0<y<2nm}

3

mentre diverge perx > 1 se y & {0, w2 }
In conclusione l'insieme dei punti di convergenza della serie &
Pinsieme

B=3S, USTr US” uQ,
e la somma della serie € la funzione

0 se y&e{0,m 27}
fx,y)=

sen y ) )
—_— altrimenti
1l -x

Per quanto riguarda la convergenza uniforme si constata facilmen-
te che essa ha luogo su ogni insieme A tale che per qualche § €
€10, 1[ risulti

(1) ACS,US_US, UQ, .

dove
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Q, =10,1 — 6] X[0,27] .
Infatti per un tale insieme A si ha

sup  Ix" seny|<(1 —8)"
x,y)€A4

e quindi si ha convergenza totale in A.
D’altro canto, la serie non converge uniformemente sull’intero

insieme B, perché in tal caso essa convergerebbe anche su B\B, che
non € vuoto.

Non ¢ facile individuare tutti gli A CB sui quali la serie converge
uniformemente. In ogni caso ve ne sono altri, oltre a quelli che ve-
rificano (1): ad esempio la serie converge uniformemente sull’insie-
me

C={(x,»):0<x<1, 0<y<arcsen(l —x)* } .

Infatti se (x, ¥) € C si ha (con qualche calcolo)

B " 2 n 2 2 4
x"seny <x"(1 —x)?<(1— < —
n+2 n+2 (n + 2)?

dunque la serie converge totalmente sull’insieme C, rappresentato
in figura:

R <
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26. (a) Dire che f(¢, x) ¢ separatamente continua su [0, 1] X [0, 1]
significa dire che le funzioni

(1) x = f, (x) per t€[0,1] fissato

(2) t l—>ft (x) per x &[0, 1] fissato

sono entrambe continue su {0, 1]. Ora, la continuita della funzione
(1) non ¢ altro che la continuita di f,, mentre la continuita della

(2)in t =1, siesprime dicendo che

fo @)= f, ) st 21,

Dunque ’equivalenza proposta nel punto (a) € ovvia.

(b) Se f ¢ continua su [0, 1] X [0, 1] essa & anche uniformemente
continua, cioé Ve >0 38 > 0 per cui

(3) [FE", x"Y—f, xH<e per |t'—1t]+1x"-—x"|<6§.

Sia ora (¢,) C [0, 1] tale che #, — ¢, per n = oo ; per ogni 6 >0
esistera allora 77 per cui

It —tyl<8  Vnma
Dalla (3), cont"' =t _, t'=t, e x"" =x' =x, siricava allora
|f,n(x) =1, )= 1f(,, x) —fte, x)| e
per ogni n 2 n ed ogni x € [0, 1]. Cid mostra che

(4) f: —+ft uniformemente su [0, 1] .

Viceversa, supponiamo che valga (4) per ognif, =, e che le fun-
zioni f, siano tutte continue.
Per ogni successione (¢, x, ) € [0, 1] X [0, 1] tale che

(¢, x,) > (o, Xo) per n—>oo,




27.
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si ha
V(2,0 %,) = F(to, Xo N<IS(2,. %, ) —f(to, x,) 1+ If (tg, x ) —
—f(to, x0)I< sup | f, (x) =f, I+ 1f, x,)—f, (xo)].
x€[0,1] n 0 0 [

Ora, entrambi gli addendi di quest’ultimo termine sono infinitesi-
mi per n = oo dunque f risulta globalmente continua su [0, 11X
X 10, 1].

Indichiamo con 7 il piano dato e con r(x, ¥, z) la funzione x2? +
+y? +22.8e(x,y, z)E7nsiha

2y, z)+r(x, y,z2)=(x+y +2)2=9

9 1
ciog f(x, y, z)= 5— - —z—r(x, ¥, z), e quindi

9 1

=———infr ,
sup /=7 5in
€ analogamente
inf 9 1
=-———3upr .
ST T

Osserviamo che sup 7 = + oo | perché (n, — n, 3) € m per ogni n,
™

quindi P'estremo inferiore di f (che naturalmente non & un mini-
mo) € — oo,
Per calcolare inf r, osserviamo che per la disuguaglianza

"

(D <i xi>2<ni xl.2

sthasunw
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28.

9=(x+y+2)?2<3r(x,y 2),

quindi

inffr=3.

e

La disuguaglianza (1) diviene un’uguaglianza solo se X =...=X ;
essendo (1, 1, 1) €, si ha allora

minr=r(1,1,1)=3,

dunque

max f=3
w

¢ il punto (1, 1, 1) € l'unico in cui tale estremo viene raggiunto.

1
Per ogni (x, ¥) €D si ha y > 2x? e x = — , quindi il dominio D

¢ contenuto nel quadrante aperto Q = {x >0,y>0 } Vista la
struttura di D, eseguiamo il cambiamento di coordinate

(1) —=& , xy=n.

Detta @ : (x, ¥)t> (¢, ) la trasformazione definita da (1), si vede
subito che

1 1 1
= ER? . —<Ef<—,—<n<1} .
eD)={,MER : <E< =, 5 <7 }
Inoltre ® ¢é invertibile su Q ¢
2x/y —x*/y
3x?
|J® (x, y)=det = ) ;
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da cui

] ) I 1
e =T e T e T 3e

In conclusione

ﬂo );2 e dxdy = IL(D)Se” lJ &2 n)ldedn =

12 -1 en —
= f U -—dn] dE:e__\/_? .
173 [J 12 3 18

29. Possiamo supporre | 2| < 1/2, di modo che i punti (24, e~ 1/n*y
(h, e """ ) appartengono al quadrato Q =~ 1, 1P X[—-1,1].
Sia poi M > 0 tale che

ox x, M, 3y (x,y),\M Vix,y)€0.

Applicando il teorema di Lagrange si ha

of

(D) 1f@h e ) = f2h, 0)l=e™ 1| == (2, g,)| <BeHI,
y

e analogamente

(2) lf(h, e*‘l/k’)“f(h, O)I<M€_1/h2

Ricordando che

da (1) e (2) siricava

bl
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i LR e YRTY _2f(h, e "y +£(0,0)
h1—>n}) h? B

f(2h 0) —2f(h, 0) +/(0, 0)

=0 h?

Applicando due volte il teorema dell’Hépital si ha

F(2h, 0) = 2f(h, 0) + f(O, O):

hlirr(l) h?

0 0

2—‘L (24, 0) <~2~L(h, 0)

1 ax ox _
"ot 2h

aZf a2f aZf‘
= lim |2 20, 0) — B, 0)] = 0,0) .

h—r»r:) [ dx? (24, 0) dx? ( )} dx? 0,0

30. (a) La funzione f(x, y) che compare al secondo membro dell’equa-
zione ¢ definita ed € di classe C! nell’insieme A = {(x, y):x? +
+ y? # l}, cioé nel piano privato della circonferenza unitaria.
Ne segue che f ¢ localmente lipschitziana rispetto ad y nell’in-
sieme A, quindi per ogni (xq, Vo) € 4 la soluizone del problema
dato iesiste ed ¢ unica in un intorno di x;.

(b) Siccome il punto (0, 0) sta all’interno del cerchio unitario,
cioé appartiene all’insieme

A ={x? +y2 <1}

dove f € negativa, la soluzione del problema rimane tutta all’inter-
no di A" ed ¢ decrescente, Indicando con Ja, &( I'intervallo massi-
male di esistenza di questa soluzione y(x), cominciamo col dimo-
strare che a = — b, provando che y(x) ¢ dispari.

Infatti la funzione z(x) = — ¥ (— x) verifica la condizione iniziale
z(0) =0, e inoltre

ZX) =Y (= x)=f(x y(=xX)N=F(x, — y(=x))=F(x, 2(x)) ;
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di conseguenza z(x) ¢ un’altra soluzione del problema, ¢ quindi
y(x)=z(x) per il teorema di unicitd,_cioé ¥ (x) ¢ dispari.

Ci rimane solo da provare che b <y/2/2.

Osserviamo che f(x, ) < — 1 su AN\ {(O, 0) }, pertanto y'(x) < — 1
in ]0, b[ , quindi, integrando tra O e x, si ottiene y(x) < — x per
x €10, b[, eanche

(N lim y(x)<-b.

x—=>b
D’altra parte la soluzione non esce dal cerchio unitario, dunque
Yy(x)>—/1T-x2 Vxe[o,b] ,
da cui
lim y(x)= —\/1_~7 .

x—=b"
Confrontaﬂdo questa disuguaglianza con la (1) si ottiene subito
che b < /2/2.
Un grafico approssimativo della soluzione ¢ il seguente:

y ]

]

b V2/2




]
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(c) Quando x4 > 1 ¢ Yo <-—1,il punto (xg, ¥p) si trova all’ester-
no del cerchio unitario, cioé nell’insieme 4* = {x2 + 3?2 > 1 }, e
quindi la soluzione y(x) rimane sempre in A*. Allora y(x) ¢ cre-
scente, e in particolare sta sempre all’esterno dell’insieme

B={(x,y):x<xo,y>yo} .

Su R?\B si ha poi

1 |
0<f(x,y)= <
fx,») \/m_ 1 max(x,, — Vo) - 1

=M<+,

cosicché la funzione »'(x) si mantiene limitata.
Ma allora, per il teorema di esistenza globale (v. Appendice) l'in-
tervallo di definizione di v (x) ¢ tutto R.

31. La curva ¢ simmetrica rispetto al piano {z = O}, al quale appartie-
ne anche il punto (0, 1, 0), dunque possiamo limitarci a conside-
rare la parte y dicurvain cuié z > Q.
La seconda equazione data & quella di un cilindro la cuj sezione sul

1 1
piano {Z=0} ¢ la circonferenza di centro <? , 0, O) e raggio ? :

Posto dunque

1 1
x=7+—é—cost, y=?sent,

usando la prima equazione data si ricava

t\)lt—-

(1 —cost).

™8

La parte v della curva si parametrizza allora con

1 1 1
x=:)-(1+cost), y=—7—senr, z=T(l“cost), 0<t<27.

Per ogni punto di 7y si ha

dist [(x, ¥, 2),(0, 1, )] =/x> + (y = )2 27 =

O




Risoluzioni dei problemi 97

=S/(x*+yT ) -2y +1=/2-2y,
dunque le minime e massime distanze cercate sono

miny/2 — 2y = min /2 —sent=1
Y [0,27]

max+/2 — 2y = max /2 —senf =/3 .
Y

[0,27]

32. La funzione integranda

e~
X, B —
plx, ¥) =7 g

¢ continua, dunque per un noto teorema (vedi esercizio 22) anche
f,, risulta continua su R.

(b) Osserviamo che l'integrando & positiivo, quindi lim fn(x)

n—
esiste.
Per x <0, si ha lim ¢(x, )=+ o e quindi anche lim fn(x) =
y—>+°e n—>
+ oo,
. . . 1
Se invece € x 2 0, si ha p(x, y) < 5 » dunque
1+y

. . ady m

lim f (x) < lim — =

n—oe n-> oo I+ 4

cio¢ la successione (fn (x)) converge. La convergenza € poi unifor-
me su tutta la semiretta [0, + oo {, in quanto per x 2 0 si ha

. e e dy
|f,(x) — lim f,,(x)|=f p(x, y)dy < ] —— =
n— o 1+y
n n
s
=—2——arctgn,

e quest’ultima quantita € infinitesima per n — oo ,
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33. (a) Mediante la sostituzione z(x) =y (x) — x, ci si riporta all’equa-
zione

(1) Z'(x)=z(x) [z (x) - 2]

Questa ha ovviamente le soluzioni costanti z = 0 quando A=0 e
z = 2 quando A = 2. Inoltre, per il teorema di unicita, se e A% 0 e
A# 2sihaz(x)# 0ez(x)+ 2 per ogni x, dunque nella (1) si pud
dividere per z(z — 2) e separare le variabili:

ZI

—— = 1 .
z(z —2)
Integrando fra O e x siricava

O dt
LZUHMH—M

cio€, ricordando che z(Q) =\,

) dz
| e
\ z(z - 2)
ovvero (con facili calcoli)
( 2
Z e
*) A—2
1 - e

Ritornando a y si ha I’espressione esplicita

2) e
ex
A

1_

che per A =1 diventa

o
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3

x)y=x+—75—
e questa funzione ¢ chiaramente definita su tutto R.
Per il teorema di unicita, la parte (a) € provata.

(b) Quando A = 0 o A = 2 le soluzioni sono yy(x) =x e y,(x) =
=x -+ 2, che non sono limitate.
See 0<A<2,sihada (2)che b € definitasu Re

x<y. (x)<x+2 Vx,
A

per il teorema di unicita, dunque y, non ¢ Jimitata.
~ Se A> 2 si hache

A2 1
— % = x<—1 ,
1+ X e* >0 X 7 og N
e . 1
pertanto y, ¢ definita sulla semiretta ]— oo, —2— log ) [e non
1 A\
¢ limitata perché tende a + o per x = | — log .
2 A2
. . . .. 1 A=2
Se A > 0, si ha poi che y, ¢ definita per x > — 5 log N e

non ¢ limitata. ,
In conclusione, il problema non ha mai soluzioni limitate.
Un grafico approssimativo delle soluzioni é il seguente:

y

y=x

/ x
b<i<2
i<0
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_ - of . .
34. Fissiamo (x,, ¥4) € R%. La condizione su S5y ci assicura I’esisten-
Y

za su tutto R della soluzione y (x) del problema di Cauchy

y'=fx,p)

Y(xo)=¥o

Per ipotesi y(x) & T periodica. quindi anche la sua derivata y'(x)
lo ¢. In particolare si ha

f(xq., J"o):y'(xo):y’(xo +D)=fxo +T,¥(xe +T)) =

=f(xo + T, y(xg))=f(x, +7,¥4),

il che, al variare di (x,, ), mostra che f(x, ¥) & T-periodica inx,
per ogni y.

I viceversa non ¢ vero: ad esempio se f(x, ¥)=1 le soluzioni di
(*) sono le funzioni y (x) =ax + b.

Per il teorema di derivazione sotto segno di integrale si ha

of y
—a——(x,y)=j e'dt=0 Vy=1 Vx€ER.
X
1

Per il teorema fondamentale del calcolo integrale si ha poi

of exy
3y (x, )=

=0 V>0 Vx€ER.

3

Ne segue che f ¢ crescente in ambedue le variabili, per cui

2t

2
maxf =f(2,2)= [
A

dt, minf=f(1,1)=0 .
1 4

36. Poniamo

s ——
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px tqy rx +sy
X, = — ) _x’ = ————
flx, ) 22 g(x, ») 12
Affinché la forma w = fdx + gdy sia esatta accorre anzitutto
che sia chiusa, cio¢ che

| =Ly  VEEOO
_ y=—(Xx, ¥ , s .
(D) 3y (x, ¥ ox y
II;Q/ < ;\7:
Dato che 2( S ‘?\}
of _ gx* - 2pxy — qy* 0g —rx? —2sxy +ry? LRSS
dy (x2 +y?)? S (x2+ y2)? ’

per il principio di identita dei polinomi la condizione (1) equi-
vale a

(2) gy=—r , P=s.

D’altra parte, w ¢ esatta su un aperto £ C R? se e solo se

(3) jw=0 VT curvachiusa, I'C § .
T

Questa condizione & certamente verificata se w € chiusa e I'=9D
conD C £2.

In conclusione, se vale (2), la forma w ¢ esatta se ¢ solo se (3)
¢ verificata per qualche curva I' = 8D con D dominio contenen-
te Vorigine, ad esempio per la circonferenza

I={(cost,sen): 0<t<2m}

Con tale scelta di I" si ha

27
f w= I [(p cost —Fsent) (—sent) +
r 0

+ (rcost + p sent) cost]dt=2mr* |
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ovvero la (3) diventa

r=0.
In conclusione, w € esatta se e solo se

4 q=r=0, p=s.

(5) —=f, ——=g in RE\{(0,0)}.

Dalla prima delle (5) segue (usando (4))

X X pt
w(x,y)=[ f(t,y)dt+¢>(y)=f FaEdtte0)=
0 0

=Z—log(x2 +3) +00)

dalla seconda delle (5) segue allora

Py ) by
—_— 4 =—
x2 + p? ¢ ) x? + p?

cioe ¢'(3)=0.
In conclusione le primitive di «w sono le funzioni

v (x, y)=§— log(x? +y2)+C.

37. Postoz(x)=y(x)— x, il problema dato si traduce in
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Per tale problema esiste certamente una ed una sola soluzione
z(x), definita su un intervalio I: infatti la funzione z = z3 — 1
¢ di classe C! (e quindi localmente lipschitziana).

Supponiamo che [/ sia lintervallo massimale di esistenza di tale
soluzione, e poniamo

£=inf 1,
proveremo che § = — oo,
A questo proposito osserviamo che la costante 1 € una soluzione

dellequazione z' = z3 — 1, e che z(0) < 1, dunque per il teorema
di unicita locale dovra essere

z(x) <1 Vxe&r,
e quindi

zZ'(x)=2z3(x) - 1<0 Vx€Ir.

Dunque z(x) € decrescente su / ed € minore di 1, quindi esiste
finito il numero

A=lim z(x).

x—>£

Se per assurdo § fosse un numero reale, risolvendo localmente il
problema di Cauchy

z(§) =X

si potrebbe prolungare in modo C! la soluzione z (x) in un intorno
sinistro di &, contro I'ipotesi di massimalita di /. Dunque neces-
sariamente

inf/=—o0,

Essendoz® — 1+#0,da(1)siha

z(x) dz X
_— dt'
[o 22— 1 [0
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da cui, con qualche calcolo, si ricava

! 1-z % 241 71y/3
1 — log — e — tg o + -
) 3 Al 3 RT3 18

La soluzione in forma implicita si ottiene sostituendo y(x) — x al
posto di z. Da (1) si ricava pure che l'intervallo di definizione /
é

[=]—oo _2_77_\./_3_

’ 9 [ °

(a) Fissato arbitrariamente un punto (x, y) € 38 si ha, per ogni
(x,y)EBedognifel,
LG =170 p) =G MIISL X, ») — (X, )I<2L

e quindi, essendo mis (B) =1 ,

<2nl.

ﬂ fx, y)ydxdy
B

(b) Data la simmetria del dominio B, € naturale cercare la funzione
f tra quelle radiali, cioé del tipo

(1) fe=fle) , 0<p<I,
dove come di consueto si € posto
P =\/x—2+_y2= [(x, I .
Usando la disuguaglianza triangolare
| e, y1) = g, )2 LGy, y )= 1y, y)

si vede subito che una funzione f del tipo (1) appartiene alla classe
L se e solo se

=~
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1fle)=Flp)ISL lpy —p, | Vg, p, €10,1]
f(1)=0

Fra tutte le funzioni fche verificano tali condizioni, la pit grande
€ fo(p) =L (1 — p), alla quale corrisponde la funzione

folt, »)=L (1 —/x% +32).

Passando a coordinate polari si ottiene

1
~ Tr
ﬂ Jolx, y)dxdy =2n f To)pdp=L—,
B 0
dunque f,, verifica la proprieta richiesta.

(¢) Usando le stesse notazioni del punto (b), si vede che per ogni
fE€Ledogni(x, y)EB\{(0,0)}

X y
f(x, »)I=1f(x, ¥) —~f<—,—)l<L (1 -p).
p P

Per la continuita di f, tale disuguaglianza vale anche in (0, 0). In
altri termini, ogni funzione della classe £ ¢ maggiorata dalla fun-
zione f,. Di conseguenza

v
[ fa’xdyl</ fodxdy=—1L.
B B 3

Notiamo che le funzioni lipschitziane sono in particolare continue,
€ per ogni f continua si ha che

f<fy = f faxdy < fydxdy.
B B

a meno che f coincida con f, su B. Allora possiamo dire che 5o
€ l'unica funzione della classe £ che verifica la proprieta richiesta
nel punto (b).
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39.

Per a = 0 linsieme D(a) si riduce al solo punto {(O, 0) }, ed ha
quindi area nulla.
Per a > 0 é conveniente eseguire il cambiamento di variabili

vVX=at , /y=an.

Infatti @ : (x, ) (¢ 7n) ¢ un diffeomorfismo fra D (a) e I'insieme

D={(tmMER? : §+0<4,n>3,£2>0,1>0},

con
|7 @7 (& m)|=4a%§n,

cosicché si ha

area [D(a)]=// 1a’xdy=//~ 4a*tndtdn .
D(a) D

L’insieme D puo essere rappresentato cosi:

Usando il teorema di Fubini - Tonelli si ottiene allora

R 2 9
area [D(a)] = 44* I g(j ndn>a’$=4a4 <T——2—10g3>.
1 3/

I —
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41.
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In particolare,

&8
max area [D(a)] = area [D(l)=T— 18 log 3.

0<axl1

Per x = O tutti i termini della serie sono nulli.
Se & x > 0 la serie si puo scrivere x £ n~*, ed é ben noto che la

1
serie armonica Z —;— converge per x > 1, diverge per x < 1.
n

In conclusione, la serie data converge in {O} U]l,+eo[.Sedé
un insieme di convergenza uniforme, la serie converge puntualmen-
te nell’insieme A4 dei punti di aderenza di A, pertanto x = 1 non
puo essere di aderenza per A : cid implica che

(1) AC {0} U1+ +oo[ perqualches>0.

Viceversa, se A4 soddisfa questa condizione, la serie converge uni-
formemente su A. Infatti la funzione f (x) = xn~* ha come

derivata

— X logn

' 1
fl)=———
n

che € negativa su ] 1, + oo [ non appena log n > e, cioé per n = 3.
Dunque, per n = 3, se A verifica (1) si ha

sup [/, | <1, (1 +8),

¢ quindi dalla convergenza puntuale della serie in x =1 + & segue
la convergenza totale su 4.

