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Presentazione 

/ 

A quasi vent'anni dalla sua uscita, il fortunato volume "Primo corso di Analisi 
Matematica" viene affiancato oggi dal "Secondo corso di Analisi ,Matematica". Questo 
libro contiene' gli argomenti che solitamente vengono svolti in un corso universitario 
di Analisi Matematica 2; l' impostazione che abbiamo dato alla presentazione dei vari 
capitoli si adatta a t utti gli studenti che seguono un percorso scientifico o tecnologico, 
senza distinzioni tra corsi di laurea. Inoltre il volume, per come è strutturato, può essere 
ut ilizzato sia dagli studenti più brillanti che vogliono approfondire determinati argomenti 
di analisi matematica, che dagli studenti che invece vogliono limitarsi alla comprensione 
dei concetti essenziali. 

Ogni capitolo è organizzato in tre parti: nella prima abbiamo esposto gli argomenti 
fondamentali, cercando di evitare i dettagli troppo spinosi e limitando le dimostrazioni 
all' indispensabile. I concetti e le definizioni sono corredati da numerosi esempi ed os­
servazioni; abbiamo inoltre inserito molte figure allo scopo di illustrare meglio i punti 
più delicati e aiutare lo studente nella comprensione attraverso la componente visiva, 
che risulta assolutamente essenziale soprattutto dove gli argomenti trattati coinvolgono 
curve e superfici. 

Nella seconda parte di ogni capitolo abbiamo raccolto numerosi esercizi proposti, dai 
più semplici a quelli che richiedono un notevole impegno da parte dello studente; insieme 
a quelli inseriti nel testo ed ai vari esempi svolti in dettaglio, gli esercizi costituiscono 
un elemento fondamentale per la comprensione di argomenti delicati, come sono t utti 
quelli di un corso di analisi di più variabili. Consigliamo vivamente a tutti gli studenti di 
svolgere un buon numero di esercizi, iniziando dai più semplici, ma anche di cimentarsi 
con qualcuno dei più impegnativi. 

La terza parte di ogni capitolo costituisce un'appendice contenente vari esempi e 
applicazioni, insieme agli approfondiment i di alcuni concetti e qualche argomento com­
plementare. Suggeriamo a tutti di provare a leggere le appendici che abbiamo inserito, 
dopo aver assimilato gli argomenti di base presenti nella prima parte. Nelle appendici si 
trovano anche dimostrazioni delicate, anche di risultati che difficilmente si trovano in un 
libro di testo di Analisi Matematica 2. 



vi 

Abbiamo cercato di curare al massimo tutti i dettagli, dall' indice dei capitoli e delle 
sezioni posto nelle prime pagine all'indice analitico alla fine del volume, per rendere 
più agevole la let tura; un elenco dei simboli principali utilizzati nel testo completa la 
presentazione. 

P er rendere più immediata la lettura abbiamo usato le seguenti notazioni: 
ir;,> per i richiami a figure, teoremi o formule collegate: ad esempio, " ... base canonica 

di !Rn u:.' Sezione 1.1, possiamo ... "; 
~ per indicare che a quel punto è opportuno svolgere un certo esercizio: ad esempio, 

" ... piuttosto che a un altro (~ es. 4.3) o che, addirittura ... "; 
,,.. per indicare che è stata inserita un'appendice con un approfondimento dell'argo-

mento, o con un argomento collegato: ad esempio, " .. . deriva dalla forma di una 
catena appesa(,,.. appendice 5.10); qu~ta è il grafico ... "; 

[ ] questa coppia di simboli è usata per indicare un'alternativa: ad esempio, la frase 
" ... k + 1 [ k + 2 ] se invece è radice semplice [doppia] ... " va intesa come 
" ... k + 1 se invece è radice semplice e k + 2 se è radice doppia ... "; 

■ indica la fine di una dimostrazione. 
Infine, abbiamo raccolto diversi suggerimenti di colleghi e studenti sulla maniera 

più efficace di suddividere e presentare gli argoment i. Il volume ci sembra largamente 
sufficiente per poter seguire con profitto le lezioni di un corso di Analisi Matematica 2 e 
siamo certi che anche questa edizione incontrerà il gradimento degli studenti. 

Parma e Pisa, 6 febbraio 2016 

Emilio Ac'erbi e Giuseppe Buttazzo 
I 
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Capitolo 1 

Da una a più dimensioni 

In questo capitolo richiamiamo le notazioni e alcuni enti matematici noti dal corso di 
Geometria, presentiamo alcuni esempi fondamentali, vediamo come le nozioni elementari 
di topologia si adattano al caso di più variabili e applichiamo queste nozioni alla continuità 
e ai limiti in più variabili. Inoltre per comodità riportiamo un breve elenco di risultati 
di Analisi Matematica 1. 

1.1 - Spazi lineari a più dimensioni 

Gli elementi di Rn , il prodotto cartesiano di n esemplari della retta reale, sono i punti 
o vettori 

dove gli n numeri reali X 1 , .. . , Xn sono le componenti di X. In due o tre dimensioni, 
le componenti di un vettore saranno talvolta indicate, come d'abitudine, con notazioni 
del tipo di 

A = (x,y), B = (x,y,z), X o = (xo,Yo,zo), P = (Px,Py,Pz). 

Talvolta, se X = (X 1 , ... , X,.) E Rh e Y = (Y1 , ... , Yk) E Rk , useremo la notazione 
(X , Y ) per indicare il punto di Rh+k 

(X , Y ) = (X1, ... ,Xh, Y1 , ... , h). (1.1) 
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Gli elementi della base canonica di Rn sono i vettori 

e 1 = (1, O, ... , O) , e2 = (O, 1, ... , O) , ... ' en = (0,0, ... , 1) 

(ai quali si applica la convenzione precedente: in R2 potremo scrivere e 1 , e 2 oppure 
ex , e11 ) . 

In questo libro trattiamo gli elementi di lRn indifferentemente come punt i o come 
vettori ( che sono indicazioni di spostamento). La somma di vettori segue la regola del 
parallelogramma, e in particolare se X , Y E lRn la differenza X - Y ( che è quello che 
va aggiunto a Y per ottenere X ) è un vettore che parte da Y per arrivare a X . 

X + Y 

X 

y 

Fig. 1.1 : somma di vettori F ig. 1.2 : differenza di vettori 

A ogni X E lRn associamo la norma 

IIX II = Jxr+ ··· + X~' -

che non è a ltro che la lunghezza (calcolata con il teorema di Pitagora) del segmento che 
congiunge l'origine O = (O, ... , O) al punto X . La norma di X è la distanza di X 
da O , pertanto la distanza fra due punti X , Y E lRn è Il X - Y Il . In coordinate, se 

allora la distanza fra X e Y è (~ es. 1.1) 

d(X , Y ) = IIX - Y II = J(X1 - Y1) 2 + · · · + (X n - Yn)2 . (1.2) 

Vediamo già ora che la norma in lRn prende alcuni dei ruoli che erano del valore assoluto. 
In effetti, ricordando che lxl = v"x2 , in una dimensione la norma coincide con il valore 
assoluto. Le prime proprietà della norma sono le seguenti. 

Proposizione 1. 1 : per ogni X , Y , Z E lRn ed ogni t E JR 
1) 11x 11 ~ o 
2) IIXII = O ~ X = O 
3) lltX II = ltl · IIX II 
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Se X , Y E Rn , definiamo il loro prodotto scalare 

È molto facile provare le proprietà del prodotto scalare. 

Proposizione 1.2 : per ogni X , Y , Z E Rn ed ogni t E R 

1) X-Y = Y·X 
2) (X + Y ) · Z = (X · Z ) + (Y · Z ) 
3) . (tX) · Y = t(X · Y) 
4) X· X = IIX ll2 . 

Dato che la norma di un vet tore è sempre maggiore o uguale a zero, abbiamo per 
ogni t E R , usando le proprietà appena elencate, 

0:::; jjtX + Yjj2 = (tX + Y ) • (tX + Y ) 

= (tX · tX ) + (tX · Y ) + (Y · t X ) + (Y · Y ) 

= 11x 11 2t2 + 2(x. Y )t + IIYll2 
• 

L'ultimo membro è un t rinomio di secondo grado in t che è sempre maggiore o uguale 
a zero, ma sappiamo che 

at2 + 2bt + e 2:: O Vt E R ~ t>,. (b)2 - = - -ac< O 
4 2 -

perciò 

(X• Y)2 
:::; 11x 11 2 

· IIYll2 = (IIX II · IIYII/ 
da cui ricaviamo la disuguaglianza di Schwarz 

IX -Yj:::;IIX ll·IIYII . 

Utilizziamola per vedere che 

11x + Yll2 = (X + Y ) . (X + Y) = 11x 11 2 + 2(x . Y ) + IIYll 2 

:::; IIX ll 2 + 211 x 11 · IIYII + IIYll2 = (IIX II + IIYII/ 

da cui ricaviamo la disuguglianza triangolare 

IIX +YII :::; IIX ll+IIYII . 

(1.3) 

(1.4) 

Da questa si può ricavare la meno frequentemente usata se conda disuguaglianza tri­
angolare 

IIX II - IIYII :::; l11x 11 - IIYIII :::; IIX - YII . (1.5) 



4 Sezione 1.1 : Spazi lineari a più dimensioni 

Osserviamo che, per il teorema di Pitagora e la disuguaglianza triangolare, per ogni 
A E Rn e per ciascun i= 1, ... , n 

(1.6) 

e quindi per ogni A , B E Rn 

(1.7) 

Dati due punti X , Y E Rn diversi da O, chiamiamo XY l'angolo fra i vettori X 
e Y , cioè l'angolo fra i segmenti OX e OY . Si può precisare la disuguaglianza di 
Schwarz provando che 

x · Y = IIX ll · IIYII · cos.XY. 

In particola re due vettori non nulli hanno prodotto scalare zero se e solo se formano un 
angolo retto, cioè se sono perpendicolari. 

Definizione : due vettori X , Y E Rn sono ortogonali se X • Y = O . 

Osservazione: due vettori sono ortogonali se e solo se si verifica una (e una sola!) delle 
due condizioni seguent i: 
1) almeno uno dei due è il vettore nullo 

2) sono perpendicolari (~ es. 1.2). 

In tre dimensioni, consideriamo un qualunque vettore non nullo N , e consideriamo 
l' insieme dei vettori X ad esso ortogonali, cioè 

{X:X•N = O}. 

questi (visualizzateli) costituiscono un piano passante per l'origine, esattamente il piano 
per l'origine perpendicolare ad N. 

Fig. 1.3 : un piano p er l'origine Fig. 1.4 : un piano per A 
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Invece dato A E IR3 l' insieme 

{X: (X -A)· N = O} 

è formato dai punti tali che il segmento da A ad X è ortogonale ad N , cioè (visua­
lizzateli) il piano passante per A e perpendicolare ad N. In più di tre dimensioni, 
la situazione è la stessa, solo che l'insieme dei vettori ortogonali a un vettore fissato 
non è un piano, ma un iperpiano. E se anziché salire scendiamo di dimensione? Per 
n = 2 , qual è l'insieme dei vettori perpendicolari a uno dato? È la retta per l'origine 
perpendicolare al vettore dato. Riconosciamo che l 'equazione 

(X - A )· N = O, (1.8) 

in due dimensioni, è l'equazione di una retta passante per A: indichiamo le coordinate 
di questi punti con 

X = (x,y), A = (xo,Yo) , N = (a,b) 

e l'equazione (1.8) diviene 

a(x - xo) + b(y - Yo) = O o anche ax + by+ (- axo - byo) =O. 

Dunque la retta è l' iperpiano di IR2 . 

Proposizione 1.3 : per n ~ 2 , se A , N E !Rn con N -/- O l'equazione (1.8) rappre­
senta l' iperpiano passante per A e perpendicolare a N . Questo è un piano per n = 3 , 
una retta per n = 2 . 

Osservazione : ogni equazione X • N = c con N -/- O rappresenta un iperpiano; per 
riconoscere quale iperpiano sia, è sufficiente scegliere un punto A che la soddisfa. Ciò 
significa che 

A•N=c 

quindi, sostituendo al posto di c questa espressione, l'equazione X• N = c diventa 

X•N = A •N X•N - A•N = 0 <=* (X - A ) · N = O. 

Esempio : se abbiamo l'equazione 7x - y + 5z = 4 , una soluzione si trova comodamente 
scegliendo ad esempio (ma potremmo scegliere x = 183 , y = - 351r e ricavare z; 

certo, sarebbe più scomodo) x = z = O e ricavando y = - 4 , quindi A = (O, - 4, O) . 
L'equazione allora si può riscrivere 

((x,y,z) - (0, - 4, 0)) • (7, - 1,5) =O, 

dunque si tratta del piano per (O, -4, O) perpendicolare a (7, - 1, 5) (~ es. 1.3) 
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Dati k vettori X 1 , ... , X k E lRn , una combinazione lineare di X 1, ... , X k è 
una somma 

dove t 1 , ... , tk sono k numeri reali; k vettori sono linearmente indipendenti se 
l'unico modo per ottenere il vettore nullo come loro combinazione lineare è prendere 
t utti i coefficienti ti , ... , tk nulli. In altri termini, k vettori sono linearmente indipen­
denti se nessuno di essi può essere ottenuto combinando linearmente i vettori rimanenti. 
È importante osservare che in lRn ci possono essere al più n vettori linearmente in­
dipendenti; inoltre, dati n vettori linearmente indipendenti X 1 , ... , X n , ogni altro 
vettore X può essere espresso in uno ed un solo modo come combinazione lineare dei 
vettori x i : 

L'equazione della retta (in qualunque dimensione) si può scrivere anche in forma 
parametrica: se A , V E lRn con V f. O , la retta per A parallela a V è l'insieme dei 
punti che si ottengono aggiungendo ad A un multiplo, positivo o negativo, del vettore 
V , cioè è l' insieme 

{X : 3t E JR: X = A + tV }. 

Questa scrittura, corretta, è assai pesante; d'ora in poi useremo una notazione abbreviata: 

{X = A +tV: tElR}. (1.9) 

L'equazione 

X = A +tV 

è l'equazione parametrica della retta (~ es. 1.6). 

Fig. 1.5 : la retta per A parallela a V Fig. 1.6 : il piano per A generato da V , W 

Anche i piani (bidimensionali) possono essere determinati mediante parametri (due, 
non uno solo). Consideriamo un piano 1r passante per un punto A , e prendiamo 
due vettori V , W che giacciono sul piano: ciò non significa che i punti V e W 
appartengono a 7r, ma che se ad A (che a ppartiene al piano) aggiungiamo V (o W ) 
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rimaniamo nel piano stesso. Se V e W erano indipendenti, tutti i punti del piano 
si possono scrivere come somma di A e una combinazione lineare di V e W , cioè il 
piano è l'insieme 

{X = A + sV + tW: s, t E JR}. 

L'equazione 

X = A +sV +tW (1.10) 

è l'equazione parametrica de l piano passante per A e parallelo a V e W (o 
generato da V e W ) . 

Se 1r è un iperpiano in !Rn , di equazione (X - A ) • N = O , e P è un qualunque 
punto di !Rn , la distanza di P da 7r è data da (~ es. 1.7) 

d(P ) = l(P - A ) · N/ 
,1r /IN /I (1.11) 

Una ultima osservazione geometrica: se 1r è un iperpiano di JRn+l di equazione 

(X -A)• N = O 

e se 

con Nn+l =/-O, l' iperpiano 1r non è parallelo all' iperpiano di equazione Xn+i =O, ma 
forma con esso un angolo. La tangente di questo angolo è 

1.2 - Prodotto vettoriale 

1/(Ni, ... , Nn)/1 

INn+il (1.12) 

Un particolare prodotto fra vettori, che si definisce solo in IR3 , è quello vettoriale o 
esterno; dato che siamo in tre dimensioni, indichiamo le componenti dei vettori con gli 
indici x, y, z anziché 1, 2, 3. 

D efinizione : siano V e W due vettori di JR3 . Il loro prodotto vettoriale è il 
vettore V I\ W di componenti 

(1.13) 
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La formula dice poco, ma osserviamo che (~ es. 1.9) 

Vy) w . 
y 

Vz) 
w ' z 

Da questo deduciamo intanto che il prodotto vettoriale è il vettore zero se e solo se tutti 
e tre i determinanti sono nulli, ma un determinante 2 x 2 si annulla se e solo se ogni 
sua riga è multipla dell'altra ( oppure se l'altra è nulla). Inolt re (basta fare il conto, che 
è semplice e lasciato per esercizio) 

V · (V I\ W ) = W · (V I\ W ) = O. 

Abbiamo così dimostrato il prossimo risultato. 

Proposizione 1.4 : il prodotto vettoriale V I\ W è un vettore ortogonale sia a V che 
a W ; inoltre si annulla se e solo se V e W sono paralleli. In particolare, se non è 
nullo, è un vettore che sta sulla retta che passa per l'origine ed è perpendicolare al piano 
generato da V e W . 

V J\ W 

Fig. l. 7 : V I\ W è ortogonale al piano che li contiene 

Osservazione : se siamo in JR2 e vogliamo trovare un vettore perpendicolare ad uno 
dato, diciamo ( a, b) , la soluzione è molto semplice, basta prendere ( - b, a) . Ma in tre 
dimensioni, come trovare un vettore perpendicolare a due vettori indipendenti V 1 e 
V 2? Per la proposizione precedente, ci basta prendere V 1 /\ V 2 (~ es. 1.10). 

Il prodotto vettoriale si può calcolare svolgendo formalmente (solo formalmente! La 
prima riga contiene vettori, le altre due contengono scalari) il determinante 

( controllate per esercizio). Inoltre, come si dimostra nei corsi di Geometria, vale la 
seguente proprietà. 



;ti 
ni 
ne 

he 
è 

10 

.o 
·e 
e 

a 

a 

Capitolo l : Da una a più dimensioni 9 

Proposizione 1.5 : il prodotto vettoriale V I\ W ha norma 

IIV I\ W II = IIVII · IIWII · scn VW 

e (se non è nullo) il suo verso è tale che la terna V , W , V I\ W è destrorsa, cioè 
orientata come la terna pollice-indice-medio della mano destra. 

Dalla proposizione precedente, ricordando che V · W = IIVII IIWII cos VW , si ot­
tiene l'utile uguaglianza 

11 v A w 11 = ✓1iv 11 2 11w112 - (V • W )2 . (1.14) 

Consideriamo in un piano (intendiamo un "vero" piano bidimensionale in IR3 ) due 
vettori V e W , e consideriamo il paralle logramma generato da V e W , cioè 

P(V, W ) = {aV + f3W : O :Sa :S 1, O :S /3 :S l}. 

V /\ W 

Fig. 1.8 : il parallelogramma generato da V e W 

Questo ha i lati di lunghezza IIVII e IIWII ; inoltre l'angolo compreso fra essi è VW , 
dunque l'altezza del parallelogramma rispetto alla base V è Il Wll •sen VW e finalmente 
l'area del parallelogramma è IIVll • IIWII • sen VW . Possiamo aggiungere allora un'altra 
informazione e~ es. 1.11). 

Proposizione 1.6 : l'area del pa.rallelogra.mma. P (V , W ) generato da V e W è 
II V I\ WII. 

Vediamo cosa si può dire nel (più facile) caso bidimensionale: dati due vettori 
V , W E IR2 , a questi possiamo associare i due vettori di IR3 

V ' = (Vx , Vy,O), W ' = (W x, Wy, O) 

(dunque abbiamo visto il piano IR2 di partenza come il sottoinsieme {z = O} di IR3 ). Il 
parallelogramma generato in IR2 da V e W è lo stesso parallelogramma generato da 
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V ' e W' (solo, il primo è un sottoinsieme di IR2 mentre il secondo è un parallelogramma 
bidimensionale sì, ma sottoinsieme del piano {z = O} di IR3 ), quindi hanno la stessa 
area. In particolare 

Area[P(V, W )] = IIV' I\ W'II , 
ma questo prodotto vettoriale è 

~)) ' 
quindi la sua norma è semplicemente il valore assoluto della sola componente non nulla, 

Area[P(V , W )] = ldet ( ~ ~)I = ldet (;;) I - (1.15) 

Come caso particolare, dati due segmenti in IR2 di estremi 

A , B e C,D 

il parallelogramma che ha i lati paralleli a questi segmenti (e con la stessa lunghezza) è 
quello generato da B - A e D - C , quindi ha area 

(1.16) 

Questo risultato si estende a JR3 : consideriamo tra vettori U , V , W e calcoliamo il 
volume del parallelepipedo da essi generato. Se prendiamo come base il parallelogramma 
generato da V , W , questo ha area IIV I\ WII , e per trovare l'altezza del parallelepipedo 
rispetto a questa base dobbiamo determinare la proiezione di U su una retta perpendi­
colare al parallelogramma di base. Ma un versore ortogonale a questo parallelogramma 
è V I\ W /IIV I\ W II , quindi l'altezza cercata vale 

I 
V I\ W I 

u. llV A W II 

e infine il volume, area di base per altezza, è 

IIV A w 11 - ju • 
11

~ ~ ;
11 

j = 1u • (V A W)I. 

Controllate per esercizio che (~ es. 1.12) 

IU . (V A W )I - dct ( r) 
Useremo poi il seguente caso part icolare della Proposizione 1.6: dati due vettori V , W E 
JR3 , grazie a (1.13) sappiamo che 

II V A W ll
2

= [det (~ ~)r +[det (~ ~Jr +[det (~v ~z)r 
che è la somma dei quadrati di tutti (sono solo tre) i determinanti dei minori 2 x 2 della 
matrice che ha come righe le componenti dei due vettori. Il risultato si può generalizzare 
ad n dimensioni. 

or 
gr 

St 
tir 
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Corollario 1.7 : l 'area del parallelogramma generato dai due vettori V, W E Rn è 
la radice quadrata della somma dei quadrati dei determinanti dei minori 2 x 2 della 
matrice che ha come righe le componenti dei due vettori. 

1.3 - Esempi fondamentali 

Nel corso di Analisi Matematica 1, tra il materiale essenziale si trovano i grafici di alcune 
funzioni di base e le equazioni di certe curve standard ( circonferenza, ellisse, parabola, 
iperbole). In questa sezione vediamo i grafici di alcune funzioni di due variabili, e le equa­
zioni di alcune comuni superfici in tre dimensioni, che servono come mattoni fondamentali 
per visualizzare situazioni più complicate. Per funzioni di una variabile f : R -+ R , il 
grafico è (nei casi regolari) una linea curva in R2 , e la sua equazione si ottiene ricordando 
che, per definizione di grafico, 

<ç'J = {(x,y) E R 2
: y = f(x)}, 

quindi l'equazione del grafico di f è 

y = f(x) o anche f(x) - y = O. 

Fig. 1.9 : un grafico in una variabile Fig. 1.10 : un grafico in due variabili 

Per funzioni f : R2 -+ R il grafico è un sottoinsieme di R2 x R = R3 , quindi 
ora troveremo grafici che sono (nei casi regolari) delle superfici in R3 , e l 'equazione del 
grafico di f : R2 -+ R sarà 

z = f(x,y) o anche f (x, y) - z = O . 

Studieremo in dettaglio, nel Capitolo 3, i casi in cui effettivamente i luoghi di zeri del 
tipo {F(x,y)=O} sonocurveequellideltipo {F(x,y, z ) = O} sonosuperfici. 
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Esempio : la funzione f(x, y) = 3x - 2y + 2 ba come grafico un piano: infatti il suo 
grafico ha equazione 

3x - 2y + 2 - z = O (x, y, z) • (3, -2, - 1) = - 2 . 

Una soluzione (cioè un punto che appartiene al piano) è ad esempio A = (O, 1,0) quindi 
l'equazione si riscrive 

((x, y, z) - (O, 1, O))· (3, - 2, - 1) = O 

e il grafico è il piano per (O, 1,0) perpendicolare a (3, - 2, - 1). 

Per il prossimo esempio avremo bisogno di un concetto nuovo. Sulle cartine to­
pografiche, specie quelle delle zone collinose o montuose, si notano delle serie di curve, 
che denotano i punti che stanno alla stessa quota (rispetto al livello del mare preso come 
quota zero di riferimento). Ci sono la curva dei 1500 metri, quella dei 650, eccetera. La 
disposizione di queste curve ci dice: 
1) in un dato punto, in che direzione camminare per stare alla stessa quota: basta 

seguire la curva che passa per quel punto; 
2) dove stanno le cime delle colline: intorno alle cime, le curve di quota formano una 

serie di anelli concentrici (generalmente non proprio delle circonferenze, seguono 
l'andamento della collina); 

3) dove sono le zone più ripide: infatti "ripido" vuol dire che la quota cambia rapida­
mente, quindi i cambiamenti di quota saranno più frequenti e le curve di quota più 
ravvicinate. 

Pig. 1.11 : tratto ripido R , più dolce D, cima C , passo P 

D e finizione : sia f : JR2 ~ JR , e k E JR . La curva di livello di f alla quota k è 
l ' insieme 

f- 1(k) = {(x,y): f(x ,y) = k} (1.17) 

dei punti in cui f assume il valore k . 
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Osservazione : una curva di livello può essere tutt'altro che una "curva" : ad esempio se 
k non è nell'immagine di f la curva di livello alla quota k è l'insieme vuoto; se f 
vale costantemente k la curva J-1(k) è tutto il piano. Nel caso unidimensionale, cioè 
per funzioni f : JR -+ JR, l'insieme equivalente (che per quanto stiamo per dire non si 
chiama curva di livello) è abitualmente composto da uno (se f è iniettiva) o più punti, 
ad esempio se f(x) = x 2 è composto da zero, uno o due punti a seconda che k < O, 
k = O , oppure k > O . Per funzioni , più difficili da visualizzare, da JR3 a JR l' insieme 
di livello è generalmente una superficie bidimensionale. Dedicheremo alle curve di livello 
una parte della Sezione 3.10, quando avremo a disposizione strumenti più raffinati. 

Esempio: la funzione f(x,y) = x 2 + y2 ha. come grafico un paraboloide circolare (o 
di rotazione), dato che il grafico si ottiene considerando nel semipiano 

{(x,y,z): y = O, x 2 O} 

il grafico della funzione z = x2 per x 2 O , e facendo ruotare il tutto intorno all'asse z . 

F ig. 1.12 : il grafico di J(x, y) = x 2 + y2 Fig. 1.13 : le curve 1-1 (k) con k = 2, 4, 6, ... , 14 

Infatti vediamo come sono fatte le curve di livello di f : 

1- 1(k) = {(x,y): x2 + y2 = k} = { fco,o)} 
{X: IIX II = v'k} 

se k < O 
se k = O 

se k > O, 

quindi se k > O sono circonferenze centrate neB'origine. Dunque nel punto (x,y) la 
funzione f assume lo stesso valore che nel punto del semiasse positivo delle x che dista 
da (O, O) quanto (x, y) , vale a dire nel punto ( J x2 + y2 , O) . La sezione del grafico di 
f con un qualsiasi piano che contiene l'asse z è una parabola (e le sezioni sono tutte 
uguali). Torneremo più avanti sulle sezioni in modo più preciso w (2.23) . 

Nel seguito, indicheremo brevemente con "il piano (x, z)" sia il piano cartesiano JR2 

con coordinate x e z , sia quello ( usato nell'esempio) che in realtà è il sottoinsieme di 
JR3 costituito dai punti con y = O , che è generato dai vettori (1, O, O) che giace sull'asse 
x, e (O, O, 1) che giace sull 'asse z . 



14 Se-.i:ione 1.3 : Esempi fondamentali 

Esempio : la funzione 
J(x, y) = ax2 + fJy2 , a,fJ > O ) (1.18) 

ha come grafico un paraboloide ellittico: infatti ponendo 

b 1 
= ,n 

possiamo riscrivere 
x2 Y2 

f(x,y) = a2 + b2 

e vediamo subito che le curve di livello, per k > O , sono ellissi di semiassi proporzionali 
ad a e b (quindi tutte simili), precisamente 

f(x,y) = k > O 
x2 Y2 

---=,-- + --- = 1 . 
(av'k)2 (bvk )2 

Fig. 1.14 : il grafico di x2 + 2y2 Fig. 1.15 : le curve di livello con k = 2, 4, 6, ... , 14 

La sezione del grafico di f con un qualsiasi piano che contiene l'asse z è una parabola 
(ma se a -I fJ le sezioni non sono tutte uguali). 

Esempio : la funzione 
f(x , y) = QX2 + fJy2 ' a , {3 < O (1.19) 

ha come grafico un paraboloide ellittico con la concavità verso il basso: infatti è la 
funzione opposta di quella dell'esempio precedente. 

Osservazione : le due funzioni (1.18) e (1.19) sono indistinguibili se guardiamo solo il 
disegno delle curve di livello; bisogna ad ogni curva associare la relativa quota (e allora si 
vede che allontanandosi dall'origine le quote per la prima funzione salgono, per la seconda 
scendono) oppure indicare, magari con delle frecce, la direzione in cui le quote salgono. 
La situazione è la stessa che nelle cartine topografiche: vedendo una serie di linee di 
quota che formano anelli concentrici, se non guardiamo a che quote corrispondono non 
possiamo sapere se al centro degli anelli troveremo la cima di un colle oppure un laghetto! 
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Prima del prossimo esempio ripassiamo come è fatta una sella da cavallo: sedendocisi 
sopra, vediamo la sella scendere a destra e sinistra, per seguire i fianchi del cavallo, e 
salire davanti e dietro, per non far scivolare il cavaliere. 

Esempio : la funzione J(x, y) = x2 - y2 ha come grafico un paraboloide iperbolico. 
Prima di studiarne le curve di livello, vediamo perché il suo grafico presenta una sella: 
sezionando il grafico con il piano (x , z) , cioè prendendo y = O, otteniamo come traccia il 
grafico della funzione x2 , una parabola con la concavità verso l'alto, mentre sezionandolo 
con il piano (y, z) otteniamo il grafico della funzione - y2 

, una parabola con la concavità 
verso il basso. 

Fig. 1.16 : il grafico di x 2 - y2 è una sella Fig. 1.17: sezioni lungo gli assi 

Dunque, ponendoci nell'origine, il grafico sale nelle due direzioni dell'asse x e scende 
nelle due direzioni dell 'asse y , come una sella. 

Passiamo alle curve di livello: se k > O abbiamo 

J(x , y) = k x2 - y2 = k 
x2 y2 
-- - -- = 1 
(vfk)2 (vfk)2 

l'equazione di una famiglia di iperboli con asintoti le rette di equazione y = ±x e che 
non intersecano l'asse x; invece se k < O abbiamo 

( f(x,y) = k y2 - x2 = - k 
y2 

(./=k)2 

x2 
--==-- = 1 
( ./=k)2 ' 

l'equazione di una famiglia di iperboli con asintoti le rette di equazione y = ±x e che 
non intersecano l'asse y. 
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) 

E<'ig. l.18 : i livelli con k = O, 2, '1, 6, ... , 14 Fig. l.J9: e quelli con k = - 2, -4, - 6, ... , - 14 

Infine, se k = O la "curva" di livello è una croce: 

f(x,y) = O x2 = y2 y = ±x . 

Un caso analogo (studiatelo da soli) si ha per la funzione 

f (x, y) = QX2 + fjy2 ' a fj < O 

(cioè a e f3 di segno diverso). 
Prima di vedere altri esempi notevoli di funzioni, introduciamo le equazioni di alcuni 

luoghi geometrici in tre dimensioni. 

Esempio : la superficie sferica centrata nell'origine e di raggio r > O è il luogo dei 
punti che distano r dall'origine, vale a dire q- (1.2) 

{ ( x, y, z) : x 2 + y2 + z2 = r 2
} . 

Dunque x 2 + y2 + z2 = r 2 è l'equazione di questa superficie sferica, spesso detta impro­
priamente "sfera", mentre la vera sfera è il solido racchiuso dalla superficie sferica. La 
"equazione" della sfera centrata nell'origine e di raggio r, vale a dire la formula soddi­
sfatta da tutti e soli i punti della sfera, è x2 + y 2 + z2 

::; r 2 oppure x2 + y2 + z2 < r 2 
, 

a seconda che si voglia comprendere o no la superficie esterna nella sfera (ed è una 
disequazione). Troveremo nella Sezione 1.6 i termini corretti per differenziare le due 
situazioni. 

Se anziché nell'origine la superficie sferica è centrata in un punto (x0 , y0 , z0 ) , l'equa­
zione diventa 

(x - xo)2 + (y - Yo)2 + (z - zo)2 = r 2 
. (1.20) 
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Esempio: la superficie del cilindro di asse l'asse z e raggio r è il luogo dei punti che 
distano r dall'asse z o, equivalentemente, il luogo dei punti che si ottengono unendo 
tutte le rette parallele all'asse z e passanti per un punto della circonferenza del piano 
x, y) che ha raggio r e centro nell'origine. La distanza dall'asse z di un punto (x, y, z) 

è semplicemente Jx2 + y2 , quindi l'equazione del cilindro è 

x2 +y2 = r2. 

Potrebbe sembrare l'equazione di una circonferenza, ma ricordiamo che questa equazione 
è una abbreviazione per 

{(x,y,z) E R3
: x 2 +y2 = r 2

}, 

un sottoinsieme di R3 • Per esercizio, scrivete l'equazione di una superficie cilindrica il 
cui asse è parallelo all'asse z ma non passa per l 'origine, o quella di un cilindro "pieno" 
(~ es. 1.13). 

La superficie appena vista ha, in realtà, un nome un po' più complicato, dato che a 
rigori è la superficie del cilindro circolare retto di asse l'asse z e raggio r . 

Definizione : sia 1r e R3 un piano, sia R una retta non parallela a 1r e sia E un 
sottoinsieme di 1r. Il cilindro generato da E di generatrice R è l 'unione di tutte 
le rette parallele ad R che intersecano E . Il cilindro si dice retto se R è perpendicolare 
a 7r. 

R 

Fig. 1.20 : una porzione del cilindro generato da E (più spesso) di generatrice R 

Si può parlare di cilindro anche in n dimensioni, e allora 1r dovrà essere un iper­
piano. Se riprendendo la notazione di (1.9) l'equazione parametrica di R è 

X = A +tV , 

allora il cilindro generato da E ed R è 

{X = B +tV: B E E, t E R}. 
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Potremmo dire questa sia l'equazione "parametrica" del cilindro; le virgolette sono 
d'obbligo dato che uno dei parametri è un numero reale, mentre l'altro è un punto di 
un insieme di !Rn . Osserviamo che la superficie cilindrica dell'esempio precedente è un 
cilindro secondo la definizione precedente, come pure il consueto cilindro "pieno" 

{(x,y,z): x2 +y2 $ r2}' 

che è generato non dalla circonferenza, ma dal cerchio di raggio r . Dunque l'uso della 
parola cilindro per la superficie cilindrica non è errato ( ma bisogna stare a ttenti a non 
fare confusione tra il cilindro pieno e la sua superficie). 

Esempio : l' insieme 
C = {(x,y,z): (x - 3)2 +z2/4 $ 1} 

z z 

y 

X 

X 

F'ig. 1.21 : una porzione di C Fig. 1.22 : l'intersezione con 1r 

è un cilindro con asse parallelo all'asse y, generato dall'ellisse (piena) che nel piano (x, z) 
ha equazione (x - 3)2 + z2 / 2 $ 1 , dunque è centrata in (x, z) = (3, O) e ha semiassi 
lunghi 1 nella direzione x e ,/2 nella direzione z . Si potrebbe chiamarlo "cilindro 
ellittico retto", ma la cosa non è molto importante: infatti la sua intersezione col piano 
1r di equazione x - y = O è un cerchio E di raggio ,/2 , quindi il cilindro in questione 
è anche generato dal cerchio E (dunque è un cilindro circolare) con generatrice l'asse 
y (che però non è perpendicolare a 1r, quindi visto come cilindro circolare non è retto). 
Nella Figura 1.22 è tratteggiata la retta di equazione x = y, z = O. 

Dai cilindri passiamo ora ai coni. 

Esempio : la superficie conica di vertice l'origine, asse l'asse z e ampiezza 1r / 4 è 
l'unione di t utte le rette per l'origine che formano con l'asse z un angolo di 1r / 4 . Un 
punto di questa superficie, dunque, dista dall'asse z quanto dista dal piano (x, y), 
perciò le sue coordinate verificano 

Jx2 +y2 = lzl 
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o anche 
x2 + y2 - z2 = O . 

Osserviamo che questa superficie può essere descritta equivalentemente come l'unione di 
tutte le rette per l'origine che intersecano la circonferenza 

C = { (X, y, Z) : x2 + y2 = 1, Z = 1} 

di raggio 1 , centrata in (O, O, 1) e giacente sul piano di equazione z = 1 . 

Fig. 1.23 : il (doppio) cono, più spessa la circo nferenza C 

Osserviamo pure che questa superficie è un "doppio cono", mentre la sola metà della 
superficie che sta sopra al piano (x, y) ha equazione 

z == Jx2 +y2 . (1.21) 

In generale, per m > O l'equazione 

mlzl = Jx2 + y 2 (1.22) 

è quella di una superficie conica di vertice l'origine, asse l'asse z e ampiezza arctan m 
(cioè l'angolo fra l'asse del cono e le rette che formano il cono misura arctanm ). Nel 
linguaggio corrente, spesso si usa il termine "cono" intendendo la superficie conica, il che 
come per il cilindro non è errato vista la prossima definizione, ma attenzione a non fare 
confusione (~ es. 1.15). 

Anche il cono segue la stessa sorte del cilindro: nella dizione corretta, l'esempio 
appena visto sarebbe la superficie del cono circolare retto di vertice l'origine, asse 
l'asse z e ampiezza rr / 4 , ed è un caso particolare. 

Definizione : sia rr e JR3 un piano, sia V un punto non appartenente a rr e sia E 
un sottoinsieme di 1r. Il cono generato da E di vertice V è l 'unione di tutte 
le rette passanti per V che intersecano E . Se E è una circonferenza e V sta sulla 
perpendicolare a rr passante per il centro della circonferenza E , il cono si dice circolare 
retto. 
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Si può parlare di cono anche in n dimensioni, e allora 1r dovrà essere un iperpiano. 
In generale possiamo scrivere l 'equazione "parametrica" del cono come 

X = V + t(A - V ) , tER, A EE. 

Esempio : un piano è un cilindro generato da una retta E del piano, con generatrice 
una qualunque retta R del piano non parallela ad E. Cosa è il cono generato da una 
retta E e con vertice un punto V i E ? 

Ora che abbiamo un po' di materiale, torniamo alle funzioni. 

Esempio : la funzione f(x, y) = x 2 non ha come grafico una parabola, che è una linea, 
ma un cilindro. 

Fig. 1.24 : un paraboloide di trascinamento o cilindro parabolico, grafico di J(x, y) = x 2 

Infatti la sua sezione con ogni piano perpendicolare all'asse y , cioè avente equazione 
y = e , è la parabola di equazione 

y =e , z = x2 

che è una traslata parallelamente all 'asse y della parabola analoga ma giacente sul piano 
(x, z) . Dunque posto 

7f = {(x,y,z): y = O} , E = { ( x, y, z ) E 7f : z = x2
} , R = { t(O, 1, O) : t E R} , 

il grafico di f è il cilindro generato da E con generatrice R . Lo si chiama paraboloide 
di traslazione o anche di trascinamento. 

Esempio: la funzione f(x, y) = Jx2 + y2 ha come grafico l' insieme di equazione 

z = Jx2 + y2 

che abbiamo visto essere un mezzo cono...- (1.21). 



e 
a 

Capitolo 1 : Da una a più dimensioni 21 

Prima del prossimo esempio, aggiungiamo un problema che sinora si era t rascurato, 
quello del dominio della funzione. La prima cosa da fare quando si considera una funzione 
è, come per quelle di una variabile, cercare di determinarne il dominio, qualora esso non 
sia già stato precisato. 

Definizione : sia f una funzione di n variabili, data da una espressione analitica. 
Qualora il dominio di f non fosse stato precisato, si sottintende che il suo dominio è 
il dominio naturale, il più grande sottoinsieme di R_n in cui abbia senso calcolare il 
valore dell'espressione analitica stessa. 

Esempio: la funzione J(x,y) = j l - x2 - y 2 è definita solo per l - x2 - y 2 ~ O, quindi 
il suo dominio è 

D = { ( x, y) : x2 + y2 $ 1} , 

il cerchio centrato nell'origine e di raggio 1 . Per vedere le linee di livello di f osserviamo 
che una radice quadrata non è mai negativa, quindi l'equazione f (x, y) = k non ha 
soluzione per k < O. Per k ~ O l'equazione equivale a 

1- x2 - y2 = k2 x2 + y2 = 1 - k2 

che non ha soluzione per k > 1 , mentre per O $ k $ 1 ha soluzione, e la curva di 
livello k è la circonferenza centrata nell'origine e di raggio J l - k2 , che si riduce alla 
sola origine per k = 1 . 

Chiudiamo la sezione con tre luoghi geometrici che hanno equazioni abbastanza sem­
plici: i primi due sono iperboloidi di rotazione, ed entrambi si ottengono prendendo 
una iperbole nel piano (x, z) , con assi gli assi coordinati, e facendola ruotare intorno 
all'asse z . Se i due rami dell'iperbole intersecavano l'asse z e non l'asse x , si ottiene 
un iperboloide a due falde, dato che si tratta di due "tazze" una al di sopra e una al 
di sotto del piano di equazione z = O . 

Fig. 1.25 : z2 = 1 + x 2 + y 2 rappresenta un iperboloide a due falde 



22 Sezione 1.3 : Esempi fondamentali 

Esempio : l'equazione 

z2 = 1 + x2 + y2 

rappresenta l'iperboloide a due falde ottenuto ruotando intorno all'asse z entrambi i 
rami dell'iperbole che nel piano (x, z) ha equazione z2 - x2 = 1 . 

Se invece i due rami dell'iperbole intersecano l'asse x e non l'asse z , si ottiene 
un iperboloide a una falda, dato che è una superficie in un pezzo solo, svasata in 
corrispondenza del piano di equazione z = O. 

Fig. 1.26 : z2 + 1 = x 2 + y2 rappresenta un iperboloide a una falda 

Esempio : l'equazione 

z2 + 1 = x2 + y2 (1.23) 

rappresenta l'iperboloide a una falda ottenuto facendo ruotare intorno all'asse z uno 
qualunque dei due rami dell'iperbole che nel piano (x, z) ha equazione x2 - z2 = 1 . 

Esempio : vi sono iperboloidi non di rotazione, analoghi a quello che per il paraboloide 
era il paraboloide ellittico~ (1.18), e l'equazione di un iperboloide ellittico è del tipo 

z
2 = K + ax2 + f3y2 , a,/3 > O, K > O 

(a due falde) o 

z2 + K = ax2 + f3y2 , a,/3 >O, K > O 

(a una falda). 

L'ultimo luogo geometrico che trattiamo in questa sezione è l'ellissoide: come per 
passare dalla circonferenza all'ellisse allunghiamo l'asse in una direzione ( così che pos­
siamo vedere la circonferenza come una ellisse con i due semiassi uguali), così in tre 
dimensioni possiamo passare dall'equazione della sfera 

x2 + y2 + z2 = 1 
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all'equazione (in cui a, b, e > O) 
x2 y2 z 2 

2+b2+2 = 1 
a e 

questa rappresenta un ellissoide, che ha semiassi lunghi a nella direzione x , b in 
quella y e e nella direzione z . Se i tre parametri sono uguali , abbiamo una sfera; se 
due dei tre parametri sono uguali, diciamo a = b , abbiamo un ellissoide di rotazione, 
dato che si può ottenerlo ruotando intorno a un asse (in questo caso l'asse z , che ha il 
parametro "diverso") una ellisse (in questo caso l'ellisse che nel piano (x, z) ha equazione 
x2 / a2 + z2 / c2 = 1 ). La Terra è grossomodo un ellissoide di rotazione, un po' schiacciato 
sui poli. Le estremità dei semiassi d i un ellissoide si chiamano, guardacaso, poli. 

Fig. 1.27 : un ellissoide a tre assi diversi Fig. 1.28 : un ellissoide di rotazione ( a = b ) 

1.4 - Traslazioni e rotazioni di coordinate 

Ricordiamo come si effettua una traslazione di coordinate, limitandoci a due dimensioni. 
Se in un piano fissiamo un punto, le sue coordinate dipendono naturalmente da dove 
mettiamo gli assi; dunque scegliamo un punto P del piano, scegliamo sul piano un 
riferimento cartesiano ortogonale (x, y) e supponiamo che in quel sistema di riferimento 
le coordinate di P siano (xo, Yo ) . Ora determiniamo un nuovo sistema di riferimento 
(x', y') , traslando gli assi precedenti, in modo tale che il punto P sia l'origine dei nuovi 
assi, e ci chiediamo come cambiano le coordinate di un qualunque punto nel passare dal 
vecchio al nuovo sistema di riferimento, e viceversa. Il legame tra le vecchie coordinate 
(x, y) di un punto e le sue nuove coordinate (x', y') è semplicemente 

{ 
x' = x - xo { x = x' + xo 

ovvero 
i =y- w y=i+w 

dove, ribadiamo, (xo, y0 ) sono le coordinate "vecchie", cioè nel sistema (x, y) , del punto 
P che ha ovviamente "nuove" coordinate (O, O) . 
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y y' 

Yo ----- p 1 x' 

1 Xo X 

Fig. 1.29 : traslazione di coordinate 

La scrittura precedente, anche se molto comune, non è particolarmente corretta: il signi­
ficato della uguaglianza x' = x - xo , ad esempio, è "il valore di x' associato al punto 
che aveva coordinate (x, y ) è x - x 0 " . Dunque x' è determinato in funzione delle 
coordinate (x,y) ed è pertanto funzione di (x,y). La scrittura corretta (che useremo 
talvolta per chiarire la situazione) dovrebbe essere 

x'(x,y) = x-xo, y'(x,y) = y - yo 

ora è chiaro che x' e y' sono funzioni di x e y , e analogamente 

( I ') I 
X X ,Y = X +xo' ( 

/ /) I yx,y =y+yo. 

La situazione è analoga in più di due dimensioni. 

Esempio : consideriamo nel piano la funzione 

f(x, y) = (x + 1)2 + 3(y - 4)2 
; 

per vedere che il suo grafico è un paraboloide ellittico, il cui vertice non è in (O, O) , 
effettuiamo una traslazione di coordinate spostando l 'origine nel punto che ha coordinate 
( xo, Yo) = ( - 1, 4) : otteniamo delle nuove coordinate 

[x' = X + 1 , y' = y - 4] [x = x' - 1 , y = y' + 4] , 

dove ricordiamo che l'ultima parte andrebbe scritta 

x(x' , y') = x' - 1, y(x',y') = y' + 4 , 

e chiamiamo h(x' , y') la funzione f letta nelle nuove coordinate, cioè poniamo 

h(x', y') = f (x, y) . 
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Come si vede, questa scrittura (che dopo il prossimo chiarimento useremo largamente 
ato che è molto più comoda) non è corretta, dato che uguaglia una funzione di (x',y') 

.. una funzione di tutt'altro. La scrittura corretta sarebbe 

h(x' ,y') = f(x(x',y') ,y(x',y')) 

P allora non solo è ripristinata un'uguaglianza fra funzioni delle stesse variabili, ma è 
hiaro che 

h(x',y') = f(x(x',y') , y(x',y')) = f (x' - 1,y' +4) 

= ((x' - 1) + 1)
2 + 3((y' + 4) - 4)

2 = (x') 2 + 3(y')2 
. 

Il grafico di h è allora un paraboloide ellittico con vertice nell'origine del sistema di 
riferimento ( x', y') , quindi il grafico di f è un paraboloide ellittico con vertice nel 
punto che nel sistema di riferimento ( x, y) ha coordinate ( - 1, 4) . 

Esempio : l'equazione 

rappresenta la superficie di un cono circolare retto, con asse parallelo all'asse z e vertice 
in (- 2, O, 3) . Infatti traslando gli assi in modo da porre la nuova origine nel punto che 
nel sistema (x, y, z) aveva coordinate (-2, O, 3), cioè ponendo ( y' sarebbe inutile ... ) 

x' = x + 2 , y' = y , z' = z - 3 

nelle nuove coordinate l'equazione diventa 11:M' (1.21) 

z' = 4J(x')2 + (y')2 . 

Dato che è la prima volta (sarà anche l'ultima!), vediamo di essere precisi. L'equazione è 
la parte cruciale della definizione di un insieme, che per l'appunto è la superficie conica, 

C = { (x, y, z) : z - 3 = 4J(x + 2)2 + y2 } . 

~oi abbiamo seguito questo percorso: con scrittura scorretta abbiamo detto 

C = { (x, y, z) : z' = 4J(x')2 + (y')2} , 

intendendo "C è un insieme di punti le cui coordinate (x, y , z) , se effettuiamo il cam­
biamento di coordinate indicato prima, soddisfano una certa equazione". La scrittura 
corretta, dove per un minimo di brevità scriviamo X al posto di (x, y, z) e X' al 
posto di (x',y',z'), sarebbe 

C = {x: z'(X) = 4J(x'(X))
2 + (y'(X))

2
}, 

oppure, posto 
C' = {(x',y',z'): z' = 4J(x')2 + (y')2}, 

anche (~ es. 1.16) 
C ={X: X'(X ) E C'} . 

J 
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Un po' più laboriosa è la situazione per le rotazioni degli assi. Fissato il riferimento 
(x, y) , cerchiamo come si trasformano le coordinate di un punto se come nuovi assi 
prendiamo una coppia di rette orientate che si ottengono ruotando gli assi (x, y) di un 
angolo 0 in senso antiorario intorno all'origine. Chiamiamo (x', y') i nuovi assi; è facile 
vedere che il punto e~ che ha coordinate 

x' = 1 , y' = o 

(che è il punto sul semiasse x' posit ivo che dista 1 dall'origine) aveva coordinate 

x = cos0, y = sen0 , 

y' y 

' 0 

I X 

Fig. 1.30 : rotazione di coordinate 

mentre il punto e; di "nuove" coordinate 

x' = O , 

aveva coordinate 

y' = 1 

x = - sen0 , y = cos0 . 

Fino al termine della sezione usiamo per i vettori la notazione in colonna ( che sarebbe 
più corretta, ma occupa una montagna di spazio): nelle vecchie coordinate, dunque, e~ 
si scriverà 

(
cos0 ) . 
sen 0 

Dato che le rotazioni sono applicazioni lineari , e il punto che nel riferimento (x', y') ha 
coordinate ( h, k) si può scrivere 

he~ + ke~, 

le sue coordinate nel sistema (x, y) sono 

(
cos0 
sen0 

- sen0) (h) 
cos0 k ' 
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dunque possiamo scrivere 

(x) ( cos 0 
y - sen0 

- sen 0) ( x' ) _ 
cos0 y' 

La trasformazione inversa si ottiene trovando la (facile) inversa della matrice, ed è 

( x' ) = ( cos 0 sen 0) ( x) _ 
y' - sen 0 cos 0 y 

Esempio : se gli assi (x', y') sono ruotati di 45° in senso antiorario rispetto agli assi 
(x, y) le formule precedenti diventano 

e 

( 
X

1 

) ( :fl :fl ) ( X ) 
y' = -1 {2 y 

{

X= '?(x' -y') 

y = {!- (x' + y'). 

1.5 - Coordinate polari 

{ 
x' = f (x + y) 

y' = f (x -y) 

Sappiamo già dal corso del primo anno che i punti di IR2 possono essere espressi, oltre 
che tramite le coordinate cartesiane (x, y) , anche con le coordinate polari (r, 0) ; per 
passare dalle coordinate polari a quelle cartesiane si usano i cambiamenti di variabili 

{
x=rcos 0 
y = rsen0 

r ;::: O, 0 E [O, 21r[ . (1.24) 

Osserviamo che r può essere letto sia come distanza dall'origine, sia come coordinata 
sulla semiretta che esce dall'origine nella direzione 0. Per passare dalle coordinate 
cartesiane a quelle polari la situazione è più intricata, per la condizione 0 E [O, 21r[ . Un 
abbozzo di soluzione si ha considerando il cambiamento di variabili 

{ 
r = ✓x2 + y2 

0 = arctan(y/x) . 

Bisogna fare attenzione all'ultima uguaglianza, valida solo nel primo quadrante; invece 
nel secondo e terzo quadrante si deve usare 

0 = 1r + arctan(y/x) 

e nel quarto 0 = 21r + arctan(y/x). Inoltre, si intende che il valore di arctan(y/ x) 
è 1r / 2 se x = O e y > O , è - 1r / 2 se x = O e y < O , mentre non è definito se 
x = y = O , coerentemente con il fatto che per l'origine di IR2 non è possibile definire 
!"angolo corrispondente. La scelta 0 E [O, 21r[ non è la sola possibile, per esercizio potete 
scrivere eplicitamente 0(x, y) 'se decidiamo che 0 E] - 1r, 1r] . 
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rsen0 
r 

0 

rcos0 

Fig. 1.31 : coordina.te polari in R2 

Osserviamo che le (1.24) esprimono x ed y in funzione di r e 0, quindi andrebbero 
scritte usando il linguaggio delle funzioni ( cosa che tornerà utile più avanti): 

{ 
x(r, 0) = r cos0 

y(r,0) = rsen0 , 
(1.25) 

dove ora x, y sono funzioni definite su [O, +oo[ x [O, 21r[ a valori in IR2 . Non c'è nulla 
di male a pensarle definite in [O, +oo[ x!R , permettendo a 0 di assumere valori anche 
fuori da [O, 21r[ . Addirittura, talvolta fa comodo interpretare anche le equazioni (1.24) 
per r < O : allora r non ha più il significato di una distanza, ma di una coordinata 
sulla retta passante per l'origine che ha verso positivo nella direzione 0. Ad esempio a 
0 = 1r / 4 , r = -\1'2 corrisponde il punto (- 1, - 1) , come otterremmo usando le formule 
(1.24). Vedremo più avanti (,• appendice 2.2) vari esempi in cui questa estensione risulta 
assai utile (41l). es. 1.17). 

Anche in JR3 si possono esprimere i punti tramite coordinate polari sferiche: in 
tal caso avremo bisogno del raggio e di due angoli 0, </>; tradizionalmente si usano come 
0 la longitudine e come </> la co-latitudine, per cui si ha 

{ 

x = rsen<f>cos0 
y = r sen </> sen 0 

z = rcos<f> 
r ~ O, 0 E [O, 21r[, </> E [O, 1r] . (1.26) 

In tal modo il polo Nord corrisponde a </> = O mentre il polo Sud corrisponde a </> = 1r ; 

analogamente a quanto visto sopra per IR2 , anche in JR3 la longitudine 0 non è definita 
nei due poli. 
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z z 

y ,,__,.._--r y 

0 

X X 

Pig. 1.32 : coordinate polari s feriche Fig. 1.33 : coordinate cilindriche 

In JR3 conviene talvolta usare le coordinate cilindriche in cui si lascia una coordi­
nata invariata (ad esempio z) e si trasformano le rimanenti due in modo polare (piano); 
se chiamiamo (r, 0, z) le coordinate cilindriche, abbiamo quindi la trasformazione 

{

x = rcos 0 
y = rsen0 
z=z 

r 2'. O, 0 E [O, 21r[, z E JR . (1.27) 

Vediamo come usando le varie forme di coordinate polari possiamo riscrivere alcuni degli 
esempi fondamentali. 

Esempio: il paraboloide di equazione z = x2 +y2 si può parametrizzare con le coordinate 
cilindriche come 

z = r 2
. 

La coordinata 0 non compare dato che il paraboloide è di rotazione. Invece il paraboloide 
ellittico IQ' (1.18) ha una equazione polare più complicata, z = r 2(acos2 0 + {3sen2 0). 
Interessante il paraboloide iperbolico (il prototipo della sella) la cui equazione z = x 2 -y2 

in coordinate cartesiane diventa, in coordinate cilindriche, 

z = r 2 (cos2 0 - sen2 0) = r2 cos(20) . 

Esempio : in coordinate cilindriche, l 'equazione del cilindro di asse l'asse z e raggio R 
si scrive semplicemente r = R. L'equazione del mezzo cono 

z = Jx2 + y2 

diviene 

z = r. 

Esempio : in JR2 
, la retta di equazione x + 2y = 1 si scrive in coordinate polari 

r(cosef.> + 2senef.>) = 1. 

Evidentemente è meglio utilizzare le coordinate polari solo per qualcosa di tondo .. . 
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Anche se non sono di uso frequente, per completezza parliamo anche del caso di 
dimensione più alta, in cui possiamo ancora definire trasformazioni polari; avremo bisogno 
del raggio r , della longitudine 0 , e di n - 2 co-latitudini </>1, .. . , ef>n-2 . Ad esempio 
in IR4 avremo per le coordinate cartesiane (x, y, z, w) le trasformazioni 

{ 

x = (rsen ef>2)(sen ef>1)cos0 

y = (r sen ef>2)(sen </>1) sen 0 

z = (rsen ef>2)cosef>1 

w = rcos<f>2 

r ~ O, 0 E [O, 21r[, </>1, <P2 E [O, 1r] . 

Per un n generico conviene procedere per induzione: detta Gn la funzione che 
trasforma le coordinate polari (r, </>1, ... , <Pn-2 , 0) di !Rn nelle rispettive coordinate 
cartesiane (x1 , ... ,Xn), la funzione Gn+l è definita da 

Gn+1(r,</>1, ... ,<f>n-1, 0) = (Gn(rsen ef>n-l ,<Pl , ···,<Pn- 2,0),rcos<f>n-L), (1.28) 

dove naturalmente abbiamo r ~ O, <Pi E [O, 1r] , 0 E [O, 21r[ . Per esercizio potete provare 
a scrivere la trasformazione da coordinate polari a cartesiane in IR5 • 

1.6 - Elem enti di topologia 

Questa è essenzialmente una sezione di definizioni, i concetti sono semplici ma è necessario 
acquisire familiarità completa con i termini che seguono. Qualora non sia diversamente 
specificato, lo spazio ambiente sarà sempre !Rn . 

D efin izione : se A E JR" ed r > O , si dice palla di centro A e raggio r 1' insieme 

{X: d(X, A ) < r}. 

Tale palla si indica con Br(A) o, se il centro A è chiaramente sottinteso, semplicemente 
con Br. Chiameremo poi intorno d i un punto A E !Rn un qualsiasi insieme E che 
contenga una palla Br(A ) per qualche r > O . 

Osservazione: abbiamo o;> (1.2) 

X E Br(A ) IIX - AII < r • 

In tre dimensioni, la palla non è altro che la sfera (piena e senza superficie esterna) di 
centro A e raggio r ; in due dimensioni, è il cerchio (senza circonferenza esterna); in 
una dimensione (dove scriviamo a al posto di A ) è l' intervallo aperto ]a - r , a+ r[. 
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Definizione : un sottoinsieme A di lRn è aperto se per ogni punto A E A c'è una 

palla centrata in A tutta contenuta in A , cioè 

VA E A, 3r > O : Br(A) e A . 

Osservazione : un insieme è aperto se e solo se è intorno di ogni suo punto. 

Esempio : una palla è un insieme aperto: infatti consideriamo una palla Br(A) e un 
,uo punto P ; prima di procedere oltre, pensate cosa fareste, se fossimo in due dimen­
<-ioni e aveste riga e compasso, per disegnare la circonferenza centrata in P e tangente 
internamente a quella centrata in A e di raggio r . Ora lo facciamo in formule: per 
definizione, 

P E Br(A) IIP - AII < r. 

Poniamo 
r' = r - IIP - AII > O 

Fig. 1.34 : la palla aperta è un aperto 

e verifichiamo che Br,(P ) C Br(A). Per far ciò dobbiamo provare che 

X E Br1 (P) ==> X E Br(A) ' 

cioè che 
IIX - PII < r' ==> IIX - AII < r , 

ma per la disuguaglianza triangolare IIE (1.4) se IIX - PII < r' si ha 

IIX - AII = ll(X - P ) + (P - A)II ~ IIX - PII + IIP - AII < r' + IIP - AII = r, 

come dovevamo dimostrare. Il raggio della pallina centrata in P e contenuta in Br(A) 
decresce, come ci aspettavamo visto il suggerimento geometrico, man mano che P si 
avvicina al bordo di Br . Dato che la palla è un insieme aperto, talvolta si sottolinea il 
fatto chiamandola palla aperta, anche visto il prossimo esempio. 
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Esempio: la palla chiusa 
C ={X: d(X , A) :S r} 

(la differenza è solo il :S al posto di < ), che possiamo vedere come una palla cui 
abbiamo unito la "buccia" esterna, non è un insieme aperto. Infatti tutti i punti P 
che stanno ben all' interno di C ( nel senso che non sono sulla "buccia") hanno, come 
prima, una piccola pallina centrata in P e tutta contenuta in C , ma chiaramente se P 
dista esattamente r da A ( dunque P appartiene ancora a C ) il punto P sta sulla 
"buccia" della palla, e ogni pallina centrata in P conterrà sia punti dentro che punti 
fuori di C , dunque non può essere contenuta in C . 

Fra non molto troveremo il modo di eliminare la buccia e relative virgolette. 

Esempio : il complementare A della palla chiusa dell'esempio precedente è formato dai 
punti che non hanno distanza da A minore o uguale a r , cioè è 

A = !Rn \ C = {X: d(X, A )> r} ; 

è un insieme aperto, come potete intuire da soli prendendo (in due dimensioni) un punto 
P che dista da A più di r e chiedendovi che raggio deve avere una circonferenza 
centrata in P tangente a Br(A): il cerchio (aperto) racchiuso da questa circonferenza 
sta tutto dentro A. Ora siete capaci di formalizzare una dimostrazione? !(ii> (1.5) 

Definizione : un sottoinsieme C di !Rn è chiuso se il suo complementare !Rn \ C è 
aperto. 

Dunque la palla chiusa è un insieme chiuso, visto l'esempio precedente. 

Esempio: un qualsiasi piano 1r di IR3 è un chiuso. Infatti se P ri 1r la sua distanza !(ii> 

(1.11) dal piano 1r non è zero ma un numero positivo r . Allora la palla Br(P ) non 
interseca 1r (altrimenti ci sarebbe un punto di 1r che dista da P meno di r, quindi 
la distanza di P da 1r sarebbe meno di r ), cioè è contenuta nel complementare di 1r. 

Abbiamo provato che il complementare è aperto, quindi 1r è chiuso. 

Senza spaventare nessuno facciamo una osservazione: lo spazio !Rn è chiaramente 
aperto (cont iene tutte le palle possibili), quindi il suo complementare 0 è chiuso. D'altra 
parte 0 è aperto, perché preso un qualunque suo punto (non ve ne sono, quindi la verifica 
che segue va eseguita zero volte) esiste una palla eccetera eccetera. La verifica ha t utte 
le volte dato esito positivo, quindi 0 è aperto e il suo complementare !Rn è chiuso. In 
alcune delle dimostrazioni che seguono, per essere precisi dovremmo considerare anche 
questi casi estremi, ma non lo faremo, per non sviare l'attenzione dalla parte importante. 

L'unico teorema su aperti e chiusi che ci interessa è il se~te. 

Proposizione 1.8 : l 'unione di una famiglia qualsiasi di insiemi aperti è un insieme 
aperto; l ' intersezione di un numero finito di insiemi aperti è un insieme aperto. Di 
conseguenza, l' intersezione di una famiglia qualsiasi di insiemi chiusi è un insieme chiuso; 
l 'unione di un numero finito di insiemi chiusi è un insieme chiuso. 
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DTM'0STRAZIONE : se P appartiene all'unione U di alcuni insiemi (aperti) vuol dire che 
appartiene ad almeno uno di essi, diciamo all'aperto A. Per definizione c'è una palla 
Br(P) contenuta in A , ma A è un sottoinsieme dell'unione di cui fa parte, quindi 
Br(P ) e U che quindi è aperto perché contiene una palla centrata in un suo qualsiasi 
punto. 

Se invece P appartiene all'intersezione A 1 n • • • n Ak , dato che ciascuno di questi 
è aperto ci sono k palle, di raggi r 1 , ... , rk , tali che Br, (P ) e Ai . Ma prendendo 
il più piccolo di questi k raggi, chiamiamolo r, abbiamo r :S ri per ogni i, quindi 
Br(P ) e Br; (P ) C Ai per ogni i. Ma se Br(P ) è contenuta in tutti gli Ai è contenuta 
nella loro intersezione, che dunque contiene una palla centrata in un suo qualunque punto 
P ed è pertanto un aperto. 

Dato che il complementare di una intersezione è l'unione dei complementari 11:i" 

Proposizione 1.33, il complementare di una intersezione S di chiusi è l'unione dei com­
plementari che sono aperti, e abbiamo appena provato che questa unione è un aperto. 
Ma allora il complementare di S è aperto, quindi S è chiuso. L'altra affermazione è 
analoga. ■ 

Esempio : la "buccia" della palla è un insieme chiuso. Infatti il suo complementare 
è l' unione della palla (che abbiamo visto essere un aperto) e del complementare della 
palla chiusa; ma poco fa abbiamo visto che la palla. chiusa. è un chiuso, quindi il suo 
complementare è aperto e dunque il complementare della "buccia" è unione di due aperti, 
pertanto è aperto. Ciò significa che la "buccia." della palla è un chiuso. Ora che l'abbiamo 
dimostrato, è molto utile che cerchiate di provarlo da soli partendo dalla definizione di 
aperto: riuscite per ogni punto che non sia sulla "buccia" della palla a trovare una pallina 
aperta che non tocchi la "buccia" stessa? 

Presa dunque una palla chiusa C di raggio r, questa contiene punti P (quelli 
della palla. aperta) che sono "completa.mente circondati" da punti di C, nel senso che 
possiedono una pallina centrata. in P tutta contenuta in C , e altri che invece non hanno 
questa proprietà. Poi, i punti del complementare di C sono completamente circondati da 
punti del complementare di C , nello stesso senso detto ora, quindi sono "ben lontani" da 
C . I punti della "buccia" di C , invece, non sono né "ben dent ro" C nè "ben lontani" 
da C : sono "appiccicati" sia a C sia al suo complementare. Abbiamo materiale per 
una serie di definizioni. 

Definizione : dato un insieme E e Rn , un punto P E Rn si dice: 
1) interno a E se :lr >O : Br(P ) C E; 
2) esterno a E se :lr > O: Br(P) e (Rn \ E) o, che è lo stesso, Br(P ) n E= 0; 
3) aderente a E se Vr > O, Br(P ) n E -I 0 ; 
4) di bordo o di frontiera per E se non è interno a E né esterno a E. 

L'insieme dei punti interni a E si chiama interno di E e si indica E; l'insieme 
dei punti aderenti a E si chiama chiusura di E e si indica E; l'insieme dei punti di 
bordo di E si chiama bordo di E o frontiera di E e si indica aE . 
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F'ig. 1.35: P , è interno, P e esterno, P b di frontiera 

Dunque possiamo rileggere il paragrafo precedente così: presa una palla chiusa C di 
raggio r , il suo interno è la palla aperta A di raggio r , il suo esterno è il complementare 
di C, la sua frontiera è la circonferenza di raggio r, la sua chiusura è la palla chiusa C 
stessa. Attenzione a non confondere esterno e complementare: infatti, se A è una palla 
aperta di raggio r , abbiamo: il suo interno è A , la sua chiusura è la palla chiusa C , il 
suo bordo è la circonferenza, e l'esterno di A è il complementare di C. Non è difficile 
dimostrare i prossimi risultati. 

Proposizione 1.9 : J' interno e l 'esterno di un insieme sono aperti; la chiusura e la 
frontiera sono chiusi. Ogni insieme contiene il suo interno ed è contenuto nella sua 
chiusura. Un insieme è aperto se e solo se coincide con il suo interno; un insieme è chiuso 
se e solo se coincide con la sua chiusura. Un insieme è aperto se e solo se non contiene 
alcun punto della s ua frontiera; w1 insieme è chiuso se e solo se contiene la sua frontiera. 
Il complementare della chiusura è l 'esterno. 

Esempio : consideriamo l'intervallo ]O, 1] : la sua frontiera è { O, 1} . Dato che 1 ap­
partiene all'intervallo, questo non è aperto; dato che O non appartiene ali' intervallo, 
questo non è chiuso, perciò ]O, 1] non è aperto né chiuso: dunque non tutti gli insiemi 
sono aperti o chiusi. La chiusura di ]O, 1] è [O, 1] , mentre l'interno è ]O, 1[ . 

Osservazione : la frontiera di qualunque insieme è un insieme chiuso: infatti dato un 
qualunque insieme E , tutti i punti di !Rn cadono in una di queste tre categorie: sono 
interni a E , oppure sono esterni a E , oppure non sono né interni né esterni, cioè sono 
di frontiera. Dunque il complementare di àE è l'unione di interno e esterno di E, che 
sono entrambi aperti e quindi hanno unione aperta, perciò àE è chiuso. 

Possiamo caratterizzare esplicitamente i punti di frontiera ( dimostratelo da soli, 
basta saper negare due proposizioni) . 

Proposizione 1.10 : un p unto P è di frontiera per E se e solo se 

Vr > O, [Br(P ) n E ::/ 0 e Br(P ) n (!Rn \ E)~ . 
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/ 
Abbiamo già incontrato nel corso di Analisi Matematica 1 i punti di accumulazione, 

la cui definizione diamo ora in !Rn . 

Definizione : dato un insieme E C !Rn , un punto P E !Rn è punto di accumulazione 
per E se ogni palla centrata in P contiene punti di E diversi da P . 

Proposizione 1.11 : se un punto P è di accumulazione, ogni palla Br(P) contiene 
infìniti punti di E diversi da P . 

DIMOSTRAZIONE : presa una qualsiasi palla Br(P ) , questa per definizione ne contiene 
almeno uno, cioè 

(Br(P ) \ {P}) n E -:j; 0. 

Se ne contenesse solo un numero finito, chiamandoli V 1 , ... , V k avremmo 

(Br(P ) \ {P}) n E = {Vi, .. . , V k}. (1.29) 

F ig. 1.36 : anche Br, ( P ) contiene punti di E , diversi dai V i 

Poniamo 

e sia r' = min { r1, ... , rk} . Il minimo esiste perché si tratta di un insieme finito di 
numeri. Dato che V 1 E Br(P ) , la distanza di V 1 da P ( che è r 1 ) è minore di r , 
ma r' ::; r 1 perciò r' < r , Questo serve a dire che 

Per definizione di punto di accumulazione, anche Br,(P) contiene qualche punto di E 
diverso da P , chiamiamolo V . Dato che V dista da P meno di r' , non può essere 
alcunodeipunti V 1, .. , , Vk;ma V E Br,(P ) C Br(P ) quindi V èun ulteriorepunto 
appartenente a (Br(P ) \ { P }) n E, contraddicendo (1.29) . ■ 
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Si potrebbe pensare che tutti i punti aderenti a E siano di accumulazione. Questo 
non è vero (come mostra la prossima definizione); è vero (dimostratelo) che tutti i punti 
interni a E sono di accumulazione. 

Definizione : dato un insieme E e Rn , un punto P E Rn è punto isolato di E se 
esiste r > O tale che 

Br(P) n E = {P}. 

Osservazione : i punti di E o sono isolati o sono di accumulazione per E . 

Concludiamo con qualche altra importante definizione; rivediamo, adattandola, la 
definizione di insieme limitato vista in una dimensione. 

Definizione : un insieme E e Rn è limitato se è contenuto in qualche palla centrata 
nell'origine. 

Osservazione : equivalentemente, E è limitato se 3M > O : VX E E, IIX II S M. 
Notiamo che "centrata nell'origine" non serve: riuscite a convincervene? E vedete che è 
lo stesso se al posto di palla usiamo un parallelepipedo? 

Definizione : un insieme è compatto se è clliuso e limitato. 

Esempio : una palla chiusa è un compatto. Invece abbiamo visto che un piano è chiuso, 
ma ovviamente non è limitato, perciò non è compatto. In una dimensione, l'unione di 
un numero finito di intervalli chiusi e limitati è un compatto. Vedremo più avanti ar 

Proposizione 1.14 una caratterizzazione dei compatti di Rn . 

Useremo la compattezza nelle prossime sezioni, insieme alla prossima nozione, che 
vuol rendere l'idea di un insieme "in un pezzo solo" . Per sottoinsiemi di R , la parola 
"connesso" era sinonimo di "intervallo", un insieme di numeri reali senza interruzioni. 
In effetti, per un sottoinsieme E di R che contiene due punti x < z, o tutti i punti 
y fra x e z appartengono al sottoinsieme, oppure possiamo spezzarlo in (almeno) due 
zone "staccate", nel senso che se x < y < z e y ~ E allora presi 

A =]-oo,y[, B =]y,+oo[ 

gli insiemi A , B hanno le seguenti proprietà: 
1) entrambi sono aperti 
2) sono disgiunti 
3) ciascuno contiene punti di E 
4) la loro unione contiene tutti i punti di E . 

Notiamo che le prime due condizioni dicono che A e B sono veramente staccati fra loro, 
dato che il punto y (che non appartiene ad alcuno dei due) li separa; i~ce i due insiemi 
]- oo, y[ e [y, +oo[ sono sì disgiunti, ma non li diremmo "staccati". Generalizziamo 
questa situazione. 
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1. 7 - Successioni a valori vettoriali 

Prima di leggere questa sezione sarà opportuno ripassare gli enunciati dei teoremi sulle 
successioni reali. 

Le successioni a valori in Rn non sono più complicate di quelle reali. Intanto, 
rispetto a quelle a valori reali, c'è un fenomeno in meno: in più dimensioni non ci sono 
+oo e - oo, quindi le successioni o convergono o non hanno limite. In una dimensione, 
una successione { ak}k converge a f, E R se e solo se 

Ve > o, definitivamente lak - e1 < e 

o, che è lo stesso, 

Ve> O, definitivamente d(ak, f,) < e . 

Dato che in Rn la distanza è la norma della differenza, la nozione di convergenza è 
identica a quella in una dimensione. 

D efinizione una successione { A k} k a valori in Rn converge a un punto P E 
Rn se 

Ve > O, definitivamente II Ak - PII < e . 

Proposizione 1.12 : una successione {A k}k in Rn converge a un limite P in Rn 
se e solo se ciascuna delle n successioni delle componenti di A k converge alla rispettiva 
componente di P . 

Per convincersene basta ricordare (1.7). 

Per successioni a valori in Rn , il problema principale è essenzialmente t ipografico: 
visto che n è la dimensione dello spazio, sarà meglio usare k o altro come indice della 
successione. Poi, gli elementi della successione non sono numeri, ma vettori in Rn , con 
le loro componenti. Come indicare le componenti di un vettore A k ? Nel seguito, se 
proprio ce ne sarà bisogno le dovremo indicare (At , ... , Ak) ; in questa sezione, per 
semplificare le cose ci limitiamo nelle dimostrazioni al caso n = 2 , così indicheremo le 
componenti della successione con (~ es. 1.20) 

Ak = (xk, Yk) · 

Teorema di Bolzano-Weierstraf3 in Rn 1.13 ogni successione convergente è 
limitata; da ogni successione limitata si può estrarre una sottosuccessione convergente; 
se gli elementi di una successione convergente appartengono a un insieme E , il limite 
appartiene alla chiusura E; per ogni punto di E esiste una successione di punti di E 
che converge ad esso; da ogni successione di elementi di un insieme compatto I( si può 
estrarre una sottosuccessione che converge a un elemento di I( . 
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DIMOSTRAZIONE : dobbiamo provare solo una parte, cioè che se da ogni successione ... 
allora K è compatto, ovvero è chiuso e limitato. Iniziamo a provare che è chiuso: sia 
P un punto della chiusura K di K. Se proviamo che P E K avremo provato che 
I( C I( , ma dato che q- Proposizione 1.9 K e K abbiamo K = K e dunque K è 
chiuso, sempre per la Proposizione 1.9. Consideriano le palle centrate in P e di raggio 
1 / k : per definizione di punto aderente, ciascuna di esse contiene un punto X k E K . 
Per ipotesi, da { X k} k si può estrarre una sottosuccessione che converge a qualche punto 
di K , ma dato che 

1 
IIXk- P II < k =} X k-t P 

il punto in questione è P che quindi appartiene a K . 
Ora proviamo che K è limitato: se non lo fosse, prese le palle Bk centrate 

nell 'origine e di raggio k E N l' insieme K non sarebbe contenuto in alcuna di esse; 
dunque, esisterebbe per ogni k E N un punto 

Visto che Il X k Il ➔ + , nessuna estratta di { X k} k può essere limitata, perciò per la 
prima parte del Teorema di Bolzano-Weierstrafi 1.13 nessuna estratta può essere conver­
gente, contro l ' ipotesi. ■ 

Dunque gli insiemi compatti sono quelli in cui vale il teorema di Bolzano-WeierstraB. 
Vedremo che sono fondamentali anche in altri contesti ~ Teorema 1.21, Teorema 5.8. 

1.8 - Funzioni continue 

Iniziamo anche questa sezione rimaneggiando una definizione in una dimensione, quella 
di funzione continua: se A e JR e x E A , sappiamo che una funzione f : A ➔ R è 
continua in x se 

Vé > O, 38 > O: Vx E A, [lx - xl< 8 => lf(x) - f(x )I < €] . 

In una dimensione, 

lx - yl < 8 <==> d(x, y) < 8 x E Bo(Y) , 

perciò potremmo riscrivere le due disuguaglianze finali della definizione come apparte­
nenze a palle: 

\;/g > o, 38 > O: Vx E A, [x E Bo(x) => f(x) E Bé(f(x))] . 

Quest'ultima formula ha senso anche in più dimensioni, e la prendiamo come definizione 
della continuità. 
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D efinizione : sia E un sottoinsieme di R.n . L'insieme E è sconnesso se esistono 
dueaJ)fJrti A e B tali che 

AnB=0 , AnE/0 , B nE/0, E c AUB. (1.30) 

Un insieme si dice connesso se non è sconnesso. 

Attenzione! Dimostrare che un insieme è connesso è spesso difficile, e non è negli 
scopi di questo corso. Molto più facile è vedere che è sconnesso. Dagli esempi, cercate di 
capire il significato di "connesso". 

Esempio : in R.2 , l' insieme (disegnatelo!) formato dall'unione delle due palle aperte 
di raggio 1 e centri (-1,0) e (1, 0) è sconnesso; l'insieme formato dall'unione della 
palla aperta di raggio 1 e centro ( -1, O) e della palla chi usa di raggio 1 e centro 
(1, O) è connesso. L' insieme formato dall'unione dell'asse y e del grafico di f(x) = 1/x 
(disegnatelo!) è sconnesso: ad esempio come aperti A e B possiamo prendere 

A= {(x,y) : xy > 1/2}, B = {(x,y): xy < 1/2}. 

Invece l'insieme formato dall'asse y e dal grafico di f(x) = sen(l/x) è connesso - ma 
questo è più difficile da dimostrare! L' insieme 

{(x,y): lx2 +y2 - 21 > 1} 

è sconnesso, mentre il suo complementare è connesso. 

Se un insieme è connesso è "formato da un solo pezzo". In generale si possono 
definire i "pezzi" da cui è composto un insieme anche sconnesso. 

D efinizione: se E un sottoinsieme di R.n ed F e E, l'insieme F è una componente 
connessa di E se F è connesso e 

F e F' e E , F' connesso => F' = F . (1.31) 

Ogni insieme si può scrivere come unione di tutte le sue componenti connesse. 

Esempio : l' insieme { (x, y) : lx2 + y2 - 21 > 1} , che abbiamo appena visto essere 
·onnesso, ha due componenti connesse, la palla di raggio 1 e il complementare di quella 

:be ha raggio v'3 . 

Aggiungiamo la definizione di insieme convesso, che in R coincide con quella di 
~tervallo ma in più dimensioni è una struttura più interessante. 

Definizione : un sottoinsieme E di R.n è convesso se per ogni coppia di punti x, y E 

E tutto il segmento che li congiunge è contenuto in E . 

In formula, E è convesso se e solo se 

x , y E E => tX + (1 - t)Y E E Vt E [O, 1] . (1.32) 

l;na banana non è convessa, una corona circolare neppure, un ellissoide sì. 
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DIMOSTRAZIONE : come detto, lavoriamo in JR2 anche se il risultato è generale. Se 
{Ak}k converge allora sia {xk}k che {Ykh convergono, dunque sono limitate, cioè per 
qualche M 

per ogni k , e la prima affermazione è dimostrata. Per la seconda, ricordando (1.7), 
abbiamo 

(1.33) 

per ogni k , perciò { Xk} k è limitata. Per il teorema di Bolzano-Weierstrafi, possiamo 
estrarne una sottosuccessione convergente, 

Ma per (1.33) anche {yk}k è limitata, dunque lo è anche la sua estratta {yh.h . Pos­
siamo estrarre da questa una ulteriore sottosuccessione convergente, 

ma anche x1,,. --+ x dato che x1,,. è una sottosuccessione della successione Xh• che 
converge a x . Allora 

Per provare che 

[A k --+ P , A k E E \fk] ==> P E E , 

procediamo per assurdo ricordando la Proposizione 1.9: se fosse P fi E il punto P 
sarebbe esterno ad E, cioè esisterebbe una palla Br(P) che non contiene punti di E, 
e in particolare non potrebbe contenere alcun punto della successione, il che nega l'ipotesi 
Ak --+ P . 

Preso X E E , per ogni k esiste un punto X k di E che sta nella palla centrata 
in X e ha raggio 1 / k : la successione { X k} k converge a X e sta t utta in E . 

L'ultima asserzione è facile: se K è compatto è (chiuso e) limitato, quindi da ogni 
successione di punti di K si può estrarre una ssottosuccessione che converge a qualche 
limite P . D'altra parte la sottosuccessione, che converge, è composta da punti di K , 
che è un insieme chiuso, quindi per quanto appena dimostrato il suo limite P appartiene 
al chiuso K . ■ 

L'ultima parte del teorema ha anche un viceversa. 

Proposizione 1.14 : un sottoinsieme K di lRn è compatto se e solo se da ogni 
successione di punti di K si può estrarre una. sottosuccessione che converge a qualche 
p unto di K . 
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D efinizione se E e Rn e f : E -+ R.m , la, funzione f è continua nel punto 
P E E se 

Ve> O, 38 >O: VX E E , [x E B6(P ) ⇒ f (X ) E B,: (/(P ))] . 

Una funzione si dice continua se è continua in tutti i punti del suo dominio. 

Osservazione : possiamo riscrivere la definizione in modo più esplicito come 

Ve > o, 38 >o: vx E E, [11x - P II < 8 ⇒ ll f (X ) - f (P )II <e] . 

Esempio: se P o E Rn, la funzione "distanza da P o" 

g(X) = d(X, P o) = IIX - P o Il (1.34) 

è continua . Verifichiamo che soddisfa la definizione, con 8 =e: se !IX - P II < e si ha 
grazie a (1.5) 

lg(X ) - g(P )I = 111x - P oll - llP - P olli~ II X - P II< e, 

quindi g è continua. 

È conveniente introdurre un simbolo per poter scrivere che una funzione è continua . 

D efinizione : sia E e Rn ; lo spazio d elle funzioni continue da E a Rm. è 
indicato con il simbolo c0 (E;Rm); nel caso m = 1 si scrive semplicemente c0(E). Se 
f E C0 (E; lRm) si dice che f è di classe c0 in E. 

Grazie a questa definizione, scriveremo semplicemente f E c0 (E; Rm) anziché dover 
-.crivere che f : E-+ Rm e che f è continua. Abbiamo dato direttamente la definizione 
lii continuità per funzioni a valori in Rm , tuttavia è raro dover ricorrere esplicita mente 
.. questa versione, grazie al prossimo risultato. 

Proposizione 1.15 : se E e Rn , una funzione f : E -+ Rm è continua in un punto 
P E E se e solo se sono continue in P le m componen ti fi , ... , f m di f . 

DIMOSTRAZIONE : per la solita disuguaglianza (1.7) 

ll f (X) - f (P )II < e =⇒ llh(X ) - f i(P )II <e' 

quindi se f è continua in P lo è anche ciascuna delle sue componenti; d'altra parte se 
tutte le componenti sono continue, fissato e > O esistono m numeri positivi <h, ... , òm 
tali che 

VX E E, [X E B6,(P ) ⇒ fi(X) E B,: (Ji(P ))]. 

Ma allora detto ò = min { 81, ... , Om} abbiamo 

X E B6(P ) ==} X E B6. (P ) Vi ==} lli(X ) - li(P)I <€Vi 

=⇒ ll f (X ) - f (P )II < me 

sempre per (1.7). ■ 
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Il legame tra funzioni continue e successioni è analogo a quello per funzioni di una 
variabile. 

Proposizione 1.16 : se E e !Rn, una funzione f: E -+ IRm è continua in un punto 
P E E se e solo se per ogni successione { X k } k di punti di E che converge a P si ha 
f (Xk) -+ f (P ). 

Per la Proposizione 1.15, basta vedere il caso m = 1 , così scriviamo f al posto di 
f . La dimostrazione poi è identica a quella per funzioni di una variabile, semplicemente 
pensando che il valore assoluto in una variabile, e la norma in più variabili, sono la stessa 
cosa: delle distanze (~ es. 1.22). Molti dei risultati visti in una variabile valgono anche 
per funzioni di più variabili, e sovente la dimostrazione si appoggia alle due proposizioni 
precedenti: la Proposizione 1.15 che permette di ridursi al caso di funzioni a valori scalari, 
e la Proposizione 1.16 che permette di fare una dimostrazione per successioni. Ad esempio 
valgono i teoremi algebrici consueti, in cui per semplicità prendiamo come dominio delle 
funzioni tutto lo spazio (ma che naturalmente valgono più in generale). 

Proposizione 1. 17 : siano f , g : IRn -+ IRm due funzioni continue in un punto P . 
Allora 

1) la somma f + g e la differenza f - g sono continue in P ; 
2) se m = 1 , scrivendo f , g al posto di f , g , il prodotto f g e (dove g =I- O) il 

quoziente f / g sono continue in P ; 
3) il prodotto scalare f · g è una funzione continua in P (a valori reali). 

Siano f : IRn -+ IRm e g : IRm -+ JRk continue. Allora 
4) la composizione g o f è continua. 

Esempio : la funzione 

è una funzione continua, da un sottoinsieme di IR.5 a IR.2 . Il suo dominio naturale si 
ricava risolvendo il sistema 

Ricordiamo che il teorema dei valori intermedi era valido per una funzione continua 
su un intervallo, e asseriva che la sua immagine è un intervallo. Come abbiamo visto al 
termine della Sezione 1.6, gli intervalli sono i connessi di JR . Il sostituto in più dimensioni 
usa la definizione di insieme connesso. 

Teorema 1.18 : se E e !Rn è connesso e f E -+ IRm è continua, l'immagine 
f (E) e !Rm è un insieme connesso. 

un 
zeri 

C01 
U1 

Esei 

ont 

ne: 
E . : 

dSSU: 

·ont: 

Esen 

,-. ' , ms: 

è def 
segm 

funzi­
in qu 

Teor 
funzi, 



o 
a 

li 
e 

a 

e 

ù 
i, 

o 
e 

il 

si 

La 

il 
1i 

1e 

Capitolo 1 : Da una a più dimensioni 43 

La dimostrazione usa la topologia in modo più sottile di quanto contenuto nella 
nostra breve esposizione, e la omettiamo. Nel caso di funzioni a valori reali, ritroviamo 
un enunciato un po' più familiare, da cui segue la versione del teorema di esistenza degli 
zeri per funzioni da JRn a JR . 

Coro llario 1.19 : se E e lRn è connesso e J: E ➔ JR è continua, l ' immagine J(E) 
è un intervallo. In particolare, se E e JRn è connesso e la funzione continua f : E ➔ JR 
assume in E sia valori positivi che negativi, esiste un punto P E E tale che J (P ) = O. 

Esempio : se n = 2 ed 

E = { (x, y): (lxi - 2)2 + y2 ~ 1} , 

l' insieme E è sconnesso, dato che è l'unione di due palle disgiunte, e in effetti la funzione 
continua 

f(x,y) =X+ y 

è negativa nella metà sinistra di E e positiva in quella destra, e non si annulla mai in 
E . La funzione continua 

f (x, y) = X+ 4y 

assume invece in E sia valori positivi che negativi, e anche il valore zero: questo non 
contraddice il teorema di esistenza degli zeri, che è solo una implicazione. 

Esempio : se n = 2 ed 

E = { (x, y): 1 ~ x2 + y2 ~ 4} , 

l' insieme E , che è una corona circolare, è connesso. La funzione 

x2 - 4y'l+y4 
J(x, y) = x + 4y + 3sen --~--

15 - X - y 

è definita in tutto E (controllatelo!), è continua, nei punti (±2, O) assume valori di 
segno opposto perciò in qualche punto della corona E si annulla - ma chissà quale. 

Il Teorema di WeierstraB, che parlando di massimi e minimi ha senso soltanto per 
funzioni a valori reali dato che in JRm non abbiamo introdotto l'ordine, è più completo 
in questa versione (~ es. 1.24). 

Teorem a di W eierstra6 in !Rn 1.20 : sia K e JRn un compatto, e f: K -t JR una 
funzione continua. Allora f ha massimo e minimo. 
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DIMOSTRAZIONE : come in una variabile, sia M = sup f e sia Yk /' M ; per definizione 
di estremo superiore, per ogni k esist e X k E K tale che 

(1.35) 

Per il Teorema di Bolzano-Weierstrafi 1.13 possiamo estrarre da { X k}k una sottosucces­
sione ( continuiamo a chiamarla { X k} k per non appesantire la notazione) che converge 
a un punto P E K ; dato che f è continua in tutti i punti di K possiamo applicare la 

Proposizione 1.16 e abbiamo 
f(X k) ➔ f(P ), 

ma d'altra parte da (1.35) ricaviamo per il teorema dei carabinieri 

pertanto j(P ) = M = supf, da cui segue che f(P ) =max/. Per il minimo basta 

scambiare f con - f . ■ 

Esempio : tutte le funzioni degli esempi relativi al Corollario 1.19 hanno massimo e 
minimo sui rispett ivi insiemi E , dato che si tratta in tutti i casi di insiemi chiusi e 
limitati. La funzione usata nell'ultimo esempio, 

x2 
- 4✓1 + y4 

f(x, y) = x + 4y + 3 sen __ _,___...::.._ , 
15 - X -y 

ha massimo e minimo anche sull' insieme 

C={(x,y):x2 +y2 =1 o x2 +y2 = 4}: 

infatti C è la frontiera della corona circolare E , quindi è un insieme chiuso EW 

P roposizione 1.9, inoltre è limitato dato che è contenuto ad esempio nella palla di rag­
gio 3 . Essendo chiuso e limitato è compatto, quindi si applica il Teorema di Weier­

strafi 1.20. 

Nel prossimo esempio consideriamo funzioni particolari. 

D efinizione : una forma quadratica in Rn è una funzione f : Rn -+ R della forma 

f(x) = (Ax) • x 

dove A è una matrice n x n . Una forma quadratica è definita positiva se 

(Ax) • x>O Vx -/- O ; (1.36) 

è semide finita positiva se 

(Ax) • x ~ O 

e analogamente (invertendo le disuguaglianze) per de finita neg ativa e semidefinita 
n ega tiva. 
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Esempio: consideriamo una forma quadratica f (x ) = (Ax) • x definita positiva in lRn; 
proviamo che una forma quadratica definita positiva verifica una condizione molto più 
forte di (1.36), precisamente 

:3c > O: Vx , (Ax) · x 2: cllxll . (1.37) 

Infat ti, consideriamo la funzione f sulla buccia della palla unitaria, 

E= { X E lRn: llxll = 1} • 

Questo è un insieme compatto, e la funzione f è continua, dato che è un polinomio nelle 
variabili x 1, ... , Xn : 

n 

f (x) = L aijXiXj . 

i,j=l 

Allora f ha massimo e minimo su E . Ci interessa il minimo: è il valore c assunto 
da f in qualche punto di E , ma dato che f(x) > O per ogni x -:/= O e che O rf. E, il 
valore c è anch'esso un numero positvo. Ma questo significa che 

Vv E E , f (v ) > c = minf > O. 
- E 

Allora per ogni x -:/= O il vettore Vx = x/ llxll ha norma 1 , dunque appartiene a E, 
perciò 

ma 

quindi 

f(vx) 2: e, 

( 
X ) X ( Ax) • X f (X) 

f(vx) = · A W . W = llxll2 = llxll2 ' 

f(x) > 
llxll2 - e f(x) 2: cllxi12 , 

e abbiamo provato (1.37) per ogni x -:/= O , ma per x = O la formula è ovvia . 

Gli insiemi compatti sono la giusta generalizzazione degli "intervalli chiusi e limitati" 
che ricorrono negli enunciati relativi alle funzioni continue in una variabile: vediamo 
un'altra est ensione, iniziando con la definizione di funzione uniformemente continua (che 
è identica a quella in una dimensione, a parte sostituire valore assoluto con norma). 

Definizione : se E C lRn e f : E -* lRm , la funzione f è uniformemente continua 
in E se 

Ve > o, :35 > o: vx , y E E, [11x - YII < 5 => llf (X) - f (Y)II < e] . 

Teorema di Heine-Cantor 1.21 : ogni funzione uniformemente continua è continua; 
una funzione continua su un insieme compatto K è uniformem ente continua in K . 
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La dimostrazione è anch'essa identica a quella unidimensionale. Come in una varia­
bile, introduciamo una importante classe di funzioni uniformemente continue. 

Definizione : siano E e lRn ed L > O ; una funzione f : E -+ JR si dice Lipschitziana 
di costante L in E se 

lf(X ) - f (Y )I ~ LIIX - Y II VX , Y E E . (1.38) 

Osservazione : ogni funzione Lipschitziana è uniformemente continua , con ò = e/ L . 

Vediamo ora alcune proprietà di una funzione facile ma fondamentale, la distanza, 
che abbiamo già incontrato in questa sezione w (1.34). 

Definizione : se E e lRn è un insieme e P E lRn , la distanza del punto P 
dall' insieme E è il numero 

d(P ,E) = inf {d(P ,Q): Q E E}. 

Osservazione : in generale, l'estremo inferiore che compare nella distanza da un insieme 
può non essere un minimo: ad esempio, se E è la palla unitaria aperta di lR2 e P = 
(1, O) , la distanza di P da E è zero, dato che E contiene punti arbitrariamente vicini 
a P , ma non c'è alcun punto di E che disti zero da P . 

Proposizione 1.22 : se Ce lRn è chiuso (non vuoto) e P E lRn , la distanza di P 
da C è un minimo, ovvero esiste un punto Q E C tale che IIP - QII = d(P , C) . La 
funzione f(P) = d(P, C) è una funzione continua di P. 

DIMOSTRAZIONE : non sappiamo se C , oltre a essere chiuso, è anche limitato, quindi 
siamo costretti a lavorare un po' per ridurci a cercare il minimo su un compatto. Sia R 
un punto qualunque di C , poniamo 

r = IIP - RII 
e consideriamo l' insieme 

K = Cn{X:IIP - X ll ~ r}. 

r 

p 

Fig. 1.37 : in grigio l'insieme C 
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Osserviamo che K è un sottoinsieme di C , quindi chiaramente 

d(P, K) ? d(P, C) . (1.39) 

Poi K è limitato, perché è contenuto in una palla; infine, K è l'intersezione di due 
chiusi, quindi è chiuso i& Proposizione 1.8, dunque K è un compatto. Il punto R 
appartiene a K , quindi 

d(P ,K) = inf d(X,P) ::; d(R,P ) = r. 
X E K 

ia ora X E C ; se x (j K allora 

d(P,X) > r? d(P,K). 

Ma la disuguaglianza 
d(P,X )? d(P,K) 

è ovvia se X E K , quindi è vera per ogni X E C . Allora 

d(P, C) ? d(P, K) 

e dunque le due distanze sono uguali per (1.39). Ora, la funzione continua a- (1.34) 

X H d(X,P ) 

ha minimo sul compatto K, cioè esiste un punto Q E K e C tale che d(Q, P ) = 
d(P, K) = d(P, C) come dovevamo dimostrare. 

Mostriamo che f è Lipschitziana di costante 1 . Se 

intanto per la parte precedente esistono due punti Q 1 , Q2 E C tali che 

Allora per definizione e usando (1.4) 

f(P1) ::; IJP1 - Q2 ll::; IJP1 - P2 1l + II P 2 - Q 21l = D + f(P2) , 

e analogamente (scambiando P 1 e P 2) 

Unita alla precedente questa dà 

e abbiamo terminato la dimostrazione. ■ 

Per scrivere al meglio la prossima proposizione servirebbe una trattazione della 
topologia più approfondita. Ci accontentiamo di un enunciato parziale (~ es. 1.25). 

Proposizione 1.23 : se f: Rn 4 R è continua allora: 
1) per ogni chiuso C e R l ' insieme J- 1(C) è chiuso; 
2) per ogni aperto A e R l'insieme 1-1 (A) è aperto; 
3) per ogni compatto K e Rn l ' insieme f(K) è compatto. 
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DIMOSTRAZIONE : il punto 3 è sostanzialmente il Teorema di Wcierstrafi 1.20; il punto 2 
si ricava da 1 passando ai complementari; per vedere il punto 1, prendiamo un punto X 
nella chiusura di 1-1 ( C) e mostriamo che appartiene a 1-1 

( C) , così avremo provato che 
1- 1 ( C) coincide con la sua chiusura e dunque è chiuso. Sappiamo per la caratterizzazione 
sequenziale dei chiusi contenuta nel Teorema di Bolzano-Weierstrafi 1.13 che esiste una 
successione {Xk}k di punti di J-1 (C) che converge a X. Ma allora per la continuità 

di f abbiamo - Proposizione 1.16 

f (X k) --+ /(X) . 

D'altra parte f (Xk) E C che è chiuso, quindi anche il limite /(X) appartiene a C 
sempre per la caratterizzazione sequenziale dei chiusi. Ma dire che f (X ) E C vuol dire 
X E 1-1 (C), che quindi è chiuso. ■ 

Se più in generale avessimo f : n e m:n --+ JR: continua, le affermazioni sopra 

andrebbero scritte: 

1) per ogni chiuso Ceffi: l'insieme 1- 1 (C) è l' intersezione di n con un insieme 

chiuso; 

2) per ogni aperto A e JR: l'insieme J-l(A) è l' intersezione di n con un insieme 

aperto; 

3) per ogni compatto K e n l'insieme f(K) è compatto. 

Chiudiamo la sezione con due proprietà interessanti, che verranno utilizzate per trovare 
"il primo punto" in cui certe proprietà si verificano. 

Proposizione 1.24: sia f : [a, b) --+ JR: una funzione continua, che si annulla in qualche 
punto di [a, b) . Allora esiste il primo punto in cui si annulla, "-

min{t E [a,b): J(t) = o}. 

DIMOSTRAZIONE : sia Z = { t E [a, b) : J(t) = O} e sia t 0 = inf Z , che esiste dato che 
Z è non vuoto e limitato inferiormente. Abbiamo a S t0 < b , quindi f è continua 
in t0 . Per definizione di estremo inferiore, in ogni intervallo [to, to + J[ cadono punti 
di Z; se fosse f(t0 ) f. O, per il Teorema di permanenza del segno CE Proposizione 1.35 
la funzione f avrebbe lo stesso segno di f (t0 ) in qualche intorno destro [to, to + J[ , 
che quindi non conterrebbe punti di Z. Allora resta solo f(t0 ) = O, quindi to E Z e 
pertanto to = min Z . ■ 

Se mutiamo [a, b) in ]a, b) il risultato non è più vero: ad esempio in ]O, 1] la 
funzione sen(l/x) si annulla in infiniti punti che si accumulano a zero. Naturalmente, 
scambiando x con -x e cioè procedendo verso sinistra anziché verso destra, otteniamo 
il prossimo risultato, di cui potete fare per esercizio la dimostrazione ( come pure della 
variante che segue). 
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Corollario 1.25 : sia f : (a, b] ➔ JR una funzione continua, che si annulla in qualche 
punto di (a, b] . Allora esiste l'ultimo punto in cui si annulla, 

max{t E (a,b]: f(t) =o}. 

In particolare, se f è defìnita su [a , b] allora esistono sia il primo che l 'ultimo punto in 
cui si annulla. 

Proposizione 1.26 : sia f : [a, b) ➔ JR una funzione continua, nulla per x = a 
ma non t utta nulla. Allora esiste il primo punto dopo il quale f ha cessato di essere 
identicamente nulla, 

max{t E [a,b) : f(x) = O \lx :S t}. 

Proposizione 1.27 : sia f : [a, b) -+ JRn una funzione continua e sia C un chiuso di 
JRn+l tale che il grafìco di f intersechi C , cioè tale che per qualche i si abbia 

(i, f (t)) E C. 

Allora esiste il primo punto in cui il grafico di f interseca C , cioè esiste 

min{t E [a,b): (t,f(t))} E C. 

Se il dominio di f era (a, b] , la tesi diviene che esiste l'ultimo punto in cui il grafìco di 
f interseca C; se era [a, b] esistono entrambi. 

DIMOSTRAZIONE : la funzione 

X (t) = (t, f (t)) 

è continua w Proposizione 1.15, quindi lo è anche w Proposizione 1.17 e Proposizione 1.22 
la funzione 

h(t) = d(X(t) , C) . 

D'altra parte h(i) = O , quindi per la Proposizione 1.24 

:lt0 = min{t: h(t) = o}. 

~1a h(to) = d(X(t0 ) , C) , e per la Proposizione 1.22 esiste un punto Q E C tale che 

d(X (to), Q) = O. Ma allora X (to) = Q E C e X (t0 ) è il primo punto in cui il grafico 
di f interseca C . ■ 
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1.9 - Limit i in più variabili 

I limiti in più variabili sono definiti in modo molto semplice, ident ico a quanto sappiamo in 
una variabile, ma ahimè, sono assai più complicati da calcolare: infatti, in una variabile, 
a un dato punto x ci si può avvicinare in due soli modi: o da destra, o da sinistra. 
Inoltre, in una variabile possiamo a volte usare i risultati sull'esistenza del limite per 
funzioni monotone. In più variabili, tanto per cominciare non abbiamo parlato di funzioni 
monotone (dato che in !Rn non abbiamo messo l'ordine), poi a un dato punto ci si può 
avvicinare non solo da molte direzioni, ma anche in molti altri modi "curvi", il che crea 
diversi problemi. Cominciamo con la parte facile, che è la riscrittura della definizione 
di limite: vale quanto detto all'inizio della Sezione 1.8 per la definizione di continuità, 
e cioè che l'unica variazione è l'uso di "norma" al posto di "valore assoluto"; in effetti , 
come per le successioni, c'è anche una importante semplificazione, dato che in !Rn non 
ci sono né +oo né -oo . 

D efinizione : sia E e !Rn , sia P un punto di accumulazione di E e sia f : E ➔ !Rm . 
Diciamo che il limite di f p er X -+ P è un p unto .e E JR= , e scriviamo 

lim / (X ) = .e , 
X -tP 

se 
Ve> O, 38 > O: VX E E , [o < IIX - P II< 8 ⇒ 11/ (X) - i li< e] 

Nel caso di funzioni a valori reali, cioè m = 1 , ha senso anche parlare di lirnite 
uguale a +oo o - oo , in modo del tutto analogo al caso di funzioni di una variabile. 

Definizione : sia E e !Rn , sia P un punto di accumulazione di E e sia f : E ➔ JR . 
Diciamo che il limite di f p er X -+ P è +oo se 

VM, 38 > o: vx E E , [o< 11x - P II< 8 ⇒ f(X) > M] , 

e analogamente per - oo. 

Abbiamo detto che se f è definita su !Rn non ha senso chiedersi cosa accade 
per X ➔ +oo, dato che non esiste l'analogo di +oo in !Rn . Tuttavia in certi casi ha 
senso chiedersi cosa accade a / (X ) quando l'argomento X "diventa grande": facciamo 
precedere la definizione da un esempio. 

Esempio : la funzione 
1 

J(x, y) = - -,=== 
1 + Jx2 +y2 

è definita su IR2 , ed ha un comportamento chiaro: quando il vettore (x, y) è "sufficien­
temente grande", ovvero la distanza del punto (x, y) dall'origine supera una certa soglia, 
il valore di f è un numero piccolo, cioè vicino a zero. Questo accade indipendentemente 
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dalla direzione in cul si trova (x, y) : la sola cosa che conta, per poter dire che f (x, y) 
è piccolo, è che la norma di (x, y) sia grande. Infatti fissato e > O se 

abbiamo 

1 
ll(x,y)II > K := -

€ 

1 1 1 
O < f(x,y) = 1 + ll(x,y)II < 1 + (1/e) < 1/e =e · 

I domini E e !Rn per i quali ha senso chiedersi cosa accade quando X E E diventa 
"grande" sono quelli che contengono punti aventi distanza dall'origine arbitrariamente 
grande, cioè gli insiemi non limitati. 

Definizione : sia E e !Rn non limitato, e sia f : E -+ !Rm . Diciamo che il limite di 
f per IIXII -+ +oo è un punto f E JR=, e scriveremo 

se 

lim f (X ) = f , 
IIX ll-++oo 

Ve> O, :lK > O: VX E E , [IIX II > K => llf (X) - l ii< e) . 

el caso scalare m = 1 hanno senso anche la scrittura 

lim f (X ) = +oo {=? VM, :lK >O : 'IX E E , [IIX II > K => J(X ) > M] 
IIX ll-++oo 

e la scrittura lim f (X ) = -oo, con definizione analoga. 
KX ll-++oo 

Valgono per i limiti risultati algebrici analoghi a quelli della Proposizione 1.17, con 
le varianti tipiche dei limiti di funzioni di una variabile ( come ad esempio le varie "forme 
indeterminate"), e l'aggiunta dell' ipotesi extra per il limite della composizione, il cui 
enunciato si legge così: se 

lim_ f (X ) = P , 
X -+X 

lim g(Y ) = f 
Y -tP 

e se è verificata una delle due condizioni 

f (X )-/= P in Bo(X) \ {X} o g è continua in P 

allora 
lim_g(f(X)) = f. 

X -tX 

Inoltre valgono le relazioni fra limit i, successioni e continuità già viste in una variabile, 
he qui riassumiamo. 
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Proposizione 1.28 : siano E C JRn ed f : E ➔ JRm, con f = (fi, ... , fm); allora: 
1) si ha f (X ) ➔ f se e solo se per ogni successione {X k}k di punti di E diversi 

da P che tende a P si ha f (X k) ➔ f , dove f può anche essere ±oo nel caso 
scalare m = 1 ; 

2) si ha f (X ) ➔ f se e solo se tutte le componenti di f hanno come limite la 
corrispondente componente di f = (l!i, ... , fm), cioè fi( X) ➔ fi per i = 1, ... , m; 

3) se P E E è di accumulazione per E , la funzione f è continua in P se e solo se 
Ji_Tp f (X ) = f (P) . 

In particolare, lo strumento fondamentale per dimostrare che una funzione f non 
ha limite per X ➔ P è trovare due successioni diverse {X k}k e {Y k}k che tendono 
entrambe a P ma tali che f(Xk) e f (Y k) hanno limiti diversi. 

Prima di procedere con gli esempi, vediamo quali strumenti abbiamo a disposizione: 
una grossa mancanza, per funzioni a valori in JRm , sarebbe l'assenza di tutti i teo­
remi tipo confronto o carabinieri, dato che in JRm non abbiamo un ordine e q,nindi 
non abbiamo disuguaglianze. Questa tuttavia è superata dal punto 2 della proposizione 
precedente, che permette di lavorare con le singole componenti che dunque sono funzioni 
scalari. Uno strumento importante è il collegamento con le coordinate polari, che per­
mette di trattare alcuni limiti particolari usando i limiti in una variabile visti nel corso 
di Analisi Matematica 1. 

Proposizione 1.29 : se O è un punto di accumulazione di E e JRn ed f : E ➔ JR è 
una funzione per la quale è possibile determinare due altre funzioni g, h :]O, a[➔ JR tali 
che 

[x E E , o < II X II < a] => g(IIX II) :S J(X) :S h(IIX II) 

e che 
lim g(r) = lim h(r) = f 
r➔O+ r➔O+ 

(1.40) 

allora anche 

lim J(X ) =f . 
X➔O 

(1.41) 

DIMOSTRAZIONE : lavoriamo solo con f = O, lasciando per esercizio la facile modifica 
per f E JR\ {O} e per f = ±oo, dove come per il Teorema dei carabinieri basta una delle 
disuguaglianze. Per provare (1.41), usando la definizione, fissiamo e > O; per definizione 
di limite, da (1.40) segue che esiste 8 > O tale che 

O < r < 8 => -e < g(r) :S h(r) < e . 

Dato che g ed h sono definite solo su ]O, a [ sappiamo che 8 :S a ; allora 

[x E E, o < IIX II < 8] => -e< g(IIXII) :s; J(X) :s; h(IIX II) < e 

e pertanto il limite di f è zero. ■ 
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Osservazione : in particolare, se O è un punto di accumulazione di E e ~n ed f : E -+ 
R è una funzione per la quale è possibile determinare un'altra funzione g :]O, a[-+~ tale 
che 

[x E E, o< !!Xli< a] ==} lf(X)I :S g(IIXII) 

e che 
lim g(r) = O 

r --+O+ 

allora anche 
lim f(X) =O. 

X --+0 

La proposizione precedente ha una versione anche all' infinito. 

Proposizione 1.30: se E e ~n non è limitato, f: E -+ ~ ed è possibile determinare 
due funzioni g, h : [ro, + oo[-+ ~ tali che 

e che 

allora anche 

g(!lxll) :S f(x) :S h( ll xll) \/x: !!x li 2'. ro 

lim g(r) = lim h(r) = f, 
r -->+oo r-->+oo 

lim f(x) = f . 
11:i:ll--++oo 

Con gli strumenti al completo, procediamo con qualche esempio (~ es. 1.26). 

Esempio : la funzione f(x , y) = 3xy(x + sen y) è continua su t utto ~ 2 , quindi gra­
zie al punto 3 della Proposizione 1.28 il suo limite per (x, y) -+ (x0 , y0 ) qualunque è 
semplicemente f (xo, Yo) . 

Esempio : la funzione 
x2 +y2 

f ( x , y) = - --;========== 
tan Jx2 + y2 

(1.42) 

è definita dove r = J x 2 + y2 non è multiplo di 1r / 2 . In particolare è definita nella 
palla privata del centro 

E = B,,.12 (0,0) \ {(0, 0)} = {(x, y): O < J x2 +y2 < 1r/ 2}. 

Osserviamo che 

quindi 

0 < r < 1r/ 2 ==} tanr > r , 

x2 + y2 
O < f(x , y) < ---,:::== = Jx2 + y2 

J x2 + y2 
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allora posto 
g(r) = r , O< r < -rr/2 

abbiamo per ogni (x, y) E E 

O< f(x, y) < g( Jx2 + y2) 

e quindi anche 
1/(x,y)I < g(Jx2 +y2) . 

Ma g(r) -+ O per r-+ O, quindi per la Proposizione 1.29 anche 

lim f(x , y) = O. 
(x,y)-+(0,0) 

Esempio : consideriamo la funzione 

( ) (x - 1)2 + (y + 2)2 + 7 tan J(x - 1)2 + (y + 2)2 

h x, y = tan J(x - 1)2 + (y + 2)2 ; 

possiamo riscriverla 

' () 
(x-l)2+(y+2)2 7 

i X, y = _...;_,:.====;::::;:==========;;: + , 
tan J(x - 1)2 + (y + 2)2 

(1.43) 

e quindi 

h(x, y) - 7 = (x - 1)2 + (y + 2)2 
tan J(x - 1)2 + (y + 2)2 

Ora la funzione a secondo membro somiglia in una certa misura alla funzione f dell'esem­
pio (1.42), ma qui il punto interessante non è l'origine, bensì (1, - 2). Trasliamo gli assi 
in modo che il punto che ora ha coordinate (x, y) = (1, -2) sia la nuova origine, ponendo 

X
1 = X - 1 , y' = y + 2 ovvero x(x',y') = x' + 1 , y(x',y') = y' - 2. 

Se indichiamo con H (x', y') la funzione h nelle nuove coordinate, cioè se poniamo 

H (x', y') = h(x(x',y'),y(x',y')) = h(x' + l ,y' - 2), 

vediamo che la (1.43) si scrive, usando (1.42), 

H(x' , y') = (x')
2 

+ (y')
2 

+ 7 = f (x', y') + 7 . 
tan J(x')2 + (y')2 

Per il teorema sul limite della composizione e quello sul limite della somma 

lim h(x,y)= lim H (x',y') = 7 + lim f(x',y' ) = 7. 
(x,y)-+(1,-2) (x' ,y')-+(0,0) (x' ,y')-+(0,0) 
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Esempio : consideriamo una piccola variante dell'esempio precedente. Vogliamo calcolare 
il limite 

lim h(x,y) 
(x,y)➔{l,-2) 

dove ora 

h(x, y ) = (x - 1)
2 + (y + 2)2 + 7 J(x - 1)2 + (y + 2)2 

tan J(x - 1)2 + (y + 2)2 

Ponendo 

s = J(x - 1)2 + (y + 2)2 

per il teorema sul limite della composizione ci riduciamo a calcolare il limite unidimen­
sionale 

1
. s2 + 7s 
Im --­
s➔O tans 

e quindi otteniamo nuovamente 

lim h(x,y) = 7 . 
(x,y)➔(I,-2) 

Esempio : consideriamo nella palla di equazione x 2 + y 2 S 1/ 100, privata dell'origine, 
la funzione 

x2 + 3y2 
f(x, y) = tan J5x2 + y2 ' 

che di nuovo somiglia all'esempio più sopra. Qui abbiamo al numeratore e al denomina­
tore due oggetti diversi, e non possiamo semplificare come prima, però scrivendo come 
di consueto J x2 + y 2 = r , abbiamo 

r2 = x2 + y2 S 5x2 + y2 

e quindi in particolare, per la monotonia della tangente vicino a zero, 

tan J 5x2 + y2 ~ tan r ~ r . 

D'altra parte 

O S x 2 + 3y2 S 3r2 
, 

quindi 

e di nuovo otteniamo 

per la Proposizione 1.29. 

3r2 

O S f (x, y) S - = 3r, 
r 

lim f (x, y) = O 
(x,y)➔(O,O) 

Esempio : consideriamo su JR2 privato dell'origine la funzione 

x2 + 2y2 
f(x, Y) = 2 2 + 2 

X y 
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Fig. 1.38 : il grafico di f Fig. 1.39 : f è costante su ogni retta per l'origine 

Nei punti dell'asse delle ascisse, cioè in quelli di coordinate (x, O) con x -/:- O , la 
funzione vale 1/2. Invece in quelli dell'asse delle ordinate vale 2, quindi arbitrariamente 
vicino all'origine ci sono sia punti dove f vale 1/ 2 che punti dove vale 2. Questo fa 
pensare che non esista 

lim f (x,y). 
(x,y)--+(0,0) 

Per provarlo, consideriamo le due successioni seguenti , che tendono entrambe a (O, O) : 

X k = (1/ k,0), Y k = (0,1/k). 

