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Indice per argomenti.

A scopo solamente indicativo, raggruppiamo qui per argomenti
gli esercizi proposti in questo volume. Si tenga perd comunque pre-
sente che sono molti gli esercizi la cui soluzione pud richiedere la
conoscenza di pilt argomenti differenti.

Gruppo N. 1: Numerz complessi
Esercizi N. {§ §) 3) (5} Qg} ‘ 2_3

Gruppo N. 2: Succession z contmuzta
Esercizi N. 8§, 14 18, 23 4 48, , B4 55, 56, 59,
(62 64,71, 72 77, 87, 90, 91 95 96 107, 123, 1?7 129, 131 136.

Gruppo N. 3: Derivazione.

Esercizi N. 2, 13, 20, 25, 27, 28, 31, 32, 33, 35, 47, 61, 63, 67, 75,
79, 80, 82, 83, 85, 93, 99, 101, 103, 105, 108, 111, 115, 116,
119, 121, 124, 135.

Gruppo N. 4: Esercizi di carattere teorico su proprieta generali delle
funzioni di variabile reale. ,

Esercizi N. 4, 5, 9, 10, 11, 34, 38, 42, 46, 51, 70, 78, 86, 89, 98,
102, 106, 117, 122, 126, 138.

Gruppo N. 5: Integrazione.

Esercizi N. 3, 7, 16, 17, 21, 22, 26, 30, 37, 41, 43, 50, 52, 57, 58,
60, 65, 66, 68, 69, 73, 74, 76, 81, 84, 88, 92, 94; 97, 100, 104,
109, 110, 112, 113, 114, 118, 120, 125, 128, 130, 132, 133, 134,
137.
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Questo volume raccoglie tutti gli esercizi, con le relative soluzioni,
che sono stati assegnati agli esami scritti del corso di Analisi Mate-
matica, I, che io ho tenuto negli anni accademici 1974-75, 1976-77,
1978-79, 1980-81 e 1982-83 presso 1'Universita di Pisa. .

Data I'importanza della prova scritta nell’esame di Analisi Ma-
tematica, i problemi sono stati sempre scelti con molta cura, nella
speranza che fossero il pill possibile originali e coprissero i principali
punti del programma.

Per una consuetudine sempre rispettata, anche se mai sancita
esplicitamente, ogni prova scritta conteneva, oltre ad alcuni esercizi
di tipo pil standard, anche un esercizio di natura teorica che mettesse
alla prova la maturitd raggiunta dal candidato.

Devo dire che la preparazione dei testi dei 100 e pit problemi
¢ stata possibile solo grazie alla collaborazione validissima dei vari
docenti che hanno svolto anno per anno le esercitazioni del mib corso
e precisamente, oltre ad E. Acerbi e L. Modica (co-autori del libro),
A. Arosio, P. Baldi, L. Carbone, F. Catanese, F. Honsell ¢ M. Pratelli.
Ad essi rivolgo qui un sentito ringraziamento.

Qualcuno potri ritenere questi problemi un po’ troppo difficili,
ed effettivamente alcuni lo sono, ma io penso che sia piu serio giu-
dicare un candidato dalla risoluzione anche incompleta di un eser-
cizio impegnativo che non dallo svolgimento perfetto di un compito
troppo facile. Comunque, nel rispetto della tradizione scientifica
di Pisa, non pochi sono stati gli studenti che hanno risolto in modo
pitl che soddisfacente i problemi che venivano loro proposti, qualcuno
poi con soluzioni assai belle.

Fra questi ultimi, uno almeno vorrei ricordare, anche se con
tristezza: il giovane Benedetto Sciarra che un male inesorabile ha
strappato nel 1980 allo studio della Matematica e probabilmente ad
una brillante carriera scientifica. Alla sua memoria vorrei che questo
libro venisse dedicato. ~

Sergio Spagnolo



Istruzioni per Puso

Consigliamo vivamente il lettore di cercare con impegno una
sua soluzione di ogni esercizio, prima di leggere quella qui riportata.

Evidentemente non esiste una soluzione ottimale di ogni proble-
ma, ¢ non sempre quella qui proposta & la prima che ci ¢ venuta in
mente, ma piuttosto quella che ci & parsa piu istruttiva e originale.
In questo spirito saremo grati a tutti coloro che vorranno suggerirci
altre soluzioni a loro avviso interessanti.

Emilio Acerbi Luciano Modica Sergio Spagnolo



: Parte prima
Testi dei problemi

(/1.\_,(5/6/1975)

1
S

Trovare tutti i numeri complessi z che soddisfano il seguente
sistema di equazioni:

2?7 —~z7z=~2

(z3 +z2)®* =1

2. (5/6/1975)

Studiare il comportamento della seguente Serie:

= 1 1
Z(n—senn) ——sen—
= ] n

3. (5/6/1975)

Sia f: R = R la funzione definita da

G S 1412
0

(a) Dimostrare che f & una funzione pari, non negativa ed unifor-
memente continua su tutto R.

(b) Calcolare (se esiste) il limite

) X
lim f(2
x—0t X




16 Testi dei problemi 14/71

(c) Provare che per ogni numero reale x sussiste la disuguaglianza

f(x)<);—2.

4. (5/6/1975)
Sia f: R = R una funzione continua tale che si abbia, per ogni

coppia di interi relativi (p,g) con g ¥ 0 e per ogni coppia di numeri
reali (x,y),

f (x sen? % + y cos? %) < <sen2 g—) fx) + <0052 %> o) .

Dimostrare che la funzione f & necessariamente convessa. Che
cosa dire del viceversa?

5. (5/6/1975)

Siaf:R"={x€R: x>0}~ R una funzione continua. Suppo-
niamo inoltre che f sia di classe C? su R*\ {0} e che

F )l <1 Vx> 0.

(a) Dimostrare che f ¢ di classe C! su R*.

(b) Esiste la derivata seconda in x = 0?

“6..(30/6/1975)

- Trovare tutte le radici complesse dell’equazione

7. (30/6/1975)

Si calcoli Pintegrale

2 1
]0 cosx + 3senx dx

[8/11] Testi dei problemi 17

8. (30/6/1975)

Dire per quali valori del parametro reale ¢ la serie

Z (n+nn?

!
nz0 n:
n>—t

€ convergente.

9. (30/6/1975)

Calcolare I’estremo superiore e l’estremo inferiore dell’insieme

' x2—3x+2 7
= . X" -31x5+2#0}.
A arctg 7 31510 X xl ’

10. (30/6/1975)

Sia g: R = R una funzione continua fissata. Consideriamo la
seguente proposizione:

= *“se f: R—> R ¢ tale che g o f € continua, allora anche f ¢ continua”.

(a) Dimostrare che se g & iniettiva allora P € vera.
(b) Dimostrare che se P & vera allora g ¢ iniettiva.

(¢) Sia % : R = R una funzione tale che A3 + 2% + 1 é una funzione
continua. Dimostrare che 4 € continua.

11. (2/10/1975)

Sia f : R = R una funzione tale che ogni punto di R é di massi-
mo relativo per f.



18 Testi dei problemi [12/14]

(a) Dimostrare che se f & derivabile allora f & costante.

(b) Dimostrare che se f & continua allora f é costante.

(c) Cosa succede togliendo anche lipotesi di continuita su f?

@(2/10/1975)

Siano g,bE€C e consideriamo il sistema di equazioni
(az —bz)(bz —az) = 4
22 —[z|> =0

nell’incognita z. Sotto quali condizioni su a e b il sistema ha almeno
una soluzione z€C?

13. (2/10/1975)

Dimostrare che

= pnxt
2 > 1
e = A
2

per ogni numero reale x e per ogni intero n = 1.

14. (2/10/1975)

Dire per quali valori di x la serie
o % +nx3
n=i

converge, e calcolarne la somma.

[15/171 Testi dei problemi 19
15. (27/10/1975)

Sia m 2 1 un intero. Dire per quali valori del parametro reale
t il seguente sistema di equazioni nell’incognita z€C

PLL =|Z|m
1 +ir =
z=-—7z
1 — it

ha almeno una soluzione non nulla.

16. (27/10/1975)

Si consideriv la funzione f(x) = 2x. Si dimostri che per ogni g,
bER con a #* b si ha

b
f(x)dx.

-=q + b .
b —a

Esistono altre funzioni continue f: R = R con la stessa proprieta?
E discontinue?

17.(27/10/1975)

Trovare il minimo valore della funzione f: R — R definita da

fx) = ’ (t3-28)e 'dr .
0



20 Testi dei problemi [18/21]

18. (27/10/1975)

Dimostrare che la serie

¢ divergente.

19. (30/1/1976)

Trovare i numeri complessi z tali che

zlz|2 — (1 + 44/3)iz=0.

20. (30/1/1976)

Dire per quali valori del parametro intero k& si ha

eX + x? -2k2x >0

per ogni x€R.

21. (30/1/1976)

Calcolare il numero delle soluzioni reali dell’equazione

[22/24] Testi dei problemi 21

22. (30/1/1976)

(a) Dimostrare che per ogni polinomio P(x) esiste un unico poli-
nomio Q(x) tale che

j P(t)e'dt = Q(x)e* — Q(0) VxER.

0

(b) L’applicazione P> Q e iniettiva? E’ sugettiva?

23. (20/2/1976)

Dire per quali valori del parametro reale ¢ la serie

E (Z_n_l_ n—3t)

n=1

& convergente.

24. (20/2/1976)

Risolvere il sistema
[z] = |w]
z2 + w2 =90

z+w=1
nelle incognite z, wEC.



22 Testi dei problemi [25/27]

25. (20/2/1976)

Tracciare un grafico approssimativo della funzione f: R\ {—1} =
— R definita da

1—x
1+x

f(x) = arctg |

26. (20/2/1976)

Sia f: R = R una funzione continua. Dimostrare che

X—> 4 oo X— 400

lim f(x)=a = lim rH f(Hydt =a .

Vale anche il viceversa?

27. (13/5/1977)
Dimostrare che la successione di numeri reali

a, = # log (1 + 2e&")

¢ monotona, e calcolarne il limite per n — oo,

[28/31] Testi dei problemi 23

28. (13/5/1977)

Dire quante sono le radici reali del polinomio

n+1

P(x) = ——— — 10x + 100 (n intero, n = 0) .
n+1

29. (13/5/1977)
Risolvere il sistema
[z]® = (Re z)® + (Imz)3
lz—i] = |z|

nell’incognita z€C.

30. (13/5/1977)

Sia f: [0,1] = R una funzione continua non negativa. Dimostrare
che

Ax,€[0,1]: flxg) > 1.

1
lim s [f(x)]"dx = 400
n—+o0 0
31. (10/6/1977)
Sia f: R = R la funzione cosi definita:
1 +ax +bcosx +ce* per x>0

fe)y=

0 per x<0.
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24 Testi dei problemi [32/34]

Determinare, al variare di a,b,c in R, il pit grande intero
k > 0 per cui f risulta di classe C* su R.

32. (10/6/1977)

Determinare il pili grande intero positivo k per cui

lx

e I—|x|+cosx>k ¥xER .

33. (10/6/1977)

Fissato un numero x, tale che 0 < x, < m, si consideri la succes-
sione cosi definita per ricorrenza:

Xp4q1 = x, + senx, n=0,1.2, ..

(a) Dimostrare che 0 < x,, < 7 per ogni nEN.
(b) Dimostrare che (x,) & crescente.

(c) Calcolare il limite di (x,) per n = oo,

| 34. (10/6/1977)
Sia f: R = R una funzione periodica d.i classe C! tale che

fx)+f'x)=0 Vx€ER .

Dimostrare che f ¢ non-negativa.

[35/371 Testi dei problemi 25
35. (1/7/1977)

Dire se la funzione

1 x 2 logcosx
(sen — (e + —
X x -

Vx

fx) =

ammette limite per x = 0%.

36. (1/7/1977)

Data la successione (x,) definita da
Xg = a

Xppq = max{—i— , xrzz} (= 0,1,2,..)

dire se esiste, al variare di ¢€R, il limite di (x, ) per n = o e calcolarlo.

37. (1/7/1977)

Definiamo le funzionig : R—>Redf: R\ {0} > Rcon

_se?_t se t#0
gy = ) = = ] g(r)dt .

X



26 Testi dei problemi [38/40]

(a) Dimostrare che f é estendibile con continuita a tutto R.

(b) Dire se tale estensione di f & derii'abile in R,

38. (1/7/1977)

(a) Dimostrare che non esiste alcun polinomio P tale che

x* = P(x) Vx>0.

(b) Dimostrare pili in generale che, dati due polinomi Q ed R con
Q(x) > 0 per ogni x > 0, se esiste un polinomio P tale che

[Q(x)]R®™ = P(x) Vx >0

allora o Q o R ¢é un polinomio costante.

39. (5/10/1977)

Calcolare I’estremo superiore, I’estremo inferiore e il limite della
successione

a, =n+ L V¥

= 2
o (n=1,23,.).

40. (5/10/1977)

Sia, z un numero complesso tale che

0<Imz<-L.
4

Provare che il numero z3—3z+i non ¢ reale.

[41/43] Testi dei problemi 27

41. (5/10/1977)
Si consideri la successione (x, ) definita da

*n _p
x; =1 X = J e ' dt
0

? n+1

Provare che (x,) ¢ monotona e calcolarne il limite.

42. (5/10/1977)

Sia f: R = R una funzione tale che
lf00)] < x? Vx €R;

(a) f é& continua nel punto x = 0?
(b) f é continua in-un intorno 'del punto x = 07?

(c) f ¢ derivabile nel punto x = 07?

4

w

. (26/10/1977)
Si consideri la funzione f: ]0,+oo[ = R definita-da

-0 1 t
f(x) = logx + l £ dr .
. 1
(a) Tracciare un grafico approssimativo di f.

(b) Esiste un prolungamento continuo (o addirittura derivabile) di f
alla semiretta chiusa [0, oo ?



28 Testi dei problemi [44/46]

44. (26/10/1977)

Sia (a,) una successione tale che
a >0 , a,,, =Vna, .

Calcolare

45. (26/10/1977)

Consideriamo 1la funzione f: C = C definita da

2z se zF0

0 se z=20.

(a) Qual é 'immagine di f?
(b) La funzione f é iniettiva?

(c) La funzione f & continua?

4

=)

. (26/10/1977)

Sia f: R = R una funzione di classe C! e limitata. Dimostrare
che f & periodica se e solo se f' & periodica.

[47/48] Testi dei problemi 29

47. (20/1/1978)

Sia # un numero naturale. Consideriamo ’equazione

n — X
X = COS —.
n

(a) Dimostrare che tale equazione ha un’unica soluzione positiva x,,.
(b) Dimostrare che la successione (x,) € limitata.

(c) Calcolare il limite di (x,) per n = oo,

48. (20/1/1978)

Sia fy: [0,1[ = R la funzione definita da

fox) = 7T—4x2 .

Definiamo per induzione su n le funzioni

f;, . [211—-1’ 211[ N R

ponendo

X

fol) = = fucs (—2—)

Sia infine f: [0,4oc[ = R la funzione definita da

fo(X) se  x€[0,1[

fx) =
£, (%) e xE€[2 1,2 (n=12,.).

Dimostrare che f & continua su [0, +oo[.



30 Testi dei problemi
49. (20/1/1978)

Dire per quali valori di @ > 0 la successione

_ (senn) log(5+e€*")

n
3
n

¢ limitata, e per quali valori ha limite.

50. (20/1/1978)

Calcolare

dx .

I"B log [(1 +senx)"*]
tex

w/6

51. (27/1/1978)

Calcolare

i (/e)senx_coS /x"

x~0"  [log(l + v/x )J?

52. (27/1/1978)

Per n = 1,2,3,..., si ponga

(n =1,2,3,.)

[49/52]

[53/55] Testi dei problemi 31

w/4
a, = ] (tgx)" dx..
0

Provare che (g,) €& decrescente e che @, + a, , = per
- n—1

ogni n = 3. Calcolare lim a,,.

H—roo

53. (27/1/1978)

Dimostrare che.

x¥ = senx Vx>0 .

54. (27/1/1978)

Calcolare ’estremo superiore e ’estremo inferiore dell’insieme di
numeri reali-

1
A= x+x—n:x>0 , REN¢.

55. (11/5/1979)

Calcolare

f 2
lim (1 — COos i) log <___x SenX 4 e"> )
X—> 4o X 2



32 Testi dei problemi [56/58]

56. (11/5/1979)

(a) Si consideri Ia successione (a,) di numeri reali definita per ri-
correnza da :

an
T
n

con A 2 0 numero reale fissato. Calcolare lim a

n—oo

(b) Che cosa si pud dire se A < 0?

57. (11/5/1979)

Studiare la funzione

2x 1

flx) = ‘ — dt
x 1 + tlogt

sulla semiretta R* = {x € R : x > 0}, tracciandone un grafico approssi-
mativo. Inoltre, trovare il pii piccolo intero positivo k tale che f )<k
per ogni x = 0.

58. (11/5/1979)

Sia f una funzione di classe C2 su R tale che

fl'x) < —fx) Vx€R
lim fx)=L
x>+ o0

con LER. Si dimostri che L < 0.

[59/61) Testi dei problemi 33
59. (15/6/1979)

Calcolare

i '(n+1)11+2 __i’l_) en_l
ie \ i+ 2)" 1 3 )%

60. (15/6/1979)

Calcolare una primitiva della funzione f: R — R definita da

o) = e X1 (1-2x2) .

61. (15/6/1979)

Fissiamo AER.
(a) Calcolare il limite della successione (@,) definita per induzione da
a; = 7\

= play/e)
a4, 1 en

(b) Dimostrare che esiste, finito o infinito, il limite di futte le suc-
cessioni definite per induzione da
a = A
@y, = b

qualunque siab € Rcond > 1.



34 Testi dei problemi [62/64]

62. (15/6/1979)

Sia (x,) una successione di numeri reali tale che

1 ' '
n+1 < Xn 4+ 7 VneN .

X

Dimostrare che ogni numero reale compreso tra minlim x, e

n— oo

maxlim x, ¢ limite di una sottosuccessione di (x, ).

n— oo

63. (2/7/1979)

Trovare il volume massimo che pud avere un cono retto contenuto
In una sfera di raggio r.

64.(2/7/1979)

(a) Calcolare

sup (n 2"—n!)
nzl

(b) Poniamo, per ogni nEN,

a, = sup (n pLy ).

n
k=1

i a
Calcolare iim a, e lim gyl
n—eco now 3

[65/68] Testi dei problemi

65. (2/7/1979)

Calcolare

x .
i (x — ! ellt a’t) )
logx i

X—> + o0

66. (2/7/1979)
Sia f: R - R una funzione di classe C? tale che
x(f-"(x) + [P =177
per ogni xE€R.

(a) Si dimostri che f non ha punti di massimo relativo.

(b) Si dimostri che f non ¢ limitata.

67. (4/10/1979)

Dimostrare che per ognix, y € Rsi ha

Vitx? <V 14+ + [x=y].

68. (4/10/1979)

Calcolare i seguenti limiti:

35



36  Testi dei problemi [69/70] [71/74] Testi déi problemi 37

a2 71. (24/10/1979
(2) lim 2"] x e—Fx® dx (24/10/1979)
o

k— 4 o
Calcolare
1 1,2
/2 2 ' sl —+-3)
(b) lim 2kj e " senx dx . lim_[log (e + x)] ¥~ P
k— +o 0 : x—~+0*

72. (24/10/1979)

69. (4/10/1979) Dimostrare che

k = : m
(a) Ricordando la formula di Taylor della funzione esponenziale : nt S 8 (min {n, k})™* bk}
e il fatto che 2,5 < e < 3, dimostrare che

3 perognin, k EN-conn=2,k=>2.
elle < —2-

(b) Trovare la parte intera del numero 73. (24/10/1979)

3
J x 1 dx
1 Sia A > 0 un numero reale e sia f}\: R — R la funzione definita da
LK) = xeX' + A(xe* ) .
(a) Tracciare.-un grafico approssimativo di f, .
70. (4/10/1979) (b) Calcolare
) 1
Sia f: R = R una funzione di classe C? tale che ;\mew {_1 min {f (x), 0} dx.
lim f"(x)=0.
X+ o0 _
Calcolare 74. (24/10/1979)

lim [f(r+1)—2f(n) + f(n—1)] .

n—>+ o

Sia f: R = R una funzione tale che




’

38  Testi dei problemi [75/761

[77/80]1 Testi dei problemi 39

[ fx)— < L|x-— -

)~ <Lix-y| Vx, yER 77. (18/1/1980)
n+1
flx)dx =0 vnez, _ Dimostrare che esistono due costanti reali positive 4 e B tali che
n .
N g 4n (n!)z 2
dove L & una costante reale positiva. : 1+nd4 < <W> <nB VrnEN.

