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Capitolo 1

Spazi Vettoriali

In questo capitolo introdurremo la nozione di spazio vettoriale. Per motivare
le definizioni che daremo tratteremo dapprima il caso dei cosiddetti “vettori
geometrici.” Daremo poi la definizione generale di uno spazio vettoriale su
un campo e studieremo le sue principali proprietà. Introdurremo i concetti
fondamentali di vettori linearmente indipendenti, di sistemi di generatori e di
basi di uno spazio vettoriale. Studieremo poi in dettaglio le proprietà degli spazi
vettoriali di dimensione finita.

Prima di addentrarci nello studio degli spazi vettoriali riteniamo utile ri-
chiamare brevemente alcuni fatti fondamentali riguardanti i sistemi di equazioni
lineari.

1.1 Sistemi di equazioni lineari

In questa sezione studieremo i sistemi di equazioni lineari a coefficienti in un
campo, descrivendo un metodo elementare per determinare le loro soluzioni.
La trattazione approfondita della teoria dei sistemi lineari verrà sviluppata in
un capitolo successivo, quando avremo a disposizione gli strumenti di algebra
lineare necessari.

Definizione 1.1.1. Un sistema di equazioni lineari a coefficienti in un campo
K è un insieme S di equazioni del tipo

S :


a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

(1.1.1)

con aij , bh ∈ K. Gli elementi aij sono detti i coefficienti del sistema, mentre
b1, . . . , bm sono i termini noti. Le x1, . . . , xn sono le incognite del sistema. Ri-
solvere il sistema S significa determinare tutti i valori delle incognite x1, . . . , xn

1
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che soddisfano contemporaneamente tutte le equazioni di S. Se tutti i termini
noti sono nulli il sistema è detto omogeneo.

Descriveremo ora il metodo più semplice che si possa immaginare per risol-
vere un generico sistema di m equazioni lineari in n incognite. Questo metodo,
noto come il “metodo della sostituzione,” può essere sommariamente descritto
come segue:

Passo 1. Dato il sistema lineare S, scegliamo una qualunque delle sue equazioni,
ad esempio la i-esima,

ai1x1 + ai2x2 + · · ·+ aijxj + · · ·+ ainxn = bi

e scegliamo una delle incognite xj che compaiono effettivamente in tale equa-
zione. Ricaviamo xj in funzione delle incognite rimanenti:

xj =
bi − ai1x1 − · · · − ainxn

aij
.

Passo 2. Sostituiamo l’espressione trovata per xj nelle rimanenti m− 1 equa-
zioni, ottenendo cos̀ı un nuovo sistema S′ composto da m− 1 equazioni in n− 1
incognite.
Passo 3. Se il sistema S′ contiene ancora delle incognite, ritorniamo al Passo 1
con S′ al posto di S. In caso contrario le soluzioni del sistema, qualora esista-
no, possono essere ottenute con una semplice sostituzione all’indietro, partendo
dall’ultima incognita che è stata determinata.

Vediamo ora di chiarire l’algoritmo appena descritto analizzando in dettaglio
tre esempi concreti, che rappresentano le tre situazioni tipiche che si possono
presentare.

Esempio 1. (Sistema privo di soluzioni) Consideriamo il seguente sistema di
equazioni lineari, a coefficienti nel campo Q:

S :


2x1 − x2 = 1
x1 + 4x2 = −2
3x1 − 2x2 = 3

Scegliamo la seconda equazione e da questa ricaviamo x1, ottenendo x1 =
−2 − 4x2. Sostituiamo questa espressione nella prima e nella terza equazione,
ottenendo il sistema

S′ :

{
−9x2 = 5
−14x2 = 9

Consideriamo ora il sistema S′ e ricaviamo x2 dalla prima equazione: x2 =
−5/9. Sostituendo questo valore nella terza equazione si ottiene l’uguaglianza
−14 (−5/9) = 9, che non è verificata. Da ciò si deduce che il sistema S non
ammette soluzioni.

Esempio 2. (Sistema che ammette un’unica soluzione) Consideriamo ora il
seguente sistema lineare, a coefficienti in Q:

S :

{
3x1 − x2 = 2
2x1 + 5x2 = −3
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Dalla prima equazione ricaviamo x2 = 3x1 − 2. Se sostituiamo questa espres-
sione nella seconda equazione otteniamo il “sistema” (che consiste di una sola
equazione)

S′ : 17x1 = 7.

Da questa equazione si ottiene x1 = 7/17. Ora non resta che “sostituire all’indie-
tro” il valore di x1 appena trovato nella precedente espressione per x2, ottenendo
x2 = −13/17. Si conclude pertanto che il sistema S ammette un’unica soluzione
data da

x1 = 7/17, x2 = −13/17.