La funzione f(x, y) = |y| — x? ¢ lipschitziana rispetto ad y con
costante di Lipschitz 1, dunque il problema ammette una ed una
sola soluzione y (x), che € definita su tutto R.

Osserviamo che la funzijone ¥(x) = — y(— x) ¢ pure soluzione del

problema, e che ¥(0) = y(0). Allora, grazie al teorema di unicitd,
si ha ¥(x) = y(x), cioé la soluzione y(x) ¢ una funzione dispari,
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e quindi é sufficiente determinarla su [0, + oo [ . Notiamo ora che
¢

Y <iyel,
mentre la costante z(x) = O risolve ’equazione
Z'(x)=1z ()I.

Inoltre z (0) = ¥ (0). Applicando il teoremda di confronto (v. Appen-
dice) si ha allora y (x) <z (x) per x = 0, cioé

yx)<o Vx=0.
Da cio segue che y (x) € la soluzione di
Y(x)=—yx)—x* per x=0
y(0)=0

da cui, con facili calcoli, si trova ’espressione esplicita

y(x)=2e* —x?24+2x -2 per x=0,
mentre (ricordando che y (¢) ¢ dispari) si ha

y(x)=—2¢ +x* +2x+2 per x<0.

42. Fra i due fatti non intercorre, in generale, alcuna relazione: si
possono infatti trovare delle funzioni che verificano (a) ma non

(b), e delle funzioni che verificano (b) ma non (a).
Ad esempio la funzione

1 se x=0

gx)=
-1 se x<O0

non ¢ holderiana, in quanto non € neppure continua, mentre la

e —
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funzione g2 (x) € ovviamente lipschitziana.
Invece, la funzione

h(x)=14++/Ix

1
¢ holderiana di esponente -2—, in quanto lo € la funzione /| x|,

mentre la funzione A%2(x) =1 + x + 2\/m non ¢ lipschitziana,
perché in tal caso lo sarebbe anche la funzione 2 +/|x]| (diffe-
renza delle due funzioni lipschitziane A% (x) e 1 + x).

Per (x, ¥) = (0, 0) si ha fn (x, ¥) = 0 per ogni n; d’altra parte, es-
sendo
(6, ) = =Y
x’ ; = - ,
falx. ) 277" +n(x? +y?)
si vede facilmente che f (x, y) > 0 anche per (x, ) # (0, 0).
In conclusione si ha
lim f (x,y)=0 V(x,»).
n— oo
Per quanto riguarda la convergenza uniforme, possiamo intanto
escludere che essa abbia luogo su tutto R2. Infatti scegliendo
(ad esempio)
x =y, = 1/n
si ottiene
f( ) 1
X ) .}" = )
n n n 2(n 27 n + 2)
e quindi

lim sup |f |= lim f (x ¥, )= 1/4 .

n—r o

Non ¢ facile dire esattamente per quali insiemi 4 CR? la conver-
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genza ¢ unitorme. Una famiglia di insiemi per cui c¢io si verifica ¢
quella degli A tali che

(D) A C R*\B, per qualche &6>0,
dove B, ¢ la palla {x2 +y2 <82 } Infatti, si ha

(2) |x +y| </2+/%% +32

e quindi, posto p =+/x% + %, se A ¢ del tipo (1) si ottiene per
ogni(x, y) €A

VT _ VI VT

“n4pp? np®  né

3

1S, e I 3

cosicché si ha
lim sup|f I=0.

n—eo A

Naturalmente gli insiemi 4 del tipo (1) non sono i soli su cui la
convergenza ¢ uniforme: basta osservare che abbiamo in realta
usato solo (2), quindi un’altra condizione sufficiente ¢ che per
qualche C>0

(3) ix+y|<C\/x2 +37 Y(x,y)EA.

Un insieme del tipo (3), con C =\/7, ¢ rappresentato in figura.

i
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44. Passando in coordinate polari si ha

area (D) = //pdpd@ )
D

~ T
D={O<6<—é—, p=0, p® <4p* cos26sen26}=

Allora

area (D)= 5

O —

w2 sen 20 /2 sen2 286
<I pdp>d0= / —di=
0 0

1 I” ztdt‘—l' t—sentcost |7 w
- Ose” 4 2 , 8

45. Indichiamo con f(x, y) il secondo membro dell’equazione, ¢ po-
niamo ¢(x) = 1/(1 + x?). Osserviamo che f si annulla per y =
+ p(x), & positiva per |y| < ¢(x) e negativa altrove. Osserviamo
poi che la funzione z(x)= 0 verifica

z(0)=0<a, zZ'(x)<f(x,z(x)),

pertanto se ¥, (x) : [0, X[ = R risolve il problema di Cauchy con
a=>0siha

zx)<y,(x) VYx€[0,Al,

cioé Y, (x) & non negativa. Inoltre si ha
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Y =fx v, N <[p) <1 ¥xE[O, A

quindi, integrando su [0, x] ,
0<ya(x)<a+x Vxe[0,A[.

Allora per il teorema di esistenza globale tutte le soluzioni possono
essere estese alla semiretta [0, + oo [.

Cominciamo a supporre 0 < a < 1. La funzione ¢(x) ¢ decre-
scente, mentre y, (x) € crescente finché y, (x) < p(x); inoltre

lim ¢Xx)=0< Y, (0), dunque necessariamente esiste un punto

X—> + oo

xo > 0 per cui
Y, (x0)=9(xp) .

Allora per il teorema di monotonia (v. Appendice)
yi(x)>0 per 0sx<xg, yi(x)<0 per x>xq .
In particolare esiste finito il limite

lim y,(x)=u=0.

x— +

Poiché lim »'(x¥)= — u?, si ha necessariamente u = 0.

X— 4 o

Un grafico approssimativo della soluzione per a = O(epera=72)
¢ indicato nella figura:

y=—1/(1+x2)
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Possianio ora al cgso a = 1 : sempre per il teorema di monotonia,
deve essere y, (x) > ¢(x) per ogni x > 0. La soluzione ¢ allora de-
crescente e, come prima, tende a zero per x —> + oo |

La funzione 2 =f o g soddisfa I'uguaglianza
(H Ry =f"(g(x)) [&'(x)]* + F'(g(x)) g"(x) .

Una funzione di classe C? ¢ convessa.se e solo se la sua derivata
seconda € non negativa, quindi se f € convessa e crescente e g ¢
convessa si ha subito dalla (1) che anche % é convessa.

Se f non € crescente, non ¢ detto che il termine destro di (1) sia
non negativo: ad esempio le due funzioni

f)y=—x, gx)=x?

sono entrambe convesse, mentre la loro composizione A (x) = — x?
¢ strettamente concava.
Ancora, le funzioni

fxy=e ™, gx)=x?

forniscono un esempio di dtzxe funzioni strettamente convesse la
cui composizione A(x) =¢~ ¥ non € convessa su R.

Osserviamo che se f € convessa e crescente e g & convessa allora
f o g ¢ convessa, anche se f e g non sono C2. Sj ha infatti, per ogni
x,yEReAuec[0, ljconr+u=1,

gAx + uy) < Ag(x) +ug(y),
da cui
FEAx +uy)) <f(Ag(x) + ug(Q) S Af(gx) +ufE0).

Indichiamo con fn (x) il termine n-esimo della serie.
Perx > 1sihax + 1/n>1e quindi

£x)=1,
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dunque non pud aversi la convergenza della serie.
Se 0 <x <1 —~ & per qualche § > 0, si ha invece

1 ) 2
x+—<1—-—— Vn=z—,
n 2 6
pertanto
5 n+x/n §\7
1 s {1—— <{l-—) .
(1) £, ( 2> ( =)

Di conseguenza la serie converge se e solo se 0 <x < 1.
La disuguaglianza (1) mostra inoltre che la convergenza ¢ uniforme
(anzi totale) su tutti gli insiemi A per cui

AC1]0,1~6] perqualche §€10,1].

D’altra parte non pud aversi convergenza uniforme su alcun altro
insieme 4 C ]0, 1], perché cid0 comporterebbe la convergenza
puntuale anche in x = 1.

48. 1l piano tangente alla superficie f(x, ), z) = 0 nel punto F=

= (x, v, z) ha equazione
[, (P)(x —x) LB - +H,P)z-2)=0,
dunque nel nostro caso ’equazione del piano 7 sara

3x+7y—-21z+11=0.

Si noti ora che nel cilindro ¢ x 2 0, y 2 0, dunque i punti di inter-
sezione di 7 col cilindro verificano

21z=3x+7y+11=11>0.

Il solido di cui cerchiamo il volume ¢ allora

3x+7y+11}
21 ’

D={x-1*+(-1*<1,0<z<




1
vol(D) = / o)

49.

Risoluzioni dei problemi 115

e si ha subito

3x +7y + 11
vol(D) = f/ —— ——dxdy,

dove C ¢ il cerchio {(x, V):ix-D2+@ - 12<1 } Introdu-
cendo le coordinate polari

x=1+pcos8 , yv=1+psenb

si trova, con facili calcoli, che

<fz" 3(1 +pcosf) +7(1 +psenf) + 11

do\dp=
21 > P

0 0

27 1
([ +—-—(3 cos@+7sen6)]d0>dp 27 / pdp=1 .
0

0

Osserviamo che allo stesso risultato si poteva giungere notando
che, per evidenti ragioni di simmetria, il dominio D ha lo stesso
volume del cilindro

D={(x -1 +(y - *<1,0<z<7},

dove z ¢ laltezza del punto di intersezione di T con Passe del
cilindro, cioe con la retta {x =1,y =1}. Si ha dunque z =1 e,
dato che la base di D ha area 7, il volume di D ¢ uguale a 7.

Lellisse I' ¢ centrata nell’origine. ed ha semiassiy/X e\/%,

¢ allora ovvio che affinché C stia entro I” occorre che

(D u>1,A24.

Per la simmetria del problema, detta F+ la parte di T che sta nel
primo quadrante, occorre trovare per quali valori di (A, u) la di-
stanza di (1, 0) da F+ ¢ maggiore o uguale ad 1. Se (x, y) € F+

quadrato delia sua distanza (1, 0) é dato da
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(x — 12 +p? =(x — 1) +#(1—i)=1+¢;(x)
A 3

dove si ¢ posto

/’77\2 Vi
~_ N

Inoltre su I‘Jr ¢ 0 <x </ Bisogna allora trovare per quali (A, u)
si ha

min {«p(x) 0<x <\/X} =0.

Intanto, occorre che sia ¢(0) = 0, ¢6/X) = 0, ma queste condi-
zioni sono sempre verificate se valgono le (1), cosa che suppor-
remo d’ora in poi.

. M . . o
Se ¢ T = 1, la funzione ¢ ¢ concava, pertanto il minimo su

[0, \/T] € raggiunto agli estremi, ed é dunque non negativo. Una
prima condizione sufficiente ¢ dunque

(2) u=Az=4,

Passiamo al caso u < . Il grafico di ¢ ¢ una parabola con la con-
cavita rivolta verso alto.
It vertice della parabola ha ascissa A/(A — #), che & positiva. Se
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x = \/7\', la funzione ¢ € decrescente su [0, \/7\_], dunque le
— M

(1) assicurano che il minimo <p(\/_X) € non negativo. Si ottiene
allora un’altra condizione sufficiente:

I

>/
A—u v
ovvero (ricordando che ¢ u <)
(3) ASu=A /X, A=4.

Infine, nel caso u < A —\/T il vertice della parabola cade nell’in-
tervallo ]0, ﬁ[, e occorre che l'ordinata del vertice sia non ne-
gativa: imponendo

A 2-Au+2A
(R,
A-—-u N —u

si ottiene
= Au+A<0,

da cui si ricava

==
=M 5

i e

A~JFT?T< _ A/ AR
2

Ricordando che deve essere 4 << A\ —+/X si ottiene I'ultima condi-
zione sufficiente:

A —\/AZ 4N

5 <u<A- /.

(4)
Riassumendo (2), (3), (4) si ottiene la condizione

N /AT _4n

>4 >
A , M 5
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che ¢ chiaramente la condizione necessaria e sufficiente cercata.
L’insieme dei (A, ) accettabili pud essere rappresentato grafica-
mente come segue:

#

NN\

Per quanto riguarda I’area minima, basta chiaramente cercare il
minimo per A = 4 della funzione

FOO=SAN—/A% — 4 =Tri2-[area(l“)]2 :

Con facili calcoli si ha

22
= (3 - +AT 24N,

fl()\) = —\/X_T_T__
cioé

22 20 -9
VI AN N AN+ -3

fy=

9 o
Il punto di minimo cercato & A =7 , da cui si ricava
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50. La funzione che compare al secondo membro dell’equazione ¢

definita sui semipiani {(x, V) x> 0} e {(x, y) 1 x < 0}, ed e
lineare in 3. Dalla teoria delle equazioni lineari possiamo allora
concludere che il corrispondente problema di Cauchy ha una e una
sola soluzione y(x), definita su JO, + o[ se x, > 0 oppure su
]J—eo,0[ se x, <O.

Eseguendo la trasformazione z (x) =y (x) ¢*, oppure applicando di-
rettamente le tecniche standard di risoluzione delle equazioni
lineari, si trova poi la formula risolutiva cercata:

N y(x)=e"‘<f e logltidt+y0e"0>

Xo

Questa ¢ valida per x > 0 se xq > 0, per x <0 se x, <O0.
Osserviamo che la funzione Y (¢) = e’ log | | é integrabile in ogni
intorno del punto ¢ =, in quanto, per le note proprieta del loga-
ritmo, si ha

Idx(ﬂKL Vie[-1,1], t#0

VI

per un’opportuna costante M > 0, e quindi

—€ 1
f lw(t)ldt+J W)|dt<4M Ve€]0,1].

-1 €

Di conseguenza per ogni soluzione della forma (1) esiste finito
lim y(x) oppure lim y(x), a seconda del segno di x,. Possiamo

x—=0" x—0
concludere che le soluzioni dell’equazione sono le funzioni del
tipo

(2) y'(x)=e"‘<§xetlogltldz‘-!rc),
0

dove ¢ ¢ un’arbitraria costante reale. Come al solito, si intende che
sono definite solo per x > 0 o per x <0, in quanto si vede subito
che per ogni funzione del tipo (2) si ha

lim_y'(x)= lim_y'(x)=—c |
x—0 x=0"
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cioé queste funzioni non sono derivabili in x = 0.
Da (2) st dedvre p(0) = ¢, pertanto, scelta ¢ = 1, la funzione

f(x)=e"‘(j e log|tldt+ 1 >

0

gode di tutte le proprieta richieste.

Inoltre f ¢ chiaramente unica, in quanto se g(x) fosse un’altra fun-
zione con le stesse proprieta, per x > 0 essa dovrebbe avere la
forma (2), con ¢ =g(0), pertantoc=1eg=/f.

Un grafico della funzione f(x) ¢ il seguente:

1 y = f(x)

.

S

>

(a) Anzitutto I' # ¢ perché (0, 0, 0) € I". Inoltre I" € una curva re-
golare, perché la matrice jacobiana dell’applicazione

®(x,y,2)=(x2+y* -z, x+y+2)

¢ data da

2x 2y -~ 1

DP)(x,y,2) =
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ed ha rango massimo (cioé 2) in ogni punto di I': infatti essa ha

rango 1 solo perx=y=-— -2— , ma su I' non esiste alcun punto con

tali coordinate perché si dovrebbe avere contemporaneamente

z=x2+y?=— ¢ z=—-x-y=1,

Per calcolare la retta tangente a I', si noti che essa ¢ data dall’in-
tersezione tra il piano tangente alla superficie {z =x? +y? } e il
piano {x +y +z= O}. Analiticamente, se (xq, Vg, 20) €T, la
retta tangente a I' in (x4, ¥, 2¢) ha equazioni

2xg (X —xg) + 2yo(y —¥o) —(z —24)=0

x+y+z=0.

Se la si vuole esprimere nella forma parametrica
(X0, Yo, 29) +t(a, b, c),

si noti che (a, b, ¢) deve appartenere a entrambi i piani citati,
quindi deve essere ortogonale sia a (2x¢, 24, — 1)siaa (1,1, 1).
Prendiamo dunque come (a, b, ¢) il prodotto vettoriale
(2xq,2¥0,— D)A(1, 1, 1), cioé

a=2yo t1, b=-2x —1, c=2x9 -2y .

(b) Cominciamo ad osservare che I" € un sottoinsieme compatto
di R3. Infatti I" ¢ chiuso perché I'=®! ({O, 0) }), ed é anche limi-
tato: infatti, su I" si ha

(—2) =(x+y)? <2(x* +y?)=2z,

da cui z? - 2z < 0, cioé¢ 0 <z < 2. Allora ¢ anche x? + »? <2,
ovvero [ ¢ limitato.

Per trovare i punti di massima e minima quota in I', che esistono
certamente perché I' ¢ compatto, applichiamo il metodo dei mol-
tiplicatori di Lagrange alla funzione f(x, y, z) = z. Bisogna risol-
vere il sistema
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52.

53.

0 =2Ax+u
0=2\y+u
1 =-XN+u
z = x? 42
x +y+z=0.

Dalle prime tre equazioni si deduce \ # 0, quindi dalle prime due
si ricava x = y. Usando le ultime due equazioni si ottiene allora
z=2x*ez=—2x,dacuix=0 oppure x = — 1. Concludendo, i
punti stazionari sono (0, 0, 0) e (=1, —1, 2), e naturalmente il
primo ¢ quello di minima quota, il secondo quello di massima.

Ponendo x = ¢’ si ottiene
area(D)= // e'dtdy,
D

dove

D={t,y):it1<1, |y-te'|<1).

Allora

1 t€t+1 1 1
area (D)= f e’(J dy> dt=] 2e! dt=2(e——>
' e

-1 te —1 -1

Ogni termine della serie ¢ non negativo, dunQue dobbiamo stabilire
per quali x si ha

T )<+,
2

Perx <Osihae *" > 1, e quindi
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fn (x)=+o Vn.
Per x > 0 si ha invece
e X L MY Yy=n,

e quindi, integrando su [n, + o [ rispettoad y,

1 yEte emntx 2
[ S |- e = <— ()" <
n

nx yen nx X

1
S— (),
X

perché e~ * <1 per x > 0. La serie X (e~ *)" ¢ finita per x > 0,
quindi per il teorema del confronto

Y f0<+e Vx>0,

n=1

Sia ora A C R un insieme sul quale la serie data converge unifor-
memente: poiché cid comporta la convergenza anche su 4, dovra
essere 4 € 10, + oo, cioe

nH AC[8,+0[ perqualche 6>0.
Viceversa, se A soddisfa la condizione (1) si ha

2 2
e X e Vx €A

e quindi, per quanto provato in (a), si ha

L

) supf, < if,, (6) <+,
n=1

n=1 4

cioé la serie converge totalmente su A.
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54.

55.

Poiché l'equazione ¢ lineare ed ha coefficienti continui su R, il
problema di Cauchy proposto ha una ed una sola soluzione y (x),
definita su tutto R.

Ponendo

y(x)=e*z(x)
si trova che
Z'(x)=e* senx.

D’altra parte, eseguendo successivamente due integrazioni per par-
ti, si ha

X 1 1
z(x)—z(0)= f e sentdt=—i— e* (senx — cosx)+7 ,
0

pertanto I’espressione esplicita della soluzione y{(x) ¢é la seguente:
1 1
y(x)=—2—(senx—cosx)+ 7+a e~

Da questa si deduce facilmente che y(x) ¢ limitata su [0, + o[ ¢
non ha limite per x > + oo | quale che sia il valore dia.

Osserviamo che si ha

(1) lim f0)=0,

y— + oo
pertanto

lim f(nx)=0 Vx>0,

> + o

cioé la successione (fn) ¢onverge puntualmente a zero su tutta la
semiretta {x >0 }

Per quanto riguarda la convergenza uniforme, osserviamo che da
(1) segue




Risoluzioni dei problemi 125

lim (sup |f(»)H=0,

F> -t y2r

e di conseguenza

lim (sup | £, (x)) = lim) (sup [fON=0

n— o n—e y>=nd

per ogni & > 0. Dunque si ha convergenza uniforme su ogni insie-
me A tale che

(2) ACI[E, +oo] per qualche &6>0.