Abbiamo 

e il limite non esiste per la Proposizione 1.28. Osserviamo come si comporta la funzione 
f sulle altre rette che passano per l'origine: nei punti della retta di equazione y = mx, 
cioè nei punti di coordinate (x, mx) , la funzione f vale 

1 +2m2 

f(x,mx) = 2 • 
2+m 

Dunque f è costante (ma con costanti tutte diverse) su ciascuna retta per l'origine. 
Possiamo rivederlo e capirlo meglio se leggiamo la funzione in coordinate polari a::.' (1.25), 
cioè se consideriamo una funzione 

g : [O, +oo[ x [O, 27r[➔ lR 

definita nella striscia (r, 0) - giacché si tratta di una striscia e non di un piano, anzi di 
una mezza striscia - da 

g(r,0) = f(x(r, 0) ,y(r ,0)) 

che nel nostro caso si legge 

r 2 cos2 0 + 2r2 sen2 0 cos2 0 + 2 sen2 0 1 + sen2 0 
g(r,0) = f(rcos0 ,rsen0) = ------- = ----- = --- . 

2r2 cos2 0 + r 2 sen2 0 2 cos2 0 + sen2 0 l + cos2 0 
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La funzione g dipende solo da 0, quindi è costante - nella striscia (r, 0) - su ciascuna 
delle semirette orizzontali di equazione 0 = costante , il che corrisponde a essere costante 
- nel piano (x, y) - sugli insiemi immagine di tali semirette tramite le trasformazioni 
(1.25), che sono le semirette uscenti dall 'origine. Tuttavia il valore assunto da g cambia 
a seconda del valore scelto per 0 , quindi ( come già visto) f assume valore costante su 
ciascuna semiretta uscente dall'origine, ma con valori della costante variabili a seconda 
della direzione. 

Esempio: consideria mo su IR2 la funzione che fuori dall 'origine vale 

x2y 
f(x,y) = x4 +y2 

e definiamola anche nell'origine ponendo 

f(O,O) = O. 

(1.44) 

Fig. 1.40 : il grafico di J F ig. 1.41 : ingrandimento vicino a ll'origine, con x < O < y 

Nei punti dell'asse delle ascisse e in quelli dell'asse delle ordinate la funzione è nulla . 
Vediamo come si comporta la funzione f sulle altre rette passanti per l 'origine: se 
y = mx abbiamo 

mx3 

f(x,mx) = 4 2 2 X +m X 

mx 
x2 +m2' 

che per x ➔ O tende a zero per qualunque valore di m . Dunque, se ci avv1cmiamo 
all'origine in linea retta, indipendentemente dalla direzione da cui proveniamo si ha che 
il valore della funzione f si avvicina a zero. 



58 Sezione 1.9 : Limiti in più variabili 

Fig. 1.42 : andamento di J sulle rette y = -x e y = - 2x e sulle parabole y = x2 e y = 4x2 

Questo potrebbe far pensare che il limite di f per (x, y) 4 (O, O) sia zero, ma non 
è così: se ci avviciniamo lungo una parabola, ad esempio lungo la parabola di equazione 
y = ax2 

, il valore di f è / 

ax4 a 
f (x, ax2) = 4 2 4 = 1 + a2 , 

X +a X 

quindi f è costante su queste parabole, con costanti diverse a seconda della parabola, e 
in particolare se scegliamo a = 1 e consideriamo la successione di punti ( che si avvicina 
all'origine stando su questa parabola) 

abbiamo 
1 1 

f(X k) = 2 4 2 . 

Dato che invece sulla successione ( che si avvicina all'origine stando sull'asse x) 

Y k = (l /k, O) 

si ha 
f(Y k) = 0 4 0 , 

il limite di f per (x, y) 4 (O, O) non esiste, per la Proposizione 1.28. Questo esempio 
mostra come siano difficili da trattare i limiti in più variabili. 

Esempio : consideriamo la funzione 

x2y 
f(x, y) = x4 + 7y4 

leggiamola in coordinate polari, cioè consideriamo su [O, +oo[ xlR la funzione 

r3 cos2 0 sen 0 
g(r,0) = J (rcos 0, rsen0) = 4 4 0 4 4 0 r cos + 7r sen 

1 cos
2 

0 sen 0 _ 1 h( B) 
r cos4 0 + 7 sen4 0 - :;: · 
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La funzione h è definita su tutto JR dato che il denominatore non si annulla mai, è 
continua, pertanto su [O, 27r] ha massimo e minimo per il Teorema di Weierstrafi 1.39, 
e in particolare è limitata su [O, 27r] e quindi anche su JR dato che è periodica di peri­
odo 271": 

Allora 

e in particolare 

Jh(B) J :S K . 

1 
Jg(r, 0)1 :S K • -

r 

Vé > O, :3M : [r > M => Jg(r ,0)1 < €] , 

il che tradotto in termini di f e di (x, y) significa 

Ve> O, :3M: [ll(x,y)I! > M => lf(x,y) J <e], 

cioè 

lim f(x,y) =O. 
ll(x,yJll->+oo 

Vediamo un interessante corollario del Teorema di Weierstrafi 1.20. 

Corollario 1.31 : se f: JRn -+ JR è continua e 

\ 

allora J ha minimo su !Rn . 

lim f(x) = +oo 
llxll->+oo 

Infatti prendiamo un valore a caso di f , ad esempio f(O) , che per comodità chia­
miamo e . Per definizione di limite, esiste R > O tale che 

J(x) 2: e+ 1 Vx: l! x ll > R. 

D'altra parte la funzione J è continua sul compatto CR = { x : l! x ll :S R} , che è una 
,fera chiusa, quindi esiste m = min{J(x) : x E CR} . In particolare m è un valore 
assunto da J e 

Vx E CR, f(x) 2: m; 

essendo O E CR è m :S J (O) =e, quindi 

Vx <f. CR, J(x) 2: e+ 1 > m, 

dunque m , che è un valore assunto da f , è minore o uguale di tutti gli altri: è il minimo. 
Applichiamo questo risultato a un esempio. 
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Esempio : sia a E JRn e poniamo 

f(x) = a· x + llxll
2 

; (1.45) 

proviamo che f ha minimo su JRn . Dato che f è continua, per quanto appena visto 
basta dimostrare che f(x) ➔ +oo per llxll ➔ +oo. Ora, per la disuguaglianza di 

Schwarz ~ (1.3) 

e posto 

abbiamo 

quindi anche 

per la Proposizione 1.30. 

J(x) ~ llxll2 
- lla ll · llxll 

a = lla ll' g(r) = r 2 
- ar 

f(x) ~ g(llxll)) lim g(r) = +oo 
r➔+oo 

lim f(x) = +oo 
11 :i: ll➔+oo 

Più in generale può risultare utile il seguente risultato. 

\ 

Corollario 1.32 : se E e JRn è chiuso ed f : E ➔ JR è continua, e se per qualche 

valore di k E JR il sottolivello 

Ek = {x E E: f(x ) :::'. k} 

è (non vuoto e) limitato, allora f ha minimo su E. 

Infatti Ek è chiuso e limitato, quindi f ha minimo in Ek ma questo è anche il 
minimo su E . Come per funzioni di una variabile, possiamo definire gli infinitesimi, che 
hanno lo stesso significato formale (ma ora il limite è fatto in più variabili). 

Definizione: se lim J(x ) =O, diciamo che f è infinitesima di ordine superiore 
z -+:co 

a llx - xoll 0 se 

lim f(x) =0. 
:c➔:i:o lix - xoll°' 

In tal caso scriviamo 

J(x) = o(llx - xoll°') . 

Gli o piccoli hanno le consuete proprietà già viste nel corso di Analisi matematica 1. 
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1.10 - Risultati in una variabile 

In questa sezione riassumiamo alcune proprietà, già note dal corso di Analisi Mate­
matica 1, che utilizzeremo nel seguito. Invitiamo il lettore a verificare che si tratti di 
argomenti già ben assimilati, prima di entrare nel vivo dei concetti e delle questioni più 
legati al corso di Analisi Matematica 2. 

Proposizione 1.33 : se {Ea}a è una famiglia di sottoinsiemi di Rn e 

è la famiglia dei complementari, allora 

ovvero il complementare di una unione è l'intersezione dei complementari, e il comple­
mentare di una intersezione è l'unione dei complementari. 

Teorema di Bolzano-Weierstra6 1.34 : da ogni successione limitata si può estrarre 
una sottosuccessione convergente. 

Proposizione 1.35 : se lim J(x) > K allora esiste un intorno U E fx0 tale che 
:r.:-t:co 

f(x) > K Vx E (domf)nU\ {x0 }. 

Se f è continua in xo e f(xo) > K allora esiste un intorno U E fx0 tale che 

f(x) > K Vx E ( dom f) n U . 

Le stesse proprietà valgono per il caso f(x) < K. 

Proposizione 1.36: se x 0 è un punto di accumulazione per (domf)n]-oo,xo[ ed 
f è monotona debolmente crescente in un intorno sinistro U di xo allora esiste 

lim J(x) = sup f(x). 
x-n;; xEU 

Lo stesso vale, eventualmente scrivendo inf al posto di sup, per i limiti da destra o per 
funzioni debolmente decrescenti. 

Teorema dei valori intermedi 1.37 : se f è continua e defìnita su un intervallo, la 
s ua immagine è un intervallo. 

Proposizione 1.38 : se g coincide con f in un intorno di xo allora 
1) se lim J(x) = f allora anche g ba limite e lim g(x) = f; 

:e-+:eo x-+zo 

2) se f è continua in xo lo è anche g; 
3) se f è derivabile in xo lo è anche g . 
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Teorema di Weierstra6 1.39 : ogni funzione f continua su un intervallo chiuso e 
limitato [a, b] ha massimo e minimo su [a, b] . 

Proposizione 1.40 : se f è continua su un intervallo ed è iniettiva, allora è stretta­
mente monotona. 

Proposizione 1.41 se f : I -+ JR è derivabile con f' =I- O ed è invertibile, la sua 
inversa 1-1 è derivabile, e 

Teorema di Fermat 1.42 : se una funzione f : I -+ JR è derivabile in un punto xo 
che è interno all'intervallo I ed è di massimo o minimo locale per f, allora f'(xo) = O. 

Teorema di Rolle 1.43 : se f è continua su [a, b] e derivabile almeno in ]a, b[, e 
J(a) = f(b), esiste un punto in ]a, b[ in cui J' si annulla. 

Teorema di Lagrange 1.44 : se f è continua su [a, b] e derivabile almeno in ]a, b[ 
esiste un punto ç E]a, b[ in cui la retta tangente al grafico di f è parallela a quella che 
passa per gli estremi del grafico, cioè 

J'(ç) = J(b) - J(a) 
b-a 

Proposizione 1.45 : una funzione derivabile su un intervallo I è Lipschitziana se e 
solo se ha derivata limitata, e 

f L-lipschitziana <===} lf'(x)I ~ L \lx. 

Proposizione 1.46 : una funzione Lipschitziana su un intervallo (a, b[ con b < +oo 
ha limite finito per x -+ b . 

Proposizione 1.47 : se g è la derivata di qualche funzione su un intervallo I , 
l'immagine di g su tale intervallo è anch'essa un intervallo. 

Proposizione 1.48 : se f è continua in x0 ed esiste lim_ f' (x) = e allora esiste la 
derivata sinistra di f in xo e f'_ (x0 ) = e . Lo stesso vaJe--+p°er il limite e la derivata da 
destra. In particolare, se f è continua in xo ed esiste finito lim f'(x) = e allora f 

::a: -+ ::a:o 

è derivabile anche in x0 e f'(x0 ) =e. 

Proposizione 1.49 : per ogni funzione integrabile f su un intervallo [a, b] 

11b f(x) dxl ~ 1b lf(x)I dx. (1.46) 
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Il prossimo enunciato raccoglie i risultati principali sulle funzioni integrali in una 
dimensione. 

Teorema 1.50 : se f è continua su un intervallo I ed a E I , posto per ogni x E I 

F (x) := lx f (t) dt 

la funzione F è una primitiva di f, ovvero F'(x) = f (x) per ogni x E I. 
Se G è una qualunque primitiva di f in I allora per ogni a, (3 E I 

1: f(x) dx= G(/3) - G(a) . 

Se f ha derivata continua in I allora per ogni x, x0 E I si ha 

f(x ) = f (xo) + 1: f' (t ) dt. (1.47) 

Teorema di cambiamento di variabile 1.51 : se (jJ : [a, b] ➔ JR è di classe C1 ed 
f è continua sull'immagine di (jJ 

r ,t,(b) 1 b 
j ,1, f ( x) dx = f ( </J( t )) (/)1 

( t) dt . 
,t,(a) x= ~(t) a 

Criterio del confronto per serie 1.52 : se definitivamente O :S an :S bn allora 

n n 
L an = +oo ⇒ Lbn = +oo . 

n n 

Criterio di Leibniz 1.53 : se { an}n è una successione debolmente decrescente e 
infinitesima allora la serie a segni alterni 

n 

converge. 
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Esercizi relativi al capitolo 1 

Esercizio 1.1 : calcolate la norma di ciascuno dei vettori A = (2, -1, -1), B = 

(1, O, - 3) , C = (3, 5, 1) ; calcolate poi la distanza di A da B . 

Esercizio 1.2 : calcolate i tre prodotti scalari fra i vettori A , B e C dell 'esercizio 
precedente, quindi provate che C è ortogonale ad A + B . 

Esercizio 1.3 : trovate un punto per cui passa il piano di JR3 di equazione 2z + x -
y = 1 , e individuate un vettore ortogonale al piano. 

Esercizio 1.4 : trovate l'equazione dell' iperpiano di IR4 ortogonale a (1, 2, 3, 4) e 
passante per (4,3,2,1). 

Esercizio 1.5 : scrivete nella forma (X - A) • N = O l'equazione della retta per 
(1, 7) e (3, -2) . 

Esercizio 1.6 
precedente. 

Esercizio 1. 7 
z+y=l. 

Esercizio 1.8 
e (-2, 1) . 

scrivete in forma parametrica l'equazione della retta dell'esercizio 

calcolate la distanza del punto (1, 2, 3) dal piano di equazione 2x -

calcolate la distanza del punto (1, 2) dalla retta che passa per (7, 5) 

Esercizio 1.9: calcolate V /1. W dove V = (2,-1,-1) e W= (3,5, 1). 

Esercizio 1.10 : dati i vettori A = (2, - 1,-1) , B = (1, 0, -3) e C = (3,5, 1), 
trovate un vettore perpendicolare sia a B - A che a C - A ; usate questo risultato per 
scrivere l'equazione del piano per A , B, C. 

Esercizio 1.11 : calcolate il seno dell'angolo fra i vettori A = (2, - 1, -1) e B 
(1, O, -3) ; calcolate l'area del parallelogramma da essi generato. 

Esercizio 1.12 : calcolate il volume del parallelepipedo generato dai vettori A 
(2, - 1,-1), B=(l, 0, -3) e C =(3, 5, 1) . 
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Esercizio 1.13 : dopo averla disegnata, scrivete l'equazione della superficie del cilin­
dro circolare retto che ha asse la retta per (2, 1, O) e (6, 1, O) e raggio 2. 

Esercizio 1.14 : individuate il cilindro {(x, y, z) : x2 + z2 - 4x + 2z - 4 '.S O}. 

Esercizio 1.15 : dopo averlo disegnato, scrivete l'equazione della superficie conica 
che ha vertice (2, 1, 4) ed è generata dalla circonferenza del piano x = O che ha centro 
(O, 1, 4) e raggio 2. Scrivete poi l'equazione della sola metà della superficia che contiene 
la circonferenza. 

Esercizio 1.16 : scrivete le equazioni degli oggetti geometrici dei tre esercizi prece­
denti, nelle nuove coordinate ottenute t raslando l'origine degli assi nel punto (O, 1, 2) . 

Esercizio 1.17 : scrivete le coordinate polari dei punti che nel pino cartesiano (x, y) 
hanno coordinate (-3, 3) , (3, - v'3) , (-4, O) e rappresentateli nel piano (r, 0) . 

Esercizio 1.18 : scrivete le coordinate car tesiane dei punti che hanno coordinate po­
lari (r,0) ugualia (2,1r/4), (5, - 21r/3) e (-2,1r/6), facendoattenzioneallaconven­
zione sui valori negativi di r . 

Esercizio 1.19 : scrivete in coordinate polari le seguenti funzioni: 
x2 + y2 

a) f(x, y) = 2 2 ; 
X - y 

b) f(x,y)=Jx2 +y2 - 9 ; 

c) f(x,y) =Jx2 +y2 - xy . 

Esercizio 1.20 : studiate la convergenza delle seguenti successioni: 

) A - ( ;u,_±_l. 2+e- k ) . 
a k - k+3 , 3-arctan(l/k) ' 

b) B k= (J4 - (3/k!),k2 + 1) ; 
c) c k = (k! + 1, -2k!) . 

Esercizio 1.21 : determinate il dominio delle funzioni seguenti e rappresentarlo grafi­
camente nel piano cartesiano: 
a) f (x, y) = log(l - x2 - y2 ) ; 

b) f (x, y) = log(x2 + y2 ) ; 

c) f(x, y) = log(xy2 + yx2 ) ; 

d) f(x, y) = log(y2 - x4 ) ; 

e) f(x, y) = Jsen(x2 + y2) ; 

f) J (x, y) = J(y2 _ x4) . 

Esercizio 1.22 : determinate il dominio delle seguenti funzioni e dove possibile indi­
,iduatene le linee di livello; inoltre dite se si tratta di funzioni continue e perché. 

a) 

b) 

x2 + Y2 . 
x2 _ Y2 , 

,jxy·,./xiFT.; 
Jx2 + y2 - 9; e) 

d) J x2 + y2 - 2x - 2 ; 

e log y + J2x2 - y ; 
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f) arcsen ( x - y + 4) ; 
g) e2+2y2 . 

Esercizio 1.23 : studiate gli zeri e il segno delle seguenti funzioni: 
a) lxly(x - y); 
b) sen(x+y); 
c) (x - y)2 + 2(x - y) . 

Esercizio 1.24 : con il metodo delle curve di livello studiate le seguenti funzioni sugli 
insiemi indicati a fianco; preliminarmente, disegnate gli insiemi, dite se si tratta di com­
patti o no, dite se si può applicare il Teorema di WeierstraB. 
a) f(x , y) =(x + y)2 E = {(x,y)ER2 : x2 +y2 :::'.'.4}; 
b) f(x,y)=x2 + y2 - 2 E = [0,3]x[0,3]; 
c) f(x, y) = x2

eY E=] - 3, 3] x [-1, 1]; 
d) f(x , y) = (x - y)2 + 2(x - y) E= {(x , y): lxi + jyj :::'.'. 2}. 

Esercizio 1.25 : con il metodo delle curve di livello studiate le seguenti funzioni sugli 
insiemi indicati a fianco ; preliminarmente, disegnate gli insiemi, dite se si tratta di com­
patti o no, dite se si può applicare il Teorema di WeierstraB. 
a) f(x ,y) = (x+y) 2 E= {(x, y) E R2 : x2 +y2 - 4 =O}; 
b) f(x,y) = (x - y)2 +2(x-y) E={(x, y): lxl+IYl=2}. 

Esercizio 1.26 : calcolate (se esistono) i seguenti limiti, eventualmente usando le co­
ordinate polari. 

x2 
a) lim(x,y)-+ (0,0) 2 2 ; 

X +y 
b) lim(x,y)-+(0,0) 2 y 2 ; 

X +y 
. x2y2 

c) hm(x, y)-+(0,0) 2 4
; 

X + y 
. (x + y)3 

d) hm(x,y)-+ (0,0) 2 2 ; 
X + y 

e) lim (x, y)-+ (O, O) sen(xy) + 2Jx2 + y2 
Jx2 +y2 

Esercizio 1.27 : calcolate, se esistono, i limiti seguenti: 
a) lim (y - x2) log(x2 + y2) ; 

(x,y)➔(O,O) 

b) lim xy log(x2 + y2) ; 
(x,y)➔(O,O) 

2 
c) lim x y · 

(x,y)➔(0,0) x2 + y2 ' 

x4 
d) lim --:---::- · 

(x,y)➔(O,O) X 4 + y2 ' 

x 5 + 3xy + y2 

e) lim 
(x,y)➔ (O,O) x 4 + y2 

f) lim sen(x + y) sen(xy) . 
(x,y)➔(O,O) x2 + y2 ' 
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g) lim (y2 
- x 2

) log(x2 + y4
) ; 

(x,y)----t(O,O) 

x2 +y2 
h) lim 

(x,y)----t(O,O) lxl + IYI 
Esercizio 1.28 : al variare del parametro a E JR , calcolate, se esiste il valore del 
limite 

lim 
(x,y) ----t(O,O) 

( 1 - cos /jxyj) 0 

x2 +y2 

Esercizio 1.29 determinate i numeri reali a > O per cui esista finito il limite 

. lxl"y2 

hm 
(x,y)----t(O,O) x 2 + y 4 

Esercizio 1.30 determinate i valori dei parametri a, /3 E JR per cui la funzione 

risulti continua su tutto JR2 • 

se (x, y) f= (O, O) 

se (x, y) f= (O, O) 

Esercizio 1.31 : Determinare i numeri reali a > O per i quali la funzione 

{ 

xy 

J(x,y) = ~xl"+y2 

risulta continua su tutto JR2 . 

se (x,y) f= (0,0) 

se (x, y) f= (O, O) 
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Appendice al capitolo 1 

Appendice 1.1 - Centri di massa e minimi 

Una superficie piana (priva di massa) ha forma di triangolo; ai vertici A , B e C sono 
appese tre masse, rispettivamente ma , mb e mc . Dove si trova il baricentro ( centro 
di massa) del sistema risultante? Detta X la posizione del baricentro, deve essere 

(A- X )ma + (B - X)mb + (C - X)mc = O 

Osserviamo che possiamo scrivere 

X = m 0 A+mbB +mcC 
ma +mb +mc 

ma mb mc 
X = A+-----B+-----C=>-aA+>.bB+>.cC , 
~+~+~ ~+~+~ ~+~+~ 

(Al.1) 
una particolare combinazione lineare di A , B e C in cui i coefficienti sono tutti 
maggiori o uguali a zero, e hanno somma 1. Una tale combinazione si chiama combi­
nazione convessa dei tre punti A , B e C . Dunque una combinazione convessa di 
k punti P 1 , ... , P k è una somma 

Ài 2: 0 \/i , À1 + · · · + Àk = 1 . 

Ricordiamo..., (1.32) che un sottoinsieme di JRn è convesso se presi comunque due suoi 
punti, tutto il segmento che li congiunge appartiene all' insieme. L'insieme di tutte le 
combinazioni convesse dei punti P 1 , ... , P k è il loro involucro convesso, ed è il più 
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piccolo insieme convesso che li contiene. L'involucro convesso di tre punti (non allineati) 
è il triangolo che li ha come vertici, mentre l' involucro convesso di quattro punti non 
è sempre un quadrilatero: infatti se il quarto punto D è interno al triangolo ABC 
l' involucro convesso dei punti A , B , C e D è di nuovo il triangolo ABC , mentre se 
siamo nello spazio (e non nel piano) e i punti non sono complanari, l'involucro convesso 
dei punti A , B , C e D è il tetraedro di vertici A , B , C e D . Tornando 
all'esempio, dato che il punto X era una combinazione convessa di A , B, C esso 
sta dentro al triangolo ABC . Se allora mettiamo un sostegno sotto al triangolo, in 
corrispondenza del punto X , questo sta in equilibrio. 

Modifichiamo un po' l'esempio: supponiamo che il triangolo avesse una sua massa 
mt ; ora, detto T il baricentro del triangolo ABC , il baricentro X del sistema risul­
tante soddisfa 

(A - X)ma + (B - X)mb + (C - X)mc + (T- X )mt = O 

da cui ricaviamo di nuovo facilmente X , che è stavolta una combinazione convessa di 
A , B , C e T . Ma il baricentro T del triangolo ABC è interno al triangolo, 
perciò per quanto detto prima l'involucro convesso di A , B , C , T è il triangolo 
ABC . Allora il punto X è una combinazione convessa di A , B , C , T , dunque 
appartiene all'involucro convesso che è il triangolo ABC, e in conclusione X sta dentro 
al triangolo. Di nuovo possiamo sostenere il triangolo appoggiandolo sul punto X . 

Ora facciamo una variante interessante al primo esempio: i punti A , B e C sono 
dati, la quantità totale di massa ma+ mb+ mc è un numero m > O fissato, e dobbiamo 
distribuire la massa m fra i tre vertici in modo tale che il baricentro del sistema sia il 
più vicino possibile a un dato punto Po. In altre parole dobbiamo scegliere tre numeri 
non negativi (sono masse) ma , mb e mc in modo che abbiano somma m e che risulti 
minima la distanza IIX - Poli , dove X è dato da (Al.l). Siamo sicuri c.p.e il problema 
abbia soluzione? Traduciamo il problema solo in termini delle incognite ma , mb e mc : 
posto 

f(x,y,z) = 11(:A+ !B+ ;c)-Poli 
E = {(x,y,z):x2:0, y2:0, z2:0, x+y+z=m} 

ci chiediamo se esista 

min f(x, y, z) . 
E 

Osserviamo che f è continua grazie a (1.34); inoltre l' insieme {(x,y,z) : x 2: O} è 
chiuso grazie alla Proposizione 1.23 p erché è la controimmagine di [O, +oo[ tramite la 
funzione continua x . Analogamente sono chiusi gli insiemi 

{(x,y,z):y2:0}, {(x,y,z):z2:0}, {(x,y,z):x+y+z=m} 

e pertanto l'intersezione dei quattro insiemi, che è E, è chiusa. Poi 

y, Z 2: 0 =;, X::; X+ y + Z, 
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quindi 
(x, y, z ) E E => O ~ x ~ m , 

e analogamente per y e z. Allora E è limitato, dunque è compatto e il minimo esiste 
per il Teorema di WeierstraB 1.20. In questo caso possiamo anche determinare quale sia 
il punto di minimo: infatti al variare delle masse ma , mb e m c il punto 

maA mb B mcc - + - +­
m m m 

è una qualsiasi combinazione convessa dei vertici, dunque è un qualsiasi punto del trian­
golo. Allora il problema si riduce a trovare il punto del triangolo che è più vicino a P o . 
Questo è chiaramente lo stesso P o, se P o appartiene al triangolo (compreso il bordo) 
come nel caso del punto U , altrimenti (se la proiezione di P o sul lato più vicino cade 
entro il lato, come è il caso se Po = V ) è il punto di uno dei tre lati più vicino a P o , 
o infine è uno dei tre vertici, come è il caso del punto W . ( 

/ 
/ 

•V 
/ 

,, . w 

Fig . Al.1 : i tre casi per la posizione del punto di minimo 

Proviamo ora con una variante più difficile: il triangolo è saldamente appoggiato, 
in posizione orizzontale, e nei vertici di ABC sono poste tre carrucole in cui scorrono 
(senza attrito) t re corde di uguale lunghezza L , legate insieme a un estremo che è 
vincolato a non uscire dal triangolo. All'altro estremo delle corde sono appese tre masse 
ma , mb e mc , e L è maggiore o uguale del lato più lungo del t riangolo. I tre pesi 
fanno scorrere le corde e scendono, in modo da minimizzare l'energia potenziale totale. 
In che punto del triangolo si ferma il nodo? 

Se il nodo è in una posizione X , la distanza di X da A è IIX - AII , quindi 
la massa ma è scesa di L - IIX - AII rispetto al piano del triangolo, e la sua energia 
potenziale (posta a zero se la massa è sul piano del t riangolo) è 

- ma(L - IIX - AII) • 
Lo stesso vale per le altre masse, dunque posto m = ma+ mb + mc l'energia potenziale 
totale ( da minimizzare) è 

J(X) = -ma(L - IIX - AII) - mb(L - IIX - B11) - m c(L - IIX - Cli) 
= (mali X - AII + mbllX - BII + mcli X - Cli) - Lm 

(Al.2) 

e di nuovo dobbiamo minimizzare la funzione continua f sul triangolo ABC , che è un 
compatto. Torneremo su questo punto (1• appendice 3.4). 
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Fig. Al.2 : le tre masse devono minimizzare l'energia potenziale 

Appendice 1.2 - Problemi di spazio 

A tutti sarà capitato di dover spostare un mobile, e di chiedersi se sarebbe passato da un 
punto particolarmente stretto. Supponiamo di far scivolare sul pavimento un armadio, 
di lunghezza L e spessore h < L , e di dovergli far superare un corridoio di larghezza 
d > h , che però forma un angolo retto. Qual è la relazione fra L , h e d che assicura 
la possibilità di passare? Fissiamo un r iferimento cartesiano ortogonale come in figura, 
e sia O ::; 0 ::; 1r/2 l'angolo che il lato lungo dell'armadio forma con l'orizzontale. A 
parità di angolo, conviene mettere l'armadio in modo che un suo vertice tocchi il lato 
orizzontale inferiore del corridoio, e un altro quello verticale sinistro. 

d 

Fig. Al.3 : il corridoio Fig. Al.4 : inclinazione O Fig. Al.5 : la posizione migliore 
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A questo punto, l'armadio sta nel corridoio se la distanza fra il lato inferiore dell'ar­
madio e l'angolo interno del corridoio è non inferiore allo spessore h, dunque l'armadio 
riesce a superare l'angolo se questo vale per ogni B. 

L'angolo inferiore sinistro dell'armadio ha coordinate (O, L senB) e quello inferiore 
destro (L cosB, O), dunque la retta che li congiunge ha equazione 

y = L sen B - x tan B xsenB + ycosB - L senBcosB = O 

/ 
e 11'.w' (1.11) la condizione che consente il passaggio è 

dsenB + dcosB - L sen BcosB ~ h \/0 E [O, 1r /2] , 

anzi per O :S B :S 1r / 4 , dato che la situazione per B > 1r / 4 è simmetrica. Posto 
g(B) = dsenB + dcosB- LsenBcosB abbiamo 

g(O) = d > h, g'(B) = dcosB- dsenB- L(cos2 B- sen9 ) 

e quindi 

g'(B) = (cos B - senB)(d - L(cosB + senB)) = (cos B - senB)(d - Lv2 sen (B + 1r/4)). 

A questo punto abbiamo tre casi, il cui completamento lasciamo al lettore: se d ~ L>/2, 
il corridoio è molto largo (non c'è neppure bisogno di ruotare l'armadio!) e g è crescente 
in [O, 1r / 4] ; se L < d < L>/2, la funzione g è crescente per O :S B :S Bo e decrescente per 
Bo :S B :S 1r / 4 , se d :S L la funzione g è decrescente in [O, 1r / 4] . Dunque il minimo di 
g è sempre in uno degli estremi. Ma abbiamo visto che g(O) > h, quindi la condizione 
cercata è 

g(1r/ 4) ~ h L + 2h :S dv2. 
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Curve 

In questo capitolo, dopo una breve sezione sulle funzioni vettoriali di una variabile, 
vedremo cosa si debba intendere per "curva" e definiremo la lunghezza di una curva e 
l'integrale di una funzione su una curva. 

2.1 - Funzioni vettoriali di una variabile 

Abbiamo già parlato nel Capitolo 1 delle funzioni a valori vettoriali ( cioè a valori in 
qualche spazio IR.n ); ora specializziamo la descrizione al caso in cui il dominio sia un 
intervallo di JR. , consideriamo cioè funzioni 

cp : J -+ IR,n , I C JR. intervallo. 

Sappiamo a- Proposizione 1.15 che una tale funzione cf> = (c/>1 , ... , cl>n) è continua se e 
solo se sono continue le singole componenti cl>k : J -+ JR. ; queste componenti sono delle 
normali funzioni reali di una variabile reale, per le quali nel corso di Analisi Matematica 1 
sono state definite la derivata e l ' integrale. Ora estendiamo tali concetti alle funzioni 
vettoriali di una sola variabile reale. 
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Esempio : sia </> : JR -+ JR3 la funzione 

</J( t) = ( tel, cos t, log( 1 + 2t)) 

e cerchiamo di vedere se esiste 

lim </>(t) - </>(to) _ 
t--tO t - to 

Questa "frazione", che in realtà è un vettore con tre componenti, somiglia al rapporto 
incrementale visto per funzioni di una variabile, e in effetti ciascuna delle sue tre com­
ponenti è il rapporto incrementale della rispettiva componente di <j) : se 

allora 

</>( t) - </>( to) = ( </> 1 ( t), </>2 ( t), <f>3 ( t)) - ( </>1 ( to), </>2 ( to ), ef>3 ( to)) 

= ( </>1 (t) - </>1 (to), </>2(t) - </>2(to), ef>3(t) - ef>3(to)) 

e quindi 

<j)(t) - <j)(to) = ( </>1(t) - </>1(to) , </>2(t) - </>2(to), ef>3(t) - ef>3(to) ) _ 
t - to t - to t - to t - to 

Dato che le tre componenti sono derivabili in ciascun punto t0 E JR , per il punto 2 della 
Proposizione 1.28 il limite proposto esiste e vale 

\ 
lim <j)(t) - </>(to) = (/4' (t ) /4' (t ) /4, (t )) = (t elo + eto 

O t t 'l'l O , '1'2 O , '1'3 O O , 
l--t - O 

Ad esempio per to = O 

lim <j)(t) - </>(O) = (1, O, 2) . 
t--tO t 

- sento --
2
-). 

' 1 + 2to 

D efinizione : sia I un intervallo di JR , e sia <j) : I -+ IRn , con <j) = ( </>1, ... , <f>n) . Se 
nel punto t. E I tutte le componenti <Pk sono derivabili, diciamo che <j) è d erivabile 
nel punto t. , e il suo vettore derivata (o semplicemente la sua derivata) è il vettore 

<l>'(t. ) = (</>~(t.), ... ,</>~(t.)) . 

Diciamo che la funzione </> è di classe ci sull'intervallo I se la derivata, </>' è continua 
su I. Diciamo che la funzione <j) è di classe ci a trat ti sull'intervallo I se (è 
continua ed) esistono un numero finito di punti t0 < t 1 < -• • < tk E I tali che <j) è di 
classe C1 in ciascuno degli intervalli ( estremi inclusi) in cui I è diviso da questi punti. 
In tal caso scriviamo che <j) è di classe Cfr . 
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Osservazione: una funzione è di classe C1 se e solo se tutte le sue componenti sono deri­
vabili con derivata continua; sulla definizione di funzione Cl r occorre precisare, usando 
il concetto di restrizione: </> è di classe Cfr se posto 

Io = { t E I : t '.Sto} , Ii = [to, ti] , ... ,Ik = [tk-1 , tk] , h+1 = { t E I: t ~ tk} 

tutte le restrizioni di </> agli intervalli I0 , ... , h+1 sono funzioni C1 . C'è una sottile ma 
fondamentale differenza rispetto a dire che </>' è continua in tutti questi intervalli: già 
nel caso n = 1 , quindi con una sola componente, consideriamo la funzione qi(t) = lt l . 
Anzitutto, la sua derivata è definita solo per t i= O , quindi non è vero che efi' è continua 
per t '.S O o per t ~ O; però, la restrizione di efi all'intervallo ]-oo, O] è la funzione - t, 
che è derivabile (con derivata continua) anche per t = O, e lo stesso per la restrizione a 
[O, +oo[. 

Osservazione: l'aggiunta (fra parentesi) che </> deve essere una funzione continua su tutto 
I nella definizione di Cfr è ridondante. Infatti se la restrizione di </> a Io è di classe ci 
in particolare è continua sia nei punti prima di t0 (in un intorno dei quali coincide con 
</> , che quindi è cont inua in quei punti per la Proposizione 1.38) sia nell'estremo destro 
to, quindi 

</>(to) = lim </>(t) ; 
t-.t;; 

se anche la restrizione a Ii è di classe C1 
, in particolare è continua nell'estremo sinistro -to, quindi 

</>(to) = lim </>(t) 
t➔tt 

e </> è continua anche in t0 • Procedendo allo stesso modo si ha la continuità di </> in 
tutti i punti. 

Esempio: la funzione tanx è di classe C1 nel suo dominio (che non è un intervallo), 
ma non è vero che è Clr su JR . La funzione sen x è di· classe C 1 su JR , e la funzione 
I sen xl è di classe cfr su JR) ma non di classe ci . 

Ora che abbiamo introdotto la derivata di funzioni vettoriali di una variabile reale, 
che si esegue componente per componente, introduciamo (allo stesso modo) l' integrale. 

Definizione : sia I un intervallo di JR , e sia </> : I ➔ JRn , con </> = ( efii, ... , efin) . Se 
tutte le componenti di </> sono integrabili su I , eventualmente in senso improprio (ma 
in tal caso tutte con integrali convergenti) chiamiamo integrale di </> su I il vettore 
le cui componenti sono gli integrali su I delle componenti di </> , 

J </>(t)dt = (f efi1(t)dt , ... , J efin(t)dt). 
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Osservazione : per l' integrale valgono le consuete proprietà algebriche 

1 (</J(t) + 1/J(t)) dt = 1 <jJ(t) dt + 11/J(t) dt, 1 k<jJ(t) dt = k 1 <jJ(t) dt 

e la formula di spezzamento 

1c </J(t)dt = 1b <jJ(t)dt+ le <jJ(t)dt. 

Dato che in Rn non è definito l'ordine (cioè non ha senso una disuguaglianza fra vettori), 
non vale alcuna proprietà di monotonia (del tipo f ::; g ⇒ J f :S J g, per intenderci). 
La formula I J J I :S J Ili vale ancora, con una notazione diversa (ma la dimostrazione è 
assai diversa da quella per funzioni a valori reali): 

11 1 <jJ(t) dtll :S j 11 </J(t)II dt. (2.1) 

Vale inoltre per funzioni derivabili con derivata continua la formula analoga a (1.47) 

</J(t) = <jJ(to) + 1t </J' (T) dT. 
to 

/ (2.2) 

2.2 - Curve e riparametrizzazioni 

Nell'accezione comune, la parola curva fa pensare a niente più che un tratto di penna su un 
foglio, o a un tratto di strada; tuttavia questa risulta essere una visione molto riduttiva e 
inadeguata. Per comprendere la definizione che daremo, è fondamentale tenere presente 
questo esempio: più che al tracciato stradale vogliamo pensare a un mezzo che lo sta 
percorrendo, o meglio alla sua legge del moto; questa contiene, altre all' informazione sul 
tracciato, anche il momento e la direzione in cui questo viene percorso, la velocità istante 
per istante, l'accelerazione, tutte informazioni che possono essere importanti e che, se 
variate, descrivono modalità differenti con cui lo stesso tratto di strada viene percorso. 
Nella definizione che segue, la parola "curva" indica quella che nel nostro esempio è la 
legge del moto seguita dal mezzo, e la parola "sostegno" indica il tracciato stradale. 

Definizione : se I e R è un intervallo, si dice curva su I a va.lori in Rn una 
qualsiasi funzione continua <P : I ➔ Rn . Il sostegno della curva è l'immagine </J(J) 
dell ' intervallo I tramite la funzione <P. 
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Per tornare all'esempio di prima, I rappresenta l'intervallo di tempo nel quale 
osserviamo il mezzo, </J : I ➔ JR2 è la legge del moto del mezzo, vale a dire <jJ(t) è 
la sua posizione nel piano (la superficie della Terra) all' istante t . Il sostegno di </J è 
l' insieme dei punti del piano che per qualche istante t sono il valore assunto da </J , 

vale a dire l' insieme dei punti del piano per i quali la curva </J è passata: dunque è il 
tracciato stradale, o meglio la parte della strada su cui il mezzo è passato nell' intervallo 
di tempo I . Notiamo che per una curva </J : I ➔ JRn il sostegno ( che è un sottoinsieme 
del codominio) è contenuto in JRn , mentre il grafico di </J è un sottoinsieme di I x JRn e 
JRn+l . Vediamo qualche esempio: useremo in modo euristico la parola "velocità", che 
definiremo precisamente nella Sezione 2.4. 

Esempio : la curva </>1 : [O, 1] ---+ JR definita da </>1 ( t ) = t + 1 rappresenta un punto 
che percorre un tratto della retta reale JR1 ; ali' istante t = O questo si trova nel punto 
x = 1 , all'istante t = 1 si trova in x = 2 e negli istanti intermedi si muove percorrendo, 
con velocità costante, l ' intervallo [1, 2] . Il suo sostegno è l' intervallo [1, 2] e - usando 
sempre la notazione abbreviata int rodotta in (1.9) - il grafico di </>1 è 

{(t,</>1(t)) : t E I} = {(t, t+ 1) : O::; t::; 1} , 

cioè il grafico in JR2 della funzione t+ 1 : dunque è il segmento che va da (O, 1) a (1, 2) . 
Osserviamo che nel tempo che va da t = O a t = 1 , cioè in un intervallo di tempo di 
durata 1 , la curva percorre un tratto lungo 1 , quello che va da x = 1 a x = 2 . 

X 

2 

1 

t 

Fig. 2.1 : il tratto inclina to è il grafico di </>1 , quello verticale più spesso è il suo sostegno 

Analogamente la curva 'I/; : [O, 1]---+ JR definita da '1/;(t) = 5t +3 percorre, a velocità 
costante, il tratto da x = 3 a x = 8 : la velocità con cui si muove è però più elevata di 
quella di </>1 , dato che in un tempo 1 il tratto percorso è lungo 5 . Il sostegno di 'I/; è 
l'intervallo [3, 8] e il grafico di 'I/; è il segmento che va da (O, 3) a (1, 8) . 

Invece la curva </>2 : [O, 1] ---+ JR definita da <f>2 (t ) = 2 - t percorre il tratto da x = 2 
(al tempo t = O) a x = 1 (al tempo t = 1 ): il suo sostegno è dunque ancora [1, 2] , 
vale a dire lo stesso di </>1 , ma questo segmento viene percorso da destra a sinistra. La 
differenza non si può vedere dal sostegno, ma è chiaramente importante: nel caso dei 
mezzi su una strada, </>1 e </>2 percorrono nello stesso intervallo temporale lo stesso 
t ratto di strada [1, 2] , entrambe a velocità costante 1 , ma in direzioni opposte! Il 
grafico di </>2 è il segmento da (O, 2) a (O, 1) , che è ben diverso dal grafico di </>1 . 
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Ricordiamo che l'immagine di una funzione f è la proiezione del grafico di f sul 
codominio di f . In particolare abbiamo: 

Osservazione : il sostegno di una curva </> : I -+ JRn è la proiezione del grafico di </> sullo 
spazio JRn di arrivo. 

Esempio : la curva ef>3 : [O, l] -+ JR definita da ef>3 (t) = t2 + 1 percorre di nuovo il 
segmento [l, 2] partendo da x = l , ma con velocità variabile: infatti fra t = O e 
t = 1/2 è giunta da x = l a x = l + 1/4 , cioè ha percorso un solo quarto del sostegno, 
e gli altri tre quarti vengono percorsi, evidentemente più velocemente, nel rimanente 
tempo da t = 1/2 a t = l. 
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Fig. 2.2 : grafico di </>2 
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t 

Fig. 2.3 : grafico di ef,3 

X 

- 1 1 t 

Fig. 2.4 : grafico di ef,4 

La curva q>4: [- 1, l] -+ JR definita da ef>4(t) = ltl + 1 ha ancora sostegno [l , 2]; questo 
però viene percorso due volte, partendo da x = 2 per t = -1, giungendo a x = 1 
per t = O e tornando infine a x = 2 per t = l . Dunque ef>4 , pur avendo lo stesso 
sostegno delle curve ef>i,2,3 , copre un cammino lungo il doppio (torneremo più oltre sulla 
lunghezza di una curva, concetto cui è dedicata la Sezione 2.4). 

Talvolta è importante, dato un insieme S e JRn , determinare una curva di cui S sia 
il sostegno. L'operazione, che non per tutti gli insiemi è possibile, fornisce quella che si 
chiama una parametrizzazione di S . Dato che una curva è una funzione continua su un 
insieme connesso, la sua immagine è anch'essa un insieme connesso per il Teorema 1.18. 
Perciò sicuramente non è possibile parametrizzare un insieme composto da due parti 
lontane una dall'altra. 

I prossimi esempi sono i mattoni fondamentali per capire le curve e per costruire le 
parametrizzazioni, e vanno compresi a fondo, 

Esempio : se A , B E JRn, il segmento (orientato!) dal punto A al punto B si può 
parametrizzare con la curva 

</>: [O, l ]-+ JRn, </>(t) = A + t(B - A ) = tB + (l - t)A . 
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Esistono infiniti altri modi di parametrizzare lo stesso segmento: ad esempio 

</>:[0,1]-+llr, </>(t) = A + t2 (B - A ) 

è un'altra possibile parametrizzazione, come pure 

</>: [0,1r/2]-+ nr, </>(t) = A+ (sen2 t) (B - A) . 

Esempio : se A , V E !Rn con V -/= O , la retta che passa per A ed ha la stessa direzione 
di ( cioè è parallela a) V è la curva definita per t E JR da 

t >-+ A + tV . 

Esempio : nel piano, la circonferenza centrata in (O, O) e di raggio 1 si può percorrere 
in senso antiorario con la curva 

</>(t) = (cost,sent); 

se ha raggio r con la curva 

</>(t) = (rcost,rsent); 

se poi è centrata in (x0 , y0 ) con la curva 

</> : [O, 21r] ➔ IR2 
, </>(t) = (xo + r cost, Yo + r sen t) . (2.3) 

Infine, se vogliamo percorrere la circonferenza unitaria centrata nell'origine, ma anziché 
partire dall'estremo destro (1, O) vogliamo partire da un altro punto P della cir­
conferenza, ricordando le coordinate polari conviene associare a P l 'angolo 0 che la 
semiretta da O per P forma con il semiasse positivo delle ascisse, di modo che 

P = (cos0,sen0), 

e prendere 

</>(t) = (cos(t+0),sen(t+0)) : 

questa parte e arriva in P , percorrendo una volta la circonferenza in verso antiorario. 

Non è difficile scoprire come invertire il senso di percorrenza di una curva: se </> è 
definita sull' intervallo I , la curva definita sull'intervallo simmetrico - I come 

1/J(t) = </>(-t) 

ha esattamente lo stesso sostegno di </> ma lo percorre in senso inverso. 
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Esempio : la curva 

1/J : [-21r, O] -+ R2 
, 1/J(t) = (xo+rcos(-t),yo + rsen(-t)) 

= (xo + r cos t, Yo - r sen t) 

percorre la stessa circonferenza dell'esempio (2.3), ma in senso orario. Osserviamo che, 
per la periodicità delle funzioni seno e coseno, possiamo pensare a questa funzione 
traslando il dominio a destra d i 21r , ovvero considerarla sul più comodo [O, 21r] anziché 
su [-21r, O] . 

In vari casi è utile associare a una curva un'altra curva, che segua il percorso della 
prima, con lo stesso verso di percorrenza, ma con intervallo di definizione diverso. 

Esempio : eseguiamo una traslazione del dominio quando associamo a una curva 

la curva 
1/J : [a+ h, b + h] -+ Rn , 1/J(t) = </>(t - h) : 

questa curva fa esattamente quello che fa </> ma il suo "orologio interno" parte da 
t = a + h anziché da t = a , e si arresta per t = b + h anziché per t = b . 

Esempio : può accadere di voler associare a una curva un'altra curva, che segua il per­
corso della prima, con lo stesso verso di percorrenza, ma con intervallo di definizione 
di ampiezza diversa. Un modo facile per risolvere questo problema, per una curva </> 

definita sull 'intervallo [a, b] cui vogliamo associare una curva su un altro intervallo [e, d] , 
è porre 

( 
b - a ) 1/J(t) = </> a+ d _ e (t - e) : (2.4) 

per t = e questa assume il valore <f>(a) , per t = d il valore <f>(b) e per i t intermedi 
assume i valori di </> nei punti fra a e b . Arriviamo per gradi a questa formula: intanto, 
a </> associamo una curva definita su un intervallo della stessa lunghezza di [a, b] , ma 
che inizia in t = O , cioè eseguiamo una traslazione del dominio, scrivendo 

Ora modifichiamo la velocità di </>1 per ricavare una curva che abbia lo stesso compor­
tamento di </>1 , ma lo "spalmi" su un intervallo di lunghezza d - e anziché b - a : basta 
scrivere 

( b- a) ( b - a ) <P2(t) = <Pi d - et = <P d - /+a . 

A questo punto, facciamo il contrario di quello che abbiamo visto al primo passo, ripro­
ponendo </>2 ma su [e, d] anziché [O, d - e] : scriviamo cioè 

1/J : [e, d] -+ Rn , (
b - a ) 1/J(t) = </>2 (t - e) = </> d _ e (t - e)+ a 
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Analizziamo cosa abbiamo fatto da un altro punto di vista: la funzione 

p: [c,d]-+ [a,b] , 
b - a 

p(t) =a+ d _ /t - c) 

è una parametrizzazione del segmento [a, b] definita sul!' intervallo [c, d] , e la curva 1/; 
non è altro che la composizione di </> con p , 

1/;(t) = </>(p(t)) . 

Possiamo generalizzare questo caso particolare. 

Definizione : se I, J e R sono due intervalli, si dice riparametrizzazione sull' inter­
vallo J della curva </> : I -+ Rn la composizione 

1/;(t) = </>(p(t)) (2.5) 

di </> con una qualunque funzione p : J -+ I che sia continua, surgettiva e debolmente 
crescente. 

Nella definizione compaiono tre richieste sulla funzione p: la prima è la continuità, 
necessaria per assicurare che la composizione con </> sia ancora una funzione continua 
(come deve essere una curva). La surgettività è necessaria perché 1/; percorra tutto il 
tratto coperto da </> : se infatti l'immagine di p fosse solo una parte I' del!' intervallo 
I , la curva 1/; percorrerebbe solo il tratto coperto da </> nel!' intervallo I' , tralasciando 
tutto quello che </> fa sulla restante parte di I ; con le ipotesi di continuità e surgettività, 
1/; è una curva, e ha lo stesso sostegno di </> . Infine la crescenza serve a garantire non solo 
che 1/; percorra questo sostegno nello stesso verso di </> , ma che non torni indebitamente 
sui suoi passi percorrendone qualche tratto più volte di quanto faccia </>, come mostra 
il prossimo esempio. 

Esempio: se 
</>: [-1, 1] -+ R, </>(t) = t 

e 

1/;:[-1,1] -+R, 1/;(t) = </>(2t3 
- t) , 

X 

-1 

t 

-1 

Fig. 2.5 : grafico di q:, Fig. 2.6 : grafico di t/J 
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la seconda non è una riparametrizzazione della prima (la funzione 2t3 - t non è crescente 
su [-1.1] ) e infatti percorre sì il segmento [- 1, 1] partendo da - 1 e arrivando a 1 , 
ma lo fa prima andando da - 1 a ,/6/9, poi ritornando indietro fino a -,/6/9 e infine 
ripartendo da lì verso 1. Dunque il tratto [- ,/6/9, ,/6/9] viene percorso tre volte da 
1/J mentre <p lo percorre una volta sola. 

Esempio : l'ellisse di equazione 
x2 Y2 

a2 + b2 = 1 

è centrata in (O , O) ed ha semiassi di lunghezze a e b paralleli agli assi coordinati. 
Questa può essere parametrizzata come 

<p : [O, 2?r] -t JR2 , <t,(t) = (acost,bsent) : (2.6) 

la curva parte dall'estremo destro (a, O) e percorre l'ellisse in senso antiorario. Invece la 
curva 

1/J : [o, 2?rJ -+ ne , 1/J(t) = (xo + a cos t, Yo + bsent) 

percorre l'ellisse traslata della precedente centrata in (xo, y0 ) . 

Esempio : se f : I ➔ JR è una funzione continua su un intervallo I , il suo grafico può 
essere parametrizzato (da sinistra verso destra) dalla curva 

<p: I ➔ JR2, q,(t) = (t, f(t)) . 

Questi esempi e quelli visti sinora permettono di parametrizzare numerosi insiemi 
"semplici". Per parametrizzare insiemi che si ottengono giustapponendo porzioni di archi 
di cui è nota una parametrizzazione, è necessario un (noioso) lavoro di aggiustamento 
dei domini. 

Esempio : consideriamo l' insieme 

S = { (x, y) : O::; x::; 1, y = x - 1} U { (x, y) : x 2 + y2 = 1, x, y ~ O} 

questo è costituito dall'unione del segmento fra i punti 

A =(0,-1) e B=(l,O) 

e dell'arco della circonferenza unitaria compreso nel primo quadrante, che va da B a 

C = (O, 1) . 

Abbiamo visto una parametrizzazione del segmento, ad esempio 

<p8 (t) = (t, t - 1) , t E [O, 1] , 
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e per quanto riguarda l 'arco di circonferenza basterebbe limitare l'insieme dei valori del 
parametro, ad esempio 

<Pc(t) = (cost,sent), t E [O, 1r /2] . 

Tuttavia dobbiamo esibire una curva che parametrizzi S , cioè una singola funzione 
definita (eventualmente a tratti, come accadrà) su un intervallo. Pertanto dobbiamo 
modificare le curve precedenti in modo da poter giustapporre gli insiemi di definizione 
e formare un unico intervallo: ad esempio possiamo riprodurre il comportamento di <Pc 
su [l, 1 + 7r / 2] anziché [O, 7r /2] , scrivendo 

1Pc(t) = <Pc(t - 1) = (cos(t- l) ,sen(t - 1)), 

A questo punto la curva definita per O :S t :S 1 + 1r / 2 da 

1P (t) = { <P8 (t) se O :S t :S 1 
1 1Pc(t) se 1 :S t :S 1 +1r/2 

t E [1, 1 + 7r / 2] . 

{ 
(t, t - 1) se O :S t :S 1 

- (cos(t - l),sen(t -1)) se 1 :S t :S 1 + 1r/ 2 

parte da A per t =O, percorre il segmento, transita da B per t = 1 , percorre l'arco 
di circonferenza fino ad arrivare a C per t = 1 + 1r /2 ed è una delle parametrizzazioni 
possibili dell'insieme S. Un'altra è ad esempio 

() {
(t+ l ,t) 

1P2 t = 
( cos t , sen t) 

se-1:St:SO 

se O :S t :S 1r/2 
- 1 :S t :S 1r / 2 . 

Possiamo riprodurre la costruzione appena fatta anche in altre situazioni: dato un 
,·erto numero di curve 

... ' 

i cui sostegni si giustappongono, nel senso che il punto di arrivo di ogni curva coincide 
on il punto da cui parte la curva dopo, cioè 

... ' 

;,ossiamo aver bisogno di considerare la curva che si ottiene percorrendo una dopo 
(altra le curve </J1 , ... , <Pk . La sola difficoltà nel considerare questa curva è scriverne 
."equazione: dunque bisogna riparametrizzare le varie curve, ciascuna con una traslazione 
del dominio, in modo che i nuovi domini siano intervalli consecutivi. Ad esempio pos­
-iamo traslare il dominio di </)1 , che è un intervallo di lunghezza b1 - a 1 , in modo che 
..:lizi da t = O , ponendo 

poi 

... ' 
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e così via, di modo che ciascun intervallo [a~, b~] abbia la stessa lunghezza dell'intervallo 
[ai, bi] corrispondente. Ora poniamo 

"Pi : [a~, b~] -+ nr , 1Pi(t) = <Pi(t + ai - a~) 

così che all' irùzio, per t = a~ , la curva "Pi parte dallo stesso punto "Pi(aD = <f>i(ai) da 
cui partiva <Pi . A questo punto basta unire il tutto: 

se 0$t $ò;. 

sea2$t$b2 
t E [O, b1c] . 

La costruzione precedente è solo un esercizio di attenzione e pazienza; vedremo nella 
Sezione 2.8 che in molti casi si può evitare di farla. 

Concludiamo questa sezione con una curva importante in tre dimensioni, l'elica 
cilindrica. 

Esempio : consideriamo la curva 

<PE(t) = (cost,sent, t), O$ t $ 21r. (2.7) 

Fig. 2.7 : qui sono rappresentati tre giri, quindi O ~ t ~ 671' 

Questa parte da A = (1, O, O) e giunge a B = (1, O, 1) dopo aver percorso un certo 
arco E. Esarnirùamo la proiezione di E sul piano (x, y) : dato che si t ratta delle prime 
due coordinate, la proiezione sarà semplicemente il sostegno della curva che si ottiene 
prendendo solo le prime due component i di <f>s , cioè il sostegno di 

(cos t ,sen t), t E [O, 21r] . 

Sappiamo che si tratta della circonferenza unitaria C centrata nell'origine, nel piano 
(x, y) . Se la proiezione di E sul piano (x, y) è C, allora E è contenuto in 

{ (x,y,z): (x,y) E E}= {(x,y,z): x2 +y2 = 1} , 
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che è la superficie del cilindro con asse coincidente con l'asse z e di raggio 1 . Dunque 
</> E parte da A e si avvolge fino a B dopo aver percorso sulla superficie C un giro 
intorno all'asse z. Nel frattempo la coordinata z è salita da O a 21r: la curva ha fatto 
una breve spirale. Quella appena vista è l'elica cilindrica di raggio 1 (la sua proiezione 
è una circonferenza di raggio 1 ) e passo 21r ( quando la proiezione fa un giro intero, la 
coordinata verticale aumenta di 21r ) . 

È interessante vedere ora cosa fa la curva 

<f>E(t) = (cost,sent, t) , O ::; t::; 81r : 

semplicemente, questa si avvolge per quattro volte intorno al cilindro, mentre la sua 
coordinata z sale da O a 81r . Queste curve sono tratti di elica cilindrica di raggio 1 e 
asse coincidente con l'asse z. Non è difficile trovare una parametrizzazione di un'elica 
cilindrica di raggio 1 , passo 21r ed asse parallelo all'asse z ma passante (l'asse) per 
(xo, Yo , O) : dato che la sua proiezione sul piano (x , y) è la circonferenza centrata in 
(xo, Yo) basta scrivere 

<f>E(t) = (xo + cos t, Yo + sen t, t) . 

Se ora vogliamo parametrizzare un'elica cilindrica di raggio r e passo p , ad esempio la 
filettatura di un bullone, basterà considerare la funzione (~ es. 2.1) 

<f>(t) = (rcost, rsent,tp/(21r)). (2.8) 

Esempio : vogliamo ora parametrizzare una curva elicoidale che, invece di avvolgersi su 
di un cilindro, si avvolge su di un cono. È il caso, ad esempio, della filettatura di una 
usuale vite conica ( non un bullone, che è cilindrico). È necessario specificare il passo p 

dell'elica, cioè la variazione della coordinata z dopo che si è percorso un intero giro, e 
!"angolo a del cono su cui l'elica si avvolge. Se 

Jx2 + y2 = ztan(a/2) 

è l'equazione ir.- (1.22) della superficie conica di angolo a, avremo quindi la parametriz­
zazione 

(~ ~ ~) <f>(t) = 
2

1r tan(a/2)cost, 
2

7T tan(a/2)sent, 
2

7T 

tp 
= - (tan(a/2)cost,tan(a/2)sent, l ). 

27T 
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2 .3 - Curve in coordinate polari 

Se nel piano JR2 usiamo le coordinate polari r, 0 invece di quelle cartesiane x, y, 

potremo parametrizzare le coordinate r, 0 con un parametro t E J , ottenendo la curva 

</>(t) = (r(t)cos0(t), r(t)sen0(t)) , t E J. 

Identificando JR2 al piano complesso C e ricordando la definizione di esponenziale com­
plesso, la curva </> può anche essere scritta come 

</>(t) = r(t)eiO(t), t E J. 

Se scegliamo come parametro proprio l'angolo 0 , potremo descrivere una curva in coor­
dinate polari semplicemente tramite l'espressione 

r = r (0) , 

che ci dice come varia il raggio r al variare dell'angolo 0. Ad esempio, l'ellisse 

x2 Y2 
a2 + b2 = 1 

diventa in coordinate polari 

_ (cos2 0 sen2 0)-1;2 
r - a2 + b2 , 0 E [O, 21r], 

mentre la parabola 
y = x2 

diventa 
sen0 

r = cos2 0 
, 0 E [O, 1r / 2[U]1r / 2, 1r] . 

Notiamo che nell'espressione precedente il parametro 0 non varia in un intervallo ma 
si ha: 
a) per 0 E [O, 1r / 2[ l'espressione r = sen 0 / cos2 0 descrive il ramo destro della para­

bola, quello contenuto nel primo quadrante; 
b) per 0 E]1r / 2, 1r] l'espressione r = sen 0 / cos2 0 descrive il ramo sinistro della para­

bola, quello contenuto nel secondo quadrante. 
In questo caso è molto utile sfruttare quello che abbiamo anticipato nella Sezione 1.5, e 
cioè ammettere valori negativi di r : allora, la curva 

sen0 
r = --, 

cos2 0 

parametrizza tutta la parabola. Infatti, come abbiamo visto, per O :S 0 < 1r / 2 il numero 
r è non negativo e viene percorso il ramo destro, mentre per - 1r / 2 < 0 < O , valori 
cui corrisponde una semiretta orientata che esce dall'origine e va nel quarto quadrante, 
il numero r è negativo, così la curva percorre, nel secondo quadrante, il ramo sinistro 
della parabola. 
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Fig. 2.8: per O= -1r/4 è r = - _/2 

Anche l' iperbole di equazione (in coordinate cartesiane) x2 - y2 = 1 può essere 
rappresentata in coordinate polari; bisogna però fare attenzione al fatto che, essendo 
l'iperbole composta da due rami disgiunti, non è possibile rappresentarla come il sostegno 
di una sola curva: abbiamo già notato che il sostegno di una curva, essendo l'immagine 
continua di un intervallo, è necessariamente un insieme connesso. Però possiamo rappre­
sentare come una curva uno qualunque dei due rami dell'iperbole, ad esempio quello di 
destra; con tale precisazione abbiamo allora l'espressione in coordinate polari 

r = (cos2 0 - sen2 0)-112 , 0 E] - 1r/4, 1r/ 4[ . 

Infine, vediamo come si può rappresentare in coordinate pola ri una retta di equazione 
(cartesiana) 

y=mx + q. 

Un caso particolare è quello di una retta passante per l'origine, in cui q = O; in tal caso 
abbiamo che r può essere un qualsiasi numero reale positivo o nullo, mentre 0 sarà 
uguale ad arctan m (per la semiretta destra) oppure a -1r + arctan m (per la semiretta 
sinistra). Dunque l'espressione polare della retta intera sarà 

tan0 = m. 

~el caso di rette non passanti per l'origine, quindi con q i= O, scrivendo x = rcos0 ed 
y = r sen 0 , avremo l'espressione polare 

q 
r= , 

sen 0 - mcos0 
0 E] - 1r + arctan m, arctan m[ . 

Ad esempio, la retta di equazione y = x - I diventa, in coordinate polari 

1 
r------

- cos0 - sen0 ' 
0 E] - 31r/ 4,1r/ 4[. 

A volte (come per queste rette) la scrittura di una curva in coordinate cartesiane 
risulta più semplice, altre volte invece risulta più conveniente esprimere una curva in 
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coordinate polari, altre volte ancora conviene usare una diversa forma parametrica, come 
si vedrà negli esempi della sezione seguente. In ogni caso, va tenuto presente che, oltre 
all'espressione analitica usata, va precisato il tipo di variabili che si è utilizzato; ad 
esempio, l'espressione 

x = y 

rappresenta una retta (la bisettrice dei quadranti primo e terzo) se sottintendiamo che 
le variabili (x, y) utilizzate sono quelle cartesiane, ma l'espressione 

r = 0 , 

se le variabili sono quelle polari, rappresenta nel piano (x, y) una spirale archimedea, 
illustrata in figura. Dunque per tracciare la curva di equazione a= b dobbiamo sapere 
se le coordinate (a, b) sono quelle cartesiane o quelle polari o altro (~ es. 2.4). 

F ig. 2.9 : una spirale di Archimede 

Esempio : 1' insieme 

{ (r, 0): r ~ O, O :::; 0:::; 1r/2} 

è una semi-striscia di altezza 1r /2 nel piano ( r, 0) , ma con le convenzioni usuali 

{(x,y): r ~ O, O:::; 0 :::; 1r/2} 

è il primo quadrante del piano cartesiano (x, y) . Dunque non sarebbe bastata la scrittura 

per capire di che insieme si tratta. 
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2.4 - Velocità e accelerazione 

Abbiamo visto all'inizio della Sezione 2.2 esempi di curve che percorrono il loro sostegno 
con "velocità" differenti, e ora ci proponiamo di formalizzare il concetto. Riprendendo 
l' idea iniziale di una curva come descrizione di un movimento, ci è ben noto che per 
descriverlo è importante non solo la velocità scalare (a quanti km/ h si muove un veicolo) , 
ma anche la direzione del movimento. Allora, la velocità di una curva in un dato istante 
(ovvero in un dato punto del suo dominio) sarà un vettore, che indica in quale direzione e 
con che rapidità la curva si sta muovendo. Come per la legge di un moto, questo vettore 
si ottiene con un limite analogo alla derivata di funzioni di una variabile, come già visto 
nella Sezione 2.1: la velocità sarà il limite (se esiste) del rapporto fra spostamento e 
tempo impiegato per compierlo, quando questo tempo tende a zero. 

Definizione : se la curva </> : I --+ IR.n è derivabile in t0 E J , il vettore velocità della 
curva </> in t0 è il vettore derivata 

V ,t,(to) = </>' (to). (2.9) 
La velocità scalare è il numero 

v,t,(to) = 11</>'(to)II • 

Se la curva cui ci si riferisce è chiaramente sottintesa, scriveremo semplicemente V (to) 
e v(to) . 

Dato che non tutte le funzioni sono derivabili, non t utte le curve hanno velocità: ad 
esempio la cuva </>(t) = (t, ltl) non è derivabile per t = O. Vediamo alcuni esempi di 
curve nel piano. 

Esempio : se </>(t) = (t , 2t + 1) , la curva ha come sostegno la retta di equazione y = 
2x + 1 ; questa viene percorsa con velocità 

</>'(t) = (1, 2), 

dunque muovendosi costantemente nella direzione del vettore (1, 2) , e velocità scalare 
costante 11(1, 2)11 = J5. Invece la curva 1/J(t) = (7t, 14t + 1) ha lo stesso sostegno, ma 
la sua velocità è 

'1/J'(t) = (7, 14) : 

dunque il movimento è sempre nella direzione di prima, dato che (1, 2) e (7, 14) hanno 
la stessa direzione e lo stesso verso, ma la velocità scalare è 11(7, 14)11 = 117(1, 2)11 = 7J5, 
cioè sette volte la precedente. Infine, la curva w(t) = (t3 + 3t, 2t3 + 6t + 1) ha anch'essa 
50stegno la retta di equazione y = 2x + 1 , ma il vettore velocità è 

w'(t) = (3t2 + 3, 6t2 + 6) = 3(t2 + 1) • (1, 2). 

Dunque ( dato che t2 + 1 > O ) il moto si svolge nella stessa direzione di prima, ma con 
,·elocità scalare variabile 

llw'(t)II = (3t2 + l)VS. 

La velocità scalare è minima per t = O , tende all' infinito sia per t --+ +oo che per 
f--+ -00. 

' 
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Lo studio della velocità permette di avere informazioni sul modo in cui una curva 
percorre il suo sostegno: proviamo a rielaborare l'esempio precedente, esaminando altre 
due curve che hanno lo stesso sostegno di prima. 

Esempio: la curva cp(t) = (t3 , 2t3 + 1) ha velocità 

<p1 (t) = 3t2 
· (1 , 2) , 

pertanto per t = O transita nel punto cp(O) = (O, 1) con velocità scalare nulla. La curva 
1/;(t) = (t3 

- 3t, 2t3 
- 6t + 1) ha vettore velocità 

1/;'(t) = 3(t2 
- 1)(1, 2) 

il coefficiente t2 
- 1 non è sempre positivo, e 1/; si muove nel verso del vettore (1 , 2) se 

t < - 1 o t > 1, ma si muove nel verso opposto, cioè nel verso del vettore (- 1, -2) , se 
- 1 < t < 1. Allora, visto che 1/;(-1) = (2,5) e 1/;(1) = (-2,-3) , la curva 1/; percorre 
la retta di equazione y = 2x + 1 da sinistra verso destra fino a (2, 5) per t < - 1, poi 
per - 1 < t < 1 torna indietro, muovendosi verso sirùstra fino a (- 2, -3) , e di qui poi 
riparte verso destra per t > 1 . 

Osservazione : dall'esempio precedente si può dedurre che la velocità non dipende solo 
dal sostegno della curva, m~alla curva stessa, anzi, cambiando parametrizzazione a una 
curva se ne cambia la velocità. Ad esempio se 

1/;(t) = </>(2t) 

abbiamo 

V v,(t) = 1/;'(t) = cp'(2t) · 2 = 2V c1>(2t), 

quindi in ogni punto del comune sostegno la curva 1/; t ransita con velocità doppia. 

È spesso importante sapere in che direzione si sta muovendo una curva, ma negli 
istanti in cui ha velocità scalare nulla ( cioè il vettore velocità è il vettore nullo) questa 
direzione non può essere definita. 

Definizione: sia <p una curva, derivabile in to con cp'(to) -=/- O . Il vettore tangente 
alla curva in t0 è il vettore cp'(to), e il versore tangente è 

cp'(to) 
T c1>(to) = 11</J' (to) 

Se è chiaro di che curva si parla, scriveremo semplicemente T (t0) . 

Il versore tangente indica direzione e verso in cui la curva passa per cp(to) nell' i­
stante to . Se una curva passa più volte per lo stesso punto del suo sostegno, naturalmente 
ci può passare con versori tangenti diversi, come era il caso per la curva 1/; dell'esempio 
precedente. Tuttavia questi versori tangenti permettono di individuare le direziorù se­
condo le quali la curva passa per il punto in questione (che naturalmente si riducono a 
una direzione sola se la curva passa una sola volta per il punto). 
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Definizione : sia </> una curva, derivabile in t0 con <t>'(to) f= O, sia E il sostegno di 
</> e siano A = </>(to) e V = </>' (to) . Se </>(t) = A solo per t = to , la retta tangente 
al sostegno E nel punto A E E è quella che passa per A con vettore direzione V , 
cioè la retta 

t >--+ A + tV = </>(to) + t</>' (to) . 

Osservazione: per funzioni da un intervallo [a, b] di JR a valori in ]Rn con n > 1 (cioè 
per curve in lRn ) non vale in generale l'analogo del Teorema di Lagrange. In 
una dimensione, quest 'ultimo si può enunciare dicendo che c'è un punto in cui la retta 
tangente al grafico è parallela a quella che congiunge gli estremi, e questo non è più vero 
già per curve a valori in JR2 . Infatti la curva 

</>(t) = (cost,sen t), O S t S 21r , 

che ha come sostegno una circonferenza nel piano (x, y) , ha grafico 

{(t ,cos t ,sent) : O S t S 21r}, 

che è un'elica cilindrica. Gli estremi del grafico sono 

(O, 1, O) e (21r,l,O), 

quindi la retta che li congiunge è parallela all'asse te dunque al vettore (1, O, O) , ma il 
vettore tangente al grafico è 

(1, - sen t , cos t) 

che non è mai parallelo a (1, O, O) . 

Osservazione : se invece del grafico di una curva </> consideri.;~mo il suo sostegno, il 
Teorema di Lagrange, nella forma 

</>(t2) - </>(t ,) 
t2 - t1 

è parallelo a </>' ( ç) (2.10) 

per un opportuno ç E]t1, t 2[ è invece ancora valido per curve </> derivabili ed a valori in 
~

2 con vettore derivata mai nullo, se </>( t 1 ) f= </>( t 2) , ma attenzione: questo vale solo 
per la dimensione due! Infatti, poniamo 

e sia N f= O un vettore perpendicolare ad A . Ogni vettore perpendicolare ad N 
risulta parallelo ad A , dato che siamo in dimensione due. Poniamo 

g(t) = (</>(t) - </>(ti))· N , 

la funzione g è continua e derivabile, si annulla agli estremi pertanto per il Teorema di 
Rolle 1.43 la sua derivata si annulla in qualche punto ç E ]t1 , t2 [ , ma 

g'(t) = <t>' (t) · N 

perciò <I>' ( ç) è perpendicolare ad N e quindi parallelo ad A . 
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Vediamo altri esempi importanti. 

Esempio : siano 
</>: [0,27r] ➔ JR2 , <f>(t) = (cost,sent), 

1/J: [0,7r] ➔ JR2 , 1/J(t) = (cos(2t) ,sen(2t)). 

Ciascuna delle due curve percorre una volta la circonferenza unitaria, però 

</>' (t) = (- sen t, cos t) ⇒ vcp(t) = 1 , 1/J' (t) = (- 2 sen(2t), 2 cos(2t)) ⇒ v,t,(t) = 2 . 

Osserviamo che per ciascuna delle due curve il vettore tangente in qualunque punto t0 

è tangente alla circonferenza sostegno della curva. 

Se una curva ha in qualche punto velocità nulla, si possono verificare fenomeni strani 
e a prima vista sorprendenti; ricordiamo che "avere velocità" significa "essere derivabile", 
quindi dalla teoria delle funzioni di una variabile ci si aspetta che una curva derivabile 
sia in un certo senso liscia, priva di spigoli. Questo è vero se si considera il grafico 
della curva, ma non se si vuol dire lo stesso del suo sostegno, come mostra il prossimo 
esempio. 

Esempio: intanto osserviamo che la funzione f (t) = it3 1 è derivabile su tutto JR: questo 
è chiaro per t =/=- O , e facendo il limite del rapporto incrementale abbiamo 

J'(O) = lim J(t) - f(O) = lim l!:l = lim t
2

itl = lim titl =O. 
l->0 t l->0 t t->0 t t->0 

Possiamo quindi scrivere la sua derivata come 

f'(t) = { - 3t2 set~ O = 3titl. 
3t2 se t ~ O 

Adesso consideriamo la curva definita su JR come 

per quanto detto sopra, essa è derivabile con derivata 

</>'(t) = { (3t
2
, - 3t

2
) 

(3t2' 3t2) 

set< O 
- = (3t2,3titl). 

set~ O 

Notiamo che la velocità è nulla per t = O . Il grafico di </> è un sottoinsieme di R.3 , che 
come si vede è liscio. Invece il sostegno della curva derivabile </> è il grafico (sottoinsieme 
di JR2 ) della funzione lxi , che è tutt'altro che "liscio". Che è accaduto? Per t =/=- O la 
curva </> ha rispettivamente velocità e versore tangente 

v(t) = 3t2 V2, r (t) = { (1/\!'2, - 1/\!'2) 
(1/ v'2, 1/ v'2) 

se t< O 

se t>0: 

dunque </> scende lungo il ramo sinistro del grafico di lxl , ma rallenta fino ad arrivare 
per t = O in (O, O) con velocità nulla: lì può cambiare direzione (tanto la velocità è 
nulla) senza perdere la derivabilità, e risalire lungo il ramo destro del grafico di lxi . 
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Questo fenomeno non si presenta se la velocità non si annulla mai, ecco perché la 
prossima classe di curve è importante. 

Definizione : una. curva. <p defìnita. su un intervallo si dice regolare se è deriva.bile in 
ogni punto con derivata. sempre diversa. da. zero. 

Talvolta si parte da un insieme E , in un certo senso "curvilineo", e si vorrebbe 
determinare la retta tangente ad E in un suo punto A . P er far ciò si deve cercare una 
curva che abbia come sostegno E, o quantomeno la porzione di E che sta in un intorno 
del punto A , che passi per A una sola volta e abbia in quel punto vettore tangente non 
nullo. Non sempre ciò è possibile, e in tal caso non esistono "regole" generali. Vediamo 
alcuni esempi. 

Esempio : consideriamo il grafico E della funzione JixT : a occhio, questo ha una 
cuspide nell'origine, con tangente verticale. Tuttavia, si tratta di un caso anomalo, dato 
che i due rami di curva che confluiscono nell'origine, visti da vicino, non somigliano per 
nulla alla retta asse delle ordinate, ma piuttosto a due esemplari della semiretta semiasse 
positivo delle ordinate. Difatti è impossibile trovare una parametrizzazione della curva 
che abbia velocità non nulla quando passa per l 'origine. Possiamo però dire che la curva 

</J+ : [O, 1]-+ JR2 
, 

passa per t = O in A = (O, O) con velocità (O, 1) e parametrizza il (primo pezzo del) 
ramo destro del grafico E , il quale dunque ha semiretta tangente 

t H O+ t(O, 1) = (O, t) , t '2 O 

mentre la curva 
</J _ : [O, 1] -+ 1R2

, </J_(t) = (-t2 ,t) 

passa anch'essa per t = O in A = (O, O) con velocità (O, 1) e parametrizza il (primo 
pezzo del) ramo sinistro del grafico E , il quale d unque ha la stessa semiretta tangente 
di prima. Possiamo dunque dire che E in O ha semiretta tangente il semiasse positivo 
delle ordinate. 

Esempio : consideriamo il grafico E della funzione 

x + !xl +x3
; 

il ramo di grafico a destra dell'origine si può parametrizzare con la curva 

</J+ : [O, 1] -+ 1R2 
, 

che passa per t = O in A = (O, O) con velocità V + = (l , 2) . Allora il ramo destro del 
grafico E ha semiretta tangente 

t H O+ t(l, 2) = (t, 2t) , t '2 o; 
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invece il ramo di grafico a sinistra dell'origine si può parametrizzare con la curva 

<j)_ : [O, 1] -t JR2 
, <j)_(t) = (- t, - t3

) 

che passa per t = O in A = (O, O) con velocità V _ = (-l , O). Quindi il ramo sinistro 
del grafico E ha semiretta tangente 

t H O+t(-1,0) = (-t,0), t ~ o ' 

il semiasse negativo delle ascisse. Diciamo in tal caso che E ha nell'origine un punto 
angoloso, dato che ha due semirette tangenti che formano tra loro un angolo né nullo 
né piatto. 

Esempio : consideriamo la curva 

<P:] - 1r/2, 1r/2[-t JR2
' <j)(t) = (tan t - v'2 sen t , 1 - v'2 cos t) . (2.11) 

Questa passa due volte per l'origine, prima per t = -1r / 4 e poi per t = 1r / 4 . Osserviamo 
che 

<j)' (t ) = (1 + tan2 t - v'2 cos t, v'2 sen t) 

e pertanto 
<j)1 (-1r/4) = (1, - 1), <1>'(1r/4) = (1, 1) 

allora durante il primo passaggio la curva copre un arco tangente alla retta 

t H (O, O) + t( l , - 1) = (t, -t) , 

vale a dire la bisettrice del secondo e quarto quadrante, mentre durante il secondo pas­
saggio l'arco coperto dalla curva è tangente alla retta t H (t, t) , la bisettrice del primo 
e terzo quadrante. Dunque il sostegno di <P non ha retta tangente nell'origine, ma è 
composto di due archi con rette tangenti diverse. È interessante vedere come è fatta 
questa curva: l'ordinata 

<l>v(t) = 1 - v'2 cost 

è compresa fra 1 (valore mai raggiunto nell' intervallo di definizione) e 1 - \1'2, decresce 
per -1r / 2 < t ::; O e cresce per O ::; t < 1r /2 ; inoltre tende a 1 per t -t ±1r / 2 . Invece 
l'ascissa 

<Px ( t) = tan t - v'2 sen t 

tende a -oo per t -t - 1r / 2 e tende a +oo per t -t 1r /2 : dunque il sostegno di <P ha 
come asintoto orizzontale la retta di equazione y = l . La derivata dell'ascissa è 

, 1n 1 1n 1 - v'2 cos3 t 
<f>x(t) = 1 + tan2 t - v2cost = -

2
- - v2cost = 

2 cos t cos t 

posto per comodità 
to = arccos(l/ ~) , (2.12) 
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Osserviamo che cos(t0 ) è maggiore di 1/ V2, quindi t0 è compreso fra O e 1r/4, e 
perciò 

</>~(to) > O 

mentre </>~(-t0 ) < O. Allora indicato con C il numero positivo </>~(to) abbiamo 

</>' (- to) = (O, - C) , </>' (to) = (O, C) : 

dunque per t < - 1r / 4 la curva scende, passa per l'origine con pendenza - 1 quando 
t = - 1r / 4 , poi per t = - to ha tangente verticale e vettore tangente che punta verso 
il basso, quindi torna verso sinistra e raggiunge per t = O il suo punto più basso, dove 
ha tangente orizzontale e (calcolatelo) vettore tangente che punta verso sinistra. Da 
qui inizia a risalire (la curva è simmetrica rispetto all'asse delle ordinate) per formare un 
cappio, prima ripassando (per t = to ) per un punto in cui ha tangente verticale, stavolta 
puntando verso l'alto, poi (per t = 1r/ 4 ) ripassa per l'origine ma con vettore tangente 
(1, 1) e infine tende all'asintoto orizzontale . Dall 'espressione parametrica (2.11) potete 
provare a rappresentare il sostegno della curva <p come luogo di zeri di una funzione di 
due variabili; con un po' di manipolazioni si ottiene l'equazione 

(x2 + y2)(l _ y)2 = 2y2 . 

Questo nodo si descrive, usando le coordinate polari in cui consentiamo anche r < O , 
con l'equazione molto più semplice 

Calcoliamo esplicitamente 

1 r =--h. 
sen 0 

ll ,1,.'( )ll2 (l - vf2cos
3t) 2 

2 ,;,t = 2 + 2sent 
cos t 

(2.13) 

e proviamo che non vale mai zero: essendo una somma di quadrati, si annulla se e solo se 

sen2t = l - V2cos3t = O 
cos2 t ' 

ma in ] - 1r/2,1r/2[ 

sen 2 t = O ===} t = O ===} 

pertanto 

ll<t>'(t)II i- o 

f' il cappio è dunque una curva regolare. 

1 - V2 cos
3 

t = 1 _ V2 i- 0 , 
cos2 t 

(2.14) 
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Per una curva rappresentata in coordinate polari dall'equazione r = h(0) , anche 
il vettore velocità può essere espresso in coordinate polari; usando l'angolo 0 come 
parametro abbiamo 

x(0) = h(0)cos0 , y(0) = h(0) sen 0 , 

e dunque 

x'(0) = h'(0) cos0 - h(0) sen0 , y'(B) = h'(B) sen 0 + h(0) cos 0. 

Pertanto, in coordinate polari, la velocità scalare ha l'espressione 

v(0) = J(x'(0))
2 + (y'(0))

2 
= J(h(0))

2 + (h'(0))
2

. (2.15) 

Esempio: la spirale di Archimede (A2.1), la cui equazione polare se prendiamo a = 1 e 
b = O è semplicemente r = 0 , viene percorsa con velocità scalare 

v(0) = J1 + 02 . 

Analogamente al caso cinematico, introduciamo l'accelerazione di una curva: come il 
vettore velocità indica la variazione della posizione per unità di variazione del parametro 
(intesa come limite di (</J(t) - cp(to))/(t - t0 ) per t-+ t0 ), così il vettore accelerazione 
indica la variazione della velocità per unità di variazione del parametro (~ es. 2.5). 

D efinizione : se la curva </) : I -+ Rn è derivabile due volte in to , il vettore accele­
razione di </) in to è 

Acp(to) = V 4>(to) = <t/'(to). 

Se è chiaro di che curva si tratta, scriveremo semplicemente A (to) . 

Esempio : la curva 
cp(t) = (2t - 1, 6t + 5) 

ha velocità costante V = (2, 6) e pertanto accelerazione nulla (al variare di t il punto 
cp(t) si muove di moto rettilineo uniforme sulla retta di equazione y = 3x+8 ). La curva 

1/J(t) = (t2
, 1 + 2t2) 

ha vettore velocità V (t) = (2t, 4t) e vettore accelerazione A(t) = (2, 4) : il moto è 
uniformemente accelerato ( e rettilineo, dato che il sostegno di 1/J è la retta di equazione 
y = x + 1 ) . La curva 

w(t) = (t, 1 + t2
) 

ha vettore velocità V (t) = (1, 2t) e vettore accelerazione A (t) = (O, 2) . Anche in questo 
caso l'àccelerazione è costante, ma il moto non è rettilineo (si svolge su una parabola). 
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Esempio : la curva 
<f>(t) = {4cos(t/2), 4sen(t/ 2)) 

percorre la circonferenza di raggio 4 centrata nell'origine, e nell'istante t ha 

posizione {4cos(t/2), 4sen(t/ 2)) 

vettore velocità {- 2sen(t/ 2), 2cos(t/2)) 

vettore accelerazione {- cos(t/2), , - sen(t/2)) 

la velocità scalare è costante, ma il vettore velocità cambia direzione e questo produce 
una accelerazione. In questo caso è una accelerazione centripeta, cioè "verso il centro", 
dato che il vettore A(t) applicato nel punto posizione <f>(t) punta verso il centro della 
circonferenza. 

Esempio : proviamo a descrivere la traiettoria di una pietra lanciata dall'origine con 
velocità iniziale v0 (scalare) ed angolo di lancio a. Rappresentiamo la pietra come un 
punto materiale di massa m che si muove nel piano (x, z) e supponiamo per semplicità 
che la sola forza in gioco sia la gravità, che assumiamo costante (ipotesi ragionevole per 
il lancio di una pietra ma non per lanci balistici a grande distanza) ; in altri termini, 
trascuriamo la resistenza dell'aria, che invece nella realtà ha effetti notevoli, soprattutto 
a velocità elevate. 

Con le semplificazioni descritte sopra, la pietra avrà come traiettoria una curva <f>(t) 
nel piano (x, z), con vettore il accelerazione costante, uguale a (O, - g). Dunque usando 
(2.2) avremo per il vettore velocità 

V(t) = V (O) + ht A(s) ds = vo(cosa, sena)+ t(O, - g) , 

quindi per la traiettoria, usando ancora (2.2) e ricordando che la pietra parte dall'origine, 

. t2 
<f>(t) = 2 (0,-g)+vot(cosa,sena). 

Per rappresentare il sostegno della curva <f>(t) tramite le variabili cartesiane x, z seri-
viamo 

x = votcosa, 
t2 

z = -g2 +votsena , 

da cui (ricavando t in funzione di x dalla prima uguaglianza) si ottiene che il sostegno 
di <f> ha la rappresentazione cartesiana tramite l'equazione 

g(l + tan2 a) 2 z = - 2 x + x tan a , 
2v0 

che è una parabola, nel piano x, z, passante per l'origine. Possiamo calcolare la gittata 
L di un tale lancio, cioè la distanza dall'origine del punto in cui la pietra tocca il suolo, 
e troviamo 

L = 2v5 tana = v5 sen(2a) _ 
g(l + tan2 a) g 
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A questo punto è un facile esercizio determinare l 'angolo a per cui la gittata è massima: 
si trova (verificatelo) che tale angolo è 1r / 4 e dunque 

vJ 
Lmax = - · 

g 

Queste considerazioni cambiano notevolmente se includiamo tra le forze in gioco anche 
la resistenza dell'aria; torneremo su questo esempio più avanti, nella Sezione 5.6. 

2.5 - Curvatura 

A differenza di velocità e accelerazione, che si richiamano alla legge di un moto e sono 
fortemente dipendenti dalla parametrizzazione della curva, cercheremo di introdurre dei 
concetti che misurano "quanto è curvo" il sostegno di una curva, e quindi sono indipen­
denti dalla parametrizzazione. 

Se in auto percorriamo una strada con due curve ( curve nel senso delle svolte, non 
delle funzioni continue da JR a valori in JR.n ... ) di cui la prima ha raggio di 4 metri e 
l'altra di 100, è chiaro che la prima è "molto più curva" della seconda, in quanto per la 
seconda basta piegare un poco il volante, mentre per la prima bisogna ruotarlo di un giro 
buono. Dunque una curva stretta ha raggio piccolo, e diciamo che è molto curva, mentre 
di una curva di raggio grande diciamo che è poco curva. Partendo da questa osservazione 
e dai prossimi esempi, introdurremo il concetto di curvatura. 

Esempio : la curva 
</> : [O, 21r] -t JR.2 

, </>( t) = ( cos t , sen t) 

ha le seguenti proprietà: 
1) il suo sostegno è una circonferenza di raggio 1 ; 
2) </>'(t) = (- sen t , cost) , v(t) = 1 , r (t) = (-sent,cost); 

3) r '(t) = (-cost,-sent), ll r '(t)II = 1, ll~g; 11 = 1. 

Esempio : la curva 

'1/J(t) = (cos(3t),sen(3t)) 

ha le seguenti proprietà: 
1) 
2) 

il suo sostegno è una circonferenza di raggio 1 ; 
'1/J'(t) = 3(-sen(3t),cos(3t)), v(t) = 3 , r (t) = (-sen(3t),cos(3t)); 

3) r '(t) = 3(-cos(3t), - sen(3t)), ll r '(t) II = 3 , 
11:'gjll = 1. 
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Esempio : la curva 

w : [O, 21r] ➔ JR2 
, w(t) = (5 cos t, 5 sen t) 

ha le seguenti proprietà: 
1) il suo sostegno è una circonferenza di raggio 5 ; 
2) w' (t) = 5(- sen t, cos t) , v(t) = 5 , T (t) = (- sen t, cos t) ; 

3) T'(t) = (-cost, - sent), jjT'(t) ll= l II T'(t)II ~ 
' v(t) 5 

Osserviamo che in tutti i casi il vettore T
1(t0 ), applicato nel punto della curva cor­

rispondente a to , punta verso il centro della circonferenza sostegno della curva ( e tor­
nando al paragone automobilistico indica la direzione verso cui deviare l'auto per seguire 
la circonferenza:). Siamo portati a dare allora la seguente definizione della curvatura. 

D efinizione : se una curva </J è derivabile due volte nel punto t con </J'(t) =f= O, 
chiamiamo vettore curvatura nel punto t il vettore 

K(t) = vtt) T
1
(t), 

chiamiamo c urvatura scalare il numero 

k(t) = IIK(t)II = IIT'(t)II 
v(t) 

e se k(t) =/= O chiamiamo raggio di curvatura il numero 

1 
p(t) = k(t) . 

Esplicitando l'espressione di T
1 abbiamo quindi per la curvatura l'espressione 

</J" ( t) 11 </J' ( t) 11
2 

- </J' ( t) ( </J' ( t) • </J" ( t)) 
K(t) = 11</J'(t)ll4 

A (t)IIV (t)ll 2 
- V (t)(V (t) · A (t)) 
v 4 (t) 

e di conseguenza, per la curvatura scalare, 

✓11</J' (t) 11 2 114>" (t) 11 2 - ( 4>' (t) • 4>" (t) )2 

k (t) = ll4>'(t)113 

J 11 v (t)ll 2 
- II A (t)ll2 - (V (t). A(t))

2 

v 3 (t) (2.16) 
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Ricordando la formula (1.14) abbiamo anche, per le curve in IR3 
, 

k() = \I V(t ) I\ A (t) \I 
t v3(t) . 

Per curve piane, cioè se <f> : I -+ IR2 , indicate le componenti di <f> con 

<f> = ( <Px, </>y) , 

ricordando che v = ✓(</>~)2 + (</>~) 2 il vettore curvatura è dato da 

- ( </>~(</>~</>~ - <1>i<1>~) -</>~(</>~</>~ - <1>i <1>~) ) 
"' - v3 , v3 , (2.17) 

mentre per la curvatura scalare si ha 

k = l</>~<t>i - </>~</>~I 
3 . 

V 

Esempio : percorriamo una ellisse di semiassi a > b con la curva 

<f> : [O, 21r] -+ IR2 
, <f>( t) = ( a cos t, b sen t) ; 

abbiamo 

V(t) = (-asent,bcost), A (t) = (-acos t ,-bsent) 

e quindi 

V (t) • A(t) = (a2 
- b2

) sen t cos t . 

Fig. 2.10 : la circonferenze "meglio" tangenti hanno raggio r = p = l /k 
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Sostituendo nella formula (2.16), si semplifica quasi tutto e la curvatura scalare è 

k(t) = ab = ab 
v3 ( Ja2 sen2 t + b2 cos2 t )

3 

Per vedere dove la curvatura è minima o massima, dato che tutto è positivo e il nume­
ratore è costante, studiamo dove è massimo o minimo il denominatore: la funzione x 312 

è strettamente crescente, perciò anziché 

( J a2 sen2 t + b2 cos2 t )
3 = (a2 sen2 t + b2 cos2 t)312 

basta vedere dove è massima o minima la funzione f (t) = a2 sen2 t + b2 cos2 t . Si vede 
subito che 

J' (t) = 2(a2 - b2) sen t cos t = (a2 
- b2) sen(2t) 

e quindi 

rninf = J(O) = f(1r) = b2
, ma:xf = f(1r/2) = f(31r/2) = a 2

, 

dato che avevamo indicato a > b. Allora nei poli destro e sinistro (±a, O) , che vengono 
raggiunto da </>(t) per t = O e t = 1r, la curvatura risulta massima, col valore 

ab a 
k(O) = (b2)3/2 = b2 , 

mentre nei poli superiore e inferiore la curvatura è minima, e vale b/a2 . In particolare, 
nei poli dell'ellisse i raggi di curvatura sono minimo (dove la curvatura è massima) e 
massimo (dove è minima) e valgono rispettivamente 

b2 
p(O) = p(1r) = - , 

a 

a2 
p(1r/2) = p(31r/2) = b. 

Vediamo ora come si esprime la curvatura per una curva cartesiana, cioè grafico 
{y = f(x)} di una funzione f sufficientemente regolare. Usando la variabile x come 
parametro abbiamo </>(x) = (x,f(x)) e dunque, usando (2.17), si trova 

f"(x) / 
K(x) = (1 + lf' (x)l2)2 ( - f (x), 1) , 

k(x) = lf" (x)I 
(1 + lf'(x)l2)3;2 

Ad esempio, per la parabola di equazione y = x 2 , si trova 

2 
K(x) = (1 + 4x2)2 (-2x, 1), k(x) = --,---

2~= 
(1 + 4x2)3/2 

Analogamente, per una curva espressa in coordinate polari dall'equazione r = h(B) , 
conviene usare l'angolo 0 come parametro, e si ha </>(0) = (h(B) cos 0, h(0) sen 0) . Sem­
pre usando {2.17) ed usando l'espressione complessa ei8 in luogo di (cos0,sen0), si 
ricava 

hh" - h2 - 2h'2 . 
K(0) = (h2 + h'2 ) 2 e'

8
(h - ih'), 

Jhh" - h2 - 2h'2 J 

k(B) = (h2 + h'2)3/2 
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Ad esempio, per la spirale archimedea di equazione r = 0 si ha 

- = 2 + 02 i0(· 0) 
"' (1 + 02)2 e i - , 

2 + 02 1 
k = 1 + 02 = 1 + 1 + 02 , 

mentre per la spirale logaritmica di equazione r = e- 0 si ha 

_ l + i ( - Hi)0 
"' - - --e 2 , 

Il reciproco della curvatura è il raggio di curvatura. Tracciata una curva, che risulta 
tangente in un dato punto P a una retta r , le circonferenze tangenti a r in P sono 
infinite, e quindi sono tutte tangenti alla curva. Tuttavia fra esse ce n'è una che è tangente 
alla curva "meglio" delle altre. Questa è la circonferenza che ha come raggio il raggio 
di curvatura della curva in P - non scendiamo in dettagli, ma per il grafico di una 
funzione di una variabile abbiamo visto che la parabola che meglio si adatta al grafico di 
f nel punto di ascissa x0 è il grafico del polinomio di Taylor di grado 2 di f centrato 
in x0 : qui il fenomeno è analogo (~ es. 2.9). 

2.6 - Lunghezza di una curva e parametro d'arco 

Dimentichiamo per poche righe tutto quel che si è detto sulle curve, e torniamo all'accezio­
ne naif di un tratto di penna su un foglio. L'unico tipo di tratto di cui sappiamo dire 
esattamente la lunghezza (anche "lunghezza" va preso nel senso intuitivo, in attesa della 
definizione precisa) è il segmento: con un righello, leggiamo la distanza fra i punti iniziale 
e finale. Ricordiamo che la lunghezza PQ del segmento PQ che ha estremi nei punti 
P , Q E IRn è la norma IIQ - PII del vettore differenza. Per la verità possiamo misurare 
esattamente anche la lunghezza di un altro tipo di curva: sono le poligonali, cioè curve 
composte da un numero finito di segmenti adiacenti ( cioè tali che il punto finale di 
ciascuno sia il punto iniziale del prossimo). Chiaramente, basta misurare la lunghezza di 
ogni segmento, e poi sommare i risultati. I punti estremi dei segmenti che la compongono 
si chiamano i ve rtici della poligonale. 

Sempre con un righello a disposizione, come facciamo a dire qual è la lunghezza di 
un tratto curvilineo ì tracciato sul foglio, che parte da un punto P e termina in un 
punto Q ? Certamente non misurando la distanza fra punto iniziale e finale, perché 
questa è certamente minore o uguale della lunghezza del tratto ì , dato che il segmento 
PQ è il percorso più breve fra P e Q , e può essere anche molto più breve: basta che 
ì sia "molto curva" e si discosti quindi parecchio da PQ . Osserviamo che se invece ì 
è "molto poco curva" rispetto a PQ , la lunghezza del segmento non differisce molto da 
quella della curva. 
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Fig. 2.11 : la poligonale approssima bene la curva dove questa è quasi rettilinea 

Utilizzando le osservazioni contenute nei paragrafi precedenti , quello che faremmo 
nella pratica è approssimare ì con una poligonale, scegliendo i vert ici in modo che 
in ciascun tratto la curva ì sia "somigliante" al segmento corrispondente: dove ì 
è poco curva basteranno pochi vertici per ottenere una poligonale già somigliante a 
ì , dove è molto curva occorreranno molti vertici, per seguire meglio il corso di ì . 
Calcolando la lunghezza della poligonale, il risultato che otterremo sarà certamente una 
approssimazione per difetto della vera lunghezza di ì, dato che in ogni tratto fra due 
vertici consecutivi V , W della poligonale abbiamo calcolato la lunghezza del segmento 
VW e non quella dell'arco di curva fra gli estremi V e W . 

Per ottenere una approssimazione migliore, potremo utilizzare una poligonale che 
segua in modo più accurato la curva ì , aggiungendo molt i vertici. Vediamo ora come 
riproporre il tutto per le curve come definite nella Sezione 2.2. 

Se <p è una curva definita sull' intervallo [a, b] , i vertici di una delle poligonali che 
abbiamo considerato devono essere punti del sostegno della curva, cioè valori di <p in 
opportuni punti di [a, b] . Dunque scegliamo k+ 1 punti (avremmo potuto dire k punti, 
:na allora nel seguito avremmo avuto molti k - l da scrivere) 

a = to < ti < t2 < · · · < tk = b 

aell' intervallo [a, b] , poniamo 

P o = </J(to) , ... ' 
consideriamo la poligonale di vertici P O, P 1 , .. . , P k : la lunghezza di questa poligonale 

risulta essere 
.e(to, t1, . .. , tk) = P oP 1 + P 1P 2 + · · · + P k-1Pk 

k -=--=- k 
= L P i-lp i = L II P i - P i-ili 

i= l i=l 

k 

= L 11</J(ti) - </J(ti_ i)II. 
i = l 

Conformemente alle riflessioni viste prima, definiremo la lunghezza della curva <p come 
.a migliore approssimazione cui possiamo giungere ( chiaramente dal basso) con una poli­
~onale di questo tipo. 
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D efinizio ne : data una curva </>: [a, b] -+ !Rn , la lunghezza di </> è 

f(</>)= sup f(to , t1,- -- , tk) 
a= to<t, <t2 <·· ·<tk=b 

k 

sup L 11</>(ti) - </>(ti- dli 
a= to<ti <t2 <···<t.=b i=l 

dove k ~ 1 varia in f::! . 

La lunghezza di una curva è allora l'estremo superiore delle lunghezze di tutte le 
poligonali che si possono costruire usando come vertici dei punti </>(ti ) per i quali </> è 
passata in istanti ti in ordine crescente. Eseguire materialmente questa operazione 
è chiaramente impossibile, ma ci ricorda la costruzione dell' integrale di Riemann vista 
nel corso di Analisi Matematica 1, e ci suggerisce che potrebbe entrarci un integrale. Per 
dare una giustificazione del prossimo risultato, ricordiamo 19' (1.47) che per una funzione 
f di una variabile che ha derivata continua su un intervallo cui appartengono i punti a 
e /3 

J(/3) - f(a) = 1f3 J'(t) dt . 

Ricordando (2.2), se la curva </> ha derivata continua abbiamo allora 

</>(ti) - </>(ti - 1) = lt, <t>'(t) dt. 
l i- t 

Questo vettore, in generale, non dice molto sulla lunghezza dell 'arco fra q,(ti- t) e <f,(ti) : 
ad esempio se fra ti- I e ti la curva percorre una circonferenza e arriva allo stesso punto 
da cui era partita si ha 

<t>(t; ) - </>(ti- 1) = 0 . 

Per fare questo, però, il vettore tangente deve cambiare molto, e questo è impossibile 
se </>' è continua e l' intervallo [ti-l,ti] è piccolo. Se (per trattare un caso estremo) in 
questo intervallo </>' fosse un vettore costante, 

</>' (t) = V in [ti-I , ti] , 

avremmo 

l t · 1t· • q,'(t) dt = . V dt = (t; - t;_ 1)V 
t i - 1 ti- 1 

e quindi 
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Fig. 2.12 : tra l;- 1 e t ; il vettore tj,' è circa costante 

Questo è vero solo se nell' intervallino in questione il vettore tangente è costante 
quindi lì la curva percorre un segmento con velocità costante), ma è ragionevole che 

se </>' è continua si possa suddividere il dominio di </> in intervalli tanto piccoli che 
la differenza fra </>' e una costante diventi trascurabile. Questo si può formalizzare, 
ottenendo il ris ultato fondamentale sulla lunghezza delle curve. 

Teorema 2.1 : se </>: [a, b] -+ 1Rn è di classe C1 , la lunghezza di <J> è 

f(</>) = 1b 11 </>' (t)II dt. (2.18) 

DIMOSTRAZIONE : non manca molto a rendere formali le considerazioni precedenti. Con­
,ideriamo per il momento una qualunque poligonale inscritta nella curva (poi ne sceglie­
remo una particolare); usando (2.1) abbiamo 

f(to,t1, ... ,tk) = t 11</>(ti) - </>(ti-1)11 = t 111t• </>'(t)dtll 
i=l i = l t , - 1 

$ t 1t; 11 </>'(t)II dt = 1b 11 </>' (t) II dt . 
i = l t,-1 a 

Il termine a destra (finito o infinito) è un maggiorante di tutte le lunghezze delle poli­
~<mali, quindi è maggiore o uguale della lunghezza di </> per definizione di lunghezza: 
bbiamo provato la disuguaglianza 

f(</>) $1b ll<l>'(t)II dt. 

erviamo che la funzione 11 </>'II è anch 'essa continua perché composizione della funzione 
nntinua </>' con la distanza - (1.34); in particolare è limitata su [a, b] , quindi il secondo 
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membro di questa formula è un numero reale, e non +oo . Ne consegue che <P ha 
lunghezza finita. 

Sappiamo che cp' è continua sull' intervallo chiuso e limitato [a, b] , quindi per il 
Teorema di Heine-Cantor 1.21 è uniformemente continua, vale a dire 

'vt: > o, :38 > O : [lt - t'I <o ⇒ ll <P'(t) - cp'(t')II < t:] . 

Fissiamo t: > O , teniamo presente il numero o che ci viene dalla formula precedente e 
scegliamo una poligonale tale che i punti t ; siano vicini, e precisamente tale che 

t ; - t i-1 < 0 · 

Allora abbiamo per ogni t E [t;-1, t;] 

lt - t;I < o ==⇒ ll<P'(t) - cp'(t;)II < t: . 

Ora per la disuguaglianza triangolare Q" (1.4) se t E [t;- i , t;] 

ll <P' (t) 11 ~ ll <P' (t) - cp' (t;)II + ll <P' (t;) 11 < t: + ll <P' (t;) 11 

e quindi 

ili ll <P'(t)II dt ~ t:(t; - t;-1) + l t, ll<P'(t;) II dt 
ti - t t, - 1 

= t:(t; - t;-1) + ll<P'(t;)ll(t; - t;_i) 

= t:(t; - t;-1) + 111t· cp'(t;)dtll 
t,-1 

dato che ll <P' (t;)JI è una costante. A questo punto, scrivendo 

<t>'(t;) = [cp'(t;) - cp' (t)] + cp'(t) ) 

e usando di nuovo la disuguaglianza triangolare e (2.1) 

ll l t~I cp'(t;) dtll = lllt~l [cp'(t;) - cp'(t)] dt + lt~l cp'(t) dtll 

~ lllt~l [cp'(t;) - cp'(t)] dtll + lllt~l cp'(t) dt ll 

~ lt, I ll<P'(t;) - cp'(t)II dt + ll<P(t;) - cp(t;- 1)11 

~ t:(t; - t;-1) + 11 </>(t;) - cp(t;- 1) 11 . 

Unendo questa a (2.19) otteniamo 

lt, ll <P'(t)II dt ~ 2t:(t; - t;-1) + ll<P(t;) - cp(t;-1)11 
ti - 1 

che sommata su i dà 
b k 1 ll <P' (t)II dt ~ 2t:(b- a)+~ ll<P(t;) - cp(t;-1)11 

= 2t:(b - a)+ e(to, ti, ... , tk) ~ 2t:(b - a) + e(cp) 

e anche l'altra disuguaglianza è provata per l'arbitrarietà di t:. ■ 

(2.19) 
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Vediamo alcuni esempi. 

Esempio : sappiamo che la curva 

</> : [O, 2n] ➔ JR2 
, </>(t) = (xo + r cos t , Yo + r sen t) 

percorre la circonferenza centrata in (x0 , y0 ) e di raggio r . In effetti 

</>'(t) = (-rsent,rcost) ==} 11</>'(t)II = r 

e la nostra formula dà 
r27f 

f(</>) = lo rdt = 2nr. 

Esempio : la curva 

</>(t) = (t, t2 / 2) 

percorre la parabola di equazione y = x2 /2; calcoliamo la lunghezza di un suo tratto, 
ad esempio quello con O :::; x :::; M . Abbiamo 

<t>' (t) = (1, t) ==} Il</>' (t)II = v'1+t2 

" perciò con la sostit uzione t = senh s , ricordando che 

senhs = M {=> 
e• - e-• 
--

2
- = M {=> s = log(M + ✓1 + M 2 ) 

ponendo per brevità 

Mo = s = log(M + J1 + M 2 ) 

oÀ lunghezza cercata è 

1M ~ d 1Mo h2 d [ s + senh s cosh s] Mo y 1 + t~ t = cos s s = 
2 o t o o 

t= senh s 

log(M + J1 + M 2 ) + MJl + M 2 

2 

È piuttosto chiaro che il calcolo della lunghezza di una curva coinvolge integrali 
,pesso complicati, dato che la funzione integranda è la norma di un vettore, e quindi 

,ntiene una radice quadrata di una somma di quadrati, che talvolta è difficile (o impos­
, bile) da integrare esplicitamente. Allora, una (ri)parametrizzazione importante di una 

:irva è la seguente. 

Definizione : una curva 1/; : I ➔ ]Rn di classe C1 si dice parametrizzata con il 
parametro d'arco se il vettore derivata ha sempre norma unitaria, cioè se 111/;'(s)II = 1 
- r ogni s E I . 
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Dalla formula della lunghezza cw (2.18) si deduce subito che il calcolo della lunghezza, 
in tale situazione, è molto semplice. 

Osservazione : se 1/J : J -+ Rn è parametrizzata con il parametro d 'arco e a < (3 sono 
due punti di I , la lunghezza dell'arco percorso da 1/J fra a e (3 è (3 - a . In particolare 
l' intervallo I , se non è illimitato, ha lunghezza f( 1/J) . 

Una curva parametrizzata con il parametro d'arco è dunque come un'autostrada con 
i cartelli kilometrici: quando il valore del parametro (il numero sul cartello) è a rrivato a 
un valore s , abbiamo percorso un tratto lungo esattamente s . Allora, data una generica 
curva <p con derivata continua, può essere utile trovarne una riparametrizzazione 1/J con 
il parametro d'arco. Ricordando (2.5) dobbiamo trovare una funzione p(s) tale che 

1/J(s) = </J(p(s)) , 111/J'(s)II = 1. 

Supponendo la funzione incognita p derivabile, questo implica 

1 = 111/J' (s) Il = Il </>' (p(s)) Il . IP' (s )I = Il <!>' (p(s)) Il . p' (s) 

dato che p è monotona debolmente crescente e quindi p' ~ O . Ma questa formula dice 
pure che p' non può mai annullarsi, dunque deve essere p' > O . Allora p è invertibile, 
e la sua inversa q è anch'essa una funzione derivabile con derivata continua e positiva. 
Abbiamo per definizione di inversa 

</>(t) = 1/J(q(t)) ====;, <t>'(t) = 1/J'(q(t))q'(t) 
====;, ll<t>'(t)II = 111/J'(q(t)) II · q'(t) = q' (t), 

dato che 111/J'(x)II = 1 per qualunque x. Questo significa che per trovare la funzione q , 

di cui poi vorremmo trovare l'inversa p , dobbiamo cercare una primitiva di 11</>'(t)II, e 
siamo alle prese col problema che avremmo voluto scansare. Ad esempio, nel caso della 
parabola visto sopra abbiamo in realtà dimostrato che 

q(t) = log(t + ~) + tv'f+t2 , 

e di questa funzione dovremmo t rovare l' inversa per ottenere la funzione cercata p(s). 
Trovare una parametrizzazione col parametro d 'arco è dunque una operazione non ovvia; 
tuttavia, se una curva è parametrizzata col parametro d'arco il suo versore tangente coin­
cide col vettore tangente, quindi le formule della curvatura si semplificano enormemente. 

Osservazione : se 1/J è una curva derivabile due volte parametrizzata col parametro 
d 'arco, la curvatura è 

K(s) = -(
1 

) r '(s) = ! (1/J')'(s) = 1/J"(s), 
VS 1 

k(s) = 111/J"(s)II • 
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Supponiamo di voler calcolare la lunghezza della seguente curva: 

cp(t) = { (t, O) 
(t, t) 

se-l StSO 

seOStS l. 

Si tratta di un caso che non richiede alcun lavoro, dato che cp percorre prima il segmento 
da (- 1,0) a (0,0) e poi quello da (0,0) a (1,1): è unapoligonale,e lasualunghezzaè 
1 + V2 . Tuttavia cp non è di classe C1 e pertanto non rientra nel teorema fondamentale. 
L'obiezione che potremmo fare è che in realtà cp è composta di due curve ci una 
--attaccata" all'altra. Utilizziamo questa osservazione in due modi: uno è rimandato alla 
Sezione 2.8 quando definiremo la concatenazione di curve; l'altro è notare.,... Sezione 2.1 
che cp è di classe C;r , quindi possiamo considerare le varie curve che si ottengono 
restringendo cp agli intervalli in cui essa è ci : su ciascuno di essi possiamo calcolare la 
lunghezza usando la formula (2.18). È facile dimostrare la seguente proprietà. 

Proposizione 2.2 : se cp è una curva di classe C;r, la sua lunghezza è la somma delle 
lunghezze delle curve C1 che si ottengono restringendo cp agli intervalli in cui essa è di 
classe ci . 

Esempio : calcoliamo la lunghezza della curva 

{ 
(O, cos t, - sen t) cp(t) = 
(t, cos t, sen t) 

se -1r S t SO 

se O S t S 1r. 

La curva percorre in senso orario metà della circonferenza unitaria del piano z = O , poi 
in senso antiorario un tratto di elica cilindrica. Entrambe le curve 

c/>1(t) = (O,cost, - sent), - 1r S t SO, c/>2(t) = (t, cos t, sen t) , O S t S 1r 

--0no di classe C1 , e inoltre c/>1 (O) = c/>2(0) , quindi cp è continua e dunque di classe C;r. 
Allora 

f(</>) = f(c/>1) + f(c/>2) = 1-: Il</>~ (t)II dt + 1" ll<t>;(t)II dt 

= lo 1 dt + {" V2 dt = 1r(l + V2) . 
- ,r lo 

Se abbiamo una curva in forma cartesiana, ovvero il grafico di una funzione f , che 
.:.1a equazione y = f(x) con x E [a, b], scegliendo x come parametro otteniamo la -curva 

cp(x) = (x,f(x)), x E [a,b] 

quindi la sua lunghezza sarà data da 

f(cp) = 1b 11</>'(x)II dx= 1b J1 + (f'(x))2 
dx. (2.20) 

La stessa formula vale per curve cartesiane a valori in Rn : la curva di equazione y = 
J .r) con x E [a, b] , parametrizzata con il parametro x, ha lunghezza 
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Esempio : vogliamo calcolare la lunghezza di un pezzo del grafico della funzione espo­
nenziale y = ex con x E [a, b] . Avremo f(x) = f'(x) = ex , quindi 

f ( <P) = 1b J 1 + e2x dx = [ J 1 + e2 x - x + log ( J 1 + e2x - 1)]: 
Jl + e2b - 1 

= J 1 + e2b - J1 + e20 - b +a+ log -,===,;==-----:­
Jl + e2a - 1 

Esempio : calcoliamo la lunghezza di una porzione del grafico di una catenaria, una curva 
il cui nome deriva dalla forma di una catena appesa(• appendice 5.10); questa è il grafico 
della funzione coseno iperbolico. Ricordando che 

D cosh x = senh x , 1 + senh2 x = cosh2 x , (2.21) 

abbiamo per la lunghezza della porzione di grafico con a ~ x ~ b 

1b 1b b 
C(</J)= a J1 +senh

2
xdx= a cosh x dx= [senh xL =senhb -senha. (2.22) 

Se anziché in forma cartesiana abbiamo una curva in forma polare, di equazione 
r = h(0) con 0 E [01 , 02], scegliendo 0 come parametro otteniamo la curva 

</)(0) = (h(0)cos0,h(0)sen0), 

e quindi 

</)
1
(0) = (h'(0) cos0 - h(0) sen0, h'(0) sen0 + h(0) cose), 

per cui .:.- (2.15) la sua lunghezza sarà data da 

Esempio : vogliamo calcolare la lunghezza della spirale logarit mica 

0 E [O,+oo[. 

Con la formula trovata sopra otteniamo 
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Osservazione : data una funzione f : [a, b] -----+ R indichiamo con L(a, b) la lunghezza 
del suo grafico. Prendendo come poligonale il segmento che unisce i punti ( a, f (a)) e 
( b, f ( b)) del grafico di f si ottiene subito, dalla definizione di lunghezza 

L(a,b) ~ ✓(b- a)2 + (f(b) - f(a))
2

. 

Se ora supponiamo che la funzione f sia monotona, ad esempio crescente, abbiamo, per 
ogni segmento congiungente i punti P i-l = (ti-I , f(ti_i)) e P i = (ti , J(ti)) di una 
generica poligonale inscritta nel grafico di f , 

per ogni i = 1, ... , k. Quindi 

k k 

L IIPi - Pi-1 11::; L [(ti - ti_i) + (!(ti) - f(ti-1)] = (b - a)+ (f(b) - f(a)). 
i=l i = l 

Prendendo l'estremo superiore su tutte le poligonali inscritte nel grafico di f otteniamo 

L(a, b) s; (b - a)+ (f(b) - f(a)) . 

In definitiva, per una funzione f monotona abbiamo le disuguaglianze 

J(b- a)2 + (f(b) - f(a))
2

::; L(a,b)::; (b - a)+ IJ(b) - f(a)I • 

Ad esempio, per la funzione f(x ) = e-x
2 

nell'intervallo [O, 1] abbiamo 

1.183 ~ J1 + G- 1)2 ::; L(0, 1)::; 1 + I~ -11 ~ 1.632. 