' n)!

(a) Dimostrare che f & limitata.

(b) Trovare il pit piccolo fra i numeri reali C per cui

<C
[feo) VxER 78. (18/1/1980)

qualunque sia la funzione f soddisfacente alle ipotesi.
(a) Sia f:* R =~ R una funzione di classe C 2 Dimostrare che f é un
polinomio di grado minore o uguale a 2 se e solo se I’espressione

fee +h) +flx —h) = 2f(x)

75. (18/1/1980
(18/1/ ) dipende solo da /4 e non da x.

Calcolare, al variare di « in R, ' (d) 211 g)uo estendere tale risultato al caso in cui f & solo di classe
e* —senx — «
lim .
x—0* x%senx ‘ e

79. (6/2/1980)
76. (18/1/1980) -

Dimostrare che la successione

a, =sen (mVa4nt++/n)

Dimostrare che, per ogni a > 0, si ha

1 ¢ infinitesima per n—>co , e calcolarne ’ordine di infinitesimo.

1 1
py (€® —e?) < ] exp(@e’)dt < — (e —e9) .
0 a

80. (6/2/1980)

Sia A € R. Definiamo la funzione f,.: R \ {0} = R ponendo
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40 Testi dei problemi [81/82] 183/85] Testi dei problemi

N 83. (11/5/1981)
fk(x) = arctgx -+ -

Dire per quali valori del parametro reale « la funzione f/: R > R

. . . . . definita da
(a) Tracciare un grafico approssimativo di f-

(b) Trovare delle condizioni su A affinché 1’equazione L) =1 , flx) = e* —ax?
abbia almeno una soluzione x€R. ’
¢ convessa.

81. (6/2/1980)

Sia ¢€R, con a > 0.
84. (11/5/1981)

(a) Si dimostri che ’equazione

a
1 10: _1.. j 1 To dt 1
1+x a Jo 1+¢ : Vx 1f'x)dx < +oo .
0

Sia f:7]0,1] = R una funzione di classe C! tale che

ha un’unica soluzione x€[0, al. Dimostrare che esiste ¢ > 0 tale che

(b) Indichiamo con x, la soluzione di cui al punto precedente.

Calcolare ¢ ¢
o)) < Vx€10,1]
| Vv x
. . xﬂ
}1_{%1,, X, , hm+ -
o ed inoltre che
1
| eiax < 4o
0
82. (6/2/1980)
I
Sia f: R = R una funzione dispari di classe C . Trovare tre : 85. (11/5/1981)

numeri reali a, b, ¢ indipendenti da f e non tutti nulli, in modo

che la funzione g: R - R definita da .
Dimostrare che

g(x) = af(x) + bf(2x) + cf(3x)

abbia l'ordine di infinitesimo per x — 0 pill alto possibile. _ per ogni x€[0,1].
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86. (11/5/1981)

Sia f: R = R una funzione continua e monotona. Dimostrare
che I’equazione [f(x)]?> = x? ha almeno una soluzione. Vi sono casi
di infinite soluzioni?

87. (12/6/1981)

Calcolare

lim [(loglog x)'8* — x (logx)logloex |
X—>+4 oo

88. (12/6/1981)
Studiare la successione (x,,) definita per ricorrenza da

Xo =a , X dt

Xx 2t
_ n e
n+1

0 (e2[+ 1)2

con @ numero reale.

89. (12/6/1981)

Sia P(x) un polinomio a coefficienti reali. Dimostrare che I’equa-
zione

e*senx + e ¥ cosx = P(x)

ammette sempre almeno una soluzione reale.

[90/92} Testi dei problemi 43

90. (12/6/1981)

Sia f R = R una funzione tale che

f(maxlim x,) = maxlim f(x,)

n— o H—* oo

per ogni successione limitata (x,) di numeri reali. Dimostrare che fé
continua e monotona.

91. (14/7/1981)

Sia A un numero reale positivo.
Calcolare I’estremo superiore e l’estremo inferiore dell’insieme

A4 lA
S, = ——nn+k :n,kENY,

92. (14/7/1981)

Dimostrare che

a
SENX_ gx < 14 loga
0

per ogni a = 1.
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93. (14/7/1981)

Calcolare

lim  (tgx)®?*

x—»(%)

94. (14/7/1981)

.Sia f: R — R una funzione derivabile. Dimostrare che esiste una
funzione g: R = R di classe C! tale che

xg(x) =] f@ydr VxER
0

95. (1/10/1981)

Studiare la successione (x,) definita per ricorrenza da

X =0 , X, =a>0

= 2
Xnpp = Xy + X5

calcolandone, se esiste, il limite.

96. (1/10/1981)

Calcolare

6
lim SEN

log(cos n3) .
n—e arctgn '

S

[97/100] Testi dei problemi 45

97. (1/10/1981)

Studiare la funzione f: R = R definita da

X
fix) = t2e7Vdt
0

tracciandone un grafico approssimativo.

98. (1/10/1981)

Dimostrare che per ogni AER I’equazione
e =1—-x+2x

ha una ed una sola soluzione x (). 3
Dimostrare che la funzione A = x (A) ¢ continua e calcolare x (0).

Dimostrare che x (A) ¢ derivabile per A = 0 e calcolare x'(0).

99. (15/10/1981)

Determinare ’ordine di infinitesimo per x — 0% della funzione

f(x) = cosx — —,17 senx — log(1 +x)1/x .

100. (15/10/1981)

Calcolare
' 2x
lim 1 sent dt
. X t
x—=0 x
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101. (15/10/1981)

Definiamo per ricorrenza la successione (x,,):

x,=a>0

Xpyp = log(1+x,).

Calcolare il limite di (x”).

102. (15/10/1981)

Sia f* R = R una funzione che verifica

)= < LIx—y|

per ogni x,y€R, con L > 0 costante reale. Dimostrare che per

0 << la funzione f,: R ~ R definita da
fx)=x +ef(x)

¢ bigettiva.

103. (16/1/1982)

Calcolare

1
. SeNnX \ xsenx
lim
x—0 X

£ nr s rEe

[104/106] Testi dei problemi 47

104. (16/1/1982)

Sia « > 0 fissato; calcolare

1 [+
enx
arcs dx

0 xl=®+/1—x20

105. (16/1/1982)

Sia @ 2 0 e consideriamo la funzione f,: R = R definita da

f,x) = e % Via2—x?|

Tracciare un grafico approssimativo di f,. In particolare osservare
che f, ha massimo e, indicando tale massimo con M(a), calcolare
lim M(a).

a—0*

106. (16/1/1982)

Sia

Px)=x"+a x"' + .. +ax+a
1 0

n—1
un polinomio a coefficienti reali. Supponiamo che tutte le radici di
P siano numeri reali. Dimostrare che anche la derivata di P ha solo
radici reali e che

2
mn—Na,_, = 2na, , .
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107. (30/1/1982)

Calcolare

(n + sen n)I/" (2+senn)”
n!

lim

n—oo

108. (30/1/1982)

Attraverso uno studio della funzione
fx) = e —a?x

sulla semiretta x =2 0, dire per quali valori del parametro reale a essa
¢ monotona.

109. (30/1/1982)

Calcolare

2 .
j x%logx dx
1

al variare di a€R.

110. (30/1/1982)
Sia f: R = R una funzione derivabile tale che
fO=5rf1=0,
7o)l <1 Vx€[0,1].

o va:plvvn'twv"‘!"mj

[111/113]

Testi dei problemi 49

Trovare le pilt piccole costanti 4, B (indipendenti da f) per cui

si ha
Ife)l < 4

1
’ f(x)dx < B .
0

111. (13/5/1983)

Calcolar_e
(n+1)*—n®
lim

n—>oo n

a—1

al variare del parametro reale «.

112. (13/5/1983)

Calcolare

2™ senx — X cosx
—dx

2
0 X

113. (13/5/1983)

Studiare la funzione f: R = R definita da

VxE€[0,1]
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X
—)17 arctg?r dt per x #0
0
fx) =
0 per x=20

tracciandone un grafico approssimativo.

114. (13/5/1983)

Dimostrare che, tra tutte le funzioni f : [— I, 1] = R, la funzione
x = |x| & 'unica a soddisfare contemporaneamente le seguenti pro-
prieta:
(i) f & convessa; )
(i) f(-1)=r1)=1;
(iii) £(0) = 0 ;

1
(iv) flx)ydx = 1.
-1

115. (10/6/1983)

Caléolare

1/cos(x— %)
lim (1—x)
x—0

116. (10/6/1983)

Studiare 1a funzione f: R\ {0} = R definita da

[117/118] Testi dei problemi 51

foy = x|t

tracciandone un grafico approssimativo.

117. (10/6/1983)

Sia f: ]1, +oo[ > R una funzione tale che

Jx)

x—+e XlOgx

con LER.
Dimostrare che, se ¢ L #* 0, si ha

flex) _

Ye>0.
e ¢

Questa affermazione & ancora valida nel caso L = 0?

118. (10/6/1983)
Sia f: R = R una funzione di classe C? e si definisca per x # 0

o) =+ | swar.
0

(a) Dimostrare che & possibile definire ¢(0) in modo che ¢ risulti
di classe C2. :

(o) Dimostrare che, se f & convessa, anche ¢ lo €. E’ vero il viceversa?
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119. (4/7/1983)
Calcolare lordine di infinitesimo per x — 0% della funzione
f(X) — 4I—cos\/; _ 2x i
120. (4/7/1983)

Sia (a;) la successione definita da

ki
a, = ] e sen(h?x) dx (h =0,1,2,..).

]

Calcolare I’estremo superiore e l’estremo inferiore di (@), pre-
cisando se si tratta di massimo e minimo.

121. (4/7/1983)

Dimostrare che

e > 1—senx Vx€ 10,

l\.)|=]

122. (4/7/1983)

Sia f: [0, +oo[ = R una funzione limitata. Si ponga per ogni
x=20

gx)=sup{f(®) : 0 <t<x

e e g e

[123/125] Testi dei problemi 53

Dimostrare che se f & continua allora g € continua. Vale anche
I’affermazione inversa? Vale I'implicazione

fect = geEC!?

123. (6/10/1983)
Calcolare

lim (1 —e'™)logn! ) .

}1—> oo

124. (7/10/1983)

Dimostrare che esiste un numero reale C tale che
__'x2
e = senx + C VxER ,

e calcolare la piti grande costante C per cui vale la precedente disugua-
glianza.

125. (7/10/1983)

Definiamo una funzione f: ]0, + o [ = R ponendo

1 2

_ X
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Dimostrare che lim f(#) = + o e calcolare I'ordine di infinito
t—=0

difpert— 0"

126. (7/10/1983)

Siano A;, A, € A3 tre numeri reali diversi tra loro e siano p,,
P2, p3: R = R tre funzioni periodiche limitate. Dimostrare che se

pi(x)e™* + py(x)e™* + py(x)et* =0 Vx€R .

allora

Py =P, =p3 =0.

127. (21/10/1983)

Calcolare
n—1 1 k
lim <a + —)

n->e k=0 n

al variare del parametro a > 0.

128. (21/10/1983)

Studi‘agg. la funzione f: [0,1[ - R definita da

o =| Vi

0

tracciandone un grafico approssimativo.

129. (21/10/1983)

Sia @ un numero reale non negativo e sia (xn) la successione
definita da

_ n 1
xn—a +n—

(n=12,.).

R AT

[130/133] Testi dei problemi 53

Calcolare il limite di (x,) e dire per quali valori di a si ha che

inf x =x,.
neN n

130. (21/10/1983)

Sia f : R = R una funzione di classe C! tale che per ogni x = 0
si abbia

(*) f'x) = )P .

(a) Dimostrare che f(x) < 0 per ogni x = 0.

(b) Esistono funzioni C' non identicamente nulle che verificano
(*) per ogni x€R ?

131. (13/1/1984)

Studiare, al variare del parametro reale a nell’intervallo [0,11, il
comportamento della successione definita da

132. (13/1/1984)

Calcolare .

X—> + o=

133. (13/1/1984)

Sia f* 10, +oo[ = R definita da
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2x
Fx) = [ sent dr |
X t'2

(a) Calcolare lim f(x) e lim f(x) .

x—=0* X— 4o

(b) Provare che supf =1lim f(x) .
10,4+ x—=0*

134. (13/1/1984)

Sia f: R = R una funzione continua e tale che per ogni 7> 0
e per ogni q,b€ER con a < b si abbia

b+T b
s fe)dx > J(x)dx .
Ja+T a

Provare che f & crescente.
135. (3/2/1984)

Calcolare
lim x[arctg (logx) — arctgx] .
X—+ oo

136. (3/2/1984)
Studiare, al variare del parametro reale a, il comportamento
della successione definita da
Xo = a

2

X, = 1—x, tx;

n+

137. (3/2/1984)

Calcolare i due limiti

X X
lim s arctgl gy , lim - j arctel gy
x>0 o xt+i?

0 x+t2 x=>0* X
138. (3/2/1984)

Sia f: R = R una funzione dispari di classe C3. Dire quando &
possibile trovare due costanti reali A, 4 in modo che risulti

lim fx) — >;f(#X)

x—0 X

=1.

Parte seconda
Risoluzione dei problemi

Dalla seconda equazione si deduce che z = 0 non ¢ una soluzione
del sistema, quindi possiamo dividere per z la prima equazione,
ottenendo

22—z 4+ 1=0.

Risolvendo quest’ultima equazione si ricava

i T
V3 . 3 ’ 22:%_1.\/23 =, 3

R
2 -2

Zl =

Ma
(z3 +z,)° =<ei” +e

_iE 3 _i‘l__l'_ 3

T e
( 1 iy/3 >3 (‘%E)’

=| - —— =\e 7:1,

2 2

e anche, osservando che z, = z,,

@ +25P2 =+, =@ +2,)0°=1.

Allora 'z, e z, sono le due soluzioni del sistema proposto.

Poiché sen x < x per ogni x = 0, la serie € a terminj positivi, dun-
que o converge o diverge a + oo. Per la formula di Taylor si ha .
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Risoluzione dei problemi [31

. 3
_ X
senx = x —— cos§, con 0 <& <x,

6
quindi
%3
senx = x — o Vx€[0,1].
Allora
0<(n—senn)<i—sen —1— < ntl < 2n__ 1
n n) " 6n® - 6n®  3n?

e, per il criterio del confronto, la serie proposta converge.

(a) Proviamo che f(x) = f(—x) per ogni xER: effettuando la
sostituzione s = —¢ si ha ' '

_(Tsent o (F_ sen(=s) ., _
(=) s01+t2dt ]0 T+ (2 B

ds =f(x) .

zr sens
1+s?

0

Per dimostrare che f ¢ non negativa basta allora provare che
f(x) 2 0 per ogni x = 0. Per il teorema fondamentale del calcolo
integrale si ha

) = SenX
f(x)_1+x2:

quindi f'(x) = 0 per x = hm, con hEN. D’altra parte si vede che
f"'(hm) ¢ positiva per h pari e negativa per 4 dispari, dunque
i punti di minimo locale per f sono tutti e soli i numeri del
tipo x = 2kw. Osservando che

[31 Risoluzione dei problemi 59

inf {f(x) x> 0} =k1im min{f(x) 0 < x < 2kmp
(— 4 o0
per provare che f & non negativa basta mostrare che f(2kw) = 0
per ogni KEN,
Si pud scrivere
fQQkm) = (A, +B,) + ... + (4, +B,) ,
dove si € posto

T sent

1+1¢2

@2n—-1)n .
4 = s sent dr .

da Bl=[
1+#2 ! (

2n-2)r 2n—

Eseguendo il cambiamento di variabili # = s + 7 e ricordando che
sen (s+7m) = —sen s < 0 per (2n—2) 7 < s < (2n—1) m, si ottiene

S(2n—1)n —sen §

Qn_2x 106 + )2

@n- 1= —sens
ds =—A,;

noe

B:

n

ds = s >
(n-2n 15

allora A, + B, > 0 per ogni n, quindi f(2km) = O per ogni kEN.
Mostriamo infine che f & uniformemente continua: notiamo che

If o)l = el <
+ x2

quindi, fissando € > Q ed applicando il teorema di Lagrange,
si ottiene per 6 = ¢

lx —pi<8 = lfx)—fO)I=Ix=—pylIf'(HIK|x—-y|<s=€.

(b) Poiché f(0) = U, possiamo applicare il teorema dell’Hopital

ottenendo
im {9 oy L _senx 1
x=0 x2 x=»0 2x x=0 2x(1 + x2) 2

Dato che f ¢ pari, basta provare che per ogni x = 0 si ha

’2‘—2—f(x)>0_
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Risoluzione dei problemi [41

Poniamo
- x2_
glx) = > Fex) .

Poicheé

] senx X —Senx
ge) =x - =5 > = >0 Vx>0,

g € non decrescente, quindi g(x) = g(0) = 0 per ogni x = 0.

Fissati x,y€R e AE[0,1], vogliamo mostrare che

fAx + (A =-Ny) S AMKx) + A -NF0) .

. p

Poniamo « = arcsen /X, e sia —— una successione di numeri
. . n

razionali tendente ad «

p .
Posto A, = sen? —~ si ha allora
4,

lim A =sen® a=1;

n—r oo
d’altra parte

Pn

= 2
1 —X, = cos

n

quindi per l'ipotesi su f

Fux + (1 =2)y) S N, fE)+ (0 =7 f0) ,

da cui passando al limite per n = o e sfruttando la continuita
di f si ottiene la formula desiderata. Il viceversa € vero: la formula

[51

Risoluzione dei problenti 61

data ¢ infatti un caso particolare della condizione di convessita,

con A = sen? -5—.

(a) Basta dimostrare che f & derivabile in x = 0 e che inoltre

im f'CGe) = £'(0).

x=->0*

Per il teorema di Lagrange, per ogni 2 > 0 esiste &, €]0,k[ tale che

fn)—10)

pertanto se esiste finito
L =lim f'(x)
x—0*
si ha ﬁecessaﬁamente
£10) = 1 f(r)—£(0) . , s

e la tesi.-& verificata.

Per dimostrare che f'(x) ha limite finito per x = 0* applichiamo
il criterio di Cauchy: fissato € > 0 dobbiamo-trovare § > 0
tale che

x, yEI0,8[ = If ') —F'O)I <e.

Scegliendo & =€, se x, y € ]0,8[ si ha [x—y| < §, e inoltre esiste
£, compreso tra x ed y, tale che

If' ) =F'O = lx-ylIf"®I <8If"EI<b=¢€.
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(b) La risposta ¢ in generale negativa. Per il controesempio si

pensi che g = f' deve essere una funzione continua, non deri- ,
vabile in x = 0 ma con derivata g’ compresa tra —1 ed 1 per

x > 0.
Un tentativo potrebbe essere la funzione
0 sex =20
g(x) =
X sen L sex >0 ,
x

ma per x > 0 la sua derivata ¢

) = sen L — L coq L
g (x) senx > cosx ,

1
che non € limitata. Sostituendo senx— con senlogx si ottiene

g(x)=x senlogx,
e quindi

g'(x)=senlogx + coslogx .
Si ha allora |g'(x)] <+/2 , mentre

g(h)—g(0)

= logh
Y senlog

non ha limite per # = 0*. Basta allora scegliere

fix) = Q ‘ g()dt = Q i senlogt dt .
2 0 2 0

6. Usando la formula risolutiva dell’equazione di secondo grado si

7

Risoluzione dei problemi 63

trova che le radici dell’equazione data sono

i (04
—_— 4 —
2 2

Zl = e

dove o € una radice quadrata di —1—i \/_3- Osserviamo che

4n .
— -1
—1—i\/3=2<—L—i—V3>=2e3

2 2
quindi
27, —
e
a=+2 e S, +z\/6 ,
2 2

e infine:

5 =-Y2 V62 L YT _ e+

1 4 4 2 4 1 4

x
Dato che la funzione x + tg 7 € monotona su [0, 7[, si pud

effettuare la sostituzione:

X
r=tg — ,
£3
e l’integrale diventa
r ! dx = stgl ! 2
0 cosx + 3senx 0o 1-12 . 2t 14+¢2

3
1+ 1412

tgl
1 ‘ < 1 _ 1 >dt_
VIO Jog \r=3+/10 t-3-10




Risoluzione dei problemi 18/91

_ 1 . (/10-3+1g1) (V10 + 3)
710 W0+ 3t 1) &/10-3)

Osserviamo che per n > 0

(n+t)nt _ <1+ t_)”t ntt .

n! n n!

il primo fattore tende ad e’ per n = oo, quindi, essendo e’ > 0,
basta studiare ia serie

nnt
I
n=o0 n:
n>—t

Se t > 1 si ha n'"* 2 n" 2 n! e quindi la serie diverge. Se invece
t < 1, applicando il criterio del rapporto si ottiene

(n+1)t 1
fim &+D ]
n—oo (n+1)! n’
S
= lm(1+—) +————=0,
n— oo n (n+ 17

quindi la serie converge.