D’altra parte si pud provare che non vi sono altri sottoinsiemi di
10, + oo [, oltre a quelli del tipo (2), sui quali si ha convergenza
uniforme. Infatti, se 4 C ]0, + o[ non verifica (2), esiste una
successione (x, ) C A che converge a zero: si ha allora, per ogni
fissato n € N, che lim (nx ) =0, e quindi

h— o

lim |f (x,)|= lim | f(nx, )I—hm [ fO) =+ o0,

h— o0 1 — oo

da cui in particolare

suplfn|=+<>° Vn.
A

Cio esclude ovviamente che vi sia convergenza uniforme a zero
sud.
Studiamo ora la convergenza della successione di integrali

1
In= / fn(x)dx.

0

Osserviamo preliminarmente che tali integrali sono finiti: a questo
proposito notiamo che

[fO)<|logyl=—logy Vy€]0, 1],

e quindi
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1 1
— [ —-ylogyly =—,
n n

i/n 1 1
@ [ ineia=— [ ifoidar<
(0]

0

cosicché, ricordando che ¢ continua (e quindi integrabile) su
’ n

1
[—— , I:I , 81 ottiene
n

1

] |/, (x)ldx <+o VnEN
0
Pertanto ciascuno degli I esiste finito. Per calcolarne il limite
per n ~ oo notiamo che per y = 1 si ha
o<fO)s<(y-le”,
quindi

1
) f

1/n

1 n 1 n
If,,(X)Idx=7/ |fcy)|dy<7f O - e Ydy=
1 1

1 1
=— [yefi<—.
n ne
Da (3) e (4) segue facilmente
Iim I =0.
n— oo n
56. Posto A(x, ) 4 B(x, y) = ———— si verifica subit
. Po x, y)= ————— , B(x, =———— sV
sto y Fom y 1,7 i verifica subito
04 _ 0B N C
che—(:)——=a—, cosicché la forma w = Adx + Bdy ¢ chiusa in
y X

Rz\{(O, 0) } Osserviamo che la curva vy € tutta contenuta nell’in-
sieme § = Rz\{x =0,y < 0}, che & semplicemente connesso
(§2 ¢ il piano privato di una semiretta chiusa), dunque w ¢ esatta

=
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in . Di conseguenza Pintegrale di w su <y é uguale all’integrale di
w su un qualunque altro cammino ¥ contenuto in £ e congiungen-
te il punto (— 7, — 1) col punto (m, — 1).

Scegliamo come ¥ I'arco di cerchio centrato in (0, 0) e di raggio
v/ 1 + 7%, che ha equazioni parametriche

x=—+/1+7% cost, y=y/1+7m sent,

con

1 1
—arctg — <t <7+ arctg — -
T T

(m,—1)

Otteniamo allora

"+ arctg%

1
[w=[w= f (sen?t + cos®*t)dt =m + 2 arctg —
¥ o2 - arctg; 7T

57. Se f¢ differenziabile, in particolare esiste per ogni x € R
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58.

I

af, (x, 0)= lim L +h O -/ 0) lim Pl + 1) —plx) !
0x h=0 h h—0 h

cioe y ¢ derivabile, e analogamente si ragiona per .

Viceversa, dato che per funzioni reali di una variabile reale la deri-
vabilita é equivalente alla differenziabilita, se ¢ € derivabile allora
fi(x, ¥) =¢(x + ) é differenziabile, e lo stesso vale per f,(x, y) =
= y(x — »). Allora anche f ¢ differenziabile perché lo sono le sue
componenti.

L’equazione omogenea y'"" + v = 0 ha come soluzione generale
v(t) = A cos t + B sen ¢, pertanto cerchiamo una soluzione del ti-
po

v(ty=A(t)ycost +B(¢)sent .

Applicando il metodo di variazione delle costanti si ha

A'(t)cost +B'(t)sent=0

— A'(tysent +B'(t) cost=1/(1 + *)
da cui, con facili calcoli, si ricava

cost

. B(ty=———
) 1+ ¢

7 pp—
A1) 1 +1¢2

e infine

B ' sens
y(®)={y@Q) - 0 Tis2 ds |cost +

, ' coss
+ {v'(0) + _ ds> sent,
S
[¢]

che ¢ la formula risolutiva cercata.
Osserviamo ora che il limite
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) ' sens
lim ———2a’s
t>+e 4 1+s

esiste finito: basta notare che se #; <¢, allora

= sens +ds
—ds s =arctgt, — arctgt; <
t

1 +s? 1+ 52
tl 1

T
<7—arctg t,

e applicare il criterio di Cauchy. Poniamo

= (0 *t*= sens J
=v(O) - f 1 +s2 &%
(V]
) ) t*  coss ,
Calcoli analoghi valgono per —l—J—r—z— ds : poniamo allora
. s
0 .

Cos s

+ o
='0+[ =" gs.
B=y10) A 1+s2 &

Con queste scelte diA e B si ha
|y(t) —(Acost + B sent)| <

/*“’ sen s
ds| +
1+ s2

t

/*"" cos § i
] 1+ s2 s

e quindi

lim [y(t) — (A cost+Bsent)]=0.

t— + oo

59. Poiché e~ """ >0, le funzioni
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e’ x+ 1 2
f, )= f e” " dt

n2
x—1
sono tutte positive su R. Effettuando la sostituzione ¢ = — s, si ha
poi
n2 —-x+41 x ~1

x+ 1 2

2 n
=/ e " ds=——f (x).
x—~1

en n

Allora le funzioni f, sono pari, pertanto ci basta studiare la serie
perx = 0.

Distingueremo i due casix 22 e 0 < x < 2.

Se ¢ x =2 2, Pintervallo [x — 1, x + 1] € contenuto interamente
nella semiretta {t =1 }, sulla quale si ha

2
e—~nt <e—n .

bl

allora
x+1
J o=t dt<2e ",
x—~1
e quindi
2
) S — Yx=2.
n

Pertanto la serie converge totalmente sulla semiretta {x = 2}

Se invece &€ 0 < x < 2, l'intervallo [x — 1, x + 1] contiene qualche
intervallo del tipo [1 — 28,1 — 8}, con 0 <& < 1/2,

Si ha allora
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x+1 1-8 1-6
J e—nt2 dt > J e—nt2 dr > e»n(l—{i)2 dt =
x—1

1—-26 1—-26

= 6 e'—n(l "‘5)2
e quindi

)
n?

fn(x)>—en2— Se—n(1~8)" = en8(2-8)
n

che tende a + e per n —> oo, Ci0 esclude la convergenza puntuale
suf0,2][.

Per ogni numero reale £, la funzione

1 e ¢

t

=

¢ continua su ]0, 1] ed ha limite finito (uguale a zero) per t = 0°;
allora I'integrale che definisce f(x, y) esiste finito per ogni (x, y) €
€ R?,

Si ha poi
(1) fxy)=exy),
dove
1] =t
(2) p(&)= ! —t__dt’

quindi per provare che f ¢ differenziabile basta provare che ¢ ¢ de-

rivabile.
A questo scopo ¢ conveniente effettuare nell’integrale di (2) il
cambiamento di variabilis = £, per §# 0 : da

1l —e £ Ef’ ] — e &7
j ‘. =—— f — ograr
A N £t
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si ottiene la semplice espressione

N

1 E ] g
3) ¢<5)=;/ ST s,
0

Questa formula vale anche per £ = 0, perché da (2) si ricava ¢(0) =
=0.

Grazie al teorema fondamentale del calcolo integrale, estendendo
per continuita in s = 0 I'integrando di (3), si ottiene che y ¢ deri-
vabile

— se £=0

(4) o5 =
1 -e ¢

Y se £+ 0.

Di conseguenza, la funzione f ¢ differenziabile e il suo differenzia-
le ¢ dato da

(5) (@) &, ) (h, k)= (xy) Oh +xk) .

In particolare, per (x, y)=(1, 2) si ha
1
(@) (1, 2)] (A, k)=7(1 —e" ) Rh + k).

Riguardo all’estremo superiore e all’estremo inferiore di f su R?,
si noti che per (1) essi coincidono con I’estremo superiore e I’estre-
mo inferiore di ¢ su R.

La derivata (4) di ¢ € sempre positiva, dunque p € crescente e

, 1 te ] e
supp= lim @(§)=— — ds,
E— + o 2 A s

mentre (effettuando il cambiamento di variabilir = — s)
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1 due estremi sono rispettivamente + o0 ¢ — oo
Infine si ha

lim fxy
(x.3)=(0.0) /XT 2 ’

perché f ¢ differenziabile ed ¢ nulla in (0, 0) insieme alle sue deri-
vate prime (vedi (5)).

(i) Sia ¥ una soluzione polinomiale dell’equazione (*). Se y ¢ co-
stante, cioe 3 (x) = ¢ per ogni x, si ha necessariamente ¢ = 0,

Se invece y ¢ un polinomio di grado N > 1, la sua derivata ¥ ¢un
polinomio di grado N — 1, ¢ quindi '(x)]? e xy'(x) hanno gradi
2N - 2 ed N rispettivamente. Di conseguenza — x¥'(x) + y(x)
¢ un polinomio di grado minore o uguale ad N, ma ¢ uguale al
polinomio [¥'(x)]?, cosicché

cioé
N<2.

Vediamo allora quali polinomi del tipo
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y(x)=ax* +bx=c
risolvono (*): per questa scelta di y la (*) diviene
4a®x? + 4abx + b* +2ax?* + bx —ax* —bx —c=0,
da cui si ottiene il sistema
4a?> +a=0
4ab =0
c=b*
Le soluzioni di questo sistema sono

a=-1/4 , b=c=0

a=0, b=\, c=\%,

con A costante arbitraria, cosicché le soluzioni polinomiali di (*)
sono la parabola

(1) yx)y=-———

e le rette

y(x)=Ax +A* , AER.

E’ facile verificare che queste rette sono tutte le tangenti alla pa-
rabola y = — x?/4: infatti la tangente alla parabola nel punto
(¢, — £?/4) ha equazione y + £x/2 — £2/4=0.

(ii) Vediamo ora per quali (x4, o) € R? esiste qualche soluzione
y di (*) tale che

(2) y(xo)=Jyo -
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Anzitutto, se una tale soluzione esiste, il numero z =y'(xy) € una
radice dell’equazione di secondo grado

22 +x9z — Yo =0,
e quindi si deve avere
(3) x3 +4y,20.

D’altra parte se vale (3), ciog se Yo = — x2/4, vi sono soluzioni di
(*) che verificano (2): ad esempio, le due tangenti alla parabola (1)
se & yo > — x3/4, la tangente alla parabola e la parabola stessa se
¢ yo = — x3/4. In conclusione, (3) ¢ la condizione necessaria e
sufficiente perché esista qualche soluzione di (*) che verifica (2).
Oltre alla parabola (1) e alle sue tangenti, (*) ha come soluzioni
C! (ma non C?) anche le curve formate da un arco di (1) e dalle
sue semirette tangenti agli estremi.

Per ipotesi, per ogni € > 0 esiste 8§ > 0 per cui

1fe»)—11<e V(x,»)E€B,,

dove B ¢ la palla {x2 +y2 < 6§ } .
D’altra parte, posto
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o(r) = j fdxdy,
sihaperr=§
1 —
pr)y—~1= . —~1D)dxdy =
—l)dxdy+—f (f—l)dxa’y
B\B,

Si ha quindi, notando che mis (B, \B y<7r?

(o)
o)l <e+—=

da cui, facendo tendere r verso + oo |
maxlim |¢(F) — 1| <e€
¥—> + oo

Per ’arbitrarieta di € questo implica

lim ¢(r)=1.

y—>

Il viceversa ¢ falso: infatti pud accadere che

=1 Yr>0

mentre il limite di f(x, y) per | (x, )| =~ + o non esiste. Questo
¢ il caso, ad esempio, della funzione

flx,»=1+x.

63. Introducendo le coordinate polari, si vede che
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l+mx+) +(x+n) =1+ m? +1)p? +2np?sen2 9>
=>14+m2+Dp? —2np2=1+(m-1)?%p%.
Pertanto, indicando con I gli integrali assegnati, si ha

2m n
0
0<I < f / dpdf <
A A R

<2 {" P dp
ST Tt

Ponendo (n — 1)? p? =1, si ottiene

T (n*—m* gy T T

<—— <
LSy | 1+ m-1? 2

e quindi
lim / =0.

Nn— oo

L’equazione verifica le ipotesi del teorema di esistenza e unicita
locale, perché la funzione y = y(2 — ) ¢é di classe C! e quindi
localmente lipschitziana. Inoltre le funzioni costanti y =0ey =2
sono soluzioni dell’equazione.

Di conseguenza se y ¢ un’arbitraria soluzione non costante su un
intervallo 7 si ha necessariamente una delle tre possibilita seguenti:

(D) 0<y(x)<2 Vxe&l
(2) y(x)<0 Vxel
(3) y(x)>2 Vx€EI.
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Mostreremo che le soluzioni del tipo (1) sono definite su tutto R,
mentre quelle del tipo (2) o (3) non lo sono. Infatti, sia y una so-
luzione del tipo (1), e supponiamo che il suo intervallo di de-
finizione I sia massimale. Posto § = sup I, essendo y'(x) =
=»(x) (2 -- y(x)) > 0 su I, esiste finito il limite

lim  y(x).

x—~k

Se per assurdo fosse £ << + oo | risolvendo il problema di Cauchy

y'=yQ2 )
Y& =2

si potrebbe prolungare la soluzione Vv in un intorno destro del
punto £, contro lipotesi di massimalita di /. Dunque deve essere
sup [ = + oo, In modo del tutto analogo si prova che inf / =— o0,
e cioé che [ coincide con tutto R.

Per quanto riguarda le soluzioni del tipo (2), osserviamo che esse
verificano la relazione

Y0 <=y (x),

cioé

1
4 >1,
@ (y(X)>

Se y fosse definita su tutta una semiretta ]a, + °° [, da (4) segui-
rebbe .

1
im =400,
x= 4 Y(x)

ma per I'ipotesi (2) ¢ = < 0 per ogni x. In modo analogo si
yix
prova che una soluzione del tipo (3) non pud essere definita su

una semiretta |— oo, af .



65.

Risoluzioni dei problemi 139

Per descrivere le soluzioni del tipo (1) possiamo introdurre la con-
dizione iniziale y(0) = y,: infatti tutte le soluzioni di questo tipo
attraversano l'asse y, e viceversa per ogni punto (0, Vo) con 0 <
<yo < 2 passa una soluzione del tipo (1).

Dividendo I'equazione per la quantita positiva 2y — y? si ha

|
ﬂx)(y(x) ) y(x)—2>:2 !
da cui
log& — log Yo =2x,
2 = y(x) 2=Yo
cioe
yx)= o

2 —yo +yoe**

Al variare di y, in [0, 2] queste sono tutte ¢ sole le soluzioni cer-
cate.

Conviene osservare subito che f(x, ¥) ¢ decrescente in ¥y per ogni

=>0 fissato, per la monotonia della funzione arctg.
Si ha allora

1
sup  f(x,y)=sup f(x,0)= sup —=1
(x,y)€4 xz1 x21 X

€ anche

inf fx,y)=inf lim f(x,y)
(x,y)c4 x21l y—»+ o

s
? —arctg (ty)

Notiamo che lim % = 0 uniformemente per t>1,
y—> 4 oo
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in quanto, per ogni ¥y > 0,

i
i arctg (1)

e
0< < E— —arctg y

t2

Allora
l £ 1 j* o7 Jt 27
im X, yy=—= =
quindi
) . 2 -7 T
inf  f(x, )= inf =]-—"
(x,v)EA xz1 2x 2

Osservando che f(1, 0) = 1, si ha che I’estremo superiore di f € un
massimo, e la tesi € completamente provata.

66. Siano M, < <M v i punti di massimo relativo. Per la continui-
ta di g, in ciascun mtervallo [M .M. ih | esiste un punto m, di mi-
nimo assoluto per ¢. Nell’ mtervallo [M,, m_] la funzione ¢ ¢ mono-
tona decrescente, altrimenti avrebbe un altro punto di massimo
relativo. Analogamente si vede che ¢ e crescente in [m, M, | I
infine, se M; > 0, ¢ risulta monotona anche in [0, Ml] e, se
M, <a, anche in [MN, al.

Dobbiamo provare che lestremo superiore delle lunghezze delle
poligonali con vertici su I' non supera 2Nb + 4. Sia dunque P una
tale poligonale, ed L la sua lunghezza. Detta P’ la poligonale otte-

nuta aggiungendo ai vertici di P i punti (M, gp(M N, I <IN, e1
punti (m, ¢(m,)), | <IN -1, e detta 'l lunghezza di P

ha chiaramente

e anche
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dove Ly, ..., L
negli intervalli

L,y SOno le lunghezze delle parti di P’ comprese

I, =10,M), I,=My,m;),.... I, =[M

2N N’a]

in cui ¢ ¢ monotona (il primo e I'ultimo eventualmente ridotti a
punti).

@ () /‘\

7

@ (X,)]

Siano (xq, ¢p(Xg)), . . ., (x, ¢>(xr)) i vertici di 2" nell’intervallo

I, : dalla disuguaglianza y/a* + b*> < |al + |b] si ricava allora

Lo=3 lvte) s+, P12

i=1

r

<) el el DI+ G ox ).

i=1 i=1

La prima somma, per la monotoniadigin/, , ¢ uguale a | p(x,) —

— ¢(xo)l, e dunque non supera b essendo ¢ a valori in [0, &]. La
seconda somma ¢ uguale a x_ — xg, che ¢ proprio la lunghezza
(1) dil, . Dunque

L. <b+1T)
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cosi che

L'<2Nb+I1)+...+1(,,,)=2Nb +a,

)

come richiesto.

67. Se a = 0, la disuguaglianza ¢ banale. Fissiamo allora a > 0 e ponia-
mo

[, y)=x>+y> ~3axy;
vogliamo dimostrare che

inf fix, »y=2—-a®.

x20,y20

Cominciamo a cercare i punti stazionari di f all’interno di D =
=]0, + oo X [0, + oo[. In essi si dovra annullare il gradiente di
f, cioé

3x2 -3ay=0, 3y% -3ax=0.

Ricavando y dalla prima equazione e sostituendolo nella seconda si
ottiene x® =43, cioé x =a, da cui y =a. L’unico punto stazionario
di f interno a D ¢ dunque (q, @). Notando che f(a, a) = — a*, non
resta che provare che (a, a) € in effetti il punto di minimo dif.

Per far cid studiamo il comportamento di f sulla frontiera di D

e all’'infinito. Per x = 0 si ha f(0, y) =»* 2 0> — a3, e lo stesso
per y = 0. Inoltre
x? +y?

S k)t a4y

Xy <

per ogni x = 0, y 2 0, quindi

x* +y?
x>+ =(x+y)(x? —xy +r?)>/x? +y? <x2 Ty + 32

€

(x2 +}/2 3/2 X2 +y2
foo > g T

e ——_
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per cui

lim  f(x,y)=+0o .
1Qe,y) I + oo
(x,v)ED

Si conclude facilmente che I’estremo inferiore di f & raggiunto
all’interno di D, ¢ un minimo e viene assunto in (a, a), che & cio

che volevamo dimostrare.

Un’altra dimostrazione della disuguaglianza si ottiene molto rapi-
damente se si utilizza la disuguaglianza fra media aritmetica e
media geometrica:

x3 +3y3 +43

3 23\/)63)/'3613.

(a) Postox /X =¢,y 4 /X=nsiha

a4 1 L3
J! e Mx* +y )dx dy = _j/ e— ' +n YdEdn .
2 \/-X 2
R

(b) Passando in coordinate polari si ottiene

2w +
C= / / pe—p‘(cos46+sen"6)dpd04
0 0

Ora, essendo cos* @ +sen? 8 =(cos? § +sen?6)? — 2 cos? fsen?f =

1 )
=1- —2sen2 20, siha

1
7<c\os49 +sen? 9 <1

€ quindi

+ o + o
27 / pe P dp<C<2m / pe P12 dp .
0 0
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69.

Per valutare i due integrali in quest’ultima disuguaglianza, eseguia-

mo il cambiamento di variabili p*> = ¢ nel primo di essi, e p>A/2 =
=5 nel secondo; allora avremo rispettivamente

+ o . 1 teoo
f pe P dp=— ] et dt
0 2
+ o teo

/ pe*94/2dp:__/ e S ds.
0 2 0

D’altra parte € noto che

f+°° —t’dt_-l_
¢ 2

0

B

e~ dt=

ME

T

dunque possiamo concludere che

TN/ T <c< n\gi—n
2

> . - v 7T - . . .
Siccome nel punto iniziale (a, —> si ha xy = 7, la zona di piano in
a

cui dobbiamo studiare I'equazione ¢ I’insieme

_ T 3m
A={xy): x>0, ?<xy<—2——}

La funzione tg(xy) & di classe C! in 4, quindi il problema di Cau-
chy ha una ed una sola soluzione v(x), definita in un intervallo
massimale |, A [ contenente il punto x =a.

™
Tale soluzione ha derivata nulla in x = a, poiché il punto <a, ——)
a

sta sulla curva {tg(xy) = O}. Inoltre nell’insieme A4 la funzione
tg{xy) & crescente in x, dunque per il teorema di monotonia
(v. appendice) si ha

Y(x)<0 per a<x<a, »'(x)>0 per a<x<b,
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e quindi anche

m

(D 2x

<y(x)<—;r— in Jo al

7 37 .
— <yx)<— in Ja, bl
X 2x

Dato che y(x) € crescente in |a, [ si ha da quest’ultima disu-
guaglianza

3n ] T
—=2lim yx)>yl@)=—
x—=b" a

2b

cioé b < 3a/2.

i
y

3
Posto poi A =lim p(x),se A < 7 si puo prolungare la soluzione
x—b" Z

a destra di x = b, contro la massimalita di ] «, b(, dunque necessa-

i te A 3m tant
riamente =_——, pertanto
2 P
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lm oy () =—m lim '(x)=+
m (X )—=—" ; = oo
e ” b 0 Jmo )

Per quanto riguarda I’estremo sinistro «, mostreremo che suppo-
nendo « > 0 si perviene a una contraddizione. Poiché y (x) & decre-
scente in |a, af, esiste

s T
lim y(x)=I[l¢&€ [—— —]
x—at 2o [a%

(dove si ¢ fatto uso di (1)).