Dal punto di vista geometrico le disuguaglianze precedenti dicono semplicemente che per 
una generica funzione f la lunghezza del grafico è maggiore o uguale alla lunghezza 
del segmento che unisce i due punti iniziale e finale, che è null'altro che l' ipotenusa del 
triangolo rettangolo di vertici (a, f(a)) , (b, f(a)) , (b, f(b)) ; se poi la funzione f è 
monotona, la lunghezza del grafico è anche minore o uguale alla somma delle lunghezze 
dei cateti dello stesso triangolo rettangolo (~ es. 2.11). 
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2. 7 - Studio di una funzione su una curva 

Supponiamo di avere una funzione reale f definita su un insieme n e Rn , ed una 
curva </> : I ➔ Rn il cui sostegno sia dentro n . Allora ha senso la composizione 
g(t) = f(</>(t)) , che è la lettura di / lungo la curva </> : potete visualizzarla come 
un osservatore che percorre il sostegno di </> , scandendo il tempo con il parametro t , 
e leggendo man mano che passa sui punti del sostegno il valore di f in quel punto. 
La let tura di f lungo </> ha una illuminante interpretazione grafica: supponiamo per 
semplicità di avere una curva <P piana, cioè </> : I ➔ R2 , e quindi anche f : n e R2 ➔ 
R . Per fissare le idee, supponiamo <jJ regolare e iniettiva, ed f positiva: il grafico di f 
è una sorta di superficie in R3 al di sopra del piano xy in cui giace il sostegno di </> . 

Fig. 2.13 : più spesso il sostegno di <I> Fig. 2.14 : la sezione del grafico sopra il sostegno di <I> 

Ad ogni punto del sostegno di </> ( che per semplicità nelle figure abbiamo rappresentato 
come fosse percorsa con velocità scalare costante) colleghiamo il valore del parametro t 
corrispondente a quel punto. Ora prendiamo un foglio di carta e appoggiamolo verti­
calmente sul piano xy, ma curvandolo (sempre mantenendolo parallelo all'asse z) in 
modo da seguire il percorso del sostegno di <P . ) 

Fig. 2. 15 : il foglio srotolato: la lettura di / lungo <I> 
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Questo foglio interseca il grafico di f (sopra ogni punto del sostegno di </J c'è un punto 
di intersezione); trascriviamo sul foglio sia la traccia di questa intersezione, sia i valori 
di t che troviamo alla base: srotolando e spianando il foglio, troveremo esattamente il 
grafico di f ( </J( t)) . 

Esempio : abbiamo parlato nella Sezione 1.3 di "sezioni" di un grafico di una funzione 
f : IR2 -+ JR lungo un piano 1r verticale, cioè parallelo all'asse z. Queste non sono 
altro che la lettura di f su una retta, l' intersezione di 1r col piano di equazione z = O , 
vista come sottoinsieme del dominio di f e cioè come sottoinsieme di IR2 e non di IR3 : 

stiamo identificando il piano di IR3 che ha equazione z = O col piano cartesiano di coor­
dinate (x, y) . Ad esempio, per individuare le sezioni del grafico di f(x , y) = Jx2 + y2 

lungo piani verticali paralleli all'asse x (dato che il grafico di f è un mezzo cono verso 
l'alto, cercate di visualizzare la situazione e dare la risposta prima di leggere oltre: per 
evitare tentazioni';àbbiamo messo la figura al termine della sezione (irw figure 2.19 e 2.20), 
osserviamo che questi piani (che hanno equazione y =e, con e costante) intersecano il 
piano (x, y) nella retta di equazione y =e , che possiamo parametrizzare come 

<jJ(t) = (t, e) . (2.23) 

Allora g(t) = f(</J(t)) = ✓t2 + c2 : il suo grafico, che sta nel piano (t, z), è dato da 

{(t,z): z = Jt2 +c2 }, 

cioè è metà (la parte superiore) dell'iperbole di equazione 

z2 t2 
- - -=1. 
c2 c2 

Esempio : leggiamo la funzione f (x, y) = x2 + y2 , il cui grafico sappiamo essere un 
paraboloide circolare, sulla circonferenza unitaria centrata nell'origine; il foglio di carta 
immaginario è un cilindro ( di quelli "veri", cioè un ci\indro circolare retto) con asse 
coincidente con quello del paraboloide. 

Fig. 2.16 : intersezione di un paraboloide con un cilindro coassiale 
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Sembra evidente che l'intersezione sia una linea (esattamente una circonferenza) tutta 
alla stessa altezza, quindi srotolando il foglio dovremmo trovare una costante. In effetti 
usando la parametrizzazione standard </>( t) = ( cos t, sen t) della circonferenza è 

g(t) = f(</>(t)) = J(cost, sent) = (cost)2 + (sent)2 = 1. 

Esempio: leggiamo la stessa funzione, ma sulla circonferenza unitaria centrata in (1, O) . 
Sapete visualizzare pressappoco la forma che avrà il grafico di g(t)? Fatelo prima 
di proseguire la lettura, immaginando di mettere il foglio cilindrico sul piano su cui è 
appoggiato il paraboloide: stavolta gli assi del cilindro e del paraboloide non coincidono, 
però! 

Parametrizzando con </>( t) = (1 + cos t, sen t) per -1r ::; t ::; 1r otteniamo 

g(t) = (1 + cost)2 + (sent)2 = 2 + 2cost. 

Il grafico somiglia a quel che avevate immaginato? Anche questa figura vi attende al 
termine della sezione (11,j' figure 2.21 e 2.22). 

La lettura di una funzione su una curva può essere utilizzata per la ricerca del 
massimo e del minimo di una funzione su certi insiemi. 

Esempio : determiniamo il massimo e il minimo ( e i punti di massimo e minimo) della 
funzione f(x, y) = x2 + y2 sull' insieme 

E = { (x, y): (x - 1)2 + y2 = 1 }~ 

L'insieme E è la circonferenza dell'esempio precedente, pertanto (ora siamo precisi 
anche sul dominio di <p) E è l'immagine della funzione 

</>: [- 1r, 1r] ➔ IR2 , <p(t) = (1 + cost,sent), 

t 
7r 

o 

- 1[ 

Fig. 2.17: lettura di f su E, immagine di <I> 
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ovvero 
E= {(1 +cost,sent): - 1r ~ t ~ 1r}. 

Allora (ricordando che il massimo di f su un insieme è il massimo dell' immagine di f 
su quell' insieme) 

f(E) = {f(x, y): (x,y) E E} = {f(</>(t)): - 1r ~ t ~ 1r} 

= {f(l + cos t, sent): -1r ~ t ~ 1r} = {2 + 2cost: -1r ~ t ~ 1r}. 

Dato che il minimo e il massimo di g(t) = 2 + 2cost su [-1r, 1r] sono O e 4 , questi 
sono anche minimo e massimo di f su E , e sono realizzati rispettivamente nei punti 
</>( - 1r) = </>(1r) = (O, O) e </> (O)= (2, O). 

Non bisogna scordarsi di tener conto dei punti del bordo del dominio di g , come 
mostra il seguente esempio. 

Esempio : determiniamo il massimo e il minimo ( e i punti di massimo e minimo) della 
funzione f (x,y)= 2x 2 -3y+y2 sulsegmento S da (1, 0) a (0, 1) compresi gliestremi. 
Intanto f è continua e il segmento è un insieme compatto, quindi f ha massimo e 
minimo per il Teorema di Weierstrafi in nr 1.20. Ora parametrizziamo il segmento, ad 
esempio con 

---1( : [O, 1] ➔ R.2 , </>(t) = (t, 1 - t ) 

(non abbiamo alcun interesse a un verso particolare di percorrenza) , leggiamo f sulla 
curva ponendo 

g: [O, 1] ➔ R., g(t) = f(</>(t)) = 2t2 
- 3(1- t) + (1 - t)2 = 3t2 + t- 2 

e osserviamo che 
g'(t) = 6t + 1 > O Vt E [O, 1] . 

Allora per il Teorema di Fermat 1.42 la funzione g non ha punti di massimo o minimo 
ali' interno, quindi li ha per t = O e t = 1 ( dato che g è crescente avremmo potuto 
dire subito chi è il punto di minimo e chi il punto di massimo): abbiamo 

g(0) = -2, g(l) = 2 

e quindi 

maxf = 2 = J(</>(1)) = f(l , O), 
s 

minf = - 2 = f(</>(0)) = f (0, 1) . 
s 

Esempio : stessa domanda per la stessa funzione, ma sul segmento T che congiunge 
{-1, 2) e (1, O); T sta sulla stessa retta di S, quindi la parametrizzazione sarà ancora 
con (t, 1 - t), e la differenza è solo che ora -1 ~ t ~ 1. Ora 

g'(t) = O ç=} t = -1/ 6 , 
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che è un valore accettabile. Per il Teorema di Fermat 1.42 i valori massimo e minimo 
saranno fra questi tre: i due valori g(-1) e g(l) agli estremi, e il valore g(- 1/ 6) 
nel solo punto in cui la derivata si annulla ( di nuovo, dal segno della derivata avremmo 
potuto stabilire che -1/6 è di minimo per g, mentre - 1 e 1 sono di massimo locale). 
Dato che 

g(-1)=0, 

otteniamo 

maxf = 2 = f(l,O), 
T 

25 
g(-1/6) = - 12' g(l) = 2 

. 25 
mmf = -- = f(</J(-1/6)) = f(- 1/6, 7/ 6). 

T 12 

Fig. 2 .18 : il grafico di g(t) con - 1 :S t :S 1 

Vedremo l'applicazione di questo studio nella Sezione 3.7 quando ci occuperemo dei 
massimi e minimi di funzioni di più variabili. 

Fig. 2.19 : cono tagliato da piani verticali Fig. 2.20 : i relativi grafici (le curve sono iperboli) 



F ig. 2.21 : cilindro e paraboloide non hanno lo stesso asse 

I 

J. 

-+ 
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L I - __ , -

Fig. 2.22 : il foglio srotolato 

2.8 - Integrali su una curva e somma di curve 

Supponiamo di avere il grafico di una funzione reale su un intervallo, e per fare un • 
caso proprio semplice supponiamo che la funzione sia costante, diciamo valga costante--
mente 2. Quanto vale l' integrale di questa funzione sull' intervallo? Per rispondere ci 
manca un dato: la lunghezza dell'intervallo. Partendo da questo esempio, immaginiamo 
di avere ora, come all' inizio della sezione precedente, una funzione reale f definita su un 
insieme n e JRn , ed una curva </J : I ➔ JRn il cui sostegno sia dentro n . Riprendendo 
il foglio di carta già usato ~a, il grafico di f lascia su di esso una traccia, che è 
anch'essa un grafico, quello della funzione 

g(t) = J(</J(t)) . 

Per calcolare l' integrale di questa funzione, dobbiamo sapere anche come si misura la 
base, ma questo lo abbiamo già visto nella Sezione 2.6. Motivati da queste osservazioni 
definiamo l' integrale di una funzione reale su una curva. 

D efinizione : sia n e JRn e siano f : n ➔ JR una funzione continua e </J : [a, b] ➔ JRn 
una curva di classe C1 , e tale che </J(t) E n per ogni t E J. Allora l ' integrale di f 
lungo la curva <P è il numero 

lfds = 1bf(</J(t)) ll</J'(t)lldt. (2.24) 

Facciamo alcune osservazioni. 
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Osservazione: se riparametrizziamo </J come 

1/J(u) = </J(p(u)) 

con p di classe ci , l'integrale di f non cambia: infatti se era 

p : [o:, /3] -+ [a, b] 

abbiamo per definizione 

l f ds = 1: f ( 1/J( u)) 111/J' ( u) Il du = 1: f ( </J(p( u))) ll</J' (p(u)) !IP' (u) du 

dato che p' ( u) 2: O , ma possiamo proseguire con 

=; 1b f(</J(t)) ll</J'(t)lldt = 1 fd s • 
p(u)=t q, 

Dunque il valore dell'integrale è lo stesso su tutte le curve ~e si ottengono da </J me­
diante una riparametrizzazione di classe ci . 

Se </J fosse parametrizzata con il parametro d'arco s, l' integrale si ridurrebbe a 

J f ( </J( s)) ds , il che giustifica la notazione J</> f ds che abbiamo impiegato. 

Esempio : calcoliamo l' integrale della funzione f (x, y) = 7xy sulla curva 

</J : [O, 1r / 2] -+ IR2 
, </)(t) = (2cost,3sent) 

(questa percorre un quarto di ellisse). Abbiamo 

f ( </J( t)) = 42 sen t cos t 

e 

</J'(t) = (-2 sen t, 3 cost) ===:> 11</J'(t)II = J2 sen2 t + 9 cos2 t = J2 + 7 cos2 t , 

quindi l'integrale da calcolare è 

lfds = 4211r/
2 

J2+7cos2 t sentcostdt t -3 io ✓2+udu 
7 cos2 t=u 

'Ira i possibili integrali sulle curve è di particolare importanza il baricentro di una 

curva(•• appendice 4.2). 
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Definizione : data una curva <p : [a, b] ---+ R_n il baricentro di <p è il punto di R_n 

definito da 

(2.25) 

dove f(</>) è la lunghezza di <p e l ' integrale precedente si intende definito componente 
per componente. 

Se scriviamo l' uguaglianza (2.25) utilizzando l'espressione (2.24) dell' integrale lungo 
una curva, otteniamo 

l { l jb I 

(Bq,)i = f(</>) l<I> Xi ds = f( </>) a if>i(t)I </> (t )I dt. 

Esempio : sia <p : [O, 0o] ---+ R2 l'arco di circonferenza 

<t>(t) = (cost,sent) 

Abbiamo l<l>' (t)I = 1 e quindi 

t E [O, 0o] . 

{ Oo 
f( </>)= l o l<l>'(t )ldt = 0o , 

da cui 
l [ 80 sen0o 

(B<t>h = 00 l o costdt = e-;-
l [ 80 1 - cos0o 

(B<1>h = eolo sentdt = 00 . 

Se la curva è una curva piana data in forma cartesiana da 

otteniamo 

</>(x) = (x, J (x)) x E [a, b] 

(B<t>h = f(~ ) 1b xJl + (f1(x))
2 
dx, 

(B<t>h = f(~) 1b J(x)Jl + (f'(x))
2 

dx . 

Esempio: per l'arco di parabola di equazione cartesiana 

<t>(x) = (x, x2
) x E [0,a] 

otteniamo ~-- • 

f(</>) = foa J1 + 4x2 dx = ~ ( 2aJl + 4a2 + log (2a + J 1 + 4a2)) 

e dunque 

1 {° (1 + 4a2) 312 
- 1 

(B<t>h = f( </>) l o xJl + 4x
2 
dx= 12€(</>) , 

__ l_ (° J 
2 

_ 2a(8a2 + 1)✓1 + 4a2 
- log (2a + ✓1 + 4a2

) 

(B<t>h - f( </>) lo x l + 4x dx - 64€(</>) 
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Infine, per curve piane in forma polare 

r = h(0) 

otteniamo la parametrizzazione 

</>(0) = (h(0)cos0,h(0)sen0) 

da cui 

e quindi 

l [
02 ✓ 2 2 (B4>)1 = f.(</>) lo, h(0)cos0(h(0)) + (h'(0)) d0 , 

l [
02 ✓ 2 2 

(B<t>h = f.(</>) lo, h(0)sen0(h(0)) + (h'(0)) d0. 

Esempio : se consideriamo la spirale logaritmica di equazione polare 

abbiamo 

e dunque 

0 E [O, +oo! 
\ 

r+oo 
f.(<t>) = lo he-0 d0 = h 

Nella definizione di baricentro di una curva non abbiamo richiesto che la curva sia 
iniettiva; in altri termini la curva può percorrere più volte lo stesso tratto, ed in tal caso 
l' integrale di linea J-rJ, f ds conterà più volte il tratto in questione. In pratica, ricorrendo 
all'analogia fisica del significato di baricentro, se la curva percorre due volte uno stesso 
tratto, è come se in quel tratto la curva avesse densità di massa doppia. Più in generale, 
possiamo supporre che su una curva <t> : [a, b] ➔ Rn sia distribuita della massa con 
densità di massa 0(s). 

Definizione : data una curva <I> : [a, b] ➔ Rn ed una densità di massa m : Rn -+ R 
distribuita sulla curva, il baricentro di <I> con densità m è il punto di !Rn definito da 

B4> = ! l xm(x)ds 

dove M è la massa totale distribuita sulla curva: 

M = l m(x)ds. 

(2.26) 
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Come per tutti gli integrali su curve, la formula precedente diventa, in forma para­
metrica, 

M = 1b m(cf>(t))llc/>'(t)II dt; 

1 1b B,t, = M a cf>(t)m(cf>(t))llc/>'(t)II dt. 

Invece, in forma cartesiana nel piano, con <jJ(x) = (x, f(x)) e x E [x1 , x2] abbiamo 

1
X2 

M = x, m(x,f(x))J1+(f'(x))2 dx; 

1 1X2 
(B,t,)1 = M x, xm(x, f(x)) jl + (f'(x))2 dx, 

(B,t,)2 = - f(x) m(x, f(x)) jl + (f'(x))2 dx. 1 1X2 
M x, 

Infine, in forma polare nel piano, con </>(0) = (h(0)cos0,h(0)sen0) e 0 E [01,02] 
abbiamo 

1
02 

M = m(h(0) cos0, h(0) sen0) Jh2 (0) + (h'(0))2 d0; 
o, 

1 102 (B,t,)1 = M h(0)cos0m(h(0)cos0,h(0)sen0)Jh2 (0) + (h'(0))2 d0, 
o, 

1 102 (B,t,)2 = M h(0)sen0m(h(0)cos0,h(0) sen0)Jh2 (0) + (h'(0))2d0. 
o, 

Esempio : supponiamo che la curva </J sia la circonferenza unitaria, su cui è distribuita 
una massa con densità 

m(cos0,sen0) = 0, 0 E [0,21r] . 

Se parametrizziamo la circonferenza unitaria mediante l'angolo 0 E [O, 21r] abbiamo 

ll c/>'(0)11 = 1, per cui si ottiene facilmente 

{2,r 
M = lo 0d0 = 21r2, 

{ 2,r 
lo 0cos0d0 =O, 

{2,r 
lo 0sen0d0 = -21r. 

In definitiva, 
B,t, = (O, -l/1r). 

Osservazione : se cambiamo verso di percorrenza a una curva, l' integrale di f non 
cambia: se 

</J: [a,b] ➔ !Rn, 

la curva 
1/J: [- b, -a] ➔ lRn , 1/J(t) = </>(- t) 
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inverte il senso di percorrenza, e 

l f ds = f_~a !(1/J(u )) ll1/J'(u)lldu ,,=;_t l a f(</>(t)) ll - </>'(t)II (- dt) 

= 1b f(<t>(t)) 11</>'(t)II dt = l f ds • 

Osservazione : l' integrale di una funzione dipende dalla curva, e non dal solo sostegno 
della curva: ad esempio, se f è la costante 1 e 

</>(t) = (cos t , sen t) , 1/J( t ) = ( cos 2t, sen 2t) , 

le due curve hanno lo stesso sostegno (la circonferenza unitaria) ma 1/J la percorre due 
volte, e (controllatelo) 

l f ds = 21r , l f ds = 41r. 

Motivati da queste osservazioni, int roduciamo una notazione "algebrica" sulle curve. 

Definizione : siano <Pi : [a, ,8] ➔ Rn e 4>2 : [,8, ,] ➔ Jr due curve tali che </>1 (,8) = 
</>2 (,8) , ovvero i domini sono contigui e 4>2 parte dal punto di arrivo di <Pi . La con­
catenazione di </>1 e </>2 ( o somma di <Pi e </>2 ) è la curva 

Più in generale se <Pi : [ai, bi] ➔ Rn e </>2 : [a2, b2] ➔ 1Rn verificano </>1 (b1 ) = </>2(a2) , 
riparametrizzando le curve con due nuove curve 1/Ji e 'lj;2 che abbiano domini contigui, 
si indica con </>1 + </>2 la concatenazione 'lj;1 + 1/J2 . 

Notiamo che nell'ult imo caso 4> 1 +4>2 non è ben definita, perché potremmo scegliere 
molte diverse riparametrizzazioni 'lj;1 e 'lj;2 . Tuttavia ai fini degli integrali questo non 
influisce, come mostra il prossimo risultato. 

Proposizione 2.3 : abbiamo 

1 fds= 1 fds+ 1 fds . 
</>1 +</>2 <I>, </>2 

Infatti per definizione di </>1 + 4>2 abbiamo per qualche scelta opportuna di 1/Ji e 
1/J2 come nella definizione 

1 fds = { fds . 
<l>,+</>2 J,t,,+'I/J2 
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Poniamo per comodità di scritt ura 

W = 1P1 + 1P2 

e osserviamo che 

Allora 

w'(t) = { '1/J~ (t) se a S:. t S:. f3 
'1/J~(t) se f3 S:. t S:. ì-

1 
f ds = 1 f ds = lì f(w(t)) llw'(t)JI dt 

'I/J,+'I/J2 w °' 

= i /3 f (w(t)) llw'(t)II dt + lì f (w(t)) llw'(t)II dt 

= 1: f('I/J1(t))ll'I/J;(t)lldt+ lì f('I/J2(t)) ll'I/J;(t)lldt 

= 1 fds+1 fds= { fds+ { fds 
"P1 "P2 J <I>, J <!>2 

dato che abbiamo già visto che l' integrale non cambia riparametrizzando una curva. Se 
avessimo voluto essere più precisi avremmo dovuto parlare di classi di equivalenza di 
curve, definendo equivalenti t utte quelle che si ottengono mediante riparametrizzazione, 
e avremmo potuto definire la concatenazione di classi di equivalenza. La somma così 
introdotta permette di evitare, se si devono calcolare integrali, la noiosa opera di ri­
parametrizzazione e incollamento necessaria a riunire vari tratti eterogenei (ma consecu­
tivi) in un'unica curva. Naturalmente si può scrivere la somma di più di due curve. 

Esempio : sia <f, la curva che percorre, usando in ciascun tratto la parametrizzazione 
. tandard, prima l 'arco della circonferenza unitaria centrata nell'origine che va in verso 
antiorario da (O, 1) a (1, O), poi il segmento da (1, O) a (3, 2), poi di nuovo in verso 
antiorario l'arco della circonferenza di centro (1, O) e raggio 2v'2 che va da (3, 2) a 
-1, 2). Calcoliamo l'integrale della funzione f(x, y) = xy su questa curva. Per quanto 

detto, poniamo 

<f,l : [1r /2, 21r] ➔ R2 , 

<f,2 : [1, 3] ➔ R2 
, 

<f,3 : [1r/4, 37r/4] ➔ R2
, 

<f,1 (t) = ( cos t, sen t ) 

<f,2(t) = (t, t - 1) 

<f,3 (t) = (1 + 2v'2 cos t, 2v'2 sen t) 

per scrivere in modo unitario la curva <f,1 + <f,2 + <f,3 dovremmo fare la inutile fatica vista 
.J termine della Sezione 2.2; invece ora possiamo calcolare separatamente l ' integrale di 
f sulle tre curve, e sommare i risultati. Abbiamo 

ll <t,; (t)JI = 1 , 
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quindi 

f f ds = 12
,,. cos t sen t dt = [~ sen2 t] 

2
,,. = - -

2
1 

J c/>1 ,r / 2 2 ,r / 2 

r fds = {3 h(t2-t)dt =h[t3 - t2]3 = 14.,/i 
Jc/>2 11 3 2 l 3 

1 1
~µ ~µ 

f ds = (8 sen t + 16.Ji sen t cos t) dt = [-8 cos t + 8../i sen2 t] = 8v'2 
c/>3 ,r/ 4 ,r/ 4 

e il risultato cercato è 
1 14 38 1 

--+-h+sh= -h- - . 
2 3 3 2 

Introduciamo una notazione anche per rovesciare il verso di percorrenza. 

Definizione : se </> è una curva, la curva opposta è la curva - <I> defìnita da 

(-<l>)(t) = <l>(-t) 

o una qualunque altra curva che si ottiene da questa con una riparametrizzazione. 

Di nuovo, la curva -</> è definita solo a meno di riparametrizzazioni, ma questo non 
influenza l'integrale di una funzione. 

Proposizione 2.4 : abbiamo 

f fds=j fds . 
l"' - <t> 

Di questo risultato potete fare la facile dimostrazione. Possiamo ora tornare a quanto 
detto sulla lunghezza di curve di classe Cfr : abbiamo intanto una caratterizzazione. 

Osservazione : ogni curva di classe Cfr si può scrivere come concatenazione di curve di 
classe C1 . 

Pertanto, calcolare integrali su curve di classe Cfr si riduce, come per la lunghezza, 
al calcolo standard per curve C1 , eseguito più volte. 

Proposizione 2.5 : se <I> = </>1 + · · · + <Pk è di classe Cfr , allora 

e se il dominio della funzione continua f contiene il sostegno di <I> 

1 f ds = 1 f ds + · · · + 1 f ds . 
e/> c/>1 c/>k 
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Osserviamo che nella proposizione compare anche la lunghezza, che altro non è che 
un caso particolare di integrale: infatti se </> è di classe C1 su [a, b] 

f(</>) = 1b 11</>'(t)II dt = 1b l · 11</>'(t)II dt = l l ds. 

Il prossimo concetto è usato frequentemente in Fisica per calcolare il lavoro di un 
campo. Muovendosi in un campo di forze lungo una certa direzione, si esercita un lavoro. 
Questo dipende dalla componente del campo lungo la direzione del movimento. Se F 
è il campo, definito in Rn , e ci muoviamo lungo una curva regolare </> : [a, b] -+ Rn , 
la direzione del movimento ali' istante t è data dal versore tangente r(t) , il valore 
del campo va calcolato nel punto in cui stiamo transitando ed è quindi F (</>(t)), e la 
componente lungo la direzione di movimento è il prodotto scalare 

L(t) = F (</>(t)) · r (t) . 

Allora il lavoro totale del campo è l'integrale di L(t) lungo la curva </>, che abbiamo 
già imparato a calcolare: 

L = l Lds = 1b F(</>(t)) · r (t) 11</>'(t)II dt, 

ma 
</>'(t) {b 

r (t) = ll</>'(t)II => L = la F (</>(t)) • </>'(t)dt. 

Possiamo allora dare una definizione. 

Definizione : sia n C Rn , sia F : n -+ Rn una funzione continua, e sia </> : [a, b] -+ Rn 
una curva di classe C1 il cui sostegno sia contenuto in n . Allora il lavoro del campo 
lungo la curva è 

l F = 1b F( </>(t)) • </>' (t) dt . (2.27) 

Attenzione a non confondere le scritture 

lFds. 

_ -el primo caso il risultato è uno scalare e rappresenta il lavoro lungo la curva </> di 
:lil campo vettoriale F : Rn -+ Rn , nel secondo caso il risultato è ancora uno scalare 
::ia rappresenta l'integrale di una funzione scalare f : Rn -+ R su una curva </>, nel 
'l'rw caso il risultato è un vettore le cui componenti si ottengono mediante gli integrali 

,:, Fi ds , dove Fi sono le componenti di F . 
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Osservazione : di nuovo si vede facilmente che se 'ljJ è una riparametrizzazione di cp il 
lavoro non cambia, che 

ma stavolta 

1 F = - {p_ 
- <f, J"' 

Ali' integrale del lavoro si applica quanto già visto prima relativamente alle curve di classe 
Cfr : su una curva <P = <Pi + · · · + <Pk di classe CJr il lavoro di un campo si definisce 
come somma dei lavori sui tratti ci . 

Esempio : consideriamo il campo 

F x,y = , ( 
-x -y ) 

( ) x2 + y2 x2 + y2 

e calcoliamo il lavoro che esso compie lungo la curva 

<P: [O, v3]-+ IR2 
, cp(t ) = (t , 1) . 

Fig. 2.23 : alcune frecce di F Fig. 2.24 : il campo F sul sostegno d i </) 

Abbiamo 

( 
- t - 1 ) 

F (cp(t))= l+t2'1 + t2 , cp' (t) = (1, O) 

e pertanto 

.e= l F = 1° F(cp(t)) . cp'(t) dt 

1./3 t ./3 
= ~ dt = [- log Ji"+t2] = - log 2 . 

0 1 + t o 
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Talvolta si ha necessità di calcolare la lunghezza di un insieme "curvilineo", o 
l'integrale di una funzione su un insieme "curvilineo". In tal caso, si intende che dob­
biamo trovare una curva che abbia come sostegno l 'insieme e che sia iniettiva (almeno 
per quanto possibile) , per evitare di calcolare più volte l' integrale sullo stesso tratto, 
dopo di che si calcola la lunghezza di questa curva (o l'integrale della funzione) . Che si 
intede però con "per quanto possibile" iniettiva? In certi casi, un insieme anche molto 
semplice non può essere il sostegno di una curva iniettiva definita su un intervallo [a, b] : 
ad esempio la circonferenza unitaria è il sostegno della solita curva </>(t ) = (cost,sent) 
definita su [O, 21r] , ma questa non è iniettiva perché parte e arriva nello stesso punto. Il 
nodo visto nell 'esempio (2.11) non può essere percorso da una curva iniettiva. 

Definizione : una curva </> : [a , b] -+ !Rn si dice generalmente iniettiva se esiste un 
numero finito di punti a :S t 1 < • • • < tk :::; b tali che 

s1, s2 ft { t 1, ... , tk} ==} [ se s1 =J. s2 allora </>( s1) =J. </>( s2)] . 

Definizione : se E è un insieme tale che esiste una curva </> generalmente iniettiva e 
di classe Cfr il cui sostegno è E , allora la lunghezza dell'insieme E è la lunghezza 
della curva </> : 

i(E) =i(</>). 

Se f è una funzione continua definita su un insieme che contiene E allora l'integrale 
della funzione f sull'insieme E è l'integrale di f su </> : 

lfds = lfds. 
Anche se un po' noioso, è possibile provare che la definizione non dipende dalla scelta 

Ji </> : se 1/J è un'altra curva generalmente iniettiva e di classe Cfr il cui sostegno è E , 
.Jlora la lunghezza di 1/J è uguale a quella di </> , e lo stesso per l' integrale di f (~ 

. 2.16). 

F.sempio: calcoliamo la lunghezza di un giro di elica cilindrica (2.8) di raggio r e passo p . 
l -na parametrizzazione è data da 

</> : [O, 21r] -+ !R3 
, </>(t) = (r cos t, r sen t, tp/ 21r) , 

,uindi 
</>' (t) = ( -r sen t, r cos t, p / 21r) ==} Il </>' (t) 11 = Jr2 + p2 / 41r2 

la lunghezza cercata è 

fo2

1r Jr2 + p2 /41r2 dt = 21rJr2 + p2 / 41r2 = J(21rr)2 +p2 . 

Ci saremmo potuti aspettare questo risultato? Che succede se disegnate questo tratto 
:ti elica su un foglio di carta piegato a cilindro di raggio r e srotolate il foglio? Sug­
_.,rimento: prima di srotolarlo, sul foglio disegnate anche la circonferenza di base (la 

roiezione dell'elica sul piano z = O ) e il segmento vert icale che congiunge il punto 
;.!lÌZiale e quello finale . .. 
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Esempio : consideriamo i seguenti insiemi: 

E1 = {(x,y) : y = -x, - 1 :S x :SO} 

E2={(x, y):x2 +(y -2)2= 4, x~ O, y:S2} 

E3 = { (x,y): (x - 1)2 + (y-2)2 = 1, y ~ 2} 

E4 = { (x - 2)2 + (y - 2)2 = 4, x :S 2, y :S 2} 

e poniamo E = E1 U · · · U E4 • Vogliamo calcolare la lunghezza di E, e l'integrale su 
E della funzione f(x, y) = x . La prima cosa da fare è rendersi conto di cosa siano i 
vari insiemi, e se possibile disegnarli. A questo punto, per calcolare la lunghezza di E 
non serve ricorrere agli integrali! Infatti E1 è un segmento lungo v'2 , E2 ed E4 sono 
quarti di circonferenza di raggio 2, perciò ciascuno ha lunghezza 2 - 21r/ 4 = 1r, e infine 
E3 è una semicirconferenza di raggio 1 , lunga 1r : allora E ha lunghezza 31r + y'2 . 

Invece per calcolare l' integrale di f dobbiamo parametrizzare i vari pezzi, ad esem­
pio con 

porre 

</>1 : [-1,0] ➔ IR2 , 

</>2 : [- 1r /2, O] ➔ IR2 , 

</>3 : [O, 1r] ➔ IR2 ' 

</>4 : [1r,31r/2] ➔ IR2 , 

</>1(t) = (t,-t) 

</>2(t) = (2cost,2+2sent) 

</>3(t) = (1 + cos t, 2 + sen t) 

</>4 (t) = (2 + 2cost, 2 + 2 sent), 

<p = </>1 + </>2 + </>3 + </>4 , 

osservare che </> è di classe Clr , è generalmente inietti va ( dato che le varie <Pi sono 
iniettive e c'è solo un punto che appartiene all'immagine sia di </>2 che di </>4 ) ed ha 
sostegno E , perciò 

{ f ds = { f ds = { f ds + · · · + { f ds . k ~ ~. J~ 
A questo punto calcoliamo i quattro integrali. Calcoliamo 

11 </>~II = v'2 , 11 <1>; 11 = 2 , 11<1>;11 = 1 , 11</>~II = 2 

così che 

1 10 v'2 
f ds = tv'2 dt = - -

</>, -1 2 

{ f ds = lo 4 cos t dt = 4 
J</>2 -1r/2 

{ f ds = r (l + cos t) dt = 1r 

1"'3 lo 

{ f ds = 13

1r 

1
\ 4 + 4 cos t) dt = 21r - 4 

J </>4 7r 

e perciò J E f ds = 31r - v'2/ 2. 



Capitolo 2 : Curve 129 

Esercizi relativi al capitolo 2 

Esercizio 2.1 : trovate una parametrizzazione delle seguenti curve e scrivete il vet­
tore e il versore tangente nei punti indicati. Dite poi se le curve sono chiuse, regolari, 
regolari a tratti: 
a) bordo del triangolo di vertici (O, O) , (2, 5) e ( 4, 3) percorso in verso orario partendo 

dal punto (O, O) ; Pi = (2, 5) e P2 = (3, 4) ; 
b) circonferenza di centro (-3, -2) e raggio R = 2, percorsa in verso antiorario 

partendo da (-1, -2); P = (-3 - ./2, - 2 + ./2); 
c) bordo del quadrato di vertici (0,0), (0,1), (1,0), (1,1) partendo da (1, 1) in 

verso antiorario; 
d) ellisse di centro (O, O) , semiassi 2 e 4 , percorsa in verso antiorario partendo da 

(2, O) ; P = (-./2, -2./2) . 

Esercizio 2.2 : considerate la curva chiusa che si ottiene unendo l'arco di parabola, 
di equazione y = x2 - 6x + 10, compreso fra i punti (2, 2) e (5, 5) e il segmento 
congiungente (5, 5) e (2, 2) : trovate una parametrizzazione della curva e scrivere il 
\·ettore e il versore tangenti nel punto ( 4, 2) . (llisolvete l'esercizio percorrendo la curva 
prima in senso antiorario, poi in senso orario e confrontate i risultati.) 

Esercizio 2.3 : sia 

A = { (x, y) E IR2 
: y = ~x2

} U { (x, y) E R2 
: x2 + (y + 2)2 

= 4} 

dimostrate che A è una curva regolare C1 e trovatene una parametrizzazione. 

Esercizio 2.4 : scrivete l'equazione cartesiana delle rette tangente e normale per le 
curve piane seguenti, date in forma polare: 
a) r(0) = 0 + e1+0 0 E [-1, 1], nel punto P = (e, O). 
b) r(0) = 4v'0 tan2 0 0 E [O, 1r /3], nel punto P = ( ..,127r, ._,/27r) ; 
e) r(0) = e-0 0 E IR, nel punto P = (1, O) . 
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Esercizio 2.5 dati due numeri reali a, b calcolate il versore tangente alla curva 

</>(t) = ( arctan(at + b ), log t) t E]O,+oo[ 

in un punto generico </>(to) . 

Esercizio 2.6 : scrivete il vettore velocità, il vettore accelerazione e l'equazione carte­
siana delle rette tangente e normale per le curve piane seguenti , date in forma parame­

t rica: 
a) </>(t) = (t2 ,sent) t E [- 7r,7r], nel punto P = (0, 0) ; 
b) </>(t) = (t + t3 , et) t E [-1, 1], nel punto P = (O, 1); 
c) </>(t) = (t - sent, 1 - cost) t E [O, 271'], nel punto P = (7r, 2). 

Ese rcizio 2. 7 : scrivete il vettore velocità, il vettore accelerazione e l'equazione para­
metrica della rett a tangente per le curve in JR3 seguenti, date in forma parametrica: 
a) <f>(t ) = (t, t2 , t - 2 ) t E [1/2, 2], nel punto P = (l , 1, 1); 
b) </>(t) = (t2 , et ,sent) tE[-1, 1], nclpuntoP = (0, 1,0); 
c) <f>(t) = (t, t2 , t3 ) t E JR, nel punto P = (l , 1, 1) . 

Esercizio 2.8 : stabilite se la curva </> : JR ➔ JR2 definita da 

</> ( t) = ( sen t - t cos t, t sen t + cos t) t E JR 

è regolare. 

Esercizio 2.9 : calcolate il vettore curvatura K-(t) e la curvatura scalare k(t) della 
curva </> : [1, +oo[-+ IR.2 data in forma parametrica da 

t?. 1 . 

Esercizio 2.10 : determinate, per le curve seguenti, i punt i (se esistono) in cui la 
curvatura scalare è massima e quelli in cui è minima: 
a) la parabola di equazione cartesiana y = x2 

, con x E JR; 
b) il grafico cartesiano della funzione f (x) = logx, con x >O; 
c) la curva in forma parametrica (cos3 t,sen3 t), con t E [0,7r/ 2]. 

Esercizio 2.11 : calcolate la lunghezza delle seguenti curve piane, espresse in forma 
parametrica: 
a) <f>(t) = (tcost,tsent) t E [0, 7r/ 2]; 
b) </>(t)=(et cost, etsent) tE[O, e]; 
c) <f>(t) = (log t, Jt) t E [1, 2]. 

Esercizio 2.12 : calcolate la lunghezza delle seguent i curve piane espresse in forma 
cartesiana: 
a) y = x 2 x E [O, 1] ; 
b) y = x 312 x E [O, 1] ; 
c) y = Jx(x - 3) x E [O, 1] . 
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Esercizio 2.13 : 
polare: 

calcolate la lunghezza delle seguenti curve piane espresse in forma 

a) r = 1 + cos0 
b) r = 02 + 20 

0 E [0,21r]; 
0 E [O, 1r / 2] . 

Esercizio 2.14 considerate la curva data in coordinate polari dall'equazione 

1 
p = acos0 + - sin0 

a 
( 0 E [O, 1r / 2]) , 

dove a > O è un parametro reale. Detta L(a) la sua lunghezza, determinate il valore 
del parametro a per cui la lunghezza L(a) risulti minima. Disegnate poi approssima­
tivamente la curva così ottenuta nel piano cartesiano. 

Eser~izio 2.15 : parametrizzate rispetto al parametro d'arco la curva 

<f>(t) = (3(t2 + l),4(t2 + 1)) 

Determinate poi la lunghezza della curva. 

Esercizio 2.16 : consideriamo la curva 

<f>(t) = (e2t - t, 2v'2et) 

t E [1, 2]. 

t E [O, l] ; 

a) scrivete le equazioni delle rette tangente e normale alla curva nel punto (1, 2./2) ; 
b) calcolate la lunghezza della curva; 

c) calcolate l'integrale lungo la curva della funzione f(x, y) = x + Y
2 

2x + 2 log y - 3 log 2 

Esercizio 2.17 : calcolate le coordinate del baricentro della curva cardioide descritta 
in forma polare dall'equazione 

r=l-cos0, 0 E [O, 21r] , 

nell'ipotesi che la densità di massa sia costante. 

Esercizio 2.18 
parametriche 

calcolate le coordinate del baricentro della curva piana di equazioni 

x = cos3 t, y = sen3 t, 

nell'ipotesi che la densità di massa sia costante. 

Esercizio 2.19 : calcolate il baricentro dell'elica circolare di equazioni parametriche 

x = acost, y = asent, z = bt, t E [O, 21r] , 

nell'ipotesi che la densità di massa sia costante. Rifate poi il calcolo nel caso in cui nel 
punto di parametro t ci sia una densità di massa pari a t . 

Esercizio 2.20 : calcolate i seguenti integrali curvilinei: 
a) J, fds dove f( x, y) = xy e ,(t) = (t, t2) con t E (O, 1); 
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b) f --r f ds dove f ( x, y) = ye4x e I è il bordo dell' insieme 

c) 
2 J f ds dove f(x, y) = -===:;;: dove , è l'arco di ellisse, di centro (O, 2) e 

--r y✓16 - 3x2 

semiassi (2, 1) , da (2, 2) a (O, 3) ; 
d) f--rfds dove f(x,y)=(x + y)2 e ,(t)=(t+logt,t- logt) con tE(l,e); 

Esercizio 2.21 : calcolate il lavoro dei seguenti campi: 
a) f (x,y)=(2x - y, seny - x) sulsegmentoda (1, 2) a (3,-1); 
b) f (x, y, z) = (2 , xy, x - z) sulla circonferenza di raggio 1 centrata in (O, O, O) e 

che giace nel piano x = O . 

Esercizio 2.22 : tracciate (per punti) la curva piana di espressioni parametriche 

x = 16 sen3 t, y = 13cost - 5cos(2t) - 2cos(3t) - cos(4t), 

che fa parte della famiglia delle cardioidi, controllando che il risultato somigli al seguente: 

Fig. 2.25 : ecco una cardioide fatta veramente a cuore! 
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Appendice al capitolo 2 

Appendice 2.1 - Raccordi autostradali 

Un esempio interessante di curva piana è quello che si incontra nella realizzazione di 
raccordi autostradali. Supponiamo di voler costruire un raccordo tra due autostrade che si 
incrociano perpendicolarmente come in Figura e supponiamo inoltre che le auto in uscita 
dalla prima autostrada si immettono nella seconda percorrendo il raccordo a velocità 
costante v . Vogliamo costruire il raccordo in modo che le auto ( ed i loro guidatori) 
non sentano grossi sbalzi nella forza centrifuga che si manifesta nella percorrenza del 
raccordo: siccome a velocità costante la forza centrifuga è proporzionale alla curvatura 
scalare, se misuriamo il tempo partendo dal momento in cui si inizia a percorrere il 
raccordo, cerchiamo quindi una curva <f>(t) tale che la sua curvatura scalare k(t) varii 
dolcemente in funzione di t, ad esempio k(t) = at, fino al punto centrale del raccordo, 
in cui la curvatura è massima, per ricongiungersi poi in maniera simmetrica al secondo 
ramo di autostrada. 

Dalla definizione di curvatura illustrata nella Sezione 2.5, siccome supponiamo la 
velocità costante, ricaviamo 

llr' (t) Il = avt 

dove abbiamo indicato con r (t) il versore tangente alla curva. Essendo r (t) un versore 
possiamo scrivere r (t) = ( cos0(t),sen0(t)), con 0(t) funzione da determinare. Per 
t = O abbiamo 0(0) = O mentre, se indichiamo con T il tempo in cui si raggiunge il 
punto centrale del raccordo, abbiamo 0(T) = 1r / 4 . In definitiva abbiamo 

avt = llr '(t)II = IO'(t)I , 
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e siccome B(t) è crescente in [O, T] , ricaviamo 

B'(t) = avt, 0(0) =O, B(T)=1r/4, 

che fornisce 
av 2 B(t) = 2 t , conT= {1r _ V~ 

In definitiva, otteniamo 

</J' (t) = v( cosB(t),senB(t)) in [O,T] 

da cui, indicando con (xo, O) il punto in cui si inizia a percorrere il raccordo, ricaviamo 
le espressioni parametriche della curva di raccordo: 

x(t) = xo + v fot cos(avs2 /2) ds, y(t) = v fot sen(avs2 / 2) ds. 

Come si vede, le espressioni parametriche ( x( t) , y( t)) non sono funzioni elementari; 
inoltre i parametri x0 , a, v devono essere tra loro compatibili , nel senso che al tempo 
T = J1r/(2av) il punto raggiunto deve trovarsi sulla retta y = -x, cioè 

1
✓7r/(2av) X 

( cos(avs2 /2) + sen(avs2 / 2)) ds = - _Q , 
O V 

o equivalentemente, con un cambio di variabili, 

fa rfi12 
-xoy ~=lo ( cos(s2

) + sen(s2
)) ds ~ 1.055. 

La curva ottenuta viene chiamata clotoide ed per quella rappresentata in Figura abbiamo 
scelto dei parametri autostradali come v = 25 m/ s ( = 90 km/h ) e x 0 = - 1000 m , 
che forniscono 

a ~ 5.566 • 10- 5 , T ~ 33.598. 

···-., 

·-....... l 
'· ·····,., 

'',.,,_ 
·--.• , I 

--- ~ ------ - ~--1'·-, .. 

Fig. A2.l : due autostrade da raccordare Fig. A2.2 : una clotoide di raccordo autostradale 
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Appendice 2.2 - Altre curve celebri 

Continuiamo ad elencare alcune curve celebri, studiate a fondo in passato sia per la loro 
eleganza che per alcune proprietà geometriche o meccaniche importanti. 

Esempio : se a, b sono due numeri reali, con a > O , la curva 

r=a0+b (A2.1) 

rappresenta una spirale, detta spirale di Archimede. Notiamo che il passo, cioè la 
distanza tra due punt i della curva i cui angoli distano tra loro 21r, è costante ed è uguale 
a 21ra . Un esempio di spirale di Archimede si ha osservando una corda arrotolata 
per terra, dove ogni spira ha ~a medesima distanza (lo spessore della corda) da quella 
precedente. 

Fig. A2.3 : una spirale di Archimede Fig. A2.4 : un'altra spirale di Archimede 

Esempio : se a, b sono due numeri reali, con a > O , la curva 

r = aebfJ 

rappresenta ancora una spirale, detta spirale logaritmica. Come si vede in figura, il 
passo questa volta non è costante. 

F ig. A2.5 : una spirale logaritmica 
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Esempio : altre spirali si possono ottenere modificando la relazione che lega r a 0 . Ad 
esempio 

r = a0° + b spirale di Archimede generalizzata 

r = a/ 0 spirale iperbolica. 

Alcune di queste spirali sono rappresentate nelle figure. 

t i, 

Fig. A2.6 : una spirale quadratica Fig. A2. 7 : una spirale iperbolica 

Esempio : la curva di equazione cartesiana 

lxl213 + IYl213 = 1 

è detta astroide. In forma parametrica essa ha l'espressione 

mentre in forma polare si ha 

{ 
x(t) = cos3 t 

y(t) = sen3 t 
t E [O, 21r] , 

r = ( cos2l 3 0 + sen213 0)- 312 , 0 E [O, 21T] . 

Fig. A2.8 : la curva astroide 

(A2.2) 
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Esempio : la curva di equazione cartesiana 

x2 + y2 + x = J x2 + y2 

è detta cardioide (~ es. 2.22) . In forma parametrica essa ha l'espressione 

{ 
x(t) = cost(l - cost) 

y(t) = sent(l - cost) 

mentre in forma polare si ha la semplice espressione 

t E [O, 21r] , 

r = 1 - cos0, 0 E [O, 21r] . 

-_,-,--_., 

Fig. A2.9 : la curva cardioide Fig. A2.10 : cardioide con q = 0.25 e k = 1 

P iù in generale si possono considerare le curve in forma polare 

r = q - cos(k0) 

con q > O e k > O . Va notato che, nel caso q < l , usiamo la comoda convenzione 
sui valori negativi di r introdotta nella Sezione 1.5. Alcune cardioidi generalizzate, con 
diversi valori di q e di k , sono rappresentate in figura. 

Fig. A2.ll : cardioide con q = 1.5 e k = 5 Fig. A2.12 : cardioide con q = 0.25 e k = 3 
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Esempio : la curva di equazione parametrica 

{
x(t) =t - sent 

y(t) = 1 - cost 
t E [O, 21r] 

è detta cicloide. Essa è la curva tracciata da un punto fissato su una circonferenza che 
rotola lungo una retta senza strisciare; in pratica è la curva percorsa dalla valvola di una 
ruota di bicicletta in movimento. In forma cartesiana la cicloide ha l'espressione 

cos (x + jy(2 - y)) + y = 1 

mentre l'espressione polare è più complicata e rimane in forma implicita, ovvero non si 
riesce a scriverla nella forma r = h(0) ma solo come f (r, 0) = O. 

F ig. A2.13 : la curva cicloide 

Esempio : la curva di equazione cartesiana 

y E [O, 1[ 

è detta cissoide di Diocle. In forma parametrica essa ha l'espressione 

{ 

( ) 
cos3 t cos2 t 

xt = -- = --cost 
sen t sent 

cos2 t 
y(t) = cos2 t = -- sen t 

sent 

mentre in forma polare si ha l'espressione 

t E]O, 1r[ , 

cos2 0 
r - -­

- sen 0 ' 
0 E]O, 1r[. 
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Fig. A2.14 : la curva cissoide di D iocle 

Esempio : la curva di equazione cartesiana 

è detta curva di Gutschove n o curva kappa, in quanto il suo grafico rassomiglia ad 
un ramo della lettera greca 1,,. In forma parametrica essa ha l'espressione 

{ 

x(t) = cost 

( ) 
cos2 t 

yt = -­
sent 

t E]0, 1r[, 

Fig. A2.15 : la curva kappa 

mentre in forma polare si riduce a 

r = !tan01, 0 E] - 7r /2, 1r /2[ . 
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Esempio : la curva di equazione parametrica 

{ 
x(t) = 2 cos t + cos(2t) 

y(t) = 2sent - sen(2t) 
t E [O, 21r], 

è detta deltoide. In forma cartesiana essa ha l'espressione (piuttosto complicata) 

(x2 + y2 )(x2 + y2 + 18) = 27 + 8x(x2 
- 3y2) , 

mentre in forma polare si ha l'espressione implicita 

r4 + 18r2 = 27 + 8r3 cos(30) . 

L'espressione più semplice si ha in forma parametrica complessa: 

z(t) = 2eit + e- 2it . 

Fig . A2.16 : la curva deltoide 

Esempio : se a, b sono due numeri reali, la curva di equazione parametrica 

{ 
x(t) = cos t 

y(t) = sen(at + b) 

è detta curva di Lissajous. Al variare di a, b il grafico della curva può variare molto, 
come si vede nelle figure. Le figure di Lissajous rappresentano dei moti particolari di un 
doppio pendolo. 

Fig. A2.17 : una curva di Lissajous Fig. A2. 18: un'altra curva di Lissajous 
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Esempio : la curva di equazione cartesiana 

è detta lemniscata di Bernoulli. Una sua espressione parametrica è 

mentre l'espressione polare è 

{ 

1 +t2 
x(t) =t l +t4 

1 - t2 

y(t) = t 1 + t4 ' 

r = Jcos(20) . 

Fig. A2.19 : la curva lemniscata di Bernoulli 

Esempio : un'altra lemniscata è quella detta di Gerono la cui equazione cartesiana è 

x4 - x2 + y2 = O . 

La curva può essere parametrizzata da 

mentre l'espressione polare è 

{ 

t2 - 1 
x(t)- -­

- t 2 + 1 

t 2 - 1 
y(t) = 2\t2 + 1)2 ' 
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Fig . A2.20 : la curva lemniscata di Gerono 

Esempio : preso un numero reale positivo a , la curva di equazione cartesiana 

è detta chiocciola di Pascal. La sua equazione parametrica è 

mentre l'espressione polare è 

{ 
x(t) = cost(a + cost) 

y(t) = sen t(a + cos t) , 

r = a+cos0. 

Fig. A2.21 : la chiocciola di Pascal con a = 0.2 Fig. A2.22 : la chiocciola di Pascal con a= 1.2 
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Appendice 2 .3 - Applicazione ai motori 

Nei motori a scoppio a quattro tempi sono presenti delle valvole, che si devono aprire e 
chiudere una volta ogni due giri dell'albero motore, e in momenti ben precisi! Come si 
realizza questo movimento? Mediante un albero a camme: anzitutto si collega l'albero 
motore a un albero accessorio, che compie una rotazione ogni due del motore; poi, per 
ogni valvola, si decide quale debba essere l'altezza h(0) della valvola per ogni posizione 
0 dell'albero accessorio. Infine si realizza una camma, ossia un ispessimento asimmetrico 
dell'albero accessorio, che tramite un leveraggio trasmette il movimento alla valvola. 

Fig. A2.23 : una (molto schematica) camma 

In coordinate polari, il profilo della camma segue la legge r = ro+h(0), o r = ro+c·h(0) 
se lo snodo non è in centro alla leva. 

Appendice 2.4 - Ellissi, astroidi e garages 

Vediamo cosa c'entrano questi tre soggetti, iniziando dall'ultimo. Le serrande dei garages 
-.ono spesso costruite come in figura: il punto alla base della serranda scorre in una 
guida verticale, e quando a lziamo la maniglia la serranda si muove per arrivare ed essere 
parallela al soffitto del garage. Il braccio obliquo arriva al centro della serranda. Ci 
possiamo porre due domande: 

1) qual è il percorso seguito da un punto della serranda, ad esempio la maniglia? 
2) voglio riempire il garage di scatole, ma naturalmente non voglio che queste vengano 

tranciate o schiacciate dalla serranda nel suo movimento. Qual è la zona lasciata 
libera dalla serranda? 
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\l 
Fig. A2.24 : la serranda di un garage, chiusa e mentre si apre 

lliproduciamo la situazione in un piano cartesiano, in cui per comodità ruotiamo tutto 
di 180°, oltre a ridurre serranda e braccio a dei segment i. .. Osserviamo preliminarmente 
che, mentre il punto a lla base della serranda ( ora il punto A ) scorre nella guida verticale, 
quello ( ora B ) in cima alla serranda si muove orizzontalmente. Infatti i triangoli AOS 
e BOS sono isosceli, gli angoli al vertice ( quelli in S ) sono supplementari quindi gli 
angoli alla base sono complementari, e dunque il segmento BO è ortogonale al segmento 
verticale O A . 

A A 

a 
p 

H - -- -
b 

o 
B K B 

Fig. A2.25: la serranda (ruotata di 180° ) Fig. A2.26 : in grigio l'angolo t 

Poniamoci dunque in un riferimento cartesiano ortogonale, e per ogni segmento AB 
con A sul semiasse positivo delle ordinate e B su quello positivo delle ascisse e avente 
lunghezza e fissata, consideriamo il punto P che dista a da A e b da B , con 
a+ b =e. Detto t l'angolo APH = PBK abbiamo PH = acost e PK = bsent, 
dunque il movimento del punto P al variare di t è parametrizzato da 

(x,y) = </>(t) = (acost, bsent), O ~ t ~ 1r / 2 , 

ed è quindi un (quarto di) ellisse di semiassi a e b a.li' (2.6) . 
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b 

Fig. A2.27 : il punto P . percorre un'ellisse 

Più delicata la risposta alla seconda domanda: vogliamo trovare quali sono i punti 
che stanno al di sopra del segmento per ogni posizione del medesimo. 

Fig. A2.28 : varie posizioni del segmento Fig. A2.29 : la curva è un'astroide 

Consideriamo per il momento il caso la lunghezza P del segmento è pari a 1 e 
!liamiamo h l'altezza alla quale questo interseca l 'asse delle ordinate: così il punto A 

Ila figura A2.26 ha ordinata h mentre il punto B della stessa figura, per il teorema 
, Pitagora, ha ascissa J1 - h2 e per O :S h < 1 , cosa che supponiamo d'ora in poi, 
J.Dgolo t ha tangente h/ J l - h2 • Il segmento giace quindi sulla semiretta per A con 
-efficiente angolare - h/ J1 - h2 , che ha equazione 

h 
y = rh(x) = h- ~x, 

1 - h2 
X 2'. 0 

e il problema equivale a trovare, per ogni x fra O e l , qual è la massima altezza 
raggiunta in corrispondenza all'ascissa x dalle varie semirette rh (è equivalente consi­
derare il segmento o la semiretta: tanto, non ci interessa cosa accade quando la semiretta 
passa sotto l'asse delle ascisse) al variare di h fra tutti i suoi possibili valori, cioè per 
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O ~ h < 1 . Dobbiamo quindi, fissato O < x ~ 1 , trovare il massimo dell'espressione di 
rh ( x) al variare di h . Conviene allora riscrivce l'espressione come funzione di h : 

h 
Yx(h) = h - ~x 

vl - h2 

e trovarne il massimo per O~ h < 1. Abbiamo Yx(O) = O, 

e in particolare y~ è positiva per 

O ~ h < J 1 - x2/ 3 

lim Yx(h) = -oo, 
h -+ 1 -

e negativa dopo tale valore (che è inferiore a 1 ), quindi il massimo si ha per h = 
✓1 - x2/ 3 e vale 

y(x) = (l _ x2f3)3/ 2 , 

che possiamo riscrivere meglio in forma implicita 

x2/ 3 + y2/ 3 = 1 , 

l'equazione di un (quarto di) astroide a:." (A2.2) . Nel caso generale del segmento di 
lunghezza C, per omotetia l'equazione diviene x 2/ 3 + y 2/ 3 = f,2/ 3 . 



Capitolo 3 

Calcolo differenziale in più variabili 

In questo capitolo, svilupperemo il calcolo differenziale per funzioni di più variabili. 
Cercheremo, per quanto possibile, di seguire lo schema già visto nel corso di Analisi 
~!atematica 1 per funzioni reali di una variabile reale; molti concetti sono analoghi, di­
·.-ersi altri invece sono completamente nuovi e richiedono una particolare attenzione da 
parte dello studente. 

3.1 - Derivate parziali 

Consideriamo un insieme A e lRn , una funzione f : A -+ JR ed un punto xo E A . 
Indicati con e 1 , ... , en i vettori della base canonica di lRn Q> Sezione 1.1, possiamo 
fare la definizione di derivata parziale. 

Definizione : chiameremo derivata parziale k-esima di f in xo il limite, se esiste, 

r f(x o + hek) - f (xo) 
h1:!ò h . (3.1) 

Diremo poi che la funzione f è derivabile parzialmente in x 0 nella direzione ek 
-e il limite (3.1) è finito. Infine diremo che la funzione f è derivabile parzialmente 
in x 0 se tutte le n derivate parziali di f esistono e sono finite. 
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Useremo vari simboli per indicare la derivata parziale k-esima di una funzione f in 
x 0 ; le notazioni più comuni sono 

È utile avere vari modi per indicare lo stesso oggetto matemat ico; a seconda delle sit ua­
zioni può essere conveniente usare una notazione piuttosto che un'altra. 

Osservazione : in qualche caso, se il punto x 0 è sul bordo di A , si possono definire 
ancora alcune delle derivate parziali, ma non tutte; ad esempio in R 2 , se il dominio A 
della funzione f è 

A = {- IYI::; X::; IYI } ' 
non ha senso la derivata parziale V x f (O) mentre ha senso la derivata parziale V y f (O) . 

Definizione : se la funzione f è derivabile parzialmente in un punto x 0 chiameremo 
gradiente di f in x 0 il vettore 

V f(xo) = (V x.f(xo), ... , V x.J(xo)) . 

Altre notazioni usate per indicare il gradiente sono (~ es. 3.1) 

Df(x o), 8J(xo), gradf(xo). 

A volte, quando il punto in cui si fanno le derivate è chiaramente sottinteso o non rilevante 
per il discorso, l' indicazione di tale punto viene omessa e si hanno notazioni del t ipo 

aJ 
OXk' 

V xk f , grad f, "vf. 

Osservazione : in pratica, si calcola la derivata parziale k-esima congelando tutte le altre 
variabili: infatti se x 0 = (xb, ... , x0) il limite (3.1) si scrive, per esteso, 

1. f(xb, x5, ... , X~+ h, ... , Xo) - f(xà, x5, ... , x~, ... , xò) 
Im 
h➔O h 

Esempio : la funzione 

f: R2-+ R' f(x , y) = x2 + y3 

ha come derivate parziali in un punto (x0 , Yo) le quantità 

quindi il vettore gradiente sarà 

V f(xo, Yo) = (2xo, 3y5) . 
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Nel caso di funzioni vettoriali, cioè f : IR.n -+ IR.m , abbiamo analoghe definizioni; la 
derivata parziale k-esima sarà il limite, se esiste, 

r f (xo + hek) - f (x 0 ) 

h~ h ' 

che è un vettore. Le sue componenti saranno quindi 

8f _ ( 8ft 8fm) 
axk - axk' ... ' 8Xk 

Le derivate delle m componenti di f formano allora una matrice m x n in cui la riga 
j-esima è data dalle derivate (~ es. 3.2) 

Definizione : se le componenti di f : A e IR.n -+ IR.m sono derivabili parzialmente in 
un punto x 0 E A, la matrice jacobiana di f in x 0 è la matrice ('v f) (x o) le cui 
componenti sono 

1 ::; i ::; m, 1 ::; j ::; n , (3.2) 

così che 

Esempio : consideriamo una matrice A con due righe e due colonne, e la funzione lineare 
f : IR.2 -+ IR.2 data da 

f (x,y) = A (x) = (aux + a12Y ) 
y a21x + a22Y 

(3.3) 

Dato che le componenti di f sono 

fi(x, y) = a11x + a12Y, 

si ha 

e quindi la matrice jacobiana di f è semplicemente A . Lo stesso vale per la funzione 
affine 

f (x, y) = V + A (:) 

dove V E IR.2 è un punto fissato. 
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Esempio : consideriamo la funzione f : JR2 -+ JR2 data da 

f (x , y) = (xy , x2 + y3) . 

Dato che le componenti di / sono 

fi(x,y) = xy, h(x, y) = x2 + y3 ' 

si ha 
Dif1 = y, D2/1 = x, D 1h = 2x, D2!2 = 3y

2 

e quindi la matrice jacobiana V f è data da 

(3.4) 

Nel caso di una funzione a valori vettoriali f : JRn -+ JRn , accanto alla matrice 
jacobia na V f che in questo caso, essendo m = n , è una matrice quadrata, è utile 
definire una quantità scalare che si ottiene dalla matrice V f e che ritroveremo nel 
Capitolo 6. 

D efinizione : sia A e JRn e sia f : A -+ JRn una funzione derivabile parzialmente in 
un punto xo E A . Chiameremo divergenza della funzione f in xo la quantità 

n 

div/= D1fi + ... + Dnf n = L D d i • (3.5) 
i = l 

In altri termini, la divergenza di f non è altro che la traccia della matrice jacobiana 
Vf (~ es. 3.3). Quindi, con la funzione f definita in (3.4), si ha 

div f (x , y) = y + 3y2 . 

Una differenza importante tra il caso di una variabile e quello di più variabili è che, 
mentre per funzioni f : JR -+ JR sappiamo che la dcrivabilità implica la continuità, per 
n > 1 può succedere che una funzione f : JRn -+ JR che possiede tutte le derivate parziali 
in ogni punto di JRn non sia necessariamente continua. 

Esempio : consideriamo la funzione f : JR2 -+ JR definita in (1.44). Si vede facilmente 
che al di fuori dell'origine la funzione f è derivabile parzialmente e si ha, per ogni 

(x,y) =I= O , 

x4 - y2 
V xf(x, y) = - 2xy ( 4 2)2 , 

X +y 
x 4 -y2 

V yf(x,y)=x2( 4 2)2 
X +y 

La funzione f è derivabile parzialmente anche nell'origine (verificatelo mediante la 
definizione di derivata parziale), e si ha 

V xf (O, O) = V yf(O, O) = O. 

Tuttavia , la funzione f non è cont inua nell'origine, come abbiamo già visto precedente­
mente nella Sezione 1.9. 



Capitolo 3 : Calcolo differenziale in più variabili 151 

Sappiamo che, in una variabile, una funzione derivabile che ha derivata identicamente 
nulla su un intervallo è costante. Questo si ripete in più variabili, dove l'analogo degli 
intervalli è rappresentato dagli insiemi connessi - (1.30). 

Proposizione 3.1 : se A C Rn un aperto connesso e sia f : A ➔ Rm una funzione 
che in ogni punto di A ha matrice jacobiana nulla. Allora f è costante. 

DIMOSTRAZIONE : basta dimostrare che sono costanti tutte le componenti del vettore f , 
quindi ci siamo ridotti al caso scalare, e scriveremo f anziché f ; inoltre, per semplicità, 
portiamo avanti la dimostrazione solo nel caso n = 2 . Prendiamo un qualunque punto 
(xo, yo) E A: dato che A è aperto, contiene una palla Br(xo, y0 ) . 

(xo, Yo) • ----------------• 
S1 

Fig. 3.1 : f è costante sia su S1 che su S2 

Preso un punto (x , y) in questa palla, osserviamo che sia il segmento S1 da (xo, Yo) 
a (x, Yo) che il segmento S2 da (x, yo) a (x, y) sono contenuti nella palla; sul segmento 
S1 la funzione f dipende dalla sola variabile x , e la sua derivata ( che è la derivata 
parziale di f rispetto a x ) è nulla, quindi f è costante su S1 . Analogamente, su S2 

la funzione f dipende solo da y e ha derivata nulla, quindi è costante. Ma allora 

f(xo,Yo) = f (x,yo) = f(x,y) 

e per l 'arbitrarietà di (x, y) E Br abbiamo provato che f è costante in Br(xo, yo) . 
Dunque, visto che (xo, Yo) era qualsiasi, abbiamo provato che: per ogni punto x 0 E A 
esiste una palla Br(Xo) C A in cui f = f(xo ) . Scegliamo un punto z 0 E A: l' insieme 

E= { x E A: f (x ) = f (z o) } 

e intorno di ogni suo punto, dato che per ogni suo punto x 0 c'è una palla che lo contiene, 
fatta tutta di punti in cui f ha lo stesso valore. Allora E è aperto (e non vuoto) . Se 
f non fosse costante, allo stesso modo l' insieme 

F = { X E A : f (X) =f f ( zo)} 

sarebbe aperto non vuoto, quindi A sarebbe sconnesso. ■ 
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3.2 - Derivate direzionali 

In maniera analoga a quanto fatto per le derivate parziali, possiamo definire la derivata 
direzionale, lungo una direzione v , semplicemente sostituendo il versore v alle direzioni 
canoniche ek . Più precisamente abbiamo la seguente definizione. 

Definizione : sia f : A C lRn --► JR una funzione; sia poi x 0 E A e sia v un versore 
di lRn , cioè un vettore dì norma unitaria. Chiameremo derivata direzionale di f in 
x 0 nella direzione v il limite, se esiste, 

1
. f(xo + hv) - f(xo) 
lm . 

h-tO h 
(3.6) 

Più in generale, se V è un qualunque vettore non nullo di lRn , possiamo definire la 
derivata di f in xo lungo il vettore V come il limite, se esiste, 

lim f(xo + hV) - f(xo) . 
h-tO h 

Per le derivate direzionali e per quelle lungo un qualsiasi vettore useremo le notazioni 
e~ es. 3.4) 

Dvf (xo), Òvf (xo) , 

Va osservato che, prendendo v = ek , la derivata direzionale si riduce alla derivata 
parziale k-esima. Inoltre, dalla definizione precedente si ottiene che la derivata direzionale 
òvf(xo) non è altro che la derivata in t = O della funzione di una variabile 

h(t) = f(xo + tv) . 

Per le funzioni a valori vettoriali f : JR,. --► ]Rm la definizione di derivata direzionale è 
analoga: 

0 f ( ) _ r f (xo + hv) - f (xo) 
v Xo - h~ h 

In tal caso òvf(xo) è un vettore, avente per componenti 

Ovf(xo) = (òvfi(xo), ... ,8vfm(xo)) • 

Osservazione : per una funzione f , avere in un punto tutte le derivate direzionali è una 
condizione più forte che avere le sole derivate parziali; tuttavia, neppure tale condizione 
più forte implica in generale la continuità. Come abbiamo visto, la funzione introdotta 
in (1.44) non è continua, però possiede in ogni punto tutte le derivate direzionali; questo 
è chiaro fuori da (O, O) , mentre nell'origine si ha: 
a) se v = (±l , O) , la derivata direzionale è la derivata parziale rispetto a x (o il suo 

opposto, a seconda del verso in cui punta v ), quindi sappiamo che Òvf(O, O) = O; 
b) se il versore v = (vx,vy) non è (±1,0), allora vy =/-O, e 

f((O,O)+tv) - f(O ,O) 
t 

quindi ancora Òvf (O, O) =O. 

f(tv) 
t 
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3.3 - Differenziale 

Introdurremo ora una nozione più forte di quella di derivata parziale, che in particolare 
implicherà la continuità e ci permetterà di estendere gran parte dei risultati ottenuti 
per funzioni reali di una variabile reale al caso di più dimensioni. Ricordiamo che in 
una variabile, una funzione è derivabile ( o differenziabile) in x0 se vale una delle tre 
condizioni equivalenti: 

1) per qualche numero reale a si ha f(x) = f (xo) + a(x - xo) + o(x - xo) ; 
2) il grafico di f, che è contenuto in IR2 

, ha nel punto di ascissa x 0 una retta tangente 
non verticale, di equazione 

y = J (xo) + a(x - xo) ; 

3) esiste finito il limite 

lim f(x) - f(xo) =a . 
x-+xo X - Xo 

Il numero a è lo stesso nelle tre definizioni, e la terza si può anche riscrivere come: 
3') per qualche numero reale a si ha 

lim f (x) - f(xo ) - a(x - xo) = 
0

. 
x-+xo X - Xo 

Generalizziamo queste condizioni al caso di più dimensioni, utilizzando la notazione degli 
.. o piccoli" introdotta al termine della Sezione 1.9. 

Definizione : siano f : A e Rn -+ JR e x 0 E A ; si dice che f è differenziabile in 
xo se esiste un vettore a E IRn tale che 

f(x ) = J(xo) +a· (x - xo ) + o(llx - xo ll) . (3.7) 

Il vettore a è detto differenziale di f nel punto x 0 . 

Abbiamo dato una definizione semplice e operativa (~ es. 3.5), ma è possibile dare 
una definizione di differenziale che è formalmente diversa, ma si usa solo per applicazioni 
particolari (u• appendice 6.2). 

Osservazione : è immediato verificare che se f è differenziabile in x 0 con differenziale 
a = (a1 , ... , an) , allora f è anche derivabile in x 0 e le sue derivate parziali sono 
date da 

8f 
-
8 

(xo ) = ak. 
Xk 

Infatti si ha (~ es. 3.6) 

8f (xo) = lim f (xo + hek ) - f(xo) = lim a· (hek ) + o(h) = ak. 
axk h-+0 h h-+0 h 
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Osservazione: per quanto visto nell'osservazione precedente, il vettore a non è altro che 
il gradiente '7 f (xo) , per cui se f è differenziabile abbiamo 

f(x) = J(xo) + '7 f(xo) · (x - xo) + o(llx - x oll) . 

Nel corso di Analisi Matematica 1 abbiamo definito la nozione di tangenza dicendo 
che i grafici di due funzioni f e g sono tangenti in un punto di ascissa xo se 

f(x) - g(x) = o(x - xo) 

( che se proprio volessimo potremmo scrivere in modo equivalente 

lf(x) - g(x)I = o(x - xo) : 

questo ci servirà fra poche righe). La definizione è analoga per funzioni di più variabili , 
basta scriverla come 

f(x) - g(x) = o(llx - xo ll) . 

Addirittura, la stessa scrittura ha senso se f , g : lRn -+ !Rm , se la modifichiamo in 

11 / (x) - g(x )II = o(llx - xoll) . 

Ricordiamo che il grafico di una funzione f : A e lRn -+ JR è un sottoinsieme di JRn+l . 

Proposizione 3.2 : una funzione f : A e !Rn -+ JR è differenziabile in x 0 E A se e 
solo se vale una delle tre condizioni equivalenti: 
1) J(x ) = f(xo) + '7 f(xo) • (x - xo ) + o(llx - xoll) ; 
2) il grafico di f, nel punto di ascissa x 0 , è tangente all' iperpiano di equazione 

Xn+i = f(xo) + ('7f(xo)) · (x - xo); (3.8) 

3) si ha 

. J(x ) - f(xo ) - ('7f(xo)) · (x - xo) 
hm -'--- ----'----'---'---- = O . 

:i:-+:i:o Il X - X o Il 

Trascurando la versione geometrica, queste condizioni si possono prendere come 
definizione di differenziabilità per funzioni a valori in lRm . In questo caso, leggiamola 
ricordando che f (x ) non è un numero reale, ma è un vettore di lRm. 

Definizione : siano f : A C lRn -+ lRm e x 0 E A ; si dice che f è differenziabile in 
x 0 se esiste una matrice D di dimensione m x n tale che 

ll f (x) - f (x o) - D (x - xo) II = o(llx - xo ll) . 

La matrice D è detta differenziale di f nel punto x 0 . 
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Proposizione 3.3 : se f : A e IRn ➔ IRm è differenziabile in x 0 , il suo differenziale 
è la matrice jacobiana 'v f (x 0 ) . Inoltre f è differenziabile in x 0 se e solo se sono 
differenziabili in x 0 tutte le sue componenti h, ... , f m . 

Per la proposizione precedente, tutti i risultati sulla differenziabilità di funzioni 
vettoriali possono essere letti solo in termini delle componenti di f , che sono delle 
funzioni scalari. 

Osservazione : per le funzioni f di una variabile reale le nozioni di derivabilità e di 
differenziabilità coincidono; sappiamo infatti che per le funzioni derivabili di una variabile 
reale vale la formula di Taylor arrestata al primo ordine, che non è altro che la definizione 
di differenziabilità. 

Oltre ad essere derivabili parzialmente, le funzioni f differenziabili in x 0 sono 
anche derivabili lungo ogni vettore; infatti si ha 

8f ( ) _ 
1
. f(xo + hV) - f(xo ) 

-a Xo - 1m h V h--+0 

= lim 'v f(xo) • (h V )+ o(h) = 'v J(xo ) . V . 
h--+0 h 

(3.9) 

Questo mostra anche che, per le funzioni differenziabili, la dipendenza da V della 
derivata lungo un vettore è lineare. Vediamo una importante conseguenza. 

P roposizione 3.4 : se f : A e IRn ➔ JR è differenziabile in x 0 E A , per ogni versore 
v si ha 

l8vf(xo) I ~ ll 'vf(xo)II; 

se 'v f(xo) -I O , nella direzione del versore 

si ha 

'v J(xo) 
IIVJ(xo)II 

La proposizione segue immediatamente da (3.9), usando la disuguaglianza di Schwarz 
{1.3). Conviene scrivere esplicitamente le conseguenze geometriche della proposizione. 

Corollario 3.5 : se f : A e JRn ➔ JR è differenziabile in xo E A e 'v f (x 0 ) -I O, il 
versore 

'v J(xo ) 
VM := IIVJ(xo)II 

è la direzione in cui il valore di f sale più rapidamente, e II V f II è la massima pendenza 
in Xo delle rette tangenti al grafico di f. Più in generale la pendenza della retta 
•.angente al grafico di f in (xo, f (xo )) sopra la direzione del versore v è la derivata 
Jirezionale 8vf(xo ) . 
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Avremmo potuto ricavare quest'ultima informazione anche geometricamente, così: 
se f : A C R_n ➔ lR, il suo grafico è un sottoinsieme di JRn+J . Indichiamo le variabili 
di lRn con x , e quelle di JRn+l con 

X= (x, Xn+i) , 

e poniamo 

P = (xo, f(xo)) , N = (V f(xo) , -1) 

l'equazione (3.8) si può riscrivere 

(X - P ) · N =O , 

e basta ricordare (1.12). Conviene esplicitare anche questo risultato (~ es. 3.7). 

Corollario 3.6 : se f: A e lRn ➔ JR è differenziabile in x 0 E A , l' iperpiano tangente 
al graiìco di f nel punto (xo , f(xo)) è ortogonale al vettore 

N = (Vf(xo),-1). 

Esempio : come si costruiscono le strade di montagna? Nessuno ha interesse a percorsi 
troppo lunghi, ma i veicoli faticano a superare pendenze elevate. Tipicamente, si cerca di 
evitare pendenze superiori al 10% , ossia punti in cui la retta tangente alla strada formi 
con l'orizzontale un angolo avente tangente superiore a 10/ 100 = 0,1 . Supponiamo che 
f (x, y) sia la quota del terreno; grazie al Corollario 3.5, una strada che passa da (x, y) 
deve farlo in una direzione v tale che lavf(x, y)I :s; 0,1. 

Proviamo ad esempio a calcolare la minima lunghezza di un tratto di strada che 
congiunge la base del cono di equazione 

z = 1 - J x2 + y2 , z?: o 

con il vertice (O, O, 1) e che ha in ogni punto una pendenza uguale al 10%. Usiamo 
l'ordinata z come parametro, e scriviamo la curva richiesta come 

</>(z) = (x(z),y(z), z) , x(z) = (1 - z) cos0(z), y(z) = (1 - z) sen0(z) , O :s; z :s; 1 

con la funzione 0 da determinare, con la condizione che alla base del cono, cioè per 
z = O, ci troviamo ad esempio nel punto (1, O, O) , cioè 0(0) = O. Il vettore tangente 
alla curva è (x'(z), y'(z), 1) e dato che la sua componente orizzontale è 

(x'(z),y'(z)) = (-cos0(z) - (1- z )0'(z)sen0(z ) , -sen0(z) + (1 - z)0'(z )cos0(z )) 

e ha lunghezza 

Jx12 + y'2 = J1 + (1 - z)2(0'(z))
2 
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mentre quella verticale è 1 , la condizione di pendenza fornisce 

da cui 

1 

10 
1 1 

Jx'2 + y'2 

J1 + (1- z)2(0'(z) )
2 = 10. 

Possiamo sin d 'ora calcolare la lunghezza cercata, dato che 

ll <t>' (z)ll2 = x'2 + y'2 + 1 = 100 + 1 = 101 

e quindi 

(3.10) 

È interessante determinare la forma di questa strada: proseguendo da (3.10) abbiamo 

(0'(z))2 = (1 ~gz)2 . 

Scegliamo che sia 0'(z ) > O e otteniamo 

, vf99 1 1 
0 (z) = -- ⇒ 0(z) = vf99log-

1
- +e= vf99log -

1
-

l - z -z -z 

la costante e vale zero perché abbiamo scelto 0(0) = O. Ma per z -+ 1- abbiamo 
B(z) -+ +oo, dunque la strada compie infiniti giri (ma sempre più minuscoli) intorno 
alla punta del cono! 

Osservazione : da quanto visto sopra, se una funzione f è differenziabile in un punto xo 
con differenziale a , l'applicazione che ad ogni vettore non nullo V associa la derivata 
8v f (x0 ) , è lineare e coincide con l'applicazione V >-+ a • V . Per le funzioni che non 
sono differenziabili ma soltanto derivabili lungo tutti i vettori V questo non sempre è 

,·ero. Ad esempio, considerando la funzione 

si ottiene per ogni V non nullo 

che non è un'applicazione lineare. 

se (x, y) =/= (O, O) 

se (x, y) = (O, O), 

½l½ I 
ovf(0,0) = 7fvf , 
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Dalla definizione di differenziabilità si ottiene subito che le funzioni differenziabili 
sono anche continue; infatti s i ha 

lim J (x ) = lim [J(xo) + 'v J (x o) · (x - xo) + o(llx - xo ll)] = J (xo ) . 
X --+Xo X --+X o 

Per le funzioni reali di una variabile reale che sono derivabili in un punto x0 E JR a bbiamo 
definito la retta tangente in x0 come la retta di equazione 

y = J (xo) + J'(xo)(x - xo) . 

Analogamente, per una funzione f : JRn -+ JR differenziabile in un punto x 0 possia mo 
definire l ' iperpiano tangente al suo grafico, nel punto x 0 ; tale iperpiano tangente 
sarà contenuto in JRn+J ed avrà equazione 

Xn+i = f(xo) + 'v J (x o) · (x - x o) . 

Ad esempio, per la funzione f : JR2 -+ JR data da 

J (x, y ) = xy 

il p iano tangente passante per il punto (1, 1, 1) del s uo grafico avrà equazione 

Z = 1 + (1, 1) • ((x, y) - (1, 1)) = X+ y - 1 . 

Verificare la differenziabilità di una funzione f in un punto x 0 richiede dunque la 
dimostrazione dell'uguaglianza 

lim f (x) - f(xo ) - 'vf(xo) · (x - xo) = 
0 

x --+x o Il X - X o Il 

e, come abbiamo visto nella Sezione 1.9, questo non è sempre agevole. È quindi molto utile 
avere delle condizioni sufficienti di semplice verifica che garantiscano la differenziabilità. 

Teorem a del differenziale t otale 3. 7 : siano f : A e IRn -+ JR e x 0 E A e 
supponiam o che in un intorno di x 0 la funzione f sia derivabile parzialmente, con tutte 
le derivate parziali é) J / é)xk continue. Allora la funzione f è differenziabile in xo . 

D IMOSTRAZIONE : per non complicare la notazione lavoriamo solo in JR2 e supponiamo 
Xo = (O, O) ; mediante una traslazione possiamo sempre ricondurci a questo caso. Quello 
che dobbiamo dimostrare è che 

lim f (x, y) - J(O, O) - 'v J (O, O) · (x, y) = O. 
x--+O ll(x, Y)II 

Ma 
f (x, y) - f(O , O) = [f (x, y) - J (x , O)]+ [f (x, O) - f (O, O)] ; 
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inoltre, essendo x f---t f (x, O) funzione di una sola variabile, abbiamo 

f (x, O) = f (0, 0) + 8xf (0, O) ·X + Xw1 (x) 

dove w 1 ( t) è una funzione infinitesima per t --+ O . Analogamente, usando la derivabilità 
nel punto (x, O) , si ha per opportune funzioni w2 (t) e w3(t) infinitesime per t--+ O 

J(x, y) = f(x, O)+ 8y/(x, O)· y + yw2(y) 

= f(x,O) + (oyf(O,O) +w3(x)) · y+yw2(y), 

dove l'ultima relazione è dovuta alla continuità di 8y/. Mettendo insieme t utto rica­
viamo 

f(x, y) - J(O, O) = V /(O, O) · (x, y) + xw1 (x) + y(w2(Y) + w3(x)) , 

e osservando che quando Il (x, y) Il --+ O anche x --+ O e y --+ O 

IJ(x, y) - f(O, O) - V /(O, O) · (x, y) I < lxi IYI 
ll(x'y)II . _ --=::::::::::::==W1(x) + --====== (w2(y) +w3(x)) --+ O , ✓ x2 + y2 ✓ x2 + y2 

dato che le due frazioni sono minori o uguali a 1 .,..- (1.6). ■ 

In seguito, una funzione / derivabile parzialmente in ogni punto di un insieme 
aperto A , con tutte le derivate parziali 8/ /8xk continue, verrà detta di classe C1 (A) . 

3.4 - Operazioni con le derivate parziali 

Le operazioni con le derivate parziali sono simili a quelle del caso di funzioni reali di una 
variabile reale. Le riassumiamo qui di seguito. 

Proposizione 3.8 : per le funzioni differenziabili valgono le proprietà seguenti. 
i) Siano f, g : A e JRn --+ JR due funzioni differenziabili in un punto x 0 E A. Allora 

la funzione somma f + g è differenziabile in xo e si ha 

V (J+g) = Vf+Vg. 

ii) Siano f, g : A C JRn --+ JR due funzioni differenziabili in un punto x 0 E A . Allora 
la fur1zione prodotto f g è differenziabile in x o e si ha 

V(fg) = gVJ + JVg. 

iii) Sia g : A e JRn --+ JRk una funzione differenziabile in x 0 E A e sia f : B C 

R_k --+ JRm una funzione differenziabile in g(x0 ) E B . Allora la funzione composta 
f o g : A e JRn --+ JRm è differenziabile in xo e si ha 

V ( f o g ) = ((Vf) o g )Vg. 
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Nelle formule precedenti abbiamo omesso di indicare i punti in cui si calcolano i 
gradienti, per non appesantire le notazioni. Inoltre, nella formula del differenziale della 
funzione composta, l 'uguaglianza è nel senso delle matrici mx n; infatti V(f og ) è una 
matrice m x n , come pure ( (V f ) o g) V g che è prodotto di (V f) o g , matrice m x k , 
per Vg, matrice k x n. 

Osservazione : è utile scrivere la formula del differenziale della funzione composta in 
termini delle sue componenti: 

k 

(V(f o g ))iJ = L,((Vf ) o g )ih('vg)hJ per ogni 1 :S i :S m, 1 :S j :S n , 
h = l 

che equivale a 

k 
8(f;o g ) ="" (8J;)o g 8911 

8x · L.., 8xh 8x-
1 h = l J 

ovvero 
k 

8 [ ( ] "" 8 f; ( ) 8g,. - f i g(x )) = L.., - g(x ) · - (x) . 
OXj h = l OXh OXj 

Talvolta si vuole mettere in evidenza la dipendenza delle funzioni dalle rispettive variabili, 
ad esempio nelle scienze applicate dove una stessa quantità può dipendere da diverse 
variabili; in tal caso l'uguaglianza precedente viene scritta nella forma 

o, in forma ancora più compatta usando la convenzione di Einstein che considera sommati 
i termini in cui compaiono degli indici ripetuti, 

Osservazione : nel caso in cui k = m = 1 ed f (x) = 1/x, otteniamo per ogni funzione 
g: ]Rn ➔ JR 

v(~) = - Vg , 
g g2 

da cui si ricava l 'espressione per le derivate parziali di un rapporto f / g fra due funzioni 
reali f, g : JRn ➔ JR 

v(L) = gVJ - Jvg. 
g g2 
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Osservazione : sia f : JRn -+ JRn una funzione differenziabile e supponiamo che f sia 
anche invertibile. Prendendo g = f - 1 

, nella formula della derivata di una composizione 
si ottiene 

dove I indica la matrice identità. Da qui, supponendo che la matrice n x n data da 
V f sia invertibile, si ricava la formula per la derivata della funzione inversa 

Osservazione : se f : n -+ JR è differenziabile ed n e JRn è un insieme convesso = 
(1.32), per ogni coppia di punti x , y E n la curva 

</>(t) = tx + (1 - t) y , 

ha sostegno in n, ed è ovviamente differenziabile. Allora è ben definita su tutto [O, 1], 
e derivabile, la funzione 

g(t) = f(<f>(t)) . 

Per la formula di derivazione della composizione 

g'(t) = V f(</>(t)) • </>'(t) = V f(</>(t)) • (x - y ) . 

Per il Teorema di Lagrange esiste un t tale che 

g(l) - g(O) = g'(t) = Vf(</>(t)) • (x - y ) 

ma g(l) - g(O) = J(x) - J(y ), e per la disuguaglianza di Schwarz (1.3) 

lf(x ) - J (y )I :S IIV f(</>(t)) 11 · llx - YII . 

L'osservazione precedente permette di provare immediatamente il prossimo risultato 
sulle funzioni lipschitziane su insiemi convessi = (1.38),(1.32), analogo alla Proposi­
zione 1.45, . 

Proposizione 3.9 : se n e JRn è convesso, una funzione differenziabile f : n -+ JR è 
L-lipschitziana se e solo se IIV J Il :S L . 

Come applicazione di quanto abbiamo detto sinora, vediamo un altro utile r isultato. 

Teorema (di deriva zione sotto il segno di integrale) 3.10 : sia f una funzione 
definita in una striscia n =]a, b[ xJR, tale che sia f che 8xf sono continue, siano 
c:t. /3 E JR e per ogni x E]a, b[ sia 

F(x) = 1: J(x, t) dt . 
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Allora la funzione F è derivabile e ha derivata 

F'(x) = 1: Oxf(x, t) dt. 

Se poi a(x) e {3(x) sono due funzioni derivabili definite in ]a, b[, posto per ogni x E 

]a,b[ 

1

/3(x) 
G(x) = f (x, t) dt 

o(x) 

la fun zione G è derivabile e ha derivata 

1

/3(x) 
G' (x) = Oxf (x, t) dt + f (x, {3(x)) {31 (x) - f ( x, a(x)) a' (x) . 

o(x) 

DIMOSTRAZIONE : scegliamo un punto x 0 E]a, b[, e sia e < min{xo - a, b - x0} di 
modo che 

R = [xo - e, xo + e] x [a, b] 

è un compatto contenuto in n. Dato che la funzione oxf è continua, per il Teorema di 
Heine-Cantor 1.21 è uniformemente continua. Fissiamo e> O e sia 8 > O tale che 

(x',t),(x",t)E R , lx'-x"l<8 ==> loxf(x',t)-Bxf(x",t)l<e: 

(avremmo potuto far variare anche l 'ordinata t, ma non ci serve). Dobbiamo calcolare 

lim F(x + h) - F (x) = lim 1 /3 f (x + h, t) - f (x, t) dt : 
h---tO h h---tO Q h 

prendiamo quindi h =f. O con lhl < 8 : nel seguito ci limitiamo a O < h < 8 , lasciando 
il caso -8 < h < O al lettore (non serve rifare i conti ma bisogna escogitare un facile 
trucco). Per ogni t E [a, /3] , tutti i punti fra (xo, t) e (x0 + h, t) stanno in R, e per il 
Teorema di Lagrange 1.44 applicato alla funzione di una variabile x H f(x, t) 

f (x + h, t) - f (x, t) = hBxf(ç, t) per qualche ç E]x, x + h[ 

dunque 

lf(x + h, t) - f(x, t) - hoxf(x, t)I = hl8xf(ç, t) - Oxf(x , t)I < hc 

dato che lt; - xl < h < 8. Allora 

I F (x + ~ - F(x) - 1 /3 Bxf(x, t) dtl = 11: ( f(x + h, tl- f(x , t ) - Oxf(x, t)) dt l 

= 11: f(x + h, t ) - f(~, t) - h8xf(x, t) dtJ 

< 1 /3 lf(x + h, t) - f(x , t) - hoxf(x , t)I dt 
- o h 

:S e:({3 - a) 
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e quindi per l'arbitrarietà di E: il limite del rapporto incrementale di F è Jt 8xf (x, t) dt . 
Il caso generale è una applicazione interessante della teoria svolta: poniamo 

H(x, y, z) = 1 z f(x, t) dt 
y 

e osserviamo che: 
1) per y ,z fissati abbiamo appena dimostrato che la funzione xi-+ H (x,y , z) è deri­

vabile e calcolato la relativa derivata, che quindi è la derivata parziale di H rispetto 
a X : 

OxH(x, Y, z) = i z Oxf (x, t) dt ; 

osserviamo (va dimostrato, e lo lasciamo per esercizio) che se 8xf è continua, la 
derivata 8xH (x, y, z) è una funzione continua delle variabili (x, y, z) ; 

2) per x, y fissati la funzione 

z i-+ i z J(x, t) dt 

è l' integrale da un punto fissato ( y ) alla variabile z di una fissata funzione continua 
di t (dato che x è fissato) , quindi per il Teorema fondamentale del calcolo 1.50 è 
derivabile ( ossia H è derivabile parzialmente rispetto a z ) con derivata 

OzH(x, y, z) = J(x, z) 

che è una funzione continua; 
3) per x, z fissati, dato che 

H(x, y, z) = -1Y f(x, t) dt, 

quanto detto al punto 2) si ripete e dà 

8yH(x, y, z) = - J(x, y) 

che è anch'essa continua. 
Allora la funzione H ha le t re derivate parziali continue, quindi è differenziabile per il 
Teorema del differenziale totale 3.7. Ma ora possiamo applicare il Teorema di derivazione 
delle funzioni composte 3.8 e dato che 

G(x) = H(x, a(x), (3(x)) 

otteniamo 

G'(x) = 8xH(x, a(x), (3(x)) + 8yH(x, a(x), (3(x)) a' (x) + OzH (x, a(x), (3(x)) (3'(x) 

che usando le espressioni delle derivate parziali che abbiamo calcolato dà la tesi. ■ 

Osservazione : il teorema precedente vale, più in generale, se f è definita in un aperto 
n di JR2 , e se per ogni x considerato il segmento che ha estremi (x,a(x)) e (x,(3(x)) 
è contenuto in n . 
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3.5 - Derivate successive 

Sia A un insieme aperto di IRn ed f : A -+ 1R una funzione derivabile; considerando 
le derivate parziali 8 f / OXk come nuove funzioni, possiamo chiederci se esse risultano a 
loro volta derivabili parzialmente. In tal caso avremo le loro derivate parziali 

8 ( 8f) 
8xh 8xk 

che possiamo indicare anche con uno dei simboli 

a21 
8Xh0Xk 

Così procedendo possiamo definire le derivate parziali di ogni ordine, che indicheremo 
con uno dei simboli 

8Xh1 ••• 8XhN 

Va osservato che, mentre l' insieme di tutte le derivate prime costituisce il vettore gra­
diente, di componenti 

8f 
('vf)k = ~, 

uXk 

le derivate seconde dipendono da due indici e costituiscono quindi una matrice n x n , 
che indicheremo con 'v2 f , di componenti 

('v2 f)ij = 'vij f · 

Definizione : la matrice 'v2 f viene detta matrice hessiana della Funzione f . 

Esempio : la funzione f(x, y) = x2y3 ha come gradiente 

e come matrice hessiana 

( 
2y3 

v2 f(x, y) = 6xy2 6xy
2

) 
6x2y 

Notiamo che tale matrice 2 x 2 è simmetrica (~ es. 3.8). 

La simmetria della matrice hessiana, vista nell 'esempio precedente, non è un fatto 
casuale, come vediamo ora. 

Teorema di Schwarz 3.11 sia f : A e IRn -+ JR una funzione avente tutte le 
derivate seconde continue in un intorno di x 0 E A. Allora la matrice hessiana 'v2 f (x 0 ) 

è una matrice n x n simmetrica, cioè si ba 

per ogni h, k = 1, ... , n . 
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DIMOSTRAZIONE : per semplicità lavoriamo in due dimensioni e ci riduciamo al caso 

xo =2 (, O) . F·ssiamo x, y > O e consideriamo la funzione 

g(x,y) = f(x,y) + f(0,0)- f(x,O) - f(O ,y) 

possia o scrivere 

g(x, y) = [J(x, y) - f (x, O)] - [J(O, y) - f(O , O)] 

ossia, applicando il Teorema di Lagrange 1.44 alla funzione </>(x) = J(x, y) - J(x, O) , 

g(x,y) = x<j>'(ç) -</>(O)= x[axf(ç,y)- axf(ç,O)] 

per qualche punto ç E]O, x[, e applicando di nuovo il Teorema di Lagrange rispetto alla 
variabile y alla differenza fra parentesi 

g(x ,y) = xy[ay(axf)](ç,1]) 

con O < 17 < y . Ma avremmo anche potuto usare un altro ordine, scrivendo 

g(x, y) = [f(x, y) - J(O, y)] - [f(x, O) - f(O, O)] 

e lavorando come prima avremmo ottenuto 

g(x,y) = xy[ax(ayf)](ç',17') 

dunque xy[ay(axf)](t;,,17) = xy[ax(auf)](ç',171
); dividendo per xy 

e facendo tendere a zero x e y ( così anche ç, ç', 17, 171 -+ O ) si ha la tesi per la continuità 
delle derivate seconde. ■ 

Analogamente a quanto fatto per le funzioni di classe C1(A) possiamo introdurre, 
dato un numero intero m, le classi cm(A) delle funzioni per cui tutte le derivate parziali 
fino all'ordine m esistono e sono continue. 
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3.6 - Formula di Taylor 

La formula di Taylor per funzioni di più variabili si può ottenere facilmente. Consideriamo 
un aperto A di R_n , un punto x 0 E A ed una funzione f : A --+ JR , che supporremo 
di classe cm intorno ad x 0 , con m abbastanza alto da permettere tutti i necessari 
passaggi. Fissato un versore direzione v E !Rn introduciamo la funzione reale di una 
sola variabile reale </J definita in un intorno dell'origine di JR da 

</J(t) = f(xo + tv). 

Per le ipotesi fatte su f la funzione </J ha uno sviluppo di Taylor intorno all'origine 
della forma 

m <P(k) (O) 
</J(t ) = L)k-

1
- + o(tm). 

k=O k. 

Calcoliamo ora i termini <fJ(k) (O) utilizzando la regola delle derivate delle funzioni com­
poste; abbiamo per k = O, 1, 2 

{ 

</J(O) = f(xo) 

</J' (O) = Vf(xo) · v 

</J"(O) = V2 f(xo)v • v. 
(3.11) 

Se indichiamo con x il vettore x 0 + tv , abbiamo tv = x - x 0 e quindi dallo sviluppo 
di Taylor di </J si ricava, arrestando lo sviluppo al secondo ordine, 

1 2 ) 2) f(x) = f(xo) + V f (xo) · (x - xo) + 2 V f(xo)(x - xo) · (x - xo + o( llx - xoll . 

I termini successivi al secondo sono più complicati da scrivere e, per avere una notazione 
compatta, sarebbe necessario utilizzare il calcolo tensoriale. Scrivendo invece i termini 
mediante le loro componenti si ha ad esempio l'espressione per il terzo t ermine 

1 n 

6 L V iJkf(xo)(x - x o)i(x - xo)J(x - xo)k . 
i,j,k=l 

In maniera analoga si possono esprimere gli altri termini / essivi. 

Osservazione : nella pratica, per sviluppare una funzione di più variabili, non è sempre 
necessario calcolare gradienti o matrici hessiane; basta ricordare gli sviluppi delle funzioni 
più comuni delle funzioni di una variabile(~ es. 3.9). Ad esempio, se vogliamo sviluppare, 
intorno all'origine di JR2 e fino all'ordine 4, la funzione 

f (x, y) = sen(x + y2
) , 

otteniamo 
1 

f(x,y) = (x + y2) - 6(x + y2)3 + o((x + y2)4) 

1 1 
= x + y2 - 6x3 - 2x2y2 + o(ll(x, y)Jl4) . 
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3. 7 - Massimi e minimi locali 

Ci occupiamo ora dei legami tra derivate e massimi e minimi locali, analogamente a 
quanto già fatto per le funzioni reali di una variabile reale. Il primo passo è la genera­
lizzazione del Teorema di Fermat 1.42 alle funzioni di più variabili. Cominciamo con il 
definire i punti di massimo e di minimo locale. 

Definizione : sia f : A e Rn ➔ R e sia x 0 E A . Diremo che x 0 è un punto di 
massimo locale per la funzione f se esiste un intorno U di x 0 tale che 

J(xo) ~ J(x) \/x E A nU; 

diremo che Xo è un punto di massimo locale isolato per la funzione f se esiste un 

intorno U di x 0 tale che i 
f(x o) > f (x) \/x E A n U, on x -=I- x 0 . 

Defìnizioni analoghe valgono per i punti di mini o locale, isolato o no, rovesciando le 
disuguaglianze. 

A questo punto possiamo enunciare la generalizzazione del Teorema di Fermat. 

Teorema di Fermat in Rn 3.12 : siano f: A e Rn ➔ R e xo E A. Supponiamo 
che 
a) f sia derivabile parzialmente in x 0 ; 

b) x 0 sia interno ad A ; 
c) x 0 sia un punto di massimo o di minimo locale per f. 

Allora si ha V f(xo ) = O. 

La dimostrazione è molto semplice e si riduce al caso di una variabile: infatti per 
ogni vettore ek della base canonica di Rn la funzione reale di variabile reale 

</J(t) = f (xo + tek) 

per t = O è derivabile, ha un massimo o un minimo locale per t = O , e tale punto è 
interno al dominio di <P . Dunque si ha </J'(O) = O per il Teorema di Fermat 1.42 in una 
variabile. Essendo 

</J' (O) = ~ (O) , 
OXk 

si ottiene la condizione necessaria voluta. 
I punti dove il gradiente si annulla sono quelli in cui il piano tangente al grafico è 

orizzontale: dunque se appoggiamo una pallina (puntiforme) in un tale punto del grafico 
questa rimane in equilibrio (anche se magari instabile, come ad esempio sopra un punto 
di massimo). Questo motiva la terminologia della prossima definizione. 
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Definizione : sia f : A e Rn -+ R ; diremo che un punto x 0 E A è stazionario se la 
funzione f è differenziabile in x 0 ed il gradiente V f(xo) risulta nullo. 

Osservazione : è interessante osservare che vale una specie di teorema di Rolle anche nel 
caso di funzioni di più variabili. Infatti, siano A un aperto limitato di Rn ed f : A -+ JR 
una funzione tale che: 

(i) f è continua sulla chiusura A di A; 

(ii) f è derivabile nei punti di A ; 

(iii) f è costante sul bordo 8A di A . 
Allora esiste almeno un punto x 0 E A tale che V f(xo) = O. 

La dimostrazione è analoga a quella del caso unidimensionale. Infatti, per il Teorema 
di Weierstrass 1.20 la funzione f ha in A sia massimo che minimo, raggiunti rispet­
tivamente in due punti XM e Xm . Se entrambi tali punti si trovano sul bordo, per 
l' ipotesi (iii) la funzione f risulterà costante e quindi in ogni punto di A avrà gradien­
te nullo. Se invece almeno uno di essi, ad esempio Xm , è interno ad A , per il Teorema 
di Fermat 3.12 si ha V J(xm) = O . 

Il Teorema di Fermat 3.12 dice semplicemente che i punti di minimo (o di massimo) 
locale interni vanno ricercati tra quelli che annullano il gradiente, ma non dice nulla sulla 
natura di questi ultimi punti. Notiamo che l'analisi che si poteva fare nel caso di una 
variabile, studiando il segno della derivata prima e quindi le proprietà di monotonia della 
funzione f, non è più possibile, in quanto il gradiente V f è un vettore e non avrebbe 
senso chiedersi dove esso è positivo o negativo. L'esempio seguente mostra che intorno 
ad un punto con gradiente nullo una funzione può esibire comportamenti molto diversi. 

Esempio: consideriamo le funzioni f, g, h: R2 -+ R definite da 

f(x,y) = x 2 + y2
, g(x, y) = - x2 - Y2, h(x,y) = x 2 -y2

. (3.12) 

È immediato verificare che in t utti e tre i casi l'unico punto che annulla il gradiente è 
l'origine; tale punto è di minimo locale (anzi assoluto) per la funzione f e di massimo 
locale (anzi assoluto) per la funzione g. Invece l 'origine non è né di massimo né di 
minimo per la funzione h in quanto h(O, O) = O ma in ogni intorno dell'origine vi sono 
sia punti in cui h è positiva, come tutti quelli del tipo (x, O) con x f. O , sia punti in cui 
h è negativa, come tutti quelli del tipo (O, y) . Dunque esiste una retta, in questo caso 
l'asse delle ascisse, su cui l'origine è un punto di massimo isolato, ed un'altra retta, in 
questo caso l'asse delle ordinate, su cui l'origine è un punto di minimo isolato. Tali punti 
sono detti punti di sella in quanto l'andamento della funzione intorno ad essi ricorda la 
sella di un cavallo, che rispetto ad una direzione sembra avere un minimo mentre rispetto 
ad un'altra direzione sembra avere un massimo G> Sezione 1.3. 

L'esempio precedente e le osservazioni fatte nella Sezione 1.3 giustificano la prossima 

defini, ione \ 
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Definizione : sia f : A C lRn -t JR ; un punto di sella della funzione f è un punto ,-
xo E A tale che esistono n vettori linearmente indipendenti v 1 , .. . , V n ed un intero k 
con le proprietà seguenti: 
a) il punto x 0 è di minimo locale isolato per f relativamente allo spazio vettoriale 

generato dai vettori v 1 , ... , V k , cioè esiste é > O tale che 

f(xo) < f(xo + tv;) \IO < ltl < é , 1 :::'.: i :::'.: k ; 

b) il punto x 0 è di massimo locale isolato per f relativamente allo spazio vettoriale 
generato dai vettori v k+l, ... , V n , cioè esiste é > O tale che 

f(xo) > f (xo + tv;) \IO < ltl < é, k + l ::; i ::; n; 

c) l < k < n, cioè esistono effettivamente delle direzioni lungo le quali x 0 è un punto 
di minimo locale isolato e delle direzioni lungo le quali invece x 0 è un punto di 
massimo locale isolato. 

Per una funzione f di più variabili di classe C2 l'analisi della natura dei punti 
stazionari viene effettuata mediante lo studio della matrice hessiana V2 f (x0 ) (~ 

es. 3.10). Questa maniera di procedere è molto naturale se si pensa allo sviluppo di 
Taylor di f intorno ad xo 

1 2 2 f(x) = f(xo) + V f (xo) · (x - xo) + 2 V f (x o)(x - x o) · (x - xo) + o(llx - xoll ) . 

Essendo x 0 un punto stazionario, si ha V f (x 0 ) = O , per cui 

1 2 2 f(x) - f (xo) = 2V f(xo)(x - x o) · (x - xo) + o(llx - xoll ) . 

Se x 0 fosse un punto di minimo locale interno avremmo quindi, per ogni x vicino 
ad xo , 

V2 f(xo)(x - x o) · (x - xo) + o(llx - xoll2
) ~ O, 

e, prendendo x della forma x 0 + tv con v versore direzione, si avrebbe 

Dividendo per t2 e passando al limite per t -t O si otterrebbe 

V2 f(xo)v · v ~ O . 

Essendo v arbitrario, la disuguaglianza precedente equivale a dire che la matrice sim­
metrica V 2 f (x 0 ) è semidefinita positiva r:;r Sezione 1.8. Analogamente, per un punto 
di massimo locale interno x 0 avremmo che la matrice hessiana V2 f (x 0 ) è semidefinita 
negativa. 

L'analisi precedente ci aiuta poco nella pratica, in quanto parte dal presupposto di 
conoscere la natura del punto stazionario in esame, mentre invece, nella maggior parte 
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dei casi, questo è proprio ciò che vogliamo determinare. Supponiamo allora che la matrice 
hessiana V 2 f(xo) sia definita positiva; procedendo come sopra si arriva alla conclusione 

f(xo + tv) - f(xo) = !v2 f(xo)v . v + o(t
2

) . 

t2 2 t2 

Essendo V 2 f(x0 ) definita positiva, esiste B' (1.37) un numero e > O tale che 

'v2 f ( Xo )v • V 2 C , 

per cui si ha 
f(xo + tv) - J(xo) e o(t2

) 

t2 2 2+y. 
Per definizione di o(t2 ) abbiamo che il termine o(t2 )/t2 tende a zero, dunque per t 
piccolo si ha o(t2 )/t2 2 -c/4, da cui 

J(xo + tv) - J(xo) e 
0 t2 2 4 > . 

Il punto x 0 risulta allora di minimo locale isolato(~ es. 3.11). In maniera analoga si ha 
che se la matrice hessiana V 2 J(x0 ) è definita negativa, allora il punto xo è di massimo 
locale isolato. 

Riassumiamo quanto trovato 

Proposizione 3.13 : per un punto stazionario interno xo di una funzione f differen­
ziabile due volte: 
a) se x0 è di minimo locale, allora la matrice hessiana V2 f (xo) è semidefinita positiva; 
b) se x 0 è di massimo locale, allora la matrice hessiana V2 f (x 0 ) è semidefinita ne­

gativa; 
c) se la matrice hessiana V2 J(x0 ) è definita positiva, allora x 0 è di minimo locale 

isolato; 
d) se la matrice hessiana V2 f(x 0 ) è definita negativa, allora xo è di massimo locale 

isolato. 

Tornando alle tre funzioni f, g, h introdotte in (3.12) troviamo subito, per il punto 
Xo = (0,0) 

2 (-2 0 ) 'v g(0,0) = o -2 ' 

e, in base all'analisi precedente sulla matrice hessiana, possiamo concludere che il punto 
(O, O) è di minimo isolato per f e di massimo isolato per g. Riguardo alla funzione 
h osserviamo che, in base alla matrice hessiana V2 h(O, O) , l'origine risulta essere punto 
di minimo locale isolato nella direzione (1, O) e di massimo locale isolato nella direzione 
(O, 1) , dunque l'origine è punto di sella per la funzione h. 
Quanto appena detto per la funzione h si generalizza al caso di dimensione qualsiasi: 
se una funzione h di classe C2 ha un punto stazionario interno x 0 in cui la matrice 
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hessiana v'2h(xo) è non degenere ed ha k autovalori positivi ed n - k autovalori 
negativi, con 1 < k < n , allora il punto x 0 risulterà punto di sella per la funzione 
h . Infatti, xo sarà di minimo locale isolato rispetto alle direzioni degli autovettori 
relativi agli autovalori di segno positivo, mentre sarà di massimo locale isolato rispetto 
alle direzioni degli autovettori relativi agli autovalori di segno negativo. 

Esempio : sia A E lRn un vettore fissato; consideriamo la funzione 

f(x) = A· x + llxll2 

definita su tutto lRn . Abbiamo già visto q- (1.45) che la funzione f ha minimo in ]Rn , 
raggiunto in un punto xo . La funzione f è differenziabile e si ha 

v'f(x) = A +2x per ogni x E lRn . 

L'unico punto in cui si annulla il gradiente è dunque x 0 = - A/2 che sarà quindi il 
punto di minimo cercato. La matrice hessiana è infatti 

v'2 f(x0 ) = 21 

che risulta definita positiva. Il valore minimo della funzione f è dunque 

minf = !(-1) = _ 11 ~ 112 . 

Da quanto detto sopra, l'analisi della natura di un punto stazionario interno di 
una funzione di più variabili si riduce allo studio della positività o negatività ( definita 
o semidefinita) della matrice hessiana che, ricordiamo, è una matrice simmetrica n x 
n e pertanto ha tutti gli autovalori reali (~ es. 3.12). Ricordiamo che una matrice 
simmetrica A è definita positiva se e solo se sono positivi i suoi autovalori, che sono le 
radici dell'equazione 

det( A - >.J) = O . 

:'\el caso di due variabili tale studio è particolarmente semplice in quanto l'equazione 
precedente è di secondo grado e diventa 

>.2 - (tr A)-\+ det A = O . 

Pertanto abbiamo per matrici 2 x 2 : 
a) A è semidefinita positiva se e solo se tr A~ O e det A ~ O; 
b) A è semidefinita negativa se e solo se tr A ~ O e det A ~O; 
c) A è definita positiva se e solo se tr A > O e det A > O ; 
d) A è definita negativa se e solo se tr A < O e det A > O . 

Possiamo allora precisare la Proposizione 3.13 nel caso bidimensionale. 

Proposizione 3.14 : per un punto stazionario interno xo di una. funzione f (x, y) 
differenzia.bile due volte abbiamo: 
a) se det v'2 f(x0 ) > O e tr v'2 f(x0 ) > O il punto x 0 è di minimo locale isola.to; 
b) se det v'2 f(x0 ) > O e tr v'2 f(x0 ) < O il punto x 0 è di massimo locale isola.to; 
e) se det v'2 f(xo ) < O il punto xo è di sella. isola.to. 
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I casi in cui dct 'v2 f(x0 ) = O sono più delicati da trattare e necessiterebbero di uno 
sviluppo di Taylor ad un ordine superiore al secondo, come mostra l'esempio seguente. 

Esempio : le funzioni 

F(x,y) = x 4 + y4, G(x,y) = -x4 - y4, H(x, y) = x 4 
- y4 

hanno tutte l'origine (O, O) come unico punto stazionario, ma la matrice hessiana nell'ori­
gine è nulla in tutti e tre i casi. Si vede però facilmente che l'origine è di minimo isolato 
per F , di massimo isolato per G , di sella isolato per H . 

Nel caso di dimensione superiore a due lo studio della positività di una matrice 
simmetrica richiede calcoli più lunghi; è utile il criterio seguente. 

Proposizione (criterio di Sylvester) 3.15: sia A una matrice simmetrica n x n; 
allora A è definita positiva se e solo se tutti i minori principali di A sono positivi. 

Ricordiamo che i minori principali di A sono i determinanti delle matrici Ak di 
dimensione k x k e costituite dai termini aij con 1 :S i, j :S k . Ad esempio 

Ai = an, 

Osservazione : bisogna fare attenzione al fatto che il criterio di Sylvester per matrici 
simmetriche definite negative non si ottiene semplicemente scambiando il segno 2: con 
il segno :S . La maniera migliore di ricordarlo è pensare che se A è definita negativa 
allora -A è definita positiva e dunque, per il criterio di Sylvester, i minori principali di 
- A sono positivi. Essendo 

otteniamo che: 

una matrice simmetrica A è definita negativa se e solo se i minori principali di A 
di dimensione pari sono positivi e quelli di dimensione dispari sono negativi. 

Esempio : consideriamo la funzione f : JR3 -+ JR definita da 

f (x, Y, z) = xy + yz + xz + k(x2 + y2 + z2 ) 

dove k è un parametro reale. I punti stazionari si trovano annullando il gradiente, 
dunque risolvendo il sistema 

{ 

y+z+2kx = O 

x + z + 2ky = O 

x+y+2kz = O. 



Capitolo 3 : Calcolo differenziale in più variabili 173 

Sommando le tre righe si ha 

(2k + 2)(x + y + z) = O 

da cui, per k =I= -1 ( caso che esamineremo in seguito), si ricava x + y + z O e, 
sostituendo nel sistema di sopra, si ottiene per k =I= 1/ 2 

x=y=z=O. 

Dunque l'origine è l'unico punto stazionario di f. P er k = 1/ 2 invece tutti i punti 
(x, y , z) con x + y + z = O sono stazionari. Il caso k = 1/2 è particolare perché si ha 

1 
J(x, y, z) = 2(x + y + z)2 

e dunque ogni punto stazionario è di minimo ma non di minimo isolato. Supponiamo ora 
k =/= 1/ 2 e calcoliamo la matrice hessiana: 

'v'f(x, y,z) - ('t ❖ ~) . 
2k 

Per applicare il criterio di Sylvester calcoliamo i tre minori principali M1 , M 2 , Ma : 

Ma= 2(k + 1)(2k - 1)2
. 

Abbiamo quindi: 
a) se k > 1/ 2 l 'origine è un punto di minimo locale (anzi assoluto) isolato; 
b) se O < k < 1/2 l'origine è un punto di sella isolato; 
c) se - 1/2 < k < O l'origine è un punto di sella isolato; 
d) se - 1 < k < - 1/ 2 l'origine è un punto di sella isolato; 
e) se k < -1 l'origine è un punto di massimo locale ( anzi assoluto) isolato. 

Restano da esaminare i casi k = O , k = - 1/2 , k = - 1 , in cui il criterio di Sylvester non 
si applica in quanto uno dei minori principali è nullo. Per k = O si vede che l'origine è un 
punto di sella isolato, in quanto sulle rette di equazioni X = t(O, 1, 1) e X = t(l , 1, O) 
l'origine è di minimo isolato, mentre sulla retta di equazione X = t(O, - 1, 1) l'origine è 
di massimo isolato. Analogamente, per k = - 1/2 l'origine è un punto di sella isolato in 
quanto sulle rette di equazioni X = t(l, -1, 0) e X = t(O, l , - 1) l'origine è di massimo 
isolato, mentre sulla retta di equazione X = t(l , 1, 2) l'origine è di minimo isolato. 
Infine, il caso k = - l è di nuovo un caso part icolare, in quanto si ha 

1 
f(x, y, z) = - 2 ((x - y)2 + (y - z)2 + (x - z)2) 

e dunque l'origine risulta essere un punto di massimo assoluto ma non isolato, in quanto 
il valore massimo, ugua le a zero, è raggiunto in tutti i punti della retta di equazione 
X = t(l,1, 1). 
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Esempio : con i metodi visti sopra calcoliamo la distanza tra due rette in Rn . Siano R 
ed S due rette in Rn , che conviene scrivere in forma parametrica 

R ={A +sV: sER}, S = {B + tW : t E R}, 

dove A , B , V , W sono vettori di Rn, con IIVII = IIWII = 1. La funzione da minimiz­
zare è 

f(s, t) = IIA + sV - B - tW ll2 . 