Dato che la funzione arcotangente & crescente, bastera calcolare
I’estremo superiore e ’estremo inferiore dell’insieme

2 _3x+
B == 3x+2 :x7—31x5+2#OJ

x7 —31x5 42

[10] Risoluzione dei problemi

Poniamo per brevita
fO)=x2-3x+2 , gx)=x"-31x5+2.

Osserviamo che ¢

g@®=2>0 |, g(1)=-28<0,

pertanto esiste £€]0,1{ tale che g(¢) = 0. Inoltre.

/;j= x5 —155x% = 7x* (x? — 155
& 7

S

quindi g'(x) < 0 in ]0,1[: ne segue che

g(x) >0 per 0<x<¢

gx) <0 per E<x<1].

Tenendo conto del fatto che f(x) > 0 in ]O,1[, si ha

J(x)

fx) _
g~ EC)

=400 , lim Z=——= _oo
xott &(X)

Allora supB = +o ed infB = — oo, quindi -

T . T
A=—— =TI
sup 5 infA4 >

65

10. Supponiamo che g sia iniettiva, e sia f; R = R una funzione tale
che g°f & continua. Siccome g ¢ definita e continua sull’inter-

vallo R, anche la sua funzione inversa

1. g(R)> R
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11.

Risoluzione dei problemi [11]

risulta continua. Allora f = g0 (gof) ¢ continua.

(b) Supponiamo per assurdo che g non sia iniettiva, cioé che esi-
stano x,,¥¢E€R, con x,7#y,, tali che g(xy) = g(3,). Consideriamo
allora la funzione discontinua:

X se x<0

fx)=

Yo se x=0;

si ha (gof) (x) = g(xy) per ogni x, quindi gof € continua, e questo
¢ in contraddizione con P.

(c) Seg(x)=x3 +2x + 1, si ha h® + 24 + 1 = goh. Osserviamo
che g & continua ed é crescente (perché g'(x) = 3x%2 + 2 > 0),
quindi ¢ iniettiva. Per la parte (a), anche A ¢ allora continua.

(a) Dall’ipotesi segue che f'(x) = 0 per ogni x€R, dunque f &
costante.

(b) Supponiamo che f non sia costante; scegliamo allora q,b€ER
con f(a) < f(b). Poniamo

A={xeR:fx)<f(@?}.

Intanto A non €& vuoto perché a € A; inoltre, A & chiuso perché

A =f"1 (]-o°, a]) ed f ¢ continua. Infine, per ’ipotesi fatta su

f, per ogni x € A esiste un intorno U_ dix tale che:
FO)Sfx)<f@ VyeU_,

quindi U, C A. Cio prova che A & anche aperto; I'unico sotto-

insieme di R che sia aperto, chiuso e non vuoto & R stesso,

cioe A = R, che é& assurdo perché bEA.

(c) Senza ipotesi di continuita, il risultato & generalmente falso:
basta considerare ad esempio la funzione

1 se x=0
fx=1

0 se x+0.

. ;.wm..ﬁ

. [1213]

12.

13.
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La seconda equazione equivale a:
z(z—2)=0;
dato che z = 0 non € una soluzione della prima equazione, si
ottiene z = z, cio¢ z ¢ reale. Sostituendo nella prima equazione,
si ricava
. az —bz) (bz —az) = 4
ciod ( ) ( )
4

z2

(@a—b)* = -

quindi, ricordando che z€R, il numero a—b deve essere immag:-
nario puro non nullo, cioé
a—b=it con t€ER\{0}.

In tal caso il sistema ¢ risolubile, ed ha le due soluzioni

z =% —2— .
t
Si ha subito-
—;—+nx‘ _x?_,_x.
e =20

per ogni x€R ed«n = 1, quindi basta dimostrare che

—g—+x‘ 1
e = 7 VxER ,
ovvero
x* + %> —log?2 VxER .

Posto f(x) = x* + % si ha

lim f(x)=lm f(x) = 4oo ,

X— —oo X—>+ oo
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14.

15.

Risoluzione dei problemi [14/15]

dunque f ha minimo, ed il minimo viene raggiunto nell’unico

punto in cui'si annulla f’, cioé in x = — 5 - E’ sufficiente

provare che f <— —;—) =2 —log2, cioé che

3
-——2>= —log2,
16 o8

Oovvero

216 > 83

b

disuguaglianza che & ovvia perché e? < 43 = 26,

Si noti che
oo Z—+nx? X .
2 2 3
2. e =e ° Y ()",
n=1 n=1

quindi la serie converge per ¢ < 1, cioé per x < 0. Inoltre

n=1 1 —ex’

quindi per x < 0 la somma della serie data é:

x 3
7+x -
e Q- )t .

Cerchiamo una soluzione z = pe’® con p > 0e 0 < ¢ < 2.
Si ha

[15]
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m elmz‘) — pm

Ji
OVVero
em?d =1
o _ L+
1 —it

(si noti che p rimane indeterminato: infatti, se z, € una soluzione
del sistema, lo & anche cz,, per ogni ¢ =2 0).
Dalla prima equazione si ricava

o=25T k= 01,.(m1).
m

Osserviamo poi che

1+it _(1+z’z‘)2=1—,t2 ; 2t
1 —it 14 ¢ 1+ 142

e quindi, ponendo f = tg -%— s

—lj—l_t— = cosp + iseny = €% .

1 —it
Dalla seconda equazione del sistema si ricava allora successiva-
mente '

o219 = piv
ei(2'9—«p) =1
20— = 2hm , heZ ,
da cui

¢ =128—2hr , hEL
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Risoluzione dei problemi [16]
e infine
t=tg(d—-—hm)y=1tgd .

Pertanto il sistema ha soluzioni non nulle se e solo se £ € un
numero reale -della forma

f=1g 2,:” k=0, .., m—1).

b
16. Poiche [ 2x dx = b?>—a?, la prima parte & ovvia. Supponiamo

a

che f: R = R sia una funzione continua tale che per ogni g, b€R

_
S Flx)dx
——_—ab—a =a+b

Allora per ogni ¢,bER
b
! fe)dx = b*—a? .
a

Posto

Flx) = r A1) dt

a
si ha allora

F(x) = x? Vx€ER ,
e, per la continuita di f,

f(x) =F'(x) = 2x

[17

17.
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pertanto l’'unica funzione continua con la proprietd richiesta &
la funzione 2x.
Se non si richiede la continuitd di f, basta porre (ad esempio)

2x sex #0
flx) =

1 sex =0

b b
per avere [ fix)dx = s 2x dx = b®>—a? per ogni a,b senza che
a a

f coincida con la funzione 2x.

Dal teorema fondamentale del calcolo integrale si otiiene che
flx) = (x3—2x)e™ = x(x2—2)e ™ ,
quindi

fl(x)=>0 = (—/2<x<0 oppure x=>./2).

La funzione f ha allora minimi relativi inv/ 2 e —+/ 2, decresce

per x < —+/2 e cresce per x >+/ 2, per cui
min £(x) = min l F—V), F (ﬁ)}

Osserviamo ora che

VT vz
(-2 e dr = s (s*—2s)e* ds
0

fevo = |

0

dato che s3 — 23 < 0edef >e S per0<s <\/_2,_si ha

V2
f=V2) = ‘

V2
(s3—2s)e*ds < j (s3— 25) e~%ds = £ \/2),
0

0
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18.

Risoluzione dei problemi [18/19]
quindi

min f(x) = f(—V2) .
xER

Calcolando I’integrale si ottiene:

FO)=4—-(3+3x2+4x+4)e >,

quindi il minimo valore di f & 4+(6 \/—2— 10)6\/2— .

Si ha

3

(n—3)" _ (1 _i>". 1

n+1 n n

dato che

n

lim (1—3’—) =3 >0,
n

H—>

si avrd per n sufficientemente grande

=
nn+1 2 n

(n—3)" - e”3 1

-3
. e . .. L
La serie E diverge, quindi per il criterio del confronto
n=1 <N

anche la serie proposta ¢ divergente.

19. Una soluzione € z = 0. Per cercare le altre, moltiplichiamo I'equa-

[20]

20.
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zione per z: si ottiene

21z —(0 + 4+V3)ilz]2=0

da cui, dividendo per |z|?,

22 =(1+4\/’3—)i=(1+4\f3]—)eT

Quest’ultima uguaglianza & verificata se e solo se

. T
il

z=2V1+4+/3 e 4.

Le soluzioni dell’equazione data sono allora

Nel caso k = 0 la disuguaghanza & ovvia perché

e +x2 >0 VxER .

Quando poi k = = 2, = 3, ... si vede subito che la disuguaglianza
non pud- essere verificata su tutto R, perché per x = 1 si riduce a

e+ 1> 2k,

mentre 2k?2 > 8>e+1 se |kl = 2.

Il caso piu delicato & dunque k2 = 1. Si tratta di veriticare se la
funzione

fix) =€ + x?2 —2x

¢ non negativa su R.
Dato che e* = 1+x per ogni x€ER, si ha
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21.

Risoluzione dei problemi [21]

2

1\ 3 3
.> 2 =y — — _>.__
f) x—_x+1 <x 2>+ n 1

La risposta & dunque: k= -1,k =0, k = 1.

Posto

X
f(x)=2x——é—‘ e tdr—1
0

le soluzioni dell’equazione data sono i numeri reali x tali che
f(x) = 0. Notiamo che f & una funzione continua e derivabile;
dato che-

floy=2-—e*

1
2
ed e *" < 1 per ogni xER, si ha

£l = —;— VxER .

La iunzione f ¢& allora strettamente crescente sull’intervallo R,
quindi & iniettiva.
Inoltre, f(0) = — 1 < 0, mentre

1

7>0

3

) =5 + | r'wde =0 + 3=
0 Z

pertanto la funzione continua f si annulla in un punto x€]0,1[
che per Diniettivita di f & P’unica soluzione dell’equazione di
partenza.

[22}

22.
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(a) Dimostriamo I’esistenza di Q per induzione sul grado di P: se
P ¢ di grado zero, cio¢ se

P(x) =a Vx€&€R
per qualche a€R, si ha

X
aé'dt = ae* —a ,
0

cioé basta scegliere Q(x) = a.

Supponiamo di aver -dimostrato la tesi per tutti i polinomi di
grado 7, e dimostriamola per quelli di grado n + 1; sia P un po-
linomio di grado n + 1: integrando per parti si ha

V P()e‘dt = [P()] — r P(t) e dt
0 0

Poiché P' ¢ un polinomio di grado », si ha per 'ipotesi induttiva

S P'(t)e'dt = Qo (x) e — 0y (0)
. .

con Q, polinomio, Allora: |

s P(t)é'dt = P(x)e*—P(0) — Qo (x) e* + Qo (0)=
0

= (P— Q) (X)€" —(P—00)(0)

e la tesi & dimostrata con Q = P—(Q,.
Resta da provare che Q € unico. Supponiamo che sia

P(t)e'dr = Q;(x)e* = 0;(0) = Q;(x)e" —Q,(0) .
0

Allora la funzione (Q,(x)—Q,(x)) € = Q,(0)—Q,(0) ¢ costante.
Draltra parte, per ogni polinomio non nullo R(x) si ha

im [R(x)e*| = 4o |

x—+ o
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pertanto deve essere
0, —-0,=0

(b) Entrambe le domande hanno risposta affermatwa Comin-
ciamo dall’iniettivita: se

X X
‘ P, (t)éldr = s P,(t)é'dt
0 0

si ha
X
s (P, —P)()e'dt =0
0
Derivando rispetto ad x si deduce che
P,—P)(x)e" =0

e quindi P, = P,.
Per provare la surgettivita, sia @ un polinomio. Allora

Q(x)e* —Q(0) Qx)e* —Q(0)e=

- [ 4
- L w(mnﬁdt

X

s ©Q@+0)@)e dr .

0

Poich¢ Q + Q' & un polinomio, posto P = Q + Q' si ha

] P(t)edr = Q(x) " - Q(0)
0

quindi 'applicazione P+ Q ¢ anche surgettiva.

[23/24] Risoluzione dei problemi 71

23.

24.

Studiamo separatamente le due serie

> " ; >n 3

n=1 n=1

La prima & una serie geometrica che converge per [f| < 1, diverge
per t = 1, & indeterminata per t < —1. La seconda invece € una
serie armonica, ¢ converge per 3¢t > 1 mentre diverge per 37 < 1.
Possiamo dire subito che:

1 . .
— se 3 < t <1, entrambe le serie convergono, quindi converge

anche la loro somma;

—se - 1 << —é— oppure se ¢t == 1, una delle serie converge

e I’altra diverge, pertanto la loro somma ¢ divergente.
Nel caso t < —1 si ha.

lim n™3 =+ , t" >0 per n par,

v

quindi il termine generico della serie data non ¢ infinitesimo, ed
£ssa nomn converge.
Piti precisamente si pud verlﬁcare che:

— se t = —1, la serie armonica diverge e le somme parziali del-
I’altra sono limitate, quindi la serie proposta diverge;

— se t < —1, la serie é indeterminata.

Dalla seconda equazione si ricava

2

0=2z2+w (z +iw) (z — iw)

quindi deve essere z = * iw (e, in particolare, la prima equazione
¢ superflua).

Se & z = iw, dalla terza equazione si ottiene successivamente
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W: =
1+ 2
o 1+i
z=iw=
2
Se invece & z = — jw, nello stesso fnodo si ottiene
W= 1+ ;= 1 —1i
2 2

Pertanto il sistema dato ha le due soluzioni simmetriche

14i 1—i . 1= 1+
= e—— W = ce—— Z = e— R w = et—
S 2 2 2
Studiamo anzitutto il segno di 1—x . Poiché
x
1l—x _ 1—x2

1+x (A+x)?

si ha che 1=*— > 0 per |x| < 1, mentre i;x <0 per x| > 1.
X
Osserviamo inoltre che
0<f(x)<-%_ Vx # 1 .

Cominciamo a studiare f sulla semiretta [1, +oo[: si ha

x—-1
14+x

f(x) = arctg

[25]
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e dunque
F)=0 ., lim fGx) =
X~ +f oo
La derivata di fperx > 1 ¢
£1) 1 1 l+x—x+1 _
- — 1 +x)?
L4 X 1 21/ (1 +x)
1 +x 1+x
-1 >0 ,
2xVx? -1
per cui f & crescente e inolire
Hm f'(x) = 4o . ~

x—>1*

Uno studio analogo puo essere condotto sulla semiretta ]—eo,—1],
oppure si pud osservare che per ogni o > 0 si ha

1
arctgae + arctg = 5 ’
quindi
+
f(—x) = arctg l b arctg S -fx),
: 1 —x 1 2

—X
1+x
da cui si ottiene

lim f(x)=7 , lm fe)=7 .

xX—>—o0 x—=»-1"

f'x)>0 VWx < -1 , lim f'(x) = +eo

x—+—-1"
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Rimane da studiare il comportamento di f nell’intervallo }—1,11,

| dove si ha f(x) = arctg e quindi
+x
lim f(x) =% , lim f(x)=0
x—+-—1* 2 x—>1"
) 1
flx)= - —<90
2V1—x?

lim f'(x) =lim f'(x)= —.
x—-1* x—1"

Un grafico approssimativo di f ¢ allora il seguente:

- ——— /2
_—/_}r\l /4 il

| \/——'

] ) -

1 1 '

Figura 1

<
I
-
x
-

26. Se lim f(x) = a, per ogni € > 0 esiste M_ tale che

X—>+ oo

€

x=M > g-e<fx)Y<a+te

27

27.

Risoluzione dei problemi

Fissiamo € > 0. Se x = ME si ha

cioe

x+1 x+1 x+1
(a—e) = S (a—e)dt < s fdt < s
X : X X
x+1
a— s f(ndef <e per x =M,
X

Questo significa che

x+1
lim f()dt =a .

X— 4 oo x

Il viceversa non € vero: si pensi alla funzione

f(x) = sen(27x)

Si ha

x+1 .
[ Fdt=0  Vx€R ,

ma chiaramente f non ha limite per x = +oo,

Visto che la funzione logaritmo €& crescente, basta provare

monotonia della successione

b, = (1+ 2"

Si ha

b

n

o1 = (L 2" HUERDT o L Dr g L1y

(@at+e)dtr =a+e,
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28.

Risoluzione dei problemi [28]

2 _ 2 2
=p el/(n+1) (1+2e") Qn+1)n*(n+1)* _

n
e 1/(n+1)?

<
< (1 + 2¢" )(2lz-l~1)/n2 )

e 1/(n+1)?
< b” < (en)l/n > = bn ?

quindi (b,,) ed (a,) sono decrescenti. Inoltre

\
n

0<a <

n

log(3e™) =_1_+ log3
2 n nt

pertanto lim a, = 0.

n—rce

Se n & dispari, allora lim P(x) = lim P(x) = t= e

X+ o X—>—oo
P'(x)=x"-10,

n - N .
per cui P’ si annulla solo per x = V10, e questo punto € ovvia-
mente un punto di minimo assoluto. Resta da calcolare il valore

minimo di P:

minP = P( J/10)=
n+1 _1_
=_L1 10" _10-10" + 100 =
n+ 1

n+1
n

n
- - 10
100 n+1

[28]
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Visto che 2L < 2, si ha
n
minP > 100 - —*— 100 = 199> ¢
n-+ n+

quindi P & sempre strettamente positivo € non ha radici reali.
Supponiamo invece che 5 sia pari: se # = 0, P ha ’'unica radice
100

9

;sen >0, ¢

im P(x) = —oo | lim P(x) = +oo |

X—+— oo X— +oo

quindi P ha almeno una radice reale. Inoltre la sua derivata P’
si annulla solo per x = in\/_l.d; il punto x = — '{/_IF € un mas-
simo relativov, mentre x ='{/Wé un minimo relativo: sappiamo
gia che P ({1/_1—6) > 0, quindi P non ha radici tra —I\I/—IEe oo,

e ne ha una (ed una sola, essendo crescente) tra —oo ¢ 4/‘16
In questo caso, il grafico di P é:

= P(x)

-Vio V10

Figura 2
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29. Ponendo z = x + iy si ottiene
(‘/x2+y2)3= x3+y'3
Vit (- 12 =Vx2+y?

Dalla seconda equazione si ricava

x2+y? =2y +1=x2+y%
quindi

=1
)

sostituendo nella prima equazione si trova successivamente

3 2

1 1

2 — = 3 —
<x +4> (x +8>

3 3 1 1 1
6+_4+__x2+__=x6+__x3+_
¥ T 64 4 64

%2
= (12x2-4x+3)=0
16

e quindi x = 0 oppure 12x% — 4x + 3 = 0. Questa seconda equa-
zione non ha soluzioni reali, quindi P'unico numero complesso

che risolve il sistema &
i

Z='2—-

1
30. Supponiamo che lim J [f ()" dx = oo, Per la continuitd di f

n—+ o 0

31

31.

o
|
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esiste x,€[0,1] tale che f(x,) = max f(x). Dato che f(x) = 0,
[0,1]
si ha anche [f(x)]" = Irtax “[f(x)])* per ogni n. Allora, dato che
x€[0,1]

1
[fCO)" dx < max [f)]" ,
0 [0,1]

st na lim [f(xy)]" = +oo, e cid & possibile solo se f(xq) > 1.
n—>+oo

Viceversa, supponiamo che sia f{x,) > 1 per qualche x,€[0,1]
e sia € = flxy) — 1. Per la continuitd di f esiste un intervallo
aperto lg,b[ C [0,1], con a < b, tale che per ogni x€Ja,b[

f(X)>f(xo)—%= 1 +—‘§-.