T
Se ¢ [ > —2—— , si pud prolungare y(x) a sinistra di x =« risolvendo
o

il problema di Cauchy

v =tg(xy)

vi)=1,

ma cid contrasta con la massimalita di Je, 5] .

i
Se ¢ [=——,si ha per (1)
2«

m
~1_ 2 T
o) yexy -1 2x e S VxElabl,
X — o X —« 2ox 202

e daltra parte per il teorema di Lagrange

1
;ngl___ =y'(E,) = tgl§ » ()]
X — o

cona<f <x, dunque

. y(x)—1
lm ————=—
x—-at X —«

in contrasto con (2).
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Allora necessariamente o =0, e da (1) si ricava

lim+ y(x)=+o -

x>0

Si potrebbe anche mostrare che la soluzione y(x) € asintotica per

m
x—>0"alla curvaxy = 5 nel senso che

T
lim <y(x)———->= 0.
x—>0" 2x

Per ogni partizione P = {xo, Xy, oo, Xy } dell’intervallo [0, 1],
con

O=xp <x; <...<x,=1,

indichiamo con
]V;

(1 sz=§;ufupvﬂa_gv+ln—n,Jﬂ“
i=1

la lunghezza della poligonale di vertici (x]., f(x].)).

Per definizione si ha allora che la lunghezza della curva I'(f) ¢
uguale a

Z(F(f))=sgplp(f)

al variare di P fra tutte le partizioni di [0, 1].
Pertanto per ogni n ed ogni partizione P si ha

2) 1L, <IT(,) <M-

D’altra parte da (1) segue immediatamente che se fn (x) = f(x)
per ogni x € [0, 1] allora

LU~ L0
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7L.

cosicché per (2)
lP(f) <M,

da cui la tesi [(T'(f)) < M.

Si nota immediatamente che la serie ¢ a termini non negativi.
Posto

G y)=log(l + x2% 4 y2)
si ha anche

fn(x, y)y=log?2 perlx|=1 oppure (y|=1,

quindi la serie diverge al di fuori del quadrato
0={lxI<l, lyI<1}.
Se (x, ¥) € Q, dalla disuguaglianza log(1 + ¢) < ¢ segue

(1) [, vy S 4y =y 4+ )

e per il teorema del confronto la serie data converge.

Per quanto riguarda la convergenza uniforme, se essa ha luogo su
un insieme A si ha necessariamente A C Q, perché per la continui-
ta di ogni fn la serie converge puntualmente su 4.

Viceversa, per ogni 4 tale che ey C@,siha
(2) A§{|x|<1~6,|y|<1-~5} per qualche 6 €10, 1],
e dunque dalla (1)

sup f, <2(1-8)*" |
A

quindi la serie converge totalmente su 4.
In conclusione si ha convergenza uniforme su A se e solo se vale

(2).
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Osservando che
Ix|+ 1y >|(x, M=y/x? + p?

ed utilizzando le coordinate polari, si trova

e"// eIt 'y'dxdy>e"// NV v dy =
B
B.

r

,
=2me ’ / pefdp=2m(r—1—e""),

0

quindi il limite cercato € uguale a + oo .

1
Il secondo membro f(x, y)=arctgy — — dell’equazione ¢ definito
X

4
su (R\ {0}) X R, dunque, essendo - > 0, I'’equazione va studiata

solo per x > 0. Inoltre f ¢ di classe C', quindi ¢ localmente lips-
chitziana in y. Per il teorema di Cauchy-Lipschitz esiste allora
un’unica soluzione y (x) del problema.

Ricordando che | arctgy| << | y|, si ha che perx > 0

1
L, I s<—+ Iyl
X

e il teorema di esistenza globale (v. appendice) assicura che y (x)
¢ definita su tutta la semiretta ] 0, + oo [ . Osserviamo poi che il

1}’

arctgy

4 ‘
punto<— , 1) si trova sull’insieme " = {(x, y):x>0,x=
T

dove f ¢ nulia.

Per il teorema di monotonia (v. appendice) si ha allora che r{x)eé
decrescente per x <1 e crescente per x > 1.

Se si vuol calcolare lim , Y(x), che esiste per la monotonia di
x—0
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y(x), si puod osservare che

, <7r |
y(X)\2 <

4

m

Integrando questa disuguaglianza sull’intervallo ]x, [, con

4
0 <x <— siottiene
T

4 4
1 -y < ~——x]-—log— +logx
m m

ul:}

e quindi
il 4
y(x)z —x-—-1+log— —logx,
2 T

da cui segue che lim y(x)=-+oo,

x—=>0

Analogamente, per calcolare lim  y(x) si pud osservare che, per

x> + oo
la monotonia di y(x) ,
, >7T 1 Vx> 4
X)="T"""_ X =",
i) 4 X T

4
dunque, integrando fra—e x, si ha
T

T 4
>—x —logx +log—,
y(x) 4 X og g -

e quindi lim y(x)=+ oo

X— 4 oo

Si pud anche osservare che, essendo y(x) 2 1, si ha

, T 1
yx)yz——— Vx>0
4 X
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e quindi

il 1

N Lo B 7_?+1
y (X)— 1+y2(x) x2 = 1+y2(x) x2

Postoc =1 + y%(x), si ha

s T 1 1 _c7r*1>
¥"(x) 2 min PP +— = 4 0,

x>0 X X
pertanto y(x) € convessa.

Un grafico approssimativo della soluzione ¢:

x=1/arctgy

74. (a) Sia (xg, ¥o) uno zero di F. Poiché la matrice jacobiana DF (x,,
Vo) ha determinante diverso da zero, per il teorema di inversione
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locale esistono un intorno V' di (x4, ¥,) ed un intorno W di
F(xg, ¥0) = (0, 0) tali che F,, ¢ un diffeomorfismo tra V ¢ W.

In particolare F' ¢ iniettiva in V, cosicché (xg, yo) € il solo zero di
FinV.

Piti precisamente, abbiamo provato che

F(xo, ¥4)=(0,0)

(1) = (Xo, Yo ) € uno zero isolato di £ .
det DF(xq, vo)# 0

(b) Poniamo F(x, y) = Df(x, ), e sia f(xo, ¥o) = 0. Allora si ha,
per I'ipotesi su £, ’

F(x0,»0)=(0,0) , detDF(xg, yo)# 0

e quindi per (1) esiste un intorno ¥ di (x4, y,) in cui (X, Vo) €
Punico zero di F. Se in V vi fossero altri zeri di f, per I'ipotesi essi
sarebbero anche zeri di F, pertanto (x,, »,) € necessariamente
Funico zerodifin V.

75. Con il cambiamento di variabili s =¢2/n si ottiene

1 et’/n 1 n n &
1n=nf ———~——a’t=——[ ds .

'n t 2 1 s

Per il teorema della media integrale si ha

] 7 :_n_<__1___1_>e_n__A_1=L (1__1_>£._—__1_
() n 2\n nd £ 2 n? £

1 1
per un opportuno £, EJ PR -n—[ .

Osservando che

e* — 1
lim ¢ =0, lim =

n— oo x—0 X
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dalla (1) segue subito

lim I, =1/2.

n-— oo

La forma w € chiusa se e solo se

ou 0 < X _ 2xy
ax Oy \x? +p? (x2 +y?%)?

ciog, integrando la funzione — 2xp (x* + ¥?)7? rispetto alla varia-
bile x, se e solo se

(1 u )=y Fel)

+y

con ¢ : R = R arbitraria funzione di classe C'.
Per avere P'esattezza di w, occorre aggiungere alla (1) la condizione
seguente (vedi es. 36):

(2) f w=0 con I = cerchio unitario.
L

Nel nostro caso la (2) diventa

2w
j [cost(—sent) + [sent + p(sent)] cost]dr=0,
0

cioe
2n
/ p(sent) costdt=0
0

0 ancora, indicando con ® una primitiva di ¢ ,

[®(sent))2" =0.
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Quest’ultima condizione ¢ ovviamente sempre verificata, dunque
la forma w ¢ esatta se ¢ solo se u(x, 3) ¢ della forma (1), e in tal
caso le primitive di w sono le funzioni

Yx, y)=logy/x* +y? + @ (v)

con ® primitiva di ¢ .

77. La funzione f(x, v) = y? — arctg? x ¢ di classe C! su tutto R?,
pertanto il teorema di Cauchy-Lipschitz gssicura 'esistenza locale
e 'unicita di una soluzione ¥ (x) : Ja, B[ = R del problema dato,

cona<1<g.
Per provare che tale soluzione puod essere estesa a tutto R, mostria-
mo che
i .
(1) Iy(x)l<7 Vx €l Bl

A questo scopo osserviamo che la costante z(x) = 0 verifica le
condizioni '

Z'x)>f(x, z(x))  Vx#0, z(1)=y(l),
pertanto per il teorema di confronto (v. appendice)
(2) y(x)>0 in ja, 1]

(3) y(x)y<0 in ]1,8[ .

Posto ora

Nlﬁ

).

glx, )=y - <

si ha
fx, y(x))=g(x, y(x)) in Jo, B[ ;

n 4
inoltre le costanti u, (x) = -2— e U, (x)=-— —2— sono soluzioni della

e —
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cquazione differenziale
u'=g(x, u)

e verificano le condizioni

u >y . up(H<p) |

Applicando altre due volte il teorema di confronto si ottiene infine

) y<x)<—72L in Jo, 1

(5) ¥ === in]1B[.

Da queste e da (2), (3) segue subito (1), quindi si pud applicare il
teorema di esistenza globale (v.-appendice) perché da (1) si ricava

2
rere<(3) et

Supponiamo dunque che y(x) sia definita su tutto R, e studiamo-
ne I’andamento. Per la (2) si ha

¥(0) >arctg(0) ,  y(l)<arctg(l),
pertanto esiste un puntoa € |0, 1] tale che
y{a)=arctg(a) .

Possiamo applicare il teorema di monotonia (v. appendice) nel
semipiano {(x, V) x = 0}, ottenendo che y(x) & crescente in
[0,a[ e decrescente in Ja, + oo .

Per x <0, la soluzione y (x) non pud mantenersi sempre al di sopra
della curva y = — arctg x, perché in tal caso dovrebbe essere cre-
scente per ogni x < 0, pertanto si avrebbe

m
lim yx)<y@)<-—= lim (--arctgx) ,

X — oo 2 X — — oo
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che € una contraddizione. Allora esiste un punto b < 0 tale che

y(b)= — arctg(b) .
Applicando nel semipiano {(x, ) x < O} il teorema di monoto-
nia si ha che y(x) ¢ decrescente in | —oo, b[ e crescente in | b, 0].
In conclusione
Y'i(x)>0 per b<x<a

y'(x)<0 altrove .

y =—arctgx
= arctgx

|
INIE]

In particolare, esistono i limiti di y(x) per x = — o0 e per x = + oo,

e da (2), (3), (4), (5) segue

- T < lim yx)<o0.

K
2 x>+ >

: T
0< lim y(x) <?

x—»—-—m
Una facile applicazione del teorema dell’asintoto (v. appendice)
da

lim  y(x)=— lim  y(x)=-—
m X)=—— . im X)="7""
y ) 2 x—>+°°y 2

X—> —oo
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(a) Per ipotesi si ha

f&x,,»,)=0  per |(x ,y )>+eo.
Ora, se (x, ») # (0, 0) si ha
l(nx, ny)l=n I(x, y)|>+o00 per n—>oo,
e quindi
[, »)=fnx,ny)=>0..

Poiché per ipotesi

f,(0,0)=1(0,0)=0,

si conclude che fn - 0 puntualmente su R2.

(b) Eccettuato il caso banale in cui ¢ f = 0, la convergenza non ¢
mai uniforme su tutto R?.
Se infatti si ha per qualche (xo, Vo)

|f(x0, yo)I=A>0,
allora per ogni # si ha anche
X Y
sup [ f, 1= 1f, <—ni —n—°>|= If(xq, yo)l=N.
Si puo facilmente mostrare che la convergenza di (f ) a zero &

uniforme su ogni dominio del tipo {x2 +y, =>r },ncon r>0.
Infatti

sup £ (x, »)I= sup | f(x, »)

[(x, )= r 1(x,¥) = nr

e il termine a secondo membro ¢ infinitesimo per n = oo dato che
fx, y)=0per|(x, y)l—>+oe.

La funzione f € non negativa, e si annulla in (0, 0), dunque min f=
=0.
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80.

Passando in coordinate polari, la funzione diventa

fp, 0)=\/oTcos 0 T senff e #" =\ /pe o’ V\/ffsen((? +%)f

Di fdobbiamo cercare il massimo per 0 < PS1/2e0<0 <27,

m
Dovra ovviamente essere | sen 6 + ~Z) =1, cio¢

0 T 0 Sw
= — u -,
y oppure 2

Si ha poi:

l

d - . 2e P 1
—_ - P = - — P = —_—— 52

\

L . 1 :
e I'ultimo termine ¢ positivo per 0 < p < 5> bertanto il massimo

<

T 5w
cercatosihaperp=1/2ef = —4— oppure T , da cui

(x,y)=i<\/77,~\§—’f), maxf=f(

Q’\/‘z‘): 1

2 2 o

Poniamo
LG vy =arctg{(x +3)2" + (x — y)2n] .

Si nota subito che per la crescenza di ¢ — arctg ¢ si ha
s
1, (x, ¥) = arctg 1':—4—{ per|x +y|=1 oppure |x -yl=1,

quindi la serie diverge fuori dal quadrato aperto

Q={x+yI<1, |x—y<1}.
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In tale insieme invece, per la disuguaglianza arctg f < ¢ valida per
t>=0,siha

(1) 0/, ) <[(x +2)?1" +[(x —»)?]",

quindi per il teorema del confronto la serie converge in Q.
Pili precisamente, se A C @, cioé se

() AC{lx+»I<1-8,|x-yI<1- 5} perqualche §€10,1[,
dalla (1) si ricava

sup f, <2(1-8)" |
4

quindi la serie converge totalmente su 4.

Viceversa, se la serie converge uniformemente su un insieme A cQ
allora converge puntualmente su A4, pertanto A C @, cioé vale (_2).
In conclusione si ha convergenza uniforme su 4 se e solo se A
verifica (2).

Il secondo membro f(x, y) = e’ — e & di classe C! su tutto il

piano, quindi Desistenza locale e ['unicitd della soluzione y(x)
sono assicurate dal teorema di Cauchy-Lipschitz.

Notiamo che y(x) ¢ dispari: infatti ponendo z(x) = — y(—x) si
haz'(x)=1'(—x)=e" ) _ o= =2 &) _ " o anche z(0)=
= 0; per 'unicita della soluzione deve essere z(x) = v (x), cio¢ y(x)
¢ dispari. Ci limiteremo a studiarla per x > 0.

Si osservi che linsieme dove f si annulla ¢ dato dalle due rette
y=xey=—x.

Siccome il punto iniziale sta su tali rette e

—— = =2x¢*" <0 Vx>0,

si ha dal teorema. di monotonia (v. appendice) che v(x) ¢ decre-
scente per x > 0, quindi in particolare

—x<yx)<o Vx>0.

Essendo allora | y'(x)| < e*”, la soluzione esiste su tutto R.
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Posto poi
lim y&x)=l€[—e, 0],
X~ + oo
si ha /= — oo: infatti se fosse [ > — oo si avrebbe
lim y'(x)=—o,
X— + oo

che ¢ in contraddizione con [ > — oo,
A titolo di esempio, vediamo come si pud dimostrare che y(x) ¢

asintotica alla retta y = — x.
Mostriamo che y(x) sta definitivamente al di sotto del ramo di
iperbole

x=1, y=—yx* -1}
Vv

VX —1:siha

Poniamo g(x)=—
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X— + oo X=> 4 oo

- X
lim (') —f(x,g(x)]= lim [exz“ —¢ 1)“‘;\/—2—_“—1}400,

pertanto esiste x, > | tale che

(1) g'(x) = f(x, g(x)) Vx>x,.
Se fosse

y(x)y=2gx) Vx=x,,
si avrebbe

2

Y(x)y=e' ) _ et Ll et =X (em ! 1 ),

pertanto lim »'(x) = — oo, che ¢ assurdo perché y{(x) > — x

X > 4 o0

per ogni x. Allora esiste x; = x, tale che
yx ) sglx).

Per la (1), si puo applicare il teorema di confronto (v. appendice)
e si ottiene

yix)ysg(x) Yx=2x,,

pertanto in particolare

0< lim [y(X)-(-x)]< lim [g(x)—(-x)]=0 .
X = + oo

X + oo

82. Proveremo che

/ f(x)e* dx
. 0 )
lim = .

t—0 t? 2
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83.

84.

A tale scopo possiamo applicare il teorema dell’Hopital ed il teore-
ma fondamentale del calcolo integrale, ottenendo

/ f(x)e* dx
1]

¢
lim 5 = lim &)_e_:_l_ lim PAOEAC)S
t—0 t t—0 2t 2 =0 ¢
_f0)
____2 .

Oltre all’ipotesi f(0) = 0, si € utilizzato soltanto il fatto che f(x)
¢ continua ed ¢ derivabile nell’origine (e non C?).

Basta osservare che I'integrando € positivo e che Bn contiene il
rettangolo {0, 1] X [0, n — 1], per concludere che

1 1 n—1 1 n+{
—~—;——-—dxdy> / f dy )dx = log ,
, 1 +x + ] b\ J, 2+y , 2

n

Il limite cercato € pertanto uguale a + oo,

Osserviamo subito che f & dispari in x e pariin y, e che il dominio
D ¢ simmetrico sia in x sia in y. Basta quindi limitarsi a trovare
I’estremo superiore di f nell’insieme

D, ={o<x<1,0<y<2}:

tale valore sara 'estremo superiore cercato, mentre il suo opposto
sara ’estremo inferiore.
Notiamo poi che

4x4y2
(1) !f(x,y)|=|xlm<IXI,

dunque f ¢ continua in (0, 0); allora I'estremo superiore su D, ¢

un massimo.
Cominciamo a cercare gli eventuali punti stazionari di f interni a

D,: dobbiamo risolvere il sistema
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af 20x4y2(x4 +y2)2 - 32x8y2(x4 +y2) B
ax (x4 _*_y2 )4

0

of SxSy(x* +y?)2 —16x°y3(x* +°)
oy (x* + )

0,

che con facili semplificazioni si riduce a

3x* =572

= }52

questo sistema, pero, non ha soluzioni interne a DJr (si noti che,
in ogni caso, non ¢ detto che f sia differenziabile in (0, 0)).
Studiamo ora il comportamento di f su BDJr .

Per x =0 o v =0 la funzione vale 0.
Per v = 2 si deve studiare su 0 <x <1 la funzione

B B 16x°
gx)=f(x )= o ar

la cui derivata prima

16x*

m (20 - 3x*)

gx)=
¢ sempre positiva per 0 <x < 1. Si ha allora

(2) f(x,2)<f(1,2) per 0<x<1.

Per x = 1, infine, studiamo su 0 <y < 2 la funzione

42

hLy)Zf(l,yFm ,

che ha derivata prima

h’U,):___SJ_).__- (1 . ,2)
a+s2y
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8S.

positiva per y < 1 e negativa per y > 1. Dunque
(3) F,M<f(1,1) per 0Sy<?2.
Da (2) e (3) segue che

max f=f(1, =1,
D

+

per cui il massimo difsuD ¢ 1, e il minimo ¢ — 1. Alla stessa con-
clusione si poteva giungere notando che per (1) ¢

[ fx, MIS<IxI<1,

eche f(1,1)=1,f(-1,)=—-1.

(a) Il secondo membro f(x, y) = |yl — arctg * ¢ lipschitziano in
¥ e soddisfa le ipotesi del teorema di esistenza globale (v. appen-
dice), quindi il problema di Cauchy assegnato ammette una ed
una sola soluzione y (x) definita su tutto R, quale che sia y,.
Consideriamo il problema di Cauchy

z' = z —arctge®

(1)

anch’esso ha una soluzione z (x) definita su tutto R, e positiva in
un intorno di x = 0. Se z(x) ¢é sempre positiva, sard z(x) = y(x);
se invece z(x) si annulla, sara soluzione del problema di Cauchy
assegnato nell’intorno di x = O in cui essa € positiva. Risolviamo
dunque (1) : moltiplicando I’equazione per e~ e integrando, si
trova

) 2(x)= ¢ <y0 - f e~farctgefdt)=
0

"+—1 *log (1 +e7 ) X(—W+log2 >
= - e e - € - .
arctge 5 ogt 4 7 Yo

E’ chiaro che z(x) > 0 su R qualora sia
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>1T_+ log 2
Yo =y 2

Inoltre z(x) si pu0 scrivere nella forma

T 1
(3) z(x)= (arctg er _7@) + ey e* (log(1 +e 2*)—-log2) +yye*.

Tenendo presente che

s
arctgt>—;t Ve, 1]

log(1 +t72)>1log2 Vere]o, 1]

si ricava da (3) che
z(x)>0 V¥x<O0

indipendentemente da y4 > 0.
Se é

log 2
2 3

o< < — 4+
U
Yo 4

da (2) si ottiene

lim z(x)=—o0,

xX— + oo

pertanto z (x) si annulla in un punto x, > 0.

In quel punto & z'(x) = — arctg e*o < 0, pertanto y(x) & negativa
in un intorno destro di x,.