Abbiamo preso il quadrato della distanza, il che semplifica molto il calcolo del gradiente; 
i punti di minimo sono ovviamente gli stessi che se avessimo preso la distanza e per il 
valore minimo basterà alla fine prendere la radice quadrat a di quanto trovato. Notiamo 
poi che se le rette R ed S risultano parallele, il che succede se i vettori direzione V e 
W sono tali che V = ± W , la distanza si calcola facilmente e si trova 

(d(R , S))
2 = IIA- B ll2 

- (V· (A - B ))
2

. 

Quindi possiamo ora supporre che le rette R ed S non siano parallele, cioè IV· WI < 1 . 
Annullando il gradiente si t rova il sistema 

che ha le soluzioni 

{ 
V sf(s , t) = 2(V s + A - Wt - B ) · V = O 

'vtf(s, t ) = -2(V s + A - W t - B ) · W =O, 

{ 

_ V· B - V· A - (V· W )(W · B - W · A ) 
8 

- 1- (V · W )2 

t=-A_•_W_- _W_ •_B_+--'-(V_•_W~)~(V_•_B_-_V_•---e.A) 
1 - (V· W )2 

A riprova che quello trovato è il punto di minimo della funzione f calcoliamo la matrice 
hessiana : 

2 ( 2 V f(s,t) = _2y. W 

che ha traccia 4 e determinante 4 - 4(V • W )2 > O, e risulta pertanto definita positiva. 

A questo punto basta inserire nell'espressione della funzione f i valori di s, t trovati per 
ottenere il valore del quadrato della minima distanza tra le rette R ed S. Nel caso in 
cui la dimensione n sia uguale a 3 tale valore può essere espresso mediante il prodotto 
vettoriale V I\ W e si ottiene 

(d(R S))2 = ( (B - A ) · (V I\ W))2 

,, IIV AWII 
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Esempio : consideriamo la funzione 

f(x , y) = x2 - Y4 

definita sul cerchio unitario 

A = { x 2 + y 2 $ 1} . 

Per il Teorema di Weierstrass 1.20 la funzione f ha massimo e minimo su A. Annul­
lando il gradiente "il f si trova il sistema 

{
2x = O 
- 4y3 = 0 

che ha come unica soluzione l'origine (O, O) . La matrice hessiana nell'origine è 

che ha determinante nullo; pertanto non possiamo applicare i metodi visti in precedenza. 
Si vede però facilmente che l'origine è un punto di sella isolato, in quanto sulla retta 
delle ascisse l'origine è di minimo isolato, mentre sulla retta delle ordinate l'origine è di 
massimo isolato. Dunque i punti di massimo e di minimo non possono essere interni ad A 
e vanno quindi cercati sul bordo di A , che è la circonferenza unitaria. Parametrizzando 
quest'ultima con 

x = cos0, y = sen0 , 

possiamo ridurre il problema alla ricerca del massimo e del minimo della funzione di una 
sola variabile 

h(B) = cos2 0 - sen4 0. 

Si trova 

h'(B) = -2(1+2sen2 0) sen0cos0, 

che si annulla nei punti 0 = m1r / 2 , con m intero. Su tali punti abbiamo 

h(m1r / 2) = { 
1 
-1 

se m è pari 

se m è dispari 

e pertanto i punti di massimo assoluti della funzione f sono (1,0) e (-1,0), su cui la 
funzione assume il valore 1 , mentre i punti di minimo assoluti della funzione f sono 
(O, 1) e (O, - 1), su cui la funzione assume il valore - 1. 

Esempio : consideriamo la funzione 

f(x, y) = x3 + y3 

definita sul triangolo T avente per vert ici i punti (O, O) , (O, 1) , (1, O) . Di nuovo per 
il Teorema di Weierstrass 1.20 la funzione f ha massimo e minimo su T . Essendo 



176 Sezione 3.8 : Funzioni convesse in Rn 

J(x, y) ~ O per ogni (x, y) E T , ed essendo f(0 , O) = O, è evidente che l'origine è 
l'unico punto di minimo di f. Annullando il gradiente V f si trova il sistema 

{ 
3x2 = O 
3y2 = o 

che non si annulla mai nei punti interni di T. Dunque i punti di massimo vanno cercati 
sul bordo di T , costituito dai segmenti 

X = t( l , O), 

con t E [O, 1] . Si trova facilmente 

{ 

maxf = 1 

~nf = 0 ' 

Y = t(0, 1), 

{ 

m?f = 1 

minf = O ' 
y 

Z = (t, 1 - t ) 

{

maxf = l 

~nf = 1/4 

Pertanto, il massimo di f è 1 , raggiunto nei punti di massimo (O, 1) e (1 ,0). 

Nella Sezione 2.7 abbiamo imparato a leggere una. funzione s u una. curva: ora vedia­
mo che la principale applicazione sta nella risoluzione di problemi di massimo o minimo 
su dei sottoinsiemi E di IR2 

. Infatti, come abbiamo visto negli esempi precedent i, nei 
casi più fortunati si tratta di cercare gli estremi di una funzione continua su un compatto: 
questi esistono per il Teorema di WeierstraB, ma il compatto ha un bordo, e le tecniche 
di questa sezione si applicano solo ali' interno. Ecco che si devono cercare gli estremi 
della funzione sul bordo di E, che (se siamo in IR2 ) è facile sia una curva. La lettura 
della funzione sulla curva bordo di E consente di completare la ricerca. 

Con i metodi visti sopra, lo studio dei massimi e minimi di funzioni di più variabili, 
definite su un insieme aperto di !Rn , è completo. In molti casi però si è interessati a 
problemi in cui la funzione da minirnizzare o massimizzare non è definita su un insieme 
aperto di !Rn ma su un sottoinsieme di dimensione più bassa; si parla in tal caso di 
problemi vincolati per evidenziare il fatto che le variabili sono legate tra loro da equa­
zioni supplementari (ad esempio su una curva, bordo di un sottoinsieme di IR2 ) . Per 
studiare questo t ipo di problemi abbiamo bisogno di chiarire i modi in cui le variabili 
possono essere collegate tra loro, che illustreremo nelle due sezioni seguenti in cui prima 
studieremo i modi di rappresentare una superficie k dimensionale in !Rn e poi vedremo 
quando un vincolo del tipo {f(x ) = O} è effet tivamente una superficie. 

3 .8 - Funz ioni convesse in Rn 

La definizione di insieme convesso in !Rn è stata ricordata al termine della Sezione 1.6. 
Data una funzione f : A -+ JR definita su un sottoinsieme A e JRn , chiamiamo ep i­
g r afico di f la parte che sta al di sopra del grafico di f (che è un sottoinsieme di 
JRn+l ), cioè 

epif = {(x , t ) E JRn x JR: t ~ J(x)}. 
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D efinizione se A e Rn , una funzione f A ➔ R si dice convessa se epi f è 

convesso. 

Ecco alcune proprietà di una funzione convessa. 

Pro posizione 3.16 : se f : A ➔ R è convessa allora A è per forza un insieme convesso; 
f è convessa se e solo se 

\lx , y E A , \/t E [O, l ] , f (tx + (l - t)y ) '.S tf(x) + (1 - t)f(y) ; (3.13) 

f è convessa se e solo se la sua restrizione a ogni retta che interseca A è una funzione 
convessa. 

Dall'ultima osservazione deduciamo una importante conseguenza qualora f sia 
derivabile due volte; se <f> è una parametrizzazione standard di una retta, 

<f>(t) = P + tv , 

la composizione di / con <f> è la funzione 

g(t) = f (P + t v ) . 

La convessità di f equivale alla convessità di g per ogni scelta della retta, ma essendo 
g derivabile due volte questa equivale alla condizione g"(t) ~ O: come abbiamo già 

visto in (3.11), 

g'(t) = (v' f)(P + tv) • v, g"(t) = ((v'2 f)( P +tv)v) · v. 

Se questo deve essere maggiore o uguale a zero per ogni scelta di P e v , allora per ogni 

punto x E A ed ogni v deve essere 

((v'2f)(x)v) • v ~O, 

ossia abbiamo dimostrato quanto segue. 

Pro posizione 3.17 : una funzione f derivabile due volte su un insieme convesso A C 

Rn è convessa se e solo se in ogni punto di A la matrice hessiana è definita non negativa. 

Analogamente al caso unidimensionale, una funzione è strettamente convessa se la 
disuguaglianza in (3.13) è stretta per O< t < 1 e x =I= y , e vale la seguente osservazione. 

Osservazione : se f è derivabile due volte in un insieme convesso, e la sua matrice 
hessiana è definita positiva, allora f è strettamente convessa. 

Esempio : la funzione (x + 2y)2 + 3x2 è strettamente convessa, dato che 

ha determinante positivo e traccia positiva, quindi è una matrice definita positiva. 
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Per le funzioni convesse vale un risultato analogo a quello che riguarda le rette 
tangenti in una dimensione. 

Proposizione 3.18: se f: A ➔ R è convessa e differenziabile, e P è il piano tangente 
al grafico di f sopra un punto xo E A , allora il grafico di f sta tutto non al di sotto 
di P; se f era strettamente convessa, il grafico di f sta tutto al di sopra di P , salvo 
per il punto P stesso. 

Corollario 3.19 : tutti i punti stazionari di una funzione convessa sono di minimo, e in 
essi f ha lo stesso valore; una funzione strettamente convessa può avere un solo punto 
stazionario, ed è di minimo assoluto. 

3.9 - Superfici k dimensionali in JR_n 

In questa sezione ci occuperemo della descrizione analitica delle superfici S di dimen­
sione k in Rn con k < n , cosa che supporremo sempre nel seguito. La maniera più 
semplice è quella seguita anche per le curve, la rappresentazione parametrica, ma vi è 
una importante differenza di punto di vista. 

Intanto osserviamo che la retta di equazione y = 2x è un sot toinsieme del piano 
(x, y) che può essere visto sia come 

{(x,y): y = 2x}, 

grafico della funzione x H 2x , che come 

{(x,y):x = y/2}, 

grafico (di x in funzione di y, stavolta) della funzione y H y/ 2. Ricordiamo poi 
che abbiamo parlato is- Sezione 2.4 di curve regolari intendendo che il vettore derivata 
</>' non era mai nullo. Questo fa sì che il cappio (2.11), pur essendo un insieme non 
propriamente "liscio", risulti essere una curva regolare IEù' (2.14). Il cappio non è il 
grafico di una funzione, rispetto a nessuna scelta della variabile indipendente. Meglio, 
in un piccolo intorno di qualunque punto diverso dall'origine e da </>(±t0 ) i& (2.12) il 
cappio è grafico di y in funzione di x ; in un piccolo intorno di qualunque punto diverso 
dall'origine e dal punto </>(O) = (O, 1 - J2) è anche grafico di x in funzione di y , ma 
l 'origine sfugge a entrambi i casi. 

In questa sezione vogliamo considerare degli insiemi unidimensionali che possono 
essere parametrizzati da una curva regolare che però, vista da vicino, in ogni suo punto 
somigli a un arco di curva. 
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Definizione : un insieme S e JRn è una curva liscia se per ogni punto x 0 E S esistono 
un intorno U di x 0 , un intervallo I e JR ed una curva regolare </> : I -+ JRn tali che 
</> è i niet ti va e 

</>(I) = s n u . (3.14) 

Vediamo un altro esempio fondamentale (~ es. 3.13). La circonferenza unitaria C 
si può vedere come immagine della curva 

(cost,sent), t E JR, 

tuttavia questa curva non è iniettiva. Se restringiamo il dominio a [O, 21r[, ad esempio, 
otteniamo una curva regolare e iniettiva, però il punto (1, O) non verifica la condizione 
(3.14). Per vedere che la circonferenza è una curva liscia, occorre usare due diverse curve, 
ad esempio 

a (t) = (cost,sent), O< t < 21r 

e 

/3(t) = (cost,sent), -7r < t < 7r : 

preso un punto x E C, se questo non è (1, O) la condizione (3.14) è verificata con 
</>=a, e se non è (- 1, 0) è verificata con </> = /3 . Dunque (3.14) è verificata in ogni 
punto. Per rappresentare C, abbiamo usato due carte locali, analogamente alle carte 
geografiche le quali , sovrapponendosi, permettono di rappresentare tutta la superficie 
terrestre. Proviamo a generalizzare questa situazione: fissati due interi k, n con k :S n , 
l' insieme dei parametri sarà un aperto A di JRk ed indicheremo con t =(ti, ... , tk) E A 
il parametro (vettoriale) che descriverà la superficie S . La rappresentazione parametrica 
di S è data da una funzione </> : A -+ JRn e la superficie S risulterà essere l' immagine 
della funzione </>. Indicando con x l'elemento generico di S e con t l'elemento generico 
di A avremo quindi 

X = </>(t ) 

che, scritta in termini di component i, diventa 

l 
X1 = </>1(t1, ... , tk) 

X2 = </>2(t1, ... , tk) 

~n = </>n(t1, • • • , tk)-

In questo modo, la superficie S , immagine ( e non grafico) di </> , è l'analogo del 
sostegno di una curva. Abbiamo visto Cli' Sezione 2.4 che il sostegno di una curva è 
-liscio" non se la curva è C1 , ma se è regolare, cioè se </>' i- O. Questa condizione 
significa che </>' , che è una matrice 1 x n , ha almeno un elemento ( che è poi un minore 
1 x 1 ) non nullo, ovvero ha rango 1 , che è il massimo possibile. Trasponiamo questa 
richiesta sulle superfici. 
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D efinizione : se A e JRk è un aperto e <P : A -+ lRn , con k < n , è una funzione 
iniettiva, l 'immagine S = <t,(A) è una k-superflcie parametrica regolare se la ma­
trice gradiente v' <P , che è una matrice n x k , ha in ogni punto rango massimo, dunque 
ug uale a k. 

In definitiva, la rappresentazione parametrica di S è 

X = <j,(t), con rango(v' <P) = k . 

Esempio : la calotta superiore della sfera unitaria 

S = { x2 + y2 + z2 = 1, z > O} (3.15) 

è una 2-superficie parametrica regolare, con la parametrizzazione 

<P : { t2 + 82 < 1} -+ ]R3 , <t,(t,s) = (t, s, J1 - t2 - s 2 ) 

abbiamo sostanzialmente usato come parametri le coordinate x e y , e abbiamo 

che ha rango due, dato che il determinante della matrice delle prim(:l due righe non fa 
mai zero ( ecco perché non ci interessa scrivere l 'ultima riga). 

Anche la calotta inferiore, cioè quella che ha come polo il punto (O, O, - 1), è una 
2-superficie parametrica regolare, con quasi la stessa parametrizzazione: 

Per esercizio trovate delle parametrizzazioni delle quattro calotte semisferiche, che hanno 
poli in (± 1, O, O) e (O, ± 1, O) . 

Possiamo considerare insiemi più generali, analoghi alle curve lisce. 

Definizione : un insieme S e lRn è una k-superflcie liscia (ok-varietà) se per ogni 
punto di x o E S esiste un intorno Ux0 tale che SnUx

0 
sia una k-superfìcie parametrica 

regolare. Se <P : A e JRk -t lRn è iniettiva, ha immagine S n Ux
0 

e gradiente di rango 
massimo, viene detta carta locale di S vicino a x 0 • 

Se S è una k-superficie liscia, x 0 E S e <P è una carta locale intorno ad x
0 

, 

indicati con t 1 , ... , tk i parametri che variano in A e JRk , avremo x0 = <t,(t 0) per un 
opportuno 

to = (t&, t5, .. . , t~) E A ; 

consideriamo per t in un intorno di t5 la funzione 

1P1 (t ) = <t,(t, t5, ... , t~) ' 
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ottenuta congelando le variabili t5, ... , t~ ovvero leggendo </> solo su un segmento che 
passa per to nella direzione ti : questa è una curva che giace sulla superficie S, quindi 
il suo vettore tangente in t = tà 

è tangente alla superficie S in t0 (~ es. 3.16). Lo stesso possiamo dire per le curve 
1/J2, 1/J3 , ... che otterremmo congelando via via tutte le variabili tranne la seconda, o la 
terza eccetera (~ es. 3.15). 

Fig. 3.2 : il sostegno d i </>1 (tratto più spesso) è t utto su S 

In conclusione i vettori 
8</> · 8</> 
~(t o) , ... , -

8 
(to) 

ut1 tk 

sono tangenti alla superficie S nel punto <f>(t0 ) (~ es. 3.14). Osserviamo che questi 
vettori sono le colonne della matrice jacobiana di <p in t0 , che ha rango k : questi 
vettori sono allora linearmente indipendenti e generano quindi uno spazio lineare H di 
dimensione k , formato dai vettori che sono tangenti a S in </>(t 0 ) . In analogia con la 
retta tangente, possiamo definire lo spazio tangente. 

Definizione : sia S una k-superflcie liscia in lRn , e sia </> : A e JRk --+ lRn una carta 
locale in un intorno di xo = </>(t 0 ) . I vettori tangenti ad S nel punto x 0 sono gli 
elementi dello spazio vettoriale H , che ha dimensione k , generato da 

8</> 8</> 
8t1 (to) ' · · · ' atk (to) ; (3.16) 

lo spazio tarente ad s nel punto Xo è lo spazio affine Xo + H ' traslato in Xo 
dello spazio v ttorialc H . I vettori normali ad S in x 0 sono tutti quelli ortogonali 
ad H , e for ano uno spazio di dimensione n - k . 
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Un caso particolarmente rilevante è il caso k = n - 1 , in cui lo spazio normale ha 

dimensione 1 ed è quindi una retta; avremo allora per i vettori normali due soli versi 
possibili, quelli individuati da tale retta, che è genera ta da un qualunque vettore non 
nullo ortogonale a tutti e n - 1 i vettori (3.16). Dunque per trovare un vettore normale 
(poi, gli altri saranno multipli di questo) bisogna trovare una soluzione non nulla v del 
sistema 

àcp 
V• ~(t o) = 0 , 

uh ... ' 
&</> 

V• - -(to) = 0. 
Òtn-1 

(3.17) 

Questo è molto facile nel caso di una curva cp(t) in JR2 ; in un punto x 0 = cp(to) il 
vettore tangente è </>' (to) = ( ef>~ (to), ef>2(to)) e quindi i vettori normali saranno tutti della 
forma 

o:(ef>;(to) , -ef>~(to)) con o: E JR . (3.18) 

Di poco più difficile il caso delle superfici bidimensionali in JR3 • Qui abbiamo i due vettori 
tangenti àcp/àt1 e àcp/àt1

, e dobbiamo trovare un vettore ortogonale a entrambi. Ma 
nella Sezione 1.3 abbiamo visto che un tale vettore è dato dal prodotto vet toriale 

(3.19) 

Esempio : consideriamo la superficie S della sfera unitaria, di dimensione 2 in JR3 , che 
come insieme è descritto da 

S = { (x, y, z) E IR3 
: x2 + y2 + z2 = 1} . 

Dato che ogni punto di S cade in una delle sei calotte dell'esempio (3.15), S è una 
2-superficie liscia. In questo caso è più facile determinare geometricamente i vettori 
normali: un vettore normale in un punto di S è sulla retta che passa per quel punto e 
per il centro, dunque i vettori normali in (x0 , y0 , z0 ) sono quelli della forma 

o:(xo, Yo , zo) , 

e i vettori tangenti sono tutti quelli ( u , v, w) che sono ortogonali ai vettori normali, ossia 
verificano 

O= (u, v, w) • (xo, Yo, zo) = uxo + vyo + wzo . 

Esempio : consideriamo di nuovo la superficie S della sfera unitaria, ma st avolta pen­
siamo in coordinate polari. Usando come parametri la longit udine 0 e la ca-latitudine 
o: , abbiamo la rappresentazione parametrica 

Quindi 

{ 

x = sen o: cos 0 
y = seno:sen0 
z = coso: 

0 E [O, 21r[ , o: E [O, 1r] . 

</>(0, o:) = (sen o: cos 0, sen o: sen 0, coso:) , 

(3.20) 
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con la matrice gradiente 

(

-senasen0 
"v</>(0,a) = sena

0
cos0 

cosacos0) 
cosasen0 . 

- sena 

Va osservato che i minori 2 x 2 ( cioè i determinanti delle matrici 2 x 2 ) della matrice 
V</> sono rispettivamente 

-sena cosa, sen2 asen0, - sen2 acos0, (3.21) 

che si annullano tutti per a = O (polo Nord) e per a = 7r (polo Sud). In ogni altro 
punto almeno uno di essi è non nullo, per cui il rango della matrice V</> è 2 in tutti i 
punti diversi dai due poli. Volendo trovare parametrizzazioni regolari (cioè con matrici 
gradiente di rango 2 ) anche intorno ai poli, avremmo dovuto usare più carte locali, ad 
esempio le sei calotte dell'esempio (3.15). 
Osserviamo anche che il parametro bidimensionale (0, a) non varia su un aperto ma 
nell 'insieme [O, 27r[ x [O, 7r] e IR2 • Volendo utilizzare insiemi aperti come insiemi di va­
riabilità dei parametri, avremmo di nuovo dovuto usare più carte locali. 

Esempio : la superficie di equazione parametrica 

{ 

x = scos0 
y = ssen0 

z = a0 

s > 0, 0 E JR, 

dove a i- O è un parametro fissato, viene detta elicoide. 

Fig. 3.3 : un'elicoide 

Quindi 
</>(0, s) = (scos0, ssen0,a0), 

con la matrice gradiente 

(

- ssen0 
V</)(0, s) = s c~s0 

cos0 ) 
sen0 . 

o 
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Osserviamo che i minori 2 x 2 della matrice V </J sono rispettivamente 

-s, - acos0, - asen0, 

che non si annullano mai contemporaneamente. Dunque abbiamo in ogni punto 

rango V</J = 2. 

Esempio : consideriamo in R2 l'ellisse di equazione 

x2 y2 
a2 + b2 = 1; 

questa può essere parametrizzata dalla curva 

</J(t) = (a cos t, b sen t) 

per cui nel punto </J(to) ha vettore tangente 

</J' (to) = (-a sen t, b cos t) 

e un vettore normale è 

(bcost,asent). 

Esempio : consideriamo in R3 l'ellissoide di equazione 

x2 y2 z2 
g+4+4 = l; 

(3.22) 

in un intorno del punto x 0 = (2, 1, 1) possiamo scrivere z in funzione di x e y, cioè 
parametrizzare la superficie con 

</J(x,y) = (x,y, J4 - y2 - x2 /2). 
Dato che 

8</J ( X ) 
8x = l,O, - 2J4 -y2 - x2 /2 ' 

8<P = (o 1 -y ) 
8y ' ' J 4 - y2 - x2 / 2 ' 

due vettori tangenti in x 0 sono 

8</J 
U = 

8
x(xo) = (l,0,-l), 8</> 

v = 8y (xb) = (O, 1, - 1). 

Un vettore normale è 

N = u /\v = (l , 1,1) , 

e possiamo scrivere l'equazione del piano tangente sia G> (1.8) come 

(X - x 0 ) • N = O 

sia in forma parametrica~ (1.10) come 

X = xo +su+tv 

x+y+z=4 

{

x = 2 + s 
y = l + t 
z= l -s-t. 

(3.23) 
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Abbiamo brevemente incontrato una categoria speciale di curve, le curve grafico 
cartesiano, che erano curve della forma 

<t>(t) = (t,J(t)) 

e si potevano scrivere non solo in forma parametrica ( cioè dipendente dal parametro t ) 
ma anche in forma cartesiana (cioè con una scrittura nelle sole variabili (x, y) del piano 
cartesiano) come 

y = f(x). 

Oltre alla forma parametrica, anche per una superficie S di dimensione k in Rn abbia­
mo la rappresentazione cartesiana, che consiste nello scrivere n - k variabili in funzione 
delle rimanenti k . Riordinando le variabili in modo che le k indipendenti siano le prime 
e le n - k restanti siano le ultime abbiamo quindi la forma cartesiana usuale 

y = f (x) con x E A 

dove A è un aperto di Rk ed f : A -+ Rn-k . In termini di componenti abbiamo la 
--crittura 

{ 

Xk+1 = fi(x1, ·. · ,xk) 

Xk+2 = h(x1, . .. , Xk) 

~n = fn - k(X1, · · · ,Xk)-

)sserviamo che la forma cartesiana è una particolare forma parametrica, dove si sono 
elti come parametri le coordinate ti = Xj con j = 1, ... , k e dunque la funzione <I> 

data da 
</>(t) = (t , f (t)) . 

La matrice gradiente è quindi 

'v</>(t) = ( V;(t)) 
•ve h è la matrice identica k x k e V f è la matrice gradiente di f , di dimensione 
- k) x k. Il determinante della matrice k x k formata dalle prime k righe è quindi 

~ale ad 1 , per cui 
rango 'v</>(t) = k. 

altri termini, una rappresentazione cartesiana è sempre regolare. 

E~mpio: considerando l'elicoide dell'esempio precedente, si trova facilmente che una sua 
ppresentazione cartesiana, intorno ad un punto (xo,Yo,zo) con xo =/- O e lzo/al < 

- 2, è data da 
z = aarctan(y/x). 

E mpio : le calotte semisferiche dell'esempio (3.15) erano rappresentate in modo carte­
o. 

mpio : un esempio interessante di superficie bidimensionale in R3 è dato dalla super­
.te del toro. Siano r < R d ue numeri reali positivi; facciamo ruotare attorno all'asse 
ma circonferenza di raggio r contenuta nel piano xz con centro nel punto (R , O, O) . 
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Fig. 3.4 : la superficie di un toro 

Tale circonferenza è parametrizzata dalle equazioni 

{

x = R+rcosa 
y=O 
z = rsena, 

a E [O, 21r] 

per cui, dopo averla ruotata intorno all 'asse z, otteniamo la forma parametrica della 
superficie del toro: 

Dunque 

{ 

x = (R+rcosa)cos 0 

y = (R + rcosa) sen0 
z = rsen a 

a E [O, 27r], 0 E [O, 21r] . 

</>(a, 0) = ( (R + r cosa) cos 0, (R + rcosa) sen 0, r sena) 

e la matrice gradiente è 

(

- rsena cos0 
Vcp(a,0) = -r sen asen0 

rcosa 

- sen0(R + rcosa) ) 
cos0(R + r cosa) 

o 

I tre minori 2 x 2 della matrice gradiente sono 

(3.24) 

- rsena(R+rcosa), rcosasen0(R+rcosa), -rcosacos0(R+rcosa). 

Calcoliamo la somma dei loro quadrati, che vale 

(3.25) 

questa non vale mai zero, dunque i tre minori non possono essere contemporaneamente 
nulli per cui si ha 

rango Vq,(a, 0) = 2 per ogni a, 0 . 
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Dalla costruzione vista sopra si ricava che la superficie descritta è l' insieme 

per cui la parte superiore ( con z ~ O ) del toro ha la rappresentazione cartesiana 

z = Jr2 - ( Jx2 + y2 - R)2 O S z S r, R - r S J x2 + y2 S R + r , 

mentre la parte inferiore ( con z S O ) ha la rappresentazione 

z = - Jr2 - ( Jx2 + y2 - R)2 - r S z S O, R - r S Jx2 + y2 S R + r. 

Nella prossima sezione vedremo un altro modo di rappresentare una superficie: quello 
che viene detto in forma implicita. 

3.10 - Funzioni implicite 

Iniziamo a discutere il caso bidimensionale e chiediamoci sotto quali condizioni un luogo 
di zeri del tipo {f(x, y) = O} , con f funzione assegnata, sia in effetti il sostegno di una 
rurva liscia, o addirittura una curva cartesiana, grafico cioè di una funzione y = h(x) o 
:r = h(y) . Intanto osserviamo che tale r ichiesta ha senso soltanto localmente, altrimenti 
neppure la circonferenza di equazione 

x2 + y2 = 1' 

he è il luogo di zeri della funzione 

J(x,y) = x2 +y2 - 1 , 

sarebbe globalmente rappresentabile come un grafico cartesiano. Sempre considerando il 
raso della circonferenza, osserviamo che, escludendo i punti estremi a destra (1, O) ed a 
-..inistra (.=,- 1,0), into.r:no ad ogni altro suo punto (xo,Yo) abbiamo in effetti una curva 
di tipo cartesiano, di equazione 

y = ~ (se Yo > O) oppure y = - Jl - x2 (se Yo <O) . 

Del resto, escludendo invece i punti estremi in alto (O, 1) ed in basso (O, - 1), abbiamo, 
ancQra localmente intorno ad ogni altro punto (xo, y0 ) , una curva di t ipo cartesiano, di 
equazione 

x = ~ (se xo > O) oppure x = -~ (se xo < O) . 
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In conclusione, nel caso della circonferenza, intorno ad ogni suo punto questa è un grafico 
cartesiano del tipo y = h(x) oppure del tipo x = h(y) . 

Non possiamo aspettarci che quanto visto per la ci_rc_o_n_fe_r-en- ~ sia vero per il luogo 
di zeri di una qualsiasi funzione f ; ad esempio, prendendo come f la funzione costante 
1 il luogo di zeri è l'insieme vuoto, mentre se f è la funzione costantemente nulla, il 
suo luogo di zeri è tutto il piano IR2 . Ancora, prendendo 

f(x,y) = x2 + y2 

il suo luogo di zeri è ridotto ad un punto, l'origine. 

Il risultato seguente, noto come teorema delle funzioni implicite o teorema del Dini, 
fornisce delle condizioni generali affinché un luogo di zeri del tipo {J(x, y) = O} sia 
localmente un grafico cartesiano. 

Teorema 3 .20 : siano A un aperto di IR2 ed f : A -+ JR una funzione di classe ci . 
Indichiamo con S il luogo di zeri {J(x, y) = O} e sia (x0 , Yo) E S. Se Vyf(xo, Yo) -I O 
allora localmente intorno a (x0 , Yo) l ' insieme S è grafico cartesiano {y = h(x)} di una 
funzione h di classe ci ; se invece V xf (xo, y0 ) -I O allora localmente intorno a (xo, yo) 
l ' insieme S è grafico cartesiano { x = h(y)} di una funzione h di classe Ci . 

In altre parole, il teorema delle funzioni implicite dice che se il sistema 

{ 
f(x,y) = O 

Vf(x,y) = O 
(3.26) 

non ha soluzione, il luogo di zeri S è localmente cartesiano intorno ad ogni suo punto 
( dato che nei punti di S la prima equazione è soddisfatta e quindi la seconda non può 
esserlo) ed è quindi una curva liscia. In particolare questo implica che la curva S non 
ha autointersezioni. 

Esempio : consideriamo l'equazione 

x3 + y3 + xy = 1 (3.27) 

e chiediamoci se rappresenta una curva liscia in IR2 • Applicando il Teorema 3.20 delle 
funzioni implicite, dobbiamo vedere se il sistema (3.26) ha soluzione. Abbiamo 

{ 

x3 + y3 + xy = 1 

3x2 + y = O 

3y2 +X= 0 

e, ricavando y = - 3x2 dalla seconda equazione, il sistema si riduce a 

{ 
2x3 + 27x6 = - 1 

27x4 +X= 0. 

La seconda equazione ha come soluzioni x = O e x = - 1/3 , ma nessuna delle due 
risolve la prima equazione. Dunque il sistema (3.26) non ha soluzione, per cui il luogo di 
zeri considerato è una curva liscia in IR2 . L' insieme S è rappresentato nella figura. 
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Fig. 3.5 : il luogo di zeri S e la retta y = -x cui è asintotico 

Pur non potendo, in generale, scrivere esplicitamente la funzione h che rappre­
senta localmente in maniera cartesiana il luogo di zeri S , possiamo spesso ricavare 
diverse informazioni interessanti. Ad esempio, se sappiamo che intorno a un certo punto 
(x0 ,y0 ) ES la curva S è un grafico cartesiano della forma y = h(x), dall'equazione 

f(x, h(x)) =O, 

derivando rispetto ad x , otteniamo 

da cui ricaviamo 

V xf (x, h(x)) + h'(x)V vf (x, h(x)) = O , 

h'(x) = _ Vxf(x,h(x)) _ 
Vvf(x, h(x)) 

In particolare, per x = x0 abbiamo h(xo) = Yo e quindi 

h'(xo) = Vxf(xo,Yo) 
Vyf(xo, Yo) · 

(3.28) 

Questo ci permette, in particolare, di scrivere l'equazione della retta tangente a un luogo 
di zeri regolare in due dimensioni. 

Proposizione 3.21 : siano A un aperto di JR.2 ed f : A --+ JR una funzione di 
rlasse C1 

. Indichiamo con S il luogo di zeri {f(x, y) = O} e sia (xo, Yo) E S. Se 
, 11 /(xo, Yo) -=I= O allora vicino a (xo, Yo) l 'insieme S è una curva liscia la cui retta 
rangente ha equazione 

_ _ V xf(xo, Yo) ( _ ) 
vy o, Yo Y-Yo;,f ) X Xo . 
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Nel caso dell'esempio (3.27), prendendo il punto (O, 1) E S avremmo ottenuto la 

retta tangente di equazione 
X 

y = l - 3. 

Se f è derivabile più volte, intorno al punto x0 possiamo addirittura scrivere lo sviluppo 
di Taylor della funzione h; derivando rispetto ad x nell'equazione (3.28) otteniamo 
( omettendo per semplicità la scrittura delle variabili) 

h" = - CVxxf + h'Vxyf)'vyf - Vxf('vxy f + h'Vyyf) 
(V yf)2 

e sostituendo l'espressione di h' ricavata da (3.28) si ottiene 

h" = _ (Vyf)2'vxxf - 2(Vxf)('vyf)'vxyf + ('vxf)2Vyyf. 
('vyj)3 

A questo punto abbiamo lo sviluppo di Taylor, intorno a xo , al secondo ordine 

h(x) = h(xo) + h'(xo)(x - xo) + ~h"(xo)(x - xo)2 + o((x - xo)2) . 

Continuando con l'esempio (3.27), nel punto (O, 1) ES avremmo ottenuto h"(O) = O e 
quindi lo sviluppo di Taylor intorno a xo = O 

1 
h(x) = 1 - 3x + o(x2

) . 

Possiamo ora studiare la regolarità delle curve di livello di una funzione assegnata 
f : IR2 --+JR, già incontrate "'1i' (1.17) nella Sezione 1.3. Come sa chiunque abbia visto una 
carta altimetrica in montagna o una carta delle profondità marine, le curve di livello sono 
molto spesso regolari, con qualche rara eccezione. Infatti vi sono alcune "curve" ridotte a 
un punto (le cime delle colline o i punti più bassi dei laghetti), altre "curve" decisamente 
troppo ampie (un altopiano a quota costante è tutto quanto una curva di livello!) , altre 
che si incrociano (quelle che rappresentano la quota di un passo fra due colline). Vediamo 
di chiarire analiticamente quando si hanno questi casi eccezionali. Abbiamo una funzione 
f : IR2 --+ JR ed un numero reale e assegnati e ci interessiamo all'insieme di livello 

Se= {(x,y) E l!~.2 : f (x,y) =e}. 

L' insieme Se può essere vuoto, ad esempio se abbiamo scelto e più grande del massimo 
di f o più piccolo del minimo di f . Inoltre in Se possono esserci dei punti isolati, ad 
esempio se e coincide con il valore di f in un punto di massimo o di minimo locale 
isolato. Supponiamo che Se non sia vuoto e che la funzione f sia almeno di classe C2 

. 

Dal Teorema 3.20 delle funzioni implicite sappiamo che se il sistema 

{ 
f(x,y) = e 

V f(x,y) = O 
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non ha soluzioni, allora l'insieme di livello Se è una curva liscia. Supponiamo che 
invece ci sia una soluzione (xo, Yo) del sistema e chiediamoci come sia fatto l ' insieme 
Se intorno al punto xo = (xo, Yo) . Siccome f (xo, Yo) = e e 'v f (xo, Yo) =O, lo sviluppo 
di Taylor di f intorno a x 0 diventa 

1 2 2 J(x) =e + 2('v f)(xo)(x - xo) · (x - xo) + o(llx - xo ll ) . 

Trascurando il resto di Peano o(llx - x0 ll2) abbiamo che il comportamento di f intorno 
a x 0 è determinato dalla forma quadratica 'v2 f(xo)(x - xo) · (x - x 0 ) e quindi dalla 
matrice hessiana 'v2 f(xo) . Se gli autovalori della matrice hessiana sono entrambi non 
nulli abbiamo: 

a) nel caso di autovalori entrambi positivi, il punto x 0 è di minimo locale isolato, 
quindi xo è un punto isolato del!' insieme di livello Se ; in termini geografici ci 
troviamo sul fondo di un laghetto; 

b) nel caso di autovalori entrambi negativi, il punto x 0 è di massimo locale isolato, 
quindi Xo è di nuovo un punto isolato dell'insieme di livello Se ; in termini geografici 
ci troviamo sulla cima di una collina; 

c) nel caso di autovalori di segno discorde, il punto x 0 è un punto di sella isolato, 
la curva Se non è liscia e presenta un'autointersezione nel punto x 0 ; in termini 
geografici ci troviamo in un punto di valico. 

Fig. 3.6 : la funzione (x2 
- 1)2 + l.2y2 - y 4 presenta punti di minimo locale, massimo locale e sella 

Il teorema delle funzioni implicite in dimensione più alta è più complicato formal­
mente, ma l'idea è la stessa: una condizione di non degenerazione sull'insieme delle 
derivate implica la locale cartesianità del luogo di zeri. Un caso che già conosciamo è 
quello in cui abbiamo a che fare con una funzione affine f : Rn --t Rm del tipo 

f (x) = Ax - b 

con A matrice m x n ( con m ~ n ) e b E Rm assegnati. Una conseguenza del Teorema 
di Rouché--Capelli afferma che, se il rango della matrice A è massimo, dunque uguale ad 
m , allora il luogo di zeri della funzione f , cioè l'insieme { Ax = b} è un sottospazio 
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affine di lRn di dimensione n - m , e in particolare se il determinante della matrice 
Ao formata dalle prime m colonne di A è diverso da zero, le variabili xi, ... , Xm si 
possono scrivere in funzione delle altre n - m . 

Consideriamo ora un aperto A di lRn ed una funzione f : A ➔ lRm ; l' insieme 
degli zeri 

S = {xElRn: f(x)=O} 

corrisponde quindi al sistema 

{

fi(x) = O 

h(x) = o 

fm(x ) = O 

dove fk(x) sono le componenti del vettore f(x) di lRm. Intuitivamente possiamo 
pensare che, avendo n variabili xi, ... , Xn ed m condizioni date dal sistema precedente 
/k(xi, ... , Xn) = O con 1 :S k :S m, sia naturale aspettarsi, almeno nei casi non singolari, 
che l'insieme S degli zeri sia una superficie liscia di dimensione n - m. Si usa anche 
dire che il sistema ha n - m gradi di libertà. Il teorema seguente estende quello visto 
in precedenza al caso di dimensioni qualsiasi. 

Teorema 3.22 : siano A un aperto di lRn ed f : A ➔ ]Rm una funzione di classe 
ci, con m::; n. Indichiamo con S il luogo di zeri { f (x) = O} e sia x 0 un punto di 
S. Supponiamo che il rango della matrice mx n data da Vf(x 0 ) sia massimo, cioè 
rango V f ( xo) = m . Allora localmente intorno a x 0 l ' insieme S è grafico cartesiano 
{z = h(y)} di una funzione h di classe ci definita su un aperto di JRn- m ed a valori 
in lRm . Qui z rappresenta un insieme di m variabili, mentre y rappresenta l'insieme 
delle restanti n - m variabili. 

In altri termini, il luogo di zeri {f ( x) = O} è una superficie liscia di dimensione 
n - m in ]Rn a patto che il sistema 

{
f(x )= O 

rango Vf(x) < m 
(3.29) 

non abbia alcuna soluzione in lRn . Osserviamo che nel sistema precedente l'uguaglianza 
f (x) = O equivale ad m equazioni 

fi(xi, ... ,xn)= O , l :S j :Sm, 

mentre la condizione rango V f ( x) < m equivale all'annullarsi di tutti i minori m x m . 
Siccome i minori m x m di una matrice m x n sono c:J , il sistema (3.29) è composto 
da m + (;;J equazioni in n variabili. 

Osservazione : il teorema precedente dà solo una condizione sufficiente: se il rango è sem­
pre massimo allora abbiamo una superficie liscia. Non dice il viceversa, e in particolare 
un luogo di zeri può essere regolare anche se il sistema (3.29) ha soluzione. Ad esempio, 



Capitolo 3 : Calcolo differenziale in più variabili 193 

se S = {f (x , y) = O} è una curva liscia, posto g = f 2 naturalmente S = {g(x, y) = O} , 
ma dato che "v(f2) = 2f"v f il sistema (3.29) è 

{ 
g(x,y) = O <=? { f(x,y) = O 

"ilg(x,y) = O 2f(x,y)"ilf(x,y) = O 

e in tutti i punti dove la prima equazione è soddisfatta, vale a dire in tutti i punti di S , 
è soddisfatta anche la seconda! 

Esempio : questo è anche un esercizio di visualizzazione. Immaginate un tubo cilindrico, 
diciamo di raggio 10, adagiato per terra; con un trapano, tenuto verticale e in centro al 
tubo, facciamo un foro attraverso le pareti del tub<?, e ci interessa come è fatto il bordo 
del foro. Supponiamo che il trapano, anziché distruggere il materiale, lo tagli via, in 
modo che quando lo usiamo ricaviamo il tubo forato, e anche una placchetta (o due) 
che il trapano ha tolto al tubo per praticare il foro. Se la punta del trapano è molto 
piccola, diciamo di diametro 1, il trapano avrà fatto due fori (uno sulla parete vicina e 
uno su quella lontana) , e se spianiamo le due piccole placchette ottenute vediamo che 
somigliano a due cerchietti, ma un poco allungati nella direzione in cui erano piegati 
per adattarsi alla superficie del cilindro. Se la punta è più grossa, diciamo di diametro 
9, le due placchette avranno diametro 9 nella direzione dell'asse del cilindro, ma assai 
maggiore nella direzione che si piega attorno alla superficie, dato che arrivano quasi a 
toccarsi. Che accade aumentando ancora il diametro? 

Riportiamo il problema alla matematica: consideriamo i cilindri 

C = { (x, y, z) : x2 + z 2 = 1} , Tr = {(x,y,z): x2 +y2 = r 2
}; (3.30) 

il primo ha come asse l'asse y e raggio 1 , il secondo (il trapano ... ) ha come asse l'asse 
z e raggio r . Vogliamo studiarne l' intersezione, per determinare se sia o meno una 
curva liscia. Posto 

fi(x , y, z) = x2 + z2 -1, h(x, Y, z) = x2 + y2 - r2 

l' intersezione 
ì = C n Tr 

è il luogo di zeri di f = (ii, h) . Abbiamo 

"il f = ( ;; 2oy 2;) 
quindi i minori 2 x 2 di "il f sono 

4xy , -4xz, -4yz 

e il sistema (3.29) si scrive 

l 
x 2 + z 2 = 1 
x2 + y2 = r2 

xy = O 
xz = o 
yz = O. 
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Cerchiamone le soluzioni: le ultime tre equazioni sono soddisfatte solo se almeno due fra 
x , y e z sono nulli; però per la prima equazione x e z non possono essere entrambi 
nulli, quindi certamente deve essere nullo y . Per la seconda equazione x e y non 
possono essere entrambi nulli, quindi certamente deve essere nullo z . Ma se y = z = O 
le prime due equazioni danno 

x2 = 1, x2 = r2 

e questo è impossibile se r f= 1 . Dunque se r f= 1 l'insieme I è localmente una curva 
liscia. 

Il c~o r = 1 è più delicato: infatti i punti (±1, O, O) appartengono a I ma lì la 
matrice V f ha rango 1 e non 2, mentre negli altri punti di , ( e ve ne sono, ad esempio 
(O, ±1, 1) E,) ha rango 2. P er il Teorema 3.22, in un intorno di ciascuno di questi ultimi 
punti , è una curva liscia, ma non possiamo applicare il teorema nei punti (±1, O, O). 
Ciò significa che vicino a questi punti l'insieme I potrebbe non essere una curva 
liscia, ma potrebbe anche esserlo: semplicemente, non possiamo applicare il teorema che 
ci assicurerebbe che lo è. Lo studio di questi casi è sempre difficile, vediamo che si può 
dire: , è simmetrico sia rispetto a x (cambiando di segno all'ascissa di un punto di 1 
si rimane in 1 , dato che fi(x,y ,z) = h(- x,y,z) e lo stesso per h) che a y che a 
z. Studiamone allora la porzione con x, y, z 2: O : ricaviamo 

z
2 = 1 - x

2 = y2 
=} z = y = +~ . 

Questo ci dice che nell'ottante (l'equivalente tridimensionale del quadrante) x, y, z 2: O 
c'è un ramo di , che per x -+ 1 si avvicina a (1, O, O) stando sul piano y = z . 
Parametrizzando questo ramo con 

abbiamo 

</>(t) = (t, \l'l=t2, \l'l=t2) 

( 
-t -t ) 

<!>' ( t) = 1, v'f=t2 , v'f=t2 11</>'(t)II = J1 + t
2 

1 - t2 

e dunque il versore tangente è 

/1=-ii / ( /1=-ii -t -t ) 
T(t) = V 1+t2 <I> (t) = V l+t2' ./l+t2' ./1+t2 

che per t -+ 1 - tende a 

T(l) = (0, -1/\/'2, - 1/ \/'2) . 

La retta tangente in t = 1 a questo ramo di , è allora parallela alla bisettrice del primo 
e terzo quadrante del piano (y, z ) .· P er simmetria, se consideriamo l'ottante x, z 2: O, 
y '.S O otterremmo un altro ramo di , che ha retta tangente parallela alla bisettrice del 
secondo e quarto quadrante del piano (y, z) : dunque in (1, O, O) vi sono due rami di , 
che si incrociano (ad angolo retto) e I non è una curva liscia. 
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3.11 - Moltiplicatori di Lagrange 

Abbiamo ora gli strumenti per affrontare lo studio di problemi di massimo e di minimo 
vincolati. Si tratta di problemi del tipo 

min{J(x) : x ES} (3.31) 

dove S è una superficie liscia k-dimensionale in lRn . Intanto osserviamo che la defi­
nizione di punto di massimo o minimo locale data ali' inizio della Sezione 3. 7 si applica non 
solo al caso della ricerca di tali punti in un aperto, ma su un insieme qualsiasi, ad esempio 
anche una k-superficie liscia. Quello che non possiamo applicare è la generalizzazione del 
Teorema di Fermat 3.12 al caso di lRn : infatti in quell'enunciato il punto x 0 deve essere 
interno ali' insieme, e una k-superficie liscia in lRn non ha alcun punto interno. 

Andiamo per gradi: il caso più semplice è quando la superficie S è espressa in forma 
parametrica; sappiamo che in tal caso esistono un aperto A di JRk ed una funzione 
q, : A --* R_n tale che 

rango V</> = k e S = { q,(t ) : t E A} . 

Allora il problema di minimo (3.31) può essere riscritto nella forma 

min{f(</>(t )) : t E A} 

e diventa un problema di minimo libero, in un dominio di JRk , per la funzione composta 
f o </>. I suoi punti stazionari si trovano dunque come soluzioni del sistema 

V(! o </>)(t ) = O 

che, per la regola di derivazione delle funzioni composte, diventa 

( (Vf)(</>(t)))(Vq,(t )) = 0. 

La natura dei punti stazionari può poi essere studiata mediante l'analisi della matrice 
hessiana V 2(f o </>), come descritto nella Sezione 3.7. 

Osservazione : se la superficie S è parametrizzabile solo attraverso varie carte locali, si 
dovranno considerare vari problemi di massimo o minimo, uno per ciascuna carta locale 
- stando attenti ai doppioni: lo stesso punto di S potrebbe apparire in due o più carte 
locali. 

Esempio : consideriamo, fissato un numero reale p > O , la funzione 

f(x, Y) = lxlP + IYIP 

definita sulla circonferenza unitaria S = { x2 + y2 = 1} . Parametrizzando S nella forma 
usuale 

{
x=cos0 
y = sen0 
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ci riconduciamo allo studio della funzione di una variabile 

0 E [0,2-ir] . 

Essendo g periodica di periodo -ir /2 possiamo limitarci a studiarla per 0 E [O, -ir / 2[ . Si 
trova facilmente che: 
a) se p = 2 la funzione g è costantemente uguale ad 1 ; 
b) se p > 2 il massimo di g è nel punto 0 = O e vale 1 , il minimo è invece nel punto 

0 =-ir/ 4 e vale 21- p/2 ; 

c) se p < 2 la situazione è rovesciata: il massimo di g è nel punto 0 = -ir / 4 e vale 
21- P/ 2 , il minimo è invece nel punto 0 = O e vale 1 . 

Nel caso di superfici cartesiane possiamo usare la rappresentazione cartesiana di 
S come grafico di una funzione <p , che esprime in termini di k variabili t E -JRk le 
n - k variabili restanti. Prendendo ad esempio le variabili indipendenti come le prime 
k abbiamo x = ( t, <I>( t )) e quindi il problema di minimo (3.31) si scrive nella forma 

min{f(t , q,(t)) : t E A} 

dove A è un dominio di JRk . Abbiamo quindi, ancora una volta un problema di minimo 
libero, che possiamo trattare con i metodi della Sezione 3.7. 

Esempio : vogliamo massimizzare la funzione 

sulla sfera unitaria di JR3 

S = { x 2 + y 2 + z2 
= 1} . 

Dall'espressione della funzione f osserviamo che, per cercare il suo massimo, possiamo 
limitarci al caso x > O , y > O , z > O : infatti gli altri casi si ottengono cambiando 
segno a una o più delle variabili, e il valore di f o rimane lo stesso o cambia solo segno, 
diventando negativo. Per questi valori la superficie S è cartesiana e conviene usare la 
rappresentazione 

y = J 1 - x2 - z2 . 

Posto s+ = {(x, y, z) E S: x > O, y > O, z > O} , il nostro problema di massimo 
vincolato diventa quindi 

max[x3z( l - x2 
- z 2

)] , 
s+ 

che è adesso un problema di massimo libero. Prima di t utto stabiliamo che il massimo 
esist e: osserviamo che se una delle variabili si annulla la funzione f vale zero, d unque 
posto Sii = {(x, y, z) E S: x ~ O, y ~ O, z ~ O} abbiamo 

supf = supf ; 
S t s;t 
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ma st è chiuso e limitato ed f è continua, perciò ha massimo su Sii per il Teorema 
di Weierstrafi 1.20. Dato che il massimo su Sii non è zero, viene raggiunto in un 
punto di s+ . Ora possiamo applicare i metodi differenziali: annullando il gradiente di 
x3 z(l - x2 

- z 2
), che è funzione delle sole variabili (x,z), si trova il sistema 

{ 
x2 z(3 - 5x2 - 3z2 ) = O 

x3 (1 - x2 - 3z2) = O 

che ha come soluzioni x = 1/,,/2, z = 1/v'6 . Il valore massimo della funzione f iniziale 
è quindi 

J3 
maxf = 36 raggiunto nel punto (1/v'2, 1/v'3, 1/v'6) . 

Vediamo ora come si procede nel caso in cui la superficie S sia data in forma 
implicita: il metodo che si usa in questi casi è quello detto dei moltiplicatori di Lagrange, 
illustrato nel teorema seguente. 

Teorema 3.23 : sia A un aperto di JRn, e sia S = {g(x) = o} con g: A---+ JRn-k 
avente jacobiano di rango n - k in ogni punto di S . Sia f : A ---+ JR una funzione 
differenziabile, e sia xo un punto di massimo o minimo locale per f su S . Allora 
esistono n - k numeri reali c1 , ... ,cn-k (detti moltiplicatori di Lagrange) tali che 

n-k 
("vf + L ci"vgi)(xo) = O , 

j = l 

dove le gi sono le n - k componenti della funzione g . 

In altre parole, è come se, invece di essere di massimo o minimo locale per f , il 
punto xo lo fosse per la funzione f + °LJ::1k Cjgj . Dovremo quindi risolvere il sistema 

(3.32) 

che ha 2n - k incognite (le n variabili xi e gli n - k moltiplicatori Cj ) e 2n - k 

equazioni ( n - k di g = O ed n di "v f + °LJ,:;:; Cj "v gi = O) (~ es. 3.21). Nel caso 
particolare in cui S sia una ipersuperficie, cioè con k = n - 1 e dunque g : !Rn ---+ JR , 
avremo un solo moltiplicatore di Lagrange c (~ es. 3.17) e la condizione (3.32) diventa 

{
g(x)=O 

("v f + c"vg)(x) = O . 
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Esempio : determiniamo, tra tutti i possibili cilindri di volume assegnato V, quello che 
minimizza la superficie totale (~ es. 3.22). In altri termini, vogliamo trovare la forma di 
un contenitore cilindrico (ad esempio una scatoletta di carne) che, a parità di contenuto, 
impieghi meno materiale possibile. Indicando con r ed h rispettivamente il raggio e 
l'altezza del cilindro, abbiamo il problema di minimizzare la funzione 

J(r, h) = 21rr2 + 21rrh r ~ O , h~O, 

con il vincolo di volume 1rr2 h = V , cioè 

g(r, h ) = 1rr2h - V = O. 

Applicando il metodo dei moltiplicatori di Lagrange abbiamo il sistema 

{ 
41rr + 21rh + c21rrh = O 

21rr + c1rr2 = O , 

dove c è il moltiplicatore di Lagrange. Si trova quindi, semplificando, h = 2r , che ci 
dice che le scatolette più efficienti sono quelle in cui l'altezza coincide con il diametro. 
Volendo poi trovare esplicitamente i valori di r ed h ottimi, si ha 

_ (~)1/3 
r - ' 21r (V) 1/3 

h = 2 -
21r 

Esempio : un caso particolare e frequente è quello di massimizzare una funzione affine 
su di un poliedro convesso; questo è definito come intersezione di semispazi, cioè insiemi 
del t ipo 

H ={X: X· N :'.':: c} 

(pensate a un ordinario poliedro in JR3 , e guardatene una faccia: questa fa parte di 
un piano, e il poliedro è tutto contenuto in uno dei due semispazi delimitati da questo 
piano). Il bordo di un poliedro in JR3 ha facce, cioè parti contenute in uno solo dei piani 
che lo delimitano, spigoli, cioè parti contenute in due dei piani, e vertici, che fanno parte 
di tre o più piani. Per poliedri in lRn la situazione è più complicata, dato che il suo 
bordo può avere porzioni di qualunque dimensione fra zero (i vertici) e n - 1 (le facce 
vere e proprie). Nel seguito dell'esempio ci limitiamo a JR3 . 

Supponiamo che il poliedro P sia definito come 

Hi = {X E JR3
: X· N i :'.':: e;} per i= 1, ... , k 

e supponiamo per evitare lunghi giri di parole che P sia limitato, quindi (essendo in­
tersezione di semispazi chiusi) compatto. Per massimizzare o minimizzare su P una 
funzione affine 

f(X ) = X •N - c 

vediamo anzitutto che questa ha gradiente N , quindi o è costante (se N = O , ma allora 
la massimizzazione è banale) o ha gradiente mai nullo, quindi non ha punti stazionari 
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dentro P . Dunque a parte casi banali una funzione affine su P assume il massimo e il 
minimo sempre sul bordo (~ es. 3.20). Ora osserviamo che: 
a) se f assume lo stesso valore in due punti distinti, è costante sul segmento che li 

congiunge (e sulla retta che passa per essi); 
b) se f assume lo stesso valore in tre punti non allineati, è costante sul piano che li 

contiene; 
c) f è costante su una retta se e solo se N è ortogonale alla retta; 
d) f è costante su un piano se e solo se N è ortogonale a quel piano. 
A questo punto possiamo provare che il massimo e il minimo sono assunti nei 
vertici: infatti se il massimo fosse assunto dentro una delle facce, diciamo quella il cui 
vettore ortogonale è N 1 , per il Teorema 3.23 dovremmo avere che v' f , cioè N , è 
parallelo a N 1 , quindi f è costante sulla faccia e in particolare il valore massimo è 
assunto anche in t utti i vert ici di quella faccia. 

Un discorso analogo vale sugli spigoli, su ciascuno dei quali f non può avere massimo 
ali' interno ma necessariamente negli estremi: per il Teorema 3.23 se f ha massimo su 
uno spigolo N deve essere ortogonale allo spigolo, ma allora f è costante sullo spigolo 
e il massimo è di nuovo anche in un vertice. In conclusione, su un poliedro convesso ( e 
compatto) una funzione affine assume sia il massimo che il minimo nei vertici. Ma dato 
che un poliedro qualunque si può sempre scomporre come unione di poliedri convessi, il 
risultato vale per poliedri compatti qualsiasi) e in qualunque numero di dimensioni). 

Esempio : consideriamo la funzione 

n 

f ( x) = IJ x[' = xf 1 x~2 
••• x~" 

i=l 

definita sull' insieme degli x E lRn che hanno le componenti Xi 2: O . Ricordando che 
o0 = 1 , vogliamo calcolare il massimo ed il minimo valore di f sull'ins ieme 

n 

s = {:I:= Xi = l, Xi 2: o} . 
i=l 

Per come è stata definita, la funzione f è continua su S ed S è un insieme chiuso e 
limitato, quindi per il teorema di WeierstraB sia massimo che minimo esistono. 
Iniziamo a considerare punti interni ad S, in cui Xi > O per ogni i = 1, ... , n, ed 
applichiamo il teorema dei moltiplicatori di Lagrange. Essendo 

v'xJ(x ) = f (x )(I + logxi) 

abbiamo le equazioni 

f(x)(I + logxi) + e= O i = 1, ... ,n 

dove e è l'unico molt iplicatore di Lagrange. Se ne deduce che i valori logxi sono tutti 
coincidenti e d unque x 1 = x2 = ... = Xn . Dalla definizione di S si ha allora che l'unico 
punto stazionario interno è il punto 

X= (]:_ ,]:_, ... ))' 
n n n 
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con valore f(x) = 1/n. Restano da esaminare i punti in cui qualche Xi si annulla; 
cominciamo con il caso in cui uno solo degli Xi si annulli, ad esempio sia Xn = O . Ci 
riduciamo allora a studiare i massimi ed i minimi della funzione 

sull' insieme 

n - 1 

II xx' = XXI XX2 XXn - 1 
i 1 2 · · · n - 1 

i = l 

n-1 

{I>i = 1, Xi 2 O} -
i=l 

Ripetendo i calcoli precedenti troviamo che l'unico punto stazionario interno è il punto 
con tutte le n - 1 coordinate uguali a 1/(n - 1) , su cui la funzione f assume il valore 
1/(n - 1). Consideriamo ora il caso in cui due coordinate si annullino, ad esempio Xn 

ed Xn- l ; troveremo che l'unico punto stazionario interno a questa configurazione è il 
punto con tutte le n - 2 coordinate uguali a 1/(n - 2) , su cui la funzione f assume il 
valore 1/(n - 2) . Così continuando, troveremo i valori di f 

1 
n 

1 
n - 1' ... ' 

1 

2 

Resta l'ultimo caso in cui t utte le coordinate eccetto una sono nulle; su questi punti il 
valore della funzione f è 1 . In definitiva abbiamo trovato che: 
a) il valore minimo di f è 1/n ed è assunto nell'unico punto di minimo (¾, ¾, ... , ¾) ; 
b) il valore massimo di f è 1 ed è raggiunto in tutti i punti di S che hanno una 

coordinata uguale ad 1 e tutte le altre nulle. 

Esempio : impostiamo ora il problema di determinare la minima distanza tra due curve 
piane regolari date in forma implicita (~ es. 3.18) 

S1 = {g(x,y) = o} , S2 = {h(s,t) =o}. 

La funzione da minimizzare è quindi 

f(x,y,s,t) = (x -s)2 + (y - t)2
. 

Abbiamo preso il quadrato della distanza; i punti di minimo sono ovviamente gli stessi 
che se avessimo preso la distanza e per il valore minimo basterà alla fine prendere la radice 
quadrata di quanto trovato (~ es. 3.19). Avendo due vincoli avremo due moltiplicatori 
di Lagrange e, d , con il sistema 

{ 

2(x - s) + c'vxg(x ,y) = O 

2(y - t) + c'vyg(x,y) = O 

2(s - x) + d'v sh(s, t) = O 

2(t - y) + d'vth(s, t) = O, 

oltre naturalmente alle due equazioni che definiscono S1 ed S2 . 
Potete per esercizio calcolare la minima distanza tra due parabole, o quella tra un'ellisse 
ed una retta. 
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Esercizi relativi al capitolo 3 

Esercizio 3.1 : calcolate in un punto generico il vettore gradiente delle seguenti fun­
zioni: 
a) f(x, y) = xeY

2 

; 

b) f(x,y) = log(x2 + y2
); 

xy 
c) f(x, y) = 2 2 · 

X +y 

Esercizio 3.2 : calcolate in un punto generico la matrice jacobiana delle seguent i 
funzioni: 
a) f (x, y) = (2xy - y2 , x2eY) ; 
b) f (x, y ,z) = (x-y-z, y-x-z, z-x- y); 
c) f (x, y, z) = (x2yz , z2 - x). 

Esercizio 3.3 
:.ibile. 

calcolate la divergenza delle funzioni dell'esercizio 3.2, qualora pos-

Esercizio 3.4 : calcolate M(o, O) : 

a) f(x, y) = ~ 2 , v = ( ,/3/2, - 1/2); 
l +x +y 

b) f(x, y) = (x2 
- y) + arctan(2 + sen y) , v = (- -./2/2, - -./2/2) ; 

c) f(x, y) = { x2x{y4 per (x, y) -I- (O, O) ' v = ( ,/3/2, 1/2). 

O per(x,y) = (O,O). 

Esercizio 3.5 : studiate la continuità e la differenziabilità delle seguenti funzioni, in 
tutti i punt i del loro dominio: 

{ 

xy(x2 - y2) 

) f( ) 2 2 se(x,y)-/-(0,0) 
a x,y = x +y ; 

O se (x, y) = (O, O) 

{I l xy 
2 

se(x,y)-/-(0,0) 
b) f(x, y) = x O + Y al variare del paramet ro a >O . 

O se (x, y) = (O, O) 
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Esercizio 3.6 : determinare i valori del parametro a > O per cui la funzione f : 
JR3 ~ JR definita da 

f (x, y , z) = JxyzJo: 

risulti differenziabile nell'origine. 

Esercizio 3. 7 : determinate l'equazione del piano tangente e il vettore normale al 
grafico delle seguenti funzioni , nei punti a fianco indicati: 
a) f (x, y) = 3x2y - 2xy2 in P = (1, - 2, 2) ; 

b) f(x,y) = Jy2 - logx in P = (1, 1, 1); 
c) f(x , y) = arctan(2x + 5y - 2) in P = (1, O, O) . 

Esercizio 3.8 : calcolate in un punto generico la matrice hessiana delle funzioni 
dell'eserciio 3.1. 

Esercizio 3.9 : scrivete lo sviluppo di Taylor di centro (O, O) , fino all'ordine 2 ( com­
preso), della funzione 

f(x, y) = cos(x + y) cos(x - y) . 

Esercizio 3.10 : per le seguenti funzioni determinate tutti i punti stazionari, dicendo 
per ognuno di essi se si tratta di un punto di minimo locale, di massimo locale, o di 
sella, o altro; stabilite poi se le funzioni ammettono minimo o massimo assoluti sul loro 
dominio: 
a) f (x, y) = x4 - kxy + y4 , al variare del parametro k E JR; 
b) f(x ,y)=x2 - 4xy+y2

; 

c) f(x,y,z)=x2 +ysenz. 

Esercizio 3.11 : determinate gli eventuali punti di massimo o di minimo relativo delle 
seguenti funzioni: 
a) f(x,y) = y(eY+x2 -2x) su tutto IR2

; 

b) f(x ,y) = x2 yex+o:y su tutto IR2 , al variare del parametro a E JR. 

Esercizio 3.12 : determinate, se esistono, i punti di massimo e minimo assoluti ed i 
valori massimo e minimo delle seguenti funzioni: 

x+y 2 
a) f(x ,y) = 2 2 su tutto JR ; 

l +x + y 
b) f(x,y) = e-x seny-e-Ysenx sull'insieme {(x,y) E IR2 : O:::; x:::; 1, O:::; y:::; 1}; 
c) f(x ,y) = xylog(x2 +y2) sull'insieme {(x,y) E JR2

: x2 + y2
:::; 1}; 

d) f(x,y, z) =x+y+kz2 sull'insieme {(x,y,z) EIR3 : x2 +y2 +z2
:::; 1}, al variare 

del parametro k > O ; 
e) f(x, y) = (x - a)2 + (y - b)2 sul!' insieme { (x, y) E JR2 : x2 + y2 :::; 1} , al variare 

dei parametri a, b E JR . 

Esercizio 3.13 : determinate se le curve degli esercizi 2.8 e 2.13 sono lisce. 

Esercizio 3.14 : determinate il vettore tangente e due vettori normali all'elica cilin­
drica (2.7) nel punto corrispondente a t = 1r/ 6. 

Esercizio 3.15 : provate che l'iperboloide a una falda (1.23) è una 2-superficie liscia. 



Capitolo 3 : Calcolo differenziale in più variabili 203 

Esercizio 3.16 : esaminando i vettori tangenti, concludete che il cono (1.21) non è 
una 2-superficie liscia. 

Esercizio 3.17 : calcolate i valori massimo e minimo ed i rispettivi punti in cui sono 
raggiunti, per la funzione 

n 

f (x1, ... , Xn) = L Xi 

i=l 
sull' insieme A = n=~=l x; = 1} . 

Esercizio 3.18 : determinate ilpuntodellacurva S = {(x,y) E JR2 : x 2+y2+xy = l} 
che è più vicino all'origine. 

Esercizio 3.19 : determinate, se esistono, i punti di massima e minima distanza dal­
rorigine della curva descritta dall'equazione 

al variare del parametro p E]O, +oo[ . 

Esercizio 3.20 : sia A una matrice n x n simmetrica e definita positiva, e sia E 
!"ellissoide in JR" 

E= { x E JR" : Ax · x :S 1 }. 

Determinate il massimo valore della coordinata Xn al variare di x in E . 

Esercizio 3.21 : calcolate i valori massimo e minimo ed i rispet t ivi punti in cui sono 
raggiunti, per le funzioni seguenti, le cui variabili sono vincolate agli insiemi indicati: 
a) f(x, y, z) = x 2 + y2 + z 2 sull' insieme {1 + x2 

- z2 = O} ; 
b) f(x, y, z) = xyz sull' insieme { ax2 + by2 + cz2 = 1} , con a, b, c > O; 
c) f(x,y,z)=x2 + y2 +z2 sull' insieme {x - y+ 3z= 3, 2x + 2y + z=l} ; 
d) f (x, y) = x 2 + y2 sull' insieme { x 3 + y3 = 3xy} . 

Esercizio 3 .22 : determinate il cono circolare retto, di volume V assegnato, avente 
superficie totale minima. 

Esercizio 3.23 : determinate il parallelepipedo inscritto nell'ellissoide E = { ax 2 + 
by2 + cz2 = 1} avente: 
a) volume massimo; 
b) superficie totale massima. 

Esercizio 3.24 : Tra tutti i bicchieri di forma cilindrica (ovviamente senza il cerchio 
in alto) e di volume assegnato, uguale a 100 cm 3 , determinare quello per cui la superficie 
totale è minima (dunque quello che utilizza meno vetro). 

Esercizio 3.25 : determinate t utte le funzioni differenziabili u(x, y) definite su JR2 

tali che 
au au - o 
ax + ay - ' u(x, 0) = sen x. 

Esercizio 3.26 : una ditta può produrre tre tipi di bicchieri; per produrre 100 bicchieri 
del tipo A servono 20kg d vetro, per il t ipo B 25kg e per il tipo C 30kg. D'altra parte 
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il guadagno della ditta è pari a 70 centesimi per ogni bicchiere di tipo A, 80 per ogrù 
bicchiere di tipo B e 1 euro per ogni bicchiere di tipo C. La ditta ha in magazzino 3000kg 
di vetro grezzo, ma ha imballaggi solo per 12000 bicchieri. Quanti di tipo A, quanti di 
B e quanti di C conviene che ne produca, per massimizzare il guadagno? 

Esercizio 3.27 : un corriere trasporta solo scatole a forma di parallelepipedo rettan­
golo, e fa pagare il trasporto in base alla somma delle tre dimensioni. Determinate la 
forma della scatola di massimo volume, fra quelle che hanno somma delle tre dimensiorù 
pari a 120 cm. 

Esercizio 3.28 : le poste americane usano una regola differente: per una scatola a 
forma di parallelepipedo rettangolo, l 'altezza è definita come la dimensione maggiore, la 
base è il rettangolo formato dai due lati restanti. Il costo di t rasporto è calcolato in base 
alla somma fra altezza e perimetro di base. Volendo determinare la forma della scatola 
di massimo volume, fra quelle che hanno somma fra altezza e perimetro di base pari 
a 120 cm, come cambia rispetto all'esercizio precedente l'impostazione del problema? 
Risolvete il nuovo problema. 
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Appendice al capitolo 3 

Appendice 3.1 - Medie numeriche 

Mostriamo qui alcune disuguaglianze tra medie numeriche. Dati n numeri Xi > O 
( i = 1, ... ,n) definiamo 

1 n 
A(x1 , ••• , xn) = - Lxi media aritmetica; 

n i = l 

n 1/n 
G(x 1, ... , Xn) = ( Il Xi) media geometrica; 

i = l 

media armonica; 

intendendo che H(x1 , ... , xn) = O se uno degli Xi è nullo. Faremo vedere che si ha 

(A3.1) 

Queste disuguaglianze seguono da un fatto più generale, illustrato nella proposizione 
seguente. 

Proposizione A3.1 : (disuguaglianza di Young) se f JR -+ JR è una funzione 
convessa si ha per ogni x 1, ... , Xn E JR 

(A3.2) 



206 Appendice al capitolo 3 

DIMOSTRAZIONE : posto per semplicità so = A(x1, ... , Xn) , per la convessità di f esiste 
una funzione affine g(s) = as + b tale che 

g(s) ::; f(s) Vs E JR, g(so) = f(so); 

se f è derivabile basta prendere come g l'espressione della retta tangente al grafico 
di f nel punto so , nel caso generale si può prendere l'espressione della retta tangente 
destra o della retta tangente sinistra. Si ha quindi 

f(A(x1 , .. . ,xn)) = g(A(x1, ... ,xn)) = A(g(xi ), ... , g(xn)) ::;A(f(x1), ... ,f(xn)), 

dove la seconda uguaglianza segue dal fatto che la funzione g è affine. La disuguaglianza 
di Young (A3.2) è dunque dimostrata. ■ 

A questo punto possiamo dimostrare la seconda delle disuguaglianze in (A3.1). Se 
qualcuno dei numeri xi è nullo la disuguaglianza è ovvia, in quanto G(x1 , ... , xn) = O; 
dunque supponiamo che tutti gli Xi siano strettamente positivi per cui possiamo scrivere 
xi= eY• con Yi E JR . Utilizzando la funzione convessa f(s) = e8 e la disuguaglianza di 
Young (A3.2) otteniamo 

G(x X ) - G(eYt eYn) - eA(yt,••·,Yn) < A(eY• eYn) - A (x X ) 1, ··· , n - , . . . , - _ , . . . , - 1, · ··, n • 

Per quanto riguarda la prima disuguaglianza in (A3.1) con la media armonica basta 
osservare che 

H (x1, ... , Xn) = (A(x11
, ... , x;;-1) ) -

1 

e quindi, in base alla disuguaglianza già dimostrata sulle medie geometrica ed aritmetica, 

H (x1, ... ,xn) = (A(x11, ... , x;;-1
))-

1
::; (G(x11

, ... ,x;;- 1))-
1 = G(x1, ... ,xn) . 

Accanto alle medie viste sopra si possono introdurre altre medie: ad esempio la media 
quadratica 

( 
1 n 2) 1/ 2 

A2(x1, ... ,xn) = ;;_Lxi 
i=l 

o più in generale la media p con p ~ l 

( 
1 n ) 1/p 

Ap(x1, ... ,xn) = ;;: I:: xf • 
i=l 

Se p < q , prendendo la funzione convessa f (s) = sq/p, dalla disuguaglianza di Young 
(A3.2) otteniamo 

(Ap(X1, ... ,Xn)t = (A(xf, ... ,x~))q/p::; A(xi, ··· , x~) = (Aq(x1, ... ,xn)t 
da cui 

Ap(X1, ... , Xn) ::; Aq(X1, ... , Xn) . 

È interessante notare che, per p --+ +oo si ha 

lim Ap(X1, ... , Xn) = max Xi , 
p-++oo I:Si:Sn 

in accordo con le ovvie disuguaglianze 

( 
1 n ) 1/p - L xf ::; max Xi . 
n l <i<n 

i=l - -
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Appendice 3 .2 - Funzioni omoge nee 

Consideriamo ora una classe interessante di funzioni. 

D efinizione : sia a E JR ; una funzione f : JRn \ {O} --+ JR si dice omogenea di grado 
a se 

f(tx) = t 0 f(x) \:/t > O, \:/x =f. O . 

Osserviamo subito che se f è omogenea di grado a si ha per ogni x =f. O 

f(x) = llxi1°f(ll:II) • 

e ora supponiamo f anche continua ed indichiamo con m ed M rispettivamente il 
minimo ed il massimo di f sull'insieme compatto S = { llxll = 1} , che esistono per il 
Teorema di Weierstrafi 1.20, abbiamo dall'uguaglianza precedente: 

\:/x =f. O , 

da cui ricaviamo 

\:/x =f. O. 

In particolare, se m > O abbiamo f(x) > O per ogni x =f. O . Il motivo per escludere 
sempre x = O è di consentire di parlare di funzioni omogenee di grado negativo. 

Esempio: la funzione 1/llxll è omogenea di grado - 1; la funzione lxi+ IYI è omogenea 
di grado 1 . Data una qualunque funzione g definita su S, che è il bordo della sfera 
unitaria, la funzione definita per ogni x =f. O da 

f(x) = llxll0 g(ll:II) (A3.3) 

è omogenea di grado a, e viceversa (come visto sopra) se f è omogenea, detta g la 
restrizione di f a S si ha che vale (A3.3): dunque le funzioni omogenee di un grado 
fissato sono in corrispondenza biunivoca con le funzioni definite su S . 

Osservazione : se f è omogenea di grado a ed è inoltre derivabile rispetto alla coor­
dinata xi in ogni punto del suo insieme di definizione, allora la sua derivata parziale 
"il xJ risulta omogenea di grado a - 1 . Questo si vede subito considerando il rapporto 
incrementale 

f(tx + hei) - f(tx) 
h 
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e facendo il cambiamento di variabile h = tk ; dalla definizione di omogeneità si ricava 

(''7 x.f) ( tx) = l~ f ( tx + he~) - f ( tx) 

= lim f(tx + tke,) - f (tx) 
k----tO tk 

= t°'_ 1 lim f(x + ke,) - f(x) 
k----tO k 

= t<>-h::Jx.f(x). 

Caratterizziamo ora le funzioni omogenee di grado a in termini del loro gradiente. 

Teorema A3.2 : sia f : JR_n \ {O} ➔ JR. una funzione differenziabile. Allora f è 
omogenea, di grado a se e solo se 

x · Vf(x ) = af(x) Vx f= O. (A3.4) 

DIMOSTRAZIONE : se f è omogenea di grado a, fissato x f= O la funzione 

g(t) = J(tx) 
t"' 

t>O (A3.5) 

è costante in quanto coincide con il valore f ( x) . La differenziabilità di f implica che 
g è derivabile, e si ha quindi 

O= g'(t) = - at-<>-l f(tx) + C°'x · V f(tx ) . 

Prendendo t = 1 si ottiene la (A3.4). 

Viceversa, supponiamo che valga (A3.4) e mostriamo che la funzione f è omogenea 
di grado a, o equivalentemente che la funzione g(t) definita in (A3.5) è costante. 
Siccome f è per ipotesi differenziabile, la funzione g è derivabile, per cui è sufficiente 
mostrare che la sua derivata è nulla in ogni punto. Si ha 

g'(t) = -ac0
-

1J(tx) +C0 x . Vf(tx ) 

e, dalla (A3.4) si ricava subito g'(t) = O per ogni t. ■ 
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Appendice 3.3 - Un minimo o no? 

Per studiare la natura di un punto stazionario di una funzione f , talvolta si prova 
a leggere il comportamento della funzione su qualche curva che passa per quel punto; 
tuttavia bisogna stare attenti a non trarne conclusioni positive, ma solo negative, oppure 
solo indicazioni di una possibilità. Spieghiamo meglio: supponiamo che il punto in 
questione sia X 0 e che vi siano due rette per X o lungo la prima delle quali f ha 
un minimo locale stretto in X O mentre lungo la seconda ha un massimo locale stretto. 
Ciò significa che in qualunque intorno di X O vi sono sia punti ( quelli della prima retta) 
in cui f vale più che in X o , sia punti ( quelli della seconda retta) in cui f vale meno 
che in X O : dunque ( conclusione negativa) X O non può essere né un punto di minimo 
locale né di massimo locale per f . 

Se però i nostri esperimenti con le rette dessero tutti lo stesso esito, ad esempio 
lungo tutte le rette per X O la funzione f ha un minimo locale stretto in X o , non 
possiamo ancora concludere che f ha un minimo locale in X O , e anzi questo può essere 
falso. La funzione 

f(x, y) = (y - x2)2 - x5 

ha gradiente nullo in (O, O) e il suo luogo di zeri è rappresentato in figura: la linea 
tratteggiata è il grafico di x2 con x 2:: O , le due linee continue sono i grafici di x2 ±x512 , 
e la funzione f è negativa all'interno del "baffo" e positiva in tutti gli altri punti ( escluso 
naturalmente dove vale zero). 

I 

I 

Fig. A3.l : il luogo di zeri di f Fig. A3.2 : ingrandimento vicino all'origine 

Come si vede (meglio nell' ingrandimento) presa una qualunque retta per l'origine 
c'è sulla retta un più o meno piccolo intorno dell'origine in cui f è positiva, ma f è 
nulla nell 'origine: dunque su ogni retta l'origine è un punto di minimo locale stretto, 
ma non è un minimo locale di f sul piano dato che se ci avviciniamo lungo la linea 
tratteggiata ( cioè con y = x 2 ed x > O ) la funzione vale -x5 < O . 

Da questo esempio impariamo (ancora!) che le rette sono troppo poche per dare 
risposte già nel piano: qui avvicinandoci lungo una parabola le cose vanno in modo 
diverso. Potremmo costruire esempi in cui la curva "critica" non è una parabola, ma 
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chissà quale altra. Di certo possiamo dire questo: se f ha un minimo locale in X O , 

cioè f(X) 2: f(Xo) per ogni X con X E B€(X 0), allora presa qualsiasi curva <p 
che ha sostegno nel dominio di f e tale che </J(O) = X 0 , per !ti abbastanza piccolo 
avremo </J(t) E B., (Xo) e quindi f(<fJ(t)) 2: f(</J(O)), ossia f letta lungo <p ha un 
minimo locale quando passa per X O • L' interessante è che vale anche il viceversa: se f 
ha un minimo locale al passaggio per X O lungo qualsiasi curva, allora ha un minimo 
locale in X o . Enunciamolo meglio. 

Teorema A3.3 : sia f una funzione il cui dominio contiene un intorno di X O . Se per 
ogni curva <p che ha sostegno nel dominio di f e tale che </J(O) = X 0 il punto O è di 
minimo locale per f ( </J( t)) allora X o è un punto di minimo locale per f . 

Infatti, se X o non fosse di minimo locale dovrebbero esistere punti arbitrariamente 
vicini a X o in cui f vale meno che in X O : prendiamo una successione di questi punti, 
tendente a Xo , e chiamiamoli X k. Definiamo una curva su ]O, 1] così: </J(l/k) = Xk 
e fra 1 / k e 1 / ( k + 1) la curva percorre nel modo standard il segmento da X k a 
Xk+I. Osserviamo che </J(t)-+ X 0 per t -+ o+ , quindi possiamo proseguire la curva 
definendola su [-1,0] come </J(t) = X 0 . Questa è continua (dunque una curva) ma vi 
è una successione tendente a zero (i punti 1/ k) in cui f o <p vale meno che in t = O, 
dunque avremmo trovato una curva su cui f o <p non ha minimo locale al passaggio per 
il punto Xo. 

L'ipotesi sul dominio di f potrebbe essere un po' limata ma l'enunciato diventa 
illeggibile; serve che due punti qualsiasi del dominio possano essere congiunti con un arco 
tutto contenuto nel dominio, ma non basta: occorre che questo arco sia "corto", nel 
senso che l'arco che congiunge A e B deve essere contenuto in una palla di raggio non 
superiore a g(IIA - B II) per qualche funzione continua g nulla nell'origine. 

Appendice 3.4 - Centri di massa e minimi 

Al termine della Sezione 1.1 avevamo lasciato in sospeso un problema difficile, a, (Al.2), 
che consisteva nel minimizzare fra i punti X di un triangolo ABC la funzione continua 

f(X) = (ma li X - A II + mbllX - B II + mcli X - Cli) - Lm. 

I teoremi di questo capitolo si applicano a funzioni differenziabili , ed f non è differen­
ziabile, o perlomeno non in t utti i punti: infatti il grafico della funzione IIX II è una 
superficie conica con vertice nell'origine, quindi la funzione IIX II è differenziabile in 
tutti i punti, tranne che nell'origine dove il grafico non ha piano tangente e quindi non 
è differenziabile. Allora la funzione !IX - A II è differenziabile in tutti i punti t ranne 
A , e IIX - BII lo è in tutti i punti tranne B. Osserviamo che questo ci consente 
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di affermare che in tutti i punti tranne A e B la somma IIX - Ali + IIX - B JI è 
differenziabile per la Proposizione 3.8, e (ma non è immediato) che non è differenziabile 
in A e B : infatti se fosse differenziabile in A Io dovrebbe essere anche la differenza 
(IIX - Ali+ IIX -BII) - IIX - BII = IIX - Ali, che sappiamo non essere differenziabile. 
In conclusione, f è differenziabile in tutti i punti del triangolo tranne i vertici. Notiamo 
che questo ci consente ugualmente di applicare il Teorema di Fermat 3.12, che si usa 
nei punti interni al triangolo, e il Teorema dei moltiplicatori di Lagrange 3.23 nei punti 
interni ai lati del triangolo. Calcoliamo il gradiente di f nei punti diversi dai vertici: 
basta calcolare il gradiente di d(X) = II XII e poi lavorare sulla composizione. Ora, 

d(X) = ✓ Xf + X? => 

e lo stesso per l'altra coordinata, quindi (questo è vero in dimensione qualunque) 

X =-/-0 
X 

VIIX II = IIX II : 

ricordate che per x -/- O era Dlxi = x/Jxl ? A questo punto 

X-A X - B X - C 
V f=mall X - AII +mbJJX - BJJ +mcllX-CJJ 

e per trovare gli eventuali punti stazionari interni va risolta l'equazione V f(X) = O nel 
triangolo ABC. Il problema è complicato, e ci contentiamo di due osservazioni: intanto 
poniamo (poi vedrete perché è comodo cambiar segno) 

X-A 
- JJX - AJJ = V a 

e lo stesso per Vb e Ve ; si tratta di tre versori ( che dipendono dall'incognita X ) e un 
punto stazionario deve verificare 

(A3.6) 

Dato che questo equivale a 

il primo membro deve avere norma unitaria, e questo è certamente impossibile se ad 
esempio ma +mb < mc , dato che limava +mbvb ll ~ ma -1 +mb -1 per la disuguaglianza 
triangolare (1.4). Dunque se le masse sono molto sbilanciate il punto di minimo di f 
(che sappiamo esistere per il Teorema di Weierstrafi) non può essere interno al triangolo, 
ma è su un lato o in un vertice. L'ultima osservazione riguarda il caso di tre masse uguali, 
in cui (A3.6) diventa 

V a + Vb + V e = 0 . 

La somma di due versori ha norma unitaria se e solo se questi formano un angolo di 
120° , quindi i tre versori V a, Vb e V e , che escono da X e puntano rispettivamente 
verso A , B e C , devono formare angoli di 120° , e il punto stazionario cercato è 
!"unico (se esiste) punto del triangolo che vede i tre lati con angoli di 120° ciascuno. 
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e e 

A A 

Fig. A3.3 : l'arco che vede AC con un angolo di 120° Fig. A3.4 : il punto X 

Questo eventuale punto stazionario è quello di minimo, dato che J è somma di tre 
funzioni convesse (come è fatto l'epigrafico di II XII ?) e si può applicare il Corollario 3.19. 

Appendice 3.5 - Cambiamenti di variabile e operatori differen­
ziali 

La formula di derivazione delle funzioni composte contenuta nella Proposizione 3.8 può 
essere usata per effettuare cambiamenti di variabili. Vediamone un esempio applicato 
alle equazioni alle derivate parziali, che riprenderemo (• appendice 5.11) . 

Esempio: la divergenza di una funzione J(x, y) , che per semplicità supponiamo definita 
in tutto IR2 , è la somma 

8xf (x, y) + 8yf (x, y) . 

Consideriamo il cambiamento di variabile, corrispondente a una rotazione di 1r / 4 degli 
assi (x,y) in senso antiorario per ottenere gli assi (t,s), 

e poniamo 

{

X= 1(t - s) 

y= 1(t+s) 

g(t, s) = f(x(t,s),y(t,s)) 

{
t = f(x+y) 

s = 1 (y - x) 

J(x,y) = g(t(x,y),s(x, y)) 
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e osserviamo che 

ò 
Òxf(x, y) = òx[g(t(x,y),s(x,y))] 

= (òtg) ( t(x, y ), s(x, y)) Òxt(x, y) + ( Ò8 g) ( t(x, y), s(x, y) )òxs(x, y) 

/2 v12 = 2 (òtg)(t(x,y),s(x,y)) - 2 (a8 g)(t(x,y),s(x,y)) 

e analogamente 

v12 v12 Òyf(x,y) = 2 (òtg)(t(x,y),s(x,y)) + 2 (a8 g)(t(x,y),s(x ,y)), 

per cui 

(div f)(x,y) = V2 (òtg)(t(x,y),s(x,y)) 

o anche 
(div f)(x(t ,s),y(t ,s)) = V2 Òtg(t,s). (A3.7) 

Dunque letta nelle variabili (t, s) la divergenza di f è (un multiplo della) derivata 
parziale di g rispetto a t . 

Oltre alla divergenza, vediamo un altro operatore importante. 

Definizione : se f è una funzione reale derivabile due volte in un aperto A di lRn , il 
suo laplaciano è 

n 2 82! a2f 
t::,.J = "' ò f = - + ... + - . 

L., u òx2 òx2 
i=l 1 n 

In particolare in due dimensioni 

!::,.J = f xx + fyy · 

Esempio : potete provare da soli a seguire quanto fatto sopra ed esprimere il laplaciano 
in coordinate polari, con il cambiamento di variabile 

{
x = rcos0 ~ 
y = rsen0 {r: Jx2 +y2 

0 - 0(x,y). 

Come vedete, interviene la funzione 0(x, y) della Sezione 1.5, che è definita a tratti; 
però le derivate parziali della funzione 0 sono come quelle che otterremmo dalla funzione 
J.fctan(y/x) , dato che in ogni tratto questa differisce da 0(x, y) per una costante, dunque 

y 
Òx0(x,y) = - 2 2 , 

X +y 
X 

8y0(x,y)= 2 2 . 
X + y 
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Allora provate che, posto g(r,0) = f(x(r,0),y(r,0)), si ha 

1 1 2 82 g 1 8g 1 82 g 
(L::,.f)(x(r,0),y(r, 0)) = -8r(ròrg(r, 0)) + 2 òog(r,0) = ,,, 

2 
+ -~ + 2 ,,,

02
. (A3.8) 

r r ur rur r u 
In particolare, se f è una funzione che dipende solo dal raggio, cioè 

f(x,y) = g(ll(x,y)II), 
si ha 

l:,.f(x,y) =g"(ll(x,y)II) + ll(x\)llg'(ll(x,y)II). 

Provate a generalizzare l 'uguaglianza precedente al caso di funzioni f definite su IR.n 
con n qualsiasi, che dipendono solo dal raggio, cioè 

f(x) = g(llxll) ) 
e dimostrate che allora si ha 

n- 1 
t:,.J(x) = g"(llxll) + wg'(llxll). 

Appendice 3.6 - Il Teorema del Dini in meccanica 

Il Teorema 3.22 può essere usato per stabilire se gli stati di un sistema meccanico costitui­
scano una superficie regolare, e possano quindi essere descritti mediante parametriz­
zazioni regolari o ancora meglio con un'espressione cartesiana. 

Esempio : consideriamo il caso di due sbarrette rigide collegate tra loro ad un estremo 
e libere di muoversi nel piano; il punto di giunzione permette tutte le rotazioni ma 
impedisce alle sbarrette di separarsi. 

F ig. A3.5 : varie posizioni delle sbarrette 
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Indichiamo con L1 la lunghezza della prima sbarretta e con (x, y) le coordinate 
del suo estremo libero, con L2 la lunghezza della seconda sbarretta e con (z, w) le 
coordinate del suo estremo libero; infine indichiamo con (s, t) le coordinate del punto 
di giunzione. Gli stati del sistema costituiscono quindi un insieme S descritto dalle sei 
variabili (x, y, z, w, s, t) e dai due vincoli 

(x - s)2 + (y - t)2 = Li, (z - s)2+(w-t)2 = L~. 

In altri termini l'insieme S è il luogo di zeri della funzione <f> : JR6 -+ JR2 definita da 

<f>(x,y, z,w,s, t) = ((x - s)2 + (y - t)2 
- Lf, (z - s)2 + (w- t)2 - L~). 

Per vedere che S è effettivamente una superficie regolare di dimensione 4 in JR6 dob­
biamo far vedere che il sistema (3.29), che ha 2 + (~) = 17 equazioni, non ha soluzione. 
Abbiamo che 'v </> è una matrice 2 x 6 data da 

(
2(x - s) 

'v</>(x,y,z,w,s,t) = 
0 

2(y - t) 
o 

o 
2(z - s) 

o 
2(w - t) 

2(s - x) 
2(s - z) 

2(t-y)) 
2(t - w) 

per cui il sistema (3.29), eliminando le equazioni inutili o ripetute, si riduce a 

(x - s)2 + (y - t)2 = L? 
(z - s)2 + (w - t) 2 = L~ 

(x - s)(z-s)=O 

(x-s)(w-t) =0 

(y - t)(z - s) = O 

(y-t)(w-t)=O 

(x - s)(w - t) = (z - s)(y - t). 

Guardiamo la terza equazione: se supponiamo z - s =I O , necessariamente x - s = O ; 
allora dalla prima equazione si ha y - t =I O e quindi, dalla quinta equazione, z - s = O , 
contro l'ipotesi. Se invece supponiamo z - s = O, dalla seconda equazione abbiamo 
w - t =I O , dalla quarta e dalla sesta ricaviamo x - s = y - t = O ma questo è in 
contrasto con la prima equazione. In definitiva, il sistema non ha soluzione e quindi 
r insieme S degli stati ammissibili è una superficie regolare di dimensione 4 in R6 . 

Esempio : consideriamo la circonferenza di raggio R e centro l'origine, di equazione 

x2 + y2 = R2, 

e l'asse delle ascisse {y = O} . Una sbarretta rigida di lunghezza L è libera di muoversi 
nel piano ma con il vincolo di avere un estremo sulla circonferenza e l 'altro sull'asse delle 
ascisse. Se indichiamo con (x, y) le coordinate dell'estremo della sbarretta che sta sulla 
circonferenza e con (z, O) quelle dell'estremo che sta sull'asse delle ascisse, gli stati del 
sistema costituiscono un insieme S descritto dalle tre variabili (x, y, z) e dai due vincoli 

x2 +y2 = R2, (x - z)2 + y2 = L2 . 
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Fig. A3.6 : varie posizioni della sbarretta 

Di nuovo, l'insieme S può essere visto come il luogo di zeri della funzione </> : JR.3 -+ 
JR.2 definita da 

</>(x,y,z) = (x2 +y2 - R2, (x - z)2 +y2 - L2). 

La matrice jacobiana V</> è una matrice 2 x 3 data da 

( 
2x 

"v</>(x,y ,z)= 2(x-z) 
2y O ) 
2y 2(z - x) ' 

per cui il sistema (3.29), che ha 2 + G) = 5 equazioni, diventa 

x2 + y2 = R2 

(x-z)2+y2 = L2 

zy = O 

x(z-x)=O 

y(z - x) = O. 

(A3.9) 

Non può essere y =O, altrimenti dalle prime due equazioni ricaveremmo che sia x che 
z - x sono diversi da zero, il che contrasta con la quarta equazione. Dunque deve essere 
y f:. O e quindi dalla terza equazione abbiamo z = O e dalla quinta z - x = O . Il sistema 
(A3.9) si riduce allora a 

{ 
y2 = R2 

y2 = L2 

e se R f:. L non esistono soluzioni. In tali casi dunque l'insieme S degli stati del 
sistema meccanico è una superficie regolare di dimensione 1 ( cioè una curva liscia) in 
JR.3 . Invece, se L = R , il sistema (A3.9) possiede le soluzioni 

(x, y , z) = (O, ±R, O). 

Dunque nel caso R = L vicino a tutti gli altri punti di S il luogo S è una curva liscia, 
e vicino a (O, ±R, O) il luogo S potrebbe non esserlo. Come nell'esempio (3.30), se 
R = L l' insieme S è composto da due rami che si incrociano in (O, ±R, O) e quindi 
non è una curva liscia. 



Capitolo 4 

Integrali multipli 

In questo capitolo estendiamo (per quanto possibile) la teoria dell'integrazione, già vista 
in una variabile, al caso di funzioni di più variabili. Un grosso ostacolo è costituito dalla 
mancanza dell'ordinamento in lRn se n > 1 ; infatti questo ordinamento è essenziale 
per passare dall' integrale su un intervallo all' integrale definito, che a sua volta ci ha 
permesso, tramite il Teorema fondamentale del calcolo e il Teorema di Torricelli 1.50, di 
calcolare esplicitamente gli integrali ( o almeno, alcuni). 

4.1 - Integrale su un rettangolo 

Ricordiamo rapidamente cosa si era fatto per definire l'integrale di una funzione f a 
valori reali definita su un intervallo I = [a, b] : limitandoci (inizialmente) al caso / 2: O, 
si era introdotto il sottografico, che è un sottoinsieme di I x JR , e lo si era riempito dal 
basso con unioni finite di rettangoli (i plurirettangoli), le cui basi ricoprivano tutto I . 
Riducendo la base dei rettangoli si otteneva una approssimazione via via migliore (l'area 
della zona del sottografico non coperta dai rettangoli si riduceva), e il limite, quando la 
lunghezza della base dei rettangoli tende a zero, si chiamava integrale inferiore o somma 
inferiore di f su I . Facendo lo stesso dall'alto (equi è indispensabile che f sia limitata) 
si definiva l' integrale superiore, che per le funzioni integrabili ( e in particolare per quelle 
continue) coincide con quello inferiore; il comune valore veniva chiamato integrale di f 
sull' intervallo I. A questo punto si estendeva la definizione di integrale a funzioni di 
segno variabile, e infine si passava a funzioni non limitate su domini non limitati mediante 
un processo di limite che conduceva a definire gli integrali impropri. 
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a b 

Fig. 4.1 : costruzione del! ' integrale unidimensionale 

Ricordiamo (è importante fra poco) che ci sono alcune funzioni che non sono integra­
bili, ovvero tali che se cerchiamo di approssimare il loro sottografico da dentro ( cioè per 
difetto) e da fuori ( cioè per eccesso) con unioni di rettangoli, otteniamo dei valori irrime­
diabilmente diversi, che non si avvicinano mai: la funzione di Dirichlet, che sull' intervallo 
[O, 1] vale 1 nei numeri razionali e O nei numeri irrazionali, è una di queste. Abbiamo 
dunque per O ~ t ~ 1 

!D(t) = { 1 set E <Q> 
O se t \i <Q>, 

e se chiamiamo D e IR2 il sottografico della funzione di Dirichlet, risulta che: 

(4.1) 

1) se P è un'unione finita di rettangoli contenuta in D , allora l'area di P è zero; 
2) se P è un'unione finita di rettangoli contenente D , allora l'area di P è almeno 1. 

In seguito, si era introdotto il concetto di integrale definito, orientando gli intervalli e 

facendo dipendere il valore di J: f(x) dx dall'ordine fra a e b (cioè da chi è più grande). 
Cosa si può recuperare per funzioni di più variabili? Certamente non quest'ult ima 

parte, che richiede la relazione d'ordine, ma il resto sì, quasi del t utto: riproduciamo 
l 'analogo in due dimensioni. Sia R un rettangolo, diciamo R = [a, b] x [e, d] , e sia f 
una funzione limitata e non negativa definita su R ; il sot tografico di f è un insieme 
tridimensionale, al di sopra del rettangolo R , limitato dall'alto dalla superficie grafico 
di f , e allo stesso modo in cui in una dimensione avevamo modellato l'integrale per 
calcolare l'area del sottografico (bidimensionale) di f, così in due dimensioni modelliamo 
l'integrale per approssimare il volume del sottografico (tridimensionale) di f. Possiamo 
suddividere [a, b] in sottointervalli, mediante dei punti a = x 0 < x1 < • • • < xh = b . 
Facciamo lo stesso con [e, d] , mediante i punti e = Yo < Y1 < · · · < Yk = d . Se 
tracciamo nel piano (x, y) le rette parallele all'asse y che passano per i punti di ascisse 
xo, ... , Xh , e le rette parallele all'asse x che passano per i punti di ordinate y0 , . .. , Yk , 
queste suddividono R in tanti rettangolini (sono in numero di h • k ). I rettangoli in cui 
abbiamo suddiviso il dominio di f sono l 'analogo (in due dimensioni) della suddivisione 
dell'intervallo I in una dimensione. 

Su ognuno di questi rettangoli possiamo immaginare di costruire un parallelepipedo 
che sia contenuto entro il sottografico di f: l'unione di questi parallelepipedi ha volume 
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non superiore al volume del sottografico di f . Osserviamo che finora abbiamo utilizzato 
soltanto la formula che fornisce il volume di un parallelepipedo: 

d 

b 

Fig. 4.2 : dividiamo il dominio R ... Fig. 4.3 : ... e costruiamo un prisma nel sottografico 

Infittendo le suddivisioni di [a, b] e [e, d] si ottiene una approssimazione per difetto 
sempre migliore del sottografico di f , e al limite ( quando l'ampiezza degli intervalliru 
delle suddivisioru tende a zero) otterremo l'integrale inferiore di f . Facendo lo stesso per 
eccesso ( con parallelepipedi contenenti il sottografico di f ) si ottiene l'integrale superio­
re, e le funzioni integrabili sono quelle per le quali i due valori coincidono. Ricordiamo 
che per ora ci siamo limitati al caso di funzioni limitate e non negative. 

Definizione : una funzione limitata e non negativa sul rettangolo R e IR2 si dice 
integrabile se gli integrali superiore e inferiore coincidono; in tal caso il comune valore 
degli integrali superiore e inferiore si chiama integrale di f sul rettangolo R e si 
indica col simbolo 

j l f (x, y) dx dy . 

Come in una variabile, potremmo estendere le considerazioni precedenti al caso di 
funzioni limitate ma di segno variabile; preferiamo però ricorrere alla rappresentazione 
di una funzione come differenza di funzioni di segno costante. 

D efinizione : la parte positiva e la parte negativa di un numero reale e sono 

\e\ +c 
e+ = max{c O} = --

' 2 ' 
_ \e\ - e 

e = max{-c,0} = -
2
- . 

La parte positiva e la parte negativa di una funzione f : A 4 JR sono le due funzioni 
j+ ed 1- definite per ogni x E A da 
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Osservazione : sia la parte positiva che quella negativa sono numeri maggiori o uguali a 
zero; inoltre 

Infine 

Fig. 4.4 : la parte positiva d i x Fig. 4.5 : la parte negativa di x 

Definizione : una funzione limitata I sul rettangolo R e IR2 si dice integrabile se 
sono integrabili sia 1+ che 1- ; in tal caso si chiama integrale di f sul rettangolo 
R il numero 

il l(x,y)dxdy = il 1+(x,y) dxdy - il r(x,y)dxdy. 

Per un po' distingueremo gli integrali bidimensionali da quelli unidimensionali scri­
vendo il simbolo del doppio integrale, poi, a partire dalla Sezione 4.5, useremo anche 
per gli integrali bidimensionali il consueto simbolo JR I ( x) dx , con un solo segno di 
integrale. Come in una variabile, molte funzioni comuni sono integrabili. 

Proposizione 4.1 : tutte le funzioni continue su un rettangolo (chiuso) Re IR2 sono 
integrabili. 

Osservazione : non tutte le funzioni integrabili sono cont inue; vediamo un esempio che 
serve anche più avanti. Ricordiamo la definizione ( 4.1) della funzione di Dirichlet, e 

consideriamo la funzione definita su [O, l ] x [O, l ] da 

gv(x,y) = { ~D (Y) sex = O 

se0<x:S l. 
(4.2) 

Questa è chiaramente discontinua, ma il suo sottografico ha volume zero: infatti 9D è 
maggiore o uguale a zero, quindi il suo sottografi.co cont iene il plurirettangolo di altezza 
zero e in particolare l'integrale inferiore di 9D è maggiore o uguale a zero. D'altra 
parte il sottografico di g O è contenuto nel plurirettangolo che ha altezza 1 sulla striscia 
[O, E] x [O, l ], con E> O qualsiasi, e altezza zero sulla striscia [E, l] x [O, l ] . 
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Fig. 4.6 : il sottografico di 9D sta tutto dentro al parallelepipedo 

Dato che questo plurirettangolo ha volume e ed e è arbitrario, l 'integrale superiore di 

0 è minore o uguale a zero. Dunque 9D è integrabile e ha integrale zero. 

Fin qui, apparentemente tutto bene, a parte il fatto che non sappiamo ancora come 
alcolare materialmente l'integrale di una funzione su un rettangolo: ricordiamo che in 
:ma dimensione questo era stato possibile solo grazie al Teorema di Torricelli, che aveva 
richiesto l'introduzione dell'integrale definito. In due dimensioni, ci viene in aiuto il 
prossimo risultato. 

Teorema di riduzione degli integrali doppi 4.2 : sia f una funzione continua sul 
rettangolo R = [a, b] x [c, d] . Allora 

(4.3) 

L'enunciato va interpretato in questo senso: intanto, per ogni fissato x E [a, b] la 
funzione ( della sola variabile y ) 

y H f(x,y) 

è integrabile (in quanto continua) su [e, d] ; poi, il suo integrale su [c, d] , che è la funzione 
( della sola variabile x ) 

X H 1d f(x,y) dy, 

è integrabile su [a, b] , e il suo integrale vale quanto l'integrale di f su R. Osserviamo 
che nell'enunciato precedente non avremmo potuto mettere "integrabile" al posto di 
"continua": infatti se g0 è la funzione introdotta in (4.2), essa è integrabile ma non è 
vero che per ogni fissato x E [a, b] = [O, l] la funzione (della sola variabile y) 

Y H 9D(x,y) 

è integrabile su [e, d] = [O, l] , dato che per x = O si ha gD(x, y) = fo(y) , che non è 
integrabile. Suggeriamo allo studente di non perdersi (almeno in prima battuta) in questi 
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dettagli sulla misurabilità e sull'integrabilità, che in un libro è indispensabile mettere 
ma possono sviare dai punti fondamentali. Avremmo potuto mettere, nell'enunciato del 
Teorema di riduzione, un'ipotesi più debole della continuità, ma lunga e complessa da 
leggere. e preferiamo scrivere enunciati meno generali ma più comprensibili. 

Naturalmente possiamo scambiare i ruoli di x e y, ottenendo quindi 

fl f(x, y) dx dy = 1b (1d f(x, y) dy) dx = 1d (1b f(x, y) dx) dy. (4.4) 

Spieghiamo questa formula con un esempio pratico: immaginiamo che il pavimento di 
una stanza rettangolare R sia coperto da uno spesso strato di polvere, il cui spessore nel 
punto di coordinate (x ,y) sia il numero f(x , y). Vogliamo raccogliere tutta la polvere 
per calcolarne il volume (che è l'integrale di f su R ), e agiamo così: fissiamo un punto 
x dello spigolo della parete x, e raccogliamo in quel punto tutta la polvere che c'è 
sulla riga (parallela alla parete y) che passa per quel punto; quel che abbiamo fatto è 
l'integrale di f (x, y) nella direzione y. Ripetiamo lo stesso per tutti i valori di x: 
ora la polvere è tutta raccolta nello spigolo della parete x , e per riunirla tutta in un 
punto basta raccoglierla ( cioè fare l'integrale degli integrali già fatti) nella direzione x 
(~ es. 4.1). 

Esempio: calcoliamo l' integrale della funzione f(x, y) = ax2 +2xy sul rettangolo [O, 2] x 
[l, 4], cioè 

{{ ( ax2 + 2xy) dx dy = f 2 (j\ ax2 + 2xy) dy) dx . 
JJ10,2Jxll,4] lo 1 

Nell'integrale fra parentesi, la variabile di integrazione è y , dunque la lettera x , al 
pari della lettera a , viene trattata come un parametro qualunque. In particolare una 
primitiva (rispetto alla variabile y) della funzione ax2 + 2xy, ovvero una funzione che 
derivata rispetto alla variabile y dia ax2 + 2xy , è ax2 y + xy2 . Infatti 

Allora 

1
4 4 

1 
(ax

2 + 2xy) dy = [ax2 y + xy2
] 

1 
= (4ax2 + 16x) - (ax2 + x) = 3ax2 + 15x , 

così che 

fo
2 

(1\ax
2 + 2xy) dy) dx= fo\3ax

2 + 15x) dx= [ax3 + 15x2 ;2}: = 8a + 30, 

e il risultato cercato è 8a + 30 . 
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Esempio : calcoliamo 

{{ (2xysen y+4x3 y 715 ) dxdy. 
JJ[-l,l]x[l ,3j 

Usando la formula (4.3) otterremmo 

· · · = i 1

1 
(13 

(2xysen y + 4x3y
7
15

) dy) dx, 

e ci ritroviamo a calcolare un integrale che ci farebbe fare un po' di conti. Se al posto 
di y715 ci fosse stato e-Y

2 
, non avremmo potuto calcolare esplicitamente l'integrale in 

y, come vedremo meglio nell'esempio (4.12). Vediamo però che accade se scambiamo 
l'ordine di integrazione come in ( 4.4): abbiamo 

{ { ( 2xy sen y + 4x3 y 7 I 5 ) dx dy = {
3 (11 

( 2xy sen y + 4x3 y 7 I 5 ) dx) dy , 
JJ[-1,l ]x[l ,3] 11 -1 

ma 

1
1 1 

_
1 
(2xyseny + 4x3 y715

) dx = [x2 yseny + x 4 y715
] _

1 
= O, 

perciò 

f{ (2xyseny + 4x3 y 715 ) dxdy = {
3 

0dy =0 . 
JJ[-1 ,l ]x[l ,3] 1 1 

4.2 - Integrale su un insieme normale 

~ella Sezione 4.1 abbiamo definito gli integrali doppi solo per funzioni definite su rettan­
goli: cosa si può dire se il dominio E su cui vogliamo integrare f non è un rettangolo 
con i lati paralleli agli assi? Iniziamo a generalizzare, partendo da un caso ovvio. 

Definizione : un plurirettangolo è un sottoinsieme P e JR.2 che è unione finita di 
rettangoli chiusi R 1 , •. • , Rh con i lati paralleli agli assi, e che sono a due a due disgiunti 
salvo eventualmente toccarsi per i bordi) . L'area di P è 

h 

Area(P) = L Area(R;.) . 
i=l 

Una funzione f : P ---+ JR è integrabile se è integrabile su ciascuno degli R; , e in tal 
raso 

h Il f(x,y ) dxdy = 8 Il, f(x,y) dx dy. 
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Se E non è di questo tipo, la risposta che potrebbe venire in mente è di approssimare 
E da dentro e da fuori con una unione finita di rettangoli di questo tipo ma, ahimè, 
questo non è sempre possibile, o meglio, a volte le approssimazioni da dentro sono molto 
lontane da quelle da fuori, proprio come accade al sottografico della funzione di Dirichlet 
che abbiamo incontrato all'inizio della sezione. 

Definizione : un sottoinsieme E e IR2 si dice misurabile se per ogni e > O è possibile 
trovare due plurirettangoli Pi e P2 con 

Area(P2) -Area(Pi ) <e. 

Se E è misurabile allora 

Area(E) = sup { Area(P) : P C E plurirettangolo} 

= inf { Area(P ) : P :J E plurirettangolo} . 

Osservazione : dato che un insieme misurabile deve essere contenuto in qualche pluriret­
tangolo, abbiamo 

E misurabile ==:> E limitato. (4.5) 

Il viceversa non è vero, dato che non tutti gli insiemi limitati sono misurabili; il 
sottografico D e IR2 della funzione di Dirichlet non è misurabile, dato che per due 
plurirettangoli P1 C D e P2 avremmo sempre, come sottolineato subito dopo (4.1), 

Area(P1) = O, 

Tuttavia, molti insiemi che si incontrano frequentemente sono misurabili 1T (4.6). Pos­
siamo ora definire l' integrale su insiemi misurabili. 

Definizione : se E e IR2 è misurabile, una funzione limitata e non negativa I : E ➔ JR 
si dice integrabile se è integrabile s u ogni plurirettangolo P e E , e in tal caso 

IL l(x, y) dx dy = sup{!l l(x, y) dx dy : P e E, P plurirettangolo} . 

Una funzione limitata I : E ➔ JR si dice integrabile se sono integrabili sia 1+ che 
1- , e in tal caso si chiama integrale di f su E il numero 

/Ll(x,y)dxdy = Jfe1+(x , y)dxdy- Jfer (x, y) dx dy. 

Osservazione: in realtà avremmo potuto anche procedere in modo diverso; se I è limitata 
su un misurabile E C IR2 , dato che E è necessariamente limitato esiste un rettangolo 
R che contiene tutto E (non importa prenderlo piccolo). Estendiamo I ponendo 

f(x , y) = { ~(x, y) se(x,y) E E 

se (x , y) E R\ E: 

a questo punto avremmo potuto definire l'integrale di I su E come l' integrale di j su 
R. Non è difficile dimostrare che le due definizioni sono equivalenti. È tuttavia comodo 
disporre della definizione di integrale su un insieme E senza dover ogni volta riportarsi 
a rettangoli. 
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Come in una variabile, vale il seguente risultato. 

Proposizione 4.3 : una funzione limitata e continua su un insieme misurabile E è 
integrabile. 

Osserviamo che, non essendo necessariamente E chiuso, una funzione continua su E 
potrebbe essere illimitata: ecco il perché dell' ipotesi che abbiamo messo. Introduciamo 
una importante categoria di insiemi misurabili. 

Definizione : un sottoinsieme E di IR2 si chiama normale rispetto all'asse x se 
esistono due funzioni continue a,(3: [a,b]-+ JR con a(x) ~ (J(x) per ogni x E [a,b] 
tali che 

E= { (x, y): a~ x ~ b, a(x) ~ y ~ (J(x) } . (4.6) 

Se un insieme è normale rispetto all'asse x , tutte le sue sezioni con rette ortogonali 
all'asse x ( cioè parallele all 'asse y ) sono segmenti: la sezione con la retta di equazione 
x = x 0 è il segmento [a(xo) , (J(xo)] . 

a b 

Fig. 4.7: un insieme normale rispetto all'asse x 

Esempio: il triangolo T di vertici (O, O) , (1, O) e (O, 1) è un insieme normale rispetto 
all'asse x , dato che 

T = { (x, y) : 0 ~X~ 1, 0 ~ y ~ 1 - X} . (4.7) 

Il triangolo S divertici (- 1, 0), (1, 0) e (0, 1) èanch'essonormalerispettoall'asse 
x, dato che 

S = {(x,y): - 1 ~ x ~ 1, O~ y ~ 1 - lxl}. (4.8) 

Il cercruo C centrato nell'origine e di raggio r è normale rispetto all'asse x , infatti 

C = { (x,y): - r ~ x ~ r, -Jr2 - x2 ~ y ~ Jr2 - x2 }. (4.9) 
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1 1 1 

Fig. 4.8 : il triangolo T Fig. 4.9 : il t r iangolo S fo'ig. 4.10 : il cerchio C 

Invece, se prendiamo la corona circolare A centrata nell'origine e di raggi r ed R , 
questa non è un insieme normale rispetto all'asse x : la sua sezione con la retta di 
equazione x = O (vale a dire con l'asse y) è infatti costituita da due segmenti. Lo 
stesso vale se prendiamo la sola metà destra di A , 

(4.10) 

R 

Fig. 4.11 : la corona A non è un insieme normale F ig. 4.12: la mezza corona A+ invece lo è 

Tuttavia, in quest'ult imo caso, sono le sezioni con rette ortogonali all'asse y ad essere 
segmenti. Scambiando i ruoli di x e y, si passa dagli insiemi normali rispetto all'asse 
x a quelli normali rispetto all'asse y . 

Definizione : un sottoinsieme E di JR2 si chiama normale risp e tto all'asse y se 
esistono due funzioni continue a, /3 : [c, d] -+ JR con a(y) ::; /3(y) per ogni y E [c, d] tali 
che 

E = { (x, y) : c::; y::; d, a(y)::; x ::; /3(y)}. 
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Tutte le proprietà degli insiemi normali rispetto all'asse x valgono anche (scam­
biando i ruoli delle variabili x ed y nelle formule) per quelli normali rispetto all'asse 
y . Non tutti gli insiemi sono normali rispetto a qualche asse (la corona A non lo è), e 
talvolta, anche se un insieme è normale, non è del tutto agevole scrivere le due funzioni 
a e f3 . 

Osserviamo che se E è normale rispetto all'asse x, possiamo vedere E (almeno 
se le due funzioni o, f3 sono non negative) come differenza dei due sottografici di f3 e 
di o , pertanto è naturale la prossima osservazione. 