Allora »

1 ' b n
s [f(x)]n dx = 5 [FEOT" dx = (b—a) (l + -;—)
) a ’

e quindi

i [ l [f(x)]" dx = +oo

n—++e Jg

Per qualunque scelta di a, b, ¢ la funzione & di classe C~ su
R \ {0}, pertanto basta esaminare il suo comportamento in O.
Dato che

lim f(x) =lim f'(x)=..=0,
x=0" x—+0"

perché f sia di classe C¥ su-tutto R occorrera che sia
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Hm fG) =lim f'G)=..=lim f®)=0.
x—0* x—07" x—0*
Ma
lim f(x)=1+b+c , lim f'(x)=a+c ,
x—+0* x—=>0*

lim f"(x)=-b+c ,

x—0*

per cui:
f & continua se e solose 1 +b +c= 0;

f & diclasse C! se e solo se

1+b+c=0
atc=0 ;
f & di classe C? se e solo se
14+b+c=0
a+tc=0
b—-—c=0
Quest’ultimo sistema ha solo la soluzionea=—;—, b=c=—-;— .

La funzione corrispondente

fxx)y=1+ —;— (x — cosx —e~)
non & di classe C3, poiché

m f"'(x) = - % .

x—>0*

Il massimo, k per cui qualche f del tipo indicato ¢ di classe ck e
dunque k = 2. ‘
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32. Osserviamo che la funzione e

33.

1%l _ |x| + cos x & pari, pertanto

per trovare il suo minimo su R basta studiare il minimo per
x =2 0 della funzione

f(x) = e¥*—x + cosx
Si ha
f'(x)=e*—1—senx
') =e*—cosx =0,
quindi f' & crescente. Essendo f'(0) = 0, si ha
f'x)=0 Vx>0,

quindi anche f ¢ crescente in [0,+eo[, ¢ infine

inf f(x) = f(0) = 2 .

xz20

La risposta & dunque k = 2.

(a) Ricordiamo che per ogni + > 0 si ha sen ¢ < ¢, quindi se
0<x<7siha

0 <senx < x

e inoltre

senx =sen(m—x) < T—Xx .

Da queste due disuguaglianze segue che

X =x 4+ senx >x >0
n+1 n n n

0<xn<7r=>

X =x +senx <x +7T-x =7,
n+1 n n n n
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34.

35.

Risoluzione dei problemi [34/35]1

quindi, essendo 0 < x, < w, la (a) & provata per induzione.

(b) E’ stata provata nel corso di (a).

(c) Da (a) e (b) segue che (x,) ha limite finito L, che verifica
0<L<wmedL=L +senlL, cio¢ sen L =0. Dato che x, =xq >0,
non puo essere L = 0, quindi necessariamente L = . -

Sia T un periodo di f; basterd studiare f ristretta all’intervallo
[0,T]. Poiché f & continua, esiste un punto x,€[0,T] di minimo
per f, tale cioé che ’

f&x) = f(xe) per 0<x<T.

Naturalmente x, € di minimo per f su tutto R, quindi, essendo
f derivabile, si ha f'(x,) = 0 e infine

flx) = flxo) = fxo) + f'(x0) = 0

per ogni xE€R.

Usiamo i seguenti sviluppi di Taylor:
e* =1+x+o0(x)

2
cosx = 1 —£2—+0(x3)

2
log(1+x)=x — -)é— + 0 (x?)
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Allora

o* 4 2 logcosx

x2

1+x+o0@)+ 2x72 <— ;—2- + o(x3)>=
=x +o(x) .

Visto che | sent| < 1 per ogni ¢, si ha

|f(x)|<———":;i(’” VE +oWF) .
X

dunque lim f(x) = 0.
x—0*

36. Osserviamo che €

2
(x,)? = [max [-211— az}] = maxll—16—, a4} ,

TSI TR S T

cosicche

. 1 1
do ovviamente — > — .
essen 4 16

Si dimostra facilmente per induzione che

n

x =max|—i—,a2"} Vn=1,

2 x2 37\ —
=14+x+o(x) + —=log ([l —— + 0o(x*))=
x? 2
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37.

Risoluzione dei problemi [371
e tenendo presente che &

N 0 selal <1

lim a _,J= 1 selal=1
Foo se |al > 1

si pud concludere come segue:

—se g <1¢€x, = —i per n sufficientemente grande, quindi
b
—selal=1,¢x, =1 per ogni n, dunquenlirz x, =1;
R n . NPT
—selal>1,¢x, = a? per ogni n, quindi lim x, = oo,
N—>o00

X
(a) Poiché la funzione g & continua si ha lim [ g(t) dr =0,
x—0 !«

quindi per il teorema dell’Hopital

lim f(x) = lirg [g(x) + g(—x)] = 2.

x—0

Allora la funzione f si pud estendere con continuitd nell’origine
ponendo

- ftx)
fx)=

se x 0

2 se x =0

(b) Siccome f & derivabile in R \ {0}, basta controllare la deri-
vabiliti di finx = 0. Si ha

[38]

38.
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) —f© 11 (" 1 /("
f()hf()z_h_[Z_I 'g(t)dt_z:l:?<J g(t)dt——2h>.

h ~h

Applicando il teorema dell’Hopital

h h)+g(—h)—2
lim — (‘ g()di — 2h) = lim s et -2 _
—h =

h-0 h? 2h

(a) Sia P un polinomio di grado n. Per ogni x 2 n + 1 si ha

x* = x"*1 pertanto

. |P(x)] . [P(x)]
0 < lim — <y 200
0 xlirilw x* x—»rgw xHl

=0.

Quindi non pud essere vero che P(x) = x* per ogni x.

(b) Siano Q, R non costanti, e sia P un polinomio tale che
P(x) = [Q(x)1R®), Dall’ipotesi Q > 0 segue che

0(x) = ex Vx >.x0 ,

per opportuni valori di ¢ > 0 ed x, 2 0. In particolare,

im Q(x) = +oo

X — o0

Per quanto riguarda R, si hanno due casi:
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lim R(x)=-—o  oppure lim R(x)=+o0,

X— + o X > + o

Nel primo caso ¢
im [Q)]f® =0 ,
X— +

quindi deve essere P = 0, da cui necessariamente Q = 0, assurdo.
Nel secondo caso, indicato con n il grado di P, sihaR(x)=n + 1
per x abbastanza grande, quindi

o<im JPOL 1P
x—>+oo[Q(x)]R(x) X—>+°°Cn+1x"+1

:O,

contro lipotesi che P(x) = [Q(x)]R®) .

39. L’esercizio si risolve facilmente osservando che

_ L VR ) @+ Vet D
" 2n (n +Vn+1)

1 1

2n n+vVn? 41

_(n +Vn2+1)—2n
2n(n +Vn2+ 1)

vni+1l —n

2n(n +Vni+l)
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B Vn?+1—n) (Vni+1 +n) _
2n (n+Vn2+1)?

_ i
2n (n +Vn?+1)?

I denominatore di questa frazione cresce e tende a oo al
crescere di n, pertanto la successione (an) é decrescente ed ha limi-

te zero. Per la monotonia di (a, ) si ha allora

{\supa,, = a, =—;——v2

i

I
=
g
Q

It
o

| infa

i
—

n n

40. Se scriviamo z. = x +iy si ha
Im (23 =3z+1i) =3x2y—y* -3y +1,

1 , " S
e occorre provare che se 0 Sy < Z questa quantita non puo esse-

re nulla: infatti,

3x2y—y3 —3y+1=1+4+ y(Bx2—»?-3) >

>1+y(—11—6— >>

1 49
221+ —[-—)>0.
4( 16)
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41.

42.
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t2

Osserviamo che 0 < e™° < 1 per ogni ¢. Siccome x; > 0 ¢

*n

Xy >0 = x,,ﬂ:f e dr>0,

0

si deduce per induzione che la successione (x, ) € positiva. Allora

Xn _p Xn
= S e dt < ! ldt=x, ,
0 1]

X
n+1

quindi (x, ) ¢ monotona non crescente ed ammette limite L = 0.
Questo numero deve verificare la relazione

L 2
L=] e U dr.
0

Se fosse L > 0, dal teorema del valor medio integrale si_ otter-
rebbe L = L e'Ez, con 0 < ¢ < L, ma cio implica e” % =1,
ovvero £ = 0, il che & impossibile. Ne segue che il limite cercato
L & zero.

(a) Si ha naturalmente f(0) = 0 e d’altra parte dall’ipotesi su f

segue lim f(x) = 0, quindi f & continua in zero.
x>0

(b) Generalmente no: consideriamo ad esempio la funzione

x2 se x€Q
fle)=
—x? se x€Q

Tale funzione non & continua in alcun punto tranne lo zero.
(c) Sappiamo gia che f(0) = 0. Allora

-

f(h) = 1(0) Iz ol B

h TR
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quindi

£10) = tim L=@
h—0 h

43. (a) Cominciamo ad osservare che per ogni x > 0 si ha

*
logx=s —dt
1 t

quindi

f(x)=]—‘ dt Vx>0 .

t

Dal fatto che > 0 per ogni t > 0 si deduce che f(x) >0

perx <1 ef(x)<0perx > 1. Inoltre

&1

flix) = - <0 Vx >0,

cioé¢ f & decrescente.
Esaminiamo infine il comportamento di f per x = 0% e per

x = +oo: ricordando che e/ = 1 + ¢ per ogni ¢, si ha e 1 =1
per ogni ¢ > 0, quindi
X et_ 1 .
) = - - di< —(x—-1) Vx =21,
1
pertanto lim f(x) = —oo. Dall’espressione di f' si deduce inoltre
X—> 400
che. lim f'(x) = —oo,
X —r +un

Poniamo ora

-
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1 se t=0

La funzione ¢ & continua su [0, +oo[ e

fox) = j oB)dr |

per cui

1
xli_)ng*f(x) = ] () dt < +eo

0

inoltre

lim f'x) = —p(0) = — 1.

Un grafico approssimativo di f ¢ allora:

y = f(x)

1

(a = fcp(t)dt)
o

1 x

Figura 3

[43]

[44]

44.

Risoluzione dei problemi 97

(b) Per prolungare in modo continuo f a [0, +eo[ basta porre

i) se x >0

7Gxy =

1
[ p(t)dt se x =0
/ 0

Per quanto visto in (a), f risulta continua; essendo poi

~ 1
o) = J o(t) dt

con ¢ continua, per il feorema fondamentale del calcolo integrale

f & anche derivabile (da destra) in 0, e la sua derivata & continua
su [0, +oof.

B’ facile ottenere in forma -esplicita l’elemento n-esimo della

successione: notando che

a, = a; , das =\/§—a1 , a4 =V 6 a;, ..,

si dimostra per induzione che
=+/nl n&N
@, V! a v
e quindi

Vii—Dlae, 1 V@2-1) .. n

oy _ _ -

(a,)? (n—1) a} a;, V-1 .1
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45.

’

Risoluzione dei problemi 1451

=1—\/(n2—1) . @Qn-1 =2
a; n—1

Per n = 2 tutti i fattori del prodotto sotto la radice sono maggiori
di uno, quindi

2n—12 :
\/(n2—1) o @QneD) —— e on =vVnr-i

e si conclude subito che il limite cercato & oo,

(a) Si tratta di stabilire per quali w € C I’equazione f(z) = w ha
almeno una soluzione z € C. Se w =0, si potra ovviamente sceglie-
re z = 0. Se invece w # 0, si cerca z 0 tale che

2_32

fz |

Z

ciog, ponendo z = x + iy, si voule stabilire per quali w € C esistono
x, ¥ € R tali che

(z+2)(z—-2) 2Rez*2ilmz . xy
w= = = 4

Iz] Iz| Vxit+y?

Intanto w deve essere un numero immaginario puro, cio¢ w = ib
con b reale. In tal caso esistono infinite coppie (x,y) tali che

4xy

Vx2+y?

b2 y.=|b|\/2—
4 4

b =

ad esempio x =

[46]

46.
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L’immagine di f & dunque ’asse immaginario.

(b) La funzione f non ¢ iniettiva: basta osservare che se z &
reale oppure immaginario puro si ha f(z) = 0. .

(c) La funzione f ¢ continua in C\ {0}, perché ¢ composizione di
funzioni continue. Per quanto riguarda la continuiti in z = 0
si osservi che

122+ 122]

lf@)I< |

21zl

zl ’

quindi lim f(z) = 0 ed f é continua anche in 0.
z-0

Se f & periodica di periodo T si ha

fG)=fGx+1) VxER
e quindi, derivando,
Vx€ER ,

f{e)=f'"x+1
cioé f' & periodica.
Viceversa, supponiamo che f' sia periodica di periodo T. Se,

per assurdo, f non fosse periodica di periodo T, dovrebbe esistere
un punto x, € R tale che

fleo) #fxo +T) .-

Poniamo c¢=f(xq +T) — f(x,). Allora, per ogni n€N,

X, +nT
fo +nT) = f(xo) + § Fi(oyde =
n Xp +iT
=fe) + ) | i@ de =
i=1 Jx,+@-1)T
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47.
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Xo+T

fi(nde = f(xy) +nc

Xo

= flxo) tn

ma cid ¢ assurdo perché il primo membro é limitato mentre il
secondo tende a +o0 0 —oo per n —> oo,

(a) Si noti che, se x > 1, si ha

quindi basta considerare la funzione

x
f,(x) = x" —cos -
sull’intervallo [0,1]. Si ha

(0= -1

1
f,(1) = 1—cos n—'> 0
e inoltre

1) =nx""! + 1 sin 2= > 0
n n n

VxE€ 10,1,

quindi f,; ha uno ed un solo zero in [0,1]. Questo punto ¢ la
soluzione x, dell’equazione data.

(b) Dalla dimostrazione precedente segue che 0 < x, < L
x 0
(c) Dato che la funzione x + cos . & decrescente su [0, 1] e ricor-

dandoche 0 <cos 1 <1,siha

n n n
X 1
1>x, = cos — = cos =— =2 +/cosl ;
v r v n

[48]

48.
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d’altra parte

lim Vcosi=1,

n—co

quindi lim x,=1.

H~—> oo

La funzione f, & continua. Si dimostra poi per induzione che
ognuna delle funzioni f,, ¢ continua. Allora la funzione f ¢ con-
tinua tranne eventualmente che nei punti 1, 2, 4, ..., 2", ...

Dimostriamo la continuitd di f in questi punti cominciando dal
punto x = 1. Si ha

lim f(x) = lim fy(x) - 3

x—=1" x—>1"

5

’ 2
lim f(x) =1lm f;(x) = lim ;—fo <’2‘_>= lim T=x* _ 3,

x->1* x—=1* x-1* x—=>1* 2

quindi f é continua in 1.
Osserviamo ora che

lim  f(x) = limn f, () = lim

1 X\ _

x= "y x—@"y
li 1 £ ) : 1 f(x)
= im -/ ., x)=— im X
5o (27 1y 2 "n-1 2 5o (277 1)"
mentre
: - ny — ny — _1_ n—1y —
im0 =f@) =1,,,@N) = 5 £,e")

= _;_ lim  f(x),

x> (2 1y
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quindi f & continua in 2" se e solo se lo & in 2"~ '. Allora, per
induzione, f & continua in 2" per ogni n€N.

49, Si ha facilmente

2n + log (572" + 1)

nC!

a, = (senn)

log (5¢=2" + 1) ]

= (senn) al_l [2 +
7 . n

Osserviamo ora che

minlim (senxn) = —1 , maxlim (senn) =1 ,

n—>oo n—»co

1
lim — = 1 sea =1
n—e  p®
+ oo sea <1
—-2n +
lim [2 4 loe(oe 1) ] =2
n—soo n

Possiamo dunque concludere che

— se a > 1 si ha lim g, = 0, dunque (g, ) ha limite ed ¢ limitata;

n—e

—se o =1 si ha minlima, = -2 e maxlim a, = 2, dunque (q,)

n—oo f—>oo

non ha limite ma ¢é limitata;
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— se « < 1 si ha minlim g, = — o e maxlim ¢, = + o, dunque

n— oo n—> oo

(a,)) non ha limite né ¢ limitata.

0. Osserviamo che per 0 <x < Lz"_
log[(1 +senx)*™] _ senxlog(l+senx) _
tgx tgx

cosx log (1 + senx)
Effettuando la sostituzione ¢ = senx, si ha

/3
cosx log (1 +senx)dx

/3 senx
s log [(1 +senx)™""] dx = ‘

w6 tgx n/6

= S log (1 + £)dt = [(1 + 1) log (1 +t)_t]l\//23/2 -
/2 .

2 2 2 2

= (1 + Y2 s s PYE) VS 33 L

51. Utilizzando gli sviluppi di Taylor
e =1+r+0(

t2
cost = 1 —-2—-+0(l‘3),
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log(1+8) =t+0()

si ottiene

senx

(\/;—)senx_:e 2 =1+ S?x + o (senx) ,

cosvVx =1 ——xz-+o(x\/x_),
log (1 +Vx )P =[Vx +o(Vx )2 =x + 6(x)
quindi

(\/e_')senx — cos \/; _
[log (1 +vx )P

l+é—senx+o(senx)—1 +—;—+o(x\/x)

x + o(x)

S€
L X +senx +o(x) 1 I+ xnx +o(l)
2 xto() T2 T 1+

pertanto il limite proposto & uguale ad 1.

52. Per 0 < x < % si ha 0 < tgx < 1, quindi

0 < (tgx)"*! < (tgx)" VneEN , xE[O, l].

[52]
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Ne segue che
0<a, <a, VneN .
Se ora n =2 3, si ha
T[4
@, ta, , = s [(tgx)" + (tgx)""?1dx =
(1]

/4
S (tgx)""? (1 + tg?x) dx
0

ed effettuando il cambiamento di variabile tg x = ¢ si ottiene

1 ) (1 ]1 1
+ L= n— dt: =
I T 2 L ! [n—l o n-—1

Siccome (a,) ¢ decrescente e limitata inferiormente, essa ha
limite finito L. Passando al limite per n» — oo nell’uguaglianza

a, +a, ,= si ottiene 2L = 0, quindi

Quest’ultimo risultato si poteva provare direttamente osservando

che, per la convessitd della funzione tg x su [O, —72L[, si ha

VxEI:O, %] ,

quindi
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53. Poiché¢ x = senx per ogni x > 0, bastera dimostrare che

X

x* = x Vx>0

ovvero

x—-Dlogx =0 Vx>0

Ed infatti, se x <1 ,allora x — 1 <0 e logx < 0,
mentre se x = 1, allora x — 1 >0 e logx > 0.

54. Si noti che

lim (x + 1—n> = oo YneEN

X— -+ oo X

quindi ovviamente sup A4 = oo,
Per calcolare I'estremo inferiore, cominciamo ad osservare che
per ogni x > 0 ed ogni nE€N si ha

- n
x+%—>(~l—> , x+1n = x
X x x

1
dunque,siaper 0 <x < lsiaperx =1, si hax +——=>1.Dal-
X

tra parte, se scegliamo x ="y/n, si ha

1
lim (’\/I n +T>=l s

H—>oco

pertanto infA = 1.

Un altro modo di procedere potrebbe essere quello di calcolare
il valore minimo della funzione

1
fn(x)=x + -XT
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55.

56.

per x > 0, attraverso lo studio della sua derivata prima, e di-
mostrare che tale valore minimo tende ad 1 pern = oo,

Poiché
1
1 — cos 5 )
lim —_—————
mre (117 2
X
basta calcolare
x2Zsenx x
log 2 + e
lim
X—>+ oo xz
Ora.

2 ' 2
log (__x SONX +e"> =x + log (l 4+ X SenX senx) ,
2 _ 2e*

quindi il limite propousio €& zero.

(a) Osserviamo che a; =\ > 0 e che g, > 0 implica q,, +1 =0,
pertanto per induzione si é provato che
a, =0 VneN .