Risolvendo il problema di Cauchy

w'=--w — arctg e*

w(xoe)=0

si ottiene
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(4) w(x)=—e *[e* arctge’ —e*o arctge™e + log(1l + e2*) -
—log(l +e**))],

e si vede chiaramente che w(x) < 0 per x > x,, pertanto yix)=
=w(x) per x > x,. Siricava allora da (4)

E

lim  wx)=——
im wilx)=—
X =>4 o0 2

indipendentemente da x4, ¢ quindi da Yo. Un grafico approssima-
tivo delle soluzioni y (x) nei vari casi ¢ il seguente:

|
vV =1 1_ YO>70
Yo a + > log?2
Y,= Yo

/\\

log?2

T
(b) Siricava da (2) che per y, =7 + si ha

lim  y(x)=—
xX)y=-——.
m y 2

x> + o

86; Derivando l'uguaglianza 2 + g? =1 si ottiene
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ff'+gg' =0,

cioé 1 vettori (f, g) e (f', g') sono ortogonali. Dato che entrambi
sono non nulli, esiste un coefficiente A(x) tale che

(1 (F'(x), (X)) =A(x) (—g(x),f(x)) VxER,

perché i vettori ortogonali a (f, g) sono tutti del tipo (— Ag, Af).
Moltiplicando scalarmente la (1) per (—g, f) si ottiene

(2) fE)g'x) -gx)f'(x)=Ax),

cio¢ A ¢ una funzione continua. D’altra parte, considerando le nor-
me di ambo i membriin (1), si trova che

ING) =1 Vx€ER,
e cioé A(x) € {—1, 1}. La funzione A, per essere continua, deve
allora essere costante. Osservando che f(0) = g'(0) = 1, e quindi
F'(0)=g(0)=0, si ha da (2)
Ax)=1 Vx&ER.
In conclusione la (1) equivale al sistema lineare del primo ordine
f'=—¢

o
g=r
che con le condizioni iniziali su £, g, f', g ha come unica soluzione

f(x)= cosx

g(x)= senx.

87. Le funzioni

_ (log n)™*
T
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88.

sono continue e positive su R .
Usando la nota disuguaglianza

n!= o
si ha poi
e(logn)™ "
fn(x)<< )
n
Ma
e(logn)*
im S4BT 0 yieRr,
n— oo n

dunque per il criterio della radice la serie data converge in ogni

punto di R.

Per quanto riguarda la convergenza uniforme, ¢ facile accorgersi
che essa ha luogo su ogni sottinsieme superiormente limitato
A CR. Infattise ¢

M=sup A <+oo |

osservando che log n > 1 per n 2 3 si ottiene
s;lpf,, <f, M),

e quindi su 4 si ha la convergenza totale.
D’altra parte, se A non € superiormente limitato non € possibile
che la serie converga uniformemente su A, perché per ogni n si ha

supf, = lim f (x)=+oo.
A X + o0

Se x = 0 oppure y = 0, la disuguaglianza € vera per ogni costante

C=0.
Sia allora x > 0, y > 0; la disuguaglianza data ¢ equivalente alla

seguente:



89.
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(5 +F)=e

o anche, ponendo ¢t = y/x, alla

1

e :
(D o+t e V>0

Posto ¢(t) = t* + t %, la funzione ¢ & continua e positiva per
t > 0 e inoltre si ha

lim+ ()= lim (t)=+oc.

1= 0 1=+ =

Allora ¢ ha minimo positivo su ]0, + o[, e quindi la (1) & vera
per qualche costante C > 0. Per determinare la migliore costante
C occorre calcolare il minimo di ¢; osservando che

o(ty=ar* ' —pt=2-1

il minimo di ¢ si ha per

Il valore minimo € dato da

. a+b
min p(f) =@(O)=————7— .
>0 (aa bb)a_i_b_
quindi la migliore costante C ¢
1
(aa b b )a +b
C a+b

Osserviamo subito che Pintegrando € positivo. A seconda del valo-
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re di a, la funzione y =x* ha grafici molto differenti, dunque trat-
teremo separatamente i vari casi.

a<0

Se ea <1, posto
id
E, = {(p. 0):0<p<1,0<0<—4—}
si ha

ff (x? +p2)- ¥ dxdy>ff p~ Wt ldpdh =
Da

£,

- I
= j o Nt ldp=+co
4 (o

perogni N = 1.
Se ¢ a > 1, conviene distinguere i due casiN=1eN = 2.
Per N=1, posto

w
E2={(p,0):p>1,0<0<—4—},
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si ha
_ B T (Y= dp
f (x2+y2)‘dxa’y>// p‘dpd19=—[ et
D E, 4 p

a

Supponiamo ora N 2 2, a > 1; notando che y < x® < x per 0 <
<x < 1,sitrova

a

1 x
f/ x2 +3y2)y" Ndxdy = /(] (x? +y2)Ndy)dx>
D o ‘o
a

1

1 xa
>[(/ (2x2)Na’y>dx=2N / x4~ W dx
0 0

Seea — 2N <~ 1, cioé a < 2N — 1, quest’ultimo integrale ¢ in-
finito, dunque anche quello di partenza ¢ infinito.
Se invece ¢ a > 2N — 1, posto.

m
Ey=i0,0):0<0<—, p>1

si ha, notando chee y =0,

3

ff (x2+y2)"Ndxdy<// p 2N 1 dpae +
Da E

a

1 X T 1
+ x= W dy \dx = + <+4oo
joq y) 4—4N a+1-2N 7

In conclusione, per N = | P'integrale non € mai finito, mentre per
N 2 2 Dintegrale ¢é finito se e solosea > 2N — 1.

90. Il secondo membro f(x, y) = dell’equazione ¢ di

@41y
classe C!' (e quindi localmente lipschitziano in ) nel semipiano
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A= {(x, V) :y> 0} dove si trova il punto iniziale (0, a): allora in
un intorno di x = Q esiste ed € unica la soluzione Y, (x) del proble-
ma assegnato. Osserviamo che la funzione f si annulla in A sulla
parabola v = x2 4+ 1, pertanto distinguiamo tre casi a seconda che
il punto (0, a) stia all’esterno di questa parabola, nel vertice o
all’interno. Se ¢ 0 < g < 1, la soluzione ya(x) non puo interse-
care la parabola in un punto di ascissa x, > Q, perché in tal caso,
essendo

of  4x
ox (1 +x2%)?

>0 Vx>0,

per il teorema di monotonia (v. appendice) la funzione y  sarebbe
decrescente in [0, x, [, dunque

¥, (0) >y (xg)=1 +x¢>1>a =y (0),

che € una contraddizione. Allora Y, (x)<1+4+x?adestradix=0,
e in particolare v ¢ crescente. Dalla disuguaglianza

y,(x)=y, (0)=a,
valida a destra di x = 0, segue

1
fx, ya(x))<;;— ,

pertanto la funzione y, ¢ definita su tutta la semiretta [0, + oo [,
ed € crescente. Ora,

lim y (x)=I1€]a +o°],

X — + ©o
non puo essere [ << + oo  perché altrimenti si avrebbe

1
i =g

allora si ha necessariamente /= + oo ¢ quindi lim y; (x)=0. Per

X— 4+
quanto riguarda U'intervallo di definizione a sinistra di x = 0, osser-
viamo che la funzione z(x) =1 verifica
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2'(x) <f(x, z(x))

z(0) >y, (0) ,

pertanto per il teorema di confronto y (x) <z(x) <1+ x? a sini-
stra di x = 0. Allora y, ¢ crescente anche a sinistra di x = 0. Se Y,
fosse definita su ]— oo, 0], avrebbe.limite finito / € [0, a[ per
X = —oo  ma in tal caso

1/12 se 1>0

lim y; (x)= lim =

X — oo x—>— oo yZ(X)

+ o0 se [=0,

in contraddizione col teorema dell’asintoto (v. appendice). Allora
Iintervallo massimale di definizione di y, ¢ del tipo Jx , + oo,
con x, < 0. E” immediato constatare che deve essere

im p (x)=0, lim y (x)=+o .

X=X X=X
a a

Un grafico approssimativo della soluzione Y, pera= 1/2, ¢ ripor-
tato in figura.

y
y:1+X2
a>1
a<
1
Xa X Xo X

Il caso @ = 1 ¢ molto simile al caso a < 1, e non lo trattiamo.
P_assiamo al caso @ > 1: come prima, la funzione z(x) = 1 verifica
Z'(x) < f(x, z(x)) e z(0) < ya(O), pertanto a destra di x =0 ¢
v, (x)=1. Allora
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1

< — <
0y, NS T+ o <,
quindi y_ ¢ definita in tutto [0, + oo [ .
La funzwne ¥, non puo stare sempre al di sopra della parabola
y=1+x? perché in tal caso sarebbe decrescente e contempora-
neamente tenderebbe a+ o perx > + oo Allora ¥, incontra la
parabola in un punto di ascissa x, > 0. Per il teorema di monoto-
nia, y,(x) € decrescente in [0, x,[ e crescente per x > x,,.
Come nel caso 0 <a < 1, si ha poi

lim y (x)=++o0, lim 1; (x)=0

x> 4+ oo X+ o

Per x <0, dato che

1

f(x,y)>—"m>_l

si ha

(x) a—x

nell’intervallo sinistro di definizione Poiché la retta y =g — x
interseca la parabola y = 1 + x?, necessariamente anche Y, inter-
seca la parabola, in un punto X < 0. Sempre per il teorema “di mo-
notonia, y € crescente per x <X e decrescente in ] X, 0]. Come nel
caso 0 <a < 1, si vede che esiste un punto x, <0 tale che ¥, e
definita in ]x, + oo [e

lim y (x)=0, lim y;(x):"”‘x’-

X=X X=X
a a

Neicasia=1eda>1,siha y(’l (xg) =0 per un opportuno x, = 0,
e inoltre

ya'(x)>0 Vx>x,, lim y(x)—

X 4 o

Detto X il punto di massimo di y; in [xq, + 90 [, questo € un punto
di flesso di Y,
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91. Siha
x(@)=(1 ~cosB)cosf, y(B)=(1-cosf)senb

da cui
T
x(@0)=0, y(0)=0 VGE.[O,?]

La curva I’ € dunque contenuta nel primo quadrante. Si vede su-

T
bito che p(8) é funzione crescente di 8 su [O, 7J e che p(0)=0,

()

Inoltre si ha

x'(8)=sen(2cosf ~ 1), y'(6)=1+cosf -2 cos*f ,

1
da cui (essendo ¢t =~— —2— e t = 1 le radici dell’equazione 1 + ¢ -

s
-~ 2¢t* = 0) segue che, limitatamente all’intervallo 0 <8 < =

<

x'@) =0 per®@ =0 o 9:1;_
y'(@) =0 perf =0.
Si noti infine che
Yo lim tg6=0

g—=0" x(8) v-o

In conclusione la curva I" € un grafico cartesiano rispetto all’asse y,
con tangente orizzontale in (0, 0) e verticale nel punto

(H{5) S HE2)
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Nell’altro punto estremo (0, 1) la tangente a ' ha coefficiente an-
golare uguale a

yi(mj2)
x'(w/2)

Si puo ora tracciare un grafico approssimativo di I':

y 4

FNEN

Per calcolare ’area della regione D, compresa fra I" e I’asse y, usia-
mo le coordinate polari. Si ha

w2 p(6)
wer= [ [ paplas-

0 0

w2 1

= (1 6)> d0—i7r 1
/0 5 —~ cos @ 3 .

92. Seésenx <1,sceltoa € |sen x, 1] si ha definitivamente
1
sen:x +—<a ,
n

e quindi
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0sf (x)<a",

cosicché la successione converge a Zero.

T
Invece persen x =1, cioé x = 3— , 81 ha

1 n
= {1+)

che, come ¢ noto, tende ad e.
Allora (f,)) converge puntualmente in [0, 7} alla funzione

0 se x F7w/2
f(x)=

e se x = 7@/2.

Poiché ogni f, ¢ continua su {0, 7], mentre f € discontinua in x =
= 7/2, la convergenza non puo essere uniforme su alcun insieme

A CJ0, n] tale che 7/2 sia di accumulazione per A.

T -
Viceversa, se 4 C [0, m] ¢ tale che ? & A, allora

T T T
(1) AC [0,—2——6]u [74- 5,77:] per qualche 8§ € ]0,? [.
Scelto a tale che

T
sen? <7~6><a< 1,

si ha

quindi
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93.

¢ la serie converge totalmente in A4.
In conclusione la serie converge uniformemente sugli insiemi del
tipo

T
B=4U 2— , con A verificante (1)

Con il cambiamento di variabili x + y(x) = z{x) ’equazione diven-
ta

(1) Z'(x)=2 — log z(x) .

Il secondo membro f(z) = 2 — log z ¢ definito per z > 0, ed ¢ lo-
calmente lipschitziano perché di classe C!. Per il teorema di
Cauchy-Lipschitz, per ogni punto (x;, z,) con z, > 0 passa allora
una ed una sola soluzione di(1).

La costante z(x) = e? ¢ una soluzione particolare, dunque per
ogni altra soluzione sara sempre z(x) < ¢ oppure sempre z(x) >
> ¢*. Cominciamo a studiare il primo caso: sia zy(x) la soluzione
del problema di Cauchy con dato iniziale z(0) = 1. Poiché 1 <e?,
la funzione z, ¢ crescente; inoltre per x 2 0siha 1 <zy(x) <e?,
pertanto

0<f(zo(x)<2.

Allora z, ¢ definita su tutta la semiretta [0, + oo [, ed essendo
crescente ammette limite ;

(2) lim zo(x)=1€]1,e?]

xX— + oo

Non puo essere / < e?, perché in tal caso si avrebbe lim zy(x)=
X+ oo

=72 — log !> 0, che ¢ in contraddizione con (2). Allora [l = e?, e

lim  zy(x) = 0. Invece, z, non pud essere definita su tutto

x> + =

]—oo, 0]: infatti z, € concava, perché da (1) segue

e sia z, sia zy sono positive; allora z, (x) sta sempre al di sotto del-
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la sua retta tangente nel punto x =0, che ¢ larettaz=2x + 1;essa

1
interseca ’asse x per x = - ?, pertanto Uintervalio massimale di

1
definizione di z, ¢ del tipo ]xg, + o[, con — Y <xq <0 F

facile vedere che deve essere

lim zo(x)=0

X=X,
e quindi

lim zgy(x)=+0o .

x—>x0
Sia ora (a, b) un punto della striscia {(x, 2): 0<z <e? } Lo stu-
dio di z¢ ci permette di affermare che esiste un punto X, in cui
Zo(x,)=b. Poniamo

(3) z(x)=zo(x +x, —a):

allora si verifica facilmente che z(x) risolve (1), e che z(a) = b,
quindi la (3) ¢ la soluzione di (1) passante per (a, b).

P4
\ e? 41
I——
e2
1
X
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Consideriamo ora la soluzione z, (x) di (1) passante per (0, e2 + 1):

questa ¢ decrescente e maggiore di e? , pertanto dalla disuguaglian-
zalogt <t — 1 siottiene

3-zi(0)Sf(z,(x) <0,

dunque per il teorema di esistenza globale (v. appendice) la solu-
zione z; ¢ definita su tutto R.
Come prima, si verifica che

RN

lim z,(x)=e* , lim zj(x)=0

X + xX—> + oo

e, sempre con ragionamenti analoghi, che



94.
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lim z,(x)=+0o, lim z|(x)=—o0.

X —>— 00 x—>— o0

Come nel caso precedente, tutte le soluzioni di (1) che stanno so-
pra la retta z = e? sono traslate di z, (x).

E’ facile a questo punto disegnare le soluzioni y (x) dell’equazione
assegnata, facendo I'unica osservazione che y'(x) = 0 sulla retta
y=e - x

Fissato un punto (x,, ¥,), consideriamo il problema di Cauchy

() y'=x )

V(Xg)=Vo .

Grazie all’ipotesi di lipschitzianitd uniforme in R?, questo proble-
ma ha una soluzione (unica)

¢:R—=>R.

In particolare si ha
(2) ¢'(xg) = [ (x0. Y0 ) -
Fissato ¢ € R, poniamo

Vx)=px t+c):
per ipotesi ¢ ¢ soluzione dell’equazione (1), cioé
(3) P'(x +e)=7f(x, plx +¢)) VxER.,
Perx =x, — ¢, la (3) diventa

¢'(xg)=f(xg — ¢, ¥o)
che, confrontata con la (2), diviene

Flxg =€, vo)=f(xg,20)-
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9s.

96.

Da quest’ultima uguaglianza, per larbitrarieta di x4, ¥4 € ¢, si ri-
cava la tesi:

fx, »)=1(0,») V(x, y)ER?,

e cioé f non dipende da x .

Cerchiamo di stabilire prima di tutto per quali valori di (x, y) il
termine generico della serie ¢ infinitesimo per n —> oo . A tale scopo
osserviamo che, se a e b sono due numeri reali non negativi, si ha

0 se a=b
(1) lim Ian?bnll/nz

max{a,b} se a¥b

Infatti se @ = b si ha [a" — b" | = 0, mentre se a # b, supponendo
per fissare le ideea > b 2 0, si ha

b nli/n
" —b" |17 =g 1-(—) )
a

cosicché, notando che lim (b/a)" =0, si ottiene la (1).

n—

Da (1), con a =x? e b=y?, si deduce che il termine generico non
¢ infinitesimo se (x, ) non appartiene all’insieme

D={Ix|= Iyl} ,

il quale non € altro che 'unione delle due bisettrici degli assi car-
tesiani.

Invece su D tutti i termini della serie sono nulli, e quindi la serie
converge totalmente su D.

Con il cambiamento di variabile z(x) = y(x} — x, '’equazione di-
venta

(1) Z'(x)=senz(x) - 1.
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Poiché¢ il secondo membro ¢ limitato e di classe C!, la soluzione

di (1) passante per (0, a) € unica e definita su tutto R. Osserviamo
che le costanti

s
z(x)=7+2k7r, kez,

sono soluzioni di (1): inoltre, se z(x) risolve (1) con dato iniziale
z(0) =a, allora la funzione

v(x)=z(x)+ 2km

¢ la soluzione di (1) che passa per (0, a + 2k7). In conclusione,

3 T
possiamo limitarci a studiare il caso — 5 T<a< ~2— , € allora la

g 3
soluzione z(x) rimarra sempre fra le due costanti ? e — 7 .
Da (1) si ricava subito
Z'(x) <0 YxER,
quindi le soluzioni sono decrescenti. Posto
lim  zo)=ge|-—r T
im z{x)= - — 1,
X— + oo 2 2
37 . . . , o
deve essere £ = — -2— , altrimenti da (1) si ricava che z'(x) ha limi-

te diverso da zero, in contraddizione con il teorema dell asintoto

. T
{v. appendice). Analogamente, lim z(x) =~2- .

X—— oo

Detta z, (x) la soluzione di (1) verificante

m
Zo(o)zﬁ—,)_,

si ha che la funzione

(2) Z(x)=—7 — zo(— x)
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ﬂ .
risolve (1) e passa per (0, — —2—), pertanto coincide con zy(x): si

ha allora da (2)

g ( ™
Zo(— x) +5‘:_<Zo(x) +—2->,

T
cio€ la funzione z,(x) + —2— ¢ dispari. Questo significa che il grafi-

T
co dizy(x) € simmetrico rispetto al punto (0, —7)'

3 m
Infine, I'immagine di z, ¢ |- 2— I, ? [, quindi per ogni a €
T
SHE o —2—[ esiste un punto x_ tale che Zo(x,) =a. Posto allora

z(x)=zo(x +x,) ,

la funzione z(x) risolve (1) e passa per (0, a) : le soluzioni di (D
sono dunque tutte traslate di z4(x).

2

— ?

rola

3n

2
Osserviamo che ’'equazione (1) si puo risolvere esplicitamente, di-
videndo per (sen z — 1) e integrando rispetto ad x, ma |'espressio-
ne che si ottiene non ¢ di facile studio. Dall’esame delle soluzioni
di (1) si ricava 'andamento delle soluzioni dell’equazione di par-
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tenza; 1 massimi relativi sono sulle rette ¥ = x + 2kx, i minimi
relativisulle y=x + 7 + 2km.

v}

/
Y/

y=x-7 g

97. Sommando e sottraendo termine a termine le due equazioni, dal
sistema dato si passa subito al seguente:

' +2y+3x=20
(1)
0

il

x'—y —x

Derivando la prima equazione ¢ usando la seconda si ottiene al-
lora

y'+2y +3y +3x=0,
cio¢, utilizzando ancora la prima equazione di (1),
yi+y+y=o0.

Si ha allora, con facili calcoli,
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3 3
y(t)=<A cos—\—/2—t+Bsen\2/—t> e 12

e quindi, ritornando alla prima delle (1),

~5A - B3 3 -
x(t)=< V3 os\/3t+ SBHAVE sen\/g-t>e”’/2.

c
6 2 6 2

98. Possiamo supporre di aver esteso f per continuita, ponendo f(0) =
= 1. Un grafico approssimativo di f ¢ il seguente (molto fuori

3w
scala: in realta f( 3 > = —0.002):
Yy
] y = se:x e ¥
/-\Tt — o

Definita

X
glx)= / f(ndte,
0
la funzione g risulta di classe C?, e dobbiamo massimizzare la

quantita g(b) — g(a).
Dato che f & pari, la funzione g ¢ dispari, quindi

sup [g(b) ~g(a)] =supg — infg=2supg ;

inoltre, se x, ¢ il punto di massimo di g, si avra

b X
max/ f(t)dr=g(xo)—g(—xo)=/ fodt.