Proposizione 4.4 : un insieme normale rispetto a un asse è misurabile. Se 

E= {(x,y) : a S x S b, a(x) S y S f3(x)} 

allora 

Area(E) = { (/3(x) - a(x)) dx. 
J [a,b] 

Rileggiamo la formula (4.3): il rettangolo [a, b] x [e, d] è un insieme normale rispetto 
all 'asse x, dato che basta prendere a(x) = e e f3(x) =d. Per calcolare l' integrale di 
/ su R abbiamo preso ogni valore x e letto la funzione f sul segmento ver ticale 
{ x} x [e, d] , che è la sezione del rettangolo R con la retta verticale che passa all'ascissa 
x , dopo di che abbiamo integrato questa funzione fra e e d , che sono i valori di y agli 
estremi della sezione, e infine integrato il risultato rispetto a x . Non dovrebbe allora 
t u pire il prossimo (cruciale) risultato. 

b 

Fig. 4.13 : in grigio il sottografico di y i-+ J(x, y) 

Teorema 4 .5 : se a , /3 : [a, b] 4 JR sono continue e a S /3 , 

E = {(x, y) : a S x S b, a(x) S y S /J(x) } 

ed f è continua e limitata su E allora 

{f, f (x, y)dxdy = fb( { f3(x) f(x,y)dy) dx. 
}}E l a J o:(x) 

(4.11) 
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Esempio: calcoliamo l' integrale di 3xy2 sul triangolo T E>Y (4.7). Abbiamo 

[a, b] = [O, 1] , a(x) = O , {3(x) = 1 - x , 

quindi 

Jl 3xy2 dxdy = 11 (lol-x 3xy2 dy) dx= 11 

[xy3J:-x dx = 11 

x(l - x)3 dx. 

Possiamo svolgere il cubo e calcolare agevolmente i vari integrali, o anche agire con 
astuzia scrivendo 

11 3 Jo 3 11 3 4 1 1 1 

O 
x(l - x) dx - (1 - t)t dt = (t - t ) dt = - - - = - . 

t 1 o 4 5 20 1-x=t 
Esempio: calcoliamo ora l' integrale di 3xy2 sul triangolo S Il:.' (4.8). Come prima, 

Jls 3xy2 dxdy = [ 11 (11-lxl 3xy2 dy) dx = ... 

Tuttavia c'è un modo più veloce per fare i calcoli: il triangolo S è normale anche rispetto 
all'asse y , dato che 

S = { (x, y) : 0 $ y $ 1, y - 1 $X$ 1 - y} . 
Allora possiamo usare l'analoga di (4.11) per insiemi normali rispetto all'asse y: 

{f 3xy2 dx dy = f
1 (1l-y 3xy2 dx) dy = (1 [3x2y2 / 2] l-y dy = [1 O dy = O. 

11s lo y - 1 lo - (1-y) lo 
Come abbiamo già notato al termine della Sezione 4.1, anche questo esempio mostra 

che, talvolta, conviene assai di più vedere lo stesso insieme come normale rispetto a un 
asse piuttosto che a un altro (~ es. 4.3) o che, addirittura, è impossibile eseguire i calcoli 
integrando prima rispetto a una certa variabile, e possibile integrando prima rispetto 
all'altra, come vediamo nel prossimo esempio (~ es. 4.2). 

Esempio : calcoliamo l' integrale della funzione x + e-Y
2 

sul triangolo 

T' = { (x, y) : O $ x $ 1, x $ y $ 1} . 

Se scriviamo 

(4.12) 

ci troviamo a dover calcolare una primitiva di e-Y
2 

, che come è noto non può essere 
scritta in termini di funzioni elementari. Ma anche T' è normale rispetto a entrambi gli 
assi, e 

T' = { (x , y) : O $ y $ 1, O $ x $ y} , 
per cui possiamo scrivere 

Jl, (x + e-Y
2

) dx dy = 11 (loy (x + e-Y
2

) dx) dy = _fo
1 

[ ~

2 

+ xe- Y
2 J: dy 

[
1 (y2 

_ 2) [y3 
1 _ 2] 1 2 1 

= l 
O 

2 + ye Y dy = 6 - 2 e Y o = 3 - 2e · 
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Esempio: calcoliamo l' integrale di f(x, y) = x2 + y2 sul cerchio C ~ (4.9). In questo 
caso è indifferente rispetto a quale asse considerare normale C, quindi scriviamo diret­
tamente 

f{ (x2 +y2 )dxdy = /
1 (!~ (x2 +y2 )dy) dx, ile - 1 - ~ 

(4.13) 

che dà un integrale fattibile ma piuttosto laborioso. Sospendiamo il calcolo, dato che 
troveremo un modo molto più veloce per risolvere la questione Q" (4.23). 

Talvolta conviene scomporre l'insieme di integrazione in parti dove i calcoli risultano 
più agevoli, come si faceva per le funzioni di una variabile con la formula di spezzamento 
(~ es. 4.4). Questo è possibile grazie alla prossima P roposizione 4.6, che facciamo pre­
cedere da due definizioni. 

Definizione : la differenza di due insiemi A e B è l'insieme dei punti di A che non 
stanno in B, 

A\ B = {x E A: x .f. B}. 

La differenza simmetrica di A e B è l'insieme dei punti che stanno in uno solo dei 
due insiemi, 

A6B = (A\ B) u (B \ A) = (A u B) \ (A n B) . 

Fig. 4.14 : la differenza A\ B (più sottile B) Fig. 4.15 : la differenza simmetrica A6B 

Definizione : un insieme limitato E e R 2 si dice trascurabile se (è misurabile e) 
Area(E) = O . Due insiemi limitati A, B e R2 si dicono essenzialmente disgiunti 
se A n B è trascurabile. Due insiemi imitati A, B e R 2 si dicono essenzialmente 
equivalenti se A6B è trascurabile. 

Proposizione (formula di spezzamento) 4.6 : se un insieme si può scrivere come 
unione di un numero finito di insiemi E1 , ... , Ek che sono misurabili e sono a due a due 
essenzialmente disgiunti, allora è misurabile. Inoltre 

Area(E) = Area(E1) + · · · + Area(Ek) 
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e per ogni funzione integrabile f : E ➔ JR 

Jlf(x,y)dx dy = fl
1 

f(x , y)dxdy+ • • · + Jlk f(x, y)dxdy. ( 4.14) 

Se un insieme A è essenzialmente equivalente a un insieme misurabile E, allora è 
anch'esso misurabile. Inoltre 

Area( A) = Area( E) , Jl f (x,y) dxdy = fl f(x, y)dxdy. (4.15) 

Esempio: la mezza corona A+ ~ (4.10), è normale rispetto all'asse y, quindi è mi­
surabile. Dato che lo stesso vale per la sua simmetrica, la mezza corona A- a sinistra 
dell'asse y , la loro unione ( che è l'intera corona circolare A ) è misurabile, e per calcolare 
un integrale su A basta sommare gli integrali su A+ e A - , dato che la parte comune 
A+ n A- è costituita da due segmenti ed è quindi trascurabile (~ es. 4.5) . 

Le formule che riguardano l'area somigliano a quelle per gli integrali , dei quali in 
effetti l'area è un caso particolare. Infatti, se consideriamo il sottografico V della fun­
zione costante 1 su un insieme piano E , l' insieme V è un cilindro ra- Sezione 1.3, di 
altezza 1 e base E , quindi il volume di V è pari a (uno moltiplicato per) l'area di E. 
D'altra parte V è il sottografico della funzione positiva 1 su E , quindi il suo volume 
è l' integrale su E della funzione costante 1 . 

Proposizione 4. 7 : se E e IR2 è misurabile 

Area(E) = J fe 1 dxdy. (4.16) 

Esempio: calcoliamo l'area della parte I di piano che sta fra le due parabole di equazioni 

y = x2, X = y2. 

1 

Fig. 4.16: l' insieme 1 
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La zona di intersezione è un insieme normale tanto rispetto all'asse x che all'asse y , e 
possiamo scriverla 

I = { (x, y) : O ~ x ~ l , x2 ~ y ~ VX} , 
perciò 

Area(/ ) = i! l dx dy = fo1 (1: 1 dy) dx 

= f\ .jx - x2) dx = [~x3/2 - !x3] i = ! . 
lo 3 3 o 3 

Per gli integrali multipli valgono le consuete formule algebriche viste in una dimen­
sione (compresa la proprietà di spezzamento), e inoltre (dato che ci siamo fermati agli 
integrali su un insieme, analoghi di quelli su un intervallo, e non siamo passati all'analogo 
degli integrali su un intervallo orientato) la proprietà di monotonia. 

Proposizione 4.8 : se E è misurabile, f e g sono integrabili su E e k è una 
costante allora 

Jl (f(x, y) + g(x, y)) dxdy = il f(x ,y) dx dy + il g(x,y) dxdy; 

il kf(x, y) dx dy = k il f (x, y) dx dy; 

f(x , y) ~ g(x, y) V(x, y ) E E ==} il f (x, y) dx dy ~ il g(x, y) dx dy. 

Inoltre se E = E 1 U E 2 ed E 1 , E 2 sono essenzialmente disgiunti Q' ( 4.14) 

il f(x, y) dx dy = il, f (x, y) dx dy + il, f (x, y) dx dy. 

Corollario 4 .9 : se E ed F sono misurabili ed f : E --+ JR è una funzione non 
negativa e integrabile, allora 

F c E ==? { f (x,y)dx dy~ { f(x,y)dxdy. 
j F }E 

Infatti E= F U (E \ F) = F U F', questi due insiemi sono lnisurabili (omettiamo 
.:a dimostrazione) e disgiunti, ma essendo f :=:: O abbiamo 

{ f(x, y )dx dy :::: { Odxdy= O, JF' } p, 

iuindi per la proprietà di spezzamento 

{ f(x,y)dxdy = { f (x,y)dx dy + { f (x,y)dx dy :::: { f (x,y)dx dy + O. h k ~ k 
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4.3 - Cambiamenti di variabile 

Apriamo la sezione ricordando che la formula di cambiamento di variabile per integrali 
in una dimensione, che si può dare per gli integrali definiti ( cioè su intervalli orientati 
come nel Teorema 1.51, vale anche per gli integrali su un intervallo, se </> è di classe C1 

e invertibile sull'intervallo [a, b] : 

1 f(x) dx = 1 f (</>(t)) l</>'(t)I dt. 
</>([a,b)) x=~(t) [a,b] 

(4.17 

Infatti se </> è invertibile ( ossia inietti va) su un intervallo allora per la Proposizione 1.40 
è o strettamente crescente o strettamente decrescente, quindi o sempre </>'(t) ~ O, nel 
qual caso il valore assoluto nella formula (4.17) non serve e </>([a,b]) = [</>(a),</>(b)], o è 
sempre </>'(t) :S O, nel qual caso </>([a,b]) = [</>(b),</>(a)], dato che </> rovescia l'ordine. 

In entrambi i casi, la funzione </> manda ogni intervallino [t0 , t] di una partizione 
di [a, b] in un intervallino di estremi x0 = </>(t0 ) e x = </>(t) . La sua lunghezza è 
(ricordiamo che x0 < x se </> è crescente, altrimenti è il contrario) 

I 
</>(t) - </>(to) I , lx - xol = l</>(t) - </>(to)I = --'--'----'---'- (t - to) '.:::'. I</> (to)l(t - to) . 

t - to 

X 

Xo 

to t 

F ig. 4.17: t ra dominio e immagine la lunghezza cambia 

Dunque il termine l</>'(t)I corregge la diversa misura di lunghezza nello spazio della 
variabile t rispetto allo spazio della variabile x . Possiamo scrivere, per </> invertibile, 

l</>'(to)I = lim I </>(t) - </>(to) I= lim lunghezza (</>([to, t])) _ 
t-+to t - to t-+to lunghezza ([t0 , tl) 

È ragionevole, allora, che se <P è una funzione invertibile da un aperto n e R.2 a R.2 , 

in seguito al cambiamento di variabile 

(x,y) = <P(s,t) 
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si ottenga una formula analoga alla ( 4.1 7), 

fl n f(x,y)dxdy ~ fio f(if>(s,t)) · (correttore) dsdt , 
( ) (x,y)= if>(s,t) 

( 4.18) 

dove il correttore sarà il limite del rapporto (area dell'immagine) / (area di partenza) 
per un rettangolino nello spazio (s, t) , che è l'analogo in due dimensioni dell' intervallino 
visto sopra. 

' ' 
1 : Rs,t: 
I .---, 

I I I 
I I I -r-- • ----r 
I I I 

' I 
I \ 

._ )"' / \ \ 
I ' ' I I --,;---·" 
', I ,' if>(Rs,t) 

- -\- - ~ _,__-:-
\ ' 

\ \ 

Fig. 4.18 : tra dominio e immagine l'area cambia 

Il problema è dunque determinare l'area dell'immagine di un rettangolo 

R s,t = [so, s] x [to, t] 

mediante la trasformazione if> , o meglio determinare 

lim 
s--+so , t--+to 

Area( if>(Rs,t)) 

Area(Rs,t) 

Cominciamo con il caso in cui if> è lineare, cioè per una certa matrice A si ha 

if>(s,t) = A (s) = (a11 t a21 

In tal caso il rettangolo Rs,t ha come immagine un parallelogramma, che ha un vertice 
in if>(so, t0 ) . Gli altri sono le immagini di (s, to) , di (so, t) e di (s, t) , che sono i 
restanti vertici del rettangolo Rs,t : dunque il parallelogramma è generato dai vettori 

Ora 

if>(s, to) - if> (so, to) = if>(s - so, O) , 

if>(s-so,0)= (a11(s -so) ), 
a21(s - so) 

if> (so, t) - if>(so, to) = if>(0, t - to) . 

if>(0 t _ t ) = (a12(t - to)) 
' 

0 a22(t-to)' 

pertanto~ (1.15) 

Area( if>(Rs t)) = ldet ( all ((s - so)) ai2((tt - tto))) I = (s - so)(t - to)I det(A)I 
' a21 s - so a22 - o 

= Area(Rs,t) · I det Al . 
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I 
I 

I I I 
-I -- ,-- --j 

I I I 
I I I 

-r-- • -- ... -r 

Fig. 4.19 : il caso lineare 

Dunque in questo caso il correttore è I det(A) I . Ricordiamo che per una funzione lineare 

(
<f>

1 (s, t)) (s) 
cI> (s, t) = </>2 (s, t) = A t 

la matrice jacobiana di cl> è ~ (3.3) 

V cI> =A, 

quindi il correttore è 

ldet AI = ldet(VcI>)I -

Vediamo di capire perché questo è vero anche in generale. 

Teorema di cambiamento di variabile negli integrali doppi 4.10 : sia ne JR2 

un insieme misurabile, sia cl> : n -+ JR2 una funzione iniettiva, e con derivate parziali 
continue in tutto n . Allora 

Area[cI>(D)) = fo idet(V<I>(s,t)) I dsdt 

e p er ogni funzione continua e limitata f definita sull'immagine cI>(D) si ha 

Jl 
O 

f (x, y) dx dy =; fio f ( cl>(s, t)) · ldet(VcI>(s, t)) I ds dt . 
( ) (x,y)=<I>(s,t) 

(4.19) 

Una dimostrazione precisa richiederebbe qualche sforzo tecnico. Ci accontentiamo 
di vedere perché la formula è ragionevole, e suggerire come si potrebbe agire per ricavare 
una vera dimostrazione. 

Consideriamo due (piccoli) numeri positivi os e ot , e cerchiamo di individuare 
approssimativamente l ' immagine tramite cl> del rettangolo R = [s0 , s0 +8s] x [t0 , t0 +ot] . 
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Dato che <I> è di classe C1 , possiamo supporre che 8s e 8t siano così piccoli che in 
tutto R si abbia 

e lo stesso per le altre derivate parziali. Poniamo P o = (so, t0 ) e 

Vo = <T>(so, to) , 

l' immagine tramite <I> dell'angolo inferiore sinistro P 0 di R. L'immagine del lato 
inferiore di R, cioè di [so, so+ 8s] x {to}, è un arco di curva parametrizzato da 

q,(r) = <T>(so + r, to) , O :S r :S 8s . 

Questo parte da V O ; inoltre in ogni punto dell'arco il suo vettore tangente è 

quindi l'arco in questione è "quasi dritto" , dato che il suo vettore tangente è pressoché 
costante. Allora l'arco "somiglia molto" al segmento che parte da V O e prosegue per 
t utto l' intervallo [O, 8s] con vettore tangente 4>' (O) : si tratta del segmento di estremi 

V o e V o + 8sq,'(0). 

Fig. 4.20 : la vera immagine e il parallelogramma approssimante 

Analogamente, per vedere l' immagine del lato sinistro di R , poniamo 

1/J(r) = <J>(so, to + r) , O :S r :S 8t , 

osserviamo che 
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e quindi l'immagine del lato sinistro di R "somiglia molto" al segmento che parte da 
V o e prosegue per il tempo Jt con vettore tangente 1/J' (O) , che è il segmento di estremi 

V o e V o + Jt'ljJ'(O). 

Dunque l'immagine <I>(R) "somiglia molto" al parallelogramma generato da questi due 
segmenti orientati, la cui area è~ (1.16) 

jdet( òs -q/ (O), òt · 'I/J' (O)) I = jdet('v<I> (Po)) lòs Jt 

(per una dimostrazione precisa dovremmo trasformare tutti questi "somiglia" in coppie 
di disuguaglianze, ma questo allungherebbe di molto la discussione). Allora il correttore 
cercato è, come avevamo anticipato, 

Area[<I>(R)] ~ ldet('v<I>(P o)) lòsòt - I ( ( )) I 
Area(R) - òs Jt - det 'v<I> Po · 

Esempio : per una traslazione di coordinate, già incontrata nella Sezione 1.4, abbiamo 

(x,y)= <I> (x',y') = (x'+a,y'+b) ===} 'v<l> = (~ ~) ===} det('v<I>) = l 

e quindi ( come in una variabile) il fattore di correzione è 1. Per una omotetia di coefficienti 
a (nella direzione x) e b (nella y) 

(x, y) = <I>(x', y') = (ax', by') ===} 'v<I> = ( ~ ~) ===} det('v<I>) = ab . ( 4.20) 

Infine, per una rotazione 

quindi 

<I>(x' 1 ') = ( cos 0 
, Y sen0 

(
cos0 
sen0 

- sen0) (x') 
cos0 y' 

- sen0) (x') 
cos0 y' ' 

'v <I> = ( cos 0 - sen 0 ) 
sen0 cos0 

det('v<I>) = cos2 0 + sen2 0 = l . 

I risultati ottenuti sono quelli che ci si poteva aspettare: la prima e la terza trasformazione 
mandano un rettangolo in un rettangolo con le stesse dimensioni (e quindi la stessa area), 
spostato nel primo caso e girato nel terzo. Invece la seconda ne cambia le dimensioni, 
ma lo lascia un rettangolo. 
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Esempio : calcoliamo l'area dell'ellisse. Possiamo limitarci a un'ellisse E centrata 
nell'origine, con assi di simmetria coincidenti con gli assi coordinati e semiassi di lun­
ghezze a nella direzione x e b nella direzione y. Sappiamo che~ (4.16) 

Area( E ) = j fe 1 dx dy 

e che 

{ 
x2 y2 } 

E= (x, y) : a2 + b2 :'.S 1 

= { (x,y): - a :'.S x :Sa, -bJl - (x/a)2 :S y :S bJl - (x/a)2 }, 

e usando la formula di riduzione (4.11) otteniamo 

l a 1b✓l-(x/a)2 
l a 

Area(E) = ( ~--1 dy) dx = 2bJl - (x/a)2 dx. 
-a -b✓I-(x/a)2 -a 

Questo però è un integrale non velocissimo da calcolare. Invece, trasformiamo l'ellisse in 
un cerchio: con il cambiamento di variabile (che è una omotetia) 

(x, y) = <T>(s, t ) = (as, bt) 

abbiamo 

dove C è il cerchio di raggio unitario centrato nell'origine dello spazio ( s, t) . Allora, 
visto (4.20), abbiamo per la formula di cambiamento di variabili (4.19) 

Area( E) = { { 1 dx dy = {{ l dx dy = {{ 1 . ab ds dt 
jj E jjil>(C) i JJc 

(x,y)=il>(s ,t) 

= ab ffc 1 ds dt = ab Area( C) = 1rab . 
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4.4 - Coordinate polari 

Un caso particolarmente importante di cambiamento di coordinate è quello delle coordi­
nate polari !ti' Sezione 1.5. La funzione 

él>(r, 0) = (rcos0, rsen0) (4.21) 

è definita su Rt 
intanto 

[O, +oo[ xR, ma non è invertibile da Rt a R2 , per due motivi: 

él> (O, 0) = O \/0 ; 

poi, essendo periodica, 

él> (r, 0) = él>(r, 0 + 2k1r) Vk E Z. 

Tuttavia la stessa risulta invertibile da ]O, +oo[ x [O, 21r[ a R2 \ {O} . Consideriamo un 
insieme misurabile E e R 2 ; come osservato in (4.5) questo è limitato, ovvero 

Poi, posto 

risulta 

E e Bn(O) per qualche R > O. 

Eo = E\ {O} 

Do = { (r, 0) : r > O , O :'S: 0 < 21r , él> (r, 0) E E} 

= { (r, 0) : O < r :'S: R , O :'S: 0 < 21r , él> (r, 0) E E} 

O = { (r, 0) : O :'S: r :'S: R , O :'S: 0 :'S: 21r , él> (r, 0) E E} 

Area(E \ Eo) = O , Area(O \ Do) = O , Eo = él>(Oo) 

e quindi per ogni funzione continua f definita su E si ha..., (4.15) 

{{ f(x, y) dx dy = {{ f(x , y) dx dy 
jjE jjE\{O} 

e per ogni funzione continua g definita su n si ha 

J l g(r, 0) dr d0 = J fn
0 

g(r, 0) dr d0. 

Allora possiamo scrivere senza tema di confusione 

Jfe f(x,y)dxdy =; fl f( él>(r, 0)) ldet(v'él>(r, 0)) 1drd0 
(x,y)= 4>(r,0) 

dato che l'uguaglianza si ottiene con il cambiamento di variabili applicato fra 0 0 ed E0 . 

Calcoliamo il determinante della matrice jacobiana v'él>(r, 0) : 

8~1 a a~1 8 
8

r = 
8
/rcos0) = cos0 , 

80 
= 

80
(rcos0) = -rsen0 , 

8~ a ~2 a 
8

r = 
8

r(rsen0) = sen0, 
80 

= 
80

(rsen0)=rcos0 , 

pertanto 

v'él>(r 0) = (cos 0 -rsen0) ==} det(Vél>(r,0)) = r. 
' sen0 rcos0 
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Proposizione 4.11: per ogni insieme misurabile Sì e [O, +oo[x[O, 21r] ed ogni funzione 
continua e limitata f definita sull'immagine di Sì tramite le coordinate polari (4.21) 
si ha 

{{ J(x,y) dxdy = {{ f (rcos 0, rsen0)-rdrd0. 
JJ<I>(O) t JJo 

(x ,y)=<l>(r,0) 

( 4.22) 

Osserviamo che abbiamo parlato dell' insieme ]O, +oo[ x [O, 21r[ solo per essere certi 
che le coordinate polari ( 4.21) fossero invertibili su un suo sottoinsieme qualunque. Se 
r invertibilità è garantita da qualcos'altro, naturalmente non serve tale limitazione. 

Proposizione 4.12 : siano Sì e [O, +oo[xlR un insieme misurabile e <J> (S1) e JR2 

la sua immagine tramite le coordinate polari. Se <I> : n ➔ <J> (S1) è iniettiva allora la 
formula (4.22) continua a valere. 

Vediamo alcuni esempi (~ es. 4.6). 

Esempio : calcoliamo l'integrale della funzione xy sull' insieme 

E = { (x, y ) : 2 < x2 + y2 ~ 4, x ~ O, y > O} 

che è la parte della corona circolare di raggi v'2 e 2 che sta nel primo quadrante. 

1r/2 -------

v'2 2 v'2 2 

Fig. 4.21 : l ' insieme di integrazione E ... Fig. 4.22 : ... e l' insieme n 

Come abbiamo già detto, che i punti di norma v'2 facciano parte o no dell' insieme 
E è ininfluente ai fini del valore dell' integrale, e lo stesso vale per il bordo esterno 
~Ila corona, nonché per i lati rettilinei di E. L' insieme E si descrive molto bene in 
oordinatc polari, dato che 

(x, y) E E 
{ 

x = r cos 0 , y = r sen 0 

v'2 <r~ 2 
O~ 0 ~ 1r/ 2. 
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Posto allora 

D = {(r,0): v'2 < r ~ 2, O~ 0 ~ tr/2} =]v'2, 2] x [O,tr/ 2] 

abbiamo 

{{ xydxdy = {{ (rcos0)(rsen0)rdrd0 = {{ r3 sen0cos0drd0 
JJe lln ll1-n,2Jx[0,1r/ 2) 

1
2 r12 (20) 12 3 r12 

= ,/2 (Jo r
3 

sen 2 d0) dr= ,/2 r
2 

(Jo sen(20) d0) dr 

= 1 2 r3[-cos(20)]1r/2dr = l 2 r3 -ldr = [r4]2 =2 - !=~-
,n 2 2 o ,122 8 ,/2 2 2 

Avremmo potuto calcolare l ' integrale ( con più fatica) in coordinate cartesiane. L'insieme 
E (o meglio l' insieme E che si ottiene aggiungendo a E il bordo interno della corona 
circolare, il che non fa variare l'integrale per la Proposizione 4.6) è normale rispetto a 
entrambi gli assi, dato che ad esempio 

E = {(x,y): O~ x ~ 2, a(x) ~ y ~ ,6(x)} 

con 

a(x) = { ✓2 - x
2 

se O~ x ~ v2 
O sev2~x~2 

,6(x) = J4 - x2 

per cui 

{{ xydxdy = f
2 

x(1/3(x) ydy) dx. 
JJe lo a(x) 

Dato che a cambia espressione a seconda se x superi o meno y2 , conviene proseguire 
spezzando l'integrale: 

... = { -n x(l ~ ydy) dx+ 12 

x( { ~ ydy) dx 
lo ~ ,n lo 

= f ,n=.((4 - x2)-(2-x2))dx+ 1
2 

=-((4-x2 )-O)dx lo 2 -n 2 

1-n 1 2 4x - x3 
= xdx + 

2 
dx 

o ,/2 

= [ x2] ,/2 + [x2 - x4] 2 = 1 + ( 4 - 2) - (2 - ! ) = ~ . 
2 o 8 ,/2 2 2 

Esempio : calcoliamo l'integrale della funzione y3 sen x sull' insieme E dell'esempio 
precedente. Come abbiamo visto, in coordinate polari E si scrive benissimo, dato che 
la sua immagine inversa è un rettangolo; tuttavia, a differenza di quel che accade in una 
dimensione, in due variabili un integrale è "bello" non se lo è l'insieme d 'integrazione o se 
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lo è la funzione integranda, ma se i due sono bene assortiti. In questo caso, in coordinate 
polari la funzione integranda diventa 

r(r3 sen3 0) sen(r cos 0) 

(il primo r viene dal determinante jacobiano), una funzione piuttosto scomoda da inte­
grare. Sarebbe stato meglio restare in coordinate cartesiane e procedere come nell'esem­
pio precedente, ottenendo che l'integrale vale 

1v'2 /2 (4 x2)2 
(3-x2 )senxdx+ -

4 
sen xdx, 

o v'2 

un integrale che contiene un termine un po' laborioso ma trattabile. Prima di cambiare 
coordinate, dunque, è opportuno vedere anche la forma assunta dalla funzione integranda 
dopo il cambio di variabili, comprendendo il determinante jacobiano. 

Esempio: avevamo interrotto il calcolo dell'integrale (4.13). Il cerchio C è l' immagine 
tramite le coordinate polari del rettangolo [O, l ] x [O, 21r] , sempre trascurando punti e 
segmenti, e la funzione integranda si riscrive r 2 , che moltiplicato per il determinante 
jacobiano dà r 3 

. Allora possiamo scrivere 

( 4.23) 

Esempio : consideriamo le due spirali di Archimede di equazioni polari aw (A2.1) 

Ìl: r = 1 + 0, 

Fig. 4.23 : l' insieme E ... Fig. 4.24 : ... e l' insieme !1 
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Vogliamo determinare l'area della parte E di piano che è racchiusa fra le due spirali 
e fra i due segmenti O"t , di estremi (1, O) e (2, O) , e CT2 , di estremi (-31r - 2, O) e 
(- 31r - 1, O) . Si tratta di una specie di salsiccia che fa un giro e mezzo intorno all'origine: 
in questo caso posto 

n = { (r, 0) : O :S: 0 :S: 31r, 1 + 0 :S: r :S: 2 + 0} 

la funzione <f) definita in ( 4.21) è invertibile fra n ed E , quindi possiamo usare la 
Proposizione 4.12 ottenendo 

Area(E) = Jl 1 dx dy = J L r dr d0 = 13

1r (1::o r dr) d0 

= [3
1r (2 + 0)2 

- (1 + 0)2 d0 = [3
1r 3 + 20 d0 = [30 + 02

]31r 

lo 2 lo 2 2 o 

91r + g7r2 

2 

4.5 - Integrali in tre dimensioni e più 

Dal punto di vista della definizione non cambia nulla di sostanziale rispetto agli integrali 
su un insieme piano: solo, anziché partire da funzioni positive definite su un rettangolo 
(bidimensionale) R = [a, b] x [e, d] e costruire parallelepipedi (tridimensionali) su una 
base che è un rettangolino (bidimensionale) contenuta nel dominio R (bidimensionale 
si parte da funzioni definite su un oggetto tridimensionale, R = [a, b] x [e, d] x [e, J] , che 
conviene continuare a chiamare rettangolo. Allora, formalmente costruiamo parallelepi­
pedi ( quadridimensionali, ma quel che conta è solo che la formula del volume non cambia: 
è il prodotto di tutte le dimensioni - in questo caso, quattro) su basi che sono rettan­
golini (tridimensionali) contenuti in R. Anche le definizioni di integrabile e misurabile 
sono del tutto simili a quelle in due dimensioni. 

I cambiamenti intervengono quando si vuole estendere il Teorema 4.2 di riduzione 
degli integrali doppi definiti su un rettangolo; rivediamo lo spirito di questo enunciato: 
la formula ( 4.3) lega un integrale bidimensionale ( che fino a quel momento non sapevamo 
come calcolare) a una sequenza di due operazioni (due integrali unidimensionali) che 
sapevamo fare. C'era solo la scelta se integrare prima rispetto a y, come nella formula 
(4.3), o prima rispetto a x, come nella formula (4.4). Ora, invece, sappiamo calcolare 
sia integrali unidimensionali che integrali bidimensionali, perciò il teorema di riduzione 
offrirà ( oltre a scegliere l'ordine delle variabili) anche la possibilità di eseguire prima 
un integrale bidimensionale e poi uno unidimensionale, o fare il viceversa. D 'ora in poi 
torniamo al simbolo J anche per indicare gli integrali bi- e tridimensionali - se no. 
cosa dovremmo scrivere per quelli in dieci o venti dimensioni? 
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Teorema 4.13 : sia g una funzione continua sul rettangolo (chiuso) R = [a, b] x [c, d] x 
[e, J] . Allora 

lg(x, y,z)dxdydz= 1b[1d(11 
g(x,y,z)dz)dy]dx 

= fb( { g(x,y,z)dydz)dx 
la J [c,d]x[e,/] 

= { (11 
g(x, y, z) dz) dx dy. 

J [a,b] x (c ,d] e 

Conviene vedere subito cosa accade per integrali in un numero qualunque di dimen­
sioni: la prossima formula lega un integrale n-dimcnsionale a due integrali di dimensione 
più bassa, quindi assicura che se si sanno calcolare gli integrali di dimensione più bassa 
si sa calcolare anche quello di dimensione n . Consideriamo dunque un rettangolo in JRn 
dove 

n = h+k , h,k ;:=: 1 , 

e per comodità, come già detto in (1.1), chiamiamo le n variabili 

x1,x2, ... ,xh,Y1, ... ,yk, 

e poniamo 

x=(x1, ... ,xh), y =(y1,,,. ,Yk), dx = dx1• 00 dxh, dy = dy1···dyk (4.24) 

(lo scopo è riportare l' integrale in dimensione n a due integrali, prima nelle k variabili 
y e poi nelle h variabili x ) . Indichiamo le dimensioni di R con 

Il teorema di riduzione prende allora la forma seguente. 

Teorema 4.14 : per ogni funzione continua f definita su R si ba 

l J(x , y) dx dy = JR-.r. (JR,, f(x, y ) dy) dx. 

Esempio : calcoliamo l' integrale della funzione x + yz sul rettangolo 

R = [0,2] x [0,3] x [-1,1]. 

Possiamo scegliere di calcolare l'integrale in molti modi, applicando il teorema prece­
dente: 

1) indicando con x la variabile x e con y la coppia di variabili (y, z) ci riportiamo a 

f ( { (x+yz)dydz)dx, 
l (o,21 l (o ,3J x [-1,11 



244 Sezione 4.5 : Integrali in tre dimensioni e più 

oppure potremmo indicare con x la variabile y e con y la coppia (x, z) ripor­
tandoci a 

f ( f (x+yz)dxdz) dy, 
1 10,3] J 10,2Jxl-I,l] 

o infine integrare prima (cioè nell' integrale più interno) in (x, y) e poi in z; 
2) indicando con x la coppia di variabili (x, y) e con y la variabile z ci riportiamo a 

f ( f (x+yz)dz)dxdy , 
1 10,2] X I0,3] 1 1-l,l) 

e analogamente scegliendo come x le altre due possibili coppie di variabili. 
Che facciamo? In questo caso i calcoli sono sempre piuttosto semplici, ma in altri casi 
il volume di calcoli da eseguire è assai diverso a seconda della scelta che si è fatta (~ 
es. 4.8), o talora impossibile in un modo e possibile in un altro, come nell'esempio (4.12). 
La scelta più agevole è probabilmente l'ultima proposta, che dà 

{ [xz + y z
2

] 
1 

dx dy = { 2x dx dy = f 2 [2xy] 
3 

dx 
J 10,2Jxl0,3] 2 - 1 J 10,2Jxl0,3] Jo O 

{2 2 
= lo 6xdx = [3x2Jo = 12. 

Per gli integrali in due variabili, siamo passati da quelli su un rettangolo a quelli 
su insiemi normali. Generalizziamo la situazione a lRn , ricordando che da ora in poi 
"rettangolo" significa il prodotto di n intervalli, "plurirettangolo" significa unione finita 
di rettangoli n-dimensionali e dire che un insieme E è "lnisurabile" significa che per 
ogni t: > O esistono due plurirettangoli n-dimensionali, uno contenuto e uno contenente 
E , la cui differenza delle lnisure è inferiore a t: . 

Definizione : sia E e lRn un insieme misurabile; con le notazioni già usate in (4.24). 
la proiezione di E sulle variabili x è l ' insieme 

Ilx(E) = {x E lRh : 3y E lRk : (x ,y) E E}. 
Per ogni x 0 E IIx(E), la sezione di E in corrispondenza di x 0 è l'insieme 

Sx0 (E) = { y E lRk : (xo , y ) E E}. 

Fig. 4.25 : la proiezione sull'asse y e la sezione corrispondente a Yo 
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s,,,,,o)(E) . ~ 

' 

Fig. 4.26 : la proiezione sul piano (x , y) e la sezione corrispondente a (xo, yo) 

Esempio : il cilindro 

A= {(x,y,z) : x2 +y2
::; 1, O::; z::; 3} 

ha proiezione sul piano (x, y) uguale al cerchio unitario: 

II(x,y)(A) = { (x, y): x2 + y2 :=; 1} 

Fig. 4.27 : il cilindro, la proiezione su x, y (a sinistra) e la sezione (a destra) 

,. per ogni punto di questa proiezione la sezione corrispondente è il segmento O ::; z ::; 3 . 
Invece il cono 

B = { (x , y,z): x2 + y2
::; 1, O::; z::; 3 - 3Jx2 +y2 } 

ha la stessa proiezione di A sul piano (x, y), ma preso un punto (xo, Yo) del cerchio 
mitario la sezione corrispondente è 
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Fig. 4.28 : il cono, la proiezione su x, y (a sinistra) e la sezione (a destra) 

Vediamo le proiezioni e sezioni di A e B sull'asse z : 

Ilz(A) = Ilz(B) = [O, 3] 

e per ogni zo E [O, 3] 

Sz0 (A) = {(x,y): x2 +y2 :s; l} , Sz0 (A) = { (x,y): Jx2 + y2 :s; 1 - zo/3}. 

Vediamo infine (prima cercate di visualizzarle da soli) le proiezioni e sezioni rispetto 
all'asse x: 

Ilx(A) = Ilx(B) = [-1, l ] 

e per ogni x 0 E [-1, l] la sezione di A è un rettangolo di altezza 3 e la cui base è un 
intervallo [-yo, Yo] dove x5 + Y6 = 1 , cioè 

Sx0 (A) = [-✓l - x5, J1 - x5] x [O, 3] . 

Invece la sezione di B è la parte di piano con 

quindi necessariamente IYI :s; J1 - x5 perché altrimenti 3 - 3Jxg + y2 < O. Questa 
parte ( escluso il caso xo = O ) sta sotto il ramo inferiore del!' iperbole di equazione 

(z - 3)2 y2 
-'----'- - - = 1 
(3xo)2 x5 
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Fig. 4.29 : il cono, la proiezione su x (a sinistra) e la sezione (a destra) 

mentre per x0 = O l' iperbole degenera e la sezione è il triangolo di vertice z = 3 , y = O 
., base z = O , IYI :::'.: 1 -

Nel prossimo risultato utilizziamo le notazioni già introdotte 1-'.w' ( 4.24). 

Teorema di riduzione degli integrali multipli 4.15 : sia E e IRn un insieme 
misurabile, tale che la sua proiezione IIx(E) sulle variabili x sia misurabile (come 
,-0ttoinsieme di JRh) e che per ogni x E Ilx (E) la corrispondente sezione Sx(E) sia 
misurabile (come sottoinsieme di JRk ). Se f è una funzione continua e limitata su E 
<illora 

f f(x, y )dxdy = f ( f f (x , y ) dy) dx. 
l e ln~(E) l s~(E) 

Con il teorema di riduzione, abbiamo un gran numero di modi in cui possiamo im­
tare il calcolo di un integrale(,• appendice 4.1). Nel frequente caso di tre dimensioni, 

· distinguono la integrazione per fili in cui si proietta su un piano, e quindi le sezioni 
,rrispondenti sono sottoinsiemi di una retta ( fili , appunto) e la integrazione per strati 

w cui si proietta su una retta e le sezioni corrispondenti sono insiemi piani. A partire 
ci.al prossimo esempio, usiamo una notazione semplificata: quando si tratta di integrare 
,u un insieme definito tramite una equazione, sovente si omettono le parti non essenziali, 

rivendo ad esempio 

12+y25,1 ... 

al posto del più corretto ma più lungo e dispersivo 

! (x,y )ER2: x2+y25,1} ... 

Esempio : calcoliamo il volume dei solidi di rotazione in IR3 . Consideriamo una funzione 
ntinua f definita su un intervallo [a, b] e non negativa, e tracciamo il suo grafico nel 

piano (x, z) . Questo è un sottoinsieme del piano (x, z) definito da 

A = { (x, z) : a ::; x ::; b , O::; z::; f (x)} . 
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Fig. 4.30 : il solido ottenuto ruotando un sottografico intorno all'asse x 

Pensiamo il piano (x,z) come immerso in JR3 , ovvero come il sottoinsieme {(x,y,z): 
y = O} , e facciamo ruotare A intorno all'asse x. Questo genera un solido R , detto 
appunto di rotazione, che possiamo rappresentare nella forma 

Vogliamo calcolare il volume di R. Conviene in questo caso integrare per strati, proiet­
tando sull'asse x. Abbiamo 

Ilx(R) = [a, b] 

e per ogni x 0 E [a , b] la sezione di R è un cerchio di raggio f (xo) : 

Sx0 (R) = { (y,z): Jy2 + z 2 ~ J(xo)}. 

Allora 

Vol(R) = { l dxdydz = { ( { l dydz) dx 
JR ln"'(R) l s"'(R) 

= 1b(J, ldydz ) dx= 1b 1rf2 (x)dx. 
a y 2 +z2 $/2(x) a 

Esempio : calcoliamo il volume di un cono C di raggio di base r e altezza h . Quest, 
si può vedere come solido di rotazione, ma è più pratico il calcolo diretto, per strati: i. 

cono 
C= { (x,y,z) : O~z~ h -(h/r)Jx2 +y2 } (4.26 

ha proiezione sull'asse z uguale a [O, h] e per ogni z E [O, h] la sezione è il cerchi, 
centrato in x = y = O di raggio r(l - z/h). Allora il volume di un solido ottenuto per 

rotazione attorno all'asse x è 

Chiaramente vale la formula analoga per rotazioni attorno agli altri assi. 
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Esempio: calcoliamo l' integrale di f(x , y , z) = 6x2 y2 + z4 sull'ellissoide di rotazione 

E = { (x, y , z) : 2x2 + 2y2 + z2 ~ 1} . 

Proiettando sull'asse z abbiamo 

Ilz(E ) = [- 1, 1] 

mentre per z E [- 1, 1] 

Sz(E) = {(x,y): 2(x2 +y2) ~ 1- z2}, 

che rappresenta un cerchio. Abbiamo 

{ (6x2y2 + z4
) dx dy dz = j 1 (1 (6x2y2 + z4

) dx dy) dz . l E - 1 x2+y2'.5(1-z2)/2 

Per calcolare l' integrale interno possiamo (dopo una piccola semplificazione) usare le 
coordinate polari (4.22): 

1 (6x2 y2 +z4 )dxdy 
x2+y2'.5(1-z2)/2 

= 1 (6x2y2) dx dy + 1 z4 dx dy 
x2+y2 '.5(1- z2)/2 x2+y2'.5(1-z2)/2 

[2'" ( rJ<1- z
2
)/2 ) l z2 

= lo lo 6r
5 cos

2 
0 sen

2 
0 dr d0 + z4 

• 1rT 
{2" [ ] J(l-z2)/2 1 _ z2 

= lo cos2 0sen2 0 r 6 

0 
d0 + z 4 

• 1r-
2
-

= -'-------'--- cos2 0 sen2 0 d0 + z4 
• 1r-- . (1 - z2)3 12" 1 - z2 

8 o 2 

Ora 

f
2

" cos2 0 sen2 0 d0 = ~ f
2

" (2 cos 0 sen 0)2 d0 
lo 4lo 

1127' 1147' = 4 (sen 20)2 d0 ~ 8 sen2 t dt 
O 20= t O 

1"/2 
2 [t-sentcost]"/2 1r = sen tdt = ----- = -

o 2 o 4 

per cui 

1 (6x2y2 + z 4
) dxdy = ~(1 - z2)3 + ~ z4(1 - z2) 

x2+y2 '.5(1-z2)/2 32 2 

= ~(1 - 3z2 + 3z4 
- z6 + 16z4 - 16z6

) = ~(1 - 3z2 + 19z4 
- 17z6

) . 
32 32 
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Allora 

{ (6x2y2 + z4
) dxdydz = ~ 11 

(1- 3z 2 + 19z4 - 17z6
) dz le 32 -1 

= ~ [z _ z3 + 19 z5 _ 17 z7 ] 
1 = ~ (l _ 1 + 19 _ 17) 

32 5 7 - 1 16 5 7 
1r 48 31r 
16 35 35 

La formula di cambiamento di variabile negli integrali (4.19) vale anche per integrali 
in più di due dimensioni: chiaramente la funzione <I> sarà definita su un aperto di lRn 
a valori in lRn . La formula diventa quindi 

1 J(x) dx = r J(<I>(y)) ldet(v'<I>(y)) I dy. 
<I>(o.) x = <i> <v ) lo. 

(4.27) 

Esempio : calcoliamo il volume del toro pieno (non la sola superficie, 
modifichiamo la parametrizzazione (3.24) della sola superficie in 

naturalmente); 

{ 

x = (R + pcoso:) cos0 
y = (R + pcoso:)sen0 p E [O, r], o: E [O, 21r] , 0 E [O, 21r] , 
z = pseno: 

con O < r ~ R . Dunque 

<I>(p, o:, 0) = ( (R + p coso:) cos 0, (R + p coso:) sen 0, psen o:) 

e la matrice gradiente è 

( 

cos o: cos 0 - p sen o: cos 0 
v' <I> (p, o:, 0) = coso: sen 0 - p seno: sen 0 

sen o: p cos o: 

- sen0(R + p coso:)) 
cos0(R + pcos o:) 

o 
per cui 

I det v'<I>(p, o:, 0)1 = p(R + pcoso:) 

( osserviamo che R + p coso: ~ R - r ~ O ) . Allora posto 

D =]O, r[ x ]O, 21r[ x ]O, 21r[c 1Rp x lRa x IRo 

(4.28) 

(che gli intervalli siano chiusi o aperti non cambia il volume) per la formula di cambia­
mento di variabili ( 4.27) il volume del toro di raggio R e spessore 2r è 

1 1 dx = { p( R + p coso:) dp da d0 
<1>(!1) t lo. 

x=<l>(p,a ,0) 

= lor [fo2

1r (lo2

1r p( R + p coso:) d0) da] dp 

= 21r lor (fo2

1r (Rp + p2 coso:) do:) dp 

= 21r lor (21r Rp) dp = 21r2 Rr2 
. 
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Un caso particolarmente importante è quello delle coordinate polari. In tre dimen­
sioni abbiamo visto due tipi di cambiamenti di variabile in coordinate simili a quelle 
polari: il primo sono le coordinate polari vere e proprie (1.26) 

{ 

x = rsenef>cos0 

y = rsen</>sen0 

z = rcos</> 

per le quali la matrice jacobiana è 

(

sen </>cose 
V<I> (r,</>, 0) = sen<j>sen0 

cos</> 

rcos</>cos0 
r cos</>sen0 
-rsen</> 

e quindi il valore assoluto del determinante jacobiano è 

-rsen<j>sen0) 
rsen<j>cos0 

o 

I det V<I>(r, </>, 0) I = r 2 sen </> . 

L'altro tipo sono le coordinate cilindriche (1.27) 

per le quali 

{

x = rcos0 
y = rsen0 
Z = Z 

r 2: O, 0 E [O, 21r[, z E JR 

(

cose 
V<I>(r,0,z) = se;0 

-rsen0 
rcos0 

o 
e pertanto(~ es. 4.7) 

I det V<I>(r, </>, 0)1 = r . 

(4.29) 

(4.30) 

Esempio: calcoliamo l'integrale della funzione z2 sul cono C visto nell'esempio (4.26). 
In coordinate cilindriche 

1 t [ r (l-z/h) ( { 21r ) ] 
e z

2
dxdydz ~ lo lo lo pz

2
d0 dp dz 

x= pcos0, y=psen0 

Potremmo anche considerare le coordinate polari in n dimensioni c:w (1.28). Queste 
si incontrano meno di frequente, e tutto quel che può interessare è che il determinante 
jacobiano è 

I det V<I>(r, </>1, ... , <Pn-2, 0)1 = rn-l sen </>1 sen2 </>2 · · · senn-2 </>n-2 . 

In particolare osserviamo (lo useremo poi) che 

ldetV<f>(r,</>1,- --,<Pn- 2,0)1 = r"-1q(</>1, --- ,</>n-2) , O::; q(</>1,--- ,</>n- 2)::; 1. (4.31) 
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Esempio : calcoliamo il volume n-dimensionale Wn della palla unitaria di Rn 

Bn = { X E Rn : llxll ~ 1} • 

Passando a coordinate polari in R" ed utilizzando la formula di cambiamento di variabili 
negli integrali abbiamo 

vol(Bn) = { 1 dx 
jBn 

= r1 [ r2'" ( r rn- l Il senk <l>k d<f>1d</>2 · · · d<f>n-2) de] dr 
lo lo lro,1rJn-2 k=l 

27r nrr-2 r k 
= - lo sen </>kd</>k. 

n k=l O 

Gli integrali 

fo" sen k t dt 

sono tutti calcolabili esplicitamente dato che (integrando per parti) 

senk+2 xdx = -- sen k xdx 1" k + 11" 
o k + 2 o 

e, con un po' di pazienza, si trova infine 

se n è pari 

se n è dispari, 

(4.32 

dove il simbolo n!! indica il semifattoriale di n , cioè il prodotto degli interi fino ad n 
con la stessa parità di n . In particolare abbiamo 

W1 = 2 , W2 = 7r, W3 = 41r/ 3 , 

come è ben noto, e poi 

Una volta noto il volume n-dimensionale Wn della palla unitaria Bn , il volume di una 
palla di raggio r sarà semplicemente wnr" . Osserviamo che per n -+ +oo il volume 
di Bn . . . tende a zero! 
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4.6 - Integrali impropri 

Generalizzare la teoria degli integrali impropri a più di una dimensione presenta qualche 
problema: anzitutto, gli insiemi su cui integriamo delle funzioni in JR sono di solito gli 
intervalli, o unioni finite di intervalli, mentre in più dimensioni la varietà di insiemi su cui 
possiamo pensare di integrare una funzione è enorme, il tutto senza bisogno di ricorrere 
ad esempi patologici. 

Esempio: l' insieme aperto 

Z = { (x, y) : (x - 1)2 + y2 > 1, (x - 2)2 + y2 < 4} 

è la differenza (in senso insiemistico) tra il cerchio di centro (2, O) e raggio 2 ed il 
cerchio di centro (1, O) e raggio 1 : è una specie di lunetta, che vicino all'origine ha due 
corna che si assottigliano. 

Fig. 4.31 : la lunetta Z 

La funzione f(x,y) = (x2 + y2
) - 1 è continua ma vicino all'origine tende a +oo. Avrà 

senso 

{ 2 1 2 dxdy, lz x +y 
(4.33) 

e sarà finito o infinito? 

Vediamo un secondo problema, anch'esso in più rispetto al caso unidimensionale: 
per approssimare l' intervallo [O, +oo] l 'unico modo che pare sensato è usare intervalli 
[O, M] e far tendere M a +oo . L'integrale su [O, +oo[ di una funzione f è allora 
definito come il limite (se esiste) dell'integrale di f su [O, M] . 

Invece, per invadere il quadrante Q = [O, +oo[ x [O, +oo[ potremmo pensare di usare 
i quadrati 

QM = [0,M] x [0,M], 

oppure i quarti di cerchio 
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I / I 

--
Fig. 4.32 : invadiamo un quadrante con quadrati, cerchi, ... 

o magari i rettangoli 
R M,N = [O, M] X [O, N] 

oppure, perché no, delle porzioni di settore parabolico 

PM = {(x,y): x2 / M ~ y~M}. 

t 

-- \ 

Fig. 4.33 : ... , rettangoli, settori parabolici 

In effetti potrebbe accadere che i vari limiti 

lim { f (x, y)dxdy , 
M--t+oo } QM 

lim { f (x,y) dx dy , 
M ,N--t+ J RM,N 

lim 
M➔+ 

lim 
M--t+ 

{ J (x, y )dxdy, lcM 
{ f (x, y) dx dy }pM 

siano diversi fra loro. Quale scegliere per definire l' integrale di f su Q? E ancora peg­
gio, che insiemi possiamo usare per approssimare la lunetta Z dell'esempio precedente? 

Cerchiamo in poche parole di risolvere questi problemi. Lavoreremo solo con funzioni 
non negative, poi passeremo a quelle generiche grazie alle parti positiva e negativa. 
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Definizione un insieme n e IRn è approssimabile se esiste una successione {E;} 
tale che 

1) ogni Ei è (limitato e) misurabile, 

2) E; e EH 1 e n per ogni i , 

3) ogni punto di D appartiene a qualche Ei, cioè D = LJi Ei. 

Una successione che invade n è una successione che verifica le tre proprietà prece­
denti. 

Definizione : se n e IRn è un insieme approssimabile, ed f : n -+ JR è una funzione non 
negativa, che sia integrabile su qualche successione che invade n, definiamo l'integrale 
generalizzato di f su n come 

l f(x) dx = sup{l f(x) dx: E ç n, E misurabile, f integrabile su E } . (4.34) 

Osserviamo che se aveva gia senso l'integrale di f su n, c10e se n era esso 
stesso un insieme misurabile ed f era integrabile su n , per ogni misurabile E e n si 
ha f E f dx :S fn f dx grazie al Corollario 4.9, quindi l'estremo superiore in (4.34) è il 
··vecchio" integrale su n : non ne abbiamo quindi cambiato il significato. Osserviamo 
poi che l'estremo superiore potrebbe essere anche +oo, come nel caso unidimensionale. 

Ci si pone un problema: come determinare questo estremo superiore? Fortunata­
mente abbiamo il prossimo risultato. 

Proposizione 4.16: se n e IRn è un insieme approssimabile, {Ei}i è una successione 
che invade n ed f : n -+ JR è una funzione non negativa, che sia integrabile s ulla 
successione {Ei};, allora 

f J(x) dx = Hm f f(x) dx. ln t -++00 J E, 

La proposizione precedente dice, in particolare, che il limite non dipende dalla scelta 
della successione. Vediamo allora come si può procedere nell'esempio che abbiamo iniziato 
poco sopra. 

Esempio : determiniamo (4.33). Intanto Z è misurabile, ma f non è una funzione 
integrabile su Z dato che non è limitata. Però f, essendo continua fuori dall'origine, 
è integrabile su ogni insieme misurabile su cui essa sia limitata, come ad esempio sulla 
successione 

E; = {(x,y) E Z: x2 +y2 > 1/i2
} 
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Fig. 4.34 : un insieme E; Fig. 4.35 : un ingrandimento 

(alla lunetta Z abbiamo tolto ogni volta una pallina centrata nell'origine, di raggio 
1/i ). Abbiamo, in coordinate polari, 

(x - 1)2 + y2 > 1 r 2 
- 2r cos O > O r> 2cos0 , 

e 

(x - 2)2 + y2 < 4 {:::=} r 2 
- 4r cos O < O r< 4cos0 , 

pertanto 

(x, y) E Z 
7f 7f - 2 -5: 0 -5: 2 , 2cos0 < r < 4 cos0. 

La circonferenza di equazione cartesiana x2 + y2 = 1/i2 ha equazione polare r = 1/i, 
ed interseca le due circonferenze di equazioni 

(x - 1)2 + y2 = 1 , 

rispettivamente nei due punti in cui cosO = 1/ 2i e nei due in cui cosO = 1/ 4i. Per la 
simmetria della funzione integranda e degli insiemi su cui integrare, posto 

abbiamo l , f(x, y) dx dy = 2 fet f (x, y) dx dy 

e ci possiamo limitare a calcolare l'integrale su Et . Per quanto visto sopra, in coordi­
nate polari l' insieme Et 
1) non contiene punti con O> arccos(l/ 4i) 
2) per arccos(l / 2i) < O -5: arccos(l / 4i) contiene i punti con (1/i) < r < 4 cos O 
3) per O -S O -5: arccos(l/ 2i) contiene i punti con 2 cos O < r < 4 cos O , 
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pertanto grazie a ( 4.22) 

lt f(x,y)dxdy 

= rarccos(l/2i} ( r4 cos0 _..!:_. rdr) d0 + 1arccos(l/4i} ( {4 cos0 _..!:_. rdr) d0 

Jo J 2cos0 r 2 arccos(l/2i} J l/i r 2 

=Ai+ Bi. 

Iniziamo con Ai : 

1

arccos(l/2i} 4 cos 0 1arccos(l/2i) 4 COS 0 
Ai= [1ogr] d0 = log -

2 0 
d0 = (log 2) arccos(l/2i) 

o 2cos0 o cos 
7r 

➔ (log 2) arccosO = 2 log 2 . 

Per quanto riguarda B i abbiamo 

1

arccos(l/4i} [ ] 4 cos 0 1 arccos(l/4i) 
B i = log r d0 = log( 4i cos 0) d0 

arccos(l/2i} 1/i arccos(l/2i} 

1

arccos(l / 4i} 
= (log cos 0 + log( 4i)) d0 . 

arccos( 1 /2i} 

Ora 

arccos(l/2i) < 0 < arccos(l/4i) => 
4
\ < cos 0 < ; i 

1 1 
⇒ log -

4
. < logcos0 < log-: < O 
t 2t 

⇒ !Iogcos 01 < llog LI = log(4i) , 

quindi ow (1.46) 

1

arccos(l/ 4i} 
IBil :S:: I logcos 0 + log(4i)I d0 

arccos( 1 / 2i) 

1

arccos( l / 4i) 
:s:; 2 log(4i) d0 = [log(4i)] [arccos(l/ 4i) - arccos(l / 2i)] . 

arccos(l / 2i} 

arccos(l/4i) - arccos(l/2i) = (~ - arcsen :J -(~ -arcsen ;J 
= arcsen 2_ - arcsen 2_ = 2_ + o(~) - 2_ = 2_ + o(~) 

2i 4i 2i i 4i 4i i ' 

perciò 

O :s:; IBil :s:; [log(4i)] [:i+ 0(7)] ➔ O. 
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Dunque Bi -+ O e quindi 

così che per la Proposizione 4.16 

{ 
2 

1 
2 

dx dy = 1r log 2 . l z x +y 

Esempio: calcoliamo 

Posto 
Qi = [- i,i] X [- i,i], 

entrambe le successioni invadono JR2 e la funzione integranda, essendo continua, è inte­
grabile su entrambe, quindi per la Proposizione 4.16 

Il più facile da calcolare è l' integrale su Bi : in coordinate polari 11'.w' ( 4.22) 

Allora 
{ e-Cx2+y2) dx dy = 1f • 

}R2 

Osserviamo in particolare che abbiamo provato 

(4.35) 

Traiamo da questo esempio una conseguenza inaspettata: è noto che la funzione e-x
2 

non è integrabile elementarmente, cioè non ha una primitiva che possa essere scritta in 

termini di funzioni elementari. Questo impedisce di calcolare esplicitamente J! e-x
2 

dx 
per a e f3 generici. Tuttavia proviamo che 

poniamo 

j
+oo 

e-x
2 

dx = ~ 
- oo 

X= e-x
2 

dx, j
+ oo 

l
i 

- x> Xi= . e dx. 
-00 - , 

(4.36) 



Capitolo 4 : Integrali multipli 259 

Osserviamo che per definizione 

X = (J_~ e- x
2 

dx) + (fo+oo e-x
2 

dx) 

= ( . lim /
0 

e- x
2 dx)+(. lim r e-x

2 

dx) = lim X ; ,--.+oo - i ,--.+oo J0 i->+= 

(4.37) 

dato che entrambi i limiti esistono e sono non negativi. D'altra parte 

2 2 2 Ji Ji = - i (e- Y Xi) dy = X; - i e-y dy = (X;) . 

~fa da ( 4.35) segue allora 

(dato che X ; ~ O), e da (4.37) segue infine (4.36). 

:-l'el volume "Primo Corso di Analisi Matematica" degli stessi a utori del presente testo, 
nell'Appendice 8.14, avevamo già calcolato l' integrale (4.36) usando soltanto metodi di 
Analisi Matematica 1 ma con grande fatica; come abbiamo visto, l' ut ilizzo degli integrali 
doppi ha semplificato enormemente i calcoli. 

Per gli integrali generalizzati di funzioni non-negative, valgono assai pochi dei criteri 
visti in una dimensione, dato che quasi tutti questi ultimi hanno fra le ipotesi il limite 
della funzione integranda nel "punto di improprietà". Ma in più dimensioni, come si è 
detto, generalmente non vi è "un" punto di improprietà. Si salva il criterio del confronto. 

Proposizione 4.1 7 : se O :5 f :5 g in n ed esistono, finiti o infiniti, J O f ( x ) dx e 
fn g(x) dx allora 

lo J(x ) dx = +oo ===> k g(x ) dx = +oo 

e equivalentemente 

k g(x ) dx< +oo ===> k f ( x ) dx < +oo . 

Utilizzando le coordinate polari ne ricaviamo due importanti conseguenze, una all' in­
finito e l'altra per integrali impropri in un punto. Usiamo la notazione B t per la palla 
aperta centrata nell'origine e di raggio t. 
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Corollario 4.18 : sia n e JRn un insieme approssimabiJe, e sia f : n ➔ JR una 
funzione non negativa, che sia integrabile su qualche successione che invade n . Se esiste 
una funzione continua 

g : [ro, +oo[➔ JR 

tale che 

o ::; f(x)::; g(llxll ) \/x E n \ Ero 

e che 

J
+oo 

rn- 1g(r) dr< +oo 
ro 

allora 

f f(x)dx < +oo . 
Jri\Br0 

Infatti, usando le coordinate polari, grazie a (4.31) e al Teorema di riduzione degli 
integrali multipli 4.15, che usiamo proiettando sulla coordinata r, abbiamo (supponendo 
che n non sia limitato, altrimenti la dimostrazione è assai più facile e non serve l' ipotesi 
di integrabilità all'infinito su g) 

r f(x)dx::; r g(llxll)dx 
l o\Bro l o\Bro 

= r+
00

(g(r)rn-l r q(</J1,--·,<Pn-2)d</J1···d</Jn- 2d0)dr. 
l ro } Sr(O) 

Ma q ::; 1 , quindi 

f f (x) dx ::; r 00 

(g(r)rn-i f l d</J1 · · · d</Jn-2 d0) dr . 
Jn\Br0 l ro } Sr(O) 

La sezione Sr è un sottoinsieme del rettangolo in cui abbiamo preso le variabili <P1, ... ,n-2 

e 0 , che è 

[O, 1r] x · · · x [O, 1r] x [O, 21r] 

ed ha dunque volume (n - 1)-dimensionale pari a 2 · 1rn-l , perciò anche Sr ha volume 
(n - 1)-dimensionale non superiore a 21rn- l , quindi 

r f(x) dx::; 21rn-l 1+oo g(r)rn-l dr< +oo 
l o\Bro ro 

che conclude la dimostrazione del corollario. Osserviamo che se invece fosse stato 

1
+00 

rn-1g(r) dr = +oo 
ro 

f(x) ~ g(llxll), 

non avremmo potuto concludere che anche f0 f(x) dx = +oo: infatti n avrebbe 
potuto essere limitato, oppure avrebbe potuto assottigliarsi sempre più man mano che ci 
si allontana dall'origine. 

Esempio : sia 

f(x) = 1 + x2
, f2 = { (x, y) : x ~ l , 0 ::; y::; 1/(1 + x2

)
2

} . 
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l 

Fig. 4.36 : l' insieme n {in realtà è molto più schiacciato) 

osserviamo che per ogni (x, y) E n si ha O :S y :s; 1 , quindi 

(x,y)E rl ==;, f(x , y) =x2 +I ? x2 +y2 , 

e posto g(r) = r 2 abbiamo f(x, y) 2: g(ll(x, y) II ) . Chiaramente Jt '0 rg(r) dr = +oo, 
ma 

1 l
+oo (l(l+x2

)-

2 

) l +oo 1 7r 
f (x , y) dxdy = (1 + x2

) dy dx = --
2 

dx = - . 
11 1 o 1 l + x 4 

Vediamo un risultato utile per integrali impropri in un punto. 

Corollario 4.19 : sia r2 e B r0 e !Rn un insieme approssimabile, e sia f : r2---+ JR una 
fun zione non negativa, che è continua e limitata su n \ Br per ogni r > O . Se esiste 
una funzione continua 

g : ]O, ro] ---+ JR 

raie che 

O :S f (x) :S g(llxll) Vx E n 

P che 
ro 

Jo rn-1g(r) dr < +oo 

allora 

lo f(x) dx < +oo . 

La dimostrazione ricalca quella del corollario precedente. 
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Esempio : l' integrale 

f 1 
d d la2 (x2 + y2)3/4(1 + x2 + y2) x Y 

converge. Infatti detta f la funzione integranda e posto 

abbiamo 

1 
go(r) = r3/2 

(x, y) E no ====} 
1 

f(x ,y):'.S (x2 +y2 ) 3;4 =go(ll(x,y)II) 

(in realtà la disuguaglianza è vera ovunque) e 

quindi 

Poi, posto 

abbiamo 

(x, y) E 0 00 

r1 r1 1 
lo rg0 (r) dr = lo .jr dr < +oo , 

{ f(x , y)dxdy<+oo. 
lnu 

1 
9oo(r) = r5/2 

1 
f (x, y) :'.S (x2 + y2)3/4(x2 + y2) = 900 (Il (x, Y) Il ) 

(anche questa disuguaglianza è vera ovunque) e 

quindi anche 

J,+oo 11 1 
rg00 (r) dr = 312 dr < +oo , 

1 o r 

{ f (x, y) dxdy < +oo, 
ln00 

(4.38) 

ma IR2 = rl0 U 0 00 quindi anche l'integrale di f su IR2 è finito. In questo caso il valore 
dell' integrale (4.38) si può calcolare esplicitamente, vi consigliamo di farlo per esercizio. 

Esempio : fissato un numero reale a > O consideriamo la funzione 

1 
J(x) = llxll 0 

definita per ogni x E !Rn con x =fa O . Ci chiediamo per quali valori di a la funzione 
risulti integrabile (in senso improprio) in un intorno dell'origine, ad esempio sulla palla 
unitaria Bn = { x E !Rn : llxll :'.S 1} . Passando a coordinate polari si ha 

r -Il 
1
11a dx= f

1 

rn- l- a [ f
2

" ( r IT senk <l>k d</>1d</>2 .•. d<f>n-2 ) d0] dr. 
l Bn X l o l o l [o,1rJn- 2 k= l 
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Usando quanto visto in (4.32) l' integrale precedente si scrive come 

11 n-1-a . 11 1 
nwn r dr = nwn 1 + _ dr 

O O r a n 

che sappiamo essere convergente se e solo se 1 + a - n < l , cioè a < n . 
In maniera analoga ci chlediamo in quali casi la stessa funzione f risulti integrabile al 
di fuori di un intorno dell'origine, ad esempio sull' insieme B~ = { x E Rn : llxll 2: 1} . 
Ragionando come sopra, ci si riconduce all' integrale in una variabile 

l
+oo 

nwn 1 rn- 1-a dr 

che sappiamo essere convergente se e solo se a > n . 

Concludiamo la sezione definendo l ' integrale per funzioni di segno qualunque. 

Definizione : siano n e Rn ed f : n ➔ R . Se ha senso il secondo membro, si chiama 
integrale generalizzato di f su n la somma 

fn 1(x ) dx= l j+(x) dx - l r (x) dx. 

In particolare, perché il secondo membro abbia senso, occorre che n sia approssima-
1ile, che sia j + che 1- rispettino la condizione per la quale hanno senso i rispettivi 

integrali, e che i due integrali non siano entrambi +oo . 

4. 7 - Integrali di superficie 

. .\ conclusione del capitolo estendiamo al caso delle superfici quello che abbiamo fatto per 
mtegrare una funzione su una curva nella Sezione 2.8. Osserviamo che nella formula (2.24) 
appare una struttura simile a ( 4.17) e ( 4.18). In effetti ora possiamo vedere il termine 
o'(t)II come il correttore, limite del rapporto fra lunghezza dell' immagine e lunghezza 

w partenza: un intervallino [t0 , t0 + <5t] viene mandato dalla curva </> in un arco di 
!'tremi 

</>( to) e </>(to + c5t) ::::'. </>(to) + </>'(to) c5t, 

cui lunghezza è pressappoco Il</>' ( to) Il c5t . 
Una curva è una funzione continua da R a Rn ; come si è visto nella Sezione 3.9, 

wia. superficie regolare bidimensionale in Rn è una funzione </> : A ➔ Rn da un aperto 
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A di JR2 , con jacobiano di rango massimo (quindi pari a 2) in ogni punto t = (t , s) E A. 
L'integrale di una funzione f ( definita sul sostegno di </> ) sarà 

i f(</>(t)) · correttoredt , 

dove il correttore, in ogni punto (t0 , s0 ) , sarà il limite, per 8t, 8s -+ O, del rapporto 
fra l'area (bidimensionale) dell'immagine di un rettangolino [to, to + 8t] x [so , so + 8s] e 
quella del rettangolino stesso. Per 8t molto piccolo, il lato inferiore [to, to + 8t] x {so} 
del rettangolino viene mandato da </> in un breve arco di estremi 

</>(to, so) e 
8</> 

</>(to + 8t, so)':':-:' </>(to, so)+ at(to , so) 8t, 

cioè è un arco pressoché uguale al vettore 

8</> 
Vt = at (to, so) 8t , 

ma applicato in </>(t0 , so). Invece, per 8s molto piccolo il lato sinistro {to} x [so, so+8s] 
viene mandato da </> nel breve arco di estremi 

</>(to , so) e 
8</> 

<t>(to, so+ 8s) ':':-:' </>(to, so)+ -
8 

(to , so) 8s , 
ts 

a sua volta pressoché uguale al vettore 

8</> 
Vs = 

8
S (to, So) 8s , 

Dunque l'immagine del rettangolino avrà area simile a quella del parallelogramma gene­
rato dai due vettori Vt e Vs . Grazie al Corollario 1.7 il fattore di correzione è la radice 
quadrata della somma dei quadrati dei determinanti dei minori 2 x 2 della matrice 
2 x n che ha come righe i due vettori Vt e Vs , che è la matrice jacobiana di </> nel 
punto (to, so) . Indicata con u2 (t0 , s0 ) questa radice quadrata, si capisce il perché della 
prossima definizione (, .. appendice 4.3). 

Definizione : sia A e JR2 un aperto, e sia </> : A -+ lRn una funzione con jacobiano di 
rango due in ogni punto. L'elemento di superficie su </>(A) è 

Se f : </>(A) -+ JR, J' integrale superficiale di f su </> è 

lfdu2= it(</>(t, s))u2(t,s)dtds. I 

Se poi </> è iniettiva si definiscono l'integrale di f sulla superficie </>(A) 

{ f du2 = j J(</>(t,s))u2(t,s)dtds 
jci>(A) A 

e l'area di </>(A) 

Area( </>(A)) = i u2 (t, s) dt ds . 

(4.39) 

( 4.40) 
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Osservazione : Nel caso n = 3 i determinanti sotto radice nella definizione precedente 
sono solo tre, per cui si ha: 

o-2(t,s) = [det ( éM>1 
0t(P2 

Esempio : caJcoliamo l'area della superficie di una sfera. Per riportarci al caso di una 
superficie definita su un aperto, modifichiamo il dominio della parametrizzazione (3.20) 
ponendo 

(x,y,z) = </>(0,a) = (rsenacos0, rsenasen0, rcosa) 

con però 
O< 0 < 27!', O < a< 7r: 

questa parametrizza tutta la superficie della sfera centrata nell'origine (il che non guasta 
la generalità) e di raggio r, ad eccezione di una semicirconferenza (che però ha area 
nulla), quella che percorre il mezzo meridiano 0 = O dal polo nord al polo sud compresi. 
Abbiamo già trovato (nel caso r = 1) i minori 2 x 2 della matrice jacobiana i& (3.21), 
e dato che nel caso generale ogni componente della matrice risulta moltiplicato per r 
possiamo calcolare 

o-2 (0, a) = Jr4 sen2 a cos2 a+ r 4 sen4 asen2 0 + r 4 sen4 a cos2 0 = r 2 sena . 

Allora l'area è 

{ 0-2(0, a) d0 da = f
2

"' ( { "' r 2 sena da) d0 = f
2

"' 2r2 d0 = 47rr2 , 
l 10,21r[x]0,1r[ lo lo lo 

come ci era stato insegnato. 

Esempio : vediamo ora come si calcola l'area della supericie laterale di un solido di 
rotazione. Consideriamo l'insieme R descritto in ( 4.25) e la sua superficie laterale 

S = { (x, y, z) E IR3
: a ::; x::; b, Jy2 + z2 = f(x)} ; ( 4.41) 

vogliamo calcolare l'area di S. Usando le variabili cilindriche con asse l'asse x, ovvero 
le coordinate x, r, 0, possiamo descrivere la superficie S nella forma parametrica 

X =X, y = f(x) cos0, 

l'ioè mediante la funzione </> : [a, b] x [O, 27r] ➔ JR3 

</>(x,0) = (x,f(x)cos0,f(x)sen0) , 

Dalla formula (4.40) otteniamo 

z = f(x)sen0, 

x E [a, b], 0 E [O, 27r] . 

Area(S) = { a-2(x, 0) dxd0 
l [a,b] x [0,21r] 
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dove a2 (x, 0) è la radice quadrata della somma dei quadrati dei minori 2 x 2 della 
matrice 'il</>( x, 0) . Essendo 

si ha 

per cui 

"il</>(x, 0) = ( r(x)\os0 - f (x~sen 0) 
f'(x) sen0 f(x) cos0 

Area(S) = 21r 1b f(x)Jl + (f'(x))2 
dx. 

Chiaramente se a bbiamo una superficie di rotazione intorno all'asse z data da 

S = { (x, y, z) E R3
: a~ z ~ b, Jx2 + y2 = f(z)} 

otteniamo la formula analoga 

Area(S) = 21r 1b f(z)Jl + (f'(z))2 
dz , 

e lo stesso per l'asse y . 

Esempio : consideriamo la superficie laterale S del cono 

S = { m z = J x2 + y2 : O ~ z ~ h} . 

( 4.42) 

( 4.43) 

Si tratta della parte superiore del cono visto in (1.22), di vertice l'origine, altezza h, 
avente per asse l'asse z e ampiezza arctan m . Possiamo usare qwndi la formula ( 4.43) 
con f (z) = mz ottenendo 

Esempio : consideriamo la superficie del toro di raggi r, R descritta in (3.24). La sua 
equazione è 

z2 + ( Jx2 + y2 - R)2 = r2' 

e la superficie si ottiene facendo ruotare attorno all'asse z una circonferenza, quella che 
nel piano (x, z) ha centro (R , O) e raggio r e dunque equazione 

(x - R)2 = r2 - z 2 
. 
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Ma la circonferenza non è un grafico x = f (z), quindi non rientriamo direttamente nel 
caso che abbiamo appena visto. Conviene dividere la circonferenza nelle due semicircon­
ferenze con x 2:: R e con x ::; R , che sono grafici rispettivamente delle funzioni 

f+(z) = R+ Jr2 - z2 e f -(z) = R - Jr2 - z2 . 

Ruotando attorno all'asse z , queste generano le parti "esterna" e "interna" della super­
ficie del toro, 

S+ = { Jx2 + y2 = R + Jr2 - z2 , z E [-r , rl} 

S_ = { j x2 + y 2 = R - j r2 - z2 , z E [-r , r]} , 

che sono entrambe superfici di rotazione: possiamo applicare la formula ( 4.43) e, comin­
ciando con S+ , otteniamo 

Analogamente, per la parte interna, 

Anziché calc_9J.ate separatamente le aree, è evidente che conviene prima sommarle, così 
la superficie totale del toro sarà data da 



268 Esercizi relativi al capitolo 4 

Esercizi relativi al capitolo 4 

In tutti gli esercizi sugli integrali va descritto e disegnato il dominio di integrazione; 
inoltre occorre dire se si tratta di un insieme normale, e rispetto a che variabili. 

Esercizio 4.1 

Esercizio 4.2 

Esercizio 4.3 

calcolate le xsen(x + y ) dxdy con E = [O, 1] x [O, 1] . 

calcolate l ex+ydx dy dove D = { (x, y ) E IR2 : lxl + IYI :S 1} . 

calcolate l' integrale doppio 

le (foJ!v ydy) dx ' 

disegnate la regione su cui si integra e scambiate l'ordine di integrazione. 

Esercizio 4.4 : calcolate l ' integrale doppio J D x2 y2dx dy dove 

D = { (x, y) E IR2 
: 1 :S xy :S 2 , ~ < y < 2x } 2 - -

Esercizio 4.5 : calcolate i seguenti integrali doppi: 

a) l eJx
2
+Y

2
dxdy , con D = { (x,y) E IR2 : x2 +y2 ::; 1}. 

b) ly2dx dy con D={(x,y)EIR2
: x2 +2y2 s;8}. 

c) l ( x + y) dx dy con 

D = { (x,y) E IR2
: x 2 +y2 s; 36, (x -1)2 + (y-1)2 2 l} 

d) 

D = { (x,y) E IR2
: 

2
~ :S y s; ~' 2x2 s; y s; 3x2

} . 
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e) lo xydxdy con 

D = { (x, y) E JR.2 
: x2 + 2(y - 1)2 :S 36, lxi + IYI 2: 1} 

f) l IYI dx dy con D = {(x, y ) E lR2
; 

x2 i: 
8 + 4 :S l , x2 + y2 2: l} . 

g) l x 2 dxdy con 

Esercizio 4.6 : calcolate le aree delle regioni piane seguenti: 
a) la regione delimitata dalla curva 

,(t) = ( sent + sentcost, 1 + cost) t E [O, 21r]; 

b) la regione interna alla curva data in coordinate polari da 

p = cos2 0 

c) la regione piana delimitata dalla curva 

0 E [O, 21r] ; 

,(t) = (et +t,et -t) t E [0,a] 

e dal segmento che ne congiunge gli estremi P = (l , 1) e Q = (e0 + a, e0 
- a), al 

variare del parametro reale a > O . 

Esercizio 4. 7 : dato l' insieme 

P = {(x,y) E lR2
: z+x- 3 :S O, z-x- 3 :S O, z2'. 0, O:Sy:S: 4} , 

calcolate il volume di P integrando per fili e per strati. 

Esercizio 4.8 : calcolate i seguenti volumi o integrali tripli, dopo aver disegnato 
anche le proiezioni dei domini stessi sui tre piani coordinati: 

a) l dxdydz con 

V = { (x,y,z)EIR3
: x2 +y2 <3, ~ (x2 +y2)<z<J4 -x2 - y2}. 

b) volume di 

E={(x, y,z)EIR3
: O:Sx:S l , 0 :Sy:S l , x+y+z:S:2}. 

e) l xyz dx dy dz con 

V = { (x , y, z) E JR.3 : x > O, y > O, z > O, l < x2 + y2 + z 2 < 4} . 

/ 
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d) lr z dx dy dz con T = A \ B e 

A ={(x,y, z)EIR3
: 0 :Sx:Sl, 0 :Sy:S l , O:Sz:S2} 

B = {(x,y,z)EIR3
: z2 - 4z+y2 +3:SO}. 

e) volume di E e le x2ydxdy con 

E={(x;y)EIR3
: x2 +z2 :Sl, O:Sy :S l}. 

f) le(x2 +y2)dxdydz con 

E = {(x,y,z) E IR3
: x2 +y2 2'. l , x2 +y2 +z2 s 4}. 

g) volume di E={(x,y,z)EIR3
: l :Sx2 +y2 +z2 :S 4} e le z2dxdydz (in tre 

modi diversi). 
h) volume di 

E={(x,y,z)EIR3
: O:Sx:S2, 0 :Sy:S l , 0:SzseY} 

e le x2 (1 - y)dxdydz. 

i) volume di 

E={(x,y,z)EIR3
: 0:Sx :S l , O:Sy :S 2, -,/xsz:SO} 

e le(l -x)y2lzldx dydz. 

j) volumedi E={(x,y,z)EIR3
: x2- 2x :Sy:Sx, O:Sz:S3} e le4yzdxdydz. 

k) volume di 

E= {(x,y,z) E IR3
: x2 +y2 + (z - 2)2 s 4, x2 +y2 2'. z2 } 

e le x2zdxdydz. 

1) le xyz dx dy dz con 

E = {(x,y,z)EIR3
: 0:Sx:Sl, 0:Sy :S l , O :Sz:S 2, z2'.Jx2+y2}. 

m) volume del sottoinsieme di JR3 : 

E= { (x y z) E IR3: 1 < Jx2 + y2 < e2 arctan(y/x) O< Y < X O< z < 5x } . 
' ' - - ' - - ' - - x2 + y2 

n) volume della regione S che risulta interna al cilindro di equazione x 2 + y2 = 1 , e 
compresa tra il paraboloide z = x2 + y2 - 2 ed il piano x + y + z = 4 . 
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Appendice al capitolo 4 

Appendice 4.1 - Integrali ed energie 

Sappiamo che l'energia potenziale di un punto materiale di massa m, che si trova ad 
un'altezza h nel campo gravitazionale, aumenta di mgh rispetto a quella che avrebbe se 
fosse ad altezza zero; tuttavia i punti materiali pesanti non sono di questo mondo, popo­
lato invece di oggetti tridimensionali. Gli integrali ci permettono di t rovare una versione 
più adeguata alla realtà: supponiamo di avere un corpo formato di una sostanza con 
densità uniforme µ e che occupa una regione n nel campo gravitazionale ( o in generale 
in un campo di forze costante). Una microscopica porzione di quel corpo, diciamo una 
sferetta di piccolo volume v e il cui centro x = (x, y, z) ha quota z, è sostanzialmente 
assimilabile al punto materiale precedente, quindi contribuirebbe all'energia potenziale 
del corpo per una quantità (µv)gz = (µzg) • v - sempre, non lo ripetiamo più, rispetto 
all'energia che avrebbe se fosse a quota zero. Allora, pensando che accade suddividendo 
tutto n in porzioni piccole e facendo tendere a zero il volume di queste, è naturale che 
l'energia potenziale del corpo sia 

E(D) = lo µzgdx = µg lo zdx. (A4.1) 

Se il corpo ha densità non omogenea, e µ(x) è la densità di massa nel punto x, la 
formula diventa 

E(D) = lo µ(x)zgdx = g lo µ(x)zdx. 

Possiamo dire che la densità di energia associata al campo gravitazionale - ge3 in un 
punto x è gµ(x)z = gµ(x)x3 . Questo procedimento è molto utile, in quanto consente 
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di calcolare energie molto complicate: ad esempio, in meccanica si definiscono varie 
energie elastiche a ciascuna delle quali corrisponde una relativa densità, e se W (x 
indica la densità di energia elastica il corpo ha energia totale data dall'integrale di W 
(qul in realtà stiamo molto semplificando, in quanto la densità di energia in un punto 
dipende dallo stato di deformazione vicino a quel punto). Il discorso non si ferma qui ( 
appendice 4.4). 

Appendice 4.2 - Baricentri e navi 

Abbiamo visto che il baricentro di una curva ir.- (2.25) è la media sulla curva stessa della 
funzione posizione x , vale a dire l' integrale della funzione x diviso per la lunghezza 
della curva, che è l' integrale sulla curva della funzione 1 . Generalizziamo questa situa­
zione alle figure piane e ai solidi (e anzi direttamente per sottoinsiemi '·grassi" in ntn ). 

D efinizione : sia E e Rn e sia 

Vn (E) = fe 1 dx > O . 

Il baricentro di E è il punto 

(dove l ' integrale è inteso per componenti). 

Esempio : mostriamo che il baricentro di un triangolo è quello che ci hanno insegnato. 
Consideriamo il triangolo T cli vertici (O, O) , (a, O) e (b, e) con a, e > O, il che non 
lede la generalità (è un triangolo qualsiasi, con gli assi messi in modo comodo). La sua 
area è 

e le equazioni delle rette su cui stanno i lati non orizzontali sono ( converrà integrare 
prima rispetto a x, dato che T è normale rispetto all'asse y , quindi prepariamo già le 
equazioni nella forma comoda) 

b - a 
x = a+--y 

e 
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e 

A M B 

Fig. A4.l : calcolo del baricentro 

dunque per un dato valore di y E [O, e] la sezione è il segmento (tratteggiato in figura) 
compreso fra x = by/e e x = a+ (b - a)y/c. Allora (lasciando i facili calcoli allo 
studente) 

1 1c(1 a+(b-a)y/c ) ac(a+b) 
x dx dy = x dx dy = ---'---'-

T O by/e 3 

e ( ancora più facile) 

1 l e (1a+(b- a)y/c ) ac2 
y dx dy = y 1 dx dy = - . 

T O by/ e 6 

Allora le coordinate del baricentro sono 

p = (~ ac(a+b) 2_ ac
2

) = (a+b ~). 
ac 3 'ac6 3'3 

Potete verificare facilmente che 

<'Ome sapevamo dalle Scuole Superiori essere per il punto d'intersezione delle mediane. 

Esempio : calcoliamo ora il baricentro di un cono circolare retto C , di altezza h e raggio 
di base r, che possiamo pensare con il vertice in (O, O, h) e la base sul piano z = O. 
Per "ragioni di simmetria" il baricentro si trova sull 'asse del cono, quindi ha coordinate 
I = y = O (ma potete calcolarle molto facilmente, dato che si tratta di integrare la 
funzione dispari x su un segmento simmetrico rispetto a x, e lo stesso per y ), dunque 
ci concentriamo sulla ricerca della coordinata z . Dato che la sezione del cono all'altezza 
- è un cerchio di raggio ( h - z )r / h abbiamo 

1 1h (h - z)2 1rr2 h4 h4 h4 5 
zdxdydz = z • 7r..:...._--'-r

2 dz = -(- - 2- + - ) = - 1rr2 h2 

e o h2 h2 2 3 4 12 ' 

perciò la coordinata z del baricentro vale 5h/ 4 . Vi pare corretto che non dipenda dal 
,-alore di r ? 
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Osserviamo che il risultato ottenuto in (A4.1) dice che l'energia potenziale di un 
corpo n di volume V , avente densità di massa uniforme µ e soggetto solo alla gravità. 
vale 

E(n) = µg l zdx = (µV)gvo1\n) l z dx = Peso(f!) · P z 

dove P z è la coordinata z del baricentro: dunque il corpo si comporta, per quant, 
riguarda la gravità, come un punto materiale concentrato nel suo baricentro. 

Più in generale si può calcolare il baricentro di altri sottoinsiemi, con una certa 
precauzione (il che spiegherà la parola "grassi" usati ali' inizio). Osserviamo che se a un 
triangolo pieno aggiungiamo un punto all'esterno, o un segmento, questi non spostano il 
baricentro, dato che hanno area zero ( e sono l'idealizzazione di una pallina o di un fil, 
così piccoli da avere massa che, rispetto a quella positiva del triangolo, è trascurabile . 
Tuttavia abbiamo calcolato il baricentro di una curva: in quel caso non vi erano masst 

importanti (figure con area o volume positivo) , quindi è stato corretto considerare sol< 
la (pur piccola) massa del filo. Si può definire Cli' (A4.2) la k-area di una k-superficie in 
lR.n , e se 

Areak(<l>(A)) > O 

il baricentro di <t>(A) è 

B = ----- X d<Tk . 1 1 
Areak ( <l>(A)) ,t,(A) 

Potete per esercizio provare a calcolare il baricentro della sola superficie laterale di un 
cono ( di nuovo, serve solo la coordinata z ) . 

La ricerca del baricentro è importante in ingegneria navale: infatti una nave ( che 
essenzialmente è una superficie di metallo, cava) ha un certo baricentro, e in quel punto 
possiamo pensare che agisca tutta la forza di gravità. 

Fig. A4.2 : il punto metacentrico 

D'altra parte la nave riceve la spinta idrostatica, che è pari al volume dell'acqua 
spostata ed è applicata nel punto metacentrico, il baricentro del solido che costituisce la 
parte sommersa (la parte, lamiere esterne e vuoto interno, che sta sotto il pelo dell'acqua. 
pensata composta interamente di acqua). 
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Fig. A4.3 : se il punto metacentrico è sopra il baricentro, stabilizza la nave, ma se no ... 

Naturalmente la nave non galleggia se il suo peso è superiore a quello del liquido 
spostato, ma perché la nave stia in equilibrio stabile sull'acqua, occorre che le due forze 
in gioco (la gravità e la spinta idrostatica) non generino mai una coppia che tenda a 
ribaltare lo scafo. Appena la nave rolla o beccheggia un poco, i due punti non si trovano 
più sulla stessa verticale, e se il baricentro sta sopra il punto metacentrico la coppia che 
si produce capovolge la nave: questo è il motivo dell 'affondamento del Vasa, che aveva 
sovrastrutture imponenti ma pesanti che alzavano il baricentro, nonché il motivo delle 
grandi quantità di sassi che (contro l' intuizione) venivano caricati in fondo alla stiva delle 
navi greche, per abbassare il baricentro a costo di diminuzione del carico e aumento del 
peso totale. 

Appendice 4.3 - Integrali superficiali multidimensionali 

La situazione bidimensionale si generalizza alle k-superfici in !Rn : se <I> va da un aperto 
di JRk a !Rn, con k :S n, ed ha in ogni punto jacobiamo di rango massimo (cioè k ), 
indichiamo con c,k(t) la radice quadrata della somma dei quadrati di tutti i minori k x k 
della matrice jacobiana di <I> in un punto t E A . 

Definizione : sia A C JRk un aperto, e sia <I> : A --t IRn una funzione con jacobiano di 
rango k in ogni punto t E A . Se f : </>(A) --t JR, l'integrale k-superficiale di f 
su <I> è 

l f dak = i f(<t>(t))c,k(t) dt. 

Se poi <I> è iniettiva si definiscono l'integrale di f sulla k-superfìcie <t>(A) 

1 f dc,k = { f(</>(t))c,k(t) dt 
q,(A) j A 
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e la k-area di cp(A) 

Esempio: proviamo a calcolare l' Area..i- 1(Sn- 1), dove Sn-1 
unitaria di Rn 

Sn- 1 = { X E Rn: llxll = 1} • 

( 

(A4.2 

Utilizzando le coordinate polari viste in (1.28) si potrebbe scrivere la rappresentazioDt' 
parametrica 

X = cp(0, <PI,··•, <Pn-2) , 

per cui si potrebbe calcolare la matrice Vc/>(0, </)1, ... , <Pn- 2), che è una matrice di di­
mensione n x ( n - 1) , poi il termine o-n- 1 , ed infine l ' Area.i- 1 ( Sn-1) utilizzando la 
formula (A4.2). 

Possiamo però procedere in maniera più rapida ricordando i calcoli fatti per ottenere il 
volume Wn della palla unitaria di Rn. L' Are3.n_1(Sn-1), moltiplicata per un piccolo 
spessore e , sarà all'incirca la differenza tra il volume della palla di raggio 1 + e e quella 
di raggio 1 , cioè 

Per e piccolo, ricordando lo sviluppo di Taylor della funzione (1 + x )n intorno al punto 
x =O, avremo 

per cui 

Quando e diventa molto piccolo, l'approssimazione diventa via via più precisa, per cui 
al limite per é ➔ O si ottiene 

Ad esempio si ha, ricordando i valori di Wn visti nella Sezione 4.5, 



Capitolo 4 : Integrali multipli 277 

Appendice 4.4 - Integrali ed energie di superficie 

In molti casi incontriamo energie di superficie: ad esempio, la tensione superficiale (grazie 
alla quale il leggero insetto idrometra cammina sull'acqua) o più in generale l'energia di 
contatto (o di bagnamento) che si ha quando due sostanze diverse hanno una superficie 
in comune. Ad esempio, una bolla d'olio nell'acqua ha una superficie in comune fra olio 
e acqua; una bolla di sapone ha ben due superfici (la faccia interna e quella esterna) in 
comune fra aria e soluzione saponosa. 

Le energie di superficie sono date (per oggetti solidi in JR3 ) da integrali di superficie, 
e sono del tipo 

ls e(a) da2 

dove e(a) è la densità di energia superficiale nel punto a (vi sono anche forme più 
complete ma più complicate), mentre per oggetti bidimensionali in JR2 la "superficie 
esterna" è semplicemente la curva </J che ne costituisce il bordo, e l 'energia diviene 

l e(cp(t)) . 

Ad esempio se una bolla di sapone occupa uno spazio n il cui bordo è la superficie 80 , 
e /3 è l'energia di contatto fra aria e soluzione saponosa per unità di superficie, l'energia 
totale è data da 

E(O) = 2 { /3da2 = 2/3 Area2 (80) : lao 
dato che la natura cerca sovente di minimizzare l'energia, la bolla cerca di assumere la 
forma n che minimizza E fra tutte le forme che hanno lo stesso volume (l'aria 
che abbiamo soffiato dentro la bolla). Si tratta di un problema di minimo assai diverso 
da quelli visti nei corsi di Analisi matematica 1 e 2, dato che l'incognita qui è un insieme, 
non un numero o più numeri. La soluzione comunque è la sfera. 

Vediamo un altro esempio interessante, quello del menisco che si forma quando un 
liquido è in un recipiente. Fissiamoci con un liquido di densità costante, ad esempio 
l'acqua (o poi il mercurio), contenuto in un bicchiere (dunque col fondo) a pareti cilin­
driche, fatto tutto dello stesso materiale, diciamo vetro, e che il tutto avvenga nell'aria. 
Senza la pretesa di trovare la forma del menisco (problema difficile quanto quello della 
bolla di sapone) mostriamo che la configurazione piatta non è energeticamente la migliore: 
proveremo che il profilo di destra nella figura A4.4 ha energia minore. Chiamiamo R il 
raggio del recipiente e h l'altezza dello smusso (a 45°) nella figura di destra, e vediamo 
quali sono le energie in gioco (i calcoli sono tutti di geometria elementare). 
a) L'energia potenziale: rispetto alla figura di sinistra, gran parte del liquido si è ab­

bassato, ma una porzione vicino al bordo del bicchiere si è alzata. Facendosi i conti, 
la differenza di energia potenziale fra destra e sinistra è 

[
1rh

3 
( h) 1rh

4 
( h ) 2

] 1rµR 3 3 oP = µ 3 R - 4 - -
2
- 1 -

3
R = -

3
-h + o(h ) 

dove µ è la densità di massa ( un parametro). 
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1----------<--- -- ----- ------------- -- -

Fig. A4.4 : la configurazione piatta e una configurazione migliore 

b) L'energia di superficie fra liqujdo e aria: detta a la densità di tale energia per unita 
di superficie (un altro parametro), supponendo per semplicità che questa dipenda 
solo dalle due sostanze e sia quindi proporzionale all'area, la differenza di energia 
superficiale fra destra e sinistra è 

8S = mr( v'2 - l )h(2R - h) = 27r( v'2 - l)aRh + o(h) . 

c) L'energia di superficie data dalla interazione fra il bicchiere e il resto: una parte d 
bicchiere era a contatto con l'aria nella configurazione di sinistra, mentre in quel!.,. 
di destra è a contatto con il liquido. Dette rispettivamente a e >. le densità d. 
energia di bagnamento fra bicchiere e aria, e fra bicchiere e liquido, la differenza d. 
energia di bagnamento fra destra e sinistra sarà pari a (>. - a) volte l'area delh. 
porzione della superficie di bicchiere interessata, quindi pari a 

( 
h

2 
h

3 
) 8B = (>. - a)27rR h - R + 

3
R2 = 27r(~Rh + o(h). 

In totale la differenza di energia fra destra e sinistra è 

8E = 8P + 8S + 8B = 27r[À - a+ ( v'2 - l)a]Rh + o(h) (A4.3 

( e in particolare per h piccolo le energie di superficie sono molto più importanti delre­
nergia potenziale). Da questa espressione si vede che se il coefficiente di h è negativo 

ovvero se 
a> >. + ( v'2 - l)a 

(il che accade se il recipiente si fa bagnare dal liquido più volentieri che rimanere .. 
contatto con l'aria - questo è il caso di acqua e vetro), per h piccolo la differenza d. 
energia fra destra e sinistra è negativa, cioè conviene energeticamente la configuraziollt 
di destra. Se, invece di acqua, nel bicchiere di vetro avessimo del mercurio, il coefficient, 
>. sarebbe assai più alto che per l'acqua, dunque il coefficiente di h in (A4.3) sarebb. 
positivo e la configurazione di destra sarebbe peggiore di quella piatta, anzi sarebb. 
conveniente la configurazione opposta a quella di destra, con lo smusso girato verso ~ 
basso: e difatti il menisco formato dal mercurio è al contrario di quello dell'acqua. 



Capitolo 5 

Equazioni differenziali 

In questo capitolo introduciamo le equazioni differenziali: un tipo particolare di equazioni, 
in cui l'incognita non è un numero o un vettore, ma una funzione, e in cui intervengono 
esplicitamente sia la funzione incognita che alcune sue derivate. 

5.1 - Introduzione alle equazioni differenziali 

Iniziamo presentando alcuni problemi, espressi per ora in forma puramente matematica, 
in cui l'incognita è una funzione; il primo è: "trovate tutte le funzioni la cui derivata è la 
funzione cos x ". Possiamo riscrivere il problema in formula, introducendo l'incognita, 
che è una funzione y(x) alla quale imponiamo che abbia come derivata la funzione cos x . 
Dato che questa derivata è definita su tutto JR , vogliamo che la relazione di essere la 
derivata dell'incognita y valga su tutto JR , quindi il primo problema si riscrive 

y'(x) = cosx Vx E JR (5.1) 

o, volendo, 
y'(x) - cosx = O Vx E JR. 

Sappiamo già che le soluzioni sono infinite, e sono le primitive della funzione coseno. 
Ricordiamo, per i prossimi problemi, che le primitive di una funzione sono definite su un 
intervallo. 



280 SC';;ione 5.1 : Introduzione alle equazioni differenziali 

Il secondo problema è: "trovate tutte le funzioni la cui derivata è uguale alla funzione 
stessa". Qui il problema si riscrive formalmente 

y'(x) = y(x) Vx E JR y'(x) - y(x) = O Vx E JR. (5.2 

Il terzo problema è: "trovate tutte le funzioni la cui derivata è la radice quadrata della 
funzione stessa". Nulla da dire sull'equazione, che sarà y'(x) = VY(x), ma la presenza 
della radice quadrata ci fa sorgere un dubbio: dove sarà definita la funzione incognit" 
y(x) ? Questa domanda si sarebbe dovuta porre anche per il problema precedente, ne 
quale non avevamo pensato che potessero sorgere difficoltà: da dove possono mai nascere. 
dato che il secondo membro y(x) dell'uguaglianza y'(x) = y(x) non sembra ne po 
presentare? Invece, per l'equazione y'(x) = VY(x) la forma del secondo membro e 
suggerisce di essere più cauti. Fra le incognite, mettiamo anche l'intervallo I in cu; 
risulterà definita la soluzione y(x) , così il problema si riscrive 

y'(x) = VYW Vx E I (5.J 

oppure con l'equazione nella forma y'(x) - VY(x) = O. Riparleremo più tardi di quest 
argomento q- (5.18). 

Il quarto problema è: "trovate tutte le funzioni la cui derivata è il quadrato della 
funzione stessa". Sembra molto facile: introduciamo anche qui (anche se pare un ecces 
di prudenza) l' intervallo I , e scriviamo 

y'(x) = [y(x)]2 Vx E I. (5A 

Come talvolta accade, l' intuizione gioca brutti scherzi: a posteriori, vedremo chf­
le soluzioni di (5.3) risultano definite su tutto JR , mentre q- (5.23) quelle di (5.4) n, 
Dunque l' introduzione dell' intervallo (incognito) I non è discrezionale, ma obbligatoria.. 
Concludiamo con altri problemi; il quinto è: "trovate tutte le funzioni la cui derivat 
seconda è l'opposto della funzione stessa", che si tr~ce in 

y"(x) = - y(x) Vx E / : 

qui nella formula (che potremmo riscrivere y"(x) + y(x) = O) interviene la deriva, 
seconda dell' incognita"'-' (5.41 ). 

L'ultimo problema preliminare è direttamente in formula: 

[y'(x)]2 = [senx]2 Vx E I. 

La differenza rispetto agli altri è che non sembra possibile, o almeno non ovvio, scriver 
questa formula come y'(x) = • • • : come liberarsi del ±? Come vedremo, questo fatt< 
rappresenta una difficoltà notevole IQ' (5.59). È ora di definire le equazioni differenziali 
facendo precedere la definizione da una semplificazione: quando è chiaro qual è il nonv­
della funzione incognita, e quale quello della variabile indipendente (l'argomento dell 
funzione incognita, ovvero la variabile rispetto alla quale deriviamo), per non appesantin­
la scrittura la omettiamo quando possibile, così le equazioni che compaiono nei problemi 
presentati all' inizio si scriveranno rispettivamente 

y' = COS X , y' = y , y' = -jy , y' = y2 
, y11 = - y , (y')2 = sen2 x . 
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Definizione si chiama equazione differenziale di ordine n ogni espressione del 
tipo 

F( I Il (n)) _ Q x,y,y ,y , ... ,y - 'vx E I , 

dove F è una funzione dipendente da n + 2 variabili definita in un sottoinsieme E di 
Rn+2 , e y(k) è la derivata k-esima (rispetto alla variabile x) della funzione incognita 
y(x) , definita in un intervallo incognito I C JR. 

Se Y = (Y1, ... , Yd) è un vettore di dimensione d > 1 ed F : E ~ JRm con E 
sottoinsieme di JR(n+I)d+l ed m > 1 , Ja, scrittura 

F(x, Y , Y', ... , y (n)) = O 'vx E I 

è un sistema di m equazioni differenziali nelle d incognite Yj , ... , Yd , di or­
dine n. 

Un 'equazione differenziale si dirà. in forma normale se la funzione F si può scri­
vere nella forma 

F(x , zo, Z1, z2, ... , z~) = Zn - J(x, zo, z1, z2, ... , Zn-1) 

per una funzione f opportuna, così che l'equazione differenziale diventa del tipo 

(n) - !( I Il (n-l)) y - x,y,y,y , ... ,y . (5.6) 

. -lnalogamente, un sistema di equazioni differenziali è in forma normale se lo si può 
riscrivere 

y (n) = f(x , Y, Y', ... , y (n-1)) . 

["na, soluzione di una equazione differenziale (o sistema) di ordine n è una funzione 
de.finita in un intervallo I e JR , derivabile n volte in I , e che in tutti i punti di I 
rnrifìca l'equazione (o sistema). 

Osservazione : se un sistema è in forma normale, necessariamente ha tante equazioni 
quante sono le componenti dell' incognita Y , cioè d = m. 

Osservazione: l'intervallo di definizione della soluzione è anch'esso una incognita; questo 
potrà creare qualche problema però, come abbiamo visto, è una richiesta da cui non 
possiamo prescindere RT Teorema 5.7. 

Osservazione : in svariati enunciati che seguono (ad esempio tutti quelli che sfruttano 
la locale lipschitzianità) richiederemo che l' insieme E sia un aperto; se il dominio 
dell'equazione (o sistema) non è aperto, vengono a mancare molti strumenti fondamentali 
come il Teorema di esistenza 5.2, e si è costretti a impiegare tecniche ad hoc, ca.so per 
caso...., (5.17). 
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Esempio: la più semplice equazione differenziale !l'.w' (5.1) è data dall'espressione y' = f( 

dove f è una assegnata funzione continua definita in un intervallo I . Sappiamo che lr 
soluzioni sono tutte e sole le primitive della funzione f , che per il Teorema fondamcntalr 
del calcolo integrale ll>i' Teorema 1.50 sono definite su tutto I e sono date da 

y(x) = 1x f(t) dt + e 

con a E J e e E JR . 

Naturalmente, non è obbligatorio chiamare x la variabile indipendente e y la 
funzione incognita: quando la variabile indipendente riveste il ruolo del tempo (o da 
parametro in una curva) è frequente indicarla con la lettera t ; quando la funzionr 
incognita è una massa la potremo indicare m , e così via. 

Esempio : sui camion è installato un tachigrafo, che registra ad ogni istante t la velocità 
v del mezzo; dalla funzione v(t) è possibile risalire allo spazio s percorso dal camion 

dall'inizio del viaggio, fissato per t = O: infatti s' = v(t), quindi s(t) = J;v(T)d­
senza altre costanti additive. Se il tachigrafo ha registrato la velocità solo da un certo 
tempo t0 , e in quel momento lo spazio già percorso dal camion era s0 , la funzione s(t 
verifica IQ' (1.47) 

s(t)-s(to)= ( \ 1vdT= f \(T)dT 
ly l to 

e perciò, essendo s(to) = so , è data da 

s(t) = so+ t v(T)dT. 
lto 

Esempio: un'altra caso semplice ll>i' (5.2) è dato dall'equazione y' = ay, con a costante 
reale. In un intervallo in cui è y(x) > O, dividendo per y, l'equazione equivale a 

(tog y)' = a da cui si ricava log y = ax + k con k E JR costante arbitraria, e quindi 
y = e eax con e = é > O costante arbitraria. Osserviamo che questa soluzione rimane 
positiva su tutto JR, quindi I = JR. Analogamente, in un intervallo in cui è y(x) < O 
si trova y = c eax con e < O costante arbitraria. E se in un punto una soluzione 
valesse zero? Nulla di male, la funzione identicamente nulla verifica l'equazic;me, quindi 
è anch'essa una soluzione. In definitiva, siccome le soluzioni y cercate sono derivabili (e 
quindi continue), si trova che tutte e sole le soluzioni dell'equazione differenziale y' = ay 
sono le funzioni y = e eax con e E JR costante arbitraria. 

Esempio : in una colonia di batteri, ogni minuto si divide circa il 5% dei batteri presenti. 
dunque se b(t) è il numero di batteri al tempo t, misurato in minuti, è 

b(t + 1) - b(t) = 0.05 · b(t). 

Se da ciò potessimo dedurre che b'(t) = 0.05 • b(t) , da quanto visto prima avremmo 
b(t) = b(O)e0•05·t , cioè i batteri crescono esponenzialmente (supponendo che non vi siano 
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altri fattori che influenzino la vita o la morte dei batteri). Sostituire b(t + 1) - b(t) con 
b'(t) è però in generale errato, t isto che la derivata è il limite del rapporto incrementale, 
e non l' incremento di b corrispondente a un incremento unitario di t; vediamo come 
possiamo procedere in questo caso. Intanto è ragionevole supporre che la derivata ( ovvero 
la velocità di crescita) sia direttamente proporzionale al numero di batteri esistenti, 
cioè b'(t) = ab(t) per qualche a da determinarsi, ma abbiamo risolto poco fa questa 
equazione, ottenendo che b(t) = b(0)eat . Se vogliamo che dopo un minuto i batteri 
siano aumentati del 5%, cioè b(l) = 1.05-b(0) , occorre che b(l) = b(0)ea•l = 1.05-b(0), 
ovvero la costante esatta è 

a = log 1.05 ~ 0.04879 

e non a = 0.05 ; allora l'equazione differenziale soddisfatta dai batteri è 

b' = b logl.05 (5.7) 

e la popolazione di batteri cresce secondo la legge 

b(t) = b(0)et log 1.o5 = b(0)(l.05)t . (5.8) 

Esempio : per i materiali radioattivi si parla di tempo di dimezzamento, che è il tempo 
Td dopo il quale metà degli n0 atomi radioattivi iniziali sono decaduti; pertanto se 
chiamiamo n(t) il numero di atomi che non sono ancora decaduti al tempo t abbiamo 

n(0) = no, ~ (Td) =~no. 

La situazione è analoga a quella dell'esempio precedente, e partendo da 

n'(t) = -an(t) 

per qualche a positivo (il numero diminuisce col tempo, quindi n' deve essere negativa) 
ricaviamo 

n(t) = noe-at . 

Imponendo che al tempo Td metà degli atomi sia decaduta otteniamo 

quindi 

log2 
a= Td ' 

(5.9) 

Possiamo a questo punto vedere quanto sia la vita media di un atomo radioattivo, e 
verificare che questa non è il tempo di dimezzamento: se infatti ricaviamo da (5.9) il 
tempo t in funzione di n, scriviamo cioè 

tlog2 
logn(t) = log no - ----;y;;- t __ Td log n(t) 

- log2 no ' 

..... 
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otteniamo la funzione 

Td 
t(n) = -

10
g 

2 
log(n/no) , O<n ::S:no, 

che esprime dopo quanto tempo t sono rimasti radioattivi ancora n degli no atomi ini­
ziali; chiaramente per n = n0 (vale a dire tutti gli atomi iniziali sono ancora radioattiù 
il tempo risulta zero, dato che il numero di atomi radioattivi comincia subito a scendere 
in base alla legge (5.9). Allo stesso modo, per n--+ O abbiamo t--+ +oo. Se t(n) = k. 
vuol dire che n atomi sono rimasti attivi per il tempo k : dunque la vita media di un 
atomo è la media integrale della funzione t fra O e no , vale a dire 

1 1no Td Td 11 VM = - --
1

- log(n/no) dn - -
1 2 

logsds 
no O og2 t og 0 n=nos 

Td l Td 
= - -

1
- [s logs - s]0 = -- -:::= 1.44 Td. 

og2 log2 

Ci si potrebbe chiedere: ma che senso ha fare derivate o integrali rispetto a una variabili 
che, come n, ha valori interi? Ricordiamo che, salvo in condizioni di vuoto estremo, il 
numero no di atomi presente anche in una/piccola quantità di sostanza è generalmente 
strabiliante (la costante di Avogardo è efrc~ 6 • 1023 ), e se riportassimo su una scala 
lunga 10 cml' intervallo [O, no] la distanza fra i vari valori sarebbe del tutto trascurabile: 
dunque possiamo assimilare quella che sarebbe in realtà una sommatoria a un integrale 
e un rapporto incrementale a una derivata. 

5.2 - Il proble ma di C auchy: esist enza 

Riesaminiamo l'esempio del camion: se non avessimo saputo quanto era il kilometraggio 
percorso dal mezzo ali' istante to , non avremmo certo potuto dire quanto era il kilome­
traggio all'istante t o, in altre parole, se non avessimo saputo che s(t0 ) aveva un certo 
valore, avremmo solo potuto dire che 

s(t) = 1l v(T) dT te 
to 

(5.10) 

per qualche costante arbitraria e : la funzione s sarebbe stata indeterminata, dato che ci 
sono infinite funzioni (una per ogni valore di e E JR) che soddisfano questa uguaglianza. 
Dunque la condizione iniziale s(to) = s0 ci permette di determinare l'unica, fra le 
soluzioni di (5.10), che risolve il problema. Vediamo un altro caso. 
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Esempio: un corpo di massa m cade al suolo (nel vuoto, o trascurando l'attrito dell'aria) 
sotto l'azione della gravità. Detta h(t) la sua altezza dal suolo all'istante t, per la legge 
di Newton la sua accelerazione h" è data da 

mh"(t) = -mg ==> h"(t) =-g. (5.11) 

Supponiamo che a un certo istante t0 l'altezza dal suolo h(to) e la velocità h'(to) siano 
note e siano date da 

h(to) = ho , h'(to) = h1. (5.12) 

Le condizioni sulla funzione incognita h sono allora l'equazione differenziale (5.11) e 
le due condizioni (5.12). Ricordando (1.47), la velocità h' , essendo una primitiva 
dell'accelerazione, verifica 

h'(t) - h'(to) = lt h"(T) dT = - g(t - to) ==> h'(t) = h1 - g(t - to) . 
to 

Allora l'altezza, a sua volta una primitiva della velocità, verifica 

h(t) - h(to) = lt h'(T) dT = lt [h1 - g(T - to)] dT 
to to 

ed è pertanto data da 

= h1(t - to) - fl.(t - to)2 

2 

/ 
h(t) = ho+ h1 (t - to) - ~(t - to)2 

. 

Rispetto all'esempio del camion, l'equazione è del secondo ordine anziché del primo, 
ed è chiaro che per determinare la legge del moto abbiamo bisogno di entrambe le con­
dizioni (5.12). Questa è una situazione molto semplice e generale, e per l 'accoppiata 
equazione differenziale in forma normale - condizioni iniziali dei due esempi appena visti 
è disponibile una teoria completa. 

Vi sono altri problemi in cui un'equazione differenziale è sottoposta a condizioni 
di tipo diverso dalle condizioni di Cauchy; ad esempio, per un'equazione del secondo 
ordine si può imporre il valore della soluzione in due punti diversi. Rimandiamo alla 
Sezione 5.9, in cui mostreremo anche qualche esempio di equazione differenziale non in 
forma normale. 

Definizione : dati l'equazione differenziale di ordine n in forma normale 

(n) _ f( I (n-1)) Y - x,y, y, ... ,y , (5.13) 

con f definita in un sottoinsieme E di R,n+l , ed ur1 punto 
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il sistema 
y(n) = f(x , y, y', ... ,y<n- 1)) 

y(xo) = Yo 

y'(xo) = Y1 

y<n- l)(xo) = Yn- 1 

si chiama problema di Cauchy con dato iniziale Po per l'equazione (5.13). Una 
soluzione del problema di Cauchy è una funzione y definita in un intorno I di xo. 
che in I risolve l 'equazione e che verifica nel punto x0 tutte le condizioni iniziali 

y(xo) = Yo , y'(xo) = Y1 , . . . ' {n- 1) ( ) Y Xo = Yn- 1 · 

In particolare, per il caso delle equazioni del primo ordine, il problema di Cauchy si 
riduce a 

{ 
y' = f(x , y) 

y(xo) = Yo / 

dove (xo,Yo) è un punto del sottoinsieme E e JRVin cui è definita f (~ es. 5.1). Il 
problema di Cauchy ha senso naturalmente anche per i sistemi; dato che si deve trattare di 
sistemi in forma normale, il numero m delle equazioni deve essere pari alla dimensione 
del vettore funzione incognita Y . Anche se il caso delle equazioni rientra come caso 
particolare in quello dei sistemi, abbiamo preferito dare due definizioni separate per non 
spaventare il lettore con il caso generale, e per presentare subito il caso più frequente. 

Definizione : dati il sistema di m equazioni differenziali di ordine n in forma normale 

y (n) = f (x, Y , Y ', ... ' y (n- 1))' 

con f definita in un sottoinsieme E di !Rmn+ 1 a valori in !Rm , ed un punto 

P o = (xo, Y o, Y 1, ... , Y n - 1) E E , 

il sistema 
y (n) = f (x, Y , Y ', ... ' y (n-1)) 

Y (xo) = Yo 

Y' (xo) = Y 1 

y (n-l)(xo) = Y n-1 

(5.14 

si chiama problema di Cauchy con dato iniziale P 0 per il sistema (5.14) . Una 
soluzione del problema di Cauchy è una funzione Y definita in un intorno I di x0 

a valori in !Rm, che in I risolve il sistema (5.14) e che verifica nel punto x0 tutte le 
condizioni iniziali 

Y (xo) = Yo , Y' (xo) = Y1 , ... ' y (n- l)(xo) = y n - 1 • 
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Nel caso particolarmente freq~ente dei sistemi del primo ordine il problema si riduce a 

{ 
Y ' = f (x, Y ) 

Y (xo) = Y o 

dove (x0 , Y o) è un punto del sottoinsieme E e JRm+l in cui è definita f . 
Il prossimo importante risultato mostra che le equazioni e i sistemi di ordine n 

possono essere viste come particolari sistemi del primo ordine. 

Teorema 5.1 : sia f: E ➔ JR una funzione continua su un sottoinsieme E e JRn+J , 

sia (xo, P o) E E e sia <I> : E ➔ IRn la funzione <I> = ( </>1 , . .. , <l>n) defìnita da 

</>1(X,Yo,Y1, · · · ,Yn- 1) = Y1 

<h(x, Yo , Yi, · · · , Yn- 1) = Y2 

<Pn- 1(x,yo,Y1, . •· ,Yn-d = Yn- 1 

<Pn(x, Yo , Y1, · · · , Yn- 1) = f(x, Yo, Y1, · · · , Yn- 1) · 
Se y è una soluzione del problema di Cauchy per l 'equazione di ordine n 

y<n> = f(x, Y, y' , . .. 'y<n- 1)) , (y, y' , ... ' y<n-l))(xo) = Po ' 

la funzione 
Z (x) := (y(x), y'(x), ... , y<n- 1>(x)) 

è una soluzione del problema di Cauchy 

Z' = </>(x, Z ) , Z (xo) = P o; 

viceversa, se Z è una soluzione del problema di Cauchy (5.16) la funzione 

y(x) := Z1 (x) 

è una. soluzione del problema rauchy (5.15). 