Ma allora 1+a, > 1, quindi

__<a
~
ntl llan n
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e la successione, essendo non crescente e limitata inferiormente,
ammette un limite finito L = 0, che deve verificare 'uguaglianza

Il limite della successione ¢ dunque uguale a zero.

(b) Osserviamo subito che, se a; = —1, allora a, non ¢ definito,

quindi occorre che sia A # —1. Analogamente, se a; = — L , si

2

ha a; = —1 ed a3 non é definito, quindi deve essere A ¥ = -;—

E’ facile vedere che

X — X = -

1
I +x k k+1

pertanto la successione € ben definita se ¢ solo se A non € un
numero della forma — _llc con KEN.

Se A < —1, si ha a, > 0 e si possono applicare per n =2 2
i ragionamenti del punto (a), ottenendo che il limite di (g,) ¢
Zero.

1
Rimane da trattare solo il caso — 1 <A<0, con A& {—-k— : k&N

Notiamo che

1 X <_1’
k+1 1 +x k

-1 <x<-

quindi si qttiene facilmente per induzione che

1 1
— S < Gpy <1 Z Gy >0
per ogni KEN.,
Applicando la parte (a), si ottiene di nuovo che lim a, = 0.

—> oo
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57. Osserviamo innanzitutto che la funzione A(¢) = t log t ha minimo

per t = —el— , € tale minimo vale — eL ; allora,

1+t10gt>1—%>0

per ogni ¢ > 0. Inoltre lim 4 (¢) = 0. Poniamo allora
t—0*

1
1+1 logt
g(t) =

per t >0
l per t=0

2x
la funzione g & continua su R*, ed f(x) = I g(t) dt. Dato
. . . x
che g(z) > 0 per ogni ¢ = 0, la funzione f ¢ non negativa su R".

Poiché

X

e(tydr S e)dt

0

2X

fx) = S

0

per il teorema fondamentale del calcolo integrale si ha per x > 0

')

26 (2x) —gx) =

2 1 _

1 + 2x log(2x) B 1 +x logx

_ 1 —-2xlog?2
(14 2xlog(2x)) (1 +xlngx)

Ne segue che f£'(0) = lim f'(x) = 1 e che
) x—+0"*
1

fx)y>0 <= X<——210g2,
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quindi x, = & punto di massimo per f. Osserviamo infine

2log?2

o=

che, per t = , la funzione A ¢& crescente, quindi per x =

e

2x
fx) = f L g 2XX
X

1+ h(p) 1+h(x)’
e quindi
lim = lim — X =90.
x._l,+mf(X) x~—l)+°° 1+x Ing

Un grafico approssimativo di f ¢ allora

y=f(X)

2log2

Figura 4

Dato che f(x) < M =f (211 3 ) per ogni x =2 0, per trovare
og
I'intero k occorre valutare M.
1

1 e ‘
>— perché log 2 <1< -2— Allora,

Osserviamo che
2log?2 e

1 .
per la crescenza della funzione £ (¢) in] : , + oo[si ha

[58]

58.
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1 1
log2 1 log2 1
M= —_—dr < dt =

1+ S 1
L L ] 4+ p
2log2 2log2 2 log 2

1

log 2 — log log 2

Essendo logx < x —1 per ogni x > 0, si ha
loglog2 << log2 — 1

e quindi log2 —loglog2 = 1, da cui M < 1. Essendo d’altra parte
M > 0, l’intero cercato & k = 1. '

Supponiamo per assurdo che sia L > 0: allora esiste x, € R tale
che per ogni x = X,

' L
fx). = 5
e quindi
L

£ < -2

> per ogni Xx = xg

Da cio segue che per x =2 x,
, x

FI6) = fe) + s frdr<

X .

<f'eg) + Jx (—%) dt=

X0

' L
=f (o) —":,Z‘(X—xo)
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da cui, integrando di nuovo,

£ = Flxg) + s Flodr<

x L(t—
<f(xo)+j [f’(xo)——gz—xi)]dt

= flxe) + f'(x0) (x — x) — § (x —x,)?

per ogni x =2 x,. Questo implica

lim f(x) = —oo,
X—> + oo

che ¢ assurdo.

59. Poiché lim nsen —’11— = 1, bastera calcolare
N—>oo

. [1 (n+1*2 1

limf———m—— ——

now| n (l’l + 2)n+ 1 3

Dato che

l(n+1)"+2_n+1<n+1>"‘“_n+1 1
nn+2)tt! n n+2 n L+ 1 \*tY°
< n+1>
e 1 1
il limite cercato ¢ — — — .
e 3
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60. Con una integrazione per parti si ottiene

X

X X
e~ (1 =212 )dt s e‘tzdt—§ 2t2edr =
1] 1)

0

o 2 x 2
S 212 Vdr — s 2t2e U dt =
0 0

il
——
~
[§N]
|
~
»
L d
ol
+

61. (a) Per studiare la monotonia di (g, ), consideriamo la funzione
flx) = e"/e, e vediamo per quali x€R si ha f(x) = x. Se poniamo

g(x) = f(x)—x si ha

im g(x) =1lm g(x) = +oo’

X—+ oo X—>— oo

’

e inoltre
£ =fFlr—1=— e 1,

. x/e
per cui g'(x) = 0 se e solo se ¢ fe = e, ovvero x = e¢. Ne segue che

e ¢ il punto di minimo di g e quindi
g(x) =gle)=0
per ogni xE€R; allora

fx) = x

per ogni x, e in particolare a, ., =f (@)= a, cosicché la succes-
sione (an) € monotona non decrescente.

Se ne deduce che (g,) ha limite +oo, oppure ha per limite un
numero L tale che L = eL/e, cioé g(L) = 0, e quindi necessaria-
mente L = e.
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Per la crescenza di f, si ha
a,se = a =f@)<fe=e.

quindi se A\ < e sara lim g, = e. Se invece A > ¢, allora a, > e per
. . . —> o0 .
ogni n, quindi noe

lim g, = 4o .

n—>oe

(b) Anche qui studiamo la funzione g: R = R data da

g(x)=b*—x.

Si ha lim g(x) = lim g(x) = 4o , e

X~ + oo X—>—c0

g'(x) = (logh)b™ -1,
quindi il punto di minimo di g €

_ _ log(logd)
Yo log b

Per studiare il segno di g, bisogna stabilire il segno di

S log (log b)
logb logb

gxo) =

Si vede facilmente che

quindi, se b = e’ , la successione (g,) € monotona non decre-

scente, e dunque ammette limite finito o infinito. Pil: complesso
1

¢ il caso 1 < b <e® : in tal caso, infatti, g (x,) < 0 dunque esisto-

no due numeri x4, X, con 0 <x; <xo <Xx,, tali che

glx;) =g(x;)=0 , g(x) <0 = x, <x <x,

[62]

62.
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Distinguiamo allora tre casi:
— se A < x,, allora

a,<x; = a =f@)<fx)=x;

inoltre a, , — a, = g(a,) = 0, quindi (g,) ¢ monotona non de-
crescente, superiormente limitata da x; e pertanto converge ad

un limite finito L < x; che verifica g(L) = 0, cioé

a, — x; ;

— se x; < XA < x,, con ragionamenti analoghi si prova che
x; <a, < x,, che (a,) ¢ monotona decrescente € quindi che

an_>x1 N

— se A =Xx,, € a, = X, per ogni n;

— se A > x,; la successione (a,) & crescente e quindi ha limite;
poiche il suo limite non pud essere x, né x,, & necessariamente

‘

a, —> +oo

Sia A un numero compreso tra / = minlim x,, ed L = maxlim x,,

n—»w n—> oo

(! o L o entrambi possono anche non essere finiti). Se ¢ A =17 o

A = L, il risultato ¢ ben noto. Se / <\ < L, basterd dimostrare
che

Ve>0 VmEN n>m:|xn—l|<e.

Fissiamo € > 0 ed m € N : non ¢ restrittivo supporre. che sia

A< A—e<A+e<L s m > —
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Scegliamo ora ny, n, € N tali che

n,=n>m , x <A—e<A+e<lx
2 1 "y n,

questo & possibile perché minlimx, <X —e€ e maxlim x, > At+e.

n—>oe n—r oo

Poniamo

n=max{k€N: n<k<mn, , xk<)\—e}.

Allora n < n,, quindi x,, | > A —e. D’altra parte

Xy, <xp L <h-e+ L <h-et2e=A+e
n m

e la tesi é dimostrata.

Sia h, con 0 < h < 2r, ’altezza di un cono contenuto in una
sfera di raggio r. Per avere il volume massimo converra scegliere

come raggio di base R = v/ (2r — h) h, in modo che il cono
risulti inscritto nella sfera (si osservi che R € l’altezza del trian-

golo rettangolo SPQ sull’ipotenusa).

P

[641

64.

Risoluzione dei problemi 117

Il volume del cono sara allora

V(h) = -;— Th2(2r —h)

e della funzione V(k) vogliamo trovare il massimo in [0,2r].
Perché V(0) = ¥V (2r) = 0, basta esaminare

V(h) = —é— wh (4r—3h) .

Il massimo di V¥ viene allora assunto per 4 = —;,L r ed ¢

V(—4—r>=—3£1rr3.
3 81

(a) Si ha
n ’ n—1
im 22 =jm 2 =—=0 ,
el e T (1))
quindi
n
lim (n 2"—n!)=1lm n! (n? - 1> = _oo .
n—»oo H—> oo n.

Ne segue che ’estremo superiore cercato € un massimo, e per tro-
varlo basta esaminare quegli » (sono solo un numero finito) per
cui

x,=n2"—n! >0.

Osserviamo che

xl=1,X2=6,X3_18,

40,x5=40,x6=——336.

Xa
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Se riusciamo a dimostrare che
*) x, <0 perogni n=6

potremo concludere che sup x
nz1

zione: se n 2 6 e x, <O, si ha

» = 40. Dimostriamo (*) per indu-

x =+ 2"+ =m+DQ2"-n) <

n+1

SMn+l)@m2"-nl)= (n+1Dx, <0

e la (*) é provata.

(b) Ragionando come in (a), si vede che lim (n2*¥ — k!)=— o0,

ke
quindi Pestremo superiore {#2¥ — k!: kK € N} & un massimo, e va
cercato tra i k percuin2* — k! >0.Sen>6 ek > n, per la parte
(a) siha

n2k_kl <k2_p <o,

per cui

a, =max {n 2"~k : 1<k <n} Vn>6 .

In particolare per k = 1 si ha

a, = 2n-1 "m>=6,

cosicché lim a =+ oo,

n—r o

Inoltre

0<a <n?2” Vn =6

n bl

an
quindi lim —=20
n—ooe 3 n
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65. Cominciamo a calcolare

66.

X
lim (x — S el dt) )
X—>+ oo 1
Ricordando che ¢ = 1 + s per ogni sER, si ha
X X 1
] edr > [ L+ — dt =x — 1 + logx
1 1

per ogni x =2 1, quindi

per cui

X
- ora)= =
X—>+4 o 1

Possiamo allora applicare al limite proposto il teorema dell’Hopital
ottenendo .

X

X — s et dt
1

. 1 _el/x T 1 _e}’
lim =lm ————=1lim ——m——=-1.
X=>+ o0 logx X—>+ oo l/x }”"0+ y
(a) Si noti che per ogni x # 0
1 ! 2 1 _e_x
&)+ P = >0.

Per x = 0 si ha, dato che f & di classe C2,
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£ + FOF =lim A=,
x=0 X

quindi

'y + F'x™P >0

per ogni x € R. Se f avesse un massimo relativo in un punto x,,
si dovrebbe avere

f'(xe) =0 , fxo) <0,
e quindi
F o) + [f'(x)* <0

che ¢& assurdo.

(b) Notiamo anzitutto che, posto g(x) = ef (X), si ha

g'0) = ' (f"(x) + [f’(x)]z) i
X

per ogni x # 0.
Se, per assurdo, f fosse limitata, avremmo che

—x
lim g"(x) = lim (ef(x) _1—_e_>= +oo

X——-co X——o0 b

quindi esisterebbe x, < O tale che g''(¥) = 1 per ogni x < x,.
Integrando due volte tra x e x, tale disuguaglianza, si ottiene

(X—xo)2

g(x) = g(xo) + 8'(xo) (x—x0) + 5

per ogni x < x4, e da cid segue

lim f(x) =1lim logg(x) = oo

X-r—oo X—>—o0

in contraddizione con I’ipotesi che f & limitata.

[67/68]

67.

68.
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Dobbiamo dimostrare che

Vi+x? —V1+3?2 < |x—p].

Se x < y, la tesi é banale; se x > y, posto

O =V1i+¢

esiste per il reorema di Lagrange un punto £€]y,x[ tale che

fx) = fO)_ 3

0= e

<1

quindi

X)) -fO)<x-y =|x—y]

(a) Effettuando nell’integrale la sostituzione x? = ¢ si ottiene

/2 2 4
2k S o B gy = 2k S 1 -k di=
0 0 2
_Kkt}m /4 k—
— 2k——1 [_ € ] — 2" ! (1 _e—krr’/4) i
‘ k 0 k
k—1

Dato che lim = 400 mentre lim e_k"z_/4 =0, il limi-
k=+= k =+

te cercato & oo,

. T . R ..
(b) Nell’intervallo [O, —2—] la funzione sen x & concava, quindi
il suo grafico sta al di sopra del segmento congiungente i suoi

.o . T -
punti di ascissa O e -5 cioé

2 VEO-Tr—
T * )

senx = —x
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kx?

Siccome e~ > 0, ne segue che

/2 X 2 Ti2 2
2k e P senx dx = = -2k ‘ xe ¥ dx
T
0 0

e per (a) anche il secondo limite & oo,

69. (a) Usiamo lo sviluppo di Taylor di e€* arrestato al termine di se-
condo grado, cioé

2 3
ex=l+x+;—+)6c—e£x , con0<E <x

Calcolando in x = eL si ottiene

'y 1 2 3
e® =l+—+l<i> +—1-<i> et
e 2 \e 6 \e .
2

con0<£<L.Poichée>i,siha—1<—,eallora
e .2 e 5

SRR S IO SUMES B IR
5 2 25 6 125
<37 n 4 e
25 3-125
Da cio si deduce
1 - 4 el/e<3—7—
3-125 25

[70]1

70.
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da cui
elle<3_7 3'125: . 37 <£=i'
25 371 371 10 2

(b) La funzione f(x) = x'* = exp <1c;gx> vale 1 per x = 1,

3
vale v/3 per x = 3 e la sua derivata

flx) = x” (L—_io_gx_) ,

X

si annulla solo per x = e. Allora la funzione f ha valore massimo
uguale ad e'/¢ esi ha

1 <xU* Lelle Y x €[1,3]

e anche, ricordando la parte (a),

3 3 . 3
2=‘ ldx<s xllxdx<§ el ax = 264 <3
1 1 1

La parte intera cercata & dunque 2.

Poiché

fn+ 1) =2f(n)+f(n—1) = [f(n+1D—-f(n)]-[f(n)—f(n—-1)],
esistono per il teorema di Lagrange due punti &, ed n,, con

n—1 <§, <n<n, <n+l, tali che

fn+ 1) — 2000 +fn—1) = £' () —F &) -
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P_;pplif:ando di nuovo il teorema di Lagrange, ma stavolta ad [,
si ottiene che nell’intervallo 1£,, n,[ esiste un punto 7, tale che

') =f'(g) = (m, —£,)f"(r,) .

Basta ora osservare che n, — §, < (n + 1) — (n — 1) = 2 per
concludere che

lf(n+1)=2f(n) + f(n — DI = (m, = EHF"(1,) < 21" (7)),

quindi il limite richiesto & zero perché 7, >n—1elim f"'(7,,) = 0.

n—>oo

Poiché

—l<sen<L+L><l e logle+x)>1 V¥x >0,

x x3

si ha
1 1 2 1

— sen(1—+—)

[log (e +x)]_ Vxo < [log (e +x)]\/x x X < [log (e +x)]\/x_

Adesso,
[log (e +x)] V™ = [log[e (1.+ %M«x— . [1 t log (1 . _x_ﬂr
e
1 log (1+ x/e) x
= [1 + log (1 + ﬁ_)] log(1 + x/e) x Vx
e >
e dato che

lim (1 4+ )% =e
y—0*

72}
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si ha anche

lim , [log(e +x)]¥V*=1.
x=>0

1

Da cid segue pure lim [log (e + x)] NE 1, quindi il limi-
x—>0*

te cercato & 1.

9
1l caso n < k & banale, perché si riduce a n* < 3 n* . Possiamo
allora limitarci a supporre n > k = 2: poniamo n =-k + h, con
h 2 1, e proviamo che

k+nf < —Z— AL

=

k
) <—9—kh,cioéa
8

&

Questa disuguaglianza ¢ equivalente a (1 +
k/h

1/h
<1+—h—> <<—9—> k.
k 8

t
E’ noto che per ogni ¢t > 0 si ha (1 + —}—> < e < 3, quindi se
k = 3 é chiaro che

klh 1/
(1_+7i’—> <3<k<<—9—> k

Rimane solo il caso k = 2, cioé dobbiamo provare che
9 h
*) (2+h)2<7-2 Yh>1

Questo si pud facilmente fare per induzione: se # = 1, la (*) ¢
ovvia; se poi supponiamo vera (¥*) per un certo %, abbiamo



126 Risoluzione dei problemi [73]
Q+r+1)2=Q+h)? +2Q+h) + 1<

9 3

<2 +2—=2M2 42" g
2 VZ

<2 ohgzahygh = D gh < 2 ket
2 2 2

Un’altra dimostrazione della disuguaglianza »® < k" per ogn
n > k > 3 si ottiene osservando che essa ¢ equivalente a

k

logn < logk
n k

Von>k>3,

logx

e dimostrando che la funzione f(x) = & decrescente su

le, +oof.-

73. (a) Si ha immediatamente £, (0) = 0, lim f, (x) = lim f, (x) = +oo.

X—>— oo X—>+oo
Inoltre
fil(x) = e (1+4x%) + Nxe* e (1+4x%) =
A
=e*' (1 +4x%) (1 +2xxe*"),
Aquindi

Fla) >0 = 1+2xe" >O4=>xex“>—2l—7\

Posto g(x) = xex‘ , si ha

lim g(x) = —eo lim g(x) = +oo

X—>—o0 X~>+4 oo

gx)=e" (1+4x*) >0,

[731
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quindi g & invertibile. In particolare esiste un unico x, (neces-
sariamente negativo) tale che

s 1
x<x, = xe* <_EX_ = f;\(x)<0

. 1
x>x, @ xe >——— = f1()>0.

Tale x, ¢ il punto di minimo di f, . Essendo f, (0) = Oe f}\'(O) >0,
si deve avere f,(x,) < 0, quindi f, ha il sgg'uente grafico:

i

l'y=fa(x)

Figitra 6

(b) Cominciamo con I’osservare che

A6 <min{ i), 0} <0

per ogni xE€R.
D’altra parte

per cui

— 4+ — .
22 422 4N
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Allora
1
0> ] min {f, (x), 0 }dx > 2 (— ZT)" e

=1

ed il limite richiesto € zero.

74. (a) Fissiamo x€R, e sia n la sua parté intera: si ha

n+1 n+1 '
7)) =‘8 fedr | = “ Fo) —FO)dr| <
.n+1 n+1
< g [f)—f(O] dt < L ‘ |x —t[dt=
X n+1
= L(S (c—1)dt + g (t—x)dt>=
= ;— [(x—n)? + (x—n—-1)?].

Posto & = x — » (quindi 0 < a < 1) si ha allora .
L 2 2
)] < > [a® + (1 -a)?] .
Cerchiamo il massimo valore assunto in [0,1] dalla funzione

gle) = é’— [0 +(1 —a)?] = —é—- (1 —2a+2a?):

L
si verifica facilmente che il valore massimo & 7 =g(0) =g(1).

[751
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Ne concludiamo che
L
If(X)I<§— VXxER ,

cioé che f € limitata.
(b) Per il punto (a) si ha intanto C < é . Se poi tentiamo di

costruire una funzione che soddisfi alle ipotesi e abbia oscilla-
zione pill grande possibile, € intuitivo tentare con una funzione
avente il seguente grafico:

-1/2

Figura 7
Effettivamente, questa funzione verifica le condizioni

n+1

g fx)ax =0 e [f)-fO) <Llx—y|.