— X4
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Dalle relazioni

g(xe)=0, g'(x0)<0,

necessarie perché x, sia di massimo, si ricava

senxg =0 , xo %0
COs X ¢
— <0,

Xo

dunque x, deve verificare la condizione
xo=km, conk €{1,3,5,. .. JU{-2 4 -6}

Osserviamo che per ogni 7 € N si ha

(n+2)m (n+1)w
j sent 7 g = f sen(t + m) o G4 gy =
(n+1)n 4 nn f+7T
(n+ )m sen t
:-f (t+m) et ™’ ar.

nm

Poiché sen r ha segno costante in Jnw, (n + 1) 7[, si ottiene

(n+ )7 '
[" o

(n+1)m

(n + 1) Isen ¢ |
*f Grmerrn IS
nm

(r+ D7 |gent |
te

nw

(n+ 1)
[ £ dt‘

nm

Questa disuguaglianza implica

3T+ 2n7w

f f()dt<0  VYnEN
T+ 2nm
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99.

cosicché in particolare g{m + 2n7) < g(m) per ognin > 1, e an-
che
—2nw 2w
J(Hde <0 VneN.,

~2nm

(da cuig(— 2nw) <0 perognin>1).
Allora g(x) < 0 per x <0, e perognix € |7 + 2nnw, 37+ 2nw|
cgx)<glm+ 2nm)<g(m).

Il punto di massimo cercato ¢ dunque x4 = 7, quindi
b T
mw(/ fU)dN=/ Fydt .
a —T

Intanto notiamo che f non & limitata su R?: infatti

lim f(n, n)= lim n*\/e=+o

n— + oo n-—+ o
Siccome. ponendo f(0, 0) = 0, la funzione risulta continua e
(1) flx, ty)=1*f(x, y),
il massimo e il minimo di f su D esistono e sono raggiunti sul bor-
do di D : infatti se (x, y) ¢ interno a D ¢ f(x, ¥) > 0, basta appli-
care (1) con f = ————> 1 per ottenere che (x, ¥) non é di
IxI+ 1yl
massimo, e analogamente per il minimo.

Osserviamo che f(— x, — y}=f(x, »), per cui ¢ sufficiente cercare
il massimo e il minimo di f sui due segmenti

S, = {x>0, y=20, x+yp= 1}
L

0, piu precisamente, il massimo su S, (dove f & positiva), e il mini-
mo su S, (dove f ¢ negativa). Notiamo che su §; ¢

S, = {x<0, y20, y—x

Xy
x+ ) “2xy 1—2xy

fx,y)y=xye =xye  =g(xy)

cong(t)=te/ =20
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Inoltre, sempre su S, , si ha

l

_ 1 2
3 (1 -1/2),

1
O0<xy=x(l-x)< =2—

mentre per 0 < ¢ < la funzione g(¢t) & crescente, in quanto la

4.\.|~—

sua derivata é

In conclusione ,

1 e 11
max f= max = max g(t)=g<—>=__:f<_, __)
b ! 0<t<i~ 4 2

Analogamente, si trova che il punto di minimo per fsu S, ¢&

11 o
3 2),qumdx

o __l_i: 1
”,;mf'”;t”f*f< 2’2) N

100. Distinguiamo i due casj x| <1lelx|>1.Per Ix]<1siha

2 - 2
= x" [x | = 1
5 -y <) Sce<ton,
n! i ! n!
n=0 n=0 n=0

pertanto la serie converge totalmente sy [—1,1].
Per Ix|> 1 si ha invece

o xm? , x In? _ [xIn
lim , = lm - = lim =+ o0,

n— o 7! n-—> o N J1—> o0 n

quindi la serie non puo essere convergente,
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101. 11 cerchio assegnato ha, nel piano (x, z), centro in (1, 0) e raggio

Non

Per ogni @ € [—+/2, v/2] indichiamo con S larea della regione
(piana) ottenuta intersecando il solido con il piano {Z =aq ;. Tale
regione € un cerchio di raggio x, = 1 +4/2 —aZ per la| < 1, men-

A . N oyl = a1
tre per lal > l_e una corona circolare di raggi X, 1 —/2 —a
¢ x,. Pertanto si ha

(1 +y/2 -a*) =73 —a* +2/2 —a*) se la|<1

Il

S

a

; 7[(1 +/2 —a2)? — (1 —\/2 ~a2)? | =dn/T —a>

S
se 1 <|al<{/Z.

fl

11 solido € simmetrico rispetto al piano {Z =0 }, dunque il suo
volume V ¢ dato da

Jz
V=2f Sada.
0
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Osservando che

V2 2 ’

a
f\/2 — a2 da = arcsen +

si ha in conclusione

1 ND)
V=2rm / (3 —~a*+2/7=a%)da+ 87 [ V2 —-atda=
1

0

3 11 T m 1 _1077 5
=27 —3—+—2 +87r<?*?>-— p + 37“ .

ra

102. Sia « una soluzione dell’equazione differenziale
(1) u'(x)=rf(ux)).

Indichiamo con 7 = Jo, B[, dove —o0 <a <<+ o, I'intervallo
massimale di esistenza della soluzione u; dobbiamo provare che,
nelle ipotesi fatte su f, si ha

o =—00

A tale scopo osserviamo che per 1'equazione (1) vale il teorema di
esistenza e unicitd locale, ¢ che la funzione identicamente nulla &
una soluzione di (1). Per la crescenza di f e per I'ipotesi f(0) =0
si ha poi

(2) f()>0 pert>0, f(£)<0 pert<0.

Allora necessariamente

(3) ux)=0 vVxel
oppure
(4) 4 (x)<0 Vx€I-

Nel primo caso si ha, per (2),
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103.

u'(x)=f(u(x)=>0,
pertanto # ¢ non decrescente, dunque per (3) esiste finito

Ug = lim  u(x).
X"a“

Se fosse a > — oo , risolvendo il problema di Cauchy
u'=f(u)
u(a) =ug

potremmo prolungare # a sinistra di x = «, contraddicendo la mas-
simalita di /. Nel caso (4) il ragionamento ¢ analogo, dunque neces-
sariamente o = — oo,

Si osservi che relativamente ad f abbiamo usato solo la lipschitzia-
nita e lipotesi (2).

Ricordando la disuguaglianza

Isen al < | o

si ha subito che

Ix +y3
x2 + vt

Lf(x, )<

(xt+1yD® _ @Qyx? +37)° -
< < — 2 2
STy S g oVE R

per cui

lim fx,v)=0.
x.y)~(0,0)

Ne segue che f ¢ continua in (0, 0); siccome essa € poi ovviamente
continua in R\ {(0, 0) }, la funzione f ¢ continua su tutto R2.
Osservando che
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XP 4yt —; [+ )+ -1,
conviene porre
x+y=§ , x-y=nq
e studiare la funzione
0 in (0,0)
g€ n)=
2L« @ oo

sul cerchio C' = {52 + 7?2 <1 }
Poiché g(— &, n) = — g(é 1), bastera calcolare max g, in quanto
ok

mcm g=— néa,x g. Inoltre su C' ¢ 0 < §? < 1, quindi si ha sen £? >

= 0. In conclusione

2§ sen £2
= max ————
n}a;xg(é,n) o %, o
Ora si ha
d seng? cos§?
(1) = (28 —tg &)

¢ & £
e la funzione 2¢ — tg ¢, sull'intervallo 10, n/2[, é concava, nulla
in 0 e positiva per £+ = 1 (in quanto 2 —tg 1 > 2 — tg %— =
=2 —\/3_> 0), dunque ¢ positiva in ]0, 1]. Allora la derivata

(1) é positiva in ]0, 1], e il massimo cercato € 2 sen 1, mentre il
minimo ¢ —2sen 1.

104. 11 termine generico della serie é non negativo. Inoltre, posto

NS
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dalla nota disuguaglianza log f << ¢ segue

[x —yIn 2r)"
u_log(n_*_xZ +y2)<(r) (n+r2)<
n! n!
2r)" 2Py -1
<( ) (n+nr2)=2r(1+r2)L
n! (n— D!

La serie data converge allora in ogni punto di R?, anzi converge
totalmente sulla palla {x2 +y? < r? }, e quindi su ogni sottinsie-
me limitato di R?. Si ha convergenza totale anche sulla retta x =y,
ma non vi puo essere convergenza uniforme su tutto R?, perché,
scelto ad esempio y =0, per x > + o sji ha

n

lim log(n +x?)=+o V¥n

x— + oo n!

D’altra parte vi sono altri insiemi, oltre a quelli indicati, sui quali la
serie converge uniformemente: ad esempio, & facile verificare
che si ha la convergenza uniforme sull’insieme

= — <————
4 x = I 1 +x% + 2

105. L’equazione ha senso per x + y # 0. Moltiplicando ambo i membri
per x + y si ottiene

ywHxy' +y—x+2=0,

cioé

d_(27, 4 2x)=0
dx<2 ¥ x> '

Si ha dunque, per le soluzioni dell’equazione, la rappresentazione
implicita
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2 x?

(1) Xy oS+ 2x=k,

~

con k costante reale.
E’ facile vedere che la (1) rappresenta, al variare di k, il fascio di
iperboli di centro (1, — 1) e di asintoti

Y1/ =D =1, y=(=1+y/Dx -1 -1

infatti con il cambiamento di coordinate

x=X+1, y=Y —~1
la (1) diventa
Y? X?
—+ XY - =k -1
2 2 ’

QVVEIO
(Y~ (=1 =VDXIY — (1 +/DX}=20k - 1),

Da (1) si ricava anche la rappresentazione esplicita delle soluzioni:
per k > 1 si hanno le soluzioni globali

Vix) = —x —/2[(x - D* + k -1},

Ya(x)= —x +/2[(x - D? +k - 1],

mentre per £ <X | si hanno soluzioni della stessa forma, ma definite
solo sulla semiretta J— oo [ — /T — k[ oppure sulla semiretta

11 +/T =k, + o [. Un grafico delle soluzioni (nel solo semipiano
¥y > — x) ¢é il seguente:
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1,-1

106. Per definizione, f ¢ convessa su R? se e solo se per ogni (x;, ¥, ),
(x5,¥2),edogni \, u €0, 1] taliche \ + u=1,si ha

FQxy Fuxy, Ay ) )SN Qe yy) +uflx,, y,) .

Cio equivale chiaramente a dire che tutte le restrizioni di f alle
rette sono convesse come funzioni di una sola variabile, cioé che la
funzione

pit=>f(x+th y+tk)

€ convessa per ogni scelta di (x, ) e (A, k). La nostra ipotesi signi-
fica che sono strettamente convesse le restrizioni di f alle rette
parallele agli assi cartesiani, mentre nulla si dice delle altre rette:
viene naturale di pensare che f non sia, in generale, convessa. In-
fatti, supponendo per semplicita che f sia di classe C?2, I'ipotesi
equivale a

(1 f,.>0 ., f,, >0,

mentre la convessita di f equivale a ¢''(#) = 0, cio¢ a
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) WS, +2hkf, + K, >0 V(K.

E’ facile trovare esempi di funzioni che verificano (1) ma non (2):
la funzione

fx,»)=x*+»* +\xy,
verifica (1), ma per A < — 2 non verifica (2). Un esempio & dunque
fl, y)=x* +y* - 3xy.

107. 1l problema proposto equivale a trovare il punto @, sull’iperbole
xy = 8/9, di minima distanza da P= (0, 1).

Il punto Q si trova intanto certamente sul ramo v dell’iperbole
contenuto nel primo quadrante, in quanto ogni punto dell’altro ra-
mo dista pitt di 1 da P, mentre vi sono punti su v, come ad esem-

8
pio <— , l> , che distano meno di 1 da P.

9
Si tratta dunque di trovare

min {x* + (v ~ 1)*:x>0,y>0, xy =8/9}.

Applicando il metodo dei moltiplicatori di Lagrange si ottiene il
sistema
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2x = Ay
2y —2=Ax
xy = 8/9

Sostituendo la seconda equazione nella prima si ottiene 2x =
=AAx + 2)/2, cioé

(N (4 —N\)x=2AX.

Moltiplicando questa uguaglianza per y e usando la prima e la terza
equazione del sistema si ha poi

8
—9—(4—)\2)=(4—>\2)xy=27\y=4x
cioe
2
(2) x=?(4ﬂ)\2) .

Dovendo essere x > 0, si ottiene |A] <2, pertanto da (1) si ricava
A > 0; in conclusione deve essere

O<AK2.
Sostituendo (2) in (1) si ha, con facili calcoli,
A -8\ 9N+ 16=0.

E’ facile osservare che A =1 ¢ una soluzione, ed ¢ I"unica in 10, 2[;
infatti la funzione A = A* — 8X\2 — 9\ + 16 ¢& decrescente in tale
intervallo dato che la sua derivata é

42 — 160 —-9=4XA(2? —4)-9<-9 VAE]O,2[.

Allora l'unico punto stazionario di x2 + ( — 1)? su v (e quindi
necessariamente il punto di minimo) si puo ricavare da (2), che

2
da x =—3- , e dall’equazione diy, che da y =—3— .
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109.
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L’equazione del cerchio tangente ¢ allora

3.
9

4 1
2 _ 2=__+_
xX+0-D 9 9

Ponendo f(x, ) =x senx — y sen y si ha

of
—(1,1)=—senl —cos 1 <0,
0y

quindi, per il teorema del Dini, esistono un numero positivo & ed
una funzione ¢ di classe C! tali che

[Ix — 11<8, [y —1[<8, f(x,y)=0] = y=9p(x).
Poiché ovviamente 'uguaglianza
xsenx —(x)senp(x)=0

¢ verificata dalla funzione p(x)=x, e dato che (1) =1, si conclu-
de che, in un intorno di (1, 1), il luogo di zeri cercato coincide con
la bisettrice del primo quadrante.

11
I1 secondo membro f(x, y)=e* ¥ ¢ definito e di classe C! sul pia-
no privato degli assi coordinati. Siccome nel punto iniziale (1, 2) ¢
x >0,y >0, d’ora in poi ci restringeremo al primo quadrante. Per
il teorema di Cauchy-Lipschitz il problema proposto ha soluzione
unica yo(x), definita in un intorno di x = 1. Poiché f(x, y) > 0,
la soluzione y, (x) € crescente. Osserviamo che la funzione z(x) = x
risolve I’equazione, quindi da ¥, (1) > | segue

(1) Yo(x)>x

sull'intervallo di definizione di y,(x). Consideriamo la funzione
(definita per x > 0)

fx, ) se y=2x
glx, y)=
1 se y<x.
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Essa ¢ lipschitziana in y nel semipiano {x > 0}, e da (1) segue che
Yo (%) risolve anche il problema

Y'x)= g(x y(x)

(2)
y(l) = 2.
Essendo poi
(3) 1 <glx,y)<ell*,

per il teorema di esistenza globale (v. appendice) la funzione y (x),
soluzione di (2), é definita su tutta la semiretta O, + oo [ .
Da (1) segue subito lim yy(x)=+ oo, equindi lim yy(x)=1.

X + o x—>+ o
Essendo perd yg(x) > 1 per la (3), la funzione y,(x) si allontana
dalla retta y = x.
Per la monotonia di y,, esiste il limite

1im+ Yyo(x)=A€EI[O,2] .

x—0

Se fosse A > 0, sarebbe y, (x) > A per x > 0, quindi

1 1 1 1.

yox)=e* K0 >t R =

_1 1 -1 1
= ¢ }\ex >e Ao — ’
X
da cui, integrando frax e 1,
. _1
2 —yo(x)>—e * logx,
e infine
1
A=lim yox)<lim_ e *logx=—oo,
x—=>0 x>0

che ¢ assurdo. Allora necessariamente A = 0.
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Con qualche calcolo si pud inoltre mostrare che yo(x) € convessa
per x abbastanza piccolo, e che il limite di yg(x) per x = 0%, che
esiste, non pud che essere 1. Un grafico approssimativo della solu-
zione é il seguente:

] -

y (;.g\guo ‘1‘53\
79 Jon
(T o
i"‘ <, 1O
Ay
\\‘» . ,_a/L}’,'f)

RN e
y =X
2
1 X

110. Per definizione di convergenza uniforme, per ogni € > 0 esiste
T €N tale che

sup 1P (x)|<e Vn=n.
xR n

Scegliendo ad esempio € =1 si trova allora
(D |Pn(x)[<1 Vx€R Vun>m,

e da cio si deduce subito che Pn ¢ costante, perché se il grado di
P, fosse maggiore di zero si avrebbe

b

lim P (x)l=+oo

X + oo

in contrasto con (1).
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111. Dato che ¢

X n
fim (1+—> =e*  Vx€ER,
n

n— oo

la successione (fn) converge puntualmente a zero su tutto R. Inol-
tre é fn (x) =2 0 per ogni x.
Riguardo alla convergenza uniforme, osserviamo che

lim fn(x)=+oo YrneN,

X—> + oo

pertanto non vi puo essere convergenza uniforme su R* né su alcun
sottinsieme illimitato 4 C R*, in quanto per un tale A4 si ha

sup f, =+ oo VnEN.

Se invece A ¢ limitato, cioé se esiste a > 0 per cui
0<x<a YxEA4,

si ha la convergenza uniforme su A4: infatti

, X n-—1 1 X n—1
fn(x)=ex~n<1+——> —=e"—<1+—> 2f (x)=0,
n n . n n

cosicché la funzione fn € crescente su R*, e quindi
supf <f (a).
A n n

La convergenza puntuale di fn (x) in x = a comporta allora la con-
vergenza uniforme su A.

112.PostoD, =D N {x >0} si ha
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X7
113. Indichiamo con f(x, y) = ———-—i—z il secondo membro del-
Y

1 + x2
I'equazione. Passando in coordinate polari si ha

p |
(N lf(x, ) T4 7 cos ¥ — sen 9|

I
VIR

Inoltre, la funzione f ¢ di classe C! su tutto il piano, quindi per

‘ogni punto (x,, o) passa una ed una soluzione dell’equazione,

e ogni soluzione ¢ definita su tutto R.

Osserviamo che le soluzioni decrescono quando si trovano nel se-
mipiano {(x, y)y:y>x }, crescono nel semipiano {(x, )y <x }
Inoltre ogni soluzione taglia la retta y =x: infatti, scelta una solu-
zione y (x) passante per (X, Vo), s€ € Yo > x4 da (1) segue che

7
y(x)<y0+7(x—x0) Vx=x,

3

pertanto y(x) attraversa la bisettrice in un punto a destra di Xg. Se
€ yo <Xxq,invece, sempre da (1) si ottiene

yx) =y, +g(x~xo) Vx<x
e y(x) attraversa la bisettrice a sinistra di x,. Per il teorema di
monotonia (v. appendice), allora, ogni soluzione y (x) attraversa la
bisettrice in un punto x, ¢ decrescénte per x < x e crescente per
x > X. Studiamo il comportamento all’infinito delle soluzioni:
poiché hm (x2 +»%(x))=+o,siha

3T T
lim 1)/ (x)|< lim NENEED] ) _

x> % oo x>t 1 4+ x2 +y2(x)

0>

Inoltre, per la monotonia di y(x) sulle due semirette ]— o0, x|
e ]x, + o [, esistono, finiti o infiniti, i limiti

lim yx)=¢", lim y@)=2".

X—> —oo X +

Proviamo che entrambi questi limiti valgono + oo : se fosse £ <
< + oo, sarebbe
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2) ye)<g Vx>=x,
e quindi

s x — Q" Vx5
y(x)/1+x2 + 2 (x) xeE

_ x
Perx>=|X|+1+2 |Q"|sihax-52">-£-el+x2 + 32 (x) <

< 3x?, dunque per tali valori di x si ha anche

1
! > _—
yi(x) 352 ox

da cui
1
y(x)>c+—glogx,

in contraddizione con (2). Per x = — oo il ragionamento ¢ ana-
logo.
Un grafico approssimativo delle soluzioni ¢ il seguente:
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114. Osserviamo anzitutto che, se y(x) = ¢ & una soluzione costante
dell’equazione, necessariamente & ¢ = Q.

Sia ora y una soluzione non costante dell’equazione: esistera

qualche punto x, nel quale € y'(x,) # 0.
Poiché la funzione

y(x)=y (- x)

¢ un’altra soluzione dell’equazione, e y'(— Xo) = — y'(xy), possia-
mo supporre (rimpiazzando eventualmente y con ) che sia

y’(xo)>0~

Proveremo che in tal caso y non pud essere definita su tutta la
semiretta [xq, + oo [. Infatti, se cosi non fosse, posto

z(x)=y'(x),

dall’equazione differenziale data si ricaverebbe

() z'(x)=z%(x),
e quindi in particolare z'(x) > 0, da cui anche
Z(x)=Zz(xy) >0 Vx=2x,.

Possiamo allora dividere per z2 nella (1), ottenendo

d B 1 > Vo>
dx ( Z(x)>/ X ZXg ,

e quindi

1

Z(xo) z(x)

2x—-x, Vx=x4.

Ma da questa disuguaglianza segue

x——1—< 1
z(x0) 0 z(x)  z(xg)

Xo Vx=x,

che ¢ assurdo.
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115. Per x =y =z =0 la condizione é soddisfatta indipendentemente da
a. Posto

[y, 2)=x° +ay +2°

si ha, per ogni (x, ¥, z) €C \ {(0, 0, 0) }

) £, z>=z3fa<—j—,1, 1) :

z

x )
il punto <——-' A , 1> appartiene alla “‘base superiore” del cono:
z z
essendo 0 < z < [, la (1) permette di limitarci a verificare le disu-
guaglianze solo su C N {z =1 }, cio¢ di trovare per quali « si

ha
(2) —1<x3+ay®* <1 perx?+32<1.
Passando in coordinate polari, la (2) diventa

p3leos®* 0 +asen® 9IS 1 Vp€[0,1] VOEO, 27
e quindi é sufficiente studiare la disuguaglianza
(3) lcos® 6 +asen® 0|<1 VO€[0,27].

Una condizione necessaria per (3) ¢ lal< 1, altrimenti la disugua-
4
glianza ¢ violata per 6 = 7 . D’altra parte, tale condizione ¢ anche

sufficiente perché, se lal<1, si ha

fcos® @ +asen® ] <|cosfPP + lallsend|?® <
<lcosB® + |sen b <cos* § +sen? H=1 .