DIMOSTRAZIONE : è una semplice verifica; il sistema (5.16) si scrive, per esteso, 

Z~ = Z2 

Z~ = Z3 

Z~_1 = Zn 

Z~ = f (x, Z1, .. . , Zn) , 

e se y risolve (5.15) chiaramente 

(y)' = y' 

(y')' = y" 

(y(n- 1))' = y(n) = f(x ,y, y' , . .. ,y<n- 1)) , 

(5.15) 

(5.16) 

cioè (controllando anche la condizione iniziale) la funzione Z risolve (5.16); la verifica 
contraria è analoga. ■ 
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Fig. 5.1 : alcune soluzioni Yk dell'equazione y' = Jiyj 

La tecnica usata nell'esempio è importante, e si generalizza nel prossimo risultato. 
Per non distrarre con inutili complicazioni, lo diamo solo per una equazione del primo 
ordine in forma normale, ma vale più in generale. 

Teorema di incollamento 5.3 
E e lR2 e sia (xo, Yo) E E; siano 
a< x0 < b sia 

sia f una funzione continua in un sottoinsieme 
y1 , Y2 due funzioni tali che per a e b opportuni con 

Y1 :]a, xo] -+ JR continua, 

Y2 : [xo , b[-+ JR continua , 

y~ = f (X) Yl ) per a < X < Xo ) 

Y~ = f (x, Y2) per xo < x < b , 

La funzione y :]a, b[-+ JR definita da 

y(x) = { Y1(x) 
Y2(x) 

se a< x S xo 

se xo S x < b 

Y1(xo) = Yo , 

Y2(xo) = Yo . 

è continua e derivabile in I =]a, b[ e risolve in I il problema di Cauchy 

{ 
y' = f(x,y) 

y(xo) = Yo -

Il teorema vale anche per equazioni (o sistem i) in forma normale di ordine n. 

DIMOSTRAZIONE : che y sia continua è chiaro, dato che lo sono y1 e Y2 e hanno lo 
stesso valore in xo . Come visto poco ~er a < x < x0 la funzione y coincide con la 
funzione y1 in tutto un intorno di r, quindi ltii" Proposizione 1.38 

y'(x) = y~(x) per a< x < xo, 

e analogamente 
y'(x) = y~(x) per xo < x < b. 
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Lo stesso risultato vale per sistemi di ordine n , che sono equivalenti a (grossi 
sistemi del primo ordine. Dunque moltissime delle proprietà delle equazioni ( o sistemi 
di ordine n si deducono da proprietà analoghe per sistemi di ordine uno, il che semplifica 
molto il lavoro dimostrativo. 

Esempio : nel caso visto sopra della crescita dei batteri ..., (5.7) , supponiamo di saperE" 
che dopo un'ora, cioè al t empo t = 60 minuti, i batteri siano 106 . Allora la popolaziollt' 
di batteri risolve il problema di Cauchy 

{ 
b' = blog 1.05 

b(60) = 106 ; 

sappiamo che tutte le soluzioni dell'equazione differenziale sono le funzioni 

b(t) = c(l.05/ / 

con e costante arbitraria, e dobbiamo determinare e in modo che la funzione b(t 
verifichi anche la condizione iniziale: dobbiamo cioè richiedere che 

106 = b(60) = c(l.05)60 , 

ovvero 
106 

e= (l.05)60 -::- 53536 . 

La crescita dei batteri segue allora la legge 

b(t) = (l.~~;60 - (l.05)t -::- 53536 - (l.05)t . 

È chiaro che il punto fondamentale è stato disporre della formula che ci dà tutte le 
soluzioni dell'equazione differenziale, tra le quali abbiamo poi scelto quella che verificava 
la condizione iniziale. Va detto che non tutte le equazioni differenziali hanno soluzione. 
nemmeno quelle di tipo più semplice come y' = f (x) , pertanto il teorema di esistenza 
che segue..., Teorema 5.2 ha grande importanza per la teoria. 

Esempio : sia f D la funzione di Dirichlet 11:i' ( 4.1) che vale 1 sui numeri razionali e O 
sui numeri irrazionali. Sappiamo...- Proposizione 1.47 che se g è la derivata di qualche 
funzione su un intervallo I , l' immagine di g su tale intervallo è anch'essa un intervallo. 
Se l'equazione differenziale 

y' = fv(x) 

avesse una soluzione y su qualche intervallo I , la derivata / 0 della funzione y 
dovrebbe avere come immagine un intervallo, mal' immagine di fv è {O, 1} che non è 
un intervallo, pertanto l'equazione differenziale y' = f v(x) non ha alcuna soluzione. 
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La funzione di Dirichlet è un esempio patologico, dato che è discontinua in tutti i 
punti di JR . Come vediamo ora, se si rimuove questa ostruzione il fenomeno appena 
visto non si presenta più: diamo il teorema di esistenza direttamente per i sistemi, dato 
che per le equazioni l' unica differenza è scrivere f e y al posto di f e Y. Mettiamo 
in appendice la dimostrazione che risulta piuttosto tecnica (u~ appendice 5.12). 

Teorema di esistenza di Peano 5.2 : se la funzione f è continua in un intorno di 
(x0 , Y 0) E JRn+l , il problema di Cauchy per il sistema 

Y ' = f (x, Y ), Y (xo) = Y o 

ha almeno una soluzione Y , definita in un intorno I di xo . 

Osservazione: se il dominio E dì f non è un aperto, vi sono punti P o E E che non 
hanno alcun intorno contenuto in E ; per tali valori iniziali sarà impossibile applicare il 
teorema di esistenza, che è il punto di partenza da cui non si può prescindere. Qualcosa 
si può dire specificando meglio le ipotesi: se f è continua in E , ed E contiene 

{(x, Y ): xo :s; x < xo +a , IIY - Yoll < b} 

allora esiste una soluzione definita in un intorno destro di xo , e analogamente se E 
contiene 

{ (x, Y ) : xo - a < x :s; xo , IIY - Y o Il < b} 

allora esiste una soluzione definita in un intorno sinistro di x0 . 

Le equazioni differenziali vengono sovente usate in modelli matematici della realtà 
per poter predire "il" comportamento di un sistema dinamico, "la" numerosità di una 
popolazione, "la" posizione a un dato istante, e altri fenomeni simili. Sottolineiamo 
l'uso dell'articolo determinativo, che sottintende l'unicità della soluzione: sapere che la 
posizione di un automezzo a un dato istante potrebbe essere un qualunque punto fra 
Milano e Roma non sarebbe p~abilmente di grande aiuto. Abbiamo già visto che in 
generale una equazione differrziale può avere infinite soluzioni: ad esempio tutte lepri­
mitive della funzione seno risolvono l'equazione y' = sen x . L'aggiunta della condizione 
iniziale, cioè il passaggio dall'equazione differenziale a un problema di Cauchy, sembrava 
aver eliminato questa incertezza: nell'esempio visto, conoscere la posizione del camion 
all'istante t0 ( e lo stesso per la popolazione di batteri) ci permetteva di scegliere, fra 
tutte le soluzioni dell'equazione differenziale, l'unica per la quale anche la condizione 
iniziale era verificata. Tuttavia le cose non sono sempre così facili, e anche problemi di 
Cauchy per equazioni apparentemente molto semplici possono avere infinite soluzioni. 

Esempio: abbiamo considerato rF (5.3) l'equazione differenziale y' = ,/fj; ora studiamo 
il problema 

y' = ,/fJ, y(xo) = Yo . (5.17) 

Dato che la funzione f(x,y) = ,/fj non è definita in un aperto, non possiamo usare il 
Teorema di esistenza 5.2, almeno se Po = (xo , O) . Certamente, se Po = (xo, Yo) con 
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Yo > O, possiamo considerare lo stesso problema, ma nell'aperto O' = { (x, y) : y > O} : 
per il Teorema 5.2, questo problema di Cauchy ha una soluzione y definita in un intorno 
I di x0 , e dovendo essere (x,y(x)) E n' per ogni x E J necessariamente y(x) >O, 

quindi y( x) risolve anche il problema originario. 
Vediamo (ma non vi sono metodi generali, purtroppo) come ce la possiamo cavare 

ugualmente, anche se y0 = O ; studiamo ad esempio il problema di Cauchy 
~ 

le due funzioni 

y(x) = O, 

{ 
y' = Jjyj (5.18) 
y(7) = O : 

Y1(x) = { ~(x _ 7)2 

sex::;7 

sex 2: 7 

risolvono entrambe il problema di Cauchy (e sono evidentemente diverse). Per y non 
c'è nulla da dire; la funzione y7 è derivabile per x < 7 , dato che in quell'intervallo 
aperto coincide con la funzione nulla che è derivabile, quindi per x < 7 la derivata 
di y7 coincide con la derivata della funzione nulla, che vale zero ed è la radice della 
funzione zero: dunque per x < 7 la condizione y' = JM è soddisfatta. È derivabile 
anche nell'intervallo aperto x > 7, dato che in quell'intervallo coincide con la funzione 
derivabile (x - 7)2 /4, quindi lì ha derivata (x - 7)/ 2, che è la radice di (x - 7)2 /4. 
Poi, per x = 7 è continua, ed essendo 

l. 1 ( ) li X - 7 lim y~(x) = lim O= O, 
x-.7- x -.1-

1m y7 x = m -- = O 
x-+7+ x-.7+ 2 

la funzione y7 è derivabile~ Proposizione 1.48 anche per x = 7 , con derivata zero. In 
conclusione 

y~(x) = { ~(x - 7) 
sex::;7 

sex2:7 

e in particolare y~(x) = Jly7 (x)I = Jy,;(x} in ogni punto x. Allora y7 risolve 
l'equazione differenziale, e dato che verifica anche la condizione iniziale risolve il problema 
di Cauchy originario (5.17), che come si è detto ha (almeno) due soluzioni. In realtà 
possiamo vedere che ne ha infinite: tutte le funzioni 

Yk(x) = .{ ~(x - k)2 
sex:s;k 

sex 2: k 

con k 2: 7 risolvono il problema di Cauchy (5.17), e anzi addirittura tutte le funzioni 

{

-¼(x - h)2 sex :s; h 

Yh,k(x) = 0 se h :s; x :s; k 

¼(x - k)2 sex2:k 

con h :s; 7 ::; k risolvono il problema di Cauchy (5.18). 
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Dato che y(x) = Y1(x) per a< x < x0 , abbiamo per tali valori di x 

y'(x) = y~(x) = f(x,y1(x)) =Ax,y(x)), 

cwe y risolve l'equazione differenziale per a< x < x0 , e analogamente per xo < x <b. 
Poi, osserviamo che dalla continuità di f in (x0 , y0 ) e dal fatto che 

lim Y1(x) = Y1(xo) = Yo 
x-+xQ 

segue 

lim y'(x) = lim y~(x) = lim f(x,y1(x)) = f(xo,Yo) 
x➔xl) x-+xC) x➔xl) 

e analogamente 

lim y'(x) = lim y;(x) = lim f (x, Y2(x)) = J(xo, Yo) , 
x--+xt x--+x;t x--+xt 

quindi"'-' Proposizione 1.48 la funzione y è derivabile anche in x0 con derivata y'(xo) = 
f (xo, Yo) , ma allora 

y'(xo) = f(xo,Yo) = f(xo,y(xo)), 

dunque y' = f(x, y) in tutto ]a, b[. ■ 

Il Teorema di incollamento asserisce che se abbiamo due soluzioni di una equazione 
differenziale, una definita a sinistra e l 'altra a destra di un punto x0 , e le due funzioni 
si raccordano con continuità in x 0 , la funzione che si ottiene incollando le due soluzioni 
è ancora una soluzione, stavolta definita intorno a x 0 . Questo teorema è utilizzato. 
fra l'altro, per semplificare molte dimostrazioni. Ad esempio vediamo che il Teorema di 
esistenza di Peano si ricava dal seguente enunciato, analogo ma "solo a destra" . 

Proposizione 5.4 : se f è una funzione continua in un intorno di (x0 , y0 ) , esiste una 
funzione continua y defìnita in un intorno destro [x0 , b[ che verifìca 

y' = f(x, y) in ]xo, b[, y(xo) = Yo. 

Usando questa proposizione (nella cui dimostrazione sono insite tutte le difficoltà 
vere) proviamo il Teorema di esistenza 5.2: se vale questa proposizione abbiamo diretta­
mente una funzione y2 che verifica 

Y2 : [xo, b[-+ JR continua, Y~ = f ( x, Y2) per xo < x < b , 

Ora, per poter usare nuovamente questa proposizione per trovare una soluzione anche a 
sinistra di x0 , tutto quel che facciamo è girare il foglio di 180° (quindi il punto (x0 , Yo 
si sposta in (- xo, -yo) , dalla parte opposta), trovare una soluzione che va verso destra 
partendo da (- xo, -yo) e rigirare il foglio. Matematicamente, poniamo 

g(x,y) = J(-x, -y) 
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(notiamo che il dominio di g è il simmetrico rispetto all'origine del dominio di f) in 
modo che ora g è continua in un intorno di (-x0 , - y0 ) . Applicando la proposizione 
precedente troviamo una funzione z1 definita in un intorno destro di -xo , che chia­
miamo per comodità [- xo, -a[ con a < xo, tale che 

z1 : [- x0 , -a[-+ JR continua , z~ = g(x, z1(x)) per - xo < x < - a, z1(- xo) = - Yo. 

Poniamo ora y1 (x) = - z1 ( - x) (il grafico di y1 è quindi il simmetrico rispetto all'origine 
del grafico di z1 : per capire la prossima formula, visualizzate da soli quel che accade 
alle rette tangenti ai due grafici) e vediamo che per a< x < xo 

dunque 

y~(x) = D[-z1(- x)] = - z~(-x) · (-1) = z~(-x) 

= g(-x,z1(- x)) =g(-x, - y1(x)) =f(x, y1(x)), 

Y1 :]a, xo] --+ JR continua , y~ = J(x, Y1) per a < x < xo , Y1 (xo) = Yo 

e per il Teorema di incollamento 5.3 la funzione ottenuta incollando Y1 e Y2 risolve il 
problema di Cauchy per f in ]a , b[ . 

Conviene formalizzare la tecnica introdotta (una rotazione del piano per dedurre il 
caso sinistro da quello destro) in un enunciato, che utilizzeremo in seguito per ridurre 
alcune dimostrazioni al solo caso destro. 

Proposizione 5.5 : sia y(x) una soluzione del problema di Cauchy 

y'(x) = J(x, y(x)) , y(xo) = Yo (5.19) 

definita in un intorno destro ( oppure sinistro) di x 0 . Posto 

g(ç, TJ) = f (-ç, -ri) , TJ(ç) = -y( -ç) , (ço, TJo) = -(xo, Yo) , 

la funzione r,(ç) risolve il problema di Cauchy 

r,'(ç) = g(ç, r,(ç)) , TJ( ço) = T/O (5.20) 

in un intorno sinistro ( oppure destro) di ço . 

Approfittiamo per aggiungere un'altra tecnica che permette di semplificare varie 
situazioni; se consideriamo il problema di Cauchy per l'equazione differenziale del primo 
ordine y' = f (x, y) , con un certo dato iniziale (xo, y0) , e trasliamo gli assi in modo che 
la nuova origine sia il punto che aveva coordinate (x0 , y0 ) , la soluzione del problema 
di Cauchy originario, letta nelle nuove variabili, ora dovrebbe risolvere un problema di 
Cauchy con dato iniziale (O, O) . Naturalmente anche la funzione f va letta nelle nuove 
variabili - tanto per cominciare, il punto (x0 , yo) appartiene al dominio di f, mentre 
il dominio della nuova funzione ch~ende il posto di f dovrà contenere (O, O) . Vale 
la pena di dare un enunciato preciso a questa osservazione, che utilizzeremo in seguito. 
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P roposizione 5.6 : sia y(x) una soluzione del problema di Caucby 

Posto 

y'(x) = f(x,y(x)) , 
t 
1 

g(é,, r,) = J(é, + xo, r, + Yo) , 
t 
2 

la funzione r,( ç) risolve il problema di Caucby 

r,'(ç) = g(é,, 17(é,)) , 

y(xo) = Yo. 

r1(é,) = y(é, + xo) - Yo , 
t 
3 

17(0) = O . 

(5.21) 

(5.22) 

Analogamente, se 17(é,) è una soluzione del problema di Caucby (5.22) allora posto 

J(x, y) = g(x - xo, y - Yo) , y(x) = 17(x - xo) + Yo 

la funzione y(x) risolve il problema di Caucby (5.21). 

DIMOSTRAZIONE : proviamo solo la prima implicazione (la seconda è analoga). Che 
17(0) = O , è una semplice verifica; poi 

171(é,) = y'(é, + xo) = J(é, + xo,y(é, + xo)) = J(é, + xo, 17(é,) + Yo) = g(é,,17(é,)) 
t t t t 
3 1 3 2 

come dovevamo dimostrare. ■ 

Osservazione: i due enunciati precedenti valgono anche per sistemi in forma normale del 
primo ordine, con notazione di poco più complicata: ad esempio, per l'ultimo enunciato, 
il problema di Cauchy è 

Y '(x) = f (x, Y (x)) , Y (xo)= Y o 

e le sostituzioni sono 

g(é,, r,) = f (é, + xo, 'T/ + Y o) , r,(é,) = Y (é, + xo) - Y o . 

Valgono anche, con notazione più complicata, per equazioni di ordine n , dove la trasla­
zione riguarda tutte le componenti che appaiono nei dati del problema di Cauchy, cioè 
non solo y(x0 ) ma anche y'(x0 ), ... ,y(n-ll(x0), e anche per sistemi di ordine n. Per 
la Proposizione 5.5 la situazione è più delicata (solo a livello di notazione!) dato che se 
17(é,) = -y(-é,) allora 17'(é,) = +y'(- é,), 1711 (é,) = -y"(-ç), 17111 (é,) = +y111 (-é,) e così 
via. In definitiva conviene ricordare che se si dimostra qualche proprietà per un problema 
di Cauchy con tutte le componenti del dato iniziale nulle in x = O , la stessa proprietà 
vale (con le modifiche dovute alla traslazione) per un problema di Cauchy qualsiasi, e 
analogamente (ma con una certa attenzione), molte delle proprietà dimostrate a destra 
di xo valgono anche a sinistra di x0 . Useremo le proposizioni precedenti dicendo 
semplicemente che "basta trattare il caso (x0 , y0 ) = (O, O)" oppure "basta trattare il 
caso x 2: xo " . 
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Il teorema di esistenza permette di sollevare e risolvere anche un'altra questione, 
quella del significato dell'espressione "l'unica soluzione è ... ". Infatti, riguardando sia 
la definizione di soluzione di una equazione differenziale che la definizione di soluzione 
del problema di Cauchy è chiaro che l 'intervallo I che vi compare entra a far parte 
del concetto di soluzione, la quale quindi dovrebbe essere la coppia (y, I ) data dalla 
funzione e dal suo intervallo di definizione. 

Esempio : consideriamo le tre funzioni 

{ 

Y1 '.]O, 3[---+ JR , Y1 (x) = ~; . 
Y2 .] - 1, 1[---+ JR, Y2(x) - x, 

y3 :]O, 4[---+ JR , y3(x) = x . 

Detti Ii , h, h i tre intervalli di definizione, abbiamo che 
1) le tre funzioni sono diverse, dato che ad esempio y1 (2) ha senso e y2 (2) no; 
2) le tre funzioni hanno derivata 1 e valgono O per x = O 

e quindi 
3) le tre funzioni Y1 , Y2 e y3, ovvero le coppie (Y1, Ii ), (y2, I2) e (y3, h), sono tre 

soluzioni diverse del problema di Cauchy 

y' = 1 , y(O) = O . 

L'obiezione che si può porre subito è che le tre funzioni sono in effetti restrizioni a 
intervalli più o meno piccoli della funzione definita su tutto JR da y(x) = x . Formaliz­
ziamo questo concetto. 

Definizione : date due soluzioni Y1 e Y2 di una stessa equazione differenziale, e detti 
Ii e I2 i rispettivi intervalli di defìnizione, si dice che y 2 è una estensione di y 1 se 

Y1(x) = Y2(x) \:/x E Ii 

(vale a dire se Y1 è la restrizione di Y2 a I 1 ). Si dice che è una estensione propria 
se in aggiunta Ii /. I 2 . Le stesse defìnizioni valgono per soluzioni Y di sistemi di 
equazioni differenziali. 

Nell'esempio precedente, osserviamo che la soluzione y3 è una estensione di y1 , ma 
non lo è di y2 . Certamente tutte e tre le coppie hanno come estensione la soluzione y , 
la quale ( dato che il dominio è ormai tutto JR) non può avere ulteriori estensioni proprie. 

Definizione : una soluzione y di una equazione differenziale si dice de finita su un 
intervallo massimale se non esistono altre soluzioni dell 'equazione differenziale che 
siano estensioni proprie di y . La stessa defìnizione vale per soluzioni Y di sistemi di 
equazioni differenziali. 

Usando strumenti matematici delicati si dimostra il prossimo risultato, che ci permet­
te di chiarire in modo definitivo il concetto di soluzione; diamo l'enunciato direttamente 
per sistemi. 

/ 



296 Sezione 5.2 : Il problema di Cauchy: esistenza 

Teorema 5. 7 : se Y è una soluzione di un sistema di equazioni differenziali, ne esiste 
una estensione Y che è definita su un intervallo massimale. 

D'ora in poi, per "soluzione" intenderemo sempre una soluzione definita su un inter­
vallo massimale. 

Il Teorema di Peano 5.2 assicura soltanto l'esistenza di almeno una soluzione, 
definita in qualche intorno di x0 . È chiaro che, se ad esempio la funzione f(x , y) è 
definita solo per -1 < x < 1 , il problema di Cauchy 

y' = f(x,y), y(O) = Yo 

non può avere una soluzione y(x) definita su un intervallo più ampio di ] - 1, 1[, visto 
che f(x ,y) non ha senso per x \t]-1, 1[. Tuttavia, anche se f(x,y) è definita su tutto 
JR2 la soluzione di un problema di Cauchy può non potere essere definita in tutto JR . 

Esempio : la soluzione del problema di Cauchy 

y(O) = O 

è l'unica primitiva della funzione 1/✓1 - x2 (ricordiamo ancora che le primitive sono 
definite in un intervallo) definita in un intorno di x = O e nulla in zero, vale a dire 

ii(x) = arcsenx , - 1 <X< 1. 

Come già detto, dato che l'equazione differenziale è della forma y' = f (x, y) per 
f (x, y) = 1/✓1 - x2 e che f è definita in ]- 1, 1[ xlR, non si poteva pensare di soddisfare 
l'equazione per x \t] - 1, 1[. 

Esempio : abbiamo incontrato ali' inizio della Sezione 5.1 l'equazione differenziale (5.4); 
ora consideriamo il problema di Cauchy 

y' = y2' y(O) = 1 (5.23) 

di cui cerchiamo una soluzione. La funzione f (x, y) = y2 è continua su JR2 
, e la 

nostra equazione differenziale è esattamente y' = f(x , y) , perciò si applica il Teorema 
di esistenza di Peano 5.2 e sappiamo che esiste una soluzione ii del problema di Cauchy, 
definita in qualche intorno di x = O che sia un intervallo massimale. Dato che 

ii(O) = 1 > O 

e che ii è continua, per il Teorema di permanenza del segno a- Proposizione 1.35 questa 
è positiva in un intorno di x = O: chiamiamo ]a, b[ il più grande di tali intorni. Finché 
rimaniamo in ]a, b[ possiamo dividere per ii2 (x) f=. O ambo i membri dell'equazione, 
ottenendo 

a<x<b ===} 1 ' '( ) [ii(x)j2·y X = 1 
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e quindi per a < x < b 

f" l f" 
l o [y(t)]2 • y'(t) dt = lo 1 dt 

ovvero, essendo y(O) = 1 , 

1 
y(x) = 1- x. 

Abbiamo detto che questa uguaglianza è valida fin tanto che y(x) resta positiva, e come 
si vede questo accade per 1 - x > O , ovvero per x < 1 . Allora possiamo prendere 
]a, b[=]-oo, 1[ e otteniamo che l'unica soluzione del problema di Cauchy è la funzione 
definita per x < 1 da 

y(x) = _1_ : 
1 - x 

è evidente che questa soluzione non può essere definita in un intervallo più grande, dato 
che tende a +oo per x ➔ 1 , quindi ]-oo, 1[ è l'intervallo massimale di definizione. 

Nei due esempi precedenti avevamo le seguenti situazioni: nel primo, f era definita 
in una striscia verticale di JR2 , e il grafico della soluzione y arrivava fino ai bordi destro 
e sinistro della striscia. Nel secondo, f era definita su t utto JR2 

, e il grafico della 
soluzione y arrivava, in un certo senso, all'estremità sinistra ( quando x ➔ -oo ) e a 
quella superiore (quando y ➔ +oo per x ➔ 1-) del dominio di f. Vediamo che 
questa è una situazione generale. Diamo l'enunciato dapprima per sistemi (o equazioni) 
del primo ordine in forma normale. 

Teorema di esistenza g lobale (I) 5.8: sia Y una soluzione (definita in un intervallo 
massimale) del sistema in forma normale Y' = f (x, Y ) , dove f è una funzione continua 
definita in un aperto n e JRn+l , sia K e n un compatto e sia 

Y(xo) = Y o, con (xo, Y o) E K. 

Allora sia per x 2: xo che per x ~ Xo il grafico di Y non può essere tutto contenuto 
in K. 

Fig. 5.2 : la curva più spessa non può essere una soluzione massimale a destra di O 
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DIMOSTRAZIONE : basta lavorare solo per x ~ x 0 ; inoltre scriviamo la dimostrazioOf' 
solo per una equazione, per alleggerire la notazione. Supponiamo che il risultato si.a 
falso, e sia J =]a, b[ l' intervallo di definizione della soluzione (in realtà non sappiamu 
ancora se I contiene o no b, ma come vedremo questo non è importante). Proveremo 
che possiamo estendere f; a destra di b , contraddicendo l'ipotesi che si trattasse di una 

soluzione definita su un intervallo massimale. Dato che il grafico di f; è contenuto in K 
che è chiuso e limitato, abbiamo in particolare b < +oo . Poi, la funzione continua f 
ha massimo e minimo su K per il Teorema di Weierstrafi 1.20, quindi in particolare 

:lL : V(x, y) E K , IJ(x, y) I :S L . 

Allora 

a<x<b =} (x,f;(x))E K =} IJ(x,f;(x))l:S L =} lf;'(x)l:S L 

e quindi ltM" Proposizione 1.45 la funzione f; è lipschitziana di costante L. Ma allora a­
Proposizione 1.46 esiste finito 

Yb = Iim f;(x) . 
x➔b-

Sia Xk /' b: abbiamo f;(xk) ---+ Yb, quindi ltM" Proposizione 1.12 anche 

dato che K è un compatto, è chiuso, quindi ltM" Teorema 1.13 

Osserviamo che la funzione 

Y1(x) = { f;(x) 
Yb 

sea<x<b 
sex = b 

è continua in ]a, b] . Ora invochiamo il Teorema di esistenza di Peano, per il problema 
di Cauchy 

y' = f(x,y), y(b) = Yb , 

che è ammissibile dato che (b, Yb) E n , e otteniamo una soluzione di questo proble­
ma, definita in un intorno ]b - €, b + €[ di b. Chiamiamo Y2 la restrizione di questa 
soluzione ali ' intervallo [b, b + €[: le funzioni y 1 , Y2 verificano le ipotesi del Teorema di 
incollamento 5.3, quindi possiamo ottenere una soluzione che estende f; ad ]a, b + €[ , 
contraddicendo l' ipotesi che fJ fosse una soluzione su un intervallo massimale. ■ 

Dunque i due esempi visti sopra non sono casi fortuiti: in entrambi, il grafico della 
soluzione esce da qualunque compatto contenuto nel dominio di / e contenente un punto 
per il quale il grafico è passato. Un caso particolarmente utile è il seguente. 

Corollario 5.9 : nelle ipotesi del Teorema 5.8, se n contiene una striscia [x0 , b[ x!Rn 
allora a destra di x 0 la soluzione Y o non è limitata, o è definita s u t utto [x0, a[ . Lo 
stesso vale a sinistra, se n contiene una striscia ]a , x0 ] x Rn . 
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Esempio : studiamo la soluzione del problema di Cauchy 

/ 1 y -
- 1 - x2 -y2 , y(O) =O. (5.24) 

Chiamiamo fj la sua soluzione, definita in un intervallo massimale ]a, b[ ; posto 

1 
f (x, y) = 1 - x2 - y2 , Po= (0 , 0) 

la funzione f è definita in tutto il piano tranne la circonferenza unitaria, che chiamiamo 

1 . Il dominio di f è un insieme composto da due parti connesse: l'interno del cerchio 
e l'esterno del cerchio. Chiamiamo n l' interno del cerchio unitario, 

f2 = { (X, y) : x2 + y2 < 1} , 

e proviamo che il grafico di fj sta sempre in n . Chiaramente nessun punto ( x, fì( x)) 
può stare sulla circonferenza , , dove f non è definita, dunque la funzione r(x) = 
x2 + fj2 (x) - 1 , che è continua e definita sul!' intervallo ]a, b[, non si annulla mai: però 
r(O) < O, quindi l' immagine di r è un intervallo per il Teorema dei valori intermedi 1.37, 
non contiene O e contiene qualche numero negativo, dunque è contenuta in ]-oo, O[ . 
Questo dice che x 2 + fj2 (x) < 1 , ossia che ( x, fj(x)) E n . 

Fig. 5.3 : il grafico della soluzione di y' = 1/(1 - x2 - y2 ) con dato y(O) = O 

La funzione f è positiva in n , quindi per ogni x E / 

iì'(x) = f(x,fì(x)) > O 

dato che ( x, fj( x)) E n . Allora fj è crescente, pertanto w Proposizione 1.36 esiste il 
limite 

lim y(x) = Yb. 
x-+b-

Se (b, Yb) fosse interno a n , il grafico di y (per x ::::: O) sarebbe tutto compreso nel 
rettangolo [O, b] x [O, Yb] che è un compatto contenuto in n, il che è impossibile per il 
Teorema di esistenza globale 5.8. 
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Osserviamo poi che, siccome f(x,y(x)) > 1, si ha y'(x) > 1 e quindi y(x) > x, per 
cui 

x2 +x2 < x2 +y2 (x) < 1 

e dunque abbiamo che l' intervallo massimale di esistenza è sicuramente contenuto nell' in­
tervallo ] - v'2/ 2, v'2/ 2[. Notiamo che la soluzione è dispari, come avremmo potuto dire 
sin dal!' inizio con i risultati della prossima sezione G" (5.28) . 

Ora rifacciamo una parte dei calcoli di questo esempio, con una tecnica diversa ma 
che si può applicare in casi più generali. Abbiamo provato che, visto che la soluzione 
aveva il punto iniziale all' interno del disco r! , poi non poteva trovarsi all'esterno di n 
senza essere passata per "I. Nella dimostrazione abbiamo usato la forma di n, che ha 
come bordo il luogo dove la distanza dall'origine è l. Proviamo lo stesso risultato, ma 
senza usare la forma del cerchio: poniamo 

r!' = { (x, y) : x2 + y2 > 1} 

e osserviamo che la funzione x H (x,y(x)) è continua su ]a, b[, dato che le sue due 
component i 

XHX, X H y(x) 

sono continue a- Proposizione 1.15, quindi la sua immagine, che è il grafico G di y, è 
un connesso Q" Teorema 1.18. Però, G n "I= 0 , quindi 

(G n r!) u (G n r!') = G . 

Sappiamo che G n n non è vuoto, dato che contiene (O, O) , e se fosse G n n' f. 0 
l' insieme G sarebbe sconnesso, quindi necessariamente G n n' = 0 ovvero 

c c n. 

Esempio : studiamo la soluzione del problema di Cauchy 

y' = 2sen(· · ·), y(0) = O 

dove • • • è una non meglio specificata funzione continua, definita su ]-10, 23[ x JR , e 
proviamo che una soluzione y con intervallo di definizione massimale I è definita su 
tutto ]-10, 23[. Infatti abbiamo per ogni x E J 

IY'(x)I = j2sen(· ··)I::; 2 

quindi per ogni x E J con x ~ O , ricordando (1.47) e (1.46) 

ly(x)I = jy(x) - y(0)I = lfox y'(t) dt l ::; fox ly'(t)I dt :S fox 2 dt = 2x :S 2 · 23 = 46. 

Se per assurdo fosse I =]a, b[ con b < 23 , il grafico di y per x ~ O sarebbe tutto 
contenuto nel compatto [O, b] x [-46, 46], il che è impossibile per il Teorema di esistenza 
globale 5.8. Allora b = 23 , e analogamente a = - 10 . 
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Vedremo più oltre ....- Teorema 5.19 che la situazione vista nell'esempio precedente 
.;i generalizza. Ora possiamo dare la versione del Teorema di esistenza globale valida per 
le equazioni di ordine n . Prima, riscriviamo la tesi del teorema come: 

il grafico della funzione x H fl(x) non può essere tutto contenuto in K. 

Allora la versione per equazioni di ordine n del Teorema 5.8 è la seguente. 

Corollario 5.10 : sia f una funzione continua definita in un aperto n e ]Rn+l , sia 
K e n un compatto e sia 

P o= (xo,Yo,Y1, --· ,Yn-1) E K; 

sia fì una soluzione (defìnita in un intervallo massimale) dell'equazione differenziale di 
ordine n in forma normale 

y(n) = f(x, y, y', ... , y<n- 1)) 

con dato iniziale Po . Allora sia per x ~ xo che per x s; x0 il grafico della funzione 

( '( ) ''( ) •(n-1)( )) XHyx,yx, ... ,y X 

non può essere tutto contenuto in K . 

È importante aver afferrato che una soluzione di un'equazione differenziale (o di 
un sistema) in forma normale, definita in un intervallo massimale, non può arrestarsi 
a mezz'aria, deve spingersi fino ai confini del dominio di f (o f ). Vediamone una 
conseguenza, che ci servirà nella prossima sezione. Ricordiamo che Bb(Y 0 ) è la palla 
aperta di centro Y O e raggio b . 

Corollario 5.11 : sia f una funzione continua defìnita in un aperto n e ]Rn+l , sia 
'Xo, Yo ) E n e sia 

R = [xo, xo + a] x Bb(Y o) 

un cilindro chiuso contenuto in n. Se 

b 
- ~ maxlf(x,y)I, 
a R 

ogni soluzione del problema di Cauchy 

Y' = f (x, Y ), 

è defìnita su tutto l'intervallo [xo, xo + a] . 

Y (xo) = Yo 

Facciamo precedere la dimostrazione, che daremo solo per una equazione, da una 
spiegazione, anch'essa nel caso delle equazioni per le quali, essendo n = 1 , il cilindro R 
si riduce al rettangolo [xo, xo +a] x [y0- b, y0+b] . I numeri ±b/a sono le pendenze delle 
due semirette che partono da (x0, y0) e passano per i due angoli di R con x = x0 + a. 
Se sapessimo che il grafico della soluzione, finché questa è definita, sta dentro a R , allora 
sapremmo che y', che è il valore di f in un punto del grafico di y, non vale più di b/a. 
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Xo xo + a 

Fig. 5.4: le semirette escono da (xo,yo) con pendenze ±b/a 

Ma allora y non può uscire dalla base superiore di R , perché ha pendenza insuffi­
ciente, e analogamente non può uscire dalla base inferiore. Dovendo uscire dal compatt 
R , il grafico deve farlo dal lato destro - cioè y esiste fino almeno a x = x0 + ,1 

Purtruppo abbiamo detto "se sapessimo che", e questo ci costerà qualche complicazioor 
tecnica. 

DIMOSTRAZIONE DEL COROLLARIO : come abbiamo detto, lavoriamo solo con una equa­
zione; possiamo anche supporre x0 = y0 = O , inoltre chiamiamo M il massimo d 
funzione continua I/I sul compatto R Q' Teorema 1.20. Supponiamo che la tesi 
falsa, cioè che la soluzione y(x) non sia definita fino ad a . Dato che la soluzione y(.z 
parte dal punto (O, O) di R , il suo grafico non può essere tutto contenuto in R pt'I' 

il Teorema di esistenza globale 5.8. Non essendo y(x) definita per x 2: a, necessar~ 
mente il grafico di y contiene punti (x, y(x)) con O < x < a che non appartengono 
a R , dunque stanno o sopra il lato superiore di R o sotto quello inferiore. Ma allora.. 
sull' intervallo [O,x], la funzione continua ly(x)I - b assume valore negativo per x = 
e positivo per x = x , dunque esiste ~ Proposizione 1.24 il primo punto in cui si annulla. 
vale a dire un punto e tale che 

(1) O< e< x, (2) ly(c)I = b , (3) ly(x)I < b 'vx E [O, e[ . 

Osserviamo subito che e< x < a ; per la condizione (3) abbiamo per ogni x E [O, e[ 

(x, y(x)) E R => 

e quindi usando (1.47) e (1.46) 

b 
IJ(x,y(x))/ S M S -

a 
=> 

b 
ly'(x)I s -

a 

ly(c)I = ly(O) + 1c y'(x) dx l S 1c ly'(x)I dx S ~e< b, 

che contraddice (2). ■ 
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Ecco due casi particolarmente utili. 

Corollario 5.12 : se la funzione continua f è limitata sulla striscia [x0 , x0 + a] x !Rn 
la soluzione del problema di Cauchy 

y' (x) = f(x, Y (x)) , 

è defìnita su tutto [xo, xo + a] . 

Y (xo) = Y o 

Se per ogni a > O la funzione continua f è limitata sulla striscia [x0 , x0 + a] x !Rn , 
eventualmente da una costante che dipende da a , la soluzione del problema di Cauchy 

y'(x) = f (x, Y (x)) , 

è defìnita su tutto [x0 , +oo[. 

Y (xo) = Yo 

Osservazione: dei due corollari precedenti, abbiamo dato un enunciato solo verso destra. 
Naturalmente valgono anche verso sinistra, sostituendo in ipotesi e tesi [x0 , x 0 + a] con 
[xo - a, xo] , e anche da entrambi i lati. 

Esempio: una qualunque (nella prossima sezione vedremo che ce n'è una sola) soluzione 
del problema di Cauchy 

y' = sen x 2 + sen y2 
, y(2) = 7 

è definita su tutto JR , dato che lf(x,y)j = senx2 +sen y2 s; 2. 

Esempio : consideriamo una soluzione y del problema di Cauchy 

y' = 3xseny - 2x2 , y(O) = O , 

e proviamo che esiste su t utto JR; nella striscia [-a, a] x JR è 

j3x sen y - 2x2 j S:: 3a + 2a2 
, 

e possiamo applicare il Corollario 5.12. 

5.3 - Il problema di Cauchy: unicità 

Abbiamo visto~ (5.18) un esempio di problema di Cauchy che ha più soluzioni differenti. 
In quel caso il secondo membro era 

f(x,y) = ~, 

una funzione continua su JR2 
. Tuttavia la funzione /jyJ non è derivabile per y = O , 

dato che ha derivate sinistra e destra uguali a =fOO . Ricordando la Proposizione 1.45 pos­
siamo dire che, vista come funzione della variabile y , la funzione f non è lipschitziana. 
Generalizziamo questo concetto. 

/ 
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Definizione: sia E e JRn+i e sia f : E --+ !Rn ; si dice che f è lipschitziana rispetto 
a Y nell'insieme E se per qualche costante L > O 

Sia n e JRn+l un ap erto e sia f : n--+ !Rn ; si dice che f è localmente lipschitziana 
rispetto a Y se per ogni (x0 , Y o) E n esiste un cilindro R= [xo-a,xo+a]x Bb(Yo) 
tale che f è lipschitziana rispetto a Y in R . 

Sottolineiamo che si valuta la lipschitzianità solo su segmenti "verticali" (l'ascissa 
x è la stessa), ma che la costante (nell' insieme E) non deve dipendere da x. Per la 
lipschitzianità locale, la costante può naturalmente dipendere dal cilindro scelto, e in 
particolare dal suo centro. La nozione di lipschitzianità locale rispetto a Y è cruciale 
per ottenere l'unicità; la condizione di Lipschitz può essere però difficile da verificare, ma 
vale anche in !Rn un risultato simile alla Proposizione 1.45: 

Proposizione 5.13 : se f (x, Y ) è defìnita su un aperto n e JRn+I e ha tutte 
le derivate parziali rispetto alle variabili Y; continue, allora è localmente lipschitziana 
rispetto a Y . 

Dato che chiediamo la lipschitzianità locale, possiamo restringerci a considerare una 
palla contenuta in n , che è convessa. 

Teorema di unicità di Cauchy-Lipschitz 5.14 : sia f : n --+ !Rn una funzione 
continua su un aperto n e JRn+I ; se f è anche localmente lipschitziana rispetto a Y , 
per ogni (xo, Y o) E n i/ problema di Cauchy 

Y ' = f (x, Y ), Y (xo) = Y o 

ha una e una sola soluzione. 

Deduciamo questo risultato da un analogo enunciato locale, cioè valido solo in un 
intorno di un punto, che si impiega frequentemente. 

Teorema 5.15 : sia f : E --+ !Rn una funzione continua su un insieme E e JRn+l e 
sia (xo, Y o) E E ; se esiste un intorno di (x0 , Y 0 ) nel quale f è anche lipschitziana 
rispetto a Y , allora esiste un intorno di x0 nel quale il problema di Cauchy 

Y ' = f (x, Y ), Y (xo) = Y o 

ha una e una sola soluzione. 
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Esempio: prima della dimostrazione, risolviamo (di nuovo!) l'equazione differenziale 

y' = ay; 

questa equivale a 
(y'(x) - ay(x)) =O. 

L'uguaglianza precedente equivale a 

e-ax(y'(x) - ay(x)) = O, 

dato che l'esponenziale non è mai nullo. Ma ora 

d e- ax(y'(x) - ay(x)) = y'(x)e- ax - ae- axy(x) = dx (y(x)e- ax) , 

quindi l'equazione di partenza equivale a 

y(x)e-ax = k y(x) = keax. 

Ora possiamo impiegare questa tecnica nella dimostrazione. 

DIMOSTRAZIONE : al solito diamo la dimostrazione solo per una equazione; inoltre la­
voreremo solo a destra di x0 : cominciamo col procurarci un intervallo nel quale siamo 
cert i che la soluzione esista. Sia 

R = [xo,xo + a] x [Yo - b,yo + b] 

un rettangolo in cui f è L-lipschitziana, e poniamo 

M = max lf(x, y)I , 
R 

a' = min{a,b/M}, R' = [xo, xo + a'] x [Yo - b, Yo + b] 

dato che a'~ a abbiamo R' e R e E, e dato che a'~ b/M abbiamo M ~ b/a', ma 
allora essendo R' e R 

b 
maxlf(x,y)I ~ maxlf(x,y)I = M ~ -, 

W R a 

e nel rettangolo R' possiamo applicare il Corollario 5.11, perciò tutte le soluzioni del 
problema di Cauchy hanno intervallo massimale di definizione che contiene [xo, xo + a'] . 

Supponiamo ora che y 1 e y2 siano due soluzioni del problema di Cauchy, e mo­
striamo che coincidono su tutto [x0 , x0 + a'] . Ricordiamo che DE Teorema 1.50 per 
xo < x ~ xo + a 

Y1(x) = Y1(xo) + 1 x Y~ (t) dt = Yo + 1 x f(t, Y1(t)) dt 
xo xo 
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e analogamente 

Y2(x) = Yo + lx f(t,y2(t)) dt. 
Xo 

Sottraendo membro a membro, 

Y1(x) - Y2(x) = 1: [f (t, Y1 (t)) - f (t, Y2(t))] dt ; 

per x ~ x0 , usando (1.46) abbiamo 

IY1 (x) - Y2(x)I = 11: [!(t, Y1 (t)) - f (t, Y2(t))] dtj 

::; 1: lt(t, Y1(t)) - f (t, Y2(t)) I dt . 

Per la lipschitzianità di f rispetto a y in R abbiamo allora 

IY1(x) - y2(x)J::; L1x IY1(t) - y2(t)I dt. 
Xo 

Poniamo 

5(x) = IY1(x) - Y2(x)I, q,(x) = lx §(t) dt = l x IY1(t) - Y2(t)J dt , 
xo xo 

così q,'(x) = §(x) - Teorema 1.50 e la disuguaglianza (5.26) si riscrive 

q,'(x)::; Lq,(x) ~ (c/>'(x) - Lq,(x)) ::; O. 

(5.25) 

(5.26) 

Moltiplicando ambo i membri per il numero positivo e- L(x- xo) la disuguaglianza si 
mantiene, ed equivale a 

e-L(x- xo)(q,'(x) - Lq,(x)) '.SO ~ d~ (ct>(x)e- L(x- xo) ) ::; O. 

Allora la funzione fra parentesi è debolmente decrescente, quindi in particolare 

x ~ Xo ==} q,(x)e-L(x-xo) ::; q,(xo)e0 = O ==} q,(x) ::; O 

(dato che q,(xo) =O). Però la funzione q, è l' integrale di una funzione non negativa, 
dunque q,(x) ~ O per x ~ x0 , pertanto 

q,(x) = O in [xo, xo + a'] . 

Allora anche la derivata di q, è identicamente nulla in [x0 , x0 + a'] , ovvero 

O= q,'(x) = §(x) = IY1(x) -y2(x)I 

il che significa che Y1 = Y2 . ■ 
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DIMOSTRAZIONE DEL TEOREMA DI UNICITÀ DI CAUCHY-LIPSCHITZ : ci limitiamo al 
caso di una equazione. Supponiamo che y1 e Y2 siano due soluzioni del problema di 
Cauchy, definite su due intorni massimali Ii e h di xo , e mostriamo che su li n h 
le due funzioni coincidono: fatto questo, la funzione definita su Ii U / 2 da 

y(x) = y1 (x) sexE/i, y(x) = Y2(x) se x E h 

per il Teorema di incollamento 5.3 è ancora una soluzione, ed è una estensione comune 
di y1 e Y2 . Se fosse Ii -=/- I2 , la funzione y sarebbe una estensione propria di almeno 
una delle due, contro l' ipotesi che / 1 e I2 sono massimali. Allora Ii = h e quindi 

Yl = Y2 · 
Sia dunque / 1 n h =]a, b[ con a < x0 < b. Proveremo che y1 (x) = Y2(x) per 

x0 :S x < b , cioè a destra di x0 , dato che il ragionamento a sinistra di xo è analogo, o 
si ricava da quello che facciamo ora, passando a - y(- x) . Poniamo 

e osserviamo che J(x0 ) = O: vogliamo provare che J(x) = O in tutto [x0 , b[. Se 
la funzione continua J non fosse identicamente nulla, applicando la Proposizione 1.26 

esisterebbe un punto i; tale che 

xo :S x < b , J(x) = O in [xo,i:] 

ma 
\/t: > O, :lx' E]x, i;+ t:[ : J(x') -=/- O . (5.27) 

Osserviamo che le due funzioni y 1 e y2 sono definite fino a b che è maggiore di x , e 
sono uguali fino a i; , perciò poniamo 

ii= Y1(x) = Y2(x) 

e osserviamo che y1 e y2 sono soluzioni nell'intervallo [i:, b[ del problema di Cauchy 

y' = f(x , y) ' y(x) =ii. 

Ma per il Teorema di unicità locale 5.15 esiste un intorno destro [i:, i; + t[ di i; in 
cui questo problema di Cauchy ha una sola soluzione, pertanto le due soluzioni Y1 e Y2 
coincidono anche in [i:, x+t[ e dunque J(x) = O in [i:, x+t[, il che contraddice (5.27). ■ 

Il Teorema di unicità, grazie al Teorema 5.1, vale anche per equazioni e sistemi di 
ordine n qualunque, in forma normale. Osserviamo una fondamentale conseguenza del 
Teorema di unicità locale, frequentemente impiegata. 

Corollario 5.16 : sia f : n -+ !Rn una funzione continua su un aperto n e JRn+I , 
localmente lipschitziana rispetto a Y , e siano V , W due soluzioni del sistema 

Y' = f (x, Y ) . 

Se in qualche punto x 0 si ha V (x0 ) = W (xo) allora le due soluzioni coincidono 
ovunque. In particolare questo risultato vale se f è di classe C1 . 
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Infatti, posto Y O = V (x0 ) = W (x0 ) , nelle ipotesi del corollario le due funzioni 
V , W risolvono lo stesso problema di Cauchy 

Y' = J(x, Y ), Y (xo) = Y o, 

che ha soluzione unica. 

Esempio: riguardiamo l 'esempio (5.24) e osserviamo che f è di classe C1 ; dunque per 
il Corollario 5.16 il problema di Cauchy con dato iniziale (O, O) ha una unica soluzione 
y(x). 'Tuttavia f(-x, - y) = f(x, y), perciò o- Proposizione 5.5 la funzione 

iì(x) = - y(- x) (5.28) 

risolve lo stesso problema di Cauchy di y(x) , dunque coincide con y(x) , vale a dire 
y(x) = - y(-x) ossia y è dispari. 

5.4 - Teoremi di confronto 

Nella teoria dei limiti di funzioni e successioni, come pure in quella degli integrali impropri 
e delle serie (non per caso, dato che si tratta di limiti di funzioni - le primitive - o di 
successioni - le somme parziali), giocano un ruolo importante i teoremi di confronto. 
Vediamo un risultato simile, per equazioni differenziali, partendo da un esempio. 

Esempio : un'automobile u viaggia a non più di 100 km/h, sull'autostrada Al, in di­
rezione da Nord a Sud. Se alle tre del pomeriggio si trova al kilometro 243, cosa possiamo 
dire della sua posizione alle quattro del pomeriggio? Naturalmente nulla di troppo pre­
ciso, ma certamente non si troverà oltre il kilometro 343. Potrebbe benissimo avere 
viaggiato a meno di 100 km/h e trovarsi a un kilometro antecedente al 343, diciamo 
al 271, dato che non conosciamo la sua velocità vera, ma certamente non può aver su­
perato il 343. E alle due del pomeriggio? Dato che dopo un'ora, viaggiando a non 
più di 100 km/ h, ha raggiunto il 243, non poteva essere in un punto precedente il kilo­
metro 143. Rivediamo questo esempio in un'altra luce. Ora ci sono due automobili, che 
viaggiano entrambe come detto prima. A un dato istante to , si trovano nello stesso 
punto dell'autostrada. L'automobile u viaggia sempre a non più di 100 km/ h, mentre 
l 'automobile v · viaggia esattamente a 100 km/h. Cosa possiamo dire delle posizioni 
u(t) e v(t) delle due automobili a un altro istante t? Da quanto detto prima possiamo 
ricavare la risposta: 

t > to => u(t) ~ v(t) , t < to => u(t) ~ v(t) , 
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ovvero "dopo t0 l'automobile u è rimasta più indietro, mentre prima di to l 'automobile 
u doveva essere più avanti della v " . 

Alla stessa conclusione saremmo arrivati sostituendo l' ipotesi "l'automobile u viag­
gia sempre a non più di 100 km/ h, mentre l'automobile v viaggia costantemente a 
100 km/ h" con "l'automobile u viaggia sempre a una velocità non superiore a quella 
dell'automobile v ". 

Nel corso di Analisi Matematica 1 abbiamo già incontrato la formulazione matema­
tica dell'esempio precedente: se f e g sono due funzioni definite sull'intervallo I e 
f(t) ~ g(t) per ogni t, allora se xo E I 

X> Xo =} lx J(t )dt ~ lx g(t)dt, 
X o XQ 

X < Xo ⇒ lx j(t) dt 2 lx g(t) dt . 
xo x o 

Tradotto in termini di equazioni differenziali, se 

u'(x) = J(x), v'(x) = g(x), u(xo) = v(xo) 

e se 
J(x) 2 g(x) Vx , 

allora 
x > xo ⇒ u(x) ~ v(x) , x < xo ⇒ u(x) 2 v(x). 

La situazione si generalizza; dato che abbiamo a che fare con disuguaglianze, il solo 
caso che possiamo considerare è quello delle equazioni, in cui l'incognita è una funzione 
scalare, visto che fra vettori non abbiamo un ordine. 

Teorema di confronto (I) 5.17 : sia n un aperto di IR2 
, sia (xo, Yo) E n e siano 

f , g : n -+ JR due funzioni continue, e localmente lipschitziane rispetto a y . Siano u e 
v le soluzioni dei problemi di Cauchy 

Se 

{ 
u'(x) = f(x , u) 

u(xo) = Yo 

f(x,y) ~ g(x,y) 

{ 
v'(x) = g(x,v) 

v(xo) = Yo. 

V(x,y)Ef2 

allora nell' intorno I di x0 in cui sono definite sia u che v 

x > x0 ⇒ u(x) ~ v(x) , x < xo ⇒ u(x) 2 v(x) . 

Se indeboliamo le informazioni, la sit uazione si complica. 

Esempio : usiamo le solite automobili u e v , sapendo che la velocità di u è sempre 
minore o uguale a quella di v . A un dato istante to , l'automobile u si t rova più avanti 
di v : cosa possiamo dire? Sicuramenle prima di t0 la u doveva trovarsi più avanti 
di v, ma dopo t0 ? Non possiamo dir nulla, dato che le due automobili potrebbero 
proseguire a uguale velocità (e allora v non raggiungerà mai u) oppure u potrebbe 
fermarsi e v proseguire velocemente fino a raggiungere e superare u: dunque per t > to 
non sappiamo chi è più avanti fra u e v . 
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Teore ma di confronto (II) 5.18: sia n un aperto di R2
, siano (xo, Yi), (xo, y2) E n 

e siano f, g : n -+ R due funzioni continue, e localmente lipschitziane rispetto a y . 
Siano u e v le soluzioni dei problemi di Cauchy 

Se 

{ 
u'(x) = f(x,u) 

u(xo) = Y1 

f(x, y) S g(x, y) 

{ 
v'(x) = g(x, v) 

v(xo) = Y2 . 

\/(x, y) E n 
allora nell'intorno I di x0 in cui sono definite sia u che v si ha: 

Esempio : sia 

se Y1 $ Y2 allora u(x) $ v(x) per ogni x > xo 

se Y1 2 Y2 allora u(x) 2 v(x) per ogni x < xo . 

f(x,y) = ex+ sen y 

e sia y la soluzione del problema di Cauchy 

y' = f(x, y) , y(O) = O. 

Dato che f è di classe C1 in t utto n = R2 
, sappiamo che tale soluzione esiste ed è 

unica, definita in un intervallo massimale I =]a, b[ che è un intorno di O. Nonostante 
non sia possibile trovare esplicit amente la soluzione, possiamo dirne qualcosa: poniamo 

g(x, y) = ex+ 1 

e osserviamo che 

f(x,y) $ g(x,y). 

Allora se v è la soluzione del problema di Cauchy 

v' = g(x,v) , v(O) = O (5.29) 

per il Teorema di confronto 5.17 avremo che a destra di O, cioè per O < x < b, vale la 
disuguaglianza 

y(x) $ v(x) 

mentre per a < x < O vale la disuguaglianza opposta, v(x) $ y(x). Ma il problema 
(5.29) si può risolvere: 

v(x) = ex + x - l. 

Allora abbiamo provato che 

a< x < O=> y(x) 2 ex+ x - l , O< x < b => y(x) $ ex+ x - l. 
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Ora poniamo 

h(x, y) = ex - 1 , 

osserviamo che 

h(x, y) :S f (x, y) , 

consideriamo la soluzione w del problema di Cauchy 

w' = h(x,w), w(O) = O (5.30) 

( che possiamo facilmente determinare, w( x) = ex - x - l ) e analogamente a prima 
avremo 

a< x < O => y(x) :Sex - x - l , 0 < x < b => y(x) 2: é - X - l . 

Abbiamo provato che 

o< X< b ==> ex - X - l :S y(x) :Sex + X - l ) 

mentre a sinistra di O si ha 

a< x <O=> ex+ x - l :S y(x) :Sex - x - l. 

Mettendo insieme le disuguaglianze precedenti si ha 

v'x E]a, b[. 

Quindi, nonostante non abbiamo risolto l'equazione di partenza sappiamo (con una certa 
approssimazione) dove si trova la soluzione! 

, ' 
- 2 - I 

Fig. 5.5 : il grafico della soluzione di y' = e"' + sen y con dato y(O) = O 
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Addirittura, da queste disuguaglianze deduciamo che y è definita su tutto [O, +oo[ : 
infatti, se invece fosse b < +oo , avremmo che in tutto [O, b[ il valore della funzione y 
sarebbe compreso fra e0 - b - l ed è+ b - l . Ma allora il suo grafico sarebbe tutto 
dentro un rettangolo chiuso, che è un compatto del dominio IR2 di f , contraddicendo 
il Teorema di esistenza globale 5.8. Analogamente si prova che a = -oo . 

Dopo aver studiato le equazioni differenziali lineari potremo dare una generaliz­
zazione di questo esempio irv- Teorema5.19. 

Osservazione : i teoremi di confronto di questa sezione valgono in ipotesi lievemente più 
generali: basta che 

f(x,u(x)) :S g(x,u(x)), 

cioè che la disuguaglianza fra f e g valga sul grafico di una delle due soluzioni anziché 
in tutti i punti. 

5.5 - Equazioni lineari de l primo ordine 

In questa sezione ci occupiamo dello studio delle equazioni lineari de l prim o o rdine, 
equazioni del t ipo 

y' = a(x)y + b(x) (5.31) 

dove a e b sono due funzioni continue definite su un intervallo I. Per queste esiste una 
formula che permette (teoricamente!) di determinare tutte le soluzioni dell'equazione. 

Nel seguito chiameremo soluzione generale di una equazione differenziale (o sistema) 
una qualsiasi espressione, contenente uno o più parametri, che al variare dei parametri 
fornisce tutte le soluzioni dell'equazione differenziale ( o sistema). Nel caso di un problema 
di Cauchy poi i parametri si determineranno imponendo le condizioni iniziali. 

Esempio : abbiamo visto che tutte le soluzioni dell'equazione differenziale 

y' = cosx 

sono le funzioni della forma 

y(x) = senx + e 

al variare di e E JR. Questa è dunque la soluzione generale dell'equazione differenziale. 
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Esempio: vedremo nella Sezione 5.7 che tutte le soluzioni dell'equazione differenziale del 
secondo ordine 

y" = -y 

sono le funzioni della forma 

y(x) = ci sen x + c2 cosx 

al variare di c1 , c2 E JR, e questa è dunque la soluzione generale. 

Talvolta, anche in casi molto semplici, la soluzione generale si riesce a scrivere solo 
in forma poco soddisfacente, come nel caso 

y' = e -x2 {='?- y(x) = 1 x e - t2 dt + e 

in cui nella soluzione generale compare un integrale non calcolabile esplicitamente. La 
maggior parte delle equazioni differenziali, però, non si risolve esplicitamente. La cosa 
non deve stupire: già per equazioni fra numeri reali (anziché funzioni e loro derivate) 
possiamo provare che l'equazione x - cos x = O ha una ed una sola soluzione, ma non la 
possiamo determinare "esplicitamente" . 

In questa ottica, le equazioni lineari del primo ordine sono importanti per la disponi­
bilità di una formula della soluzione generale, anche se questa fa intervenire un integrale 
che non sempre si sa calcolare esplicitamente. Risolviamo l'equazione (5.31) sfruttando 
la stessa tecnica impiegata per l'equazione y' = ay con a costante reale. 

Sia A(x) una primitiva di a(x) ; allora si ha (omettiamola x , ma bisogna ricordare 
che a, b e A non sono delle costanti) 

(ye-A)' = y'e- A - ye- Aa = (y' - ay)e- A : 

dunque, se vogliamo che y risolva l'equazione (5.31), che può essere riscritta y' -ay = b , 
deve essere 

(ye- A)t = be-A . 

In altri termini, ye-A è una primitiva di be- A , quindi 

J be- A dx = y(x)e- A(x) +e, 

da cui si ricava che le soluzioni di (5.31) sono tutte e sole le funzioni y(x) della forma 

y(x) = eA(x) (lx be- A dt +e) (5.32) 
Xo 

per qualche e E JR. Nel caso di un problema di Cauchy la costante arbi traria e si 
determina imponendo la condizione iniziale: ad esempio, se y(x0 ) = y0 è la condizione 
iniziale, prendendo 

A(x) = l x a(t) dt, 
Xo 

y(x)e-A(x) = r b(t)e-A(t) dt + e 
l xu 

e imponendo che y(xo) = yo si ricava e = y0 , e quindi l'unica soluzione del problema 
di Cauchy è la funzione (~ es. 5.2) 

y(x) = exp(J; 0 a(t ) dt) [Yo + 1: b(t) exp( - J:
0 
a(s) ds) dt] . 
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Esempio : consideriamo il problema di Cauchy 

{ 
y' = y +sen x 

y(O) = O. 

È un'equazione lineare del primo ordine, con a(x) = 1 , A(x) = x e b(x) = senx: le 
soluzioni sono quindi della forma 

[ J ] x [ - xsenx+ cosx] y(x) = ex e + e-xsenxdx =e e-e 
2 

• 

Imponendo la condizione iniziale si ricava e= 1/2, quindi la soluzione è 

() 
ex -senx-cosx 

y X = 2 

Fig. 5.6 : alcune soluzioni di y' = y + sen x , più spessa quella con y(O) = O 

Esempio: se dalla vasca di coltura dei batteri dell'esempio (5. 7) vengono sistematicamente 
prelevati un certo numero k di batteri per ogni unità di tempo, l 'equazione differenziale 
(5. 7) va modificata in 

b' = b log 1.05 - k ; 

dato che la soluzione generale di questa equazione è 

b(t) = l k + c(l.05/ , 
ogl.05 

se al tempo t = O erano presenti B batteri, la popolazione diviene 

() k ( k ) t b t = -- + B - 1.05 . 
log 1.05 log 1.05 ( ) 

Osserviamo che se il coefficiente davanti all'esponenziale è negativo, la funzione b(t) 
tende a - oo e pertanto, trattandosi di una popolazione, a un certo tempo di batteri non 
ce ne saranno più ( e questo fenomeno poteva essere facilmente predetto, a parte il valore 
esatto, pensando che se k è troppo grande stiamo svuotando la vasca più rapidamente 
di quanto i batteri possano riprodursi). Il valore limite k = B log 1.05 indica quanti 
batteri si possono togliere nell'unità di tempo per lasciare la popolazione invariata ( cioè 
costante). 
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Vediamo ora una applicazione della teoria delle equazioni lineari del primo ordine; 
iniziamo con un risultato preparatorio. 

Osservazione: se k E JR e b(x) è continua su un intervallo I che comprende x0 , la 
soluzione del problema di Cauchy 

y' = b( X) + ky , y(xo) = Yo 

è definita su tutto I; se b(x) ?: O ed Yo ?: O, allora y è non negativa a destra di x0 , 

mentre se b( x) :S O allora y( x) :S O a destra di xo . Infatti basta applicare la formula 
(5.32) e osservare che il secondo membro è definito su tutto I e nelle ipotesi aggiuntive 
contiene solo termini che a destra di x0 hanno il segno di b(x) . 

Teorema di esistenza globale (II) 5.19 : sia I un intervallo di JR, e sia f una 
funzione continua su I x JR , localmente lipscbitziana rispetto a y . Se esistono due 
funzioni a(x) e k(x) non negative e continue su I tali che 

lf(x, Y)I :S a(x) + k(x)IYI V(x, y) E / x JR, 

allora per ogni (xo, Yo) E / x JR la soluzione del problema di Cauchy 

y' = f(x,y), y(xo) = Yo 

è definita su tutto I . 

DIMOSTRAZIONE : lavoriamo solo a destra di x0 ; supponiamo che sia I =]a, .B[, even­
tualmente con .B = +oo, e supponiamo che la soluzione y sia definita solo su [x0 , b[ 
con b <.B. Riscriviamo l'ipotesi come 

-a(x) - k(x)IYI :S J(x,y) '.S a(x) + k(x)IYI 'v'(x, y) E / X JR. (5.33) 

Consideriamo la soluzione del problema di Cauchy 

v' = a(x) + k(x)v, v(xo) = IYol 

abbiamo appena visto che che questa esiste ed è non negativa su tutto [x0 , .B[; ma allora 
, risolve anche (a destra di xo) il problema di Cauchy 

v' = a(x) + k(x)lvl , v(xo) = IYol 

pertanto per la disuguaglianza destra in (5.33) e per il Teorema di confronto 5.18 abbiamo 

y(x) :S v(x) 'v'x E [xo,b[. 

Ma v è continua per x < .B, dunque fin oltre b, quindi in particolare ha massimo su 
.r-0, b] , chiamiamolo M . Abbiamo provato che 

y(x) :S M 'v'x E [xo,b[ . 
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Poniamo w = - v e osserviamo che w risolve 

w
1 = - v1 = - a(x) - k(x)/v/ = -a(x) - k(x)/w/ , w(xo) = - /yo/ . 

In particolare per la disuguaglianza sinistra in (5.33) e per il Teorema di confronto 5.18 
abbiamo 

y(x) ~ w(x) = - v(x) \/x E [xo, b[ , 

dunque 

y(x) ~ -M \/x E [xo, b[. 

Allora il grafico di y a destra di xo sarebbe tutto contenuto nel rettangolo [xo, b] x 
[-M, M] che è un compatto di Ix IR, contraddicendo il Teorema di esistenza globa­
le 5.8. ■ 

Osserviamo che per il problema di Cauchy (5.23) il secondo membro era quadratico 
in y , ed effettivamente non avevamo esistenza globale. Tuttavia non bisogna pensare 
che il Teorema 5.19 dia una condizione necessaria e sufficiente per l'esistenza globale! 

Esempio : per il problema di Cauchy 

y' = y2 - 4' y(O) = 1 , (5.34) 

apparentemente del tutto simile a (5.23), vi è esistenza globale, nonostante il secondo 
membro sia quadratico in y . Infatti osserviamo anzitutto che il secondo membro è 
una funzione localmente lipschitziana, e che le funzioni costanti y(x) = 2 e y(x) = - 2 
risolvono l'equazione differenziale, perciò per il Corollario 5.16 la soluzione y(x) di (5.34), 
che esiste ed è unica, non può mai assumere i valori 2 e - 2 . Essendo continua su un 
intervallo (incognito) I, e dato che -2 < y(O) < 2, necessariamente - 2 < y(x) < 2 
per ogni x E I . Scelto un qualsiasi numero M > O consideriamo il compatto 

KM = [-2, 2] x [0, M] : 

per il Teorema di esistenza globale 5.8, a destra di O il grafico della soluzione non può 
essere tutto contenuto in KM , ma dato che y non può assumere valori maggiori di 2 
o minori di - 2 necessariamente è definita in qualche punto x > M, e in particolare 
è definita su tutto [O, M] . Dato che M è arbitrario, è definita su tutto [O, + oo[ , e 
analogamente a sinistra di zero. 

Osserviamo che con i metodi della prossima sezione avremmo potuto determinare 
esplicitamente la soluzione di (5.34). 
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5.6 - Equazioni a variabili separabili 

Le equazioni a variabili separabili sono quelle del tipo 

y' = a(x)f(y) (5.35) 

dove a ed f sono due funzioni continue assegnate, con f(y) =/- O per ogni y (o almeno 
in un intorno del valore iniziale Yo ). Supponiamo ad esempio f > O; se G è una 
primitiva di 1/ f ed A è una primitiva di a, l'equazione si può scrivere nella forma 

f(y~x)) y'(x) = a(x) [G(y(x))]' = A'(x), 

da cui 
G(y) = A(x) +e . 

Essendo G' = 1/ f > O sì ha che G è strettamente crescente, quindi invertibile, per cui 
tutte le soluzioni cercate sono della forma 

y(x) = c-1 (A(x) + e) . 

Nel caso in cui la funzione a sia indipendente da x, ovvero sia costante, si dice che 
l'equazione è autonoma, e le soluzioni sono del tipo 

y(x) = G-1(ax +e) . 

Se la funzione f(y) in (5.35) si annulla in qualche punto y. E JR, la funzione costante 
y(x) = y. risolve l'equazione: infatti ha derivata identicamente nulla, e 

O= y'(x) = a(x)f(y.). 

Esempio : consideriamo l'equazione autonoma y' - e-Y =O, che può essere riscritta 

y' = e-Y. 

Si trova G(y) = eY, per cui le soluzioni sono date da eY = x +e, cioè 

y(x) = log(x + e) . 

Notiamo che in tal caso le soluzioni non sono definite su tutto JR: ad esempio, se la 
condizione iniziale è y(O) = a , si ricava e= e°' , quindi l'unica soluzione sarà data da 

y(x) = log(x + e°') 

e risulta definita nell ' intervallo ] - e0
, +oo[. 
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Esempio : consideriamo il problema di Cauchy 

1 - y2 
y' = --

2 
y(O) =a, (5.36) 

e osserviamo che per y = ±l il secondo membro si annulla; allora le costanti y = 1 
e y = - l risolvono l'equazione, e anche il problema di Cauchy per a = 1 o a = - 1 
rispettivamente: per il teorema di unicità, allora, nessuna altra soluzione può mai valere 
± 1 . Mettiamoci ora nel caso a i= ± 1 e dividiamo per (1 - y2)/2 ottenendo 

2y' 
-- = 1 ===> 
1 -y2 

y' y' 
--+-- = 1 
l +y 1 - y 

da cui con le solite notazioni A(x) = x e G(y) = log 1(1 + y)/(1-y)I; allora ricordando 
la condizione iniziale abbiamo 

logl 1 + Y I = x + logl 1 + a I · 
1 - y 1 - a 

(5.37) 

A questo punto consideriamo il caso -1 < a < 1: in un intorno di x = O la funzione 
continua y , che in zero vale a , sarà compresa fra - 1 e 1 l!s' Proposizione 1.35; la 
frazione (1 +a)/(1 - a) è positiva, quindi sarà positiva anche (1 +y)/ (1-y) e da (5.37) 
possiamo dedurre 

l +y l +a 
log-- = x + log--

1 - y 1 - a 
l +y l+a x 
--=--e 
1 - y 1 -a 

e quindi, posto per brevità Ca = (1 + a)/(1 - a) , 

Caex - 1 2 
y =---= 1----

Caex + 1 Caex + 1 
(5.38) 

Si vede bene che la soluzione è definita per ogni x , visto che Ca > O , e che tende a 1 
per x -+ +oo , a - 1 per x -+ - oo . 

Fig. 5.7: alcune soluzioni di y' = (1 - y2 )/ 2 



Capitolo 5 : Equazioni differenziali 319 

Nei casi a< -l e a> l , le quantità all'interno dei valori assoluti in (5.37) sono 
negative e si passa a 

( l+y) ( l +a) log - -- =x+ log - --
1-y l - a 

l +y l +a x 
- --= - --e 

l -y 1 -a 

e la forma della soluzione è sempre quella (5.38) di prima; però ora la costante Ca è 
negativa, pertanto il denominatore 1 + caex si annulla per 

X = log(- 1/ca) = - log(-ca) = Xa . 

Ora, per a > 1 si ha 

2 
Ca = -- - 1 < - 1 ==} - log( - ca) < O ==} Xa < O 

1 - a 

e la soluzione è definita solo nel!' intervallo ]x0 , +oo[, mentre se a < - 1 abbiamo che 
- log( - c0 ) > O e la soluzione è definita solo in ]- oo, Xa [ . 

Più in generale si trattano come equazioni a variabili separabili anche le equazioni 
che si possono ricondurre al tipo (5.35) con semplici operazioni algebriche o cambi di 
variabile (~ es. 5.3). 

Esempio : consideriamo l'equazione differenziale 

y' = (x + y)2. 

Essa non è a variabili separabili, ma operando la sostituzione 

z(x) = x + y(x) 

otteniamo l'equazione differenziale 

z' = 1 + z2 

che è a variabili separabili (anzi addirittura autonoma) e si risolve facilmente, ottenendo 
la soluzione generale 

z(x) = tan(x + e) 

da cui si ricava poi 

y(x) = tan (x + c) - x . 
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5.1 - Equazioni lineari del secondo ordine a coefficienti costanti 

Consideriamo qui un caso molto particolare di equazioni differenziali del secondo ordine: 
il caso di equazioni lineari a coefficient i costanti, cioè del t ipo 

y" + ay' +by = f(x) (5.39) 

con a, b E JR ed / funzione continua; tali equazioni si dicono omogenee se il termine 
noto f(x) è la funzione nulla. Ci limiteremo a dare un algoritmo di risoluzione suddiviso 
in vari passi. 

Passo 1 : la prima cosa da fare per trovare le soluzioni dell 'equazione (5.39) è scrivere 
l'equazione caratteristica 

z2 + az + b = O 

e determinarne le radici in campo complesso; siccome a e b sono numeri reali, le radici 
z1 e z2 saranno una sola, reale, oppure entrambe reali, oppure complesse coniugate. 

P asso 2 : consideriamo l'equazione omogenea associata a (5.39), 

y" + ay' + by = O ; (5.40) 

in corrispondenza alle radici z1 e z2 si determinano due funzioni y1 (x) e y2(x), dette 
soluzioni fondamentali, che risolvono la (5.40): 
a ) nel caso in cui z1 e z2 sono reali e distinte poniamo 

b) nel caso in cui z1 è l'unica radice (reale) poniamo 

c) nel caso in cui z1 e z2 sono complesse coniugate, cioè del tipo a± i(J, poniamo 

Y1(x) = e°'x sen(Jx, Y2(x) = e°'x cos(Jx. 

P asso 3 : una volta determinate le funzioni y1 (x) e y2 (x) , otteniamo l'espressione 
della soluzione generale di (5.40); questa è data da 

con C1 e C2 costanti reali arbitrarie. Tutte le soluzioni di (5.39) con f = O sono di 
questo tipo (Cli::!. es. 5.4). 

Passo 4 : se la funzione J non è identicamente nulla, si cerca una soluzione particolare 
dell'equazione (5.39), cioè una funzione y(x) che risolve (5.39). A seconda della forma 
di f si tentano varie strade: 
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a) se f è un polinomio di grado k si cerca una soluzione y tra i polinomi di grado k 
(se il coefficiente b della y èdiverso dazero),oppure k+l (se b=O ma a=lcO) 
oppure k + 2 (se a= b = O ); 

b) se f(x) = aebx si cerca una soluzione del tipo y(x) = kèx; se però b era una delle 
due soluzioni dell'equazione caratteristica, o se ne era l'unica soluzione, bisognerà 
provare con y(x) = kxèx o con y(x) = kx2èx rispettivamente; 

c) se f(x) = asen(bx) oppure se f(x) = acos(bx) si cerca una soluzione della forma 
y(x) = hsen(bx) + kcos(bx); se però ib era una soluzione dell'equazione caratteri­
stica (questo accade solo per l 'equazione z2 + b2 =O, che corrisponde a un primo 
membro dell'equazione differenziale del t ipo y" + b2 y ), si cercherà una soluzione 
della forma y(x) = hxsen(bx) + kxcos(bx); 

d) se f(x) = fi(x) + · · · + /k(x) è una somma di funzioni che rientrano nei tre tipi 
precedenti, si cerca una soluzione particolare Yi per ciascuna funzione /i , poi si 
sommano le soluzioni particolari: y = fii + · · · + Yk . 

Più in generale si potrebbe considerare il caso f(x) = Pk(x)eax , con Pk polinomio di 
grado k: come soluzione si cerca fra le funzioni Q(x)eax dove Q è un polinomio di 
grado k se a non è radice dell'equazione caratteristica, o k + I [ k + 2 D se invece è 
radice semplice [doppia]; in modo analogo si trattano i casi 

f(x ) = Pk(x) sen(bx) e f(x) = Pk(x) cos(bx) 

o ancora più in generale i casi 

J(x) = Pk(x)eax sen(bx) e f(x) = Pk(x)ebx cos(bx) . 

Vi è poi un metodo generale per trattare un secondo membro qualsiasi, che esporremo 
poco più avanti Q' (A5.21). 

Passo 5 : si ricavano t ut te le soluzioni di (5.39), che sono date da 

y(x) = C1Y1(x) + c2y2(x) + y(x) 

al variare delle costanti c1 e C2 in JR (~ es. 5.5). 

Esempio : consideriamo l'equazione differenziale 

y" + y = o ; 

dato che l'equazione caratteristica z2 + 1 = O ha soluzioni z = ± i , le soluzioni fonda­
mentali sono y1(x) = senx e y2 (x) = cosx, e la soluzione generale è 

y(x) = c1 sen x + c2 cosx . 

Più in generale, per l'equazione differenziale 

y" + w 2y = O 

la soluzione generale è 

y(x) = c1 sen(wx) + c2 cos(wx) . 

(5.41) 

(5.42) 
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Esempio : consideriamo il problema di Cauchy 

y" + 2y' + 2y = O , y(O) = 1 , y'(O) =O; 

le soluzioni dell'equazione caratteristica z2 + 2z + 2 = O sono z = - l ± i e la soluzione 
generale dell'equazione differenziale risulta 

y = c1e- x senx + c2e-x cosx, 

così imponendo le condizioni iniziali ricaviamo c1 = c2 = 1 , per cui si ha 

y = (cosx + senx)e-x . 

Come si vede, sono oscillazioni la cui ampiezza si smorza a zero per x ➔ +ao . 

Esempio : consideriamo l'equazione differenziale del secondo ordine 

y" + 2ay' + y = sen t 

(5.43) 

(5.44) 

con a > O ; questa equazione interviene nello studio delle piccole oscillazioni di un pen­
dolo sottoposto alla resistenza dell'aria e in presenza di un termine forzante sinusoidale. 
L'equazione caratteristica z2 + 2az + 1 = O ha: 
a) le due radici reali e distinte -a± Ja2 - 1 se a> 1, 
b) la sola radice -1 se a= 1, 
c) le due radici complesse -a ± iJl - a2 se a < 1 , 

per cui avremo le soluzioni fondamentali 

e(- a-va2-I)t, e(-a+va2-I )t 

-t 
e ' 

sea>l, 

sea = l , 

e-atsen(t~) , e- atcos(t~) se a< 1. 

Dobbiamo ora trovare una soluzione particolare y(t) ; visto che il secondo membro è 
sen t = 's(eit) e che i non è mai radice del polinomio caratteristico, cerchiamo y(t) 
della forma 

y(t) = hsent + kcost , 

da cui 
y' = h cos t - k sen t 

y" = - h sen t - k cos t 

e perciò 

y" + 2ay' + y = 2ah cos t - 2ak sen t . 

Per far sì che y risolva (5.44) serve che il secondo membro sia uguale a sen t, quindi 
h = O e k = - 1/ 2a: allora una soluzione particolare dell'equazione è data dalla funzione 
y(t) = -(1/2a) cost, quindi la soluzione generale dell 'equazione cercata è: 

c1e(-a-va2-!)t + c2e(-a+va2-I)t - ~ cost se a> 1 , 
2a 

- t -t l c1e +c2te - -cost sea= l , 
2a 

c1e- atsen(t~) + c2e-atcos(t~) - ~ cost se a< 1. 
2a 
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a= 0.5 1 2 

Fig. 5.8: le soluzioni di (5.44) con y(O) = y'(O) = O e diversi valori di a 

È interessante notare che, siccome t utte le soluzioni fondamentali sono infinitesime 
per t ~ +oo , ogni soluzione della (5.39) risulta asintotica, per t ~ +oo , alla fun­
zione -(1/2a) cos t, indipendentemente dalle condizioni iniziali. Moltiplicando ciascuna 
soluzione ( che dipende dal valore di a) per 2a, questa dovrebbe risultare asintotica a 
- cost, e si vede bene in figura che ciò accade davvero (- appendice 5.3). 

Fig. 5.9 : le stesse della figura precedente, moltiplicate ciascuna per 2a 

Esempio : risolviamo l'equazione 
y" - y = ex; 

le soluzioni dell'equazione caratteristica z2 - 1 = O sono 1 e -1, per cui le soluzioni 
fondamentali sono 

La soluzione particolare, dato che il secondo membro è ex e che 1 è una delle radici 
dell'equazione caratteristica, va cercata del tipo y(x) = kxex ; con facili calcoli, impo­
nendo che y risolva l'equazione si trova k = 1/2 e pertanto la soluzione generale è 

(5.45) 
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Esempio : risolviamo il problema di Cauchy 

{ 

y" - y = ex 

y(l) = O 

y'(l) = e/ 2 ; 

sappiamo già la forma (5.45) della soluzione generale, da cui 

( 
x+ 1) y'(x) = c1 + -

2
- ex - c2e-x . 

Sostituendo x = 1 ricaviamo 

y(l) = (c1 + ~)e+~, y'(l) = (c1 + l )e - c2 , 
e 

e imponendo che y(l) = O e y'(l) = e/2 si trova c1 = -1/2, c2 = O: la soluzione è 

x-1 
y(x) = -2- ex. 

Esempio : risolviamo l'equazione 

y" + y' - 2y = x - 3 sen x + cos x ; 

le soluzioni dell'equazione caratteristica sono 1 e -2 e le soluzioni fondamentali sono 

Yl (x) =ex' 

Dato che il secondo membro è somma di un polinomio di grado 1 e di una funzione 
trigonometrica, per quanto visto nel passo 4 cominciamo a trovare una soluzione par ti­
colare ih dell'equazione 

y" + y' - 2y = X 

cercando tra i polinomi di primo grado, cioè con f}1 ( x) = ax + b : dato che fJi = a e 
f}r = O , deve essere 

da cui a=b = -1/2 e 

0+a-2(ax+b)= x, 

x + l 
f}1(x) = --

2
-. 

Ora, sempre usando il passo 4, dobbiamo trovare una soluzione particolare y2 = h sen x+ 
k cos x dell'equazione 

y" + y' - 2y = - 3 senx + cosx 

risulta h = 1 e k = O, così 
f}2(x) = sen x 

e la soluzione particolare dell'equazione di partenza risulta 

x+l 
y(x) = y1(x) + fJ2(x) = senx - -

2
- ; 

infine la soluzione generale è 

( ) 
X 2x X+ 1 yx = c1e +c2e- +senx--

2
-. 
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Abbiamo detto che le equazioni di ordine superiore sono equivalenti a sistemi, il 
che è stato molto comodo per la teoria, dato che non abbiamo dovuto provare nulla per 
equazioni di ordine n , riducendoci sempre al ca.so dei sistemi. Come talvolta accade, 
la pratica va nella direzione opposta: vediamo come, per risolvere un sistema di due 
equazioni lineari del primo ordine a coefficienti costanti, convenga tra.sformarlo in una 
equazione del secondo ordine, per la quale abbiamo appena imparato un metodo risolutivo 
(~ es. 5.10). 

Consideriamo il sistema 

con le condizioni iniziali 

{ 
u'(x) = au(x) + bv(x) + J(x) 

v'(x) = cu(x) + dv(x) + g(x) 

u(xo) = uo , v(xo) = vo . 

Se il coefficiente b è zero la prima equazione del sistema si riduce a 

u'=au + f(x) 

(5.46) 

che è una equazione lineare del primo ordine che sappiamo risolvere 11-'i' Sezione 5.5, 
tenendo presente che u(x0 ) = u0 è assegnata. Determinata così la funzione u(x) , la 
seconda equazione del sistema (5.46) diventa 

v' =dv+ (cu(x) + g(x)) , 

di nuovo una equazione lineare del primo ordine nella sola incognita v . 

Se invece b i- O , dalla prima equazione di (5.46) ricaviamo 

da cui derivando 

v = ~u' - ~u - ~ f (x) 
b b b 

/ 1 // a I 1 '( ) V = -U - -U - - f X 
b b b 

(5.47) 

sostituendo i valori di v e v' ora trovati nella seconda equazione di (5.46) questa diviene 

1 ,, a , 1 , ( ) d , ad d ( ) ( ) 
-U - -U - - f X = CU + - U - -u - - f X + g X 
b b b b b b 

che si riscrive 

u" - (a+ d)u' + (ad - bc)u = J'(x) - df(x) + bg(x) , (5.48) 

ed è una equazione lineare del secondo ordine a coefficienti costanti del t ipo visto in 
questa sezione. Per quanto riguarda le condizioni iniziali, abbiamo già u(xo) = uo , e 
dalla prima equazione di (5.46) ricaviamo anche 

u'(xo) = auo + bvo + f(xo) 
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avendo a disposizione u(x0 ) e u'(xo) l'equazione (5.48) può essere risolta e ci dà la 
funzione u(x) , che a sua volta sostituita in (5.47) permette di ricavare v. 

Vediamo come si può operare per trovare una soluzione particolare di un'equazione 
del secondo ordine non omogenea, quando il secondo membro non è in una delle forme 
studiate: si tratta del cosiddetto metodo di variazione delle costanti. Partiamo da (5.39) 
e supponiamo che due soluzioni fondamentali dell'equazione omogenea associata siano 
Y1(x) e y2(x): sappiamo che la soluzione generale dell'equazione omogenea è 

con c1, c2 costanti. Cerchiamo una soluzione particolare di (5.39) della forma 

con c1, c2 funzioni di x . Stiamo cercando una soluzione, quindi abbiamo una certa 
libertà. Abbiamo 

imponiamo (a priori potrebbe essere eccessivo, ma vedremo che ce la caveremo nonostante 
questa imposizione) 

(5.49) 

di modo che y' si riduce a 

da cui 

Sostituiamo ora y, y' e y" nell'equazione e abbiamo: 

ma Y1 era soluzione dell'equazione omogenea, quindi y~ + ay~ + by1 = O, e lo stesso 
per Y2 , pertanto 

y" + ay' + by = e; (x)y~ (x) + c;(x)y~(x) 

e se vogliamo che y sia una soluzione particolare di (5.39) otteniamo la condizione 

e; (x )y~ (x) + c;(x)y~(x) = f (x) . (5.50) 

Dunque e~ e e; risolvono per ogni x il sistema 

{ 
e~ (x)y1 (x) + ~(x)y2(x) = O 

di (x)y;_ (x) + ~(x)y2(x) = f(x) . 
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La matrice dei coefficienti di questo sistema è 

(
Y1 (x) 
y~ (x) 

Y2(x)) 
Y2(x) 

e questa è sempre invertibile (ha determinante nullo solo se le righe sono proporzionali, 
ma ciò significa che y 1 ( x) / y2 ( x) è costante, ossia y1 e Y2 sono proporzionali, il che 
è impossibile dato che erano le due soluzioni fondamentali). Ricavate c1 e cfi non ci 
·'resta" che integrarle (cosa non sempre facile) per ricavare c1 e c2 . Abitualmente è 
più pratico fare il calcolo ogni volta, come nel prossimo esempio, tuttavia non è difficile 
scrivere la soluzione del sistema: 

Esempio : consideriamo l'equazione del secondo ordine 

ex 
Il - 2y' + y = --- . 

y l + x2 
(5.51) 

Risolvendo l'equazione omogenea si trovano le soluzioni fondamentali 

Adesso cerchiamo una soluzione part icolare y(x) con il metodo di variazione delle 

costanti: 
(5.52) 

Derivando, 

poniamo uguale a zero il primo addendo fra parentesi (in modo da non avere poi derivate 
seconde dei termini ci) ottenendo sia la prima equazione sui e~ 

(5.53) 

che l'espressione della derivata 

(5.54) 

Derivando ancora abbiamo 

Inseriamo questa espressione di y" , insieme alle espressioni (5.54) e (5.52) di y' e y , 
nell'equazione differenziale (5.51) che vogliamo risolvere ottenendo (non è un miracolo 
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che si cancellino tutti i termini in cui i Ci non sono derivati , semplicemente y1 e y2 

erano soluzioni dell'equazione omogenea) 

ex 
e~ (x)ex + ~(x)(l + x)ex = --

2 l +x 
==> I ( ) I l 

Cl + 1 + X C:i = -1 2 , +x 

la seconda equazione sui <; , che insieme a (5.53) dà il sistema 

{ 

e~ +x~ = O 

e~+ (1 + x)~ = 1 : x2 

da cui si ricavano subito le espressioni di c1 e c2 . 

{ 

1 l 
C:i = 1 + x2 

- X 
e' - ---

1 - 1 + x2 

c1(x)= - / l :x2 dx= - ~1og(l+x2) 

c2(x) = j 
1

: x2 dx= arctanx. 

In definitiva, la soluzione generale dell'equazione in questione è quindi 

con c1 e c2 costanti. 

5.8 - Equazioni di ordine superiore al secondo 

In questa sezione studiamo le equazioni differenziali ordinarie di ordine superiore al se­
condo, lineari e con coefficienti costanti, cioè del tipo 

m 

L ajy(j) = f(x) . 
j=O 

(5.55) 

I coefficienti aj sono numeri reali con am =/= O , y<J) indica la derivata j-esima della 
funzione y, ed J(x) è la funzione "termine noto". 

La risoluzione dell'equazione (5.55), cioè la ricerca della sua soluzione generale, si 
ottiene seguendo gli stessi passi visti nella Sezione 5.7 per il caso m = 2 , che sono i 
seguenti. 
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Passo 1 si considera il polinomio complesso 

m 

P(z) = L aizi 
j=O 

e si determinano le sue radici complesse z1 , ... , Zm contate ciascuna con la relativa 
molteplicità, in modo che siano esattamente m: ad esempio se P(z) = (z - 5)2 avremo 
z 1 = z2 = 5 . Va osservato che, essendo il polinomio P a coefficienti reali, se un numero 
complesso z è radice lo è anche il suo coniugato z . Notiamo esplicitamente che questo 
passo sarà spesso impossibile da completare, dato che sono ben pochi i polinomi di grado 
elevato di cui si riesce a trovare tutte le radici! 

Passo 2 : si determinano tutte le soluzioni dell'equazione omogenea 

m 

Laiyu) = o 
j=O 

(5.56) 

individuando una famiglia Y1 (x), ... , Ym(x) di soluzioni fondamentali, costruite median­
te le radici z1 , ... , Zm trovate nel Passo 1, come segue. 
a) Se z è una radice reale semplice, prendiamo la funzione ezx . 
b) Se z è una radice reale multipla, con molteplicità k (cioè compare k volte nella 

lista delle m radici del polinomio P ), prendiamo le k funzioni 

... ' 

c) Se z = a± i/3 è una coppia di radici complesse coniugate semplici, prendiamo le 
due funzioni 

e0 x cos(/3x) , e0
x sen(/3x) . 

d) Se z = a± i/3 è una coppia di radici complesse coniugate multiple, con molteplicità 
k , prendiamo le 2k funzioni 

{ 
e0 x cos(/3x) , 

e"'x sen(/3x) , 

xe"'x cos(/3x) , 

xe0 x sen(f3x) , 
... ' 
... ' 

xk- leax cos(/3x) 

xk-leax sen(/3x) . 

Passo 3 : una volta determinate le m soluzioni fondamentali Y1(x), .. . , Ym(x) come 
illustrato nel Passo 2, la soluzione generale dell'equazione omogenea (5.56) è data da 

m 

y(x) = LCiYi(x) = C1Y1(x) + ... + CmYm(x) 
j = l 

con c1 , . .. , Cm costanti reali arbitrarie. 

Passo 4 : si cerca una soluzione particolare y(x) dell'equazione (5.55); è questo il 
passo più delicato; a causa della linearità dell'equazione, se J(x) = h (x) + • • • + fk(x) 
si può cercare una soluzione particolare '[)i per ciascuna funzione fi e poi si sommano 
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le soluzioni particolari per ottenere i} = y1 + • · • + Yk . Se f è di uno dei t ipi visti 
nella Sezione 5. 7 si può ricalcare la strategia usata là (polinomi di grado opportuno, 
esponenziali eventualmente moltiplicati per potenze, funzioni trigonometriche). Per una 
trattazione più generale rimandiamo all'appendice (1• appendice 5.9). 

Passo 5 : la soluzione generale dell'equazione (5.55) è data infine da 

m 

y(x) = L cjyj(x) + y(x) = C1Y1(x) + ... + CmYm(x) + y(x) 
j = l 

con c1 , ... , Cm costanti reali arbitrarie. Nel caso di un problema di Cauchy con m 

condizioni iniziali assegnate, le costanti c1 , ... , Cm si ricavano imponendo tali condizioni 
(~ es. 5.21). 

Sistemi lineari a coefficienti costanti con più di due equazioni si possono ricondurre. 
con manipolazioni algebriche simili a quelle viste al termine della Sezione 5.7, a equazioni 
di ordine superiore al secondo, dopo di che si possono trattare con i metodi di questa 
sezione. 

Esempio : risolviamo il problema di Cauchy 

y111 
- y" + y' - y = 4e-x - x 3 , y(O) = y'(O) = y"(O) = O. 

L'equazione omogenea associata è y"' - y" + y' - y = O , e l'equazione caratteristica 

z3 
- z 2 + z - 1 = O (z - l )(z2 + 1) = O 

ha le tre radici semplici z = 1 , z = i e z - i , cui corrispondono le soluzioni 
fondamentali 

Y1(x) =ex, Y2(x) = cosx , y3(x) = senx 

per cui la soluzione generale dell'equazione omogenea è 

c 1ex + c2 cosx + C3 senx . 

Ora cerchiamo una soluzione particolare: visto il secondo membro 4e- x - x3 , la trover­
emo nella forma 'fh + 'i}2 dove i}1 e iJ2 sono soluzioni particolari rispettivamente delle 
equazioni 

y"' - y" + y' - y = 4e- x , y"' - y" + y' - Y = - x3 . 

Visto che e- x non è tra le soluzioni fondamentali, cerchiamo y1 del tipo c e- x , mentre 
iJ2 sarà un polinomio di grado 3. Abbiamo 

- I - X 
Y1 = - ce ' 

- Il - X 
Y1 = ce ' 

-lii -X Y1 = -ce 

per cui 
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e dunque scegliamo e = -1 ossia 

V1(x) = -e- "' . 

Ora se fh(x) = ax3 + bx2 +cx+ d abbiamo 

y; = 3ax2 + 2bx + e , y~ = 6ax + 2b , vt =6a 

e con facilissimi calcoli 

a=l , b = 3, c=d= O 

per cui 

V2(x) = x3 + 3x2 . 

Allora la soluzione generale dell'equazione di partenza è 

Abbiamo 

e quindi 

y(x) = c1e"' + c2 cosx + c3 senx - e-x + x3 + 3x2 
. 

y' ( x) = c1 e"' - c2 sen x + c3 cos x + e -x + 3x 2 + 6x 

y"(x) = c1e"' - c2 cosx - c3 sen x - e- x - 6x + 6 

y(O) = C1 + C2 - 1 , y'(O) = C1 + C3 + 1 , y"(O) = C] - C2 + 5 

e se vogliamo che y risolva il problema di Cauchy deve essere 

C1 + C2 - 1 = C1 + C3 + 1 = e 1 - c2 + 5 = o C1 = - 2 , C2 = 3 , C3 = 1 . 

La soluzione cercata è dunque 

y (x) = - 2e"' + 3cosx + senx - e-x + x3 + 3x2 . 
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5.9 - Condizioni diverse da quelle di Cauchy 

In questa sezione illustriamo alcuni problemi per le equazioni differenziali ordinarie, di­
versi dal problema di Cauchy. Nelle sezioni precedenti abbiamo studiato il problema di 
Cauchy per equazioni e per sistemi di equazioni differenziali ordinarie; abbiamo visto 
che questo consiste nel fissare in un punto x0 il valore y(x0 ) della soluzione che si 
cerca, insieme alle derivate yUl(xo), con j = O, ... , m - 1 dove m rappresenta l'ordine 
dell'equazione. Per un'equazione del secondo ordine dunque si impongono i valori y(x0 ) 

ed y'(xo). 
Non tutti i problemi però sono di questo tipo; ad esempio per un'equazione del 

secondo ordine possiamo: 

• imporre i valori della funzione y(xo) ed y(x1) in due punti distinti xo ed x1 
(questo si chiama problema di Dirichlet); 

• imporre i valori della derivata prima y'(xo) ed y'(x1) in due punti distinti x0 ed 
X1 (questo si chiama problema di Neumarm); 

• imporre delle combinazioni tra i valori della funzione e della sua derivata prima 
y(xo) + ay'(xo) ed y(x1 ) + f3y'(xi) in due punti distinti xo ed x 1 (questo si 
chiama problema, di Robin). 

Senza entrare nella casistica dei vari problemi possibili osserviamo che in ogni caso le con­
dizioni iniziali, sia di tipo Cauchy che agli estremi dei tipi elencati sopra, nulla cambiano 
rispetto alla ricerca delle soluzioni generali; l' unica differenza sta nella determinazione 
delle costanti (due nel caso di equazioni del secondo ordine), che si ottengono volta per 
volta imponendo le condizioni corrispondenti. 

Esempio : una corda elastica di costante elastica k è fissata ai suoi estremi a e b ed 
è caricata con dei pesi distribuiti lungo di essa. Se indichiamo con y(x) la posizione 
verticale della corda al punto x, con m(x) la distribuzione della massa caricata sulla 
corda, e supponiamo agli estremi y(a) = y(b) = O, la teoria dell'elasticità lineare fornisce 
la posizione della corda caricata come soluzione dell'equazione differenziale del secondo 
ordine 

ky"(x) = m(x)g, y(a) = y(b) = O. 

Ad esempio, se supponiamo la corda caricata uniformemente, cioè m(x) = m costante, 
e prendiamo per semplicità a = O e b = I , otteniamo la soluzione generale 

mg 2 
y(x) = 2kx + C1X + C2 

con c1 e c2 costanti arbitrarie. Imponendo le condizioni agli estremi si ottiene c2 = O 
e c1 = - mg/(2k) e quindi la posizione della corda, data da 

mg 2 
y(x) = 2k(x - x) , 

quindi l'elastico assume una forma parabolica. Se la corda non è elastica (ad esempio 
una catena), la situazione è differente (,• appendice 5.10). 
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Esempio : se invece di una corda elastica avessimo avuto una sbarra di acciaio incastrata 
nell'estremo a ma completamente libera nell 'estremo b , le equazioni dell'elasticità li­
neare ci avrebbero dato l'equazione differenziale del quarto ordine 

ky(4
) = -m(x)g 

con le condizioni di incastro nel punto a 

y(a) = y'(a) = O 

e le condizioni di estremo libero in b 

y"(b) = y"'(b) = O. 

Supponendo ad esempio m(x) = m costante, e prendendo a = O e b = 1 , si ottiene 

così la soluzione 

il cui grafico è rappresentato in figura. 

Fig. 5.10 : una sbarra incastrata nell'origine ma libera nell'altro estremo 

Esempio : fissato un numero reale w2 > O ed un intervallo [O, L] consideriamo l'equa­

zione differenziale 
(5.57) 

con le condizioni al bordo 

y(O) = y(L ) = O. (5.58) 

Tale problema di Dirichlet interviene nello studio delle vibrazioni di una corda elastica 
di lunghezza L , fissata ai suoi estremi. Abbiamo già visto w (5.42) che la soluzione 
generale dell'equazione (5.57) è data dall'espressione 

y(x) = c1 sen(wx) + c2 cos(wx) 
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con c1 , c2 costanti arbitrarie. Imponendo le condizioni (5.58) si ottiene il sistema 

{ 

C2 = 0 

c1 sen(wL) = O. 

Dunque, se wL non è un multiplo intero di 1r , l'unica soluzione dell'equazione (5.57) 
con le condizioni (5.58) è la funzione nulla. Se invece 

wL = n1r , 
. , n1r 

c1oe w = L, 

abbiamo anche le soluzioni 

con c1 E R qualsiasi, pertanto in questi casi il problema di Dirichlet ha infinite soluzioni. 

Esempio : consideriamo l'equazione differenziale (non in forma normale) 

(y')2 = 1 

e fissiamo un punto xo in cui imponiamo la condizione y(x0 ) = y0 . Siccome per la 
proprietà di Darboux vista nella Proposizione 1.47 la derivata non può saltare da - 1 a 
1, abbiamo che se y'(x0 ) > O si ha y'(x) > O per ogni x e dunque y'(x) = 1, che 
fornisce la soluzione 

y(x) = Yo + (x - xo) . 

Analogamente, se y'(x0 ) < O abbiamo y'(x) = - 1 per ogni x e quindi otteniamo la 
soluzione 

y(x) = yo+(xo -x). 

In definitiva, queste sono le due sole soluzioni possibili. 

Esempio : consideriamo l'equazione differenziale vista in (5.5) 

(y')2 = sen2 x (5.59) 

con la condizione y(O) = y0 . Possiamo quindi avere, per ogni singolo punto x, 

y'(x) = senx oppure y'(x) = - senx. (5.60) 

Per la proprietà di Darboux vista nella Proposizione 1.47 la derivata y'(x) non può 
saltare da senx a - senx (o viceversa) , a meno che non si abbia senx = O cioè x = k1r 
con k E Z : dunque l'alternativa (5.60) vale non per ogni singolo punto, ma in ciascun 
intervallo [k1r, (k + l)1r]. Supponiamo che nell'intervallo [O, 1r] sia y'(x) = senx; si ha 
allora y( x) = - cos x + e e dalla condizione iniziale si ricava 

y(x) = Yo + 1 - cosx in [O, 1r] . 
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Invece, nel caso in cui y'(x) = - senx in [O, 1r], si otterrebbe la soluzione 

y(x) = Yo - 1 + cosx in [O, 1r] . 

Siccome nel punto 1r entrambe le soluzioni hanno derivata nulla, nell'intervallo successivo 
[1r, 21r] si può di nuovo scegliere tra le opzioni y'(x) = senx oppure y'(x) = -senx. Si 
ottengono quindi, nell'intervallo [O, 21r] , le quattro soluzioni 

Y1(x)=yo+l-cosx in[0,1r]; 

( ) { 
Yo + 1 - cos x in [O, 1r] 

Y2 X = 
Yo + 3 + cosx in [1r, 21r]; 

in [O, 1r] 
() {

yo - l+cosx 
Y3 X = 

Yo - 3 - cosx in [1r, 21r]; 

y4(x) = Yo - 1 + cosx in [O, 1r] . 

Di nuovo, nel punto 21r tutte le soluzioni hanno derivata nulla, per cui nell'intervallo 
successivo [21r, 31r] si potrà ancora scegliere tra le opzioni y'(x) = senx oppure y'(x) = 
- senx, il che condurrà ad avere otto possibili soluzioni in [O, 31r] (provate per esercizio a 
scriverle esplicitamente). Così di seguito si procede negli intervalli successivi [k1r, ( k+ 1 )1r] 
con k > O e similmente a sinistra dell'origine, con k < O. 
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Esercizi relativi al capitolo 5 

Esercizio 5 .1 : risolvete i seguenti problemi di Cauchy mediante integrazione diretta: 
a) y' = e , y(O) = 3 
b) y' =sen x, y(O) = O 
c) y' = xsenx + cosx, y(O) = 1. 

Esercizio 5.2 : risolvete i seguenti problemi di Cauchy relativi ad equazioni differen­
ziali lineari del primo ordine: 
a) y' = 2y - ex , y(O) = O 
b) y' = xy + 2x, y(O) = O 
c) y'=y+x y(O)=O 
d) y' = y + 1 + sen x, y(l ) = 1 
e) y' = xy + x 3 , y(l ) = O. 

Esercizio 5.3 : risolvete i seguenti problemi di Cauchy relativi ad equazioni differen­
ziali del primo ordine a variabili separabili: 
a) y' = W , y(O) = 1 
b) y' = tanx · cos2 y, y(O) = 1r 

c) y' = 1 + y2 , y(O) = O. 

Esercizio 5.4 : determinate la soluzione generale delle seguent i equazioni differen­
ziali lineari del secondo ordine, omogenee ed a coefficienti costanti: 
a ) y" - y = O 

b) y" + y' = O 
c) y" + 5y' + y = O 
d) y" + 5y' - y = O 
e) y" = lOy' - 9y. 

Esercizio 5 .5 : risolvete i seguenti problemi di Cauchy relativi ad equazioni differen­
ziali lineari del secondo ordine ed a coefficienti costanti: 
a) y" - 2y' +y = x, y(O) = y'(O) = O 
b) y"+4y'+4y=l , y(0)=y'(0)= 0 
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c) y" - 6y' + 9y = x2 , y(O) = 1, y'(O) = O. 

Esercizio 5.6 : determinate la soluzione generale delle seguenti equazioni differen­
ziali lineari del secondo ordine ed a coefficienti costanti: 
a) 2y" + y' - 3y = 3x + 2 
b) y" - 4y' + 4y = e- x 
c) y" - 2y' + 2y = 1 
d) y" + y = x 
e) y" - 2y' + 2y = ex 
f) y 11 + 2y' + 2y = senx + cosx 
g) y" + y = xeX . 

Esercizio 5. 7 : calcolate la soluzione del problema di Cauchy 

{ 
y" - y = x sen x 

y(O) = y'(O) = O. 

Esercizio 5.8 : determinare, al variare del parametro k E JR , t utte le soluzioni del 
problema differenziale 

Esercizio 5.9 

{ 
u" + ku = O in ]O, 1[ 
u(O) = O, u'( l ) = O. 

determinate i numeri reali o:, fJ tali che il problema di Cauchy 

{ 

y" = o:y' + fJy 
y(O) = O 

y'(O) = 1 

abbia una soluzione Yo ,/3 infinitesima per x ➔ +oo. Tra questi valori di a e fJ 
determinate poi quelli tali che risulti 

Esercizio 5.10 
differenziali: 

a) { 
f' = g 

g' = -f 
b) { u' = 2u + v 

v' = u + 2v 

lim e"'y0 13 (x) = 1. 
x➔+oo ' 

determinate la soluzione generale dei seguenti sistemi di equazioni 

{ 
u' = 2u + 3v + x c) 
v' = 6v - u - 2. 

Esercizio 5.11 : determinate le soluzioni (x(t), y(t)) dei seguenti sistemi differenziali 
del primo ordine: 

{ 

X
1 = X +y, 

a) 
y' = X - y, 

x(O) = O 

y(O) = 2)2; 
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{ 

x' = 2x + 2y + 1 

b) y' = x + 3y 

x(O) = y(O) = O; 

c) y' = -x + cost 
{ 

x' = -y + sen t 

x(O) = 1, y(O) = - 1. 

Esercizio 5.12 : determinate la soluzione dei seguenti problemi di Cauchy: 

a) { :: : : ~: + 1 

u(O) = O , v(O) = 1 

b) { ~: : ~u- 2v 

u(O) = 1 , v(O) = O . 

Esercizio 5.13 : determinate la soluzione massimale y(x), per x > O , del problema 
di Cauchy 

{ 
x2y' = y2 + xy 

y(l) = 1. 

Esercizio 5.14 determinate esplicitamente la soluzione massimale del problema di 
Cauchy 

Esercizio 5.15 
ziale 

{ 
Y

1 = IY - 2xl 

y(O) = 1. 

indicata per ogni a > O con Ya la soluzione dell'equazione differen-

y(O) = 1, 

determinate il valore di a E]O, +oo[ per cui il valore Ya(l) risulti minimo. 

Esercizio 5.16 : risolvete il problema di Cauchy 

{ 
y' = exey - 1 

y(O) = O. 

Esercizio 5.17 studiate la soluzione del problema di Cauchy 

y3 
y' = ----

x(x2 + y2) 
y(l) = 1. 

Dimostrate in particolare che la soluzione massimale y(x) è definita su tutto [1, +oo[ e 
determinate un'espressione di y(x) in forma implicita. 

Esercizio 5.18 : dimostrate che y(x) = x è l'unica funzione di classe C1 (R) che 
verifica l'equazione differenziale 

2xy'(x) = y(x) + x VxER . 
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Esercizio 5.19 dimostrate che per ogni k E JR esiste una funzione y E C2 (JR) tale 
che 

{ 
y" - k2 y = X 

y(O) = O, y(l) = 1, y(-1) = -1 . 

Esercizio 5.20 determinate i valori delle costanti reali a, b, e, d per cui il sistema 
differenziale 

{ 
y' = ay + bz 

z' = cy + dz 

ha almeno una soluzione periodica non nulla. 

Esercizio 5.21 : determinate le soluzioni dei seguenti problemi di Cauchy di ordine 
superiore al secondo: 
a) y111 

- y" + y' - y = senx, y(O) = y'(O) = y"(O) = O; 
b) yiv - y" + y = ex, y(O) = y'(O) = y"(O) = y"'(O) = O; 
c) y(iv) + y = ex , y(O) = y'(O) = y"(O) = y"'(O) = O. 

Esercizio 5.22 : determinate i numeri reali a, b, c per cui la soluzione del problema 
di Cauchy 

{ 
y"' - y" + y' - y = o 
y(O) = a, y' (O) = b, y" (O) = e 

è limitata. 

Esercizio 5.23 determinate tutte le funzioni y E C3(JR) tali che 

{ 
y"' + y' = O su ]0,1r[ 

y(O) = y(1r) = O. 

Esercizio 5.24 determinate tutte le soluzioni dell'equazione differenziale 

yC4) - 16y = sen x 

che risultano limitate su tutto JR . 

Esercizio 5.25 : studiate qualitativamente le soluzioni dei seguenti problemi di Cau­
chy; in particolare determinate per le soluzioni, dove possibile, le regioni di monotonia, 
quelle di convessità, il dominio di esistenza, gli eventuali asintoti. Disegnate poi un 
grafico approssimativo delle soluzioni. 

a) 

b) 

c) 

d) 

e) 

f) 

I 3X - y2 + 1 
Y - ----=--- y(O) = 1·, 

- x 2 +y+ 1 ' 
y' = x + arctany, y(O) = O; 

y-ex 
y' - -- y(O) = 1; 

- X - eY ' 

y' = y2 -ysenx, y(O) = 1; 
eY - x2 

Y
, ___ _ 

- eY + x2 ' 

y' = tan(y - x) , 

y( l ) = O; 

y(O) = O; 
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g) 

h) 

i) 
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y' = ! - x , y(l) = l; 
y 

y' = x - jy, y(l) = l ; 

y' = J1 + x2 + y2 , y(O) = O. 

Esercizio 5.26 : studiate qualitativamente la soluzione del problema di Cauchy 

{ 

I 1 1 
y = - - -

X y 

y(l) = 1. 

In particolare, stabilite se la soluzione y(x) risulta definita su tutto ]O, + oo[. 

Esercizio 5.27 : dato il problema di Cauchy 

{ 
y" = eY 

y(O) = y'(O) = O 

studiate il comportamento qualitativo della soluzione. In particolare dimostrate che la 
soluzione massimale non è definita su tutto JR . 

Esercizio 5.28 : studiate qualitativamente la soluzione del problema di Cauchy 

{ 
y' = log(xy) 

y(l) = 1 

e disegnatene un grafico approssimativo. Studiate in particolare: 
(i) l'esistenza ed unicità locale, in un intorno del punto xo = 1 ; 

(ii) l'esistenza su tutta la semiretta ]O, +oo[ ; 
(iii) la convessità sulla semiretta ]O, +oo[; 
(iv) la limitatezza sull' intervallo ]O, 1] . 

Esercizio 5.29 : dimostrate che la soluzione del problema di Cauchy 

{ 

2 
y' = eY 

y(O) = O 

non può essere definita su tutto JR e che, se y :]a, b[-+ JR è la soluzione massimale, si ha 

1
b 1 

y(t) dt = - . 
o 2 

Esercizio 5.30 
Cauchy 

studiate qualitativamente per x ~ O la soluzione del problema di 

In particolare dimostrate che: 

{ 
y' = y(4 - x2 - y2) 

y(O) = 1. 

(i) la soluzione è unica e globale per x 2 O ; 
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(ii) la soluzione è positiva e tende a zero per x -+ +oo . 

Esercizio 5.31 : dimostrate che la soluzione del problema di Cauchy 

{ 
y' = y2 seny 

y(O) = 1 

è definita su tutto JR . 

Esercizio 5.32 : considerate il problema di Cauchy 

{ 

y' = -x~.,....e-:-~"72 

y(O) = 1. 

Dimostrate che la soluzione y(t) è definita su tutto JR, che è monotona crescente, e che 
si ha 

o :::::; y(t) :::::; 7r WEJR. 

Esercizio 5.33 dimostrate che la soluzione del problema di Cauchy 

{ 
y' = y2 _ x2 

y(O) = O 

è definita su tutto JR ed è decrescente. 

Esercizio 5.34 : dimostrate che per ogni a 2 O il problema di Cauchy 

{ 
y' = X - y2 

y(O) = a 

ha un'unica soluzione Ya definita su [O, +oo[ e che 

lim Ya(x) = +oo. 
x--++oo 

Esercizio 5.35 dato il problema di Cauchy 

{ 

I 1 
y = x2 - y2 

y(2) = O 

dimostrate che esiste un'unica soluzione definita in [2, +oo[ . Dimostrare poi che tale 
soluzione è limitata in [2, +oo[ . 

Esercizio 5.36 : sia f : JR -+ JR una funzione regolare e strettamente crescente. 
Studiare qualitativamente la soluzione y(x) del problema di Cauchy 

{ 
y' = y(f(y) - f(x)) 

y(l) = 1 
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e disegnarne un grafico approssimativo. 

Esercizio 5.37 : determinate, per ogni n E N ed ogni a E JR, le soluzioni un dei 
problemi di Cauchy 

{ 
u" + 2nu' + n2u = na 
u(O) = u'(O) = O 

e stabilite per quali valori di a la successione Un converge uniformemente a zero 
nell'intervallo [O, +oo[ . 

Esercizio 5.38 : dato il problema di Cauchy 

{ 

I - y4tet 
y - 3 + 2y+y2 

y(O) = 1 

(i) stabilite se la soluzione risulta definita su tutto JR ; 
(ii) determinate la soluzione in forma implicita; 

(iii) scrivete lo sviluppo di Taylor nell'origine di y(t) fino all'ordine 2 compreso. 

Esercizio 5.39 : determinate i valori del parametro a > - 1 per cui l'equazione dif­
ferenziale 

y' = t(y + Ili"') 
ha una soluzione limitata su tutto JR . 

Esercizio 5.40 : determinate, al variare del parametro a E JR , le soluzioni dell'equa­
zione differenziale 

y' = IWY 
che possono essere estese a funzioni di classe C1 (JR) . 

Esercizio 5.41 : considerate il problema di Cauchy 

Dimostrate che: 

{

y'= _1-_y 
x2 + y2 

y(O) = 1/2. 

(i) esiste una ed una sola soluzione massimale y(x) definita in un intorno dell'ori-
gine; 

(ii) la soluzione y(x) del punto precedente è definita su tutto JR+ ; 
(iii) la soluzione y(x) è definita anche su tutto JR- ; 
(iv) la soluzione y(x) è monotona crescente e quindi esistono i limiti 

L- = lim y(x) , 
x➔-oo 

L+ = lim y(x); 
x->+oo 

( v) si ha L + < 1 . 
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Ese rcizio 5.42 dato il problema di Cauchy 

{ 
y' = x2 + Y2 

y(O) = O 

dimostrate che la soluzione massimale y(x) 
i) esiste ed è unica; 

ii) è monotona crescente; 
iii) è definita in un intervallo limitato I di JR; 
iv) è una funzione dispari; 
v) è convessa su I n JR+ e concava su I n JR- . 

Disegnare inoltre un grafico approssimativo della soluzione y(x). 

Esercizio 5.43 : fissato un numero reale a > O considerate il problema di Cauchy 

{ 

/ 1 
y = lxl0 + IYI 
y(O) = 1. 