L . _
Siccome max |f(x)| = 7 concludiamo che la costante C cercata

R . . L e o
non puo essere minore di > quindi C = 7

75. Usando gli sviluppi di Taylor delle funzioni e* e sen x si ottiene
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2
. 1+x 4+ 32— +o0Gx2)—x +o0(x?)—a
e —senx —« 2

x% senx x%(@x +o(x?))

(1—a) + ;—2 + 0 (x?)

x*T1 (1 + o (x))

Se o« = 1, il limite cercato & L . Se a # 1, il numeratore tende

2
ad 1 — «; il denominatore tende a zero se o« > —1, ad 1 se
o = —1, all’infinito se o < —1. In conclusione:

—se o < —1, il limite é O;
— se a = —1, il limite & 2;
—se —1 < a <1, il limite & +oo;

—sea=1,ilﬁmiteé—é—;
— se a > 1, il limite & —oo,

Effettuando nell’integrale la sostituzione a e® = x si ottiene

1 ea
[ exp(aet)dt=l £ _dx.
0 a X

e la tesi segue immediatamente.

m

77.
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Posto
4" (n! )?
A, =
2n)!
e
2 2
e - A2
a, = _—n s n = P >

osserviamo che

\ = @nP@n—2?Qn—47 ..422* _
" 2n2n-1)(2n-2) ... 2

_2n(2n—2)(2n—4) ..42
@n-1)Q2n-3)..3

Bisogna provare che, per opportune costanti positive A, B, si ha
A<a, <b, <B VneNn .

Proviamo dapprima che (b,) ¢ decrescente, cosicché la migliore
costante B sard uguale a b; = 4. Infatti

b =(2"+2) n _4n(mtD)
nHt\2n+41 n+l " (2n+1)?

b, <b, .
Ora dimostriamo che (g, ) ¢ crescente, quindi la migliore costante

1
A sard uguale ad a; = 3. Dato che a, =b, — 7 e ricordando che
b, < 4,si ha

1 _4dn(n+1) 1

n+l nt1 T p1 0 Qn+1? " n+l

1 1 1

-—— b - =
n n Qn+1)@? " n+1
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1 4 1
>a, + —— - =
n @2n+1)? n+1
n(n+1)2n+ 1)?
quindi a,,, = a,.
(2) Una delle due implicazioni & facile: se f(x) = ax? + bx +oc,

P’espressione
flx+h)+fx—h) —2f(x) = 2ah?
¢ indipendente da x. Viceversa, sia

* fx+h)+flx—h)=2f(x)=0(h) Vx,heER.

Poiché f & di classe C?, anche ¢ lo & e, derivando due volte rispetto
ad 4 la precedente uguaglianza, si trova che

f'x+h)+f"(x—h)=0"(h) Vx, hER ;
in particolare, per 2 = 0,
£l = %9)— VxER .

Allora la funzione f, avendo derivata seconda costante, € neces-
sariamente un polinomio di grado non superiore a 2.

(b) Se la funzione f & solo di classe C1!, la tesi € ancora vera,
ma occorre un’altra dimostrazione. Ponendo g(x) = f'(x), I'ipotesi
(*) da (derivando rispetto ad x) '

gx+h)+gx—h)=2gx) Vx,h€ER,

[78]
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e anche, ponendo x = (x; +Xx,)/2 ¢ h=(x; —x,)/2,

g(x;) +g(x2)=g<x1 txz > Vx,.x,€ER,

2 2
Dobbiamo ora mostrare che g € affine. Sceltiq, bERcona<be
detta ¢ la funzione affine che coincide conginx =a ex =b, pro-

viamo che g — ¢ = 0 in [g, b]. Supponiamo per assurde che esista
¢ € ]a, b[ tale che (g — ¢) (c) # 0. Posto allora

X1 =sup{x<c : (g—<p)(x)=0} ,
x, =inf{x >c:@E-9p)x)=0},

per la continuita di g e per I'ipotesi (g — ) (¢) F0sihax; <x,,
E—9)(x1)=(E—p)x)=0 ,

(g—p)(x) # 0 Vxe]xlrx2[ .

x; +x

In particolare, essendo —5—-—2—- €lx;, x50, si ha

e-9 (232 0,

cioé

Draltra parte

3

¢<xl+x2 ’ _ p(xy) + plxa) _ glx;) tgx,)
2 ) T2 2
quindi

X, tx, g(x;)+gxy)
g (75 )*& 2

contro I'ipotesi.



134

79.

80.
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Osserviamo che

a, =sen (nV4n? +/n —2wn)=

TVn
Vidn?+/n + 2n

= sen

Posto

i NG
" Van? ++/n + 2n

b

si ha subito

lim 5, =0, lim ¢,=0

n-> o0 H—>oe N

ed anche
. — 1 mn 7 - T
Am b, Ve = lim vai 4
2n (1 +}/1 + an?
senx

Ricordando che lil’(l)’l
xX—

= 1 si ha quindi

sen b,

lim a, v/n = lim b, V' n =%,

n—e n—>ee bn

cioé (a,) ha lo stesso ordine di infinitesimo di

n

(a) Notiamo che f, ¢ dispari, pertanto ¢ sufficiente- studiarla
per x > 0. Per A =0 si ha f,(x) = arctg x, il cui grafico € ben noto:

[80] Risoluzione dei problemi
|
- y =f,(x)
S =
- .4 _1
2
Figura 8
Se A <0, si ha

lim f,(x) = —oo
x->0*

lim £ () = =

X—++ oo

—A)x2—A

ven_
1) (1+x2)x?

>0 Nx >0;

135

inoltre f, € concava su R*, in quanto somma delle due funzioni

A . . .
arctg x e e che sono concave su R*. 11 grafico di fx & dunque

[}

Figura 9
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Studiamo ora il caso A > 0. Si ha

lim f;\ (x) = 400

x—0"*

. T
xlirgw f;\(x) - 5

o

£, (x) > arctgx Vx>0

(1-A)x2 -\
(1 +x2?)x? ’

frx) =

quindi:

—seA=>1sihaf, (x) <0 perogni x>0 ;
—se0<A<lsihaf (x)<O per 0<x <\/A/(1-N),
f;\(\ﬂ\/(l —A)=0 e f;\(x)>0 per x >/A(1 = A).

Pertanto f, ¢ monotona per A = 1, mentre per 0 <A < 1 essa

o _
ha un minimo assoluto nel punto x = v T Nei due casi,

la funzione fl ha i seguenti grafici:

_______ ~T/2

Figura 10

[811

81.
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(b) La situazione & chiara per X < 0 (due soluzioni), A = 0 (una)
e A 2 1 (nessuna); esaminiamo dunque il caso 0 < A < 1. Vi

A [ A\
saranno due soluzioni se f}\< ﬁ>< 1, una se fx( -1_—}\>= 1,

nessuna altrimenti. Poniamo allora

g =1, VT}T = arctg \/ 1}x +VAO N

Si ha

g(0)=0, lm g(x)=—"2f—>1,

A—1"
. 1 1‘/14 1 1—2X
)\:—___._ + — =
g R 2 N (=N 2VA(0 =N
1—2A
1 S e S o N

_2\/>\(1—>\) 2N (1=-2) A

dunque esiste un unico \,€]0,1[ tale che g(A\) < 1 per A< Ao >
g(\) > 1 per Ay <A < 1. Con questo la risoluzione dell’esercizio
¢ conclusa; riassumendo, ’equazione f, (x) =1 ha:

— due soluzioni se A < 0o se 0 <A <Ap;

— una soluzione se A = 0 0 se A = Ay}

— nessuna soluzione se A > A,

dove Ay € I'unica soluzione in ]0,1[ dell’equazione

arctg \/1}7\ +VA(d-=-N=1.:

(a) Dall’equazione segue immediatamente che




138

Risoluzione dei problemi [81]

? 1
a—j - dt
o 1t11°
10 —

|
o 1+110

Osserviamo che, essendo W <1,siha

? 1
a—| —— dr>o,
[ 1+¢10

quindi l’equazione proposta ha un’unica soluzione in [0,+eo[,
e cioé

a
a——[ 1 dt
10

1+¢10
X, = s” .
o 1+t

Resta solo da verificare che x, < a, ovvero (dopo facili calcoli)
che

a
s 1l  gys>_a
o 1+ x10 1+ g1

|
=
1+x' " 1 +a'®

ma cid € ovvio poiché se t€[0, 4a].

(b) Essendo 0 < x, < g, si ha ovviamente lim x, = 0.
a—>0*
Vista ’espressione di x,, per trovare il secondo limite richiesto

10

converrd calcolare il limite di alao : applicando il teorema del-

UHopital
i 1
10 a — s dt
o .

. 1+ 10
lim -% = lim =
a0t 4 a—0* a 1
a0 [ ‘
h 141210
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82]
) 1
1 +al
= lim =
ﬂ—>0+ a 1 alo
104° [ —5
, 1+t 14+a
1
1 +at® 1
= lim
a—~0* 19 r 1 dr 11
a ), 1+ t10 1 + a'°
dato che
a
lim ls 1 _gr=1.
a—>0* a o 1 + th
In conclusione

X, 0/ 1

lim = -

a—0* a 11

82. Per una .funzione di classe C m, dire che

glx) = o(x") per x > 0

equivale a dire che
g0)=g©0=..=g90=0.
Basta allora cercare a, b, ¢ in modo che
g0 =(@+2b+3c)f'(0)=0

g"0) =@+ 8+ 27a)f""(0)=0
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£(0) = (a + 32b + 243¢) f(0) = 0

per ogni f dispari. Cid ¢ possibile solo se

a+ 2b+ 3¢ 0

a+ 8 + 27c¢ 0

a+ 32b + 243¢ =0

Si verifica subito che il sistema formato dalle prime tre equazioni
ha solo la soluzione nulla, pertanto dobbiamo accontentarci di
risolvere il sistema

a+2b+3c=0

a+ 8 + 27¢ =10

Ogni soluzione di questo sistema da origine ad una funzione g
che ¢ infinitesima di ordine superiore a 4 per x = 0. Un esempio
ga=5,b=—-4,c=1, che da

g(x) = 5f(x) —4f(2x) + f(3x) .

83. Siccome f & di classe C =, la convessitd equivale a f'' > 0,

cio¢
e* = 6ax VXEK .
Per o < 0, si ha lim (¢¥ — 6ax) = —oo, ed '’ non pud essere
X—>— 00

non negativa su tutto R. Per « = 0, si ha f(x) =¢e* quindi f & con-
vessa. Resta da esaminare il caso o > 0. In tal caso si ha certa-
mente €* = 6ox per x < 0, cosi possiamo restringerci ai soli va-
lori positivi di x e quindi vedere se
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ex

— > Vx>0.
6x

g(x) =

Cerchiamo il minimo di g su ]0,+oo[. Tale minimo esiste perche

g & continua e lim g(x) = lim g(x) = +oo. La derivata di g ¢
x—0" X—>+ oo

ex

6x2

g,(x) = (x_l) H

che si annulla solo per x = 1: tale punto € necessariamente il
punto di minimo di g, quindi

e
min g=g(1)=—"
10.+ o[ 6

La funzione f & convessa se ¢ solo se

0«

A

£
6

4

Vx

scriviamo

84. Per provare che [f(x)| <

X

F) = F(1) + j £ dt

1

1
= £(1) —j f£iydr .

X

Allora per ogni x€]0,1] si ha
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1
vw#%m-j £y dt

x

1
<wun+j )] de <

x

1 [
< 1F)| ?éww 1;%9Lm<
X X X

1
LMH+&VTmet
Vx

quindi si pud prendere

1
c=mUH-sV7vﬁﬂﬂ.
0

Inoltre

1 1
L (D)) dr < L \/‘;_ dt =2¢(l —vVx)<2c Vx€IJ0,1]

1
dunque S 1) dx < oo,
0

Posto

2

fx)=e* (1 —%—)—l—x ,

dobbiamo dimostrare che f(x) = 0 per ogni x€[0,1]: per far

cid, cerchiamo di calcolare il minimo di f su [0,1]. Per quanto
riguarda i minimi relativi interni, studiamo la funzione

2
gx)=f'x)=¢€" (1 ——.————>—1 )

[85]
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Si ha

g®)y=0 an=%—1<o,

X

g(x) = - Z— (x? +4x — 2) .

Controllando il segno di x* + 4x — 2, si verifica subito che g &
crescente per 0 < x <+/ 6 — 2, decrescente per\/_6 —2<x<1:

y=g(x)

ot

S ——
|
~n

—_——— -

Figura 11

Cid comporta che la funzione g = f' ha un solo zero tra O ed 1,
in un punto che chiameremo «. Essendo poi g'(a) = f''(a) < 0,
si deduce che « € un punto di massimo relativo per f.

Inoltre f non ha minimi relativi interni, quindi

min £ = min { £(0), (D} = min {0, - ¢ - 2}.

{0,1]

Dato che

8
-
—

| -

w|oo

e E—'>1+1+—-+

n=o N: 2

[V}
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3
siha —e —2>0, quindi min f=0.
4 [0.1]

Una dimostrazione pitt rapida si ottiene verificando con metodi
analoghi che

Vx€[0,1].

4\
—

86. Poiché [f(x)]*> = x? equivale a f(x) = * x, si tratta di provare
che il grafico di f incontra almeno una delle due bisettrici degli
assi coordinati, e ci0 & intuitivo in virtli delle ipotesi di conti-
nuita e monotonia di f. Per dare una dimostrazione rigorosa,
procediamo per assurdo supponendo che [f(x)]? — x% # O per
ogni x€R. Questo implica che

fx)+x#0 e flx)—x+#*0 Vx€ER .

Le due funzioni g(x) = fix) + x ed A(x) = f(x) — x sono continue
su R, quindi, se non si annullano mai, devono essere sempre
positive o sempre negative. Esaminiamo i vari casi.

1) gx) >0 ed A(x) >0 Vx€ER".

Allora f(x) > x e f(x) > —x, quindi f(x) > |x| per ogni xER:
ci0 ¢ impossibile perché, essendo f monotona, almeno uno dei
due limiti im f(x) e lim f(x) deve essere minore di oo,

X->—oco X+ o

2) g(x)>0 ed h(x)<O Vx €R.

Allora per x = 0 si ha f(0) = g(O) >0 e f(0) = h(0) <0, che ¢ as-
surdo.

3) gx)<0 ed h(x)>0 VxER: analogo al caso 2).
4) gx) <0 ed hkx)<O0 Vx€ER: analogo al caso 1).

Naturalmente vi possono essere infinite soluzioni: basta pensare
alla funzione f(x) = x.
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87. Ponendo per semplicita logx =y, si ottiene

88.

yloglogy
=e

loglogx y logy _
y =

(log Iogx)logx — x (logx) = (logy)y —e

logy)?
N C >0 L

yloglogy y+(logy)* —yloglogy
=e [1—e ]

Poiché
y+ (logy)? —yloglogy = y [1 4 (Qosy)” loglogy] .
si ha
lim [y + (logy)® —yloglogy] = —oo |
Yot

quindi il limite richiesto € uguale a + oo .

eZt

(e?* + 1)?
vo quindi x, . , ha lo stesso segno di X, E’ allora evidente che la

Cominciamo con ’osservare che I’integrando- € positi-

successione ¢ costituita tutta di termini positivi se @ > 0, negativi
se a < 0, nulli se a = 0. L’integrando ¢ anche una funzione pari:
questo comporta che i termini della successione che ha come dato
iniziale xy = —a sono gli opposti dei termini della successione
che ha come dato iniziale x, = a. Basta allora studiare il caso
a > 0. Osserviamo che la condizione di monotonia x <x, ¢
equivalente a

n+1

x 2t
Sn de dt < x
(

o (€2 + 1)2

e, siccome x, > 0, bastera verificare che I’integrando non supera
1. Ed infatti
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42t
- 2t 2 2
@t ST (T2 = (-1 >0
ed il segno di uguaglianza_ vale solo per r = 0. Questo dimostra
che (x,) ¢ decrescente. Dato che (x,,) ¢ anche inferiormente

limitata da zero, esiste finito L =lim x,, ed ¢ L > 0. Inoltre L
Nn—roo

deve verificare ’'uguaglianza

L 2t

o (€% +1)2
e2t
Poich¢ ————— < 1 per ogni r > 0, si ottiene facilmente che
(e*'+1)?
x 217
4
¢ dr < x Vx > 0,

o (¥ + 1)

quindi dovra essere L = 0.

In conclusione, per ogni a€R si ha lim x, = 0.
H—>r o

Osserviamo che

maxlim [e*senx + e *cosx — P(x)] =
PR :

2
Xt oa e2x e*
dato che
) cosx ) P(x)
lim - = lim =0
X—>+oo @ X— + oo ezx

[901

90.
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mentre maxlim senx = 1.
x>+
Analogamente,
minlim [e*senx + e *cosx — P(x)] = —eo ,
X—+ o
. . . _ X —X
quindi la funzione f(x) = e*senx + e “cosx — P(x) assum.

sia valori positivi che negativi ed allora, essendo continua, si deve
necessariamente annullare almeno una volta.

Per provare che f € continua in un punto x,€R basta dimostrare
che, se (xn) converge a xg, si ha

im f(x,) = fxo) -

n—>oco

Sia allora (xn) una successione che tende a x,: naturalmente &
anche x, = maxlim x,, quindi dall’ipotesi- segue che

n—»oo

maxlim f(x,) = f(xo) .

n—>oo

Per provare che & anche

minlim f(x,) = f(x,) ,

n—roo

osserviamo che, per definizione di minimo limite, esiste una sot-
tosuccessione (f(xnk)) tale che

lim f(xnk) = minlim f(x,) .

k—>oo N—>oo

Ma la successione (xnk) tende a xg, quindi

k—> oo y1—> oo

flxo) = f(rrllcaxlim x,,k) = lim f(xnk) = minlim f(x,)

e la continuita di f ¢ dimostrata.
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Dimostriamo la monotonia: siano 4,b€R con a < b.
Definiamo la successione (x,) con

a se n & pari

b se n é dispari.

Ovviamente maxlim x, = b, mentre

n-—re

maxlim f(x,) = max {f(a), f()} ,

n—»oo

cosi dall’ipotesi deduciamo che
f(d) = f(maxlim x,) = maxlim f(x,) = max {f(a), j'(b)} = f(a),

n—roo n—>oo

cioe f é non decrescente.

Nel caso in cuiA=1,siha S, = {1} e quindi sia ’estremo superiore
sia I’estremo inferiore sono uguali ad 1.
Se A > 1, osserviamo che

A 1/A
TS o ' Vn, kEN |
n+k

mentfe (pern = 1)

1A

; 1+ k&
lim ————
k= 1+k

quindi inf S, = 0. Analogamente

A
fim Ll = e
nse n-+1

»

cosicché sup S)\ =+ oo,
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Se N < 1, basta osservare che S, =§,, e 1I/A > 1, quindi di

1A
nuovo inf S, =0 e sup S, = oo, !

92. La funzione f: R — R definita da

senx

se x #0
fx) =

1 se x=0

¢ continua, dunque ’espressione

s senx dx=r £0e) dx
o X 0

ha senso. Per a > 1 si ha

a

a 1
‘ senx . — s senx . 4 g senx ;.
0 X 0 X 1 X

e, ricordando che sen x << 1 e sen x <<x per x = 0, si conclude che

a

La’x = 1+loga.

a 1
‘Sinldx<51dx+] o

* 0

0 1

93, Scrivendo

(tgx)tgzx - e(tgzx)(log tgx)

3

possiamo limitarci a calcolare

(sen 2x) (log tgx) = lim logtgx

cos 2x x-Z 08 2x
4

lim
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L’ultimo limite si presenta nella forma indeterminata F : ap-

plicando il teorema dell’Hopital possiamo ridurci a calcolare

1
) (tgx) (cos?x) _
1 = -1.
x-T —2sen2x

11 limite richiesto € dunque : :

La definizione di g & obbligata per x # O:

X

gw =+ | soar.

0

Se poi vogliamo che g sia continua in x = 0, dovra esistere finito

lim % s: f(8)de .