La condizione cercata é dunque lal<1 .

116.Per0<x<ler€[0,x]siha0<x" <1, e quindi
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O<sen(x"t)<x"t.

Pertanto, essendo

* X"t n+1
/ dt=x ,
A t

si ottiene la disuguaglianza
1§98 ()<fn(x)<nzx’“r1 Yxejo,1].
Da cio segue immediatamente che

lim fn(x)=0 per 0<x<1.

n— o

Per x = 1, si ha invece

sen t

1
£, ()=n? / dt,
0

che diverge per n = oo . Allora la successione converge puntualmen-
te su {0, 1] .

Vediamo per quali 4 C{0, 1[ si ha convergenza uniforme. Ogni
f, ¢ continua su [0, 1], dunque, se f — 0 unmiformemente in 4,

deveessere f —~0inA equindid (0, 1], cioe
(2) AC0,1~-38] per qualche 6§ €]0, 1.

Viceversa, se A verifica questa condizione, da (1) si ricava che

sup f, <n*(l -8+t
A

e il termine destro ¢ infinitesimo per n = oo .
In conclusione gli insiemi A su cui vi & convergenza uniforme
sono quelli del tipo (2).

: : : : 1
Studiamo intanto il luogo di zeri della funzione f(x, y) = 28X

log x
y

. Posto
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T={(x,y):x>0,y>0,xlogx=ylogy}_,

I'insieme T € simmetrico rispetto alla bisettrice del primo quadran-
te, quindi possiamo limitarci a individuare

T+={(x,y):y>x>0,xlogx=ylogy}.

Notiamo subito che la semiretta y = x ¢ tutta contenutain 7 . Lla-
funzione ¢ () = ¢ log t ha un grafico del tipo seguente.

y=1tlogt

o|—
-

|
|-~

1
Per x > — , esiste un unico punto ¥ = x tale che p(¥) = p(x), e
e

1
questo punto ¢ proprio ¥y =x. Per 0 < x < —, invece, oltre alla
e
soluzione y = x ’equazione ¢(¥) = ¢(x) ha anche un’altra soluzio-
ne, ¥ =+y(x), con queste proprieta:

1 -
- <) <1, lim y(x)=1, lLm y(x)=—
x—>0
x=(2)

y(x) & decrescente .

1
Inoltre ¢'(r) = 1 + log ¢ & diversa da zero per ¢t # — , quindi, per
e
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il teorema del Dini, 1a curva v(x) ¢ di classe C!; I'insieme T ¢ allora
del tipo seguente .

y xlogx =ylogy

\

Passiamo ora al problema dj Cauchy, il cui punto iniziale

1 1

<—-, —) ¢ proprio il punto singolare di 7. Poiché f(x, ) ¢ di

e e

classe C! sul primo quadrante, il problema ammette una ed una
|

sola soluzione y(x), definita in un intorno di x = — . Dobbiamo
e

studiare questa soluzione nella striscia
1
S= {(x,y) : O<x<—e— , y>0}.
Osserviamo che si ha

dx x? xy x%y

1
Cylogy —x)=—— (@) - x)
x*y



210 Risoluzioni dei problemi

1
Poiché ¢(¢) = — ? , si ha allora, in S,

x  x?y \e ) '

Per il teorema di monotonia (v. appendice), la soluzione y(x) &

1
allora decrescente per x < —e— , € rimane al di sotto della curva y =

1 1
=v(x). Osservando che — <y (x) < 1 per x < —, si ha poi
e e

llog v | [log x | 1
ey <—22 4 8% L llogxl,
X ¥y X

quindi il teorema di esistenza globale (v. appendice) assicura che
1
¥ (x) € definita su tutto ] 0, —].
e

Posto
lim y(x)=ae]—,1],
x=0" e

proviamo che ¢ A = 1: se cosi non fosse, scrivendo per brevita
— log A =¢€>> 0, si avrebbe infatti ’

1
! —1<logy(x)<—e Vx<:

—<y@)<A,
e

e quindi

1

€ .
'X)<——-elogx Vx<—
V(@) <~ —=elog -

Integrando questa disuguaglianza su ] x, -e— [ si ricava

1
——yx)<elogx +e(xlogx —x)+e+2,
e
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da cui A = 4 oo, che & una contraddizione. Da X\ =1 segue subito

lim y'(x)=—o0 eilgrafico diy(x) ¢ il seguente.
x=>0
y
1
Y (x)

a

e
1 X
e

118. Posto

Yy = [ (o),

0
Iipotesi nell’implicazione (*) diventa
) Y(0)=0, Y'X)<ax)+bx)Y(x) Vx=0,

e la tesi diventa

) Y'(x) <a(x) exp (/ b(t)dt> Vx>0,
0




212 Risoluzioni dei problemi

(i) Se a(x) e b(x) sono costanti, la (1) implica

—(Y(x)e 2*1=[Y'(x) - bY(x)]e~P* <ge~P* ,
dx

da cui, integrando su [0, x], si ricava

a
Y(x)e b <—? (e % — 1)

e quindi
a
Y(x)<b—(eb" ~-1.

Sostituendo nella (1) si ottiene allora la (2).
(ii) Se a(x) e b(x) sono funzioni continue e positive, ponendo

X

B(x)= f b(t) dt
0

si ottiene

d
- [Y()e B =[Y'(x) - b(x) Y(x)] e B <q(x)e B
X

e quindi, integrando ,

X

(3) Y (x)e~ B < f a(t) e BO gy |
0

Ora, se a(x)/b(x) ¢ una funzione non decrescente, si ha

a(r)=3@— b(t)<a—(x—) b(t)  VtE[0,x]
b(t) T h(x) ’

e quindi, ricordando che B(0) =0, da (3) segue
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- B(x) _d—@ ¥ — B(1) =£.@_ __ p— B(x)
Ve #e <o /0 b e O dr == 1 - e B,
cioe

Y(x)<Zg§; [eBC) 1)

Sostituendo nella (1) si ottiene ancora (2).
(iii) Nel caso generale, I'implicazione (1) = (2) ¢é falsa: ad esempio,
se si sceglie

bx)=1, a(x)=e ~*

X _ e—X
la relazione (1) € verificata da Y(x) =senh x = —T—— , in
quanto
Y'(x)=coshx=e"* + senhx =a(x)+ b(x) y(x) :
ora

a(x) exp(/ b(t)dt> =1,

[

mentre Y'(x) > 1 per ogni x > 0.

Posto

si ha
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quindi la serie data converge in ogni punto di R, anzi converge
totalmente su ogni sottoinsieme limitato A di R.

Sui sottoinsiemi non limitati di R, invece, la convergenza non
puo essere uniforme: infatti, per

T — m
3n_74_<x<3n+1 .

4
si ha
— V2
L@
ed essendo
x T

0 <§,;‘<-Z Vk>n
si ha anche

f, x)>0 Yk>n,
di modo che
(1) AR \f_

k=n

Poniamo allora

In=[3n %’3'1-‘-1—2—:' .

Se 4 non é limitato superiormente (il che non ¢ restrittivo perché
ogni f, ¢ una funzione dispari), si ha

AN In F ¢ per infiniti n ,

Kig
in quanto I'unione degli € la semiretta [T , + oo[. Per ogni
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nE€Nsian>n taleche A NI # ¢, esia
XEANI .
n

Allora per (1) si ha

oo eo— _ . VT
xsg/p; 2 fk(x)/,;,,fk(x)>2 5

il che implica che la serie non converge uniformemente su 4.
Passiamo ora al limite proposto. Essendo

S(0)=0,
e quindi
oSy . Sx)—S(0)
lim — =lim ———— ,
x—=0 X x—0 X

basta dimostrare che S & derivabile, e calcolare S'(0). Ora si ha

x, (2)”
<i{=} ,
3" 3

cio€ la serie delle derivate di f,, converge totalmente su R. E’ noto
allora che S(x) € derivabile e che

S©=Y 70=Y (%) =3,
n=0 n=0

n

Cos

1 )l =—
n x 3n

Il limite cercato ¢ allora uguale a 3.

120. Si ha

of of
——=2senxcosx , ——=seny+ycosy.
ox oy
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T W
L’equazione tg y = — y possiede, nell’intervallo [— ? , —2- , la so-
la soluzione y = 0 (infatti la funzione tg y + y € positiva per
y > 0 e negativa per y < 0), quindi nel rettangolo { Ix|<m ly|<
<m/2} siha

of =0 =0 == =4
o perx=0, x _2,x_77
)

—f=0 perx=0.

a9y

Nei tre punti (0, 0) e (+ 7, 0) la f non vale 1, mentre f (% -g— , O>=

= 1, cosi I'insieme in esame, che chiameremo I', ha come punti sin-
golari solo

D’altra parte, osservando che

fO,y)=fx, —y)=f(=x»)

e che

f 7T+ f i 0< <7T
- T X, = - X, € SR XS,
<2 J’> <2 J’> per )

si vede che I' & simmetrico rispetto agli assi cartesiani e alle rette

T
x == —2— , cosicché possiamo limitarci a studiare I' sul quadrato

b 3]

Notiamo che la funzione ¥ (¥) = y sen y ¢ strettamente crescente
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sull’intervallo [0, 7/2], in quanto prodotto di due funzioni positive

id T
strettamente crescenti; allora, detta ¢ : [O, 5} - [0, 5 Pinversa
di y,sihasuQ

sen’x +yseny=1<+=y =p(cos? x) .

T
Dunque I' N Q ¢ il grafico della funzione g: [O, 2—] — R definita
da
g(x)=yp(cos? x) .

La funzione g ¢ decrescente, in quanto @ € crescente mentre
cos? x & decrescente; inoltre

AT
g(z =p(0)=0,

perché y sen y =0 per y =0, mentre

g0)=p(l)y=yp*,

dove y* ¢ tale che
T
0<y*<5— , y¥seny¥=1.

Si ha anche

g'(0)=[¢'(cos? x) * 2cosxsenx] =0 .

x=0

Calcoliamo infine g'(7/2). A questo scopo osserviamo che

lim = lim —=~ =
y>0 Y y=0 ¥y

V) Y seny
2 2

e quindi
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121.

lim f
=0 [p(t))?

OVVErIo

lim (HA/T=1.

t— 0
Ma allora si ha
cos? x cos2
gl(ﬂ/2)= lim L(-——)= lim p(cos x) cos x -1
x— (g)_ x___ﬂ— x-—»(%)_ COS X : x—%_

A questo punto si pud tracciare un grafico approssimativo dell’in-
sieme I' .

y sen®x + yseny = 1

o)A

(a) Non si pud applicare direttamente a (*) il teorema di esistenza
globale, perché si tratta di un’equazione del secondo ordine.
Anziché passare ad un sistema del primo ordine, risolveremo
direttamente la questione proposta. Sia y,(x) una soluzione di (*),
e sia Ja, b[ il suo intervallo massimale di definizione. Supponiamo
che sia b < + o0; scelto xq € ]a, b[, si ha allora

[yo)I <1+ llogx|<c  VxElxo b[,

quindi la funzione ¥6(x), che & continua in [xo, b[ ed ha derivata
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limitata, € uniformemente continua su [xo, b| . In particolare,
yo(x) € limitata in [x,, b [, ed esiste finito

lim yo(x)=8.

x—=>b

Dalla limitatezza di ¥ segue che yo(x) € uniformemente continua
in [xg, &, quindi esiste finito anche

lim yo(x)=a.
x—=b

Risolvendo il problema di Cauchy

y'=e?" _logx

y(d)=a
y'(b)=8
si puo allora prolungare ¥4 (x) a destra di x = b, contro la massima-

lita di Ja, b[, pertanto b = + o=, Per provare che a =0 si procede
in modo analogo.

(b) Si vede subito che lim »''(x) = — oo. Piul precisamente, per

xX—> + o

x>e?siha

YV'x)<1-2=-1,
e quindi, integrando su [e?, x],
Y(x)<y'(e?) - (x —e?) Vx=e?.

Integrando di nuovo si ottiene

2 4

x e
y(x)<—7+ [e2 +y'(e*)] x +y(62)—*—2——ezy'(e2) Vx=e?,

quindi

lim y(x)=—o,
x> + oo
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122.Se ¢ f(x, ¥)=p(xy), si ha immediatamente

o _ :
X =3 x, y)=xypxy)

27 Y= rxe(xy)
y ay N ‘P >

e quindi xf =yfy )
Osserviamo pure che se f(x, ») = ¢(xy) allora f € costante su ogni
ramo di iperbole {xy =k, x>0

Supponiamo ora che sia xf = yfy, e proviamo che f ¢ costante
sulle iperboli: infatti

d £ k of k k of k
—_— , ™ = — x’— —_———— , =
dx < x> ax < x> x* 2y <x x)
of k 1 &k of k
= — [x,— | ————{(x,—|.
ax< x) xxay< x)
D’altra parte per ipotesi
k af< k af< k)
——x,— |=x— |x, — },
X 0y X ox * X
quindi
d k
(D —[f(,—>]=o Vx>0 VKLKER,
dx X
cioé f & costante sul ramo di iperbole

{xy=k,x>0}.

In particolare, da (1) con k£ =xy si deduce

fx, y)=f<x, ixy—)=f (1511) —f(1,x)
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cioe, posto
e =f(,0),
si ha che ¢ ¢ di classe C!, perché lo ¢ f, e inoltre

fx,»)=pkxy).

123. Siccome y = x ed e~ > 0, si ha f(x, ) = 0 su K. D’altra parte
f(x, ¥) = 0 quando y = x, dunque il minimo di f su K ¢ zero ¢
viene assunto sulla semiretta {x =y, x=20 }

Per quanto riguarda il massimo, osserviamo che per ogni (x, ek
si ha f(x, y) < f(x, 2x), dunque I’estremo superiore di X coincide
con I’estremo superiore di f sulla semiretta {y =2x,x=20 }

Posto, per ogni x = 0,

2x
o) = f e dr,

X

la derivata prima di ¢ ¢ la funzione

‘pl(x) =D 4% _ e x? =e 4x? Q- e3x* ),

_ log 2
x 3

Ne segue che il punto di massimo di f &
( log 2 5 log 2 ) .
3 ’ 3

124. (a) Ciascuna delle funzioni

che si annulla solo per

£ (x) =x? VI Fx? e nixl
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é continua, pari e non negativa, dunque bastera provare che
(1) an(x)<+°° Vx=0.
n=1

Usando la disuguaglianza
Vi xE<\/n+ xl,
si ha

(2) [)<nxte ™ +xPe™ Vx>0,

Consideriamo i due addendi al secondo membro: entrambi sono
nulli per x = 0 e infinitesimi per x = + oo ; inoltre sond non nega-
tivi. Si ha poi

d 2
-E)-c—(x2 e~ "™)=2x —nx*)e "* |

2
quindi x = — ¢ il punto di massimo assoluto per x?e¢~"* su R".
n

Analogamente

d
T('xs e—nx)=(3x2 __nx3)e—nx
X

3 .
e il punto di massimo per x3e~"* ¢ x=— .In conclusione

4e?

n/n

27e3 < 27e?

Vrx?e "™ <

e da (2) si ottiene allora
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31e72

N

£,00< Vx>0,

che dimostra (1).

(b) La funzione f & pari, e £(0) = 0 (in quanto f,, (0) = 0 per ogni
n). Allora se f & derivabile nell’origine deve essere

(3) £'(0)= lim f—ix—) =0.

x—=+0

Ora si ha, per ogni x > 0,

f(x) = =
= 2 L, hx > —-nx —
. X Vi txte =X Z e
n=1 n=1
z. X
= — X\
¥ Z ) e’ —1
n=1
e quindi
fx b
lim ipf ()>l . =1,
x—0 X x—o*t e —1

in contrasto con (3).

sen
Il secondo membro f(x, y) = T 4 dell’equazione non ¢ definito

sulla retta y = — x, quindi possiamo limitarci a studiare il problema
nel semipiano {(x, yy ix+y> 0} al quale appartiene il punto
iniziale (0, 1).

In tale semipiano la funzione f ¢ di classe C!, pertanto per il teore-
ma di Cauchy-Lipschitz esiste ed é unica la soluzione y (x) del pro-

blema. Notiamo che I’equazione ha le due soluzioni costanti
y =0e¢ y=m,ne segue, per l'unicita, che si ha

(1) 0<y(x)<m.
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In particolare sen y (x) > 0, e quindi y'(x) > 0, cioé la soluzione
y(x) & crescente.

Esaminiamo il comportamento a destra dix =0: & y(x) 2 1, quin-
di

1
x+1

<1

Lfe, y NI <

per x = 0, ed il teorema di esistenza globale (v. appendice) assicura
che y(x) ¢ definita su tutta la semiretta {0, + oo [ . Posto

lim yx)=¢€]l, 7],

X+

proviamo che ¢ £ =7 se cosi non fosse, da
I<y@x)<( ¥x=0

seguirebbe

(2) seny(x)z2a>0 VYx=0,

dove « = min {sen 1, sen £}. Da (1) e (2) segue poi

«

y'(x)> Nx=0,

X+

e integrando questa disuguaglianza su [0, x] si giunge a
x
yx)y=1 +alog<1 +—> Vx>0,
T

che é una contraddizione perché comporta che { = + o0 .

Per x < 0, invece, la soluzione deve stare sopra la retta y =— x e
sotto la y = m, quindi non puo essere definita su tutto R". Dovendo
essere crescente, y(x) incontra necessariamente la retta y = — x
in un punto di ascissa ¥k < 0, e chiaramente si ha im »'(x) =
=4 oo, x—k*

Per stimare &, osserviamo che
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sen y

(seny)(cosy — 1 —
x+y

y'(x)= <0

b

(x + y)?

cio¢ y(x) € concava: in particolare, sta al di sotto della retta

y =1+ x sen 1, che ¢ tangente ad y(x) in x = 0. Poiché questa
rettaincontralay =—x in x=—1/(1 +sen 1), si ha

k>—-1/(1 +senl).
Se poi nell’equazione originaria si pone x + ¥ =g, si ottiene

sen y(x) <1

S’(X)=1+y(X)=1+x+y(x) o

b

ciog

2 [s(x) —log(l +s(xN1<1.
dx
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Integrando questa disuguaglianza su ]k, O e ricordando che
s(0)=1, s(k) =0, si ottiene P’altra stima

k<log2 -1.

126. Ponendo
z, (x)=y, (x)e ">,
il problema diventa
z,(x) = e T f(x)
2,(0)=0,

da cui si ricava
zn(x)=e“"m / e~ " f(t)yde.
0
Si ha dunque
. X
v (x)=en nx [ e i) dt,

pertanto

1

sup lyni<e‘"2+" f lf(t)lde .
(o.1] b

Si conclude allora che y, = 0 uniformemente su [0, 1].

127. 11 problema consiste nello stabilire se f ammetta limite finito per
(x, ¥) = (0, 0) oppure no.
La risposta € negativa: infatti, fissato y =0, si ha
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x — 1)? log(x — 1)?
lim f(x, 0)= lim ( )” log( =
x._,o"’ x—)0+ |xl

2log(l —x
x—>0" X

mentre

2 log(1 — x) _
—Xx

lim f(x, 0)= lim_ 2 .
x—=>0 x—>0

128. Siccome l’integrando é non negativo ¢ i dominiDe (schematizzati
in figura) crescono, al tendere di € a zero, verso il dominio

x2
D0=17<y<2x2,(xyy)i(o’0) ?

il limite cercato esiste e coincide con 'integrale improprio

j I x| dx d
——dx dy.
IDO y(1+y?)

Applicando il teorema di Fubini-Tonelli si ottiene, tenendo pre-
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sente che I'integrando € pari in x,

f |XI ————<dxdy=2 T : Ve
= S dv =
f ya )T [, y(1+y2)(fmxdx> ’

te ] 3 3
=2f Y gy="1

y(l+y%) 4 4
129. Osserviamo subito che
X2 + 2
yll =yyl + x — < 2 y >

quindi I'’equazione differenziale data si puo integrare: membro a
membro; ricordando le condizioni iniziali, il problema proposto

equivale a
2 +y
= +C

4 2
(1)

y(0)=0

x2 4?2

Poiché il secondo membro f(x, y) = —2—— + C ¢ diclasse C!,

per il teorema di Cauchy-Lipschitz il problema (1) ammette una

soluzione unica y (x), definita in un intorno di x = 0.
Mostriamo che y(x) ¢ dispari: posto z(x) = — y(— x) si vede che

Z(x)=y'(=x)=f=xy(=xN=fx —y(=x)=f(x z(x)),

e inoltre z(0) = 0: allora z(x) risolve (1) e, per 'unicita, z(x) =
=y (x), cioé y ¢ dispari. Ci limiteremo a studiare y(x) per x 2 0.
Cominciamo con il caso C-2 0: si ha allora
! x2
yi(x)= -
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quindi y(x) > 0 per x> 0 e y(x) non ¢ limitata superiormente,
Fissato xo, > 0 tale che y(x,) = 1, dall’equazione si ha poi

2
x
y'(x)= y_(x) Vx,
2
OVVero
)t
- >— X .
y(x) 2

Integrando questa disuguaglianza fra x, ed x si ha

] i 1 1
_ > - > (x —
yx) T y(x) y(x) 2 (x=%o)

>y
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cioe
x<2+x9.

Cio prova che y(x) non puo essere definita su tutto R, ma che il
suo insieme di definizione € un intervallo |—a, a[ .