Dimostrate che: 
(i) esiste una ed una sola soluzione massimale y(x) definita in un intorno dell'ori­

ginei• 
(ii) la soluzione y(x) del punto precedente è definita su tutto JR ; 

(iii) la soluzione y(x) è monotona crescente e quindi esistono i limiti 

L - = lim y(x) , 
x➔-oo 

L+ = lim y(x); 
x--t+oo 

(iv) per a > 1 i limiti L - ed L + sono finiti; 
(v) per a::S l siha L-= - oo ed L+=+oo . 
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Appendice al capitolo 5 

Appendice 5.1 - Un sistema che collassa 

Consideriamo N punti su una circonferenza di raggio R , ai vertici di un poligono 
regolare di N lati, come in figura a); possiamo pensare che ogni punto rappresenti la 
posizione di un cane feroce. Al tempo t = O ogni cane si dirige verso il cane più vicino a 
destra, con velocità v ; vogliamo descrivere il movimento del sistema nel suo complesso, 
determinando la traiettoria di ogni cane. 

Conviene descrivere le traiettorie nel piano complesso; in tal modo la traiettoria del 
cane k -esimo sarà zk(t) , una curva in <C . Se usiamo gli indici k = O, l, ... , N - l è 
chiaro che, una volta determinata la traiettoria z0(t) , le altre zk(t ) saranno simili a 
z0 (t) ma ruotate di un angolo 21rk/N . In altri termini 

Zk(t) = ei21rk/N zo(t) . (A5.l) 

Se scriviamo il numero complesso z0 (t) in forma polare e indichiamo con r(t) il suo 
raggio e con 0(t) il suo angolo, abbiamo 

(A5.2) 

Da come è stata descritta la dinamica dei punti si ricava il sistema differenziale 

. (t) Zk+l (t) - Zk(t) Zk = V 
lzk+1(t) - zk(t)I 

k = O, l , ... , N - l, 
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dove Zk indica la derivata di Zk rispetto a t. Utilizzando (A5.l) e (A5.2) si ottiene 

i ( 0(t)+2rr(k+l)/ N) i ( 0(t}+2rrk/ N) 
i-(t)e;(o(t)+21rk/N) + ir(t)B(t)e;(o(t)+21rk/N) = v e - e 

ie;(ou}+2rr(k+l}/N) _ e;(o(t)+2rrk/N) I 

da cui, dividendo per e; ( O(t)+21rk/N) , si ricava 

. ei2rr/N _ 1 ei2rr/N _ 1 
i-(t) + ir(t)0(t) = v jei2rr/N - lj = v 2sen(1r/N) 

e, separando parte reale e parte immaginaria, troviamo il sistema differenziale 

{ 
i-(t) = - v sen(1r/N), 

r(t)B(t) = v cos(1r/N), 

Il sistema (A5.3) si risolve facilmente e si trova 

r(O) = R 

0(0) = O. 

{ 

r(t) = R - vtsen(1r/N) 

0( ) 1 1 ( v sen( 1r / N) ) 
t = tan(1r/N) og l-t R · 

(A5.3) 

(A5.4) 

Le funzioni r(t) e 0(t) sono definite in un intervallo [O, T] , dove T è il tempo di 
collasso, in cui tutti i punti si trovano nell'origine: 

T= R 
vsen(1r/N) 

In particolare, per N ➔ +oo , dallo sviluppo di Taylor della funzione seno, si ricava 

T~ RN _ 
V7r 

Per disegnare le traiettorie Zk conviene scrivere z0 in forma polare r = r(0) ; dalle 
(A5.4) si ricava 

r(0) = Re-Otan(,r/N), 0 E [O, +oo[, 

e le traiettorie Zk sono rappresentate in figura b) . 

• 

Fig. A5.J : a) la configurazione iniziale con N = 4 Fig. A5.2: b) le traiettorie con N = 4 
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Appendice 5.2 - Curve di inseguimento 

Supponiamo che un velivolo sorvoli una data regione, con traiettoria </J(t) ; ad un certo 
istante to (per comodità supporremo t0 = O ) un missile parte dalla sua postazione ( che 
per comodità supporremo nell'origine) per abbattere il velivolo. Il missile non conosce 
tutta la traiettoria <fJ(t) , quindi ad ogni istante t si dirigerà verso il punto </J(t) ; 
indichiamo con v la velocità del missile, che supponiamo costante, e con u (t) la sua 
traiettoria. Da quanto detto sulla strategia di inseguimento del missile ricaviamo il 
sistema differenziale 

. </J(t) - u (t) 
u(t) = v 11</J(t) - u (t)II 

con la condizione iniziale u (O) = O. 
Consideriamo in dettaglio il caso in cuj il moto avvenga nel piano x, y con traiettoria 

del velivolo rettilinea </J(t) = (1, t) ; posto allora u(t) = (x(t) , y(t)) otteniamo il sistema 
differenziale 

{

:i;= V ✓(l - :); : (t - y)2 ' 

. t - y 
y = V--;:=========:= 

J(l - x)2 + (t - y)2 

x(O) = O 

y(O) = O. 

Vogliamo determinare la traiettoria del missile come grafico della funzione y( x) ; abbiamo 
quindi, indicando con y' la derivata di y rispetto ad x , 

y' = ~ 
X 

da cui (1-x)y'=t-y. 

Derivando rispetto a t l'ultima uguaglianza si ottiene 

Tenuto conto dell 'uguaglianza 

• I (1 ) dy' 1 . - Xy + - X dt = - y. 

d I 

_Jf_ = y":i; 
dt 

e del fatto che iJ = y':i;, l'equazione (A5.5) diventa 

(1 - x)y"x = 1 

llicordiamo ora che la velocità del missile è costante, cioè 

v2 = (:i:)2 + (y)2 = (:i:)2 + (y':i:)2 = (x)2(l + (y')2) 

da cui, essendo evidentemente :i:(t) > O per ogni t, si ricava 

V 
i: = --;=== J 1 + (y')2 

(A5.5) 

(A5.6) 
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A questo punto, sostituendo l'espressione precedente in (A5.6), ricaviamo l 'equazione 
differenziale 

y" = ✓1 + (y')2 
v(l - x) (A5.7) 

Posto z = y', l'equazione (A5.7) è del primo ordine a variabili separabili e si integra 
facilmente(= Sezione (5.6)) ottenendo 

log (z + J1 + z 2) = _! log(l - x) + e. 
V 

Per x = O il missile sarà diretto orizzontalmente verso il punto (1, O) , per cui z(O) = O , 
cioè e= O, da cui ricaviamo l'uguaglianza 

y' + J1 + (y')2 = (1 _ x)-lfv_ 

Portando y' al membro destro ed elevando al quadrato si ottiene 

1 + (y')2 = (y')2 + (1 _ x)-2/v _ 2y'(l _ x)-lfv 

da cui 

y' = (1 - x)-2/v - 1 = ! [(1 - x)-lfv - (1 - x) l fv ] . 
2(1 - x)-l/v 2 

Integrando si ha, se v -=I- 1 , 

y = ! [-v- (1 - x)l+l/v + _ v_(l - x)l - 1/v] + k 
2 l +v 1 - v 

e la costante k si ricava dalla condizione iniziale y(O) = O : 

1( V V ) 
k = - 2 1 +V + 1 - V . 

In definitiva, la traiettoria y( x) del missile è data da 

X _ V [(1 - x)l+l/v - 1 (1- x)l- l /v - l] 
y( ) - 2 1 + V + 1 - V 

Se v > 1 il punto di impatto tra il missile ed il velivolo sarà quindi 

p = ( l, v2 ~ 1) ; 

(A5.8) 

il tempo di impatto T si ricava calcolando il tempo necessario al velivolo per raggiungere 
il punto P: 

V 

T = v2 - 1 . 

Se v < 1 l traiettoria è sempre data dalla (A5.8), ma ovviamente il missile non raggiunge 
mai il velivolo. Infine se v = 1 , invece della (A5.8) si ha 

1 [ x
2

] y(x) = 2 - log(l - x) - x+ 2 
e di nuovo il missile non raggiunge mai il bersaglio. La figura mostra due traiettorie: in 
a) con v = 2 ed in b) con v = 1. 
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06 

o, 

•• . , 

. ' ~ - ' -00 U 

Fig. A5.3 : curva di inseguimento con v = 2 Fig. A5.4 : curva di inseguimento con v = I 

Appendice 5.3 - Oscillazioni di un'altalena 

Esaminiamo un problema interessante, quello dell'altalena. Supponiamo di trascurare 
l'attrito degli attacchi delle corde, e per semplicità usiamo l'approssimazione sen y ~ y 
che sarebbe giustificata solo per oscillazioni piccole; se partiamo da fermi , cioè y(O) = 
y'(O) = O, tutti sanno cosa si deve fare: imprimere una spinta ritmica, sempre con lo 
stesso periodo, e non un periodo a caso, ma uno che si trova in base alle caratteristiche 
della singola altalena. Tutti sappiamo anche quel che succede: l'altalena oscilla sempre 
più, in sincronia con le nostre spinte (ma in ritardo di un quarto di periodo, visto che 
la spinta è massima quando l 'altalena è nella posizione più bassa , che corrisponde a 
y = O), e l'ampiezza dell'oscillazione aumenta a dismisura (beh, non esageriamo: questo 
non accade nella realtà, perché se l'angolo di oscillazione è grande l'approssimazione 
seny ~ y non è più corretta) . 

Matematicamente, l'equazione ha la forma y" + y = J(t) , dove f è la nostra spinta; 
dato che questa è periodica, poniamo f(t ) = cos(bt) , con b > O da determinarsi, così il 
problema diviene 

{ 
y" + y = cos(bt) 

y(O) = y'(O) = O . 
(A5.9) 

L'equazione caratteristica ha soluzioni z = ± i , quindi conosciamo la soluzione generale 
(5.41) dell'equazione omogenea, ma ora si presentano due casi: se b -:f. 1 possiamo cercare 
una soluzione particolare della forma hsen(bt) + kcos(bt) e con facili calcoli ricaviamo 
la soluzione generale di (A5.9) 

==> 
1 

y(t) = -b2 (cos(bt) - cost) ; 
1 -
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osserviamo che questa funzione è limitata, perciò l'altalena non oscilla più di tanto, e 
potremmo vedere ~ Figure A5.5 e A5. 7 che oscilla in modo assai scomodo, esattamente 
come accade quando i bambini ancora non sanno "prendere il tempo". 

Fig. A5.5 : qualche b < 1 Fig. A5.6 : b = 1 e (fine) cos t Fig. A5. 7 : qualche b > 1 

Nel caso b = 1 , dato che il numero complesso i è una soluzione dell'equazione 
caratteristica dobbiamo cercare la soluzione particolare nella forma ht sen t + kt cos t , e 
stavolta otteniamo 

b = l 
1 

===} y(t) = 2tsen t : 

l'altalena ha dunque l'andatura regolare e con ampiezza illimitata cui t utti miriamo (= 
figura A5.6). Si tratta del fenomeno della risonanza, di cui si deve tenere grande conto 
nella progettazione di edifici complessi come grattacieli o ponti: la loro frequenza di 
risonanza non deve coincidere con la frequenza delle forze esterne alle quali possono essere 
soggetti. Nella Figura A5.6 è anche evidente l'altro fenomeno cui avevamo accennato 
all'inizio: le oscillazioni dell'altalena sono in ritardo di Tr /2 rispetto a quelle della spinta 
cost. 

Appendice 5.4 - Caduta di un corpo in un campo di gravità 

Come applicazione di quanto visto per le equazioni differenziali del primo ordine a va­
riabili separabili, studiamo la caduta di un corpo in un campo di gravità costante e 
sottoposto alla resistenza dell'aria. Indichiamo con y(t) la posizione del corpo (lungo 
la verticale, con il verso delle y orientato in basso), con m la sua massa, e con g la 
gravità. Supponiamo che all'istante iniziale t = O il corpo abbia velocità nulla e che la 
resistenza dell'aria dipenda dalla velocità y'(t) secondo la legge 

R = k</>(y') , 
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dove k è una costante che dipende dalla forma del corpo ( coefficiente aerodinamico), 
mentre <I> è una funzione che si determina sperimentalmente. Dalle equazioni della 
meccanica si trova 

rny" = mg - k<f>(y') , 

da cui si ricava l'equazione differenziale 

k 
y" = g - -</>(y') . 

rn 

Posto y' = v si ottiene l'equazione autonoma del primo ordine 

v' = g - }3_</>(v) 
rn 

che, in base a quanto visto nella Sezione 5.6 e ricordando che abbiamo supposto v(O) = O, 
si integra nella forma 

fov g - (k;:)</>(s) = t. (A5.10) 

A seconda di quale sia la funzione <I> si ottengono diverse espressioni della velocità del 
corpo: ad esempio, se <f>(v) = v, si ottiene dalla (A5.10) 

da cui si ricava 
v(t) = ":cg (1 - e-tkfm) 

e pertanto, integrando, 

y(t) = y(O) + fot v(s) ds = y(O) + ":cg (t +; e-tk/m) . 

È interessante notare che in tal caso la velocità limite di caduta è finita ed è data da 

Voo = lim v(t) = rnkg . 
t--,+oo 

t 

y 8 

Fig. A5.8 : soluzioni per <f>(v) = v , con y(O) = O e diversi valori della resistenza k 
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Se invece è </>(v ) = v2 
, sempre dalla (A5.10) si ottiene 

[
l @il (.,/milk,+s)]v 2y kg og Jmg/k - s o= t' 

da cui si ricava 

e ( con la sostituzione e2t~ = s ) si ottiene la legge oraria 

y(t) = y(O) - 71og2 + ff ( Jm/kglog(e2t✓k9/m + 1) - t). 

In tal caso, la velocità limite di caduta è data da 

v00 = lim v(t) = {mgkg . 
t➔+oo VT 

t 

y 8 

Fig. A5.9 : soluzioni per <f>(v) = v2 
, con y(O) = O e diversi valori della resistenza k 

In generale si potrebbe dimostrare, per una </> continua, crescente, e nulla in O , che 
la velocità limite v00 è data da: 

a) la più piccola soluzione dell'equazione </>(s) = mg/k se tale equazione ha soluzione; 
b) +oo se </>(s) < mg/k per ogni s > O. 
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Appendice 5 .5 - Traiettorie balistiche 

Riprendiamo l'esempio visto nella Sezione 5.4 sul moto di un corpo sottoposto alla forza 
di gravità ed alla resistenza dell 'aria. Vogliamo determinare ora la traiettoria ( di solito 
chiamata traiettoria balistica) di un oggetto lanciato dall'origine con velocità v in modu­
lo ed alzo (cioè l'angolo che il vettore velocità iniziale forma con il piano orizzontale) pari 
a 0. Indichiamo con X = (x, y) il vettore posizione e supponiamo per semplicità che 
la resistenza dell'aria sia data da kX ' con il coefficiente aerodinamico k che dipende 
dalla forma del corpo. Per le leggi della Meccanica la traiettoria X(t) sarà allora la 
soluzione del sistema differenziale 

mX "(t) = - kX '(t) + (O, - mg), X (0) = (0,0), X '(0) = (vcos0,vsen0). 

Scrivendolo nelle sue componenti (x, y) il sistema diventa 

{ 
x"(t) = -¾.x'(t) , 

y"(t) = -¾.y'(t) - g' 

x(0) = O, 

y(0) = O, 

x'(0) = vcos0 

y'(0) = vscn0. 

Si tratta quindi di due equazioni differenziali lineari del secondo ordine a coefficienti 
costanti. Applicando quanto visto nella Sezione 5. 7 e posto e = m/ k si trovano allora 
le soluzioni 

{ 
x(t) = cvcos0(1 - e- tfc) 

y(t) = (cvsen0 + gc2 )(1 - e-t/c) - gct, 

che costituiscono la legge oraria della traiettoria. Per trovarne un'espressione cartesiana 
ricaviamo t dalla prima uguaglianza; si ha 

t =-c log(1 - x e) 
cvcos 

e sostituendo nella seconda uguaglianza si trova l'equazione 

gm [ x m ( kx )] y = x tan 0 + -k --e + -k log 1 - e vcos mvcos 
(A5.11) 

IO 15 

Fig. A5.10 : una traiettoria con resistenza dell'aria e angolo iniziale 0 = 1r / 4 
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Quindi, se k > O le traiettorie non sono più paraboliche ma della forma rappresen­
tata in figura, dove si è usato un coefficiente k di resistenza piuttosto grande. Va notato 
che la gittata massima non si ottiene più per 0 = 1r/ 4 ma per angoli più piccoli, dipen­
denti dai dati del problema. Se invece il coefficiente aerodinamico k è molto piccolo si 
ottiene, mediante lo sviluppo di Taylor dell'espressione in (A5.11) in un intorno di k = O 
( fatelo per esercizio), l'usuale traiettoria parabolica 

0 
g(l + tan2 0) 2 y = xtan -

2 
x 

2v 

Appendice 5.6 - Periodo di un pendolo 

Vogliamo studiare come dipende il periodo di un pendolo, cioè il tempo impiegato dal 
pendolo per andare da un estremo all'altro e ritornare nell'estremo iniziale, dall'ampiezza 
dell'oscillazione. Consideriamo un pendolo senza attrito e indichiamo con L la lunghezza 
del filo, con a(t) l'angolo (orientato) che il filo fa con la verticale al tempo t, con 
0 E]O, 1r / 2[ l'angolo iniziale. 

Fig. A5.ll : li pendolo nella posizione iniziale 

Dalle equazioni della Meccanica si trova facilmente che a(t) verifica il problema di 
Cauchy 

La" = -gsena, a(O) = 0 , a'(O) =O. 

Moltiplicando per 2a' ambo i membri dell'equazione differenziale si ha 

L((a')2
)' = 2g(cosa)', 

da cui si ricava 
L(a')2 = 2g(cosa) + e 
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con e costante. Imponendo le condizioni iniziali si trova e= - 2g cos0 e quindi 

L (a')2 = 2g(cosa - cos0) . 

Nel tempo fra O e T / 4 il pendolo scende, quindi a' < O e in part icolare 

a'= -✓i, (cosa - cos0). 

Dato che o.'< O, la funzione t H o.(t) è invertibile fra [O,T/4] e [0,0]. Chiamiamo 
/3( s) l'inversa di a( t) fra questi intervalli: abbiamo 

a(O) = 0 , o.(T/ 4) = O =* /3(0) = T / 4 , /3(0) = O 

e l1év' Proposizione 1.41 

'( 1 
/3 s) = a'(f3(s)) 

Allora ricordando che a(f3(s)) = s 

T 1T/4 10 1 2L 1/2 1 0 1 - = ldt = ds = - ds 
4 o t 0 a'(/3(s)) ( g) 0 (coss - cos 0) 1/ 2 

t=f3(s) 

( 
2L) 1/2 (1 1/2 

~ g lo 0(cos(0u) - cos0) - du. 
s=0u 

Per 0 piccolo lo sviluppo di Taylor (rispetto alla variabile 0 !) di 0( cos(0u)- cos 0) - 112 

è 

- 1 /2 v12 ( 0
2 

2 4 ) 0(cos(0u) - cos0) = ./l="u2 1 + 
24 

(1 + u ) + 0(0 ) 

da cui si ricava l'espressione 

il cui termine di ordine zero è il ben noto periodo del pendolo per piccole oscillazioni 

La figura mostra il grafico del vero periodo T(0) , calcolato numericamente. 
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1.9 

~ ' 0.5 I.O 1.5 

F ig. A5.l2: grafico del periodo T(0) per O::; 0 ::; n/2 

Appendice 5. 7 - Oscillazioni smorzate 

Vediamo ora un'applicazione che ha a che fare con gli ammortizzatori. Supponiamo 
di avere un oscillatore armonico, in altri termini un punto materiale di massa m > O 
collegato ad una molla con coefficiente elastico k > O; la posizione y(t) del punto è 
quindi determinata dall'equazione differenziale del secondo ordine 

my"(t) + ky(t) = O (A5.12) 

con le condizioni che impongono posizione e velocità iniziali. Abbiamo visto ~ (5.42) 
che la soluzione generale dell 'equazione (A5.12) è data da 

y(t) = c 1 cos(t~) + c2 sen(t~) 

dove le costanti c 1 e c2 si trovano mediante le condizioni iniziali. Ad esempio, se il 
punto materiale si trova nella posizione iniziale y0 con velocità iniziale nulla, si ricavano 
le costanti c 1 = y0 e c2 = O che forniscono la soluzione 

y(t) = Yo cos(t~) . 

Vogliamo ora smorzare le oscillazioni introducendo un ammortizzatore viscoso, che agisce 
sull'equazione (A5.12) mediante un termine aggiuntivo hy'(t) con h > O; l'equazione 
diventa quindi 

my"(t) + hy'(t) + ky(t) =O. (A5.13) 
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Il polinomio caratteristico dell'equazione (AS.13) è 

P(z) = mz2 + hz+ k 

e le sue radici sono 

{ 

2;, ( - h ± ✓h2 - 4mk) se h2 > 4mk 

_ _l_h se h2 = 4mk 
2m 

2;, (-h ± iJ4mk - h2 ) se h2 < 4mk , 

entrambe negative o con parti reali negative. Lo scopo è determinare h in modo da 
avere il massimo smorzamento, ovvero fare in modo che l'ampiezza della soluzione di­
venti piccola il più rapidamente possibile. Si potrebbe ingenuamente pensare che quanto 
più potente è l'ammortizzatore viscoso tanto più le oscillazioni sono smorzate; vedremo 
che non è così a causa del fenomeno di sovrasmorzamento. Lo smorzamento è dovuto 
alle esponenziali negative nelle soluzioni fondamentali, a loro volta dovute alle radici 
reali negative o con parti reali negative. Delle due soluzioni fondamentali trascuriamo 
quella che si smorza più rapidamente, cioè quella relativa alla radice più negativa; lo 
smorzamento effettivo è quindi dovuto alla quantità 

{ 

s(h) = 2;, ( - h + ✓h2 - 4mk) 

s(h) = - 2;,h 
s(h) = - 2;,h 

se h > 2,/mk 

se h = 2,/mk 

se h < 2,/mk, 

e vogliamo scegliere h in modo che s(h) sia il più negativo possibile. Una breve analisi 
della funzione h H s(h) ci fa concludere che lo smorzamento massimo si ha per h = 
2,/mf. 

15[ 
I.Or 

0.5 

-0.5 

-I.O 

l<'ig. A5.13 : grafico della funzione s(h) con m = k = 1 

In tal caso, ad esempio partendo da y0 con velocità iniziale nulla, si ha la legge 
oraria 

y(t) = Yo(l + t~)e-t~. 
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Fig. A5.14 : grafico d i y(t) nella situazione di massimo smorzamento 

Appendice 5 .8 - Dinamica di popolazioni 

L'esempio seguente tratta la dinamica di due popolazioni in competizione ed il modello 
matematico corrispondente fa uso di un sistema differenziale. Consideriamo un certo 
territorio, su cui convivono dei bufali e dei leoni; abbiamo le seguenti relazioni euristiche: 
1) il territorio fornisce erba e piante solo per al più un certo numero k di bufali; 
2) i bufali tendono a crescere di numero finché sono meno di k , se no tendono a 

diminuire a causa della mancanza di risorse alimentari; 
3) ogni leone mangia dei bufali; 
4) dai leoni nascono altri leoni; 
5) se i bufali sono particolarmente più numerosi dei leoni, le cucciolate di questi ultimi 

saranno più abbondanti. 
Dette u e v le popolazioni di bufali e leoni, da queste relazioni segue che l'evoluzione 
di u e v è regolata da due equazioni differenziali, per opportuni coefficienti positivi 
a,b,c,d: 

{ 
u' = a(k - u) - bv 

v' = e( u - v) + dv ; 

per vedere cosa accade, scegliamo dei coefficienti e un numero k, e risolviamo il sistema. 
Prendiamo ad esempio 

v'3 
b = c=-

2 ' 
\!'3- 1 

d=--
2 



358 Appendice al capitolo 5 

e poniamo K = (kv'3)/4, così il sistema diviene 

{ 

u' = - ~ - V~ + ~ 
1 uv'3 V 

V = ----. 
2 2 

(A5.14) 

Con il metodo indicato alla fine della Sezione 5.7 otteniamo per i leoni l'equazione del 
secondo ordine 

v" + v' + v = K : (A5.15) 

una soluzione particolare è v(t) = K, e dall'equazione caratteristica z2 + z + 1 = O, che 
ha radici -(1/2) ± iv'3/2, ricaviamo che la soluzione generale dell 'equazione omogenea 
associata a (A5.15) è 

e-tf2 (c1 cos(tv'3/2) + c2scn(tv'3/2)) 

e pertanto la soluzione generale di (A5.15) è 

v(t) = K + e- t/2 ( c1 cos(tv'3/2) + C2 sen(tv'3/2)) . (A5.16) 

Possiamo allora ricavare v' e sostituire nella seconda equazione di (A5.14), ricavando 
per i bufali l'espressione 

(A5.17) 

da questo si vede che per t --t +oo le funzioni u(t) e v(t) tendono rispettivamente 
a K / v'3 e K , cioè le popolazioni si stabilizzano. Non avendo precisato i dati iniziali, 
non possiamo però fare questa affermazione, visto che le popolazioni non sono come le 
funzioni, che se vogliono vanno e vengono sopra e sotto zero: appena una popolazione 
raggiunge il valore zero, lì rimane per sempre. Se ad esempio u(O) = K / v'3, esaminiamo 
due casi: 
1) se v(O) = K/2 allora (11,j> figura A5.15) 

( 
1 1 tv'3) u(t) = K - + -e-t/ 2 sen -

y'3 2 2 ' ( 
1 ty'3) v(t) = K 1 - 2e- tf2 cos 

2 
; 

Fig. A5.15 : caso v(O) = K/2 , in nero i bufali 
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2) se v(O) = 3K allora per un certo tempo (~ figura A5.16) 

( 
1 tv'3) u(t) = K v'3 - 2e- t/2 sen -

2
- , ( tv'3) v(t) = K 1 + 2e- t/2 cos -

2
-

Fig. A5.16: caso v(O) = 3K, a tratto più spesso i bufali 

Come si vede in figura, nel primo caso le due popolazioni non si annullano mai, mentre nel 
secondo i bufali si estinguono rapidamente (dopo quel punto, chiaramente, l'evoluzione 
dei leoni segue ben altra legge: trovatela per esercizio). 

Appendice 5.9 - Soluzioni particolari di equazioni di ordine su­
p eriore al secondo 

Vediamo come si può ottenere una soluzione particolare y(x) per poter completare il 
Passo 4 della Sezione 5.8. Come abbiamo già visto nella Sezione 5. 7 per il caso m = 2 , 
la situazione più semplice si ha quando il termine noto f(x) è del tipo 

f(x) = ~(Q(x)e7x) = Q(x)e<>x cos(/3x) (A5.18) 

oppure 
f(x) = ~(Q(x)e7 x) = Q(x)e<>x sen(/3x) (A5.19) 

con Q(x) polinomio reale di grado q e ì = a+ i/3 E C. Osserviamo che a e/o /3 
possono essere nulli, e magari Q(x) costante, quindi il caso indicato comprende polinomi, 
esponenziali , funzioni trigonometriche. Nel caso (A5.18) cercheremo y(x) della forma 

y(x) = iR(R(x)e7 x) 
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mentre nel caso (A5.19) 
f(x) = ~(R(x)e-Yx) 

dove 'Y è lo stesso di prima, mentre R(x) è un polinomio complesso da determinare. La 
prima cosa da fare è vedere se c'è risonanza, cioè se il numero complesso ì è radice del 
polinomio caratteristico P ; indichiamo con p la molteplicità di ì come radice di P , 
intendendo che p = O se ì non è radice di P. Cercheremo l'l;llora il polinomio R(x) 
di grado q + p , considerando inoltre nulli tutti i suoi termini di grado minore di p . 
Imponendo che la funzione y(x) risolva l'equazione differenziale (5.55) e sviluppando un 
po' di calcoli, si arriva ad individuare il polinomio R(x) mediante la formula 

v+q (k)( ) L p k! 'Y R(k)(x) = Q(x) ' 
k=p 

(A5.20) 

dove p (k) ed R(k) indicano le derivate di P e di R rispettivamente. Naturalmente, 
essendo P di grado m, nella sommatoria (A5.20) tutti i termini con k > m sono nulli. 

Esempio : consideriamo l'equazione differenziale 

y111 
- 3y" + 4y' - 2y = xex sen x 

di cui vogliamo determinare la soluzione generale. Il polinomio caratteristico è 

P(z) = z3 - 3z2 + 4z - 2 

che si fattorizza in (z - l)(z2 - 2z + 2) , per cui le tre radici complesse di P sono 

z = l , z=l+i, Z= l-i. 

La soluzione generale dell'equazione omogenea è quindi 

Ilterminenoto f(x) siscrivecome ~(Q(x)e-Yx) con Q(x) =x e 1 = l + i ;c'è dunque 
risonanza con p = l in quanto 'Y è una delle radici di P , per cui dovremo cercare il 
polinomio R di grado 2 , cioè 

R(x) = ax2 + bx con a,b E C. 

Si ha 

P'(z) = 3z2 
- 6z + 4, P"(z) = 6z - 6 

per cui si trova 

P'(ì) = 3(1 + i)2 
- 6(1 +i)+ 4 = - 2 , P"(ì) = 6(1 + i) - 6 = 6i. 
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La formula (A5.20) diventa 

da cui si ricava 

e quindi 

- 2(2ax + b) + 3i(2a) = x 

1 
a= --4 ' 

3. 
b = --1 

4 ' 

y(x) = <s( - ~(x2 + 3ix)e(l+i)x) = -~ex(x2 senx + 3xcosx). 

In definitiva, la soluzione generale dell'equazione considerata è 

y(x) = ex ( c1 + c2 cosx + c3 senx - ~(x2 senx + 3xcosx)) 

Resta da esaminare il caso in cui il termine noto f(x) non è del tipo Q(x)e-Yx. 
In tali situazioni si usa il metodo della variazione delle costanti, detto anche metodo 
di Lagrange, che consente di determinare una soluzione particolare di equazioni del 
t ipo (5.55) qualunque sia la funzione continua f(x) che costituisce il termine noto. 
Se y1 (x), ... , Ym(x) sono le soluzioni fondamentali dell'equazione omogenea si cercano 
soluzioni particolari del tipo 

m 

y(x) = :~:::>j(x)yj(x) (A5.21) 
j=l 

con i coefficienti Cj ( x ) da determinare, da cui il nome di metodo della variazione delle 
costanti. A questo punto si introduce la matrice wronskiana W(x) costruita mediante 
le soluzioni fondamentali nel modo seguente: 

W(x ) = 
( 

Yi(x) 
y~ (x) 

vim- :1) (x) 

Y2(x) 
y~(x) 

(m-1) ( ) Y2 X 

Ym(x) ) 
y:,.(x) 

y~m-:l)(x) 

Si tratta di una matrice m x m con i coefficienti dipendenti dalla variabile x ; siccome 
le soluzioni fondamentali sono linearmente indipendenti, la matrice W(x) è invertibile, 
per cui det W(x) i- O. Conviene anche indicare con c(x) il vettore 

C( X) = ( C1 (X), C2 (X), ... , Cm (X)) 

e con B (x) il vettore 1 

B(x) = (0,0, ... ,f(x)). 

Imponendo che la soluzione particolare (A5.21) verifichi l'equazione differenziale (5.55) 
si giunge, dopo alcune manipolazioni e semplificazioni, all'uguaglianza 

W(x)c'(x) = B (x). 
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Moltiplicando per la matrice inversa w-1 (x) si ottiene 
I 

c'(x) = w-1 (x)B (x) 

e dunque, integrando, otteniamo 

c(x) = j w- 1 (x)B (x) dx 

che ci fornisce le espressioni delle funzioni c1 ( x) mediante la regola di Cramer per i 
sistemi lineari: . ( ) -J det wj (X) d 

cJx - detW(x) x 

dove W1 (x) è la matrice che si ottiene da W(x) sostituendo la j-esima colonna con il 
vettore B (x). Va segnalato che in generale il calcolo di un determinante è piuttosto 
laborioso se la dimensione m è alta. 

Appendice 5.10 - Catene e bolle di sapone 

Di nuovo un titolo con due protagonisti apparentemente lontani; Galileo (non fu certo 
il primo) si pose il seguente problema: qual è la forma assunta da una catena pesante, 
le cui estremità siano appese a due pali. La soluzione richiede impostare l'equazione 
delle forze (la tensione e il peso), e porta a una equazione differenziale. Precisamente, 
supponiamo che i due pali siano distanti 2a, alti h e che la catena sia lunga 2f. ( ci 
aspettiamo che f. non sia troppo grande, altrimenti la catena si appoggerà per terra). 
Matematicamente, cerchiamo una curva </J di lunghezza 2f. , contenuta nel semipiano 
y > O e che parta da (-a, h) per arrivare ad (a, h) . Con considerazioni fisiche che 
tralasciamo, parametrizzando la curva con (x, y(x)) si arriva all'equazione differenziale 

y" = ! ✓1 + (y')2 
e 

dove la costante e è da determinarsi. Si tratta di una equazione del secondo ordine 
in forma normale, quindi vale il teorema di esistenza, però è un'equazione non lineare, 
dunque non possiamo applicare la relativa teoria. Osserviamo che nell'equazione non 
compaiono esplicitamente né x (dunque si tratta di una equazione autonoma) né y. In 
questi casi, in generale, ponendo y' = v ci si riporta a un'equazione a variabili separabili: 
nella nostra situazione, diviene 

v' = ! ✓ 1 + v2 {=} 
1 

v' = ! 
e ✓1 + v2 e 
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Sostituendo v( x) = senh u( x) abbiamo 

v'(x) = (coshu(x))u'(x), J1 +v2 (x) = coshu(x) 

e quindi l'equazione si riscrive semplicemente 

1 1 X 
u (x) = - <==> u(x) = k1 + -

e e 

e perciò 

y'(x) = v(x) = senh(k1 + x/c) ⇒ y(x) = k2 + ccosh(k1 + x/c) (A5.22) 

la catena assume dunque la forma di una catenaria ( che da questa proprietà deriva il suo 
nome). Per le condizioni iniziali deve essere k1 = O, dato che y(a) = y(- a) ; inoltre 
ricordando (2.21) e lavorando come in (2.22) deve essere 

2€ = 1-: J1 + senh
2
(x/c) dx= 1-: cosh(x/c) dx = 2csenh(a/c) 

da cui 

~ = settsenh(f/c) = log(~ + J1 + ~). 

Evidentemente ricavare e da questa equazione va demandato a una macchina. Determi­
nato e, torniamo a (A5.22): dalle condizioni iniziali ricaviamo (notando che senh(a/c) = 
€/e) 

e infine 

y( - a) = y( a) = h ⇒ k2 = h - e cosh ~ = h - J €2 + c2 
e 

y(x) = h - Je2 + c2 + ccosh(x/c). 

Peccato (o forse fortuna) che rimanga un'ultima condizione da verificare, la positività di 
y . Nel punto più basso, che è in corrispondenza di x = O , abbiamo 

Ymin = h - J €2 + c2 + e = h - ( J ti + c2 - e) : 

il termine fra parentesi è negativo, dunque se h (l'altezza dei pali) è troppo piccolo la 
soluzione non è accettabile (la catena, come avevamo detto, striscia per terra). 

Il legame con le bolle di sapone richiede più sforzo. Ci proponiamo un obiettivo 
ambizioso (che raggiungeremo solo lasciando indietro parecchi punti delicati), ovvero de­
terlninare la forma della più piccola superficie di rotazione che ha come bordo 
due cerchi. Possiamo trovare una soluzione concreta usando del filo metallico e una 
soluzione saponosa: infatti è noto che le bolle di sapone tendono a minimizzare la super­
ficie. Creiamo dunque due anelli uguali di filo, e immergiamoli uniti nel sapone; quando 
li estraiamo, buchiamo la bolla al centro, e poi separiamoli: vedremo distendersi fra i 
due anelli una superficie, che è quella di area minima fra tutte quelle che hanno come 
bordo i due anelli. Sembra una superficie di rotazione, e la sua sezione pare vagamente 
parabolica. 
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r 

-a a 

Fig. A5.l 7 : la bolla fra due anelli Fig. A5.18: modello matematico 

Matematizziamo il problema: intanto non cerchiamo di determinare "la" superficie 
di area minima fra tutte quelle che hanno come bordo i due anelli ma quella di area 
minima fra le sole superfici di rotazione. Poi, e questo punto è veramente delicato ma 
insuperabile con gli strumenti di Analisi matematica 2, supponiamo che tale superficie 
minima esista (e già che ci siamo, che ce ne sia una sola e che sia molto regolare), e 
proponiamoci di determinarla. Dunque dobbiamo trovare la funzione positiva f , di 
classe C2[-a, a] e tale che f(-a) = f(a) = r, che rende minima l'area della superficie 
di rotazione generata ( un candidato, non certo il migliore, è la funzione f il cui grafico 
è rappresentato nella Figura A5.18); ricordiamo che per (4.42) quest'area è data da 

A(f) = 21r 1: f(x)J1 + (/'(x))
2 
dx. 

Inizialmente supporremo che r sia abbastanza grande rispetto ad a , ossia che il raggio 
degli anelli sia abbastanza grande rispetto alla loro distanza. Dire che f minimizza A 
vuol dire che, se modifichiamo f un pochino ma preservando la positività e la condizione 
che agli estremi il valore rimanga r , il valore di A aumenta. Ciò significa che presa una 
qualsiasi funzione <P E C1 [- a, a] con <P(-a) = <P(a) = O, per E > O abbastanza piccolo 
(in modo che la funzione f(x) +E<P(x) rimanga positiva su tutto l'intervallo) deve essere 

A(f + E<P) ?:: A(f) . 

Ma allora, posto 

G(t) = A(f + t<P) / 21r , 

la funzione G ha un minimo in t = O, e se sapessimo che G è derivabile ne dedurremmo 
che G'(O) =O. Osserviamo che 

G(t) = 1: (f(x) +t<P(x))J1 + (/'(x) +t<P'(x))
2 

dx = 1: g(t,x)dx 
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e che 

8tg(x, t) = </)(x)J1 + (f'(x) + t<j)'(x)) 2 + (J(x) + t<jJ(x)) (f'(x) + t<j)'(x))4>'(x) , 

J1 + (l'(x) + t<jJ'(x))
2 

che nelle ipotesi fatte è una (complicata) funzione continua. Allora grazie al Teorema di 
derivazione sotto il segno di integrale 3.10 la funzione G è derivabile e 

G'(t) = 1_: 8tg(x, t ) dx 

quindi 

G'(O) = la 8tg(x, 0)dx = la (4>(x)J1 + (f'(x))2 + f(x)f'(x) 
2

</)'(x)) dx. 
-a -a ✓l + (f'(x)) 

Integriamo per parti il secondo addendo: ricordando che agli estremi la funzione </) si 
annulla, 

la ( f(x)f'(x) )4>' (x) dx= - la ( f(x)f'(x) )' </J(x) dx 

-a ✓l + (f'(x))2 - a ✓l + (f'(x))2 

e quindi 

G' (O) = 1• [ J I+ (l'(x))' ( /x)f'(x) ,)'] ql(x) dx ~ ja .C-J(x )</)(x) dx . 
-a 1 + (/'(x)) -a 

Abbiamo detto che G'(O) = O, quindi la quantità che abbiamo trovato deve essere nulla 
per ogni scelta della funzione </J . L'espressione 

L1(x) = J1 + (/'(x))2 - ( f(x)f'(x) )'' 
J1 + (f'(x))

2 

per quanto complicata, è una funzione continua di x. Se ci fosse un punto x0 E] - a, a[ 
in cui L1(xo) non vale zero (per fissare le idee, supponiamo sia positiva), per il Teorema 
di permanenza del segno 11'.\i" Proposizione 1.35 avremmo 

in [xo - b, xo + b] e] - a, a[ 

ma allora, presa una funzione efJ di classe C1 che si annulla fuori da [x0 - b, x0 + b] ed 
è positiva in tutto ]xo - b, x0 + b[ , come ad esempio 

{
O selx - xol2:b 

<P(x) = 2 2 
b -(x-xo) selx-xol:Sb, 
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la funzione .C 1(x)</>(x) è positiva in ]x0 -b, x0 +b[ e nulla all'esterno, quindi ha integrale 
positivo il che è impossibile dato che G'(O) deve essere nulla. In conclusione .C1(x) deve 
essere identicamente nulla, ossia la funzione f deve risolvere l'equazione .C1(x) = O, 
che è l'equazione differenziale 

Ji + (f'(x))2 _ ( f(x)f'(x) )' = 0 . 

J1 + (f'(x))
2 

Abbiamo supposto che la soluzione f esistesse e che fosse unica, quindi ci basta trovare 
una funzione che risolva l'equazione differenziale con le condizioni 

!(-a) = J(a) = r, f E C2 [- a, a] , f(x) > O in [-a , a] . 

Ricordando che 

Dcoshx = senhx, 1 + senh2 x = cosh2 x , 

si vede facilmente che la funzione coshx risolve l'equazione differenziale, come pure tutte 
le funzioni 

fo:(x) = acosh(x/a). 

Queste sono positive e derivabili infinite volte, ma il problema è la condizione al bordo: 
essendo funzioni pari, basta controllarla per x = a , dove vogliamo che 

a r r a 
fo:(a) = r {==;> a:cosh(a/a:) = r {==;> cosh- = - = -- . 

a: a: aa 

Dobbiamo dunque risolvere l'equazione coshz = (r/a)z e poi troveremo a: = a/z: 
ma l'equazione cosh z = mz è risolubile solo se m è abbastanza grande (maggiore di 
mo'.:::'. 1.51 ), dunque deve essere r/a ~ m 0 . 

Fig. A5.19: per m < mo '.::e 1.51 si ha coshx > mx per ogni x 

Questa condizione fisicamente significa che gli anelli devono essere abbastanza vicini 
rispetto al loro raggio. In effetti quando gli anelli sono troppo lontani la superficie minima 
è formata dai due dischi piatti che chiudono gli anelli. Abbiamo (quasi) dimostrato che la 
superficie minima cercata è quella generata dalla rotazione di una catenaria (la superficie 
si chiama catenoide). 
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Appendice 5.11 - Qualche equazione alle derivate parziali 

Le equazioni alle derivate parziali sono espressioni contenenti una funzione incognita 
dipendente da più variabili insieme alle sue derivate, come ad esempio 

fxx(X, y) = 2f(x, y) - fy(x, y) , éJtf (x, t) = Oxf(x, t) , div f = g. 

Per queste non esiste una teoria "semplice" come quella vista in questo capitolo, e ne ve­
diamo qui solo qualche esempio, rimandando altri esempi a più avanti (,• appendice 7.3). 

Esempio: avevamo incontrato l'operatore divergenza, a- (A3. 7). Proviamo a risolvere in 
IR2 l'equazione alle derivate parziali 

div f = l Dxf(x,y) + Oyf(x,y) = l. 

Come nell'Appendice 3.5, con il cambiamento di variabili 

e ponendo 

{
x=4(t - s) 

y=4(t +s) 

g(t,s) = f(x(t,s),y(t,s)) 

l'equazione si riscrive 

{
t=4(x+y) 

s = 4(y-x) 

f (x,y) = g(t(x,y),s(x,y)) 

Otg(t, s) = l / v'2. 

Dunque per ogni fissato s la funzione della sola variabile t 

t H g(t,s) 

(A5.23) 

ha derivata 1/ v'2 , pertanto è uguale a t/ v'2 più una costante. Questa costante può 
dipendere da s , dunque abbiamo 

t 
g(t, s) = c(s) + v'2 

per qualsiasi funzione e. Tornando alle variabili (x, y) abbiamo 

1 (y - x ) x+ y f(x,y) = g(t(x,y),s(x, y)) = c(s(x,y)) + -/it(x, y) = e v'2 + -
2

- . 

Dato che vogliamo che f abbia derivate parziali serve che e sia derivabile; inoltre, so­
stituendo c(s) con c(s-/2) che è generica tanto quanto e, possiamo scrivere la soluzione 
generale dell'equazione di partenza come 

x+y 
f (x,y) = -

2
- +c(y-x) 
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con e derivabile qualsiasi. Per determinare una soluzione speciale, non basta dare il 
dato in un punto solo: imponendo ad esempio /(2, 8) = 3 otterremmo che 

2 +8 
3 = /(2, 8) = -

2
- + c(8 - 2) = 5 + c(6) ==} c(6) = - 2 

e conosciamo e in un punto solo. Dunque per determinare e ci serve conoscerne tutti i 
valori, il che significa imporre il valore di l in un insieme che ci dia tutti i valori di e . 
Se prendiamo una curva </> lungo la quale la funzione y - x assuma una ed una sola 
volta ogni valore reale, e imponiamo il valore di f su tutta la curva </> , il gioco è fatto: 
ad esempio imponiamo i valori di l sull'asse y scegliendo (ad esempio) che su di esso 
f coincida con eY . Ciò significa porre 

<f>(u) = (O, u) , f (O, u) = e'-' 

e da qui deduciamo 

o + u 
e'-' = f(O ,u) = -

2
- +c(u - 0) c(u) = e'-' - ~ 

2 
x+ y y -x 

f(x , y) = -2- + ey-x - -2- = x + ey-x . 

Esempio: risolviamo l'equazione delle onde 

l xx= fyy · 

Cerchiamo una soluzione C2 : col cambiamento di variabili (A5.23) otteniamo (svolgete 
i calcoli per esercizio e ricordate il teorema di Schwarz) 

e quindi 

Allora 

lxx(x, y) = [~9tt + ~9ss - 9ts] (t(x, y), s(x, y)) 

/yy (x, y) = [~9tt + ~9ss + 9ts] (t(x, y), s(x, y )) 

l xx= /yy <==> 9ts = O· 

O = 9ts = 8i(8sg) ==} 8sg = c(s) 

e chiamando c1 una primitiva di e 

con c1 e c2 funzioni qualunque (che come nell'esempio precedente dovranno essere di 
classe C2 ). Tornando alle variabili (x,y) esostituendo c1(s) e c2(t) con le altrettanto 
generiche c1 (sJ2) e c2 (tJ2) vediamo che tutte le soluzioni dell'equazione delle onde 
sono della forma 

J(x,y) = c1(Y - x) + c2(x + y) . 
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Cosa c'entrano le onde? Cambiamo nome alle variabili usate, precisamente scriviamo 
t al posto di x e x al posto di y (non c'entra nulla con il cambiamento di variabili 
usato) e riscriviamo il risultato: 

fu= fxx J(t,x) = c1 (x - t) + c2(x + t). 

Se consideriamo una corda molto tesa che vibra per il solo effetto della tensione ( e del 
fatto che qualcuno l'aveva pizzicata), lo spostamento f dalla posizione di equilibrio 
(zero) di un punto x all'istante t è determinata da una equazione differenziale che si 
può semplificare in fu = fxx . E vediamo come sono fatti i grafici delle due funzioni 
c(x - t) e c(c + t) per una funzione e che usiamo come esempio, come può essere 
c(y) = 1/(1 + y2

): 

Fig. A5.20 : il grafico di c(x - t) Fig. A5.21 : il grafico di c(x + t) 

Come vedete sembra il movimento di due onde: allora f è la somma (o sovrapposizione) 
di due movimenti ondulatori. 

Esempio: un problema più difficile è trovare qualche soluzione dell'equazione di Laplace 
(,-. appendice 3.5) 

t':::,.J =o. 

Abbiamo visto 11:ir' (A3.8) che in coordinate polari, cioè ponendo 

g(r,0) = f(x(r,0),y(r,0)), 

si ha 

( 
1 1 2 a2

9 1 a9 1 a2
9 (6J) x(r,0),y(r,0)) = -8r(r8rg(r,0)) + 2 8og(r,0) = !'.i2 + -~ + 2.!'.i2 

r r ur r ur r u0 

dunque l 'equazione di Laplace si trasforma in 
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Sfor tunatamente, a differenza dei due esempi precedenti, questa è ancora una equazione 
alle derivate parziali e non si presta ad essere ridotta a una equazione ordinaria. Dunque 
ne cerchiamo un tipo speciale di soluzioni, quelle radiali, ossia tali che g(r, 0) dipende 
solo da r e non da 0. In tal caso l'equazione si riduce a 

cioè 

a2
9 1 a9 -+-- = O 

8r2 r 8r 

~8r(r8rg(r)) = O ==> r8rg(r) = C1 ==> g(r) = J ~dr= C1 logr + C2. 

Allora le soluzioni radiali dell'equazione di Laplace sono quelle della forma 

J(x,y) = c1 log Jx2 + y2 + c2. 

Appendice 5.12 - Dimostrazione del Teorema di esistenza di 
Peano 

Iniziamo con due risultati fondamentali. 

Proposizione A5.1 : sia f continua in un intorno di (x0 , y 0 ) ; una funzione continua 
y (x) risolve il problema di Cauchy 

y'(x) = f (x, y (x)) , y (xo) = Yo 

se e solo se risolve l 'equazione integrale 

y (x) = Yo + t f (t, y (t)) dt. 
lxo 

(A5.24) 

D IMOSTRAZIONE : l'equazione (A5.24) si chiama equazione di Volterra, dal matematico 
italiano Vito Volterra; la dimostrazione dell'equivalenza è molto semplice, infatti se y 
risolve il problema di Cauchy intanto è di classe C1 , dato che la sua derivata è la funzione 
continua f (x, y (x)) , quindi a- (1.47) 

y (x) = y (xo) + t y'(t) dt = y 0 + f x f (t, y (t)) dt. 
l xo lxo 

Viceversa, se y risolve (A5.24) è una primitiva della funzione continua f (x , y(x)) , 
quindi ha derivata f (x, y (x)) , e in xo vale y 0 . ■ 
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Proposizione A5.2 : sia f continua nel cilindro R = [x0 , xo + a] x Bb(Yo) , e sia 
{Yn}n una successione di funzioni continue in [xo, xo + a] tale che 

\/n, \/x E [xo, xo + a] IIYn(x) - Yoll S b e unif . [ ] Yn ---+ y lil xo) Xo + a . 

Allora 

f (x, Yn(x)) ~ f (x, y (x)) in [xo, xo + a] . 

Per dimostrare il Teorema di esistenza di Peano 5.2 faremo uso delle successioni 
di funzioni is- Sezione 7.1. Il procedimento è molto naturale e va per approssimazione 
successiva della soluzione, partendo da una semplice constatazione. 

Osservazione: se y è una soluzione dell'equazione differenziale y' = f (x, y) , allora per 
x = xo il valore di y è y(xo) , e il valore della derivata è 

y'(xo) = f(xo,y(xo)). 

Allora il grafico di y , cioè la curva (x, y(x)) , quando passa dal punto (x0 , y(xo)) , ossia 
per x = xo , ha vettore tangente 

(l,y'(xo)) = (1 ,J(xo,y(xo)) ) 

Questa è dunque la direzione con la quale il grafico di y passa per (x0 ,y(x0 )). 

Dimostreremo il teorema solo per una equazione: infatti la sola differenza (per i 
sistemi) è scrivere f e Y , ma dato che avremo (come vedrete) abbondanza di indici e 
apici, non vogliamo rischiare di far confondere con le componenti di Y . 

L'idea della dimostrazione è la seguente: la soluzione parte da (x0 , y0 ) con pen­
denza f(x0 , y0 ) . Noi costruiamo una curva fj che speriamo sia vicina al grafico di 
y percorrendo per un breve tratto un segmento che parte da (x0 , y0 ) con pendenza 
costante J(x0 , y0 ) ; nel frattempo la vera soluzione y sta continuamente cambiando 
pendenza, visto che al variare dell'ascissa x cambia anche la pendenza f (x, y(x)) . Se 
però il segmento che percorriamo è abbastanza breve, diciamo per xo S x S x' = x0 +e, 
per la continuità di f ( che quindi varia poco se ci si allontana di poco) la "vera" pen­
denza f ( x, y( x)) non dovrebbe essere lontana dalla pendenza che abbiamo seguito con 
fj,quindiper x =x' ipuntisiduegrafici, quello (x',y(x')) di y equello (x',y(x')) di 
y, non daranno distanti. Ma allora ripartiamo da (x', y(x')) con pendenza f (x', y(x')) : 
questa pendenza non sarà lontana dalla pendenza f ( x', y(x')) che ha la soluzione y . 
Percorriamo un altro breve segmento, e ricominciamo. Certo alla lunga i piccoli errori si 
sommano, e chissà dove finiremmo. Ma possiamo ricominciare tutto da capo prendendo 
e più piccolo, in modo da ridurre gli errori: otterremo così una successione di spezzate 
che (nelle ipotesi del teorema) convergono effettivamente a una soluzione. 
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Fig. A5.22 : y' = y/2 con y(O) = 1 : soluzione e approssimanti con passi e = 4 , 2 , 1 , 0.5 

Per formalizzare l'idea prepariamoci a un lungo lavoro; supponiamo che J sia 
continua in un intorno U di (xo, Yo) : per definizione questo contiene una palla di 
raggio r > O centrata in (x0 , yo) e quindi, posto b = r / 2 < r / ,/2, contiene il quadrato 
Q = [xo = b, xo + b] x [Yo - b, Yo + b] . Dato che Q è compatto, per il Teorema di 
Weierstrafi 1.20 esiste 

M = 1 + max lf(x, y)J 
Q 

e allora poniamo~ Corollario 5.11 

a= b/ M, R = [xo, Xo + a] x [Yo - b, Yo + b] 

e d'ora in poi lavoreremo sempre in R (abbiamo aggiunto 1 nella definizione di M 
così siamo certi che a :-=:; b e cioè che R e Q ). Costruiamo la i-esima approssimante. 

Passo 1: l'asse x. Dividiamo [x0 , x0 +a] in i intervalli uguali, lunghi a/ i, e poniamo 
per O:-=:; j :-=:; i 

(i ) . a 
xJ = xo + J~ , 

i 

il j-esimo estremo di questi intervalli. Per non appesantire la notazione, per un po' 
manteniamo lo stesso i, quindi evitiamo di aggiungere l'apice (i) : torneremo a farlo 
quando necessario. 

Passo 2: valore nei punti Xj • Supponiamo di aver già costruito la spezzata fino al 
punto Xj per qualche j < i ed essere arrivati a una quota YJ : ripartiamo da lì con 
pendenza J(xJ ,YJ) sull'intervallo [xj,Xj+i] che è lungo a/ i , quindi giungiamo alla 
quota 

e perciò possiamo scrivere 
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Passo 3: valore negli altri punti. Nell'intervallo Xj s; x s; Xj+1 la spezzata parte 
dalla quota Yi e prosegue con pendenza f(xj ,Yj) , quindi 

Passo 4: la spezzata esiste su [x0 , x 0 + a] e sta in R. Intanto il primo estremo 
(xo, Yo) sta in R. Se ci fosse un punto della spezzata fuori da R, prendiamo l'ultimo 
vertice (xj,YJ) primadiquestopunto: tutti i punti (xo,Yo), ... ,(xJ,YJ) stanno in R, 
ma allora, dato che Jf I s; M su R , da (A5.25) abbiamo per Xj s; x s; Xj+I grazie a 
(1.4) e (2.1) 

Jy(x) - Yol s; Ì: lx"+' M dt + lx M dt = M(x - xo) s; Ma = b 
h=O x,. X j 

e quindi tutto il segmento da ( Xj, Yi) a Xj+I, YJ+l) sta in R , contro l' ipotesi. Allora 
tutti i vertici che costruiamo stanno in R , quindi ci fermiamo solo quando j = i , ovvero 
quando Xj = x0 +a. 

Passo 5: stima su ogni intervallo. Osserviamo che per Xj s; x s; Xj+i si ha 

Jy(x) - YJI s; lx M dt = M(x - Xj) 

1 

dunque per (1.6) 

Passo 6: distanza dall'essere soluzione. Vogliamo stimare "quanto lontana" è la 
spezzata y dall'essere una soluzione del problema di Cauchy. Se y verificasse (A5.24) 
sarebbe una soluzione, per la Proposizione A5.l; invece y verifica solo l'uguaglianza 
(A5.25), ma riusciremo a provare che scegliendo l' indice i abbastanza grande la dif­
ferenza fra le due cose è piccola. Osserviamo che f è continua sul compatto R, quindi 
è uniformemente continua per il Teorema di Heine-Cantor 1.21. Fissiamo € > O : esiste 
J > O tale che presi due punti (x, y) e (x, y) in R 

ll(x,y) - (x,y)II < J ==;, 
€ 

lf(x, y) - f(x, y)[ < - . 
a 

D'ora in poi supporremo che fosse i 2 Ì, con Ì così grande che 

(M + l)a < J. 
i 

(A5.26) 

(A5.27) 
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Scrivendo allora per brevità T(x) = Yo + J:
0 

f (t, y(t)) dt abbiamo per Xj S x S Xj+1 

ly(x)-T(x)I = I [Yo + (~1:h+i f(xh,Yh)dt) + 1~ J (xi,YJ)dt] 

- [Yo + (%1:"+' J(t,y(t)) dt) + 1~ J(t,y(t)) dt] I 

S f lx"+' jJ(xh, Yh) - J (t , y(t)) I dt + lxlf(xj, Yi) - J(t, y(t)) I dt 
h=O x,, Xj 

ma in ogni integrale l ' integrando non supera e/a per (A5.26), che possiamo applicare 
grazie al passo 5 e a (A5.27), quindi 

é 
ly(x) - T(x)I S -(x - xo) Se . 

a 

Passo 7: convergenza uniforme. Ora reintroduciamo la scrittura con i, dunque 
scriviamo y(i) al posto di y e T (i) al posto di T . Abbiamo provato che 

Ve> O :3Ì : Yi ~ ì, Yx E [xo,xo + a] IY(il(x) - r(il(x)j <e, 

ossia che 
y<iJ - r<iJ ~ o in [xo, xo + a] . (A5.28) 

Passo 8: conclusione. Le funzioni y(i) sono equilimitate per xo S x S xo +a, dato 
che abbiamo provato al Passo 4 che IY(il(x) - Yol::; b e quindi 

Yo - b S y(il(x) S Yo +b . 

Inoltre sono funzioni continue, lineari a tratti, con pendenza che in ogni punto non supera 
M in valore assoluto, dunque sono lipschitziane tutte con la stessa costante M . Allora 
possiamo applicare il Teorema di Ascoli-Arzelà 7.8, dunque esiste una sottosuccessione di 
{y(i)}i, che continueremo a indicare {y(i)h per non scrivere {y(k.J}i con esiti tipografici 
pessimi, che converge uniformemente in [x0 , x 0 + a] a una funzione continua y: 

(i) unif y ---+ y in [xo, xo + a] . 
Allora per la Proposizione A5.2 

J(x,y(i)(x)) ~ f(x,y(x)) in [xo, xo + a] 

e quindi per la Proposizione 7.4 

r (i)(x) = Yo + lx J(t, y(il(t)) dt ~ Yo + l x f (t, y(t)) dt 
xo xo 

e per (A5.29) 

y<il(x) -T(il(x) ~ y(x) - (Yo + 1: f(t,y(t)) dt) . 

Ma ricordando (A5.28) otteniamo che questo limite è la funzione zero, ossia che 

y(x) = Yo + l x J(t,y(t)) dt 
xo 

e cioè y risolve il problema di Cauchy per la Proposizione A5.l. 

(A5.29) 



Capitolo 6 

Potenziali e integrali curvilinei 

In questo capitolo cercheremo di trovare delle condizioni sotto cui una data funzione 
f : A -t !Rn , con A insieme aperto di !Rn , ammette un potenziale, cioè una funzione 
F tale che 

f (x) = "vF(x) Vx E A. 

Vedremo che esiste un collegamento molto stretto tra l'esistenza di funzioni potenziali 
ed il lavoro svolto da f sulle curve, e faremo numerosi esempi. 

6.1 - Primitive e potenziali 

Useremo vari termini che provengono dalla Fisica; potremmo utilizzare una terminolo­
gia esclusivamente matematica, ma ci sembra utile che lo studente capisca l'origine dei 
concetti matematici che andiamo ad esporre. 

Iniziamo con il ricordare che, come conseguenza del Teorema fondamentale del cal­
colo integrale 1.50, ogni funzione continua f : A -t IR , con A intervallo della retta 
reale, ammette una primitiva. F, cioè una funzione derivabile e tale che 

f(x) = F'(x) Vx E A. 

Viene naturale chiedersi se lo stesso accada in più variabili, cioè se per ogni funzione 
continua f : A -t !Rn ( che in seguito chiameremo spesso campo continuo con un termine 
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che ricorda i campi di forze in Fisica), con A aperto di JRn , esista una funzione F : 
A -+ JR tale che 

f(x ) = ·VF(x ) Vx E A. 

Quando ciò succede, si potrebbe chiamare F una primitiva del campo f , ma per 
analogia con i campi di forze conservativi, si usa una terminologia presa dalla Fisica. 

Definizione : sia A un aperto di JRn e sia f : A -+ JRn . Una funzione F : A -+ JR si 
dice potenziai~ del campo f se f = V F . 

Grazie alla Proposizione 3.1, su un aperto connesso due funzioni potenziali della 
stessa f differiscono per una costante, come in una variabile. 

Osserviamo subito che, a differenza del caso di funzioni di una variabile, la sola 
continuità di f non può essere sufficiente ad assicurare l'esistenza di un potenziale, e ci 
sono certamente delle ulteriori condizioni necessarie da imporre sul campo f affinché ciò 
avvenga. Infatti, se supponiamo che il campo f sia di classe ci , un'eventuale funzione 
potenziale F sarebbe di classe C2 e per il Teorema di Schwarz 3.11 si avrebbe 

\/i,j = 1, .. . , n . 

In altri termini, vale il risultato seguente. 

Proposizione 6.1 : siano A un aperto di JRn ed f : A -+ JRn una funzìone di classe 
ci . Se f ammette una funzione potenziale, necessariamente deve risultare 

Vi,j = 1, ... , n. 

Definizione : diremo che un campo di classe ci è irrotazionale se 

Vi,j= l , ... ,n . (6.1) 

Il termine irrotazionale è anch'esso preso dalla Fisica; infatti il rotore di un campo 
f : JR3 -+ JR3 è il vettore definito da 

(6.2) 

e si vede subito che rot f = O se e solo se sono verificate le condizioni ( 6.1) della 
definizione precedente (~ es. 6.1). 

Esempio : la funzione f : JR2 -+ JR2 definita da 

f (x, y) = (y, O) 

non può ammettere alcuna funzione potenziale in quanto 

mentre 
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Esempio : consideriamo il campo f : IR2 ➔ IR2 definito da 

t(x, y) ,= C+~2y2, 1 +:2y2) 
e proviamo a vedere se f ammette un potenziale F . Deve intanto valere l'uguaglianza 
"il xF = fi da cui si ha, integrando rispetto ad x per ogni fissato y , 

F(x, y) = j y 2 2 dx = arctan(xy) + C(y) 
1 + X y 

dove C(y) è una funzione costante rispetto ad x e dunque dipendente solo da y. Deve 
poi valere anche l'uguaglianza "il yF = h , da cui si trova 

X 
"ily(arctan(xy) + C(y)) = 2 2 , 

1 +x y 

ma ciò significa C' (y) = O e dunque C(y) è una funzione costante, che possiamo 
scegliere uguale a zero dato che per ora cerchiamo non tutte quante ma una funzione 
potenziale. In definitiva abbiamo trovato che il campo f ammette un potenziale F 

dato da 
F(x,y) = .arctan(xy) . 

Per la Proposizione 3.1, ogni altro potenziale G ( x, y) sarà dato da 

G(x , y) = arctan(xy) + C 

con C costante reale. 

\ 
(6.3) 

Osservazione : una classe importante di campi vettoriali è quella dei campi centrali. 
Prendendo ad esempio come centro l'origine, questi sono campi vettoriali f(x) in cui la 
direzione del campo in un punto x è la stessa del vettore x , mentre l'ampiezza dipende 
solo dal modulo llxll (o equivalentemente da llxll 2 

); in altri termini possiamo scrivere 

f (x ) = xg(llxll 2
) , (6.4) 

dove g è una funzione reale di variabile reale. Si verifica facilmente che tutti i campi 
centrali ammettono un potenziale; infatti, da (6.4) si trova subito che un potenziale del 
campo f è dato da 

F(x) = ~G(llxll2) 
dove G è una primitiva della funzione g . 

Esempio : nel caso del campo gravitazionale, posto nell'origine il centro di massa, la 
forza di attrazione punta verso il centro ( dunque in un punto x ha versore direzione 
- x/ llxll ) e intensità inversamente proporzionale al quadrato della distanza, vale a dire 
si ha 

X 

f(x ) = - cllxll3 
dove e è una costante positiva. Si ha dunque in (6.4) 

g(t) = -ct- 312 e quindi G(t) = 2ct- 1f2 

per cui un potenziale del campo gravitazionale è dato da 
e 

F(x) = llxll . 
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Esiste un interessante collegamento tra l'esistenza di funzioni potenziali per un 
campo f ed il calcolo del lavoro del campo f lungo le curve rE (2.27). Infatti, con­
sideriamo un campo f : A ➔ !Rn e supponiamo che ammetta un potenziale F ; sia poi 
</>: [a, b] ➔ A una curva chiusa, cioè tale che </>(a) = </>(b) . Per la regola di derivazione 
delle funzioni composte abbiamo 

(F(<f>(t)) ) ' = (v'F )(</>(t)) · </>'(t) = f (</>(t)) • </>'(t), 

da cui si ricava 

l f = 1b f (</>(t )) • </>'(t) dt = 1b (F(</>(t)) )' dt = F(<f>(b)) - F(</>(a)) = O , 

dove nell'ultima uguaglianza abbiamo utilizzato il fatto che la curva </> è chiusa. Abbia­
mo dunque visto che un campo dotato di potenziale non compie lavoro lungo una curva 
chiusa. La condizione di irrotazionalità non è però in generale sufficiente a stabilire che 
un dato campo f ammette un potenziale, come mostra l'esempio seguente. 

Esempio : sia A l'aperto di IR2 costituito da tutti i punti diversi dall'origine e sia f la 
funzione definita da 

( 
-y X ) 

f (x, Y) = x2 + y2 , x2 + y2 · 

La condizione di irrotazionalità è soddisfatta, in quanto 

y2 - x2 
v'2/1(x,y) = v'1h(x,y) = (x2 + y2)2 V(x,y) E A , 

come si verifica facilmente. Se esistesse una funzione potenziale F dovremmo avere, in 
base alla discussione precedente, J<I> f = O per ogni curva chiusa </> . Prendendo come 
curva </> la circonferenza 

</>(t ) = (cos t , sen t) t E [O, 27r] 

abbiamo invece l f = lo2

7r f (</>(t )) . <l>'(t)dt = 12

1' ldt = 271" . 

Dunque, pur essendo irrotazionale, il campo f non può avere una funzione potenziale. 

Consideriamo ora un campo f dotato di potenziale F e due punti A , B apparte­
nenti al dominio A del campo f . Siano </>, 1/J due curve in A aventi entrambe il punto 
A come punto iniziale ed il punto B come punto finale. Con le notazioni viste nella 
Sezione 2.8 possiamo considerare la curva </> - 1/J che risulta chiusa; abbiamo dunque, 
per quanto visto sopra 

o=r t=r, _r, 
1,t,- ,t, }q, },t, 

e possiamo quindi concludere che 

In definitiva abbiamo mostrato che il seguente risultato. 
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Proposizione 6.2 : per un campo dotato di potenziale il lavoro lungo una curva, non 
dipende dalla curva considerata ma soltanto dai punti iniziale e finale. 

È utile a questo punto introdurre la seguente definizione. 

D efinizione : un sottoinsieme A di IRn si dice connesso per archi se per ogni 
Xo , X 1 E A esiste una, curva <P: [O, l ] ---+ lRn tale che </J(O) = x 0 , cjJ(l) = x 1 , e 

<jJ(t) E A Vt E [O, 1]. 

È facile vedere che i sottoinsiemi connessi per archi risultano in particolare anche 
connessi, mentre il viceversa non è vero in generale; però vale la proposizione seguente, 
che è importante dato che assai spesso capita di trattare con insiemi aperti. 

Proposizione 6.3 : sia A un aperto connesso di lRn ; allora A è anche connesso per 
archi. Dunque un aperto di IRn è connesso per archi se e solo se è connesso. 

Possiamo ora cercare di invertire l' implicazione della Proposizione 6.2 provando a 
mostrare che se un campo continuo è tale che il lavoro compiuto da esso lungo una 
curva dipende solo dai punti iniziale e finale della curva, allora necessariamente il campo 
deve avere un potenziale. L' idea della dimostrazione è molto naturale: supponiamo per 
semplicità che il dominio A sia un aperto connesso, dunque connesso per archi in base 
alla proposizione precedente, e fissiamo un punto x 0 E A . Per ogni punto x E A , grazie 
alla connessione di A , esiste almeno una curva </J,,, che ha x 0 come punto iniziale e x 
come punto finale, e sostegno in A ; definiamo allora 

F(x) = 1 f . 

"'"' 
Osserviamo che la definizione di F(x) è ben posta e non dipende dalla curva </J,,, scelta 
ma solo dal punto finale x ; infatti per ipotesi il campo f ha tale proprietà. Si tratta 
ora di far vedere che V F = f o equivalentemente che 

V iF(x ) = fi(x) 'ix E A. 

Fissiamo x E A: dato che A è aperto abbiamo Br(x) e A per qualche r > O. 
Fissiamo ora un indice i , consideriamo una curva <Pro che congiunge xo ad x e 
calcoliamo F(x + hei) con lhl < r , scegliendo come curva <Px+he, la curva <Px + 1/J, 
dove 1/J è il segmento [x, x + hei] , parametrizzato da 

1/J(t) = X+ tei t E [O,h] . 
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Fig. 6.1 : la palla Br è più chiara 

Abbiamo quindi 

F(x + hei ) - F (x) = 1 f -1 f = 1 f 
,t,,,+'lj, ,t,,, 'lp 

= foh f (x +te;) · ei dt = foh fi(x + tei) dt. 

In definitiva 

F(x + he;) - F(x) 1 tf( )d ____ h _ _ __ = h lo i x + te; t 

e, passando al limite per h -+ O , abbiamo 

11h "v'iF(x) = lim - fi (x + tei) dt = f i(x ) 
h-+0 h o 

dove l 'ultima uguaglianza segue dal Teorema fondamentale del calcolo integrale 1.50. 
Riassumendo quanto visto, abbiamo il seguente risultato (~ es. 6.2). 

Teorema 6.4 : sia A un aperto connesso di Rn e sia f : A -+ Rn un campo continuo. 
Allora le condizioni seguenti sono equivalenti: 
a) il campo f ammette un potenziale; 
b) il lavoro del campo f lungo ogni curva chiusa con sostegno in A è nullo; 
c) il lavoro del campo f lungo una curva qualsiasi con sostegno in A dipende solo 

dai punti iniziale e finale della curva. 

Esempio : vogliamo calcolare il lavoro del campo 
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( che è definito su tut to IR2 ) lungo la curva 

t E [O, 1] . 

Invece che calcolare il lavoro Jc/> f mediante la formula 

fo1 

f(</J(t)) · </J'(t ) dt 

ricordiamo che in (6.3) abbiamo trovato un potenziale F, che è dato da 

F(x , y) = arctan(xy) 

ed a llora il lavoro Jc/> f cercato si ottiene semplicemente come F (B ) - F(A) , dove A 
e B sono rispettivamente il punto iniziale e finale della curva </J . Si ha 

A = (0,0), B = (1/ 2, 1/ 2) , 

e quindi il lavoro del campo f lungo la curva </J è dato da 

l f = F(l/ 2, 1/2) - F (0, O) = arctan(l/ 4) . 

Anche se il teorema precedente fornisce delle condizioni necessarie e sufficienti per 
l'esistenza di un potenziale per un campo f , la sua applicazione concreta risulta difficile, 
in quanto bisognerebbe calcolare il lavoro del campo f su tutte le curve chiuse e verificare 
che esso è nullo, dunque effettuare un numero infinito di test. Vedremo ora che in 
alcuni casi la condizione necessaria di irrotazionalità diventa sufficiente e permette così 
di stabilire l'esistenza di un potenziale. 

La definizione che seguirà richiederebbe, per essere precisata, un lungo lavoro. Prefe­
riamo cercare di spiegarla a parole: consideriamo un elastico chiuso (tondo, insomma, e 
non spezzato) capace di contrarsi fino a ridursi a un punto. Se teniamo fermo un punto P 
dell'elastico e deformiamo il resto, quando lasciamo andare tutto (tranne P ) l'elastico si 
contrae nel punto P. Immaginiamo per un po' di vivere nel piano; deformiamo l'elastico, 
tenendo fermo un suo punto P, e supponiamo che l'elastico, così deformato, non passi 
per l'origine. Ora imponiamo un divieto: l'elastico, quando si contrarrà, non può pas­
sare dall'origine. Siamo sicuri che riesca a contrarsi tutto nel punto P ? Se l'elastico 
deformato "girava intorno" all'origine, non riesce a contrarsi in P. Se invece l'elastico 
può muoversi nello spazio tridimensionale, gli è facile contrarsi saltando l'origine. Ma 
se l'insieme proibito fosse stato un anello, e sfortunatamente l'elastico faceva un giro 
intorno all'anello? Di nuovo non riesce a contrarsi in un punto. 
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Fig. 6.2 : queste curve si contraggono a un punto evitando l'origine Fig. 6.3 : questa invece no 

Definizione : un insieme A e JRn si dice semplicemente connesso se ogni curva 
chiusa in A può essere deformata con continuità rimanendo in A fino a farla diventare 
un punto di A . 

La definizione appena data non è del tutto rigorosa perchè bisognerebbe precisare il 
significato di deformata con continuità; preferiamo però lasciarla in tale forma intuitiva 
invece che rendere rigorosi tutti i dettagli. Si hanno allora i fatti seguenti. 

a) Ogni insieme convesso di !Rn è semplicemente connesso. 

b) Ogni insieme stellato di lRn è semplicemente connesso; per insieme stellato inten­
diamo un insieme A tale che esiste un suo punto x0 che può essere congiunto ad 
ogni altro punto di A mediante un segmento tutto contenuto in A , vale a dire 
ponendosi in xo si riesce a vedere qualunque altro punto di A con un raggio tutto 
contenuto in A. 

e) Preso un punto x 0 E JR2 
, l' insieme A= IR2 \ { x 0 } non è semplicemente connesso; 

infatti una circonferenza di centro xo non può essere in alcun modo deformata con 
continuità fino a farla diventare un punto di A , cioè diverso da xo . 

d) Invece, se xo E JR3 
, l' insieme A = JR3 \ { x 0 } è semplicemente connesso; avendo 

a disposizione una dimensione in più è facile vedere che una circonferenza di centro 
xo può essere deformata con continuità fino a farla diventare un qualunque punto 
di A. Lo stesso si può fare per ogni altra curva chiusa contenuta in A. Un analogo 
risultato vale in lRn con n ~ 3 . 

e) Se S è una retta in JR3 oppure una curva chiusa di JR3 , iniettiva salvo per gli 
estremi, l'insieme A = JR3 

\ S non è semplicemente connesso. Infatti, una circon­
ferenza attraversata dalla retta (o dalla curva chiusa) S non può in alcun modo 
essere deformata con continuità fino a farla diventare un punto di A . 

L'utilità degli insiemi semplicemente connessi per determinare se un dato campo am­
mette una funzione potenziale è illustrata dal teorema seguente ( di cui omettiamo la 
dimostrazione). 
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Teorema 6.5 : sia f : A ➔ !Rn un campo di classe C1 . Supponiamo che f sia 
irrotazionale e che il dominio A sia semplicemente connesso. Allora il campo f ammette 
una. funzione potenziale. 

Esempio : abbiamo già visto in un esempio precedente che il campo 

( 
-y X ) 

f (x,y)= x2+y2 'x2+y2 

non può ammettere un potenziale sul dominio A = IR2 
\ { (O, O)} . Se invece prendiamo 

come A il semipiano 
A = {(x,y) EIR2

: x>O}, 

abbiamo che A è semplicemente connesso (è addirittura convesso). Dunque il teorema 
precedente assicura l'esistenza di una funzione potenziale F su A . È facile trovare 
un'espressione esplicita di F : dall'uguaglianza 

X 
'lilyF (x,y)= 2 2 

X + y 

si ha, integrando rispetto ad y , 

F(x, y) = arctan 'Y._ + C(x) , 
X 

dove C(x) è una funzione costante r ispetto ad y e dunque dipendente dalla sola variabile 
x. Dall' uguaglianza 

-y 
'lilxF(x,y) = 2 2 X t- y 

si ricava poi C'(x) = O, per cui C deve essere costante e possiamo scegliere quindi 
C = O. In definitiva, una funzione potenziale sull' insieme A è 

F(x, y) = arctan 'Y._ . 
X 

Consideriamo ora l'aperto B costituito dal complementare di una semiretta, ad esempio 

B = IR2 
\ {(x,y): y = o, x ~ o} . 

Fig. 6.4 : gli aperti A e 8 (la semiretta è un po' ingrossai.a ... ) 
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L'insieme B è semplicemente connesso e quindi, per il Teorema 6.5, esiste un poten­
ziale F su B . Con calcoli analoghi a quelli appena fatti si trova che in questo caso si 
ha 

F(x, y) = 0(x, y) 

dove 0(x,y) indica l'angolo (compreso fra -1r e 1r) che il punto (x,y) fa con la 
semiretta {(x,y) : y = O, x 2'. O}. Notiamo che 0(x,y) è ben definito su B in quanto 
l'origine non appartiene all'aperto B. 

Esempio : consideriamo il campo 

f (x, y) = (x2
, e- Y

2
) (6.5) 

e supponiamo di voler calcolare il lavoro di f lungo la curva 

<f>(t) = (cost,sent) t E [O, 1r] 

che è una semicirconferenza di punto iniziale (1, O) e finale (-1, O) . Il campo f è irro­
tazionale, come si verifica immediatamente, ed il suo dominio di definizione è tutto IR2 , 

che è semplicemente connesso. Per il Teorema 6.5 quindi esiste un potenziale F , anche 
se non possiamo scriverlo esplicitamente perchè coinvolge una primitiva della funzione 

2 
e- Y . Però, grazie al Teorema 6.4, possiamo equivalentemente calcolare il lavoro lungo 
una qualsiasi altra curva con gli stessi punti iniziale e finale. Scegliendo ad esempio la 
curva 

,,P(t) = (1 - 2t, O) t E [O, 1] 

otteniamo 

r, = r , = r11(1/J(t)). ,,p'(t) dt = - 2 r \1 - 2t)2 dt = _!. 
l e/> l t/J lo lo 3 

Esempio : i risultati di questa sezione sono talvolta ut ili anche se / non ammette un 
potenziale; supponiamo di voler calcolare il lavoro del campo 

# 

lungo la curva chiusa 
,,P(t) = ( cos t, sen t) t E [O, 21r] . 

Il campo non è irrotazionale, però 
h = f + g 

dove f è il campo in (6.5) e h(x) = (-3y2 ,0). Allora il lavoro di h su 'ljJ è 

lh= l 1 + lg , 
ma dato che f è irrotazionale e ha dominio JR2 il suo lavoro sulla circonferenza 1/J è 
nullo, perciò dobbiamo solo calcolare un integrale molto più semplice, 

l (- 3y2 ,0) = fo2

1r(-3sen2 t,0) · (- sent,cost)dt = fo
2

1r 3sen3 tdt 

{ 2-rr [ ] 2-rr 
= lo 3(1 - cos2 t) sen tdt = -3 cost + cos3 t 

O 
= O. 
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Grazie al Teorema 6.5, il problema di sapere se un campo f di classe C1 , definito 
su un dominio semplicemente connesso A , ammette un potenziale, è ridotto alla verifica 
dell' irrotazionalità di f . Più precisamente: 

f è irrotazionale ⇒ esiste una funzione potenziale; 

f non è irrotazionale ⇒ non esiste una funzione potenziale~ 

La verifica dell' irrotazionalità è molto semplice e si riduce ad un calcolo di derivate 
parziali. 

Possiamo ora schematizzare i passi da compiere per determinare se un campo f 
ammette una funzione potenziale. La prima verifica da fare è quella dell' irrotazionalità 
di f ; se f non è irrotazionale, sicuramente non potrà esistere una funzione poten­
ziale. Supponiamo allora che il campo f sia irrotazionale; se il dominio A di f è 
semplicemente connesso, allora, per il Teorema 6.5 esiste una funzione potenziale. 

Resta il problema di sapere se esiste una funzione potenziale nei casi in cui il 
campo f sia irrotazionale ma il dominio A non sia un insieme semplicemente con­
nesso: potrebbe comunque esistere un potenziale. 

Esempio: se F(x, y) = 1/(x2 + y2
) e f = 'v F, chiaramente f ha un potenziale (non 

è altro eh& F ), anche se è definita su JR2 
\ {(0,0)} che non è semplicemente connesso. 

Vediamo come si può procedere nel caso di un dominio A e JR2 il cui complementare 
ha un numero finito di componenti connesse. 

Per il Teorema 6.4 dovremmo calcolare il lavoro Jcf> f del campo f lungo ogni 

curva chiusa </> contenuta in A e verificare che esso è nullo. Invece in JR2 basterà 
calcolare il lavoro Jcf> f solo per un numero finito di curve chiuse in A , una per ogni 

componente connessa w (1.31) del complementare di A. Di nuovo, diamo una definizione 
che potrebbe essere precisata meglio, con un po' di fatica. 

Definizione : se K e lR2 è limitato e </> è una. curva. chiusa in JR2 , iniettiva. sa.Ivo 
per gli estremi e di sostegno E , si dice che la curva </> circonda K se JR2 \ E ha, 
due sole componenti connesse (necessariamente una. limitata. e l'altra illimitata) e K è 
contenuto in quella. limitata.. 

Fig. 6.5 : questa curva circonda la palla Fig. 6.6 : questa invece no 
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Esempio : se K è la palla unitaria di R.2 , allora la consueta curva che ha come sostegno 
la circonferenza centrata nell'origine e di raggio 2 circonda K. Invece la curva della 
Figura 6.6 non circonda K . 

Teorema 6.6 : sia f un campo irrotazionale di classe C1 e supponiamo che il 
complementare del dominio A e R.2 abbia un numero fìnito di componenti connesse 
K 1 , ... , K N . Supponiamo di aver determinato per ogni i= 1, ... , N una curva chiusa 
</>i contenuta in A e tale che 
a) </>i circonda Ki ma nessuna delle altre K j ; 
b) il lavoro J1, f è nullo. 

Allora esiste una funzione potenziale per il campo f . 

Esempio : consideriamo il campo 

(
y(y2 _ x2) x(x2 _ y2)) 

f (x, Y) = (x2 + y2)2 ' (x2 + y2)2 

Il suo dominio A è tutto R.2 privato dell'origine, che non è un dominio semplicemente 
connesso. Calcolando le derivate parziali 'il yfi e V xh si verifica facilmente che il 
campo f è irrotazionale. Essendoci una sola componente connessa del complementare 
del dominio A , che è { (O, O)} , per il Teorema 6.6, per verificare che esiste una funzione 
potenziale, basta trovare una curva chiusa che circonda l'origine, su cui il lavoro del 
campo f è nullo. Prendiamo la circonferenza unitaria 

</>(t) = (cos t ,sent) 

e calcoliamo il lavoro di / su </> : si ha 

t E [O, 27r] 

l f = fo2
"' ( - sen2 t(sen2 t - cos2 t) + cos2 t(cos2 t - sen2 t)) dt 

{2"' {2"' 1 [ ] 27' = lo (cos2 t - sen2 t) dt = lo cos(2t) dt = 2 sen(2t) 
0 

= O 

e dunque il campo f ammette una funzione potenziale F. Dall'equazione 

y(y2 _ x2) 
'ilxF = ( 2 2)2 X + y 

si trova, integrando rispetto ad x , 
xy 

F(x,y) = 2 2 +C(y); 
X +y 

dall'equazione 
x(x2 - y2) 

'il F = ----'---~...;... 
Y (x2 + y2)2 

si trova poi C' (y) = O per cui C è costante e si può quindi prendere C 
definitiva una funzione potenziale per il campo f è data da 

xy 
F (x,y) = 2 2 

X +y 

O. In 
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6.2 - Il teorem a della divergenza 

Il teorema della divergenza trasforma un integrale di volume in un integrale di superficie 
ed è molto utilizzato in un gran numero di casi provenienti dalle più svariate applicazioni. 
Vedremo come, attraverso il teorema della divergenza, si possa calcolare l'area di una 
regione piana conoscendo una parametrizzazione della curva che ne delimita il contorno. 
Facciamo prima qualche considerazione sulla parola "flusso": piantiamo verticalmente in 
un corso d'acqua (profondo un metro) due pali A e B distanti anch'essi un metro. Se 
la velocità dell'acqua è di un metro al secondo, significa che fra i due pali fluisce un metro 
cubo d 'acqua al secondo? Naturalmente no: se il segmento AB fra i due pali è parallelo 
alla corrente, non passa affatto acqua! Si capisce che quel che conta non è la velocità 
dell'acqua, ma la componente della velocità ortogonale ad AB. Questa è quella che, 
moltiplicata per la lunghezza di AB (e per la profondità ... ), dà la quantità di acqua 
che fluisce in un secondo attraverso AB , appunto il flusso. 

Per giungere ad un enunciato rigoroso, introduciamo la classe di aperti su cui lavo­
riamo; è opportuno rivedere la Sezione 3.9, dato che saranno tutti aperti il cui bordo è 
una (n - 1)-superficie regolare. 

D efinizione : un aperto A e !Rn è un aper to regolare per ogni punto xo E 8A esiste 
una palla U centrata in x 0 tale che Un8A è una (n-1)-superfìcie parametrica regolare 
e U \ 8A ha due componenti connesse, una contenuta in A e l 'altra nel complementare 
di A. 

Esempio : la palla unitaria aperta B di IR2 è un aperto regolare; se a B togliamo la 
palla chiusa C concentrica a B ma di raggio 1/ 2 otteniamo ancora un aperto regolare 
(un anello); se però a B togliamo solo il bordo di C, non abbiamo più un aperto 
regolare: infatti E = B \ ac ha bordo formato da due parti: la circonferenza esterna 
di B , in ogni punto della quale è facile disegnare una pallina spaccata da 8E in due 
parti, una dentro e una fuori da E , e la circonferenza bordo di C . Se prendiamo una 
(piccola) pallina centrata in un punto di questa circonferenza, 8E divide sì la pallina in 
due, ma entrambe le parti sono interne a E . 

Pig. 6.7: i pun~i d i 8C hanno E da. entrambi i lati 
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Come abbiamo visto chiaramente nell 'esempio, vicino a ogni punto del bordo di un 
aperto regolare sappiamo qual è la faccia rivolta verso il "dentro" dell'aperto e quale è 
rivolta verso il "fuori". Ricordiamo ltli" (3.17) che in ogni punto del bordo di un aperto 
regolare vi è una sola direzione normale. 

Definizione : sia A e Rn un aperto regolare, e sia x 0 E 8A . Si dice che v è un 
vettore normale esterno ad A in x 0 se v è normale a 8A in x 0 , ed esiste e> O 
tale che 

xo - tv E A e x o + tv <I A per O< t <e . 

Il versore normale esterno ad A in x 0 (o semplicemente la normale esterna ad 
A in x 0 ) è il vettore 

V 

v (xo) = llvll 

dove v è un qualunque vettore normale esterno ad A in x 0 . 

La frazione è ben definita, dato che un vettore normale esterno non può essere nullo. 

Esempio : consideriamo nel piano l'ellisse 

{ 
x2 y2 } 

E = -+- < 1 4 9 -

e il suo punto di bordo x 0 = ( v'3, 3/ 2) . Il bordo dell'ellisse può essere parametrizzato 
come 

q,(t) = (2cost, 3sent) => x 0 = q,(1r/ 6). 

Allora 
q,'(t) = (-2sent, 3cost) => q,1(1r/ 6) = (- 1, 3v'3/ 2) 

quindi "" (3.22) un vettore normale in x 0 è (3v'3/ 2, 1) . Si vede subito che questo 
punta verso l'esterno dell'ellisse, quindi "-._ 

(3v'3/ 2, 1) (3v'3/ 2, 1) (3v'3 2 ) 
v (xo) = ll(3v'3/2, 1)11 = v'31/4 = v'3l' v'3l · 

Per esercizio, usando (3.23), potete trovare la normale esterna a un ellissoide. 

Riprendendo l'esempio del corso d'acqua illustrato all' inizio di l\uesta sezione, pos­
siamo ora dare la definizione rigorosa di "flusso" attraverso una $upefficie S . 

Definizione : sia A e Rn un aperto limitato e regolare, sia v il versore normale 
esterno ad A , sia f : A ➔ Rn un campo di classe C1 , e sia S una porzione della 
ipersuperfìcie 8A . Chiameremo flusso del campo f attraverso la s uperficie S 
la quantità. 

1s f · vdnn-1. 
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Osservazione: in realtà la definizione di flusso può essere data per superfici S qualunque, 
purché orientabili, nel senso precisato nella Sezione 6.3. 

Possiamo enunciare il risultato principale, ricordando che la divergenza è stata 
definita in (3.5) e gli integrali di superficie nella Sezione 4. 7. 

Teorema della divergenza 6. 7 : sia A e IRn un aperto limitato e regolare, sia v il 
versore normale esterno ad A e sia f : A ➔ IRn un campo di classe C1 . Allora 

/ div f dx= r f • V dan- 1 . 
}A l aA 

(6.6) 

Nella formula precedente abbiamo dunque l'uguaglianza fra un integrale di volume e 
un integrale di superficie. Usando una consuetudine consolidata, per iµ'dicare il differen­
ziale di superficie (n - 1)-dimensionale scriveremo semplicemente da anziché dan-I . 

Dal teorema precedente si possono ottenere diversi corollari interessanti, scegliendo 
di volta in volta opportuni campi f . 
a) Scegliendo f = gw , con g funzione scalare e w vettore costante, si ha 

f 'vg. wdx = { gw. v da. 
}A l aA 

In particolare, se w = ei è uno dei vettori della base euclidea di IRn , si ha 

b) Scegliendo f = gw, con g scalare e w campo vettoriale (non necessariamente 
costante), si ha 

f ('vg •w +gdivw)dx = f gw • v da. 
}A l aA 

c) Scegliendo f = 'v g , con g scalare, si ha 

r t:i.g dx = r 'v g . V da , 
JA l aA 

dove abbiamo indicato con t:i.g l'operatore di Laplace 

n 

t:i.g = div('vg) = L Ò~g. 
i = l 

d) In IR3 , scegliendo f = g A h , con g e h campi vettoriali, si ha 

{ ( h . rot g - g . rot h) dx = { (g A h) · v da , 
}A l aA 

dove l'operatore rot è quello definito in (6.2). 
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e) Scegliendo in IR2 un campo f della forma f = (92, - 91) il prodotto scalare f • v 
si può esprimere mediante il versore tangente T al bordo 8A percorso in senso 
antiorario, e si ha 

f ' V = 911/1 - 911/2 = 9J7t + 9272 = g' T · 

Quindi da (6.6) si ottiene l 'uguaglianza 

1 ( 892 
-

891 
) dx i dx2 = r g • T ds 

A 8x1 8x2 laA 
che è nota come formula di Gauss-Green (~ es. 6.14). 

6.3 - La formula di Stokes 

Tornando al Teorema della divergenza 6. 7 osserviamo che se S è il bordo di un aperto 
regolare A e JR3 limita to si ha, per ogni campo f sufficientemente regolare i& (6.2), 

fs rotf • v da = O. (6.7) 

Infatti, t rasformando l'integrale di superficie in un integrale di volume, si ottiene 

fs rot f · v da = i div(rot f) dx = O , 

essendo div(rot f ) = O per ogni campo f regolare, in quanto 

div(rotf) = 8x, (8x2f3 - OX3/2) + Ox2 (8x3 /i - 8x,h) + 8x3 (8x,h - Ox2 /i) = O• 

La minima regolarità richiesta al campo f è di essere di classe C1 in un intorno della 
superficie S , anche se, per giustificare l'uguaglianza div(rot f ) = O sarebbe necessario 
supporre inizialmente "-f di classe C2 e poi procedere per approssimazione. 

La questione che ora ci poniamo è di come si modifica la formula (6.7) quando la 
superficie S ha un bordo r che è quindi una curva chiusa in IR3 , come in figura. 

Fig. 6.8 : una superficie con bordo 
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Abbiamo usato la parola "bordo" in senso naTf, come parliamo normalmente del bordo 
di un bicchiere sapendo perfettamente cosa intendiamo. In realtà occorrerebbe essere 
molto più scrupolosi: se consideriamo un bicchiere come superficie S in JR3 , questa è 
un insieme chiuso che coincide con la sua frontiera 8S , quindi il "bordo" che intendiamo 
comunemente non è quello topologico 8S . Nella Sezione 3.9 abbiamo definito le k­
superfici regolari, che in un intorno di ogni punto sono immagine, tramite una funzione 
iniettiva che verifica il Teorema del Dini, di un insieme aperto ( e quindi di una palla) in 
JRk . Potremmo definire in modo simili le k-superfici regolari con bordo che in un 
intorno di ogni punto sono immagine o di una palla, o di una mezza palla 

{y E !Rk: IIYII < e, Yk 2: O} 

e in tal caso il bordo cui ci riferiamo in questa Sezione sono i punti di questo secondo 
tipo. 

Dobbiamo poi limitarci a considerare delle superfici S cosiddette orientabili, cioè 
tali che si possa definire un versore normale v : S -+ JR.3 che risulti continuo. Va 
osservato che in generale non sempre ciò è possibile; ad esempio il nastro di Mobius 
rappresentato in figura non è una superficie orientabile. 

Fig. 6.9 : colorando una sola faccia. . . lo si colora tutto! 

Invece tutte le superfici S che sono luoghi di zeri di funzioni F : JR.3 -+ JR di classe C1 

e verificanti la condizione del Teorema del Dini 3.29 

v'F(x)IO per ogni x tale che F(x) = O 

sono superfici orientabili: basta scegliere come versore normale proprio il gradiente di 
F , normalizzato: v(x) = v'F(x)/llv'F(x)II -

Sia allora S una superficie orientabile di IR3 che supponiamo limitata e sufficien­
temente regolare (almeno di classe C2 ); indichiamo con v un versore normale ad S 
continuo. Va osservato che, non essendo in generale S una superficie chiusa, non è 
possibile definire il concetto di versore normale esterno. 
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Infine, se indichiamo per ogni x E r con e(x ) il versore tangente ad S che sia 
normale a r ed esterno ad S (siccome r è il bordo di S la superficie S sta tutta da 
una parte rispetto a r ), scegliamo tra i versori r (x ) tangenti a r quello dato da 

r (x) = v (x ) I\ e(x ) 'vx E f. 

In altri termini, tra le due possibili direzioni del versore tangente a r scegliamo quella 
che rende la terna r , e , v una terna destrorsa. 

Teorema di Stokes 6 .8 : nelle ipotesi precedenti si ha, per ogni campo f di classe 
C1 in un intorno di S , 

fs rot f · v da = l f • r ds . (6.8) 

Notiamo che il secondo integrale nella formula (6.8) non è altro che il lavoro del 
campo f lungo la curva r , una volta che si sia scelto per essa il giusto verso di percor­
renza. 
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Esercizi relativi al capitolo 6 

Esercizio 6 .1 : di ciascuno dei seguenti campi determinate il dominio, dite se è ir­
rotazionale e calcolate il lavoro su 1 : 
a) f (x,y) = (x2 - 2xy, y2 - 2xy) e 1 (t) = (t,t2) con - 1 :::; t::; 1 ; 
b) f (x,y) = (y, x2) e ,(t) = 11(t) U 12(t) U 13(t) con 11(t) = (sen t ,cost), t E 

[0,1r/2], 12(t) = (cos t ,cos2t- 1), tE[0,1r],e 13(t)=(t,t+ l ), tE[-1,0]; 
c) f (x,y,z) = (x , y, z) e 1 (t) = (cost,sent,t) con t E [0,21r]; 
d) f (x,y,z) = (x , y, z) e 1 (t) = (1,0,t) con t E [0,21r]; 
e) f (x,y,z) = (.Jz, x, y) e ,(t) = (t-sen t, 1 - cost,t2) con t E [0,1r/2]; 

f) f (x, y, z) = (2xy , x2 + z , y) e 1 (t) è il segmento da (1, O, 2) a (3, 4, 1) . 

Esercizio 6.2 : di ciascuno dei seguenti campi dite se ammette potenziale e in caso 
affermativo calcolatelo: 
a) f (x,y)=(x,y - l); 
b) f (x,y) = (l +yeXY, xeXY+cosy); 
c) f (x, y) = (2x + 5y3 

, l 5xy2 + 2y) ; 

( 
2x3 - 2x y ) 

d) f (x,y) = y2 + (x2 - l)2, y2 + (x2 -1)2 ; 

( 
y2 

- x2 2xy ) 
e) f (x, y) = (x2 + y2)2 , (x2 + y2)2 ; 

f) f ( ) = ( x
2 

+ y
2 

+ 2x 2x
2
y + 2y

3 
+ 2y) . 

x, y 2 + 2 ' 2 + 2 ' X y X y 

(
2 2x + z 1) g) f (x,y,z) = - , ---2 -, - in A = {(x,y,z) E JR3 : y > O}. 
y y y 

Esercizio 6.3 : dato il campo 

f = 1- ---- , l-----( 
2x 2y ) 

(x2 + y2)2 (x2 + y2)2 ' 
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determinatene il dominio, dite se è irrotazionale, dite se ammette potenziale e calcolate 
f-r f dove ì è la metà superiore dell'ellisse di centro (- 2, 2) e semiassi (2, 1) , percorsa 
in verso orario. 

Esercizio 6.4 : dato il campo vettoriale 

(
Ax + By Cx+Dy) 

f (x,y)= x2+y2, x2 + y2 

con A, B, C, D E R , determinate: 
a) le condizioni su A , B, C, D per cui il campo f è irrotazionale; 
b) le condizioni su A, B , C, D per cui il campo f ammette un potenziale; 
c) il valore dell'integrale J'Y f nel caso in cui A= - B = C = D = l , dove ì è la 

curva 
,(t) = (- t3, 1 - 2t2) t E [- 1, 1]. 

Esercizio 6.5 dato il campo 

( 
2x 2y + À ) 

f = (x2 + (y _ 1)2)2 ' (x2 + (y _ 1)2)2 ' 

dove À è un parametro reale, determinatene il dominio n , dite per quale valore di 
À E R è irrotazionale, dite se in corrispondenza a tale valore di À il campo ammette 
potenziale e in caso affermativo calcolatelo. 

Esercizio 6.6 : calcolate il lavoro del campo vettoriale f = (y - z , z + x , x + y) 
lungolacurva ì(t) = (2cost, _12sent, _f2sent) con tE[0, 21r]. 

Esercizio 6 . 7 : calcolate il lavoro del campo vettoriale 

lungo la curva ì di equazioni parametriche 

X = t , ( 
1 - cos 3t) 

y = arctan 
2 

, 
2 - sen t 

Esercizio 6.8 tra tutti i campi vettoriali del tipo 

f (x,y) = (xa(y),yb(x)) 

con a, b di classe C1 (R), determinate quelli che ammettono un potenziale. 

Esercizio 6.9 : determinate le funzioni a(x, y) di classe C1 su R2 \ { (O, O)} per 
cui il campo vettoriale 

f (x,y) = ( a(x,y), x2 : y2 ) 
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ammetta un potenziale. 

Esercizio 6.10 : determinate tutte le funzioni a : JR -----+ JR di classe C1 tali che il 
campo di vettori in JR2 

f (x,y) = (ya(x),a(x)) 

ammetta un potenziale. In tal caso determinatelo. 

Esercizio 6.11 : sia A una matrice reale n x n e sia f : JRn -----+ JRn il campo di 
vettori definito da 

f (x ) = Ax. 

Determinate le condizioni sulla matrice A affinché il campo f ammetta un potenziale, 
ed in tal caso calcolatelo. 

Esercizio 6.12 : dimostrate che il campo vettoriale 

f (x,y) = (~ , -2( 1 2)) y - x y-x 

ammette un potenziale sul dominio { (x, y) E JR2 : y > x2 } . Calcolate poi Jì f dove 

1 è la curva avente come grafico il grafico della funzione y = 3 + sin x con x E [O, 7r / 2] , 
percorso nel verso delle x crescenti. 

Esercizio 6.13 : dato il campo vettoriale in JR2 

( 
-2y 2x -1 ) 

f (x, y) = 4x2 + 4y2 - 4x + 1 ' 4x2 + 4y2 - 4x + 1 ' 

calcolate, al variare di r -I 1/ 2 , l'integrale curvilineo Jì f dove I è la circonferenza di 
centro l'origine e raggio r , percorsa in senso antiorario. 

Esercizio 6.14 : calcolate fì(O, x) dove I è una circonferenza di raggio r percorsa 

in verso antiorario. Deducetene che l'area del cerchio di raggio r è 1rr2 • 
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Appendice al capitolo 6 

Appendice 6.1 - Calcolo di aree e di volumi 

Come applicazione del Teorema della divergenza 6.7 vedremo ora un modo di calcolare 
l'area di una regione piana circondata da una curva chiusa, una volta nota l'espressione 

parametrica di tale curva. 
Sia dunque <f> : [a, b] -+ R 2 una curva chiusa iniettiva e regolare; supponiamo che il 

sostegno di </> sia il bordo di un aperto limitato A, e che </> percorra òA in senso 
antio rario. 

Consideriamo ora un campo f : R 2 -+ R2 di classe C1 e tale che si abbia 

div f = 1 in tutto R2 
. 

Ad esempio, possiamo considerare 

f(x , y) = (x, O), f(x ,y) = (0,y), t(x,y) = (~, D· (A6.l) 

Dal Teorema della divergenza 6. 7 abbiamo 

Area(A) = J 1 dxdy = J div f dxdy = { f • vds 
A A l aA 

(A6.2) 

dove abbiamo indicato con v il versore normale esterno ad A. Avendo a disposizione 
la rappresentazione parametrica <f>(t) di òA, il vettore tangente in un punto </>(t) sarà 
dato da <f>' (t) e quindi u:.' (3.18) un vettore normale esterno sarà (</>~(t), - 4>'1 (t)) , visto 
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che </J gira in senso antiorario; infine, otteniamo che il versore normale esterno v , che 
deve avere modulo unitario, è dato da 

v (</J(t)) = (<t>;(t), -</>~(t)) 
11 </J'(t)II 

Allora possiamo scrivere l' integrale in (A6.2) come 

r f · v ds = 1b f (</J(t)) . v(</J(t))ll</J'(t)II dt 
JaA a 

= 1b f (</J(t)) · (</>;(t), -</>~(t)) dt 

= 1b ( - h(</J(t))<t>;(t ) + fi(</J(t))<t>;(t) ) dt. 

In altri termini, l'area della regione piana A non è altro che il lavoro, lungo la curva </J 
che parametrizza il suo bordo, del campo g = (- h, fi) , dove f è un qualsiasi campo 
con divergenza 1 . Siccome si ha 

possiamo concludere che 

Area(A) = l g 

Scegliendo ad esempio f come in (A6.l) si ha rispettivamente 

g (x, y) = (O, x), g(x,y) = (- y, O), g(x,y) = ( - ~,~). 

Esempio : consideriamo l'ellisse di semiassi a, b 

{ 
x2 y2 } 

A = (x, y) E JR2 : a2 + b2 :S 1 . 

Un'espressione parametrica del bordo 8A è data da 

</J(t ) = (acos t ,bsent) t E [O, 21r] . 

Scegliendo f (x, y) = (x/2, y/2) e dunque g (x, y) = (-y/ 2, x/2) abbiamo 

r r 21f i r 27f 
Area(A)= },t,g = lo g(<fJ(t)) ·</J'(t)dt= 2}

0 
absen2 t+abcos2 tdt = ab1r. 
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Esempio : consideriamo la curva deltoide (1• appendice 2.2); essa ha equazioni parame­
t riche 

{
x(t) =2cost+cos(2t) 

y(t) = 2sent - sen(2t) 
t E [O, 21r], 

per cui, scegliendo f (x, y) = (x/2, y/2) e dunque g(x, y) = (-y/2, x/2) abbiamo 

Area(A) = l g = fo
2

1r g (<f>(t)) • </>'(t) dt 

= fo2

1r (1 + sen t sen 2t - cos tcos 2t) dt = 21r . 

Esempio : consideriamo la curva cardioide (,• appendice 2.2); essa ha equazioni para­
metriche 

{ 
x(t) = cost(l - cost) 

y(t) = sent(l - cost) 
t E [O, 21r] , 

per cui , scegliendo f (x,y) = (x/2,y/2) e dunque g(x,y) = (- y/2,x/2) abbiamo 

{ { 21r 1 { 21r 3 
Area(A) = le/> g = lo g (</>(t)) • </>' (t) dt = 210 (1 - cost)2 

dt = 21r . 

Esempio: consideriamo, invece della cardioide dell'esempio precedente, quella nella forma 
più generale (11• appendice 2.2) data in forma polare da 

r = q - cos(k0) 0 E [O, 21r] , (A6.3) 

dove q > O e k > O sono due costanti fissate. Abbiamo già osservato nella Sezione 1.5 
che la scrittura polare (A6.3) si intende valida anche nel caso r < O, che si ha quando 
q < l . In tal caso, ci chiediamo cosa rappresenta la formula dell'area che si ottiene da 
(4.22) : 

121r r2(0) 
Area = -- d0. 

o 2 

Nel caso della cardioide (A6.3) otteniamo con facili calcoli (fateli) 

[
2

1r r 2 (0) _ [ 2
1r (q - cos(k0))

2 
_ 2 1r sen(4k7r) 

lo -2- dB - lo 2 dB - 1rq + 2 + 8k ' 

ma questo valore non rappresenta l'area della regione grigia A della figura di sini­
stra; esso rappresenta invece la somma delle aree delle regioni grigie delle due figure. 
Se vogliamo soltanto l'area della regione piccola B della figura di destra dobbiamo 
restringere l' intervallo della variabile angolare 0; prendendo ad esempio k = 1 e q < 1 
si trova che tale intervallo è [-a, a] dove a = arccos q . Si ha quindi 
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Fig. A6. l : la wna A Fig. A6.2: la zona B 

)
2 

<> q - cos0 1 3 
Area(B) = J_<> ( 

2 
d0 = a(2 + q2

) - 2qsena. 

Ad esempio, se q = l/2 come nelle figure si trova a = 1r /3 e quindi 

A (B) 
= 21r - 3\1'3 rea 

8 
. 

Un discorso analogo a quello fatto per le regioni piane nella sezione precedente si può 
fare per il calcolo di volumi tridimensionali di aperti regolari. Sia dunque B un aperto 
regolare limitato di JR3 : il suo bordo è una (2-)superficie, che per semplicità supponiamo 
parametrizzata con una sola carta locale </> : A ➔ JR3 , dove A e JR2 è l'insieme dei 
parametri. Se indichiamo con (s, t) E A i due parametri che descrivono la superficie S, 
le equazioni parametriche della superficie sono: 

X =<f>i(s,t), y = </>2(s, t) , 

Sia ora f : B ➔ JR3 un campo regolare tale che 

div f = l in B. 

Dal Teorema della divergenza 6. 7 si ricava allora 

z = <f>3(s, t) . 

vol(B) = { div f dx = { f · v da JB laB 
dove v è il versore normale esterno a fJB = S. Scrivendo l'ultimo integrale in forma 
parametrica si ha 

{ f•vd<J = { f(</>(s,t))• vl l8s</>A8t<!>lldsdt. las JA 
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A meno del segno, il versore normale esterno v è.,.- (3.19) 

(A6.4) 

per cui si ha in definitiva 

vol(B) = ± l f ( </>(s, t)) . ( 8.</> I\ Ot</>) ds dt , 

dove il ± è dovuto al fatto che non sappiamo se il vettore v di (A6.4) è esterno o 
interno. Per fortuna, trattandosi di un volume, basta prendere il valore assoluto del 
risultato finale, ma se avessimo dovuto calcolare un integrale generico? Bisogna stare 
attenti all'ordine con cui si fa il prodotto vettoriale dei due vettori tangenti 88 </> e Ot</> ; 
l 'ordine giusto è quello per cui la terna di vettori 88 </> , 8t</> , v è una terna destrorsa, 
ovvero tale che sovrapponendo il primo vettore al pollice della mano destra e il secondo 
ali' indice, il terzo risulta sovrapposto al medio. Nel nostro caso si ha 

vol(B) = l i f(</>(s,t))·(8.</>A8i</>)dsdtl = l i f(</>(s,t)) · (8i</>A8.</>)dsdt l. (A6.5) 

Esempio : vogliamo calcolare il volume dell'ellissoide di semiassi a, b, e 

{ 
x2 y2 z2 } 

B = (x,y,z) E JR3 : 2 + 2 + 2 $ 1 . 
a b e 

Parametrizziamo la superficie S = 8B mediante la colatitudine a E [O, 1r] e la longitu­
dine 0 E [O, 21r] : 

e otteniamo 

per cui 

x = a sena cos0, y = bsenasen0, z = ccosa 

80c</> = (acosacos0,bcosasen0, -csena) 

80</> = (-asenasen0, bsenacos0, O), 

80c</> I\ 80</> = (be sen2 a cos 0, acsen2 a sen 0, ab sena cosa) . 

Se scegliamo ad esempio il campo 

f (x, y, z) = (x, O, O) , 

dalla formula (A6.5) si ricava 

vol(B) = abcsen3 acos2 0dad0 = ....!!_abc 11' 12
1' 4 

o o 3 

che è il ben noto volume dell'ellissoide. 
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Appendice 6.2 - Forme differenziali 

Abbiamo visto nel Capitolo 6 alcune operazioni che si possono fare con i campi vettoriali 
F : A -+ !Rn , con A insieme aperto di !Rn . Ad esempio ~ (2.24) per integrare un 
campo F lungo una curva </J definita su un intervallo I dovevamo integrare su I il 
prodotto scalare 

F. </J' = tFi(</J(x)) . ddti. 
i = l 

Allo scopo di fornire delle generalizzazioni utili per trattare l' integrazione di funzioni 
definite su superfici di dimensione qualunque, conviene vedere un campo vettoriale F : 
A -+ !Rn come una scrittura del tipo 

n 

w(x ) = F(x) · dx = L Fi(x) dxi , X E A. (A6.6) 
i=l 

La notazione dxi nella scrittura precedente è molto utile e può essere facilmente pre­
cisata. Ricordiamo a Sezione 3.3 che il differenziale di una funzione f è stato inizial­
mente definito come un vettore (il gradiente di f ). Ogni vettore a di !Rn può essere 
identificato con una applicazione lineare da !Rn ad JR , quella che ad ogni vettore x 

associa a · x. Decidiamo di vedere come mondi distinti quello dei vettori e quello delle 
applicazioni lineari a loro associate. Allora il differenziale di f può essere inteso come 
l'applicazione lineare df associata al gradiente V f , così rF (3. 7) 

n 

df[h ] = ('vf) · h = L 8xJ hi . (A6.7) 
i=l 

Osserviamo che in particolare la funzione f(x) = xi ha gradiente ei, quindi ha dif­
ferenziale 

dx;[h] = ei · h = hi 

ma allora possiamo proseguire da (A6.7) con 
n n 

... = L 8xJdxi[h ] = (I:axJ dxi)[h] , 
i=l i=l 

ossia 
n 

df = L8xJ dxi. 
i = l 

Gli oggetti w del tipo in (A6.6) si chiamano forme differenziali e le funzioni Fi si 
chiamano coefficienti della forma w . Ad esempio, se n = 2 le forme differenziali 
saranno del tipo 

a(x, y) dx+ b(x, y) dy 

con a, b funzioni reali di due variabili, mentre se n = 3 saranno del tipo 

a(x, y, z) dx+ b(x, y, z) dy + c(x, y, z) dz 

con a,b,c funzioni reali di tre variabili. Per ogni x E A l'oggetto w(x) è dunque 
un'applicazione lineare che associa ad ogni u E lRn il prodotto scalare F (x) • u. 
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Esempio : come abbiamo visto, se prendiamo una funzione f : A-+ JR di classe C1 (A) 
con A insieme aperto di !Rn , il differenziale di f è, per ogni x E A, l 'applicazione 
lineare che associa ad ogni h E ]Rn la quantità 

n 

df(x)[h] = V f(x) · h = L od(x) hi 
i = l 

ossia, nel linguaggio delle forme differenziali, 

n 

df(x) = V f(x) ·dx= L od(x) dxi 
i = l 

e df sarà la forma differenziale associata al campo vettoriale V f , avente come coeffi­
cienti le derivate parziali od . 

Possiamo dunque vedere i campi vettoriali in termini di forme differenziali e tradurre 
quanto visto nel Capitolo 6 nel linguaggio delle forme differenziali, quindi se 

n 

w(x) = L od(x) dxi 
i=l 

diremo che la forma w e il campo f sono associati uno all'altro. Ecco un piccolo 
dizionario potenziali - forme: 

• una forma differenziale w su un aperto A di JRn si dice esatta se esiste una 
funzione differenziabile g : A -+ JR tale che w = dg ; questo corrisponde a dire 
che il campo vettoriale f associato alla forma w ammette come potenziale la 
funzione g; 

• una forma differenziale w su un aperto A di JRn si dice chiusa se il campo 
vettoriale f associato alla forma w è tale che 

\/x EA; 

questo corrisponde a dire che il campo vettoriale f è irrotazionale a:w (6.1). 

Proviamo ora a generalizzare il concetto precedente di forma differenziale al caso di k­
forme in n variabili; le forme differenziali viste sopra saranno allora corrispondenti al 
caso k = l per cui si potranno chiamare I-forme. Per k = O una O-forma in n variabili 
non è altro che una funzione f: A-+ JR con A aperto di JRn . Per k 2'. 1 una k-forma 
in n variabili è una scrittura del tipo 

x E A (A6.8) 

dove la somma si intende effettuata su tutte le k -uple (ii, ... , ik) di indici con 1 ~ 
i1 ~ n. Le funzioni fi,, ... ,i. sono ancora dette coefficienti della forma w ed i termini 
dxi, I\ ... I\ dxi. verificano le proprietà seguenti: 
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• se ci sono (almeno) due indici uguali tra i 1 , ... , ik si ha 

ad esempio dx2 I\ dx1 I\ dx4 I\ dx2 = O ; 

• se scambiamo tra loro due indici, ottenendo la k-upla (j1 , ... , jk) dalla k-upla 
(i1, ... ,ik), si ha 

Osservazione: da quanto detto sopra è evidente che se k > n in ogni k-upla (i1 , ... , ik) 
ci saranno sempre almeno due indici uguali, per cui se k > n l'unica k-forma è la forma 
nulla. 

Osservazione : per le proprietà precedenti dei termini dxi, I\ ... I\ dxik si vede che, se 
k ~ n, tali termini non nulli ed effettivamente diversi sono tanti quant i le scelte possibili 
di k elementi in un insieme di n elementi, dunque (;) . 

Per vedere come opera una k-forma w in n variabili basta quindi sapere come 
operano le k-forme elementari dxi1 I\ . .. I\ dxik . Iniziamo con il caso k = 2 scrivendo 
esplicitamente come opera dxi I\ dx3 su due vettori u , v E Rn: 

In altri termini, dxi I\ dx3[u , v] non è altro che il determinante della matrice 2 x 2 la 
cui prima riga è il vettore ( ui, u3) e la cui seconda riga è il vettore (Vi, Vj) . In maniera 
simile, se k = 3 dxh I\ dxi I\ dxj opera sulla terna ( u , v , w ) di vettori di Rn nel modo 
seguente: dxh I\ dxi I\ dxj[u, v , w] è il determinante della matrice 3 x 3 avente come 
prima riga il vettore (uh,ui,uj), come seconda riga il vettore (vh,vi,Vj) e come terza 
riga il vettore (wh, wi, Wj) . In maniera analoga si procede per gli altri valori di k. 