X0

Ponendo

X

F@)=S fydr

0

dal teorema -fondamentale del calcolo integrale e dal teorema
dell’Hopital si ricava che

im £ = im Flx) = £(0)
x>0

x>0 X

Definiamo allora

g(0) = f(0)

[94]
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e proviamo che g ¢ di classe C . Per x % 0 non ci sono problemi,
in quanto g € composizione di funzioni derivabili, e

xﬂﬂ—j fdr
1]

g'(xy = =

& continua per x # 0.
Per provare che g ¢ di classe C! basta allora mostrare che esiste
g'(0) e che lim g'(x) = g'(0).

x—0
Poiché per il teorema del valor medio di Lagrange si ha

, ) h) —g(0 . '
£'(0) = lim &) —2© _ .. g'(&,)
_ h—o h h—=0
con &, compreso tra O e &, basterd anzi dimostrare che esiste
finito lim g'(x).

x>0

Se applichiamo all’espressione di g' il teorema dell’Hépital siamo
portati a calcolare

im L)+ xF6) —flx) lim L) ’

x—=0 2x x—0 X

e non possiamo concludere perché non ¢ detto che questo ultimo
limite esista. Conviene allora ricordare che, per la derivabilita di
f,siha

FG)=f0)+ xf'(0) + o(x) ,

quindi

xf(0) + x2f'(0) + o (x?) — Sx f(ode
0 .

g'(x) = =

2

| xﬂm-—s () dt
lim - g'(x) = lim [ £00) + 2 J

x=0 x—=0 X
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Applicando ora il teorema déll "Hépital al secondo addendo si ha

lim g'06)=f'(0) + lim SO -7 _
x—>0 2x

= £(0) - f(O) o (0)

Si noti che Ia successione (x,) € monotona non decrescente, in

. — 2 . .. ..
quanto x, ., =x, + x. , = x,, quindi ammette limite, finito

o uguale a +oo. Se il limite fosse un numero reale L, si avrebbe
L =L +17%,

da cui L = 0, ma cid ¢ impossibile perché € x_ = x; =a > 0
per ogni n € N. Allora (x, ) ha limite + oo .

1
Dato che lim cos —-=1, {senn®|<
n3

n—o

1 perognin

. _ T
lim arctg n = = ,

n-ee 2

il limite richiesto & zero.

Osserviamo subito che la funzione integranda

gty =1r?e" "

1971
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¢ di classe C =, dunque anche f & di classe C.”. Inoltre f & dispari:

infatti, ponendo s = — ¢, si ha

f(=x) = ‘—x t2e U dt = — r 52 e ds=—f(x) .
1]

0

In particolare si ha f(0) = 0. Inoltre g(¢) > 0 ed & g(t) = 0
solo se £ = 0, quindi f'(x) > 0 per ogni x # 0 e f'(0)=0: la fun-
zione f ¢ allora strettamente crescente, e quindi iniettiva. Inoltre,
esistono (finiti o infiniti)

lim f(x)=—-1lm f(x).

X—r— o X—> 4 o

2 p—
Proviamo che questi limiti sono finiti: per t 2 1 si ha e et

quindi per x = 1

. 1 X
flx) = s r2eUdr + S 2edr <
0 1 A

t2dr + s t2¢ dr =

1
—_— 4 [(—f2_92¢_ —13*
3 [(~t2=2t—2)e ]1

i3 2+ 2x+2)e ¥
3 e

Concludiamo che

lim f(x) < —;— -%

X+ oo

ed un grafico approssimativo di f é allora il seguente, con

+ o ,
a= ] t2e”? dr.
()}
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Figura 12

La prima tesi equivale a dimostrare che la funzione f: R - R
definita da
e*—1+x

2

flx) =

¢ bigettiva: questo si prova osservando che f ¢ continua e che

lim f(x) = —eo , lim f(x) = 4o,

X—r— o0 X—>+ oo

quindi f é surgettiva e inoltre

e+ 1
2

flix) =

s

> L
2

pertanto f € crescente e quindi anche iniettiva.

La funzione A *> x(A\) non ¢ altro che l'inversa f~1! di f: per un

noto teorema, f~! €& continua, in quanto f & continua, bigettiva

e definita su un intervallo.

Per calcolare x(0) basta osservare che f(0) =0, e quindi f~}(0) =

=x(0)=0.

Essendo poi f'(0) = 1, la funzione f~! ¢& derivabile in 0, e si ha
1

"0 =¢"1H0)=——=1
x'(0) = (") o)
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99. Gli sviluppi di Taylor attorno a x = 0 di cos x, sen x, log (1 +x)

sono
X2
cosx = 1 ———+o0(x?)
2
X3
senx = x—-g—+o(x4)
2 3
log(l1+x) =x —L+—)C—+0(x3), v
2 3
quindi

2 3
fix) =1 —%—+o(x3)—i;—+%+o(x3)—l +

X X 2\ _ D .2 2
+2 + o (x*) 6x+0(x).

’

L’ordine di infinitesimo ¢& allora quello di x2, cioé 2.

100. Per il teorema del valor medio integrale si ha

2x sent sen £,
; dt = (2x —x)

X X

per un opportuno &, € Jx, 2x[. Osservando che

lim £,=0

x—0*

si ha infine

N’ gy = fim  S0Ex = g
! x—>0* Ex

. 1
Iim ~—
.
x—=0 X x
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101.

102.
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Per vedere che la successione € ben definita, occorre mostrare
che 1 + x, > 0 per ogni n. Questo ¢ assicurato dal fatto (che si
pud facilmente provare per induzione) che x, > 0 per ogni n.
Studiamo ora la monotonia di (x, ). Si ha

Xppy —Xp =log(1+x,)—x, ,

quindi, posto f(x) = log (1 + x) — x, esaminiamo la funzione f
per x 2 0. Si ha f(0) =0 ¢

’ 1
= —-1<0
1) 1+ x

per ogni x > 0, quindi f(x) < 0 per ogni x > 0, e dunque

Xpi1 < x, per ogni n

La successione (x, ), essendo decrescente e limitata inferiormente,
ammette un limite finito L > 0, che deve verificare I'uguaglianza

L=log(1+1),

cioé f(L) = 0: come abbiamo giad visto, questo implica L = 0.
In conclusione

lim x, =0.

n—roco

Supponiamo per assurdo che fe non sia iniettiva, cio€ sia
f&xo) =F. (Vo) s
con xq ¥ yo. Otterremmo allora

Xo T€f(xg) = Yo +ef(ro)

da cui
Ixo—yol = €lf(xo) — f(o)l < €L [xo—Yyol < Ixo— Vol ,
che ¢ assurdo.

[103]

103.
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Per dimostrare la surgettivita, basta osservare che f_ ¢ continua
e verificare che

im  f,(x) = +oo .

1im fe(-x): —o 3
X—++ oo

X—>— 00
Infatti, se x > 0,

f.x)=x + elf(x) —f(0)] + ef(0) >

Zx—elLx +ef(0)=(—-€eL)x +ef(0),

quindi lim  f(x) = -+oo. Analogamente si procede per x — —oo.
X—> oo

Si ha
<senx >1/xsenx log(s—?—x—)/x senx
=e
X
Ricordando che 3
senx =x =~ +o(x%)
log(l1+¢t)=t+o(t) ,
si ottiene
2 2 -
senx x x
log =log (l—— +o(x3)>=—— o(x?)
X 6 6
per cui
log = _ X2 + o(x?)

) ° o x i 6 1
lim, = = lim = - —
x—0 Xx senx x—=0 , senx 6

x
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11 limite cercato € dunque uguale a €

-
.

104. Si noti che si tratta di un integrale improprio in 1 (per la pre-

senza di V' 1 — x2@) e, se a < 1, anche in O (per la presenza di

x17%).

Osserviamo perd che, posto x* = ¢, si ha

b o b
[ arcsen x dx 1 [ arcsent df =
a X 1-a v 1 - x20{ (a4 a% \ 1 - tz

_ 1 [_1_ (arcsen t)sz ¢ _ (arcsen b*)? — (arcsen a®)?
o | 2

& 20

quindi per a > 0" e b — 1  si ottiene

2

1 44
arcsen x _m
dx =

0 x1-* V1 _x2e 8o

105. Osserviamo subito che f, ¢ di classe C™ su R\{—a, a} ed ¢ pari,
quindi basta studiarla per x > 0; inoltre f, € nulla per x = t g,
positiva altrove. Si ha poi

2 .2
lim f,(x) = lim la 2xl x|
e

X—>too X %o X

=0.

2

La derivata di f, &
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2
—2xe " <\/a2—x2 + ——'—1____'__——) se x| <a
2V a? —x?
£ =

2xe™X (\/,\'2—a2 - -—1——> se [x|>a.
2V x2_ g2

Se ne deduce in particolare che in [0,+oo] si ha

fjx) <0 per 0<x<a eper x> a2+—;—-

lim_ fal(x) = _oo
Xx—a

lim fa’(x) = oo

x—a*

lim f/(x)=0 .

X—r+ o0

Un grafico approssimativo di fa ¢ allora il seguente:

Figura 13

Il massimo di f, ¢

Mla) = max{fa(O), fa<\/a2 + ;—)} = max la, \/ez__j } ,
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cosicché

lim M@ =max{lim a lim

e’ .1
a—~o0* a—>0* a—o* \/26 }— \/26

106. Un numero x, & una radice di P con molteplicita m = 1 quando
si ha P(x) = (x—x,)" Q(x) per qualche polinomio Q tale che
@ (xy) # 0. Derivando, si vede che

P'(x) = (x —xo)" 1 (mQ(x) + (x —x) Q'(X)) ,

dunque ogni radice x, di P avente molteplicitd m & radice di P’
con molteplicitda m — 1 (se m — 1 = 0, cio significa che x; non €
radice di P ).

Siano dunque x; < x, <.. < x; le radici di P, con moltepli-
cita rispettivamente m;, m,, ..., m;. La somma delle molte-
plicitd delle radici € wuguale al grado del polinomio, quindi

k
Z m;=n

=1

~

Per quanto visto prima, la derivata P' del polinomio ha tra le
sue radici anche x,, ..., x;, con molteplicitd m; — 1, ..., my — 1,
dunque abbiamo gia trovato

(my —1)=n—k
1

I &

1

radici reali di P'. 1l grado di P' ¢ n—1, quindi dobbiamo provare
che le altre k—1.radici di P’ sono reali. Per il teorema di Rolle,
tra x; ed x;,, c¢ uno zero y; di P’, dunque P’ ha anche
le radici reali y,, .. ., ¥, _, che sono distinte tra loro e da x,, ...
...s X, , € la dimostrazione € conclusa. Applicando pili volte questo
risultato si vede che P', P”, .. ., P("=2) hanno tutti soltanto radi-
ci reali. D’altra parte
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!

Il

< xol:
-3 0
|

P(ll—2)(x) x2 4+ (n—1)! a,_,x + (n—2)!an_2 =

7M1
= ——ii [m(n—1)x*+2(n— a,_,x+ 2a,_,]

cosicché il fatto che P ~2) ha solo radici reali implica che il suo
discriminante € non-negativo, cioé

n—1)2 a’zz_ —2n(n—1a =0,

1 n—2

che ¢& la tesi.

107. Poiché
0< (n+senm)” <+l
0< (2+senn)” <3" |,

n
lim ’\z/n+1=l , lim 3—|=0,

11— o0 H—>oo

il limite richiesto & uguale a zero.

108. Distinguiamo i tre casi a < 0,24=0 ed a > 0.
Nel caso a < 0 si ha

@ =1 , lim f(x) = —oo

X4 oo
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f'x)=aEe™ -a)<0 Vx>0,

poiché ™ > 0 > 4. Dunque f ¢ monotona decrescente e il suo
grafico é del tipo seguente:

Y = f(X)
(a < 0)

Figura 14

Per ¢ = 0 la funzione f vale costantemente 1. Per ¢ > 0 si ha

Q0 =1, lim  f(x) = +oo

X—>+

>

inoltre

loga
a

F'x) =20 <= ee_g>20 <= x>

... loga .
Ne segue che per a < 1 (che implica —— < 0) f ¢ monotona
a

non decrescente ed ha un grafico del tipo:
)

V'] =f(x)
(o<a<1)

o

Figura 15
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a
5 ], cresce

lo
Invece, per a > 1, la funzione f decresce su [0,

su [-1%5‘1- , +°°[; nel punto di minimo lc;ga si ha

(i) -a (1 122,

per cui il grafico di f é del tipo seguente:

y=f(x) y=f(x)
. log a
(1<a<e) (a>e)

P oy
-

Figura 16

La funzione f & dunque monotona se e solo se a < 1.

109. Integriamo per parti. Se o« ¥ —1, si ha

2 xa+1 2 r2 xoz+1 1
j x“logxdx=|: logx | — —dx=

; a+1 1 ) a+1l x
2a+1 1 '_xa+l 2

= log2 — =
at+1 o+l jat+l ],
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a+1 2a+l 1

og2 —
a+1 (a+1)? (x+1)?

Se invece a = —1 si ha
2 2 o2
i logx dx = [L log2x _ log"2 .
. 2 . 2

110. Notiamo che, per ogni x €]0, 1[, esistono t«r il teorema di La-
grange due punti &, &, tali che 0 < &, < x < §, <1 e che

f&x) = fx)—f0)=f"(§) x
) =) —f(D=f"&)x~-1,
dunque, essendo |[f'| < 1, si ha

*) 7))l < x e lf)l <1 -x

per ogni x€[0,1].

D’altra parte, qualunque sia x€[0,1] si ha x < oppure

l\)I»—-

1
1 —-x< ? , pertanto dalla (*) segue che

1
|f(x)|<7 Vxel[o,1].

Per mostrare che 4 = ¢ la miglior costante possibile, basta

L
2

costruire delle funzioni f. aventi andamento del tipo

[110]
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)
A
ML — A3
: y = f. (x)
[
| -
1 1
2
Figura 17

il cui massimo M6 si avvicina ad o3 quanto si vuole per € = 0.

Una possibile espressione analitica, in cui la parte centrale del
grafico & un arco di cerchio, é la seguente:

I__IX_LI 1
2 2 ’ ’ 2

. 2
1 - 1 1

32 . <
5 26-{-‘/_6—(,\’ 2) se |x 2|\6

con 0 < e < —; ; infatti si verifica facilmente che ogni /. sod-

fx) =

disfa le proprieta richieste e che

= (L=t -0-vIje.
[réljlffe fe<2> T - (2-V2)e

Per quanto riguarda la seconda disuguaglianza si ha
1/2 1 . 1
.\'dx+s (1—x)dx=z-

1/2

1 1
g F(x)dx <I () dx < s
0 0

0

e d’altra parte

L
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1 € 1 1
I f(x)dx > j xa’x+s (1—x)dx=—4——e+ez,
0 0

+ e

=

N |

quindi B = —‘11— ¢ la migliore costante.

111. Se o = 0 la successione assegnata € costantemente uguale a zero.
Per o # 0, ricordando che

x_ 4
xX—=0 X X0 X

si ha che la successione

n+1D%—n® 3
noz—l - 1 -
n
logn:—l
e -1 log (1 + T)
- n+1 B 1
« log = "

tende ad o per n = oo . Pertanto in ogni caso il limite & «.

[112/113] 4 Risoluzione dei problemi 167

112. Basta notare che

Senx — X COSx d senx)
x2 dx

per ottenere

2T senx — X COSX ) 2™ Senx — X COSX
dx = lim 5 dx

x2 0" x

113. Osserviamo che la funzione f é di classe C™ su R\ {0}; appli-
cando il feorema dell’Hépital si ottiene poi

lim f(x) =lim arctg?x = 0 = £(0) ,

x—0 x—=0

quindi f & continua in R. ,
Notiamo poi che f & pari perché, per x # 0,

| 1 [~*
fx)y=— j arctg® tdt=—— j arctg? (— s) ds =
x ) x ), _

1]
| l_
=

J— arctg? sds=f(— x) .
0

Basta allora studiare f per x =2 0. h

Per t 2 1 si ha arctgr = %— , quindi
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X X
lim J arctg? t dt > lim J arctg?tdt =
0 1

X— 4 o= X—>-4 oo
2

X 2 ’
= lim <%> dt = lim <%> (x—1)=+o0,

x=te | X 4o

pertanto possiamo applicare di nuovo il teorema dell’Hopital

ottenendo
. . T2
lim  f(x) = lim arctg®?x = —
X—>+ oo . X—r+4 o 4
Per x # 0 la derivata prima di f &
X
x arctg?x — arctg?t dt
0
I x) = ,
£1x) >
quindi per il teorema dell’Hépital
2x arctg x
) , ) 8 1 + x?
lim f'(x) = lim =0 ;
x—0 x—0 2x

d’altra parte, sempre per il teorema dell’Hopital,

F£'(0) = lim M=lim f'eoy=0

x>0 X x>0

quindi f ¢ di classe C! su tutto R.
Essendo poi arctg x una funzione crescente, per ogni x = 0 si ha

0<t<x = arctg’t < arctg’x

e quindi

[114} Risoluzione dei problemi 169

x
x arctg® x — J arctg> tdt>0 Vx>0,
0

cioé f'(x) = 0 per ogni x = 0. Un grafico approssimativo di f
¢ allora il seguente:

12

Iih

y=f(x)

Figura 18

114, Dalla convessita di f e dal fatto che f(—1) =1 ed f(0) = 0 segue
che per ogni A€[0,1]

FENZFIN(=1D) + (1-0)-0] = M(=1) + (I-2) fO0) =X,

cioe _
fx)<—x Vx&[-1,0].

Analogamente si prova che
fx)sx vVxelo,1],

quindi

x| -f(x)=0 Vxe[-1,1].
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116.
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D’altra parte per la (iv) si ha

1-

1 1
(1x|—f(x))dx=] x| dx —] foeydx =0 .
1 1

-1 — .

Ricordiamo che una funzione continua e non negativa pud avere
integrale nullo su un intervallo (non ridotto a un punto) se e
solo se ¢ identicamente nulla. La funzione f, essendo convessa
in [—1,1], & continua in ]—1,1{, quindi lo & anche [x| — f(x)
e, per quanto detto prima,

x|—=fx)=0 Vx€]-1L1[ .

Nei punti —1 ed 1 l'uguaglianza fra |x| ed f(x) € data da (ii),
quindi la tesi & dimostrata.

Dato che cos ( - g—) = oS (% - > = senx, si ha

l/cos(x—%) 1/senx ( 1 )
(1—x) =(1 —x) = exp or log (1 —x)
Ma
. ~log(l —x) ) log(l —x) x
lim ——— = lim . = -1,
x—0 senx x—0 X senx

dunque il limite cercato vale ?}- .

Possiamo scrivere

Risoluzione dei problemi i1

f(x) = exp (—)lc— log IXI> ,

ottenendo subito che

Iim f(x)=1lm f(x)=1

X —oo x>+

lim fE)=+c, lim, f(x)=0.

x—+0 x—0
Si ottiene inoltre-

, 1 —log |x/| log | x
Flx) = ——=—— exp (——'— ,
x x

per cui

f'x)>0 = loglxI<1 <= 0<I|x|<e.

Rimane da esaminare il cbmportamento di f' perx > 0% Siha

. 1 —logx <logx> 3 1 —logx
&)= = P\ )T - Togx
exp |2 logx — <

Per x = 0¥ il numeratore e il denominatore tendono a +oo, quindi
possiamo applicare il teorema dell’Hbpital ottenendo

1
: ! . x
im f'(x) = lim =
x=>0" x~>0* logx 2 logx — 1
exp \2 logx — —t+ —
‘ x x x
= lim — =0.

x—=0*

exp (210gx'— 1(;gx> <2x + logx — 1)

adiias s
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Un grafico approssimativo di f ¢ allora il seguente:

Figura 19
117. Poiché ¢ > 0, si ha
. flex y
fm —1D g 9
x—+= cx log (cx) yo+e Viogy

d’altra parte

cx log (¢x) log ¢ + log x

lim =clim —=————=— =,
x»>+e X logx X4 oo log x
quindi
lim f-(cx) = lim fex) cx log(ex) xlogx _
x—+e f(X)  x-o+e  cxlog(cx) xlogx 7
L 1
=Lc —=c.
L

Se L = 0, la tesi non ¢ pil valida in generale: presa ad esempio
f(x) = logx, si ha

flx)

lin
x>+ XlOgx

[118] Risoluzione dei problemi 173 .

mentre

. flex)
)~y we>o.
m o ¢

118. (a) Cominciamo a calcolare lim ¢(x): le ipotesi del feorema
x—+0 .

dell’Hopital sono verificate, quindi

lim o) =lim f(x) =f(0) ;

x—0 x—0
ponendo allora

¢(0) = F(0)

si ottiene che ¢ & continua in R. Dato che ¢ € di classe C3 su
R\ {0}, basta controllare le derivate di y in x = 0. Si ha, per x #0,

" xf(x) =\ f@)at
0
¢'(x) = ®

quindi, per il teorema dell’Hopital,

fO) + xf'x) = fCx) _ f'(0)

lim ¢'(x) = lim

¥—0 x—0 2x 2
[
: D’altra parte, sempre per il teorema dell’Hopital,
i
J x) — (0
J0) = 1im 282=2O@ _ o ey
x—0 X x—0

pertanto ¢ & di classe C! su tutto R. Poi, dato che
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xX2f'(x) = 2x f(x) + 2 ’ f(t) de

0

¢'(x) =
x3

per ogni x # U, si pud ripetere il ragionamento precedénte otte-
nendo

¢'(0)=1lim ¢"(x)=
X—>0

= lim
xX—>0 3x2 3

cosicche (a) & provata.