Passiamo al caso C < 0. Inizialmente, la soluzione ¢ decrescente,
ed essa deve intersecare la circonferenza {x2 +y2=— 2C} in un
punto di ascissa b > 0. Per il teorema di monotonia (v. appendice),
y(x) & crescente per x > b, ed un ragionamento come quello del

caso C = 0 prova che y(x) é definita in un intervallo limitato
]—a, al,eche
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lim y(x)=-+oo.

In )0, b[ si hay(x) <0, y'(x) <0, pertanto

y'(x)=x+y@x)y'(x)>0,
cioé y(x) é convessa. Poiché »'(0) = C, possiamo dare una stima
dal basso di b, e precisamente b >+/2C/(1 + C?).

(a) Sia M = sup {Tn } La successione (Tn) ¢ contenuta nell’inter-
vallo chiuso e limitato [0, M], dunque per il teorema di Bolzano-

Weierstrass esiste una sottosuccessione (7, ) che converge. Sia
k

To = lim T,

k— o k

Vogliamo provare che f ha periodo Ty, se Ty > 0, oppure che ¢
costante (e quindi periodica) se 7, = 0. Cominciamo con il caso
T, > 0: fissato x € R si ha per ognik €N

PG+ To) = FEISIf G +To) =+ T, )+ Ifx +T, ) -
1, GHT, Y17, 0 —fI<

<\ fx+To)—fx+T Hi+2sup If()—f, (I
k tER k

Facendo tendere k all’infinito, il primo addendo tende a zero
perché f & continua, in quanto limite uniforme di funzioni conti-
nue, mentre il secondo addendo tende a zero per I'ipotesi di con-
vergenza uniforme. Ne segue

lf(x+To)—f(x)I=0,

e quindi T, € un periodo di f.

Passiamo ora al caso Ty = 0. Per ogni k, indichiamo conx, ed y,

rispettivamente il punto di minimo e il punto di massimo di f,
k

nell’intervallo [0, 7, ] : si ha allora
k
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, — mn fn=

.7, 1 "k 0,7, | "k

(1) supf, —inff, = max f
k k

k k

=1, 0 ~f, I <2swp If £, 1+70,) = f ()

11 primo addendo tende a zero per kK = oo, mentre per la continuita

difsiha
lim [ () ~f(x,)1=7(0) ~£(0) =0,
in quanto
0<x, <T, , 0<y, <T,
k k

e dunque sia (x, ) che (¥, ) tendono a zero.
Allora da (1) si ottiene

lim (supfn ainffn y=0.
k k

Kk~ o
D’altra parte per ognix, ¥y € Rsi ha

lfx) —fOI<If(x) —fnk(x)H‘ lfnk(X)'-fnk(y)l-{—
+1f, ) —fOI<2suplf—f, I+ If, ) —F, WI<
¢ k k k
<2sup If—7, I+ (supf, —inff ).
k k k

Entrambi gli addendi tendono a zero per K = o, dunque
fx)y-rf)=0,
cioé f € costante.

(b) Quando sup {Tn} = 4+ oo, non & detto che f sia periodica.
Un possibile esempio ¢ il seguente: poniamo
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& x
f,x)= kZﬂ 27 % sen? (2—k>

Ovviamente ogni f € continua, e il minimo periodo " = 2" 1 ten-
n ’ n
de a + oo . DY’altra parte (fn) converge uniformemente a

Sl X
f(x)=kzz1 2% sen? <2k>

in quanto

k

k=n+1

Pero f non € periodica, perché
f(O=0 , f(x)>0 Vx+#0.
Infatti f ¢ pari, e per ognix € ]0, 2" [ si ha

X
2n

FO)>1,6)> 27" sen2< ) >0,

Poniamo r =4/x* + y? e studiamo la successione di funzioni

@ nr
y)=——
En 1+ n?r?
perr=0.Siha

g, =p(nr),

dove

(1) = 1+1¢2



234 Risoluzioni dei problemi

Poiché 9(0)=0e lim ¢(¢)=0,si ha anche
t— + oo

g,(0)=0  Vn

lim gn(r)= lim ¢@()=0 Yr>0,
[— + oo

n-—» oo

pertanto (gn) tende a zero puntualmente su R*, e quindi (fn)

tende a zero puntualmente su R?.
Per quanto riguarda la convergenza uniforme, si ha

1
sup f, = sup g, =supp=g(l)=—-,
R2 R+ R+

quindi non ¢’é convergenza uniforme su R2.
Invece, sugli insiemi del tipo

(1) AgR2\{x2+y2<52}
si ha convergenza uniforme, in quanto

S‘A}an Ssupg (r)= sup. e,

r=zé t=n

e quest’ultima quantita é infinitesima pern = oo .
Si puo provare che fn — 0 uniformemente su B se € solo se

B=4U {(0,0)} conA deltipo (1).

132. L’integrale ¢ improprio, perché P'integrando non é limitato su D.
Siccome l'integrando € negativo, I'integrale ha senso e, applicando
il teorema di Fubini-Tonelli, si ottiene

[ 5 e [

X

log y dy> dx =
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133. L’equazione ha senso nel semipiano superiore, in cui il secondo
membro f(x, y) = log y — x & di classe C!, quindi il problema
ammette un’unica soluzione y(x), definita in un intorno dix = 1.
Il punto iniziale (1, ) si trova sulla curva f(x, ) =0, che éil

%)
grafico della funzione esponenziale y = ¢e*. Poiché a—f = -1, per
X

il teorema di monotonia (v. appendice) la soluzione y(x) é decre-
scente per x > 1, e crescente per x < 1: in particolare, per x < 1
deve essere

e <yx)<e,
quindi
0<f(x, y(x))<1-x,

e per il teorema di esistenza globale (v. appendice) la soluzione
Y (x) € definita su ]— oo, 1]. Posto

lim  yx)=A=0,

X > — o0

si ha A = 0: infatti, se fosse A > 0, si avrebbe

lim yp'(x)=+4o |
X—> —oo
che & una contraddizione.
Passiamo ora a destra di x = 1: la funzione y(x) ¢ decrescente,
quindi y (x) < e, pertanto

y'(x)<loge—x=1 —_—

Integrando questa disuguaglianza su [1,x]siha

1
y(x)<e—7 (1 —x)?

p

Ne segue che I'intervallo destro di definizione [1, 5] é limitato, e si

pud vedere che b < /2e¢ — 1. Ovviamente, la curva Y (x) arriva

all’asse x con tangente verticale, perché da lim y(x)=0 segue
x—=>b~

lim »'(x)=—o0.

x—b"



236 Risoluzioni dei problemi

134. (a) Cerchiamo i punti stazionari di f su o con il metodo dei molti-
plicatori di Lagrange: abbiamo il sistema

Rl
log <1+—;)+y (1+—y1-)

x+y=1, x>0,y>0 ;

1
>

A /
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Dalle prime due equazioni si ricava intanto

1 1 (1 + : ! =1 (1 + y_ 1
(1) og X) x+1 o8 J") y+1
Se poniamo per ogni ¢t > 0

1
t+1

h(t)=log (1 +t—1—> -~

si ottiene

i 1 1 1
K= <— + == <0,
) 1 t? (t+ 1) (it +1)?

1 +—

t
cio¢ & ¢ strettamente decrescente e dunque iniettiva. Siccome la
(1) puo essere scritta come A(x) = A(y), si ha necessariamente
x = y; d’altra parte x + 3 = 1, quindi 'unico punto stazionario di

) 1 1

fsu o éil punto (-2— , —2—>
Esaminiamo il comportamento di f agli estremi di o : essendo
y=1-x,siha

1 1
lim [x log (1 +—>+ (1 — x) log (1 + >]=
x—>0+ X 1 — X

log(1 + ¢
= lim L(t—)+log2=log2,

t— + oo

e lo stesso si haperx — 1.

. 11 : [ A
Siccome f<—2—, 5 ) = log 3, ne segue subito che (;, 5—) é il
punto di massimo di f su o, e quindi log 3 ¢ il valore massimo,
mentre 'estremo inferiore di f € log 2.

(b) Poniamo

p(t)y=g() +g(l —1¢).
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La funzione ¢ € somma di funzioni strettamente concave, quindi
¢ strettamente concava su [0, 1]. Inoltre p(x) = (1 — x), percio
in particolare ¢ (0) = ¢(1): per la concavita di ¢ ¢ allora

e >p0)=p(l) ¥xe€]0,1[,

cio€ ¢(0) =min .

1
Infine, fissato x € |0, 2— [, per la concavita di ¢ sull’intervallo

[x, 1 —x]siha

i
~p<—2—>> p(x)=¢(l —Xx),
cioe 2— ¢ il punto di massimo di ¢ su [0, 1].

Ritornando alla funzione g si ha

1
g(0) +g(1) s<gx) +g(l ~x)<2g<~2—> Vx€[0,1]
pertanto

min f=£(0, )=£(1,0) , maXf=f<%,%> .

Si noti che non abbiamo usato le ipotesi di derivabilita di g.
11 caso (a) discende da (b) con

0 se x=0

g(x)=

i
x log (1 +-—> se 0<x<.1.
x

Infatti

§x)= x(x+l)2<0’

cio€ g ¢ strettamente concava.
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135. Occorre vedere per quali valori di « la funzione f ha limite finito

per (x, ) = (0, 0).
Se o > 1, scriviamo

B ~ x%|yl
(1) fx, y)y=lyl-! pEpnwy

dalla disuguaglianza |2ab|<a? + b? segue

x2 |yl <

x4+y2\2

quindi la (1) implica

[yle—t

0<f(x, y)< 5

Ne segue subito che

lim fx,»)=0,
(x,y)=(0,0)

dunque f ¢ estendibile con continuita a tutto R?. Se invece a =1,
calcolando i limiti di f per (x, ) = (0, 0) dapprima lungo I’asse
x, poi lungo la parabola y = x? si ottiene

lim £(0,y)=0

y—0

1
lim f(x, x*)=— |,
x—=>0 2

e lo stesso si puo ripetere per 0 < o < 1 ottenendo

lim f(0,y}=0

y—>0

lim f(x, x?)=+4 o0 .

x>0

La funzione f é dunque estendibile con continuita a tutto R? se
esolosea > 1.
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136.

137.

Osserviamo che F(tx, ty) = F(x, y) per ogni ¢. In particolare, per
t=1K/x? +372 siha

X Y
Fx, y)=F , .
(x, ») <\/x2 = 75 +y2)

Allora I'immagine di F é uguale all’immagine tramite F della sola
circonferenza unitaria. Parametrizzando come di consueto, si
vede che I'immagine di # € Pinsieme delle coppie (s, ¢) tali che

s = cos? 8 —sen? § = cos 26

sen 26
t = cosfsenf =
2
per un opportuno 6 €{0,2 [ . Ma da
(D) s=cos28 , 2t=sen2f
segue
) s2+4r2=1,

e viceversa per ogni (s, t) appartenente all’ellisse (2) esiste un
6 che verifica (1). Pertnato 'immagine di F € ellisse (2).

e’ — x?
La funzione f(x, y) = T ¢ di classe C! su tutto R?, e inoltre
e’ +x
lfx, <t V(x »).

Dunque il problema di Cauchy ammette un’unica soluzione y(x),
definita su tutto R.
Osserviamo che, posto

A={ ) fe >0 ={(x 1) e >x},
la frontiera di A ¢ formata dalle due curve

' =1xx>0, y=2logx!
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I, = {x<0, y =2log(-x)}.

Poiché il punto iniziale sta su I';, la soluzione y(x) attraversa
I'; con tangente orizzontale, ed ¢ decrescente per x > 1. Invece
y(x) é crescente a sinistra di x = 1, e rimane crescente finché
non incontra I',: tale intersezione si ha certamente, perché y(x)
¢ definita su tutto R e non puo stare sempre al di sopra di ', .
Detta x, l'ascissa del punto d’intersezione di ¥ (x) con I',, la solu-
zione ¢ decrescente per x < x4, per il teorema di monotonia
(v. appendice). Per la monotonia di y (x), esistono

lim y(x)=A<0, lim y&x)=pu>—o |
Xx— + oo X+ —o00
Se fosse A > — oo | sj avrebbe lim  y'(x)= — 1, che da una con-
X + o
traddizione. Allora A = — o e con lo stesso ragionamento si

prova che u =+ oo,
Con qualche facile calcolo, poi, si pud dimostrare che y (x) é asin-
toticaaI', perx = —oo,

y‘}

y= 2 log(—=x) y = 2logx
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138. (a) Siha

fl(x)=/ dt=x
0

X

f(x)= / tdt=3%-
(1

f3(x)= / ——dt—
0

quindi si puo cercare di provare per induzione che

n

fo)=—1

n

X .
si ha
n!

E infatti, se f,, (x)=

X n Xn+1

X
fﬂ*u%'é T

(b) Sia lp(x)I <M per ognix ER, ¢ dimostriamo per induzione
che

n

If, <M VxER, ¥Yn>0.

Infatti la tesi ¢ ovvia per n =0, e se ¢ vera per un certo n si ha (per
x> 0)

X

/ £, (@t

0

‘fn+1(x)‘=

</ I (Ddt <
0

X n xn+1

t
< dt=M — ,
M fo n! (n+ D!




Risoluzioni dei problemi 243

e cio¢ la tesi é vera per (n + 1). Lo stesso si pud fare per x < 0.
Allora su ogni intervallo [—r, 7] la serie (*) converge totalmente
poiché

ol - MixI"

}—b %¥1 |f ] }::I:ﬁg‘ B 2: M ! -

n= n=0 n=0

Si ha dunque convergenza totale su ogni sottinsieme limitato di
R.

(¢) Poniamo

g(x)-Z £, 0= ‘P("”Z £, ).

n=1

Osserviamo che per n = 1 si ha f =fn, dunque la serie delle
derivate &

oa

S flx)= ,()+°° f o (x).
Z_nx o' (x nZ:Onx

Siccome tale serie converge uniformemente su ogni intervallo
[—r 7], siha

g)=) F)=¢® +2),
n=0

cioé g risolve I’equazione differeziale
y' =e*(senx +cosx)+y.

Si ha con facili calcoli

— (ye " *)=senx + cosx,
dx

da cui
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y{x)=(senx — cosx +c) e~

con c¢ costante reale opportuna. Visto che fn (0) = 0 per ogni n,
st ha g(0) = 0, pertanto

g(x)=(senx —cosx + 1) e*




Appendice

Teorema di confronto

Sia I € R un intervallo, e siano f(x, y), g(x, ¥) due funzioni continue
su I X R e localmente lipschitziane in y. Si considerino le equazioni

differenziali su [
(1) y'=fx, )
(2) y'=g(x, ).

Siano u(x) e v(x) rispettivamente una sottosoluzione di (1) ¢ una so-
prasoluzione di(2), cioé due funzioni derivabili in I tali che

u' () <fx, ux), o»'(x)>g, v(x))

per ogni x € 1. Supponiamo poi che risulti

(3) FO, u(x) <glx, u(x)) VxeEIr.
Allora se ¢
uxy) <v(xg)

si ha anche

ulx)<olx) Vx=2xg,

mentre se ¢

u(xy)=v(xg)

si ha
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u(x)=ov(x) Vx<x,.

Dim,: possiamo limitarci a considerare il caso (4), e non é restrittivo
supporre [ = [x,, a]. Posto

M =max (Jux)| + lv(x)]),
T

sia L la costante di Lipschitz di g(x, »), rispetto ad y, nel rettangolo
I X[~ M, M]. Siha allora

u'(x) = '(x) < flx, u(x)) — glx, v(x)) <
S glx u(x) —gx, v(x)) <L lu(x) - v(x)l,

e la tesi segue immediatamente, con w = u — v, dal prossimo lemma.

Lemma

Sia I un intervallo di R, e sia w(x) una funzione derivabile su I
supponiamo che risulti

w'(x)<L|w(x)] Vxel

per un’opportuna costante L.
Allora, da w(xy) < 0 segue w(x) < 0 ¥ x > x,, mentre da wixy)=0
segue w(x) 2 0Vx <x,.

Dim. : possiamo limitarci al caso w(x,) < 0. Supponiamo per assurdo
che sia w(x; ) > O per qualche x, > x,. Posto

g=sup {x <x, tw(x) <0},

la funzione w(x) € nulla per x = §, ed & positiva nell’intervallo J =
= 1§, x, ]. Allora per ipotesi si ha

wi(x)<Lw(x) sul,

e quindi anche

(e E*wx) =e Xw'(x) —Lw(x) <0 sulJ.
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Pertanto, integrando fra £ ed x,, si ottiene

et wlx) <e HPw(§)=0,

in contrasto col fatto che w(x,)> 0.

Caso particolare.
L’ipotesi (3) é verificata in particolare se €

fx, y)<g(x, y) Vx,y)€EIXR.

Si possono ottenere molte altre versioni del feorema di confronto
sostituendo alcune disuguaglianze deboli (<, 2) dell’ipotesi con disu-

guaglianze strette (<, >), per ottenere disuguaglianze stretté anche
nella tesi.

Teorema di esistenza globale

Siano I CR un intervallo e f(x, y) una funzione continua su I X R
e localmente lipschitziana in y. Si consideri l'equazione differenziale

(5) y'=f(x, 9.

Siau :J = Runa soluzion£ di A( 5 )’,Vcon J intervallo massimale di defini-
zione (tale cioé che se J CJ e u : J - R ¢ una soluzione di (5) che coin-
cide conusulJ, alloraJ=Jeu= zD

Se risulta

(6) 1f e uCGNI < px) + Y(x) [u(x)] Vx&J

per opportune funzioni continue @, Y definite su I, allora si ha
J=1I.

Dim.: possiamo limitarci al caso

I=[xg,al, J=[xq4,b][ con x, <b<a.
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Supponiamo per assurdo che sia b <g; posto

M=[2u12| (o) I+ Ty,

si ha
@) [u' ) <ML+ lu(x))) Vx€eJ.
Consideriamo il problema di Cauchy
Z'(x) = M + 1z(x)))
z(xg) = lu(xy)l
Tale problema ha come unica soluzione la funzione
z()= 1+ luxg)H eME—x) 1 |

che € limitata in J. Dalla (7) segue facilmente

FOo, ulx) <M+ lu@x)h)
quindi per il teorema di confronto
u(x)<z(x) VxeJ.

In particolare u(x) é limitata superiormente in J. Ragionando allo stesso
modo per il problema

w'(x) = — M + Iwx))

w(xp)= — lu(xg)!

si ricava che u(x) ¢ anche limitata inferiormente in J, percio ¢ limitata:
allora, per (7), anche u'(x) risulta limitata, pertanto u(x) é uniforme-
mente continua in J, e in particolare esiste finito il limite

lim u(x)=NA\.
x—b"
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Risolvendo il problema di Cauchy
y'=fx)

y(b)=A ,

si pud prolungare u(x) in un intorno destro di x = b, contro la massi-
malita diJ.

Caso particolare

L’ipotesi (6) ¢ verificata in particolare se ¢
fxI<ex)+yx) |y Vix,y)EIXR,

o addirittura se f € limitata.

Teorema di monotonia

Siano I CR un intervallo ed f(x, y) una funzione di classe C* sul XR;
sia poi u(x) la soluzione del problema di Cauchy

u' =f(x, u) in/,

u(xo)=Yo
Supponiamo che
f(x0,¥0)=0
e che
!
(8) —L (x, u(x))=0 vxel.
ox
Allora

Wx) <0 Vx<x, , Ux)=20 Vx=>x,.
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Dim.: Dall’equazione differenziale si deduce subito che la funzione
w(x) = u'(x)

¢ di classe C!, e inoltre

, of of '
w'(x) = Bx (x, u(x)) + ;y- (x, u(x)) u(x).

In altri termini, w(x) risolve I’equazione differenziale lineare

w=ax)+b(x)w,

dove si é posto

0 0
a(x)=%(x,u(x)), b(x)=—a$(x,U(x))-

Si ha poi, per ipotesi,
wi(xe) =0,

pertanto dalla teoria delle equazioni lineari si trova

X

(9) wix) =5 () J a(t)e 8® 4z,
con

B(x)= f‘ b(t)dt.

o

Per ipotesi, la funzione a(¢f) € non-negativa, quindi dalla (9) segue

wx)<0 Vx<xg, wx)=0 Vx=2x4,

che ¢ la tesi.
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Caso particolare

Se I'ipotesi (8) viene sostituita da
of
ox (x, u(x))>0 VxFx,

allora le disuguaglianze nella tesi diventano strette, cioé

W(x)<0 Vx<xq, ¢(xX)>0 Vx>x,.

L’ipotesi (8) ¢ verificata in particolare se &

)
—af (x,y)=0 V(x,y)€EIXR.
X

Una variante del teorema si ha sostituendo (8) con:

- 0 _ _
f(x,y)=o=——af E >0
X

Teorema dell’asintoto

Sia u : [xy, + o[ > R una funzione derivabile tale che esistono (finiti
o infiniti) i due limiti

lim u(x)=%, lim u'(x)=m.

xX—> + oo X—> + oo

Se 8 é finito alloram =0
Dim.: se ¢ finito allora

lim Ju(x+1)-u®x)]=0

xX—> + oo
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D’altra parte, per il teorema di Lagrange, si ha

(10) ux + 1) ~ulx)=u'(£)

ber un opportuno £ € |x, x + 1] . Poiché lim ¢ =+, sihaan-

X+ oo

che lim u'(éx) = m. Passando al limite in ambo i membri di (10) si
X= 4

ha la tesi.
Osservazione

Questo risultato si pud modificare dicendo che se esiste finito
lim  w(x) allora minlim lu'(x)l=0.

X~ + oo X 4 oo