Esempio : se k = 2 ed n = 3 , tenuto conto delle proprietà scritte sopra, le 2-forme 
saranno tutte del t ipo 

w(x, y, z) = A(x, y, z) dx I\ dy + B(x, y, z) dy I\ dz + C(x, y , z) dx I\ dz 

dove le funzioni A , B , C sono date, in termini dei coefficient i /ij della forma come 
scritta in (A6.8), da 

A = h2 - h1 , B = h3 - '32 , 

Anche per le k-forme si può dare una nozione di differenziale, nella maniera seguente. 
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Definizione : sia w una k-forma differenziale, con coefficienti le funzioni fi,, ... ,i. (che 
supponiamo sufficientemente regolari). Si definisce differenziale esterno di w la 
(k + 1)-forma 

dw = L L Òjfi,, ... ,i. dxi I\ dx;, I\ ... I\ dx;k 
j 

dove di nuovo la seconda sommatoria si intende effettuata su tutte le k-uple (i1, ... , ik) 
di indici con l S i1 S n . 

Osservazione : se k = O si intende nella definizione precedente semplicemente 

dw = Là1fdxi; 
j 

in altri termini dw è in questo caso la 1-forma associata al campo vettoriale V f. Inolt re, 
se k 2: n si ha dw = O , essendo k + l > n . 

Osservazione : se i coefficienti f;, , ... ,i. di una k-forma sono di classe C2 
, dal Teorema 

di Schwarz 3.11 si ha che 

Vi, j = 1, ... , n; 

dunque, dalle proprietà dei termini dx;, I\ ... I\ dx;k si ricava subito che per ogni forma 
w di classe C2 si ha 

d(dw) = O. 

Osservazione: se k = 1 abbiamo che dw è la 2-forma data da 

dw = L Òjfi dxi I\ dx; . 
ì ,j 

In JR3 la 2-forma dw ha solo tre coefficienti, e si scrive 

dw = (81 h - éhfi) dxi A dx2 + (éhh - 03h) dx2 A dx3 + (83fi - 81h) dx3 A dxi . 

I tre coefficienti di dw possono essere visti come le componenti del campo vettoriale 
rotore del campo f: 

rot J = (82h - 03h, 03fi - 81h, 81h - éhh) , 

che abbiamo già visto nella Sezione 6.1. Se invece, in dimensione n qualsiasi, abbiamo 
k = n - l , la n-forma dw ha un solo coefficiente del termine dx 1 A ... A dxn ; ad esempio 
se n = 3 abbiamo 

dw = (81(!23 - h2) + éh(h1 - f13) + 83(fi2 - hi)) dxi A dx2 A dx3. 

In altri termini, se indichiamo con f il campo vettoriale 

f = (!23 - h2, h1 - fi3, h2 - h1) , 

possiamo identificare la 3-forma dw con la divergenza di f a (3.5) e Sezione 6.2: 

div J = (81(!23 - h2) + 82(h1 - fi3) + 83(!12 - h1)) . 

Un calcolo analogo si può fare per una dimensione n generica; ad esempio provate a 
scrivere il campo f che si ottiene prendendo n = 4 e k = 3 . 
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Vediamo ora come si può integrare una k-forma w in IRn su una supcrfìcie orientata. 
S di dimensione k contenuta in IRn a- Sezioni 3.9 e 6.3. Il caso più semplice è il caso 
k = O in cui w non è altro che una funzione f a valori in JR e la superficie S , essendo 
di dimensione O , si riduce ad un numero finito di punti di IRn 

In tal caso l'orientazione è semplicemente il segno e:; = ± per ogni i = 1, ... , N e 
l' integrale della forma w su S è definito da 

Nel caso k = 1 la forma w è un campo vettoriale f e la superficie S , di dimensione 
1 , non è altro che una curva orientata mediante il suo versore tangente r . In tal caso 
l'integrale di w su S è definito da 

fsw = fst(x)·r(x)ds. 
Nel caso in cui S sia data in forma parametrica da 

S = { x = </>(t) , t E [a, b]} , 

l'integrale di w su S diventa I:.' (2.24) 

fs w = 1b f(<J>(t)) • </>'(t)dt. 

Nel caso di k-forme con k > 1 l'espressione dell'integrale di w su S è un po' più 
complicata. In tal caso w si scrive come a- (A6.8) 

x E A 

mentre S è una superficie di dimensione k in Rn . Si potrebbe definire anche in questo 
caso un'orientazione di S, cosa che ci permetterebbe di definire rigorosamente l'integrale 
fs w in piena generalità . Ci limitiamo invece al caso in cui la superficie S sia data in 
forma parametrica da 

S = { x = <J>(t), t E A} 
con A aperto di JRk e <J> iniettiva. Si definisce allora 

fs w = l [Lh, ... ,;.(<J>(t)) detDi, , ... ,;.(t)] dt (A6.9) 

dove Di, , ... ,i. indica la matrice k x k 
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Nel caso particolare k = n la n-forma w è del t ipo 

w(x ) = f (x ) dxi I\ ... I\ dxn 

con S aperto di Rn , e la matrice D 1, ... ,n , che ha dimensione n x n, non è altro che 
la matrice V</>. L'orientazione di S è data in tal caso dal segno del determinante della 
matrice V</> . Si riottiene allora la formula di cambiamento di variabili negli integrali 
multipli ( 4.27) 

1s f (x ) dx = l f ( </>(t )) det V</>(t) dt . 

Consideriamo il caso particolare k = 2 ed n = 3 ; sappiamo che in tal caso le 2-forme 
in R 3 sono tutte del tipo 

w(x) = fi(x) dy I\ dz + h(x) dz I\ dx + h (x ) dx I\ dy 

e quindi, se la superficie S è parametrizzata dalla funzione </> : A -+ R3 mediante i 
parametri (s, t) E A , l' integrale in (A6.9) diventa 

1s w = l [h ( </>(s, t)) det D23(s, t) 

+ h ( </>(s, t)) det D31 (s, t) + h ( </>(s , t)) det D i2(s, t)] ds dt. 

Ricordando l'espressione del versore normale v (x ) alla superficie S e la definizione di 
integrale superficiale I:.' (4.39) otteniamo 

1s w = 1s f (x ) • v (x ) da2 , (A6.10) 

dove abbiamo indicato con f il campo vettoriale (!i , h , h ) . Nel caso particolare in 
cui w = dri dove TJ è una 1-forma data da 

3 

ri(x) = "'I:, Ji(x)dxi 
i=l 

abbiamo visto che w è la 2-forma 

w(x) = (rot f )i dx2 I\ dx3 + (rot f )2 dx3 I\ dxi + (rot f h dxi I\ dx2 . 

Dall'uguaglianza (A6.10) otteniamo allora 

r W= r dri= r (rot f )(x ) •v(x ) da = r f (x) •T(x )ds 
1s 1s 1s las 

dove l'ultima uguaglianza segue dalla formula di Stokes = Sezione 6.3 e formula (6.8), e 
8S indica il bordo (orientato) della superficie S, che è una superficie 1-dimensionale, 
dunque una curva. Abbiamo visto che l'ultimo integrale si può scrivere come fas TJ e 
quindi, in definitiva, abbiamo ottenuto l'uguaglianza 

r dri = r ri (A6.11) 
1s las 

che non è altro che la formula di Stokes ( 6.8) scritta nel linguaggio delle forme differenziali. 
Si potrebbe vedere che l'uguaglianza (A6.11) vale più in generale in Rn con la dimensione 
n qualsiasi, S superficie compatta orientabile regolare di dimensione k < n ed T/ una 
k-forma con coefficienti di classe almeno ci . La formula (A6.11) viene pertanto detta 
formula di Stokes generalizzata. 



Capitolo 7 

Successioni e serie di funzioni 

Abbiamo incontrato nel corso di Analisi Matematica 1 le successioni di numeri reali e 
quelle di numeri complessi, poi nel Capitolo 1 quelle a valori in Rn . In tutti i casi 
si tratt a di applicazioni da N ( o una semiretta di N ) a valori in un altro spazio, via 
via R, C o Rn . In questo capitolo studieremo successioni a valori in un insieme più 
vasto, precisamente un insieme i cui elementi sono a loro volta delle funzioni; vedremo 
che c'è una grande varietà di fenomeni nuovi rispetto ai casi studiati sinora. Una parte 
importante del capitolo sarà poi dedicata alle serie di funzioni. 

7.1 - Successioni di funzioni e convergenza 

Iniziamo con un esempio. 

Esempio : studiamo la convergenza della successione 

an = arctan xn 

dove x è un fissato numero reale. Conosciamo bene la risposta, che è un po' articolata 
perché il limite di {an}n dipende dal valore del "parametro" x : 

x>l ==} an ➔ 1r/2 

X = l ==} an = 1r/4 
(7.1) 

- 1 <X< 1 ==} an ➔ O 

X~ - 1 ==} an non ha limite. 
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Ricordiamo che una successione a valori in un insiem e F , o anche successione di 
elementi di F, è una applicazione da N (o una sua semiretta) a F. Quel che abbiamo 
in realtà fatto in questo esempio è stato considerare per ogni n la funzione f n : JR-+ JR 
definita da 

fn(x) = arctan xn , (7.2) 

cioè (chiamando per qualche riga F l'insieme delle funzioni da JR a JR) considerare la 
successione 

n E N H fn E F , 

fissare un valore x e studiare il comportamento della successione di numeri reali 

n H fn(x) 

dando una risposta per ciascun valore di x . 

Definizione : siano A , B due insiemi; con il simbolo F (A ; B) indichiamo l 'insieme 
di tutte le funzioni da A a B . Una successione di funzioni da A a B è una 
successione a valori in F (A ; B) . 

Esempio : l'espressione fn(x) = arctanxn è una successione di funzioni da JR a JR. 
Dato che sono tutte funzioni continue, anzi derivabili infinite volte, avremmo potuto dire 
che si tratta di una successione a valori in c0(JR) o in C00 (JR) . Altri esempi analoghi 
sono le successioni 

9n(x) = 2 + nx, hn(x) = x/n. 

Esempio : le successioni 

n 
f n(x) = n2x2 + 1 ' 

n 
9n(x) = ✓ 2 2 1 , 

n X + 
nx 

hn(x) = --­
n2x2 + 1 

sono composte da funzioni continue su JR ; invece i termini della successione 

nx 
Jn(x) = ✓n4x4 - 1 

non sono definiti su tutto JR , e precisamente il dominio di Jn è 

D n = {x: n
4
x

4 > 1} = ]-oo, - ¾[ U J ¾,+oo[. 

(7.3) 

(7.4) 

(7.5) 

Questi domini variano al variare di n, quindi è vero che ogni Jn E c0 (Dn) , ma se 
vogliamo trovare un singolo insieme su cui sono definite tutte le Jn osserviamo che 

Dn+l :::) D n 'vn ==} Dn :::) D 1 'vn , 

quindi tutte le Jn sono definite su D 1 . Però osserviamo che, ad esempio, tutte le 
funzioni Jn sono definite su D 4 per n ~ 4 , e anzi per ogni é > O esiste ii tale che 

Jn è definita su D g =] - oo, - é] U [é, +oo[ 'vn ~ ii . 

Allora possiamo considerare la successione {jn}n anche su De , limitandoci agli indici 
n~ ii . 



Capitolo 7 : Successioni e serie di funzioni 409 

Esempio : la successione 

(7.6) 

è definita su JR2 \ {O} . 

Nel seguito ci occupiamo esclusivamente di successioni di funzioni a va lori 
reali (o complessi o in qualche spazio JRm ), quindi ometteremo l' indicazione dello 
spazio d'arrivo. Salvo indicazione esplicita, tutto quel che scriviamo vale per successioni 
a valori in JR, C o JRm , e l'unica modifica da fare sarebbe eventualmente scrivere 
"norma", con due sbarrette, al posto di "valore assoluto" (o modulo), con una sola sbar­
retta. Data una successione di funzioni, come abbiamo fatto nell'esempio (7.2) possiamo 
congelare la variabile (o le variabili, se sono più d'una) e considerare la successione dei 
valori che le funzioni elementi della successione assumono in quel punto. 

Definizione : una successione {fn}n di funzioni è convergente nel punto x se 
definitivamente x E dom f n e la successione 

n H fn(x) 

è convergente. Se E ç A ed f è una funzione definita in E, si dice che fn converge 
puntualmente ad f in E se 

fn(x)-+ J(x) \:/x E E. 

In tal caso si scrive 
fn ~ J in E. 

Consideriamo il primo esempio visto l>i' (7.2): leggendo (7.1), possiamo dire che f n 

converge puntualmente nell' insieme 

E =]-1,+oo[ 

alla funzione f : E -+ JR definita da 

{ 

1r/2 

J(x) = ;/4 sex> 1 

sex = 1 

se - l <x< l. 

- 1 1 

Fig. 7.1 : la successione arctan xn Fig. 7.2 : il limite f 



410 Sezione 7.1 : Successioni di funzioni e convergenza 

Esempio : guardiamo ora (7.3); dato che, fissato x, 

· { +oo sex> O 
lim 9n (X) = 2 se x = O 

n---t+oo -oo se x < O 

possiamo dire che 9n converge puntualmente solo in {O} , alla funzione che vale 2 
(definita solo per x = O, però). Invece abbiamo 

lim h11 (x) = O 'vx E JR, 
n---t+oo 

quindi 

Fig. 7.3 : le successioni 9n e hn di (7.3) 

Esempio : consideriamo le tre successioni di (7.4); abbiamo che 

fn(O) = n-+ +oo 

mentre per ogni x -/= O, essendo n2x2 -+ +oo, al denominatore domina il termine 
n2x2 e 

n l 
f n(x) = n 2x 2 + 1 = n(x2 + l /n2) -+ O ' 

pertanto 

f n ~ O in JR \ {O} . 
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Fig. 7.4 : la successione fn di (7.4) Fig. 7.5 : la successione 9n di (7.4) 

Invece per x =I= O 

quindi posto 

abbiamo 

n 
9n(x) = ✓n2x2 + 1 

1 1 1 
--;:====:;e -t -- - -Jx2 + 1/n2 ,/x2 - lxi ' 

g(x) = { ~/lxl 
sex= O 
sex=/=O 

pt . lTD 
9n ~ 9 m li">. • 

Fig. 7.6 : la successione hn di (7.4) 

Analogamente ( controllate per esercizio: anche qui x = O si tratta in modo diverso da 
x =I= O, dato che al denominatore l'addendo che domina cambia a seconda del caso) 

hn ~ O in JR . 
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Invece, per la successione j 11 di (7.5), abbiamo per ogni x =/= O che defini ivamente 
x E dom j 71 , e che 

" () nx x 0 Jn x = J n4x4 - 1 = -n-✓~=x=4 =- =1=/=n=4 -+ ' 

dunque 
. pt o 

Jn ...:......+ in JR\ {O} . 

Esempio : consideriamo la successione di (7.6); se y =/= O il termine che domina al 
denominatore è n4 y2 , quindi 

X 

n(y2 + x4 /n3) -+ O , 

mentre per y = O (dunque necessariamente x =/= O) 

n3x2 n2 
f n(x, y) = --4 = 2 -+ +oo -

nx x 

Allora 
fn(x,y) ~ O in IR2 

\ {y = O}. 

La convergenza puntuale, dunque, si riduce alla convergenza, punto per punto, della 
successione numerica dei valori. Anche se spesso facile da verificare, questa convergenza 
ha tuttavia diversi comportamenti scomodi. 

Esempio: la successione fn( x) = arctan(nx) è composta tutta da funzioni continue, ma 
converge puntualmente su JR alla funzione 

{

1r/2 sex> O 
f(x) = O sex = O 

- 1r/2 sex< O, 

che è discontinua in x = O ; pertanto 

/ E C0
. 

---- -- - -- - -1r/ 2 

Fig. 7.7 : la successione arctan(nx) 
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Esempio : la successione f n(x) = n 2 jxje- nlxl tende puntualmente alla funzione f (x) = 
O, tuttavia 

1+00 r +oo r +oo 
_ f n(x) dx = 2 Jo n2xe- nx dx ~ 2 }

0 
te-t dt = 2 

oo O nx=t O 

(7.7) 

mentre chiaramente f~: f(x) dx= O, perciò 

1: f n(x) dx ➔ 1: f (x) dx . 

Fig. 7.8 : la successione n 21xle-nlxl 

Come si vede nelle figure, le successioni degli esempi precedenti si avvicinano punto 
per punto alla funzione limite, ma a seconda del punto x che consideriamo la successione 
fn(x) può convergere ad f(x) con velocità diversa. 

Esempio: se fn(x) = x/n, che sappiamo tendere puntualmente a f(x) = O, e fissiamo 
un numero €> O, per ogni punto x "definitivamente" lfn(x) - f(x)I <e. Esplicitiamo 
questa parola con delle scelte particolari: se e= 1/ 100 e consideriamo il punto x = 1 , 
abbiamo 

lfn(l) - f(l)j < € n > 1/e = 100 , 

quindi per x = 1 dobbiamo aspettare n = 100 prima che f n ed f distino meno di 
1/ 100 . Ma se x = 7 abbiamo 

lf n(7) - !(7)1 < e n > 7/e = 700, 

cioè dobbiamo aspettare fino a n = 700 , e se x = 1000 dovremo aspettare fino a 
n = 100000. La vicinanza di fn(x) a f (x), d unque, si verifica in tempi diversi a 
seconda del punto x . 
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Ora che è chiaro che il valore di n nascosto nella parola "definitivamente" può 
dipendere da x , scriviamo per esteso la definizione già vista di convergenza puntuale: 

abbiamo fn ~ f in E se 

Vc>O, VxEE, :3n=fi(c,x):Vn2:'.fi, lfn(x) - f(x)\<c. (7.8) 

Talvolta il "tempo di attesa" fi non dipende da x , ma è uniforme. 

Definizione : una successione Un}n di funzioni definite su un insieme E converge 
uniformemente in E a una funzione f se 

Ve> O, :ln = fi(c): Vn 2:: fi, Vx E E, \fn(x) - f(x) \ < é' . (7.9) 

In tal caso si scrive 

Osservazione : notiamo esplicitamente che se E' e E e c'è convergenza uniforme su E , 
c'è convergenza uniforme anche su E' . 

Osservazione : la convergenza uniforme ha una importante interpretazione geometrica. 

Se fn ~ f in E, fissiamo é' e sia fi come in (7.9): se n 2='. fi, per ogni x E E 
abbiamo 

\fn(x) - f(x)\ < é' f(x) - é' < f n(x) < f(x ) + é' , 

ovvero (per funzioni a valori reali) il grafico di tutte le funzioni f n a partire da n = fi è 
compreso nella striscia di altezza 2c intorno al grafico di f . Se la successione è a valori 
in C o in ~m , la striscia 

{ (x, y): \y - f(x)I <e} 

è sostituita da una sorta di intorno tubolare del grafico, quello dei punti (x, z) o (x, y) 
la cui distanza da (x,f(x)) è inferiore ad é' . 

é' 

é 

Fig. 7.9 : la striscia di altezza 2e attorno al grafico di f 
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Esempio : la successione 

converge uniformemente su JR alla funzione nulla f (x) ; infatti, trascurando completa­
mente l 'argomento del seno, abbiamo 

1 1 lfn(x) - J(x)I = In- sen (• · ·)I :S -
n 

che è minore di E non appena n > n(E) = 1/é ove per essere precisi, dato che n deve 
essere un numero naturale, occorrerebbe scrivere non 1/E ma la parte intera di 1/E . 

Esempio: la successione in(x) = n 2 1xle-nlxl di (7.7) converge puntualmente alla fun­
zione f(x) = O, ma non converge uniformemente, dato che 

e quindi il grafico di in non è affatto contenuto in una striscia attorno all'asse x, che 
è il grafico di i . 

Osservazione: dato che il numero fi di (7.9) verifica anche (7.8), si ha 

f unif i . E n ----+ 1n ====> in~ f in E, 

ma in generale non è vero il viceversa, come mostra l'esempio precedente. 

La convergenza uniforme ha un'altra utile caratterizzazione. 

Proposizione 7 .1 : una successione {i n}n converge uniformemente a una funzione i 
su E se e solo se 

lim (sup li n - i 1) = O • 
n--++oo E 

(7.10) 

Infatti 

sup li n - il < E ====> 'ix E E, li n - fl < E: 
E 

e 

'ix E E, lin - il < E ====> sup li n - il :Sé . 
E 

Definizione : la norma uniforme in un insieme E di una funzione limitata i è 
la quantità 

llflle = sup lii. (7.11) 
E 

Se l'insieme E è chiaro dal contesto si scrive semplicemente 11111 . Se i non è limitata, 
cioè sup lii = +oo, scriveremo llflle = +oo. 
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Osservazione : alla luce di questa definizione e della proposizione precedente, si ha 

Jlfn-flJE ➔ O• (7.12) 

La convergenza uniforme, che è più difficile da ottenere rispetto alla convergenza 
puntuale, ha però indubbi vantaggi. 

Teorema 7.2 : se Un}n è una successione di funzioni definite su un insieme E, che 
converge uniformemente in E a una funzione f, e se le f n sono continue in un punto 
xo E E , allora anche f lo è. In particolare 

[fn E C0 (E) , fn ~ f in E] ===? f E C0 (E) . 

DIMOSTRAZIONE : fissiamo e > O ; determiniamo n come in (7.9) e consideriamo la 
funzione fn: questa è continua in x0 , quindi esiste § > O tale che per x E E 

lx - xol < 6 ===? lfn(x) - fn(xo) I <e. 

Ma usando la disuguaglianza triangolare 

lf(x) - f(xo)I ~ lf(x) - fn(x)I + lfn(x) - fn(xo)I + lfn(xo) - f(xo)I < 3c 

dato che il primo e il terzo addendo sono minori di e per (7.9) . ■ 

A questo punto è facile riconoscere che alcune delle successioni viste negli esempi 
relativi alla convergenza puntuale non potevano essere uniformemente convergenti, dato 
che si trattava di successioni di funzioni continue con limite discontinuo. È opportuno 
sottolineare che, anche se il limite puntuale è una funzione continua, questo da solo non 
basta a dire che la convergenza è uniforme: l'esempio 

/ 

pt 
fn(x) = x n -t O 

lo mostra. Tuttavia, guardando questo esempio, si nota che il grafico di f n esce sì dalla 
striscia { (x, y) : -é < y < e} , ma lo fa sempre più lontano, dato che ne esce solo per 

lxi "2 ne 

I 
__ I 1 I 

---- ------------► 

F'ig. 7.10 : la funzione x/n esce dalla striscia solo per lxi > m, 
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Se ci limitiamo a guardare cosa accade in [-M, M], abbiamo convergenza uniforme in 
quell'insieme. Dato che questo comportamento non è raro, merita una definizione. 

Definizione : una successione Un}n di funzioni definite su un insieme E converge 
uniformemente sui compatti di E a una funzione f se per ogni compatto K e E 

lim llfn - JIIK = O • 
n➔+oo 

Possiamo ora dire che x/n converge a zero uniformemente sui compatti di JR. 

Esempio : consideriamo la successione di funzioni 

n 
Sn(x) = :L>k. 

k=O 

Sappiamo calcolare esattamente il valore della somma, dato che 

{

n+l 
Sn(x) = 1 - xn+l 

1-x 

sex= 1 

altrimenti 

Fig. 7.11 : la successione sn e (più spesso) il limite 

e pertanto possiamo dire che 

Posto allora 

abbiamo visto che 

{

-+ +oo se x ~ 1 

Sn (X) -+ _l _ se - 1 < X < 1 
1-x 

non ha limite se x S -1. 

1 
s(x) = --

1-x 
per - 1 < x < 1 

pt [ Sn --+ S in ] - 1, 1 . 

(7.13) 
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Vediamo se la convergenza è uniforme: per - 1 < x < 1 

Allora 

1 1- xn+l 
s(x) - sn(x) = -

1
-_ -x - -

1
-_-x-

lxln+l 
llsn - sllJ-1,1[ = sup -- = +oo 

- l <x<l 1 - X 
(7.14) 

dato che la frazione, per ogni n fissato, tende a +oo per x -+ 1 . Osserviamo anche 
(ci servirà poi) che lxln+i /(1 - x) tende a 1/ 2 per x -+ - 1 . Dunque G> (7.12) 
non c'è convergenza uniforme su ] - 1, 1[ . Vediamo che c'è convergenza uniforme sui 
compatti di ] - 1, 1[: dato che un compatto K è chiuso, non può avere né - 1 né 1 
come punto aderente (altrimenti tali punti apparterrebbero a K a- Proposizione 1.9), 
pertanto è tutto contenuto in qualche intervallo [a, b] con - 1 < a :S b < 1 . Allargando 
eventualmente l' intervallo possiamo prendere a = - b, quindi K e [-b, b] per qualche 
b < 1. Se mostriamo che c'è convergenza uniforme sugli intervalli della forma [- b, b] 
abbiamo provato che c'è convergenza uniforme su tutti i compatti. Ma 

quindi 

dato che b < 1 . 
Per completare il quadro, mostriamo che se un insieme E non è contenuto in 

qualche intervallo [-b, b] , allora non può esserci convergenza uniforme su E : infatti tali 
insiemi hanno come punto di accumulazione o x = 1 o x = -1 o entrambi, pertanto 
per quanto visto in (7.14) 

llsn - sllE = +oo 

quindi in ogni caso llsn - sllE f+ O. 

oppure 
1 

llsn - slle = 2 , 

Osservazione: avremmo potuto dare una (utile) dimostrazione diversa che che ogni com­
patto K c] - 1, 1[ è contenuto in qualche intervallo [-b, b] con b < 1. La funzione lxi 
è continua, quindi per il Teorema di Weierstrafi 1.20 ha massimo su K . Tale massimo 
non può essere 1 perché K non contiene 1 né - 1 , quindi il massimo è un numero 
b < 1 . Ma allora lxi :S b in K , ovvero K e [- b, b] . 

Osservazione : vediamo un altro modo ancora. L' insieme C 
pertanto G' Proposizione 1.22 la funzione 

x >--+ d(x,C) 

JR\] - 1, 1[ è chiuso, 
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è continua. Tale funzione ha allora minimo sul compatto K , per il Teorema di Weier­
strai3, e il minimo non può essere zero dato che ciò significherebbe che qualche punto 
di K appartiene a C . Allora il minimo è un numero positivo J e il compatto K è 
tutto contenuto nell'insieme dei punti che distano da C almeno J, che non è altro che 
[-1 + J, 1 - J[ . Alla luce di questa osservazione, provate che ogni compatto contenuto 
nella palla aperta 

{ (X, y) : x 2 + y2 < 10} 
è in realtà contenuto in qualche palla più piccola. 

Vediamo un'altra proprietà della convergenza uniforme. 

Teorema 7.3: se 
f n ~ J in [a, b] 

e le fur1zioni f n sono continue allora 

1b fn(x) dx--+ 1b f(x) dx. 

DIMOSTRAZIONE : di nuovo, fissiamo é > O; determiniamo fi come in (7.9) e conside­
riamo la funzione f n : scambiando i ruoli di J n ed f rileggiamo (7.9) come 

Vx E [a, b], fn(x) - é < J(x) < fn(x) + e: 

e quindi 

ovvero 

(1b J n(x) dx) - é(b - a) :-:; 1b J(x) dx :-:; (1b J n(x) dx) + é(b - a) 

o anche 

I (1b fn(x) dx) - (1b J(x) dx) I < é(b - a) 

che dà la tesi. ■ 

Dunque la convergenza uniforme conserva la continuità e conserva gli integrali. In 
generale la derivabilità non viene conservata, nel senso che una successione di funzioni 
derivabili può convergere uniformemente a una non derivabile, oppure a una derivabile, 
ma la cui derivata non ha nulla a che fare con le derivate degli elementi della successione. 

Esempio: se 

f n(x) = JI + n2x2 
n 

abbiamo f n E C00 (1R) e proviamo che 

fn ~ f(x) = lxi, 
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Fig. 7.12 : la successione fn e (più spesso) il limite 

che non è derivabile. Infatti dato che si tratta di funzioni pari possiamo limitarci a 
x2'.0,e 

lfn(x) - f(x)I = ✓1 + n2x2 - x = ✓1 + n2x2 - nx 
n n 

1 < .!. 
n(✓l + n2x2 + ✓n2x2 ) - n 

pertanto Il/ n - fil :S 1/n--+ O. 

Esempio : la successione 

fn( x) = sen(nx) 
n 

n 

converge uniformemente su JR alla funzione nulla, che ha derivata nulla, ma la successione 
delle derivate 

f~(x) = cos(nx) 

non converge puntualmente su tutto JR . 

Qualcosa si può dire anche sulle derivate (in realtà, piuttosto sulle primitive). Ri­
cordiamo prima che, se pur conoscessimo la derivata di una funzione incognita f , non 
potremmo dire chi è f, dato che questa è individuata, tramite la sua derivata, solo a 
meno di costanti. Se però aggiungiamo la conoscenza del valore di f in un punto, allora 
f è completamente determinata. Trattando di primitive, il prossimo risultato ha senso 
soltanto per successioni di funzioni a valori in JR . 

Proposizione 7.4 : se xo E [a, b] e fn E C1([a, b]) è una successione a valori reali che 
verifica 

f ' unif . [ b] n ---+ g IIl a, , f n(xo) --+ a E JR , 
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allora posto per ogni x E [a, b] 

si ha 

f(x) = a+ r g(t) dt 
l xo 

fn ~f. [ b] ----. 1n a, . 

DIMOSTRAZIONE : per (1.47) abbiamo 

per cui 

fn(x) = fn(xo) + t f~(t) dt, 
l xo 

fn(x) - J(x) = (fn(xo) - a)+ r (f~(t) - g(t)) dt 
l xo 

e usando la disuguaglianza triangolare, (1.46) e (7.11), se x 2'. x0 

lfn(x) - f(x)I :S lfn(xo) - al+ 1:IJ~(t) - g(t)I dt 

:S lfn(xo) - al+ (x - Xo)llf~ - gli 
:S lfn(xo) - al+ (b - a)IIJ~ - gli. 

Se x < xo bisogna cambiare un paio di segni ma la disuguaglianza 

lfn(x) - f(x)I :S lfn(xo) - al+ (b - a)llf~ - 911 

rimane vera. Allora 

llfn(x) - f(x)II :S lfn(xo) - al+ (b - a)llf~ - 911 

pertanto a- (7.12) 

lim llfn(x) - J(x)II = O 
n➔+oo 

e quindi f n converge ad f uniformemente. ■ 

Osservazione: se l'intervallo non è chiuso e limitato non possiamo pretendere la conver­
genza uniforme (ad esempio fn = x/n ha derivata f~ = 1/n che tende uniformemente a 
zero su JR, ma sappiamo che fn non converge uniformemente), ma si ha la convergenza 
uniforme sui compatti ( e come ipotesi basta che le derivate convergano uniformemente 
sui compatti). 
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Esempio : consideriamo la funzione - log(l - x) ; la sua derivata è la funzione 

1 
g(x) = -1-, 

-x 

in cui ci siamo imbattuti nell'esempio (7.13). Consideriamo allora una primitiva di Sn 

definendo 
n k+l 

fn(x ) = L :+ 1 
k=O 

e osserviamo che 

fn(O) = O, f ' unif . [ b b] Vb < 1 . n = Sn -t g ln - , 

Dato che f (O) = O , per la Proposizione 7.4 abbiamo 

xk+ I 
J(x) = lim J n(x) = L -k -

n-++oo + 1 
k=O 

Fig. 7.13 : la successione fn e (più spesso) il limite; la convergenza è piuttosto lenta 

(che la serie converge per ogni x E] - 1, 1[ si vede applicando il criterio di convergenza 
assoluta e quello della radice) , con convergenza uniforme sui compatti. Abbiamo quindi 
provato che 

x2 x3 oo xk 
log(l - x) = - x - 2 - 3 - • • • = - L k 

k=l 

Vx E] - 1, 1[. 

Vale la pena di dare l'enunciato di due conseguenze del Teorema 7.3 e della Propo­
sizione 7.4, che incontreremo anche nelle Sezioni 7.2 e 7.3. 
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Coro llario 7 .5 : se Un}n è una successione di funzioni reali su un intervallo [a, b] e 

xo E [a, b] allora 

) f Cl f pt I unif [ ] , 1 se n E , n --=----+ f e f n -----+ g su a, b allora g = f e la convergenza f n ---+ f 
è uniforme; 

2) se fn E C0 , f n ~ f e Fn(x) = J:
0 

fn(t) dt allora Fn converge uniformemente 
alla primitiva di f che si annulla in xo . 

I risultati valgono su un intervallo qualsiasi I, sostituendo ovunque la convergenza 
uniforme con quella uniforme sui compatti. 

Il prossimo risultato, che generalizza il Teorema 7.2, si usa principalmente per de­
terminare se vi può o meno essere convergenza uniforme su certi insiemi. 

Teorema 7.6 : se {f n}n è una successione di funzioni definite su un insieme E, che 
converge uniformemente in E a una funzione f , e se xo è un punto di accumulazione 
di E per il quale esistono tutti i limiti 

fn = lim f n(x) 
x-txo 

allora la successione { fn}n ha limite per n---+ oo , la funzione f ha limite per x ---+ xo e 

lim f(x) = lim fn . 
x -+xo n-t+oo 

La dimostrazione ricalca quella del Teorema 7.2, con alcune complicazioni tecniche 
( x 0 ed fn possono essere infiniti, inoltre occorre usare più o meno esplicitamente la 
nozione di successione di Cauchy) . 

Esempio: la successione f n(x) = x/n tende puntualmente alla funzione f(x) = O su JR, 
ma non può convergere uniformemente su JR ; infatti +oo è un punto di accumulazione 

di JR, e 

lim fn(x) = +oo ---+ +oo #O= lim J(x). 
x -t+oo x-t+oo 

Corollario 7. 7 : se Un}n è una successione di funzioni definite su un insieme E, che 
converge puntualmente in E a una funzione f , e se xo è un punto di accumulazione 
di E in cui sia le f n che f sono continue, ma f n(xo) f+ f (xo) , la convergenza non 

poteva essere uniforme su E . 

Esempio : riprendiamo l'esempio (7.13); dato che le funzioni Sn sono continue sia in 
-1 che in 1, ma non c'è convergenza puntuale né in 1 né in - 1, la convergenza non 
poteva essere uniforme in alcun sottoinsieme di ] - 1, 1[ che avesse - 1 o 1 come punti 
di accumulazione. Questo lascia, come possibili insiemi di convergenza uniforme, solo gli 
insiemi che sono contenuti in qualche intervallo [-b, b] con b < 1 (~ es. 7.1). 

/I 
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Concludiamo la sezione citando un risultato importante ma dalla dimostrazione un 
po' elaborata, per certi versi analogo al Teorema di Bolzano-WeierstraB 1.13. Premet­
tiamo alcune definizioni, ricordando che una funzione f è continua in un punto xo 
se 

Vé > O, :36 = 6(!, xo, é) > O: Vx, (lx - xoJ < 6 => IJ(x) - J(xo)I < é] . 

Definizione : una successione Un}n di funzioni definite su un insieme E si dice 
equilimitata su E se le funzioni fn sono limitate dalla stessa costante, cioè 

:lM : Vn, Vx E E Jfn(x)J :S M -

Una successione Un}n di funzioni definite su un insieme E si dice puntualmente 
equicontinua in E se le funzioni f n sono continue in E e la scelta di 6 può essere 
fatta indipendentemente da n , ovvero 

VxoE E , Vé>O, :36 = 6(xo,é)>O:VxEE, Vn [Jx-xol<6=> Jfn(x)-fn(xo)J<é]. 

Una successione U n}n di funzioni definite su un insieme E si dice equicontinua in 
E se le funzioni fn sono uniformem ente continue in E e la scelta di 6 può essere fatta 
indipendentemente da n e da x 0 , ovvero 

Vé > O, :36 = 6(é) > O: Vx, y E E , Vn E N (Jx - yJ < 6 => lfn(x) - fn(Y)I < é] • 

Teorema di Ascoli-Arzelà 7.8 : da ogni successione di funzioni equilimitate ed 
equicontinue su un compatto K e !Rn si può estarrre una sottosuccessione che converge 
uniformemente in K a una funzione continua. 

7.2 - Serie di funzioni 

Ad ogni successione numerica { an}n possiamo associare una serie numerica definendo 
la successione delle somme parziali 

n 

e studiando il limite di Sn : se esso esiste finito, diciamo uguale a f. , ossia se 
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diciamo che la serie di termine generale an converge a e , o anche ha somma e . 
Lo stesso possiamo fare con le successioni di funzioni, ottenendo delle serie di fun­

zioni. Ne abbiamo già incontrata una: la successione {sn}n di (7.13) è la successione 
delle somme parziali associata alla successione di funzioni f n ( x) = xn : 

n n 

fn(x) = xn => Sn(x) = Lfk(x) = L Xk. 
k=O k=O 

Per quanto riguarda la convergenza puntuale di una serie di funzioni non c'è molto da 
aggiungere: punto per punto, una serie di funzioni è una serie numerica, e si possono 
applicare tutti i criteri già incontrati nel corso di Analisi Matematica 1. Dobbiamo 
notare, però, che sono molto poche le serie di numeri reali delle quali sappiamo calcolare 
esattamente la somma: ciò significa che ci dobbiamo aspettare di poter dire magari che 
una serie di funzioni converge puntualmente a qualche funzione f , ma senza saper dire 
di che funzione si tratti. 

Esempio: se 

f ( ) 
= sen2(xn -x) 

n X 4 , n 

per ogni punto x la serie numerica 

(7.15) 

è a termini non negativi, maggiorata da Ln(l/n4 ) e pertanto converge; dunque detta 
s(x) la somma della serie (7.15), che abbiamo appena dimostrato esistere, abbiamo 

Sn(x) = t fk(x) = t sen2(:: - x) 
k=l k=l 

anche se non sappiamo (molto) altro sulla funzione s. 

pt 
---=-------t s(x) 

Questo pone un problema sulla convergenza uniforme: come facciamo a valutare 
sup lsn - si non conoscendo s? Intanto diamo le definizioni precise. 

Definizione : sia Un}n una, successione di funzioni definite su un insieme E; diciamo 
che la serie Ln fn converge puntualmente alla funzione s su E se s è una 
funzione definita. su E e la successione delle somme parziali 

n 

Sn(x) = L fk(x) 
k=O 

converge puntualmente a, s in E . Diciamo che la serie converge uniformemente se 
la convergenza. di Sn a, s è uniforme. 
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Osservazione: se {sn}n converge puntualmente a s possiamo scrivere 

oo n oo 

s(x) - sn(x) = (L fk(x)) - (Lfk(x)) = L fk(x), 
k=O k=O k=n+ 1 

quindi 

lls - 8nll = Il f h(x)II · 
k=n+l 

In particolare a- (7.12) 

unif 
1
.n E Sn --t S n~~JI f h(x)lle = O· 

k=n+l 

(7.16) 

Questa osservazione ci offre una scappatoia: definiamo una nuova nozione di con­

vergenza. 

Definizione: sia Un}n una successione di funzioni definite su un insieme E e limitate; 
diciamo che la serie 'En f n converge totalmente in E se la serie numerica 

00 

è convergente. 

Ricordiamo che una serie di numeri reali converge se e solo se il resto tende a zero, 

/, 

ossia 00 

O= lim (s - sn) = lim L ak 
n-++oo n-++oo 

k=n+l 

allora in particolare 

L llfnlle < +oo => 
n 

00 

lim ( "°"' llhlle) =o. 
n-++oo ~ 

k=n+l 

(7.17) 

Proposizione 7. 9 : se una serie di funzioni converge totalmente in E allora esiste una 
funzione f , definita su E e limitata, alla quale la serie converge uniformemente. 

DIMOSTRAZIONE : consideriamo un punto x E E ; abbiamo 

quindi per il Criterio del confronto 1.52 la serie °E,. fn(x ) converge assolutamente, 
dunque converge. Allora si ha convergenza puntuale in E, e posto per ogni x E E 

n 00 

Sn(x) = L fk(x), s(x) = Lfk(x) 
k=O k=O 
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possiamo scrivere 
pt 

Sn --=----t S in E. 

Ora per ogni x E E abbiamo per ogni n , m con m > n 

CX) m 

s(x) - sn(x) = L fk(x) = lim '°' fk(x) m➔oo ~ 
k=n+l k=n+l 

e quindi 

m m m 

1s(x) - sn(x)I = I lim 
m➔cx, 

k=n+I 
L /k(x)I = lim I L /k(x)I :S lim '°' 1/k(x)I m➔oo m➔oo ~ 

k=n+l k=n+l 

per la disuguaglianza triangolare, ma 

m cx, 

1/k(x)I :S ll!klle => ls(x) - sn(x)I :S J~= L ll fkll = L 11h11 · 
k=n+ l k=n+l 

Dato che questo vale per ogni x E E 

00 

11s - snlle :S L ll fk ll 
k=n+l 

e allora ir.- (7.17) 

lim 11 s - snlle = O , 
n➔+oo 

ossia la convergenza è uniforme. ■ 

Osservazione : una serie di funzioni può convergere uniformemente anche se non con­
verge totalmente; ad esempio se fn(x) = (- l t/n la serie associata (che è una serie 
di funzioni costanti) converge puntualmente per il Criterio di Leibniz 1.53, quindi anche 
uniformemente (sono costanti, perciò nulla dipende da x ), ma non totalmente dato che 
llfnll = 1/n e ~n(l/n) = +oo (~ es. 7.2) . 

Esempio : tornando alla serie (7.15) abbiamo 

e quindi la convergenza di Sn alla (sconosciuta) funzione s è uniforme. 
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Esempio : sappiamo dal corso di Analisi Matematica 1 che per ogni x E JR · 

~ Xn X 

L., 1 =e . 
n=O n. 

Ora possiamo dire che si tratta di una serie di funzioni che converge puntualmente su 
JR alla funzione ex . Dato che non sono funzioni limitate, non possiamo parlare di 
convergenza totale su JR , ma per ogni M > O 

I 
xn I Mn sup - =-

[-M,M ] n! n! , 

Mn 
~ - - converge 
L., n! 

n 

e quindi c'è convergenza totale su [- M , M] e in particolare c'è convergenza uniforme 
sui compatti di JR . Non ci può essere convergenza uniforme su insiemi non limitati 
superiormente o non limitati inferiormente, perché in ambedue i casi la differenza 

è la differenza fra un esponenziale e un polinomio di grado n, quindi va all'infinito per 
x--+ ±oo (per motivi diversi nei due casi). 

Esempio : il discorso appena fatto permette di costruire l'esponenziale complesso ez ; la 
serie di numeri complessi 

oo n I::, 
n=O 

converge totalmente nelle palle { z E C : lzl '.S M} , quindi possiamo chiamare e la sua 
somma. Con un po' di lavoro (che fra l'altro richiede strumenti non introdotti in questo 
corso) è possibile provare che questa funzione (definita come somma di una serie) verifica 
la proprietà fondamentale 

Il Corollario 7.5 ha come interessante conseguenza la possibilità di legare una serie 
e la serie delle derivate. 

Teorema di derivazione per serie 7.10 : sia Un}n una successione di funzioni 
reali di classe C1 su un intervallo [a, b] , tale che 
1) la serie Ln f n converge puntualmente a, una, funzione s; 
2) la serie Ln f~ converge uniformemente a una funzione a. 

Allora si ha a = s' . Il risultato vale su un intervallo generico, sostituendo la convergenza 
uniforme con quella uniforme sui compatti. 
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Teorema di integrazione per serie 7.11 : 
reali di classe c0 su un intervallo [a, b] , e sia 
uniformemente a una funzione s , allora posto 

sia Un}n una successione di funzioni 
xo E [a, b]. Se la serie ~n fn converge 

Fn(X) = lx f n(t) dt , 
Xo 

S(x) = lx s(t) dt, 
XQ 

la serie ~n Fn converge uniformemente a S . Il risultato vale su un intervallo generico, 
sostituendo la convergenza uniforme con quella uniforme sui compatti. 

Esempio : sappiamo che 

ma almeno per !xl < 1 

1 
D arctan x = ---

2 
, 

l +x 

__ 1_ = 1 - x2 + x4 - x6 + ... = ~(-l)nx2n 
l+x2 ~ ' 

n=O 

e la serie converge uniformemente sui compatti di ] - 1, 1[ dato che per O < M < 1 

e la serie ~n(M2)n converge, quindi la serie ~n(- l)nx2n converge totalmente in 
[-M , M]. Allora posto per - 1 < x < 1 

per il Teorema di integrazione per serie 7.11 abbiamo 

arctan x = -- dt = ~ ( - 1 t-- = x - - + - - - + · · · 1
x 1 

00 x2n+1 x3 x5 x7 

0 1 + t2 f='o 2n + 1 3 5 7 
(7.18) 

Osserviamo che quest'ultima serie non può convergere per !xl > 1 , dato che il termine 
generale (-l)nx2n+1 /(2n + 1) non è infinitesimo. Strano, eppure sia l 'arcotangente che 
la sua derivata 1/(1 + x2) sono definite su tutto JR, che ci sarebbe di male se le serie 
convergessero su tutto JR? Ne riparleremo fra poco-.., (7.21). 
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7.3 - Serie di potenze 

Dedichiamo questa sezione a un caso, già protagonista di alcuni esempi, che è sia partico­
larmente importante, sia suscettibile di precisazioni rispetto al caso generale. Conviene 
mettersi direttamente nel caso complesso. 

Definizione : una serie di potenze è una serie di funzioni i cui termini sono potenze 
(intere non negative) di z moltiplicate ciascuna per un coefficiente complesso, 

00 

I:anZn' 
n =O 

La particolarità delle serie di potenze sta nel tipo di insiemi in cui esse conver­
gono. Anche se la definizione precisa che diamo richiede il concetto di massimo limite, 
in molti casi non è necessario farvi ricorso, come spieghiamo nell'osservazione che segue 
la definizione. Ricordiamo che per una successione di numeri reali Cn 

max lim e,,= e E [-oo, +oo] 
n--++oo { 

V>. > e' definitivamente Cn < À 

Vµ < e , frequentemente e,, > µ . 

In altri termini, il massimo limite è il più grande dei punti limite della successione. 

Definizione : il raggio di convergenza di una serie di potenze Ln anzn è 

1 
(! = --- -~= 

maxlim ;jiaJ 
n-++oo 

dove il valore della frazione è da intendersi zero se il denominatore è +oo e +oo se il 
denominatore è zero. Se O < {! < +oo, la palla centrata nell 'origine e di raggio {! si 
chiama cerchio di convergenza della serie. 

Osservazione : se esiste il limite 
lim ;jiaJ 

n--++oo 

il raggio di convergenza è semplicemente 

1 e----~= - lim ;jiaJ . 
n.-++oo 

Teorema di Cauchy-Hadamard 7.12 : sia Ln anzn una serie di potenze e sia {2 

il suo raggio di convergenza. Allora 
1) la serie converge puntualmente nei punti dell'interno del cerchio di convergenza, cioè 

nella palla aperta centrata nell'origine e di raggio {!; 

2) la serie non converge nei punti dell'esterno del cerchio di convergenza, cioè nei punti 
esterni alla palla chiusa di raggio {2; 

3) per ogni O < r < {! la serie converge totalmente nella palla chiusa di raggio r . 
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DIMOSTRAZIONE : per non complicare la dimostrazione, la facciamo solo nel caso in cui 
il massimo limite è un limite, e solo se è reale e diverso da zero, ovvero supponiamo 

vTa°J ➔ C E]O,+oo[, (l= 1/C. 

Dimostriamo 3), che chiaramente implica 1): preso r < Il , scegliamo un punto intermedio 
r < q < {l . Per definizione di limite 

1 
lan I < qn definitivamente, 

ma preso un punto z della palla chiusa Cr di raggio r abbiamo lzl :::'.: r, quindi 

e la serie "Ln(r/ q)n converge perché è una serie geometrica di ragione minore di 1. 
Allora la serie super lanznl converge. 

Resta da provare 2), ma se jzj = r > {l abbiamo definitivamente 

1 vTaJ > - =} 
r 

e la serie L-n anzn non può convergere perché ha il termine generale che non è infinite­
simo. ■ 

Osserviamo che il teorema non dice nulla riguardo ai punti del bordo della palla di 
raggio {l : in questi punti può esserci convergenza puntuale o no, o può esserci conver­
genza solo in alcuni. In ogni caso l' insieme di convergenza di una serie di potenze è una 
palla aperta (centrata nell'origine) più eventualmente tutto o parte del suo bordo (per 
fare i pignoli, il caso Il = O è a parte). 

Esempio : le tre serie 

n 

'°" 1 n 
L..- n+lz ' 

n 

" 1 n 
L..- (n + l)(n + 2) z 

n 

(7.19) 

hanno raggio di convergenza 1 , perciò convergono sicuramente all' interno della palla 
unitaria, e non convergono se lzl > 1 . Sul bordo, cioè sulla circonferenza unitaria, la 
prima non converge in alcun punto (il termine generale non è mai infinitesimo), l'ultima 
converge in tutti i punti (anzi converge totalmente nella palla unitaria chiusa, visto che 

--"-llz_n..c....11 _ < 2_ 
(n + l)(n + 2) - n2 

e L-n 1/n2 converge), quella di mezzo converge certamente per z = -1 (per il Criterio 
di Leibniz 1.53) e non converge sicuramente per z = 1 (è una serie armonica). Dunque 
in generale il criterio di Cauchy-Hadamard non può dire nulla riguardo alla convergenza 
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sul bordo del cerchio di convergenza. Per la seconda serie in (7.19) resta da studiare la 
convergenza nei punti del bordo del cerchio unitario, cioè per tutti i numeri complessi z 
della forma cos 0 + i sen 0 . Per tali punti la serie diventa 

~ ( cos( n0) + i sen( n0) ) 
L.., n+l n+ l 

n 
(7.20) 

e vedremo nella Sezione 7.4 che queste sono delle serie di Fourier; in particolare, si ha 
convergenza per ogni 0 =/e O . Quindi, sul bordo { I z I = 1} del cerchio di convergenza si 
ha convergenza puntuale per ogni z =/e 1 . 

Osservazione: non bisogna pensare che la tesi 3) dica che una serie di potenze converge 
uniformemente nell' interno del cerchio di convergenza; quello che dice è che sicuramente 
c'è convergenza uniforme sui compatti che stanno ali' interno del cerchio di convergenza. 
Se ci fosse convergenza uniforme in tutta la palla aperta di raggio (! , dato che le somme 
parziali della serie sono funzioni continue definite su tutto C (sono polinomi) per il 
Teorema 7.6 ci dovrebbe essere convergenza anche sul bordo della palla, e come abbiamo 
appena verificato questo non sempre accade. 

Esempio : dato che 

lim rnf = + oo 
n ---++oo 

1. ~· 1 o Im - = 
n ---++oo n! 

il raggio di convergenza della serie esponenziale Ln zn /n! è +oo, il che significa che 
( come abbiamo visto) la serie converge puntualmente su tutto C , e uniformemente su 
ogni palla. Invece il raggio di convergenza della serie L n n!zn è zero, quindi questa 
converge solo per z = O . 

Esempio : dato che in campo complesso la funzione 

1 

1 + z2 (7.21) 

è definita dove il denominatore è diverso da zero, cioè per z =/e ± i , la serie 

00 

1 - z2 + z4 - z6 + ... = L (-l)nz2n' 
n=O 

che è una serie di potenze che per lzl < 1 ha somma 1/(1 + z2 ) , non può conver­
gere in alcun punto al di fuori della palla unitaria, altrimenti ± i dovrebbero far parte 
dell'insieme di convergenza, il che è chiaramente impossibile~ (7.18). 
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2 
Esempio : sappiamo che la funzione e-x non ha primitive che possano essere espresse 
in termini di funzioni elementari. Però 

- z2 - ~ (-z2)n - ~ (- l)n 2n 
e -L.., I - L.., I Z • 

n=O n. n=O n. 

Per scriverla come una serie di potenze poniamo 

così che 
00 

se k è dispari 

se k = 2n 

e _z2 = L anZn . 
n=O 

La successione v1aJ ha limite zero (i pari e i dispari vanno trattati separatamente o 
con maggiorazioni per unificarli), quindi il raggio di convergenza è {! = +oo. Allora 
posto per ogni x E IR 

Fk(x) = r aktk dt = kak xk+l , 
lo + 1 

di modo che Fk = O per k dispari, mentre se k = 2n 

( ) p. ( ) ( - 1) n 2n+ 1 
9n x = 2n x = (2n + l )n!x , 

abbiamo per il Teorema di integrazione per serie 7 .11 

1
x oo oo ( l)n 

e-t2 dt = L 9n(x) = L - x2n+l 
o n=O n=O (2n + l )n! 

questa formula ( che contiene una serie, ossia un limite, e quindi non è scritta solo in 
termini di funzioni elementari) permette di calcolare con approssimazione arbitraria il 

valore delle primitive di e- x
2 

in qualunque punto. 

La prossima definizione è motivata dall'osservazione che per n ::::: 1 

D(anxn) = (nan)Xn- l 

ovvero per n ::::: O 

Definizione : a ogni serie di potenze Ln anzn associamo la serie derivata 

00 

L(n + l)an+1Zn . 
n=O 

Osservazione : le tre serie dell'esempio (7.19) sono una la serie derivata dell'altra. Che 
abbiano lo stesso cerchio di convergenza non è un caso. 

Proposizione 7.13 : i raggi di convergenza di una serie e della sua serie derivata sono 
uguali. 



434 Sezione 7.3 : Serie di potenze 

DIMOSTRAZIONE : basta ricordare che y'n -+ 1 e osservare che se v'ia:J-+ f allora 

visto che f 1 non è affatto una forma indeterminata. ■ 

La proposizione precedente ha una conseguenza inaspettata. 

Proposizione 7.14 : se una serie di potenze ha raggio di convergenza, f2 > O, per 
lxi < f2 la funzione somma della serie è derivabile, e ha come derivata la somma della 
serie derivata. In particolare è derivabile infinite volte. 

DIMOSTRAZIONE : se 

n 00 

sn(z) = L>kzk, s(z) = 2:>kZk 
k=O k=O 

restringendole all'asse reale otteniamo le funzioni (che possono avere valori complessi per 
via dei coefficienti ak , ma dipendono da una variabile reale) 

n 00 

fn(x) = L akxk , f(x) = L akxk . 
k=O k=O 

Scegliamo xo E] -r2, r2[ e proviamo che f è derivabile in xo . Fissato r con lxi < r < f2 , 

sappiamo che la successione { sn}n converge uniformemente in { z : lzl :S r} , dato che 
la serie converge totalmente, perciò fn converge uniformemente a f in [-r, r]. D'altra 
parte se poniamo 

e 

n 

an(z) = L kakzk- l , 
k=l 

n 

gn(x) = L kakxk- l , 
k=l 

00 

a(z) = L kakzk-l 
k=l 

00 

g(x) = L kakxk- l 
k=l 

il raggio di convergenza di {an}n è sempre f2, quindi abbiamo 

unif • [ ] fn ---t f m - r,r , uni f • [ ] gn ---t g m -r, r 

ma gn = f~ , quindi per il Corollario 7.5 la funzione f è derivabile in [-r, r ] ( e quindi 
in particolare in xo ) con derivata g . Ma anche g = f' è la somma di una serie di 
potenze con lo stesso raggio f2 , quindi possiamo riapplicare quanto appena mostrato 
per ottenere che anche f' è a sua volta derivabile, e così via (naturalmente ci vorrebbe 
l' induzione) fino a ottenere che f è di classe C00(] - f2, f2[) . ■ 
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Abbiamo dovuto fare un po' di lavoro per passare da funzioni definite su <C a funzioni 
definite su JR , per le quali sappiamo cosa sia la derivata. In realtà avremmo potuto 
introdurre la derivata in senso complesso e dire semplicemente che s(z) è derivabile in 
senso complesso all'interno del cerchio di convergenza, con derivata la somma o-( z) della 
serie derivata. Però la derivata in senso complesso, che apparentemente è definita come 
quella reale, 

f'(zo) = lim f(z) - f(zo) 
z➔zo Z - Zo 

se questo limite esiste, ha proprietà assai diverse da quella abituale (tanto per dirne 
una, se una funzione è derivabile una volta in senso complesso allora è derivabile infinite 
volte ... ) e questo st udio uscirebbe largamente dagli scopi di questo volume. 

Vediamo un'altra conseguenza della Proposizione 7.14. 

Proposizione 7.15 : se 
(X) 

(7.22) 

e la serie ~n anzn ha raggio di convergenza positivo, i coeffìcienti an sono quelli dello 
sviluppo di Taylor di f cen trato in xo = O , ossia 

j(n) (O) 
an=--,-. 

n. 

DIMOSTRAZIONE: sappiamo che f è di classe C00 
, e da (7.22) segue f (O) = ao . D'altra 

parte per la Proposizione 7.14 abbiamo 

00 

f'(x) = L nanxn- I 
n = l 

00 

J"(x) = L n(n - l )anxn-2 

n =2 

=} f' (O) = 1 · a1 

f" (O) = 2 · 1 · a2 

e così via (al solito, dovremmo usare il principio di induzione). ■ 

Definizione : se f è derivabile infinite volte per x = O , posto per ogni n E N 

j(n) (O) 
an=--,- , 

n. 

se la serie ~n anzn ha raggio di convergenza positivo la serie 

00 

Lanxn 
n =O 

si chiama serie di Taylor di f centrata in x = O . 
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Osservazione : non sempre la serie di Taylor di J coincide con f ; ad esempio, la funzione 

f(x) = { ~- 1/lxl 
sex= O 

sex I O 

è derivabile infinite volte ed ha tutte le derivate nulle in x = O , quindi la sua serie di 
Taylor è la serie nulla, che ha per somma la funzione zero (evidentemente diversa da f ). 

Definizione : una funzione si dice analitica in un intorno di x = O se è di classe 
C00 e, in un intorno di zero, coincide con la somma della sua serie di Taylor. 

Per le funzioni analitiche, la serie di Taylor è un modo per approssimare la funzione 
con polinomi, ottenendo un'approssimazione via via migliore man mano che il grado 
aumenta. Vedremo nella prossima sezione un altro modo per approssimare le funzioni 
periodiche. 

Chiudiamo la sezione con un risultato dalla dimostrazione un po' delicata, che omet­
tiamo (~ es. 7.3). 

Criterio di Abel 7.16 : se una serie di potenze ha raggio di convergenze g E]O, +oo[ e 
converge in un punto zo E <C con lzol = {}, allora converge uniformemente sul segmento 
che congiunge l'origine a zo . 

7 .4 - Serie di Fourier 

Lo sviluppo in serie di Taylor non è l' unico modo di approssimare una data funzione 
f(x) mediante funzioni più semplici; inoltre, le serie di Taylor forniscono ottime ap­
prossimazioni nelle vicinanze del centro xo dello sviluppo, ma tali approssimazioni si 
deteriorano all'aumentare della distanza di x da x0 . 

Vedremo ora che un altro modo di approssimare una data funzione f (x) consiste 
nello scegliere come funzioni approssimanti delle somme trigonometriche del tipo 

n 

fn(x) = L [ak cos(kx) + bk sen(kx)] 
k=O 

n 
(7.23) 

= ao + L [ak cos(kx) + bk sen(kx)] 
k= l 

Siccome le funzioni approssimanti fn(x) sono tutte periodiche di periodo 21r , suppor­
remo che anche la funzione iniziale J(x) sia periodica di periodo 21r , o equivalentemente 
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supporremo che la funzione f(x) sia definita solo sull' intervallo [- 1r, 1r], con in più la 
condizione 

f(-1r) = f(1r). (7.24) 

Infatti, se abbiamo una funzione f : [-1r, 1r] -+ JR verificante la condizione (7.24), pos­
siamo costruire una funzione j : JR -+ JR periodica di periodo 21r definita da 

f(x) = f(x - 2h) sex E [(2k - l)1r, (2k + l)1r] con k E Z. 

Chiameremo J la funzione ottenuta da f mediante estensione per periodicità.. 

7r -7!" 7r 

Fig. 7.14 : una funzione verificante (7.24) Fig. 7.15 : la sua estensione periodica 

Osservazione : in questa sezione, per comodità, prenderemo in considerazione sempre 
l ' intervallo [-1r, 1r] ; se si vuole usare un intervallo [a, b] diverso è sufficiente applicare 
a tutte le funzioni in gioco il cambiamento di variabile~ (2.4) 

1 (b - a ) y = 2 -7r-x + a + b , 
7r 

x= --(2y - a-b). 
b - a 

Ad esempio, per funzioni f definite sull' intervallo [O, l] le somme trigonometriche f,, 
in (7.23) diventano 

n 

f n(x) = L [ak cos (h(2x - 1)) + bk sen (h(2x - 1))] 
k=O 

Se ci aspettiamo che le funzioni fn in (7.23) approssimino la funzione f in maniera 
ragionevole (vedremo tra breve cosa si intende con questo), possiamo subito ricavare i 
coefficienti ak e bk in maniera esplicita. Se k = O , integrando entrambi i membri di 
(7.23) su [-1r, 1r] , otteniamo 

(7.25) 
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Se invece k >O, moltiplicando entrambi i membri di (7.23) per cos(kx) ed integrando 
su [-7r, 7r], otteniamo 

1.,,. n 1.,,. 
_.,,. fn(x)cos(kx)dx = ~ _.,,. [ajcos(jx)cos(kx) + bjsen(jx)cos(kx)] dx. 

Con facili calcoli ( svolgeteli in dettaglio per esercizio) si ha 

1: cos(jx) cos(kx) dx = 1: sen(jx) sen(kx) dx = { ~ :: ~ ~ :, 

mentre 1: sen (jx) cos(kx) dx = O 

In definitiva, da (7.26) si ottiene, per k > O 

1.,,. f n(x) cos(kx) dx = { O 
_.,,. 'll"ak 

\/j, k. 

se j -=f. k 

sej=k. 

(7.26) 

Se ci aspettiamo che per n -+ +oo gli integrali relativi ad f n(x) convergano a quelli 
relativi ad f ( x) otteniamo per i coefficienti ak le espressioni 

1 1 71" ao = - f (x)dx, 
271" - 71" 

1171" ak = :;;: _.,,. J(x) cos(kx) dx per k > O. (7.27) 

In maniera del tutto analoga, moltiplicando questa volta per sen(kx) in (7.23) e poi 
integrando su [-7r, 7r] , si ottengono le espressioni dei coefficienti bk 

1171" bk = :;;: _.,,. f(x) sen(kx) dx per k > O. (7.28) 

Lo spazio naturale in cui ambientare la t eoria delle serie di Fourier è quello delle fun­
zioni periodiche su [-7r, 7r], integrabili in senso improprio, e tali che J2 risult i anch'essa 
integrabile (in senso improprio). 

Definizione : indicheremo con L2 [- 7r,7r] la classe delle funzioni f : [-7r,7r] -+ R 
verificanti la condizione di periodicità (7 .24) , integrabili in senso improprio su [-7r, 7r] e 
tali che 

l .,,..,,. (f(x)) 2 
dx< +oo . 

La quantità 

1
71" 2 ) 1/2 

II/IIL2 = ( _.,,. (f(x)) dx (7.29) 

verrà detta norma L 2 della funzione f . 
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Osservazione : è facile verificare (fatelo per esercizio) che lo spazio L2[-1r, 1r] definito 
sopra è uno spazio vettoriale; cioè che se f, g E L2 [-1r, 1r] e t E IR allora si ha 

A stretto rigore però la quantità Il f Il L2 non è proprio una norma, in quanto può essere 
nulla anche se f non è la funzione nulla; ad esempio, se 

{
1 sex=0 

f ( x) = O altrimenti (7.30) 

si ha IIJIIL2 = O. Senza entrare troppo nei dettagli, che ci porterebbero lontano dagli 
scopi di questo corso, diciamo che si potrebbe superare questo ostacolo considerando 
equivalenti due funzioni f, g che hanno Il f-gll L2 = O ; quindi, ad esempio, la funzione f 
in (7.30) risulterebbe equivalente alla funzione identicamente nulla. Questa precisazione 
risulta inutile nel caso di funzioni continue; infatti non è difficile verificare (fatelo per 
esercizio) che f, g sono due funzioni continue, allora 

lii - 9IIL2 = O ==;, f(x) = g(x) \-/x E [-1r, 1r] . 

Nel seguito non sempre le funzioni considerate saranno continue, quindi verrà sottintesa 
l'equivalenza di cui sopra. 

Definizione: siano f,g E L2[-1r,1r] due funzioni assegnate. Diremo chef e g sono 

tra loro ortogonali se 

1-: f(x)g(x) dx = O. 

Osservazione : la condizione f, g E L 2[- 1r, 1r] assicura che l'integrale J:..,J(x)g(x) dx 
sia convergente in senso improprio; infatti in tal caso la funzione f g risulta assolutamente 
integrabile, in quanto 

lf(x)g(x)I ~ (f(x))
2

; (g(x))
2 

• 

Inoltre il termine "ortogonale" non è usato a sproposito, infatti si verifica subito che nello 
spazio L2 [- 1r, 1r] l'applicazione 

f · g = 1-"" f(x)g(x) dx 

è un prodotto scalare, ~ Proposizione 1.2. 

Utilizzando la terminologia della definizione precedente possiamo dire che le funzioni 

sen(ix) , sen(hx) , cos(jx) , cos(kx) (7.31) 

sono tutte tra loro ortogonali, se i, j, h, k sono numeri interi, con i -/- h e j -/- k . 
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Definizione : data una funzione f E L2 [-1r, 1r] verifìcante la condizione di periodicità 
(7.24), i coefficienti ak, bk dati dalle formule (7.27),(7.28) si dicono coefficienti di 
Fourier della fimzione f e la somma parziale in (7.23) si dice somma di Fourier della 
funzione f. Infìne la serie di funzioni 

+oc 
L [an cos(nx) + bn sen(nx)] 
n =O 

si dice serie di Fourier della funzione f . 

Resta da analizzare la maniera in cui le funzioni fn in (7.23) tendono alla funzione 
f . Riassumiamo qui di seguito le varie convergenze che si possono ottenere sulle serie 
di Fourier; lo studente che vuole approfondire le questioni più fini sulle serie di Fourier 
e le relative convergenze potrà consultare uno dei tanti testi disponibili in letteratura 
sull'argomento. 

Definizione : se Un }n è una successione in L 2 [-1r, 1r] ed f E L 2 [-1r, 1r] diremo che 
{fn}n converge ad f in norma L2 se 

ll f n - f llL2 ➔ O , 

Osservazione : di nuovo, a stretto rigore, la convergenza in norma L2[-1r, 1r] definita 
sopra non è una convergenza vera e propria, in quanto il limite di una successione è 
identificato soltanto a meno di funzioni equivalenti. Nel resto del capitolo non solleveremo 
più la questione dell'equivalenza L2 tra funzioni. 

Un primo risultato di convergenza riguarda la convergenza in norma L2 . 

Teorema 7.17 : sia f E L2 [-1r, 1r] una funzione assegnata. Allora la serie di Fourier 
di f converge ad f in noma L2 , cioè 

llfn - !IIL2 ➔ o , 

dove f n sono le somme di Fourier defìnite in (7.23). 

Osservazione : dalle formule (7.27) e (7.28) che definiscono i coefficienti di Fourier rica­
viamo subito che se f è una funzione dispari, cioè 

f (x) = - f( - x) Vx E] -1r,1r[, 

allora lo sviluppo di Fourier contiene solo i termini che sono funzioni dispari, che equivale 
a dire che si ha ak = O per ogni k ?:: O . Analogamente, se la funzione f è pari, cioè 

f(x) = f(-x) Vx E] - 1r,1r[, 

allora lo sviluppo di Fourier contiene solo i termini che sono funzioni pari; che equivale 
a dire che si ha bk = O per ogni k ?:: O . 
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Per la convergenza puntuale la situazione è più delicata e richiede ipotesi più forti. 

Teorema 7.18 : sia f E L2 [- 1r, 1r] una funzione assegnata e supponiamo che f sia 
derivabile in un punto x0 , allora la serie di Fourier converge a f nel punto xo . Più in 
generale, se f verifica la condizione del Dini 

3J > O 3yo E R : 

allora la serie di Fourier f n converge nel punto x0 al valore Yo . 

li teorema precedente può essere generalizzato in modo da includere funzioni f 
discontinue in un punto x0 . Più precisamente vale il risultato seguente. 

Teorema 7.19 : sia f E L2 [- 1r, 1r] una funzione assegnata e supponiamo che in un 
punto xo 
(a) esistano fini ti i limiti destro f(xt) e sinistro f(x0), 
(b) esistano finiti i limiti della derivata prima f' sia a destra che a sinistra di xo . 
Allora la serie di Fourier converge nel punto xo al valore 

f(xt) + f(xo) 
2 

Più in generale, se f verifica la condizione generalizzata del Dini 

3J > O 3A , B E R : 1° IJ(xo + t) - Al 18 IJ(xo - t) - BI -'---'--- ---'- dt + -'-------'- dt < +oo , 
o t o t 

allora la serie di Fourier di f converge nel punto x0 al valore (A + B)/ 2. 

Osservazione : va sottolineato che in generale la sola continuità di una funzione 21r­
periodica f non è sufficiente a garantire che lo sviluppo in serie di Fourier f n converga 
ad f puntualmente. Come illustrato nei teoremi precedenti, per ottenere la convergenza 
punt uale è necessario aggiungere qualche ipotesi ulteriore, sulla derivata prima di f o 
più in generale del tipo delle ipotesi del Dini. 

Per ottenere la convergenza uniforme delle serie di Fourier dovremo rinforzare ulte­
riormente le ipotesi sulla funzione f . 

D e finizione : diremo che una funzione f è regolare a tratti se esiste un numero fini to 
di punti x1 , ... , X N tali che 

(i) f è derivabile per x =I= Xj , 

(ii) esistono finiti i limiti di f' per x ~ Xj e per x ~ x-;- . 

Teorema 7.20 : sia f E L2 [-1r , 1r] una funzione assegnata e supponiamo che f sia 
regolare a tratti. A llora la serie di Fourier di f converge ad f uniformemente in ogni 
intervallo [a, b] su cui f è continua. 
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Esempio : consideriamo la funzione 

f(x)= {
1 

- 1 sexE] - 1r,O[; 

sex E]O, 1r[ 

poniamo poi f(O) = f(- 1r) = f (1r) = O di modo che la funzione f risulti definita su 
[- 1r, 1r] e periodica. La funzione f, che viene anche detta onda quadra, è dispari, per 
cui il suo sviluppo di Fourier è del tipo 

+oo 
L bn sen(nx) . 
n=l 

Dal Teorema 7.20 ricaviamo che la serie di Fourier converge ad f uniformemente su 
tutti gli intervalli [a , b] con O < a < b < 1r o con - 1r < a < b < O . I coefficienti di 
Fourier bn si ottengono facilmente: 

1 j ,r 21,,. 
bn = - f (x)sen(nx) dx = - sen(nx)dx 

1i - ,r 1i o 

[ 
2 ],,. 2 

= - - cos( nx) = - ( 1 - ( - 1 t) , 
n1r o n1r 

da cui si ricava l'uguaglianza 

00 2 
f(x) = I:-(1 - (- l )n) sen(nx) 

n1r 
n=l 

00 4 
= I: (2h l ) sen((2h + l )x) VxE]-1r, O[U]0,1i[. 

h = O + 1i 

Per x = 1r / 2 , tenuto conto che 

si ottiene 

sen(n1r/2) = {~-l)(n- l)/2 

se n è pari 

se n è dispari, 

l = L 2_(1 - (- l t)(- l )(n-1)/2 
n1r 

n dispari 

e quindi, scrivendo ogni numero dispari n nella forma 2k + 1 , 

Prendendo invece x = 1 in (7.32) si ottiene l 'uguaglianza 

~ = ~ sen(2k + 1) . 
4 L, 2k+ 1 

k = O 

(7.32) 
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Fig. 7.16 : i grafici della funzione x/lx l e della somma di Fourier fn(x) con n = 11 

Esempio : consideriamo la funzione 

f(x ) = X \/x E] - 1r,1r[ 

ponendo poi f( - 1r) = f(1r) = O, di modo che la funzione f risulti definita su [-ir, ir] 
e periodica. La funzione f è dispari, per cui il suo sviluppo di Fourier è del tipo 

+oo 
I:>n sen( nx) . 
n=l 

Dal Teorema 7.20 ricaviamo che la serie di Fourier converge ad f uniformemente su 
tutti gli intervalli [a, b] con - 71" < a < b < ir . I coefficienti di Fourier bn si ottengono 
facilmente: 

bn = - xsen(nx) dx = - xsen(nx) dx 1171" 2171" 
71" -,r 71" o 

= ~[- xcos(nx) + sen(nx)]• = _ 2 (- l )n, 
1r n n2 o n 

da cui si ricava l'uguaglianza 

+oo ( 1t 
x = -2 I:----sen(nx) 

n 
n = l 

Vx E] - 1r, O[U]O, ir[ . 

Mettendo questo sviluppo insieme a quello della funzione x/lxl dell'esempio precedente, 
si ottiene l'uguaglianza 

da cui si ha 

! (1r.!:.... - x) = r sen(nx) 
2 lxl n=l n 

1r - x = ~ sen(nx) 
2 L n 

n=l 

Vx E] - 71", O[u]O, 1r[) (7.33) 

\/x E]0,1r[, 
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Fig. 7.17: i grafici della funzione x e della somma di Fourier fn(x) con n = 7 

Fig. 7.18 : i grafici della funzione in (7.33) e della somma di Fourier fn(x) con n = 7 

Esempio : consideriamo la funzione 

f(x) = lxl 

che, se ristretta a [-1r, 1r] , verifica (7.24) , e quindi la possiamo pensare estesa per pe­
riodicità a tutto JR . La funzione f è pari, per cui il suo sviluppo di Fourier è del 
tipo 

+oo 
L an cos(nx) . 
n=O 

Dal Teorema 7.20 ricaviamo che la serie di Fourier converge ad f uniformemente su tutto 
[- 1r, 1r] . I coefficienti di Fourier an si ottengono facilmente ( fate i calcoli in dettaglio): 

1 17r 7r ao = 2 lxi dx = -
2 

; 
7r - 7r 

111r 211r 2 an=- lxJcos(nx)dx = - xcos(nx)dx = - 2 ((- l f - l ) . 
1r -1r 1r o 1rn 
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Osservando che 

((- l )n - 1) = {O 
- 2 

se n è pari 

se n è dispari 

otteniamo lo sviluppo di Fourier 

lxi=~ _ ± ~ cos(nx) = ~_±I: cos ((2k + l)x) 
2 1r ~ • n2 2 1r (2k + 1)2 

n d1span k=O 

Per x = O si ha 

Se ora poniamo 

abbiamo da (7.34) 

da cui si ricava 

+oo 1 

L (2k + 1)2 
k=O 

+oo 1 
S2 = ~ ­

L..t n2 
n = l 

8 

,,~~- -
2 3 

Vx E [-1r, 1r] . 

(7.34) 

Fig. 7.19 : i grafici della funzione lxi e della somma di Fourier fn(x) con n = 3 

Esempio : consideriamo la funzione 

J(x) = x2 

che, se ristretta a [- 1r, 1r] , verifica (7.24), e quindi la possiamo pensare estesa per pe­
riodicità a tutto JR . La funzione f è pari, per cui il suo sviluppo di Fourier è del 
tipo 

+oo 
L an cos(nx) . 
n=O 
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Dal Teorema 7.20 ricaviamo che la serie di Fourier converge ad f uniformemente su tutto 
[- 1r, 1r] . I coefficienti di Fourier an si ottengono facilmente ( fate i calcoli in dettaglio): 

ao = - x 2 dx = - · 
1 17r 71"2 

21r -,r 3 ' 

i 17r 21" ( i r an = - x2 cos(nx) dx = - x 2 cos(nx) dx = 4 ~ . 
7r - 1r 7r o n 

Otteniamo quindi lo sviluppo di Fourier 

2 +oo ( l )n 
x2 = ~ +4 L ~cos(nx) 

3 n 
n=l 

Vx E [- 1r, 1r] . 

Per x = 1r si ha 
2 + oo 1 

2 7r I: 7r = - +4 -
3 n 2 

n=l 

da cui si ricava nuovamente 

Fig. 7.20 : i grafici della funzione x 2 e della somma di Fourier f n(x) con n = 3 

Esempio : consideriamo la funzione 

f(x) = x4 

che, se ristretta a [- 1r, 1r] , verifica (7.24), e quindi la possiamo pensare estesa per pe­
riodicità a tutto JR . La funzione f è pari, per cui il suo sviluppo di Fourier è del 
tipo 

+oo 
L an cos(nx). 
n=O 
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Dal Teorema 7.20 ricaviamo che la serie di Fourier converge ad f uniformemente su tutto 
[-7r, 7r] . I coefficienti di Fourier an si ottengono facilmente ( di nuovo, vi consigliamo di 
svolgere i calcoli in dettaglio): 

1 1
,,. 4 

4 7r ao=- x dx = -· 
271" -,r 5 ' 

1 j " 21" 7r
2 

6 an = - x4 cos(nx) dx= - x4 cos(nx) dx = 8 (-lt ( 2 - 4 ) . 
7r _,,. 7r o n n 

Otteniamo quindi lo sviluppo di Fourier 

4 +oo 2 6 

x4 = ~ +8 ~)- 1t(:2 - n4 )cos(nx) 
n=l 

Vx E [- 7r,7r]. 

Per x = 7r si ha 

4 +oo 2 6 4 +oo 1 +oo 1 
7r4 = ~ + 8"' (~ - - ) = ~ + 87!"2

"' - - 48"' -5 ~ n 2 n4 5 ~ n 2 ~ n4 
n = l n=l n = l 

da cui si ricava 

Fig. 7.21 : i grafici della funzione x4 e della somma di Fourier fn(x) con n = 3 

Dagli esempi precedenti risulta chiaro che la velocità di convergenza dello sviluppo di 
Fourier fn verso f (e quindi l'efficacia di un tale sviluppo nell'approssimazione di una 
data funzione) varia notevolmente a seconda della funzione f considerata. Dall'espres­
sione dello sviluppo di Fourier fn in (7.23) e dall'ortogonalità delle funzioni in (7.31) si 
ottiene facilmente l'uguaglianza 

1 {" 1 +oo 

2
71" }_ (f(x))

2 
dx = a~+ 2 L (a~+ b~) 

,r n=l 

(7.35) 

valida per ogni funzione f avente 

1_: (f(x))
2 

dx< +oo. 
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Definizione : direm o che una successione { an}n di numeri reali è di quadrato som­
mabile se 

I>~< +oo . 
n 

Osservazione : dalla condizione necessaria per la convergenza di una serie numerica ri­
caviamo che una successione di quadrato sommabile verifica a~ ~ O e quindi è necessa­
riamente infinitesima. In particolare, le successioni an e bn in (7.35) sono infinitesime, 
di quadrato sommabile, e si ha 

Se ora la funzione f che consideriamo, oltre ad avere il quadrato integrabile è anche 
derivabile, con derivata di quadrato integrabile, possiamo sviluppare f'(x) ottenendo 

+oo 
J'(x) = L [ - nan sen(nx) + nbn cos(nx)] 

n = l 

In tal caso, non solo i coefficienti di Fourier an e bn sono infinitesimi e di quadrato 
sommabile, ma anche nan ed nbn risultano infinitesimi e di quadrato sommabile. In 
maniera analoga, se la funzione f risulta derivabile m volte, con derivata j (m) di 
quadrato integrabile, allora i coefficienti di Fourier an e bn risulteranno tali che nman 
ed nmbn sono infinitesimi e di quadrato sommabile (~ es. 7.4). 

Abbiamo detto che la serie di Taylor costituisce un modo per approssimare funzioni 
nelle vicinanze di un punto assegnato, e che la serie di Fourier è particolarmente adatta 
ad approssimare funzioni periodiche. Facciamo osservare che se una serie converge uni­
formemente, le sue somme parziali approssimano bene la funzione somma f , nel senso 
che distano uniformemente meno di é dal f per n a bbastanza grande. Dunque per 
molti scopi possiamo sostituire f con una somma parziale: ma in tal caso ci basta 
conoscere un nume ro finito di coefficienti, che sono numeri reali, e non tutta la fun­
zione f, che potrebbe avere una espressione estremamente complicata. Così se dobbiamo 
trasmettere a qualcuno una funzione, e ci accontentiamo di una certa approssimazione, 
possiamo trasmettere non una funzione, ma un numero finbito di coefficienti. Questo ha 
applicazioni importantissime: ad esempio, anziché un segnale musicale ( che in formato 
AIFF occupa molto spazio di memoria o di trasmissione) possiamo registrare in memo­
ria, o trasmettere, una parte di serie di Fourier (il che è alla base di compressioni come 
quella MP3, che occupa solo una frazione dello spazio di un file AIFF), a prezzo di una 
certa approssimazione (ovvero diminuzione della qualità sonora) che in certe situazioni 
(ascolto con cuffiette di moderata qualità) è accettabile. 
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Esercizi relativi al capitolo 7 

Esercizio 7.1 : studiate la convergenza puntuale e uniforme delle seguenti succes­
sioni di funzioni: 

X 
a) fn(x) = - 1 + - ; 

n 
b) fn(x) = efx; 
c) fn(x) = nx(l - x2)n; 

X 
d) fn(x) = l + nx ; 

nx 
e) fn(x) = l + nx ; 

n 
f) fn(x) = (1 + nx)2 ; 

g) fn(x) = e +:2x2) 71; 

h) fn(x) = nxe- nx
2

; 

i) fn(x) = =:e-;'; · 
n ' 

j) fn(x) = ex - ( 1 + ~r; 
k) fn(x) = ( 1 + cos ~r; 
1) fn(x) = (¼ + sen2 xr su [O, 1r]; 

) f ( ) = xn + ( n + l) log x . 
m n X xn+l ' 

{ 
1 per lxi :?: ¼ 

n) fn(x) = 
2 2 

su [-1, l]; 
n x per lxi<¼ 

{ 

1 per x = O 

o) fn(x) = s

1

en(nx) per O< x < 1r/n 
per 1r/n :S x :S 21r; 

p) fn(x) = arctan(xn). 
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Esercizio 7.2 
serie di funzioni: 

studiate la convergenza puntuale, uniforme e totale delle seguenti 

00 

a) L nxxn; 
n=l 
00 

b) L n(l :nx2 ) 
n=l 
00 

c) ~ (1:x)n; 

d) f ( x+~) n+\ 
n=l 
oo n2 

e) L ~; 
n=O n. 
00 

f) L n3x3e- nx; 
n=O 
00 

g) L nlogx; 
n=l 
00 xn 

h) ~ log(l +n) 

Esercizio 7 .3 : studiate la convergenza assoluta delle seguenti serie di potenze di 
variabile complessa: 

a) 

b) 

e) 

d) 

e) 

oo n 

L :2n; 
n=l 

oo (3n-1 )n- 1 
~ 2n Zn . 
L., (-1 + .il.i) , 
n=l n n 

~ (2n + 1)!! n 
L., I Z ; 
n=O n. 
oo (- l )nzn 
L n, 
n=l 

oo (-zt 
L 3n+logn · 
n= l 

Esercizio 7.4 : sviluppate in serie di Fourier le funzioni seguent i, definite sull' inter­
vallo ] - 1r, 1r[ e prolungate per periodicità a tutto JR : 

() {
a sexE]-1r, O[ 

a) f x = , con a, f3 E JR; 
f3 sex E]O, 1r[ 

b) f(x) = ex; 
c) f(x) = (cosx)+; 
d) f(x) = (sen x)+; 
e) f (x) = sen3 x + sen2 x; 
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f) f(x) = I senxl; 
g) f(x) = max{l, 1 + x} . 

Esercizio 7.5 : determinate lo sviluppo di Fourier della funzione 

f(x) = cos(x/2) x E [O, 21r[ 

prolungata per periodicità ( di periodo 21r) a tutto JR . Utilizzate lo sviluppo precedente 
per calcolare la somma della serie numerica 
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Appendice al capitolo 7 

Appendice 7.1 - Serie ed equazioni differenziali 

Le serie di funzioni possono essere usate per "risolvere" alcune equazioni differenziali. 
Ad esempio, risolviamo il (ben noto) problema di Cauchy 

y'(x) = y(x), y(O) = 1; (A7.l) 

cerchiamo una soluzione che sia una funzione analitica, ovvero della forma 

00 

y(x) = L anxn (A7.2) 
n =O 

con serie che ha raggio di convergenza positivo. Natutalmente, nessuno ci garantisce 
che una soluzione del genere esista: il Teorema di esistenza di Peano 5.2 permette di 
affermare che una soluzione c'è, ma non che questa debba per forza essere analitica in 
un intorno di zero (per amor del vero, esiste un teorema più complicato che dice proprio 
questo). Dunque stiamo facendo un tentativo, che potrebbe non andare a buon fine. 

Se y verifica (A7.l) e (A7.2), deve essere anzitutto 

1 = y(O) = ao, 

e inoltre grazie alla Proposizione 7.14 abbiamo all'interno del cerchio di convergenza 

00 00 

y'(x) = L nanxn- l = L (n + l )an+1Xn 
n = l n =O 
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allora deve essere 

00 

O= y'(x) - y(x) = L [(n + l )an+l - an]xn Vx 
n=O 

in tutto il cerchio di convergenza. Ma una serie di potenze con raggio di convergenza 
positivo è la funzione nulla se e solo se tutti i suoi coefficienti sono nulli (potete provarlo 
per esercizio) perciò 

e quindi la successione an verifica la definizione per induzione 

{ 

ao = 1 

an+l = -
1
-an . 

n+ l 

(A7.3) 

Sappiamo che queste due righe definiscono una e una sola successione, e dato che an = 
1/n! le verifica questa è la sola successione per la quale valgono le (A7.3), dunque 

sappiamo che questa serie ha raggio di convergenza positivo e che la sua somma è 
dunque abbiamo risolto il problema di Cauchy (A7.l). 

Cerchiamo ora una soluzione dell'equazione differenziale 

x 2y" - 7xy' + 3y = ex , 

che non è in forma normale e può essere messa in tale forma solo per x =I= O . Procediamo 
come prima: 

00 00 00 

y (x) = L anxn =} y'(x) = L nanxn- l ⇒ y"(x) = L n(n - l)anxn- 2 

n=O n=l n=2 

dunque 

00 00 00 

x 2y" - 7xy' + 3y = L n(n - l )anxn - 7 L nanxn + 3 L anxn 
n=2 n=l n=O 

che, separando i termini con potenze zero e uno e raccogliendo gli altri, diviene 

00 00 

· · · = 3ao+(-7a1+3a1)x+ L [n(n- 1)-7n+3]anxn = 3ao - 4a1x+ L (n2 -8n+3)anxn. 
n=2 n=2 

Se vogliamo che y risolva l'equazione proposta, dato che e = Ln xn /n! , deve essere 

3ao = 1 , - 4a1 = 1 , 
1 

(n2 - 8n + 3)an = 1 Vn ~ 2 
n. 
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e fortunosamente otteniamo 

1 
an = ------ 1:/n ::=: 2 . 

(n2 - 8n + 3)n! 

Perché fortunosamente? Ricordiamo che non essendo l'equazione in forma normale in 
x = O, a priori non c'era motivo per ottenerne una soluzione analitica (e quindi in 
particolare definita) in un intorno di zero; inoltre abbiamo diviso per n2 - 8n + 3 : cosa 
sarebbe successo per n = 4 se il coefficiente di y fosse stato 16 e non 3? E in ogni 
caso, abbiamo ottenuto come "soluzione" l'espressione 

1 1 00 1 
y(x) = 3 - 4x + ~ (n2 - 8n + 3)n!xn · 

La serie converge uniformemente e ha raggio di convergenza infinito, ma ... bella espres­
sione: quanto vale questa funzione in qualsiasi punto diverso da zero? Non è espressa in 
termini di funzioni elementari! Possiamo però, grazie alla convergenza uniforme, tracciare 
il grafico non di y , ma di qualcosa che gli somiglia: ad esempio della sua approssimante 
con soli 4, 5 o 6 termini, come 

11121 3 1 4 
Y5(x) = 3 - 4x - l8 x - 72x - 312x · 

Quanto differisce y5 da y nell'intervallo [-1, l ] ? Osserviamo che n2 - 8n + 3 non 
vale mai zero ( n è un numero naturale!), quindi (essendo un numero intero) in valore 
assoluto è sempre maggiore o uguale a 1 , pertanto per n ::=: 5 (ma basta n ::=: 2) 

1 
lanl:::; 1 n . 

e quindi (dimostrate al volo che (n + m)! è (molto) più grande di n!m!) 
00 

1 
00 

1 1 00 1 e 1 
ly(x) -y5(x)I :::; L n! = L (i + 5)! :::; 5! L il= 120 :::; 40 · 

n =5 i= O i=O 

La stima precedente è piuttosto grossolana; con un po' più di attenzione la quantità 
ly(x) - y5(X)I si può stimare meglio: ad esempio, osservando che 

00 
1 1 

00 
1 1 1 00 1 1 e 

~ n! = 5! + ~ (i+ 6)! :::; 5! + 6! ~ il = 120 ( 1 + 6) ' 
si ottiene 

ly(x) - y5(x) I:::; 1.211- 10-2 ; 

usando invece 
00 

1 
00 

1 
4 

1 1 1 1 65 L n! = L n! - L n! = e - ( 1 + 1 + 2 + 6 + 24) = e - 24 ' 
n= 5 n=O n=O 

si ottiene 
ly(x) - y5(x)I :::; 0.995 • 10-2 . 

Per completare le ragioni per cui abbiamo messo fra virgolette la parola "risolvere" 
osserviamo che nel primo esempio siamo riusciti a determinare esplicitamente l'unica 
successione che verifica (A7.3), ma in generale questo è assai difficile. 
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Appendice 7.2 - Serie di Fourier ed equazioni differe nziali 

Diamo un cenno ad una importante applicazione delle serie di Fourier; proviamo a r isol­
vere il problema di Cauchy (anche questo facilmente risolubile con i metodi già visti) 

y"(t) + 4y(t) = sent , y(O) = l, y'(0)=-1. 

Cerchiamo una soluzione che sia sviluppabile in serie di Fourier, ovvero 

00 

y(t) = ao + L [an cos(nt) + bn sen(nt)] 
n =l 

(senza addentrarci nelle ipotesi che garantiranno la convergenza della serie). Abbiamo 

00 00 

y'(t) = I:[- nansen(nt) + nbncos(nt)] , y"(t) = L [-n2an cos(nt) -n2bn sen(nt)] 
n =l n=l 

e quindi 

00 

y"(t) + 4y(t) = 4a0 + L [(4 - n 2 )an cos(nt) + (4 - n 2)bn sen(nt)] . 
n = l 

Se vogliamo che questa somma sia uguale a sen t , la cui serie di Fourier ha un solo 
termine non nullo, occorre che 

4ao = o , ( 4 - n 2 )an = O \/n 2'. 1 , (4-l)b1 = 1, 

In particolare, dato che 4 - n 2 non si annulla salvo che per n = 2 , 

ao = a 1 = a 3 = a4 = a 5 = · • · = O , b3 = b4 = b5 = · · · = O , 

mentre a 2 e b2 possono assumere qualunque valore. D unque la soluzione dell'equazione 
differenziale avrà la forma 

con a2 e b2 qualsiasi. Inserendo i dati iniziali ricaviamo 

a2 = 1, 
1 2 

2b2 + - = - 1 => b2 = - -
3 3 

e infine 
2 1 

y(t) = cos(2t) - 3 sen(2t) + 3 sen t. 
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Appendice 7.3 - Serie di Fourier ed equazioni differenziali alle 
derivate parziali 

Se abbiamo una funzione di due variabili f(t , x) possiamo considerarla, per ogni x 
fissato, come funzione della sola variabile t , e (sotto le ipotesi che lo permettono) de­
terminarne la serie di Fourier. Questa avrà dei coefficienti che cambieranno a seconda 
del punto x fissato, e dunque saranno funzioni di x . Sotto ipotesi che garantissero la 
convergenza potremmo allora scrivere 

00 

f(x, t) = ao(x) + L [an(x) cos(nt) + bn(x) sen(nt)] . 
n=l 

Proviamo a risolvere, senza assolutamente entrare nel dettaglio e specialmente senza 
andare a cercare le ipotesi sotto cui le serie che scriviamo convergono, l'equazione dif­
ferenziale alle derivate parziali 

òf ò2 f 
òt òx2 • 

(A7.4) 

Operando formalmente abbiamo 

òf 00 

òt = L [nbn(x) cos(nt) - nan(x) sen(nt)] , 
n=l 

a2 f 00 

òx2 = ao(x) + L [a~(x) cos(nt) + b~(x) sen(nt)] 
n=l 

dove l'apice indica la derivazione rispetto a x. Allora l'equazione differenziale si riscrive 

00 00 

L [nbn(X) cos(nt) - nan(x) sen(nt)] = ao (x) + L [a~ (x) cos(nt) + b~ (x) sen(nt)] 
n= l n=l 

da cui 

ao(x) = o (A7.5) 

e per ogni n 2 1 

a~= nbn, b~ = -nan. (A7.6) 

Abbiamo quindi t rasformato l'equazione alle derivate parziali (su cui non abbiamo metodi 
risolutivi) in (infinite) equazioni ordinarie! Da (A7.5) abbiamo 

mentre per ogni n 2 1 le due equazioni (A7.6) si traducono nel sistema 
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L'equazione caratteristica z4 + n 2 = O ha quattro soluzioni, 

e 

cui corrispondono le soluzioni fondamentali 

ex-./2n/2 sen(xv'2n/2) , 

e-x-./2n/ 2 sen(xv'2n/2) , 

ex-./2nf2 cos(xv'2n/2) , 

e-x-./2n/2 cos(xv'2n/2) . 

La funzione an è una combinazione lineare di queste quattro, mentre bn si ricava da 
an grazie all'uguaglianza bn = a~/n. 

L'equazione alle derivate parziali (A7.4) è nota come equazione del calore e descrive 
la diffusione del calore in un mezzo conduttore; in particolare la soluzione f( x, t ) che 
verifica la condizione iniziale f(x , O) = g(x) rappresenta la temperatura nel punto x al 
tempo t di un filo conduttore che al tempo t = O ha distribuzione di temperatura g(x) . 

Appendice 7.4 - La funzione di Weierstrass 

Mediante le serie di Fourier si possono costruire diverse funzioni con comportamenti 
piuttosto anomali. Ad esempio la funzione 

00 

1(x) = E rn sen(2nx) 
n =O 

è detta funzione di WeierstraB ed ha le proprietà seguenti: 
(a) è periodica di periodo 21r ; 
(b) è continua su tutto JR ; 
( c) non è derivabile in alcun punto di JR . 

Fig. A7.l: l'approssimazione di J per n = 3 Fig. A7.2: l'approssimazione di f per n = 7 
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Osserviamo che la serie che definisce f è una serie di Fourier del tipo (7.23) con an = O 
per ogni n e 

bk = { 1/ k se k è una potenza di 2 
O altrimenti. 

La periodicità di f è ovvia, in quanto ogni termine della serie è periodico di periodo 
21r . Inoltre, la serie in questione converge totalmente su tutto JR ; infatti si ha 

00 00 

L 11rnsen(2nx)IIR = L rn = 2. 
n =O n=O 

Dunque, la continuità di f segue dalla Proposizione 7.9 e dal Teorema 7.2. La di­
mostrazione della proprietà (c) è invece più delicata e non rientra fra gli scopi di questo 
libro. 



Lista dei simboli 

Raccogliamo in questa lista i simboli matematici usati in questo volume. 

Insiemi e vettori 

Il X Il norma di un vettore: 2 

X • Y prodotto scalare: 3 

V /\ W prodotto vettore: 7 

E interno di un insieme: 33 

E chiusura di un insieme: 33 

àE bordo o front iera di un insieme: 33 

d(P, E) distanza da un insieme: 46 

Curve 

V <1>(to) vettore velocità: 89 

vq,(t0 ) velocità scalare: 89 

T q,(t0 ) versore t angente: 90 

Aq,(t0 ) vettore accelerazione: 96 

K( t) vettore curvatura: 99 

k(t) curvatura scalare: 99 

p(t) raggio di curvatura: 99 

P(t0 , t1 , ... , tk ) lunghezza di una poligonale: 103 

P( </>) lunghezza di una curva: 104 

J</> f ds integrale di una funzione su una curva: 117 

Bq, baricentro di una curva: 119 

</>1 + </>2 concatenazione o somma di curve: 122 

J</> F lavoro di un campo lungo una curva: 125 
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.e(E) lunghezza di un insieme: 127 

J E f ds integrale di una funzione su un insieme: 127 

Funzioni 

lim11x 11---++oo f(X) limite all'infinito: 51 

limx --,P f (X) limite: 50 

ci funzioni con derivata continua: 74 

C;r funzioni ci a tratti: 74 

li/Ile norma uniforme: 415 

L2 funzioni a quadrato sommabile: 438 

Il/ IIL2 norma in L2
: 438 

/-t derivata parziale: 148 

Oxkf 

D kf 

"vf 

derivata parziale: 148 

derivata parziale: 148 

gradiente: 148 

8 f gradiente: 148 

"vf matrice jacobiana: 

divergenza: 150 

rotore: 376 

149 

div f 

rotf 

Dvf derivata direzionale: 152 

òvf derivata direzionale: 152 

~ derivata direzionale: 152 

fn _Jlt_.f l ---. convergenza puntua e: 409 

fn _u_n_il f ·e 414 ---. convergenza um1orme: 

Integrali 

epi f epigrafico di una funzione: 176 

fsf(x,y)dxdy integrale: 219,220,224 

J+ , J- parti positiva e negativa: 219 

Area(A) area o superficie: 223,230,264 

IIx (E) proiezione di un insieme: 244 

Sx
0 

( E) sezione di un insieme: 244 

f c/> f dok integrale di k-superficie: 264,275 

J<t>(A) f dok integrale su una k-superficie: 264,275 

Areak ( <t>(A)) superficie k-dimensionale: 275 

v (x0 ) normale esterna: 388 



Indice analitico 

Abbiamo cercato di rendere questo indice il più facile possibile da utilizzare, includendo 
moltissime voci e spesso citando quelle composte sotto tutte le componenti (ad esempio, 
"criterio di Abel" compare sia sotto la voce "criterio" che sotto la voce "Abel"). Quando, 
nella lettura del testo, incontrate una struttura matematica di cui non ricordate esatta­
mente definizione e proprietà, vi consigliamo di cercarla immediatamente, aiutandovi sia 
con l'indice analitico che con l'indice del libro. 

Abel, criterio di: 436 
accelerazione, vettore: 96 
Accumulazione, punto di: 35 
aderente, punto: 33 
analitica 
- funzione: 436 

angoloso, punto: 94 
aperto 
- insieme: 31 

regolare: 387 
approssimabile, insieme: 255 
archi, insieme connesso per: 379 
Archimede, spirale di: 135 
arco, parametro di: 107 
area: 223,264 
aritmetica, media: 205 
armonica, media: 205 
Ascoli-Arzelà, teorema di: 424 
assi 
- rotazione degli: 26 
- traslazione degli: 23 
astroide: 136 

baricentro: 68,119 
base canonica di IRn : 2 
Bernoulli, lemniscata di: 141 
Bolzano-WeierstraB, Teorema di: 38 
bordo 
- di un insieme: 33 

punto di: 33 

cambiamento di variabile, teorema di: 234 
campo 
- centrale: 377 
- continuo: 375 
- flusso di un: 388 
- irrotazionale: 376 
- lavoro lungo una curva: 125,378 
canonica, base di Rn : 2 
caratterizzazione sequenziale dei compatti: 39 
cardioide: 137 
carta locale: 180 
catenaria: 110,363 
Cauchy 
- -Hadamard, teorema di: 430 
- -Lipschitz, teorema di: 304 
- problema di: 286 
centrale, campo: 377 
cerchio di convergenza: 430 
chiocciola di Pascal: 142 
chiusa, forma differenziale: 402 
chiuso, insieme: 32 
chiusura di un insieme: 33 
cicloide: 138 
cilindrica, elica: 84 
cilindriche, coordinate polari: 29 
cilindro 
- generato: 1 7 
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- superficie del: 17 
circolare, paraboloide: 13 
circondare un insieme: 385 
cissoide di Diocle: 138 
clotoide: 134 
coefficienti 
- di Fourier: 440 
- di una forma differenziale: 401 
combinazione 
- convessa: 68 
- lineare: 6 
compatti, convergenza uniforme sui: 417 
compatto 
- caratterizzazione sequenziale: 39 
- insieme: 36 
componente connessa: 37 
componenti di un vettore: 1 
concatenazione di curve: 122 
condizione 
- del Dini: 441 
- del Dini generalizzata: 441 
connessa, componente: 37 
connesso, insieme: 37 
- per archi, insieme: 379 
cono 
- generato: 19 
- superficie del: 18 
continua 
- funzione: 41 
- uniformemente, funzione: 45 
continuo, campo: 375 
convergenza 
- cerchio di: 430 
- L 2 : 440 
- puntuale: 409,425 
- raggio di: 430 
- totale: 426 
- uniforme: 414,425 
- uniforme sui compatti: 417 
convessa 
- combinazione: 68 
- funzione: 177 
convesso 
- ins ieme: 37 
- involucro: 68 
coordinate 
- polari nel piano: 27 
- polari cilindriche: 29 
- polari sferiche: 28 
- rotazione delle: 26 
- traslazione delle: 23 
costanti , metodo di variazione delle: 326 
criterio 
- di Abel: 436 
- di Sylvester: 172 
curva: 76 
- baricentro di una: 119 
- cartesiana, lunghezza di una: 109 
- che circonda un insieme: 385 
- di Lissajous: 140 
- di livello: 12 
- generalmente iniettiva: 127 
- integrale di f su una: 117 

- kappa: 139 
- lavoro di un campo lungo una: 125,378 
- liscia: 179 

lunghezza di una: 104,105,109 
- parametrizzazione di una: 78 

regolare: 93 
- riparametrizzazione di una: 81 
- sostegno di una: 76 

vettore tangente: 90 
- vettore velocità: 89 
curvatura 
- raggio di: 99 
- scalare: 99,108 
- vettore: 99 
curve, concatenazione o somma di: 122 

dato iniziale: 286 
deltoide: 140 
derivata 
- direzionale: 152 
- parziale: 147 
- serie: 433 
- vettore: 7 4 
derivazione per serie, teorema di: 428 
differenza 
- di insiemi: 229 
- simmetrica: 229 
differenziabile, funzione: 153 
differenziale: 153,401 
- equazione: 281 
- esterno di una forma: 404 
- forma: 401 
- soluzione di una equazione o sistema: 281 
- totale, teorema del: 158 
differenziali, sistema di equazioni: 281 
Dini 
- condizione del: 441 
- generalizzata, condizione del: 441 

teorema del: 188,192 
Diocle, cissoide di: 138 
direzionale, derivata: 152 
Dirichlet 
- funzione di: 218 

problema di: 332 
distanza da un iperpiano: 7 
disuguaglianza 
- di Schwarz: 3 
- di Young: 205 
disuguglianze triangolari: 3 
divergenza: 150 
- teorema della: 389 
dominio naturale di f : 21 

elemento di superficie: 264 
elica cilindrica: 84 
elicoide: 183 
ellissoide: 22 
ell ittico 
- iperboloide: 22 
- paraboloide: 14 
epigrafico: 176 
equazione 
- a variabili separabili: 317 



- di un iperpiano: 5 
- di un piano in R2 : 4 
- differenziale: 281 
- differenziale, soluzione di una: 281 
- parametrica del piano: 7 
- parametrica della retta: 6 
equazioni differenziali, sistema di: 281 
equicontinua 
- puntualmente, successione: 424 
- successione: 424 
equilimitata, successione: 424 
esatta, forma differenziale: 402 
esistenza 
- globale, teorema di: 297,315 
- teorema di Peano: 289,370 
estensione di una soluzione: 295 
esterna, normale: 388 
esterno 

differenziale di una forma: 404 
- punto: 33 
- versore normale: 388 
- vettore normale: 388 

falde 
- iperboloide a due: 21 
- iperboloide a una: 22 
Fermat, teorema di: 167 
fili , integrazione per: 247 
flusso di un campo: 388 
forma 
- differenziale: 401 
- differenziale chiusa: 402 
- differenziale esatta: 402 

differenziale esterno di una: 404 
- normale: 281 
- quadratica: 44 
formula 

di GauB-Green: 390 
- di spezzamento: 229 

di Taylor: 166 
Fourier 
- coefficienti di: 440 
- serie di: 440 
- somma di: 440 
frontiera 
- di un insieme: 33 
- punto di: 33 
funzione 
- analitica: 436 
- c i: 74 
- ci a tratti: 74 
- continua: 41 
- convessa: 177 
- di Dirichlet: 218 
- di Weierstrail: 457 
- differenziabile: 153 

dominio naturale: 21 
- integrabile: 219,220,223,224 
- integrale su una curva: 117 
- integrale su un insieme: 127 

limite di: 50 
- lipschitziana: 46,304 
- regolare a tratti: 441 

Tndice analitico 

- localmente lipschitziana: 304 
- uniformemente continua: 45 
funzioni 
- implicite, teorema delle: 188,192 
- successione di: 408 

GauB-Green, formula di: 390 
generalizzata, condizione del Dini: 441 
generalizzato, integrale: 255,263 
generalmente iniettiva, curva: 127 
generato 
- cilindro: 17 
- cono: 19 
generatrice: 17 
geometrica, media: 205 
Gerono, lemniscata di: 141 
globale, teorema di esistenza: 297,315 
gradiente: 148 
Green, formula di GauB-: 390 

Hadamard, teorema di Cauchy-: 430 
Heine-Cantor, Teorema di: 45 
hessiana, matrice: 164 

implicite, teorema delle funzioni: 188,192 
incollamento, teorema di: 291 
indipendenti linearmente, vettori: 6 
iniettiva, curva generalmente: 127 
iniziale, dato: 286 
insieme 
- aperto: 31 
- approssimabile: 255 
- bordo di: 33 
- chiuso: 32 
- chiusura di: 33 
- compatto: 36 
- connesso: 37 
- connesso per archi: 379 
- convesso: 37 

frontiera di: 33 
- integrale di f su: 127 

interno di: 33 
- limitato : 36 
- lunghezza di: 127 

misurabile: 224 
- normale: 225,226 
- proiezione su alcune variabili: 244 
- sconnesso: 37 
- sezione di un: 244 
- successione che invade un: 255 
- trascurabile: 229 
insiemi 
- differenza di: 229 
- differenza simmetrica: 229 
integrabile, funzione: 219,220,223 ,224 
integrale 
- generalizzato: 255,263 

su un insieme: 127 
- su un rettangolo: 219 
- su una curva: 117 
- su una superficie: 264 
- superficiale: 264,275 

463 

integrali, teorema di riduzione degli: 221 ,243,247 
integrazione 
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- per fili o strati: 247 
- per serie, teorema di: 429 
interno 
- di un insieme: 33 
- punto: 33 
intervallo massimale: 295 
intorno di un punto: 30 
invade un insieme, successione che: 255 
involucro convesso: 68 
iperbolico, paraboloide: 15 
iperboloide 
- a due falde: 21 
- a una falda: 22 
- ellittico: 22 
iperpiano 
- equazione di un: 5 
- distanza da un: 7 
irrotazionale, campo: 376 
isolato, punto: 36 

jacobiana, matrice: 149 

kappa, curva: 139 

Lagrange, moltiplicatori di: 197 
laplaciano: 213 
lavoro di un campo lungo una curva: 125,378 
lemniscata 
- di Bernoulli: 141 
- di Gerano: 141 
limitato, insieme: 36 
limite di funzione: 50 
lineare, combinazione: 6 
- linearmente indipendenti, vettori: 6 
lipschitziana 
- funzione: 46,304 
- localmente, funzione: 304 
liscia 
- curva: 179 
- superficie: 180 
Lissajous, curva di: 140 
livello, curva di: 12 
locale 
- carta: 180 
- punto di massimo o minimo: 167 
localmente lipschitziana, funzione: 304 
logaritmica, spirale: 135 
lunghezza 
- di una curva: 104,105,109 
- di un insieme: 127 

massimale, intervallo: 295 
massimo o minimo locale, punto di: 167 
matrice 
- hessiana: 164 
- jacobiana: 149 
media aritmetica, armonica, geometrica: 205 
metacentrico, punto: 274 
metodo di variazione delle costanti: 326 
misurabile, insieme: 224 
Mobius, nastro di: 391 
moltiplicatori di Lagrange: 197 

nastro di Mobius: 391 
naturale, dominio di f : 21 
negativa, parte: 219 
Neumann, problema di: 332 
norma 
- di un vettore: 2 
- L2 : 438 
- uniforme: 415 
normale 
- esterna: 388 
- forma: 281 
- insieme: 225,226 
- esterno, versore: 388 
- esterno, vettore: 388 
normali, vettori: 181 

ortogonali 
- funzioni: 439 
- vettori: 4 

palla in !Rn : 30 
paraboloide 
- circolare: 13 
- di rotazione: 13 
- di trascinamento: 20 
- di traslazione: 20 
- ellittico: 14 
- iperbolico: 15 
parallelogramma generato: 9 
parametrica 
- equazione del piano: 7 
- equazione della retta: 6 
- superficie regolare: 180 
parametrizzazione di una curva: 78 
parametro d'arco: 107 
parte positiva e negativa: 219 
parzia le , derivata: 147 
Pascal, chiocciola di: 142 
Peano, teorema di esistenza di: 289,370 
piano 
- equazione in IR2 : 4 
- equazione parametrica: 7 
plurirettangolo: 223 
polari 
- coordinate nel piano: 27 
- coordinate cilindriche: 29 
- coordinate sferiche: 28 
poligonale: 102 
- lunghezza di una: 103 
positiva, parte: 219 
potenze, serie di: 430 
potenziale: 376 
problema 
- di Cauchy: 286 
- di Dirichlet, Neumann, Robin: 332 
prodotto 
- scalare in !Rn : 3 
- vettoriale in IR3 : 7 
proiezione di un insieme: 244 
propria, estensione: 295 
punto 
- aderente: 33 
- angoloso: 94 



- di accumulazione: 35 
- di bordo: 33 

di frontiera: 33 
- di massimo o minimo locale: 167 
- di sella: 169 
- esterno: 33 
- interno: 33 
- isolato: 36 
- metacentrico: 274 
- stazionario: 168 
puntuale, convergenza: 409,425 
puntualmente cquicontinua, successione: 424 

quadratica, forma: 44 
quadrato sommabile, successione a: 448 

raggio 
- di convergenza: 430 
- di curvatura: 99 
regolare 
- a tratti, funzione: 441 
- aperto: 387 
- curva: 93 
- superficie parametrica: 180 
retta 
- equazione parametrica: 6 
- tangente: 91 
riduzione degli integrali, teorema: 221,243,247 
riparametrizzazione di una curva: 81 
Robin, problema di: 332 
rotazione 
- degli assi: 26 

delle coordinate: 26 
- paraboloide di: 13 
- volume dei solidi di: 248 
rotore: 376 

scalare 
- curvatura: 99 
- prodotto in !Rn : 3 
- velocità: 89 
Schwarz 
- disuguaglianza di: 3 
- teorema d i: 164 
sconnesso, insieme: 37 
sella: 15 
- punto di: 169 
separabili, variabili: 317 
sequenziale, caratterizzazione dei compatti: 39 
serie 
- convergenza puntuale: 425 
- convergenza totale: 426 
- convergenza uniforme: 425 
- derivata: 433 
- derivazione per: 428 

di Fourier: 440 
- di potenze: 430 
- di Taylor: 435 
- integrazione per: 429 
sezione di un insieme: 244 
sferica, superficie: 16 
sferiche, coordinate polari: 28 
sistema di equazioni differenziali: 281 
- soluzione di: 281 

Indice analitico 465 

solidi di rotazione, volume dei: 248 
soluzione di equazione differenziale o sistema: 281 
- estensione di una: 295 
somma 
- di curve: 122 
- di Fourier: 440 
sommabile, successione a quadrato: 448 
sostegno di una curva: 76 
spazio tangente: 181 
spezzamento, formula di: 229 
spirale 
- di Archimede: 135 
- logaritmica: 135 
stazionario, punto: 168 
Stokes, teorema di: 392 
strati, integrazione per: 24 7 
successione 
- a quadrato sommabile: 448 
- che invade un insieme: 255 
- di funzioni: 408 

equicontinua: 424 
- equilimitata: 424 
- puntualmente equicontinua: 424 
superficiale, integrale: 264,275 
superficie 
- del ciindro: 17 
- del cono: 18 
- elemento di: 264 
- integrale su una: 264 
- liscia: 180 
- parametrica regolare: 180 
- sferica: 16 
Sylvester, criterio di: 172 

tangente 
- retta: 91 
- spazio: 181 
- versore: 90 
- vettore: 90,181 
Taylor 
- formula di: 166 
- serie di: 435 
Teorema 
- del differenziale totale: 158 
- del Dini: 188,192 
- della divergenza: 389 
- delle funzioni implicite: 188,192 
- di Ascoli-Arzelà: 424 
- di Bolzano-WeierstraB: 38 
- di cambiamento di variabile: 234 
- di Cauchy-Hadamard: 430 
- di Cauchy-Lipschitz: 304 
- di derivazione per serie: 428 

di esistenza di Peano: 289,370 
- di esistenza globale: 297,315 
- di Fermat: 167 
- di Heine-Cantor: 45 
- di incollamento: 291 
- di integrazione per serie: 429 
- di riduzione degli integrali: 221,243,247 
- di Schwarz: 164 
- di Stokes: 392 
- di unicità: 304 
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di WeierstraB: 43 
toro: 185 
totale 
- convergenza: 426 
- teorema del differenziale: 158 
trascinamento, paraboloide di: 20 
traslazione 
- degli assi: 23 
- di coordinate: 23 
- paraboloide di: 20 
trascurabile, insieme: 229 
tratti, funzione regolare a: 441 
triangolari , disuguglianze: 3 

unicità, teorema di Cauchy-Lipschitz: 304 
uniforme 
- convergenza: 414,425 
- sui compatti, convergenza : 417 
- norma: 415 
uniformemente continua, funzione: 45 

variabile, teorema di cambiamento di: 234 
variabili separabili, equazioni a: 317 
variazione delle costanti , metodo di: 326 
varietà: 180 
velocità 

- scalare: 89 
- vettore: 89 
versore 
- normale esterno: 388 
- tangente: 90,181 
vettore 
- accelerazione: 96 
- curvatura: 99 
- derivata: 74 

norma di un: 2 
normale esterno: 388 

- tangente a una curva: 90 
velocità: 89 

vettori: 1 
- combinazione lineare di: 6 
- linearmente indipendenti: 6 
- normali : 181 

ortogonali: 4 
vettoriale, prodotto: 7 
volume dei solidi di rotazione: 248 

WeicrstraB 
funzione di: 457 

- teorema di: 43 

Young, disuguaglianza di: 205 

l 
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