(b) Per dimostrare che p € convessa basta verificare che ¢ (x) >0

per ogni x. Dato che f & convessa, si ha f''(x) = 0 per ogni x,

f£"(0)
3

quindi ¢''(0) = = 0. Posto

g(x) = x2f'(x) — 2x f(x) + 2 j fydr

0

si ha poi g(0) = 0 e, per la convessitd di f, g'(x) =x2f"(x) > 0 per
ogni x, di modo cheg(x) SOperx<0 e g(x)=0 per x =0.

X .
Ma ¢"(x) = g(s) per x # 0 e quindi ¢’ (x) = 0 per ogni x # 0.

1l viceversa non ¢ vero. Cerchiamo il controesempio tra i polinomi:
si verifica subito che quelli di 1°, 2°, 3° grado non forniscono
un controesempio. Passando a quelli di 4° grado, se

fx)=x*+ax® +bx? +ex+d,

2xf () + x2F"(x) — 2f(x) — 2x£'(x) + 2f(x)_ £"'(0)

(1191

119.
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f & convessa se e solo se f"'(x) = 12x* + 6ax + 2b > 0 per ogni
X€ER, cioé se e solo se A = 36a*— 96b < 0, ovvero

@ <Sb.
Invece
o(x) = ’5‘4 + ":3 + l;xz + c2x +d
¢ convessa se € solo se
2 < 14258 b
Dato che — = -EQ- , basta scegliere b > 0, ¢, d qualunque ed

ac V V 1285 per ottenere un controesemplo (ad esem-

pio, f(x) =x* + 11x3 + 45x2 non ¢ convessa, mentre lo € p (x) =

Osserviamo che
2—-2 COS\/X_

fx) =2 —2%=

2- 2cosVx —x

=2" (2 —1)=

(2—2c05\/§'_—_\')log2

=27 [e —1]
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Ricordando lo sviluppo di Taylor

cost =1 - — + — +0(t%),
2 24
si ha
_x’ log2 ro@?)
12
fix) =2 [e —1].

Tenendo presente infine che -

e'=14+r+o0(),

si giunge a

1120

2
f6) = 2% (— Xioed o<x2)> ,
quindi f ha lo stesso ordine di infinitesimo di x2 per x — 0+,
e si ha
i fx) _ log2
eot X2 12

120. Si ha intanto a, = 0. Calcoliamo il valore di a, per h = 1 inte-

grando due volte per parti:

a, = ‘ e sen (h%x) dx = l:e””x )

0 0

-

cos (h%x) 1 e ""cos (h? )

— cos (h?x) ] L
———— e +

_S he—hx — " dx = _
0 ]’12 h2 l’l2

[120]

177

Risoluzione dei problemi
2 g m 2
_ _l_{ o—hx sen(izz x) + he—hx sen(hzx) dil=
h h o 0 h
. —hw 2 T
_l—e (2:os (’my 12 s e~ sen (h?x) dx=
h h o
_1 —e_h"cos(hzﬂ) 1 .
2 2 h >
pertanto

(i +_1_)"‘ 1 —e " cog(h®m) 1 —e "7 cos(h?m)
“ h? h? 1+ A2

Essendoe "™ <1 e lcos(h2m)|= 1, si ha subito che

a, >0 Vh=1,

pertanto
1}r11fah =min g, =ap = 0.

Per calcolare 1’estremo superiore notiamo che:

1 —ehm
H—T se A € pari
a, =
1 +ehm
m— se h é dispari,

e da questo segue immediatamente che

1+e™ 7
2 b

max {al,.a3, as, } =ay =
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visto che a; > a3 >as > ... . Inoltre per 2 > 2 si ha

—hw
1— 1 1
‘< <—
1+ 42 1+ 42 5
mentre aq; > -% , quindi
sup @, = max a, = a, = ﬁe__"
h k h h ! 2

121. Se poniamo per x€ [O, —727—-]
f(x) =e* (1 —senx) ,
dobbiamo dimostrare che

) < 1 ver 0, %[

Si ha

f@®=1",

. T
quindi basta provare che f & decrescente in] 0, 2— [, cioé che

f'(x)=e*(1 —senx —cosx) < 0 VXEJO, 72T— [

Si verifica facilmente che la funzione x = senx + cosx assume in

Tr - . - 3
[ 0, —] valore minimo solo negli estremi e valore massimo in

% , dunque 1 < sen x + cos x <\/_j2 per ogni xE]O, %[ e

la tesi € provata.

[122] Risoluzione dei problemi 179

122, Si vede subito che g ¢ non decrescente: infatti se 0 < x < y
si ha [0, x] C [0, ] e quindi

g(x)=sup f<sup f=g().
[0,x] (0,71

Allora g ha in ogni punto limite destro e (salvo che nello zero)
limite sinistro. Fissiamo x, = 0 e poniamo

lim g(x) se xo >0
X=X,

p=1lm gkx) , A=

X=Xxg

£(0) = 1(0) se xo =0.

Per la monotonia di g si ha A < u, quindi per avere la continuita
di g in x, basta dimostrare che u << A.

Notiamo che si ha fx,) < \: infatti, tale relazione & ovviamen-
te vera per xo = 0, mentre per xo > 0 si ha

) <g@kx) <A Vx < x4 ,
quindi f(xy) < X per la continuita di f.
Fissato' € > 0 esiste & > 0 tale che

flx) < f(xo) + € VX € lxg, xo+81[,

quindi, ricordando che f(x) < A per ogni x < xg,

fx) <N +e¢ Vx <xq+56.
Di conseguenza,
g{x) <\ +e¢ Vx <xo+6.

Da cio si deduce che u < X\ + € e quindi, per I’arbitrarieta di e,
che u < A: questo prova la continuitd di g.
L’affermazione inversa non vale: se f ¢ una qualunque funzione

decrescente si ha g(x) = f(0) per ogni x, quindi g & continua senza
che f lo debba essere.
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Non ¢ nemmeno vero che g sia di classe C! se f lo é: scelta ad
esempio f(x) = x2—x, il cui grafico &

[

y-XZ—X

Figura 20

si hag(x)=0per0<x <1, gkx)=/f(x)perx 21, e g non

¢ derivabile in x = 1.

n
123. Cominciamo con osservare che, essendo e = <1 + ;—) per ogni
n€N,siha

1/n

e <-L

quindi

(1 —e")log (n! ) < — % log (n! ) = — log /71 .

Dato che lim '\l/n! = +oo, il limite proposto ¢ —oo,

H—> o0

[124/125] Risoluzione dei rpoblemi 181
124. Poniamo
— 2
fix) =x%e ™ —senx ;

si tratta allora di provare che f & limitata inferiormente su R,
e di calcolarne I’estremo inferiore C.

Poiché x%2¢™* >0 e Isenx| < 1 per ogni x, si ha
fx)=—1 Vx€ER.

Draltra parte

2 —(Z+2nm)?
lim f (% + 21271') = lim [(—” + 2n1r> e —1] =1

n—> 4o n—+ [\ 2

quindi I’estremo inferiore di f su R & —1.

125. Effettuando la sostituzione x = ¢ ¥y siha

1 2 1/r 2
_ X _ 1 ¥y
0= ] (t2+x2)3 = £3 s (1+32)3 dy .
o 0 ¥*)

Per r < 1 si ha allora

1 2 .
o) = 1 ] 4 dy = _l_ ! _i dv = 1
13 0 (1+)’2)3 3 .

quindi lim  f(#) = oo,
t—=0*

Osserviamo poi che
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0 _ e
3 L (1+y2)?

se proviamo che esiste (finito e diverso da zero)

M y2
lim j oL @
M->te ] (1+y%)

avremo mostrato che f(¢) ha lo stesso ordine di infinito di 3
2

(per t = 0%). Per la positivita di , il limite esiste ed

+y2 )3
€ positivo.
D’altra parte (1 +y2)3 > y%2+ p*, quindi

M 2 M 1 T
im | ———dy <lim s —dy=—,
M—+w 0 (1 +y ) M-+ oo 0 1+y 2
¢ la dimostrazione & conclusa.
Con qualche calcolo, si pud verificare che
. (1t +e 2 T
lim f(_a) = ———dy = —.
r—>0* t o I+ y?)3 16

Possiamo ovviamente supporre che sia A; <A, < A;. Dividendo
la relazione data per e*s* si trova

ps(x) = —py(x)e™ M _p(x)ePaTR

osservando che A; — A3 <0 e A, — A3 <0 e ricordando che
D1 € P, sono limitate, si ricava che

lim p3;(x)=0.

X—> o0

[1271 Risoluzione dei porblemi 183
Allora, se T > 0 ¢ un periodo di p3, si ha

p3(xo) = lim  p3(xo+nT) =1lim p3(x) =0 Vx,€ER,

N>+ e x>+

cio¢ p3 = 0.
La relazione di partenza diviene allora

P G)e™* + py(x)e* =0 Vx€ER .

Dividendo per e*:* e ripetendo il ragionamento di prima si ot-
tiene allora p, = 0, e la relazione di partenza si riduce a

pl(x)e}“x =0 VxeR |

da cui (anche senza usare la periodicita di p1) si ottiene che
p; =0

k
127.Se a = 1, si ha (a + %) > 1 per ogni k,nE€N, quindi

n—1 1 k
> (a + —) = n
k=0 n

e il limite richiesto vale oo,
Se invece a < 1, dalla formula che da la sornma dei primi » ter-
mini di una progressione geometrica si ottiene
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1
purché sia <a + —) <1, cioé sia n > L
n 1—a

Ma
Y "
lim <a+—> =lim 4" <1+—1—> =0,
n—co n 100 na

dunque il limite cercato &

—a

Notiamo subito che f & di classe C! ed ¢ monotona non decre-
scente, in quanto l'integrando € continuo e non negativo in [0,1].
1l limite di f per x = 1 esiste per la monotonia di f ed é finito
perche

X X
j s ds<j —ds—=[—2\/1_—}']’;:
=2-2vV1-x<2.

Osserviamo poi che f(0) = 0 e che f'(x) =
F0)=0 e lim f'(x)= -+

rx—1

, quindi

Infine, per x > 0, si ha

o —x+x 1
f ()—-— v — = >0,
(1 —x) 2Vx (1 —x)3

quindi f & convessa.
Un grafico approssimativo di f sara allora il seguente:

[129] : Risoluzione dei problemi 185

-d e e —m— —

Figura 21

Si noti che, effettuando la sostituzione s = sen?t, non ¢ difficile
ottenere ’espressione esplicita di f

f(x) = arcsen Vx — Vx —x?

129. Per a > 1, il limite cercato € -+oo; per ¢ = 1 il limite é 1; per
0 <a <1 il limite é zero.
Si vede subito che per 0 << g < 1 la successione & decrescente,
perché somma di una successione non crescente e¢ di una decre-
scente, quindi non pud certo essere inf X, = Xx;.
n

Rimane il caso a > 1: affinché inf x, =Xx,, occorre intanto che
n

sia x, =2 x;, cioé

™ ala—1) =

l\.)l»-—‘

D’altra parte questa condizione assicura che (x,) ¢ non decre-
scente: infatti

|
1" _ > .
Xas1 >xn = a-1H= nn+1) ’

essendo a > 1, da (*) segue che

a1 >a@-1)> —> —2

= —_— VnEN .
2 nrn+1)
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Dalle condizionia > 1 ed a (a—1) = -%—si ottiene che inf x, =x;
—_— n
1+v3_
7 .

seesolose a =

(a) Supponiamo per assurdo che esista x, = 0 tale che f{x,) > 0.
Essendo f'(x) = 0 per ogni x = 0, la funzione f & non decre-
scente su [0,+oo[ e quindi in particolare f(x) 2 f(x,) > 0 per
ogni x = x,. Allora dalla (*) segue che

L&) =1 Vx =2 x4,
[Fe)]?
da cui si ricava
Xo [f(t)]2 “Xo
e quindi
L1 = X — X Vx = xq .
Flxo)  fx)

Passando al limite per x — oo, si ottiene lim f(x) = 0, che
X—+oo

contraddice il fatto che f(x) =2 f(xy) > 0 per ogni x = x,.

(b) La risposta & no: se infatti esistesse xy€R tale che f(x,) > 0,
basterebbe ripetere il ragionamento del punto (a) per trovare

una contraddizione. Se invece fosse f(x,) <O, siavrebbe f(x)<
< f(xy) < 0 per ogni x <x4, e quindi con ragionamento analogo
al precedente
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131.

132.

L > orex 1

oy F(xo)

Vx < x4 .

Passando al limite per x = —oo si perviene ad una contraddizione.

Osserviamo che

0<x, <1 = 0<x, 1=xn(1—x3)<xn<1.

+

Si vede allora che, se 0 <a < 1, si ha 0 < x, <1 per ogni n;
inoltre (x,) ¢ decrescente, quindi converge ad un limite finito L.
Tale limite deve verificare la relazione

L=L~L3,

pertanto L= 0.
Se a = 0 oppure ¢ = 1, si ha x, = 0 per ogni n = 1.

In ogni caso, dunque, la successione converge verso zZero.

Riscriviamo la funzione in questo modo:

X
S‘ 1+e2 dr
0

X —_—
s (V1+e2 — ey dr
0

X 2 X 2
s el dr S el dt
0 0
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Dato che V1 +¢e2” + ¢f > 1, si ha per-ogni x > 0

X 1 >d
s dt S dt
o V1+e2® + et o
0<x < x =
X 2 X 2
S e dr S e dr
0 ¢ )
X2
= — )
S el dt
0

Applicando il teorema dell’Hopital all’ultimo termine, si ottiene
facilmente che il limite proposto & zero.

133. (a) Notiamo che, essendo lim SE8X

x—=0

= 1, per ogni € > 0 esiste
x tale che

0<t<x = 1—e<seth<1+e.

Allora per x < % si ha

: 2* sent 2x 1—¢
fx)= J 2 dt > J p dt=(1 —¢€)log?2
x

x.

 14e
t
X

o) < S dt = (1+e)log?2 |

quindi

lim  f(x) = log2 .

x—+0*
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Essendo |sent| <X 1 per ogni ¢, si ha poi

2X

2x 1 1
{ERS sent g < s Log=L1
s 1t , 12 2x
quindi
lim f(x)=0.
X—+oo
(b) Dalla disuguaglianza
senx < x Vx>0
segue subito che per ogni x > 0
C(?* sent 2% ¢ .
o) = 8 —dr< | ——dr=1log2=1lim f(x).
x t x t x—0*

134. Fissiamo a, b € R con a < b, e definiamo la funzione g: R > R
ponendo

b+T
0= | royax.
a+T
Essendo f continua, la funzione g ¢ derivabile; inoltre per ipotesi

si ha g(T') > g(0) per ogni T > 0, pertanto g'(0) = 0. Dal teorema
fondamentale del calcolo segue che

g =fb+T)—fla+T),
quindi da g'(0) = 0 segue
f(b) = f(a) ,

cioé f € non decrescente.
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Se fosse f(b) = fla) = «a, essendo f non decrescente dovrebbe
essere f(x) = a per ogni x€[a,b]. Scelti allora

~ ~ +b atb
= > =42 » T = ,
a=a 5 >
si avrebbe a < b, T > 0, mentre
E+T bN
+5b
[ rwar=a =] e,
a+T a

contro I’ipotesi. Pertanto f & crescente.

135. Ricordando che per ogni ¢+ > 0 si ha

|
arctg t + arctg ?- =

l\.)l:)

e utilizzando lo sviluppo di Taylor
arctgr = t+o(r) = t(1 +0(1))

si; ha
Y

1 p—
logx |

1
. X [arctg (logx) — arctg x] =Xx [arctg — — arctg
T X

X

= x [L (1 +0(1)) - 101E (1 +0(1))}=

=1+o0(l)-—2—(1+o0(1),
logx

e il limite proposto & uguale a —oo,
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136. Poiché

— 2 — . )2
Xper1 =Xy T 1 _2xn +xn =(1 —‘Xn) =0,

la successione (xn) ¢ monotona non decrescente, pertanto am-

mette limite (finito o +o0). Se tale limite € un numero reale L,
deve essere

(*) L=1-L+1L1% |

cio€ necessariamente L = 1.
Cio basta per concludere che se @ > 1 allora lim x, = oo,

H—>o

Per a = 1, si ha x, = 1 per ogni n, quindi lim x

H—>oo

, = 1. Resta

I

il caso a < 1. Osservando che

X,.; 01 = x2-x >0 < x, >1 oppure x, <0,

si vede che se @ <0 si ha x; > 1, quindi come prima

lim x, = +oo.
n—» o

Se invece 0 < g < 1, si ha Xy S Xp,, S 1 per ogni n, quindi
per la (*)

lim x, =1

1—>00

137. Ricordando che 0 < arctg ¢ < ¢ per ogni # = 0, si vede che per
ogni x > 0

»

X X X
0<S arCtgtdt<s ' _ar<| Loagr=x
0 0 Ox

x+1? x+12 2
pertanto
X
lim S arclel 4 =g .
x—0* o x+12
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Per quanto riguarda 1’altro limite, osserviamo intanto che, come
sopra, si ottiene

1
< — . 2
x x+t2dt x 2 2 -

X

1 s arctgt 1 x
0

D’altra parte si ha

X X
1 arctgr 1 arctgr
—_— > =
x SO FET L FE A

X
= ; (x arctgx — S L dt)=
x2(1+x) : o 14122

_ arctgx _ log(1+ x2)
x(1+x) 2x2% (1 + x)

Il limite di quest’ultima quantitd per x = 0% ¢ , quindi

l\)l»--

anche il limite richiesto é uguale a 1 .

138. In generale non ¢ possibile: si pensi alla funzione identicamente
nulla. Utilizziamo lo sviluppo di Taylor di f intorno a x = 0

2 3
Fx) = £(0) + x£'(0) + ’;— £(0) + ’;— £7(0) + o(x?).

Dato che f & dispari, si ha f{0) = f''(0) = 0, quindi la formula si
riduce a

3
fx) = xf'(0) + —’;—f”'(O) + o(x?) ,

da cui anche

[138]
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3
A (ux)=Apxf'(0) + Ap’ —z—f”'(O) +o(x?).
Allora

o) —NM@ex) _ A-AwfiO , d M) F0) | 0G?)

x3 x? 6 x3

e il limite sard uguale ad 1 se e solo se il sistema nelle incognite
Aewu

(=) 0 =0
(1 —A)F"(0) = 6

*)

ha soluzione. E’ allota indispensabile che sia f'"'(0) # 0. Se poi
¢ £'(0) = 0, ci saranno infinite soluzioni, date dalla formula

__6
£7(0)

apd =1

Se invece f'(0) # 0, dovra essere Au =1, da cui
6

pr=1-———

flll(o)

Si vede allora che se f/''(0) # 0 e f'(0) # 0 il sistema (*) € ri-
solubile se e solo se

") <0 oppure ") > 6,

e le soluzioni sono in tal caso

l
=+ 1 — T ) o= —.

# £70) r

In conclusione,

— se f""(0) < 0 oppure f'(0) > 6 il sistema (*) & risolubile:

—se 0 < f'"'(0) < 6, il sistema (*) & risolubile se e solo se

') =0;

— se £"'(0) = 0, il sistema (*) non ¢ risolubile.

2
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