Esempio 3. (Sistema con infinite soluzioni) Consideriamo il seguente sistema
di equazioni lineari, a coefficienti nel campo Q:

S :

{
3x1 + 2x2 − x3 + x4 = 2
2x1 + 2x3 − 3x4 = 0

Dalla prima equazione ricaviamo x3 = 3x1 + 2x2 + x4 − 2. Sostituiamo questa
espressione nella seconda equazione ottenendo il “sistema”

S′ : 8x1 + 4x2 − x4 = 4.

Da questa equazione possiamo ricavare, ad esempio, x4 = 8x1+4x2−4. Arrivati
a questo punto ci dobbiamo arrestare, dato che non ci sono altre equazioni
che possano essere utilizzate. Abbiamo pertanto determinato il valore di x4

in funzione delle incognite x1 e x2 che rimangono libere di assumere qualsiasi
valore. Sostituendo all’indietro l’espressione di x4 nella precedente espressione
per l’incognita x3, otteniamo x3 = 11x1 + 6x2 − 6.

In conclusione, possiamo affermare che il sistema S ammette infinite solu-
zioni, le quali dipendono da due parametri1 liberi di variare:

x1 qualsiasi
x2 qualsiasi
x3 = 11x1 + 6x2 − 6
x4 = 8x1 + 4x2 − 4

Naturalmente avremmo potuto seguire una strada diversa e ricavare, ad esempio,
le incognite x1 e x2 in funzione di x3 e x4. In questo modo avremmo ottenuto una
diversa espressione per le soluzioni del sistema S. Ovviamente tutte le possibili
espressioni per le soluzioni di uno stesso sistema sono tra loro equivalenti.

Esercizi

Esercizio 1.1.1. Risolvere il seguente sistema a coefficienti in Q:{
3x− 2y = 1

2x+ 5y = −1.

1Questo fatto viene a volte espresso affermando che il sistema ammette ∞2 soluzioni.
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Esercizio 1.1.2. Risolvere il seguente sistema a coefficienti in Q:
2x+ 3y + 4z = 3

4x− y − 2z = 1

5x− 3y + z = −2.

Esercizio 1.1.3. Risolvere il seguente sistema a coefficienti in Q:{
5x− 2y + z = 1

3x− 4y − 2z = 3.

Esercizio 1.1.4. Risolvere il seguente sistema a coefficienti in Z/2Z:
x+ y + z = 0

x+ z = 1

x+ y = 1.

Esercizio 1.1.5. Risolvere il seguente sistema a coefficienti in Z/5Z:
x+ 3y + 2z = 3

2x+ z = 2

3x+ y + 4z = 3.

Esercizio 1.1.6. Risolvere il seguente sistema a coefficienti in Z/11Z:
5x+ y + 2z + 3w = 1

2x+ 7y + z + 5w = 4

8x+ 2y + 3z + w = 7.

Esercizio 1.1.7. Risolvere e discutere in funzione dei valori di m ∈ Q il seguente
sistema: {

x+ (m+ 1)y = m+ 2

mx+ (m+ 4)y = 3.

Esercizio 1.1.8. Risolvere e discutere in funzione dei valori di m ∈ R il seguente
sistema: {

mx+ (m− 1)y = m+ 2

(m+ 1)x−my = 5m+ 3.

Esercizio 1.1.9. Risolvere e discutere in funzione dei valori di a ∈ R il seguente
sistema: 

x+ (a− 1)y + (2− a)z = a+ 5

x+ ay + 2z = 4

x+ (a− 2)y + (2− 2a2)z = 6.

Esercizio 1.1.10. Al variare di λ ∈ Q si dica quante soluzioni vi sono per il seguente
sistema di equazioni lineari:

(λ− 1)x1 + 2x2 + 3x4 = 0

λx2 + (λ+ 1)x4 = 1

x1 + λx3 + x4 = 0

(λ− 1)x1 + x4 = 0.

Esercizio 1.1.11. Dato il sistema di equazioni lineari
λx− µy − µz = µ

µx− λy = λ

x− y − z = 0

si dica per quali valori di λ, µ ∈ R esso è risolubile e per quali la soluzione è unica.
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1.2 Vettori geometrici

Il concetto di vettore viene spesso introdotto ricorrendo a delle motivazioni che
provengono dalla fisica. In fisica infatti, accanto a grandezze che possono essere
adeguatamente espresse con un singolo numero, come ad esempio la tempera-
tura o il tempo, ce ne sono altre la cui descrizione richiede più informazioni.
Per descrivere, ad esempio, lo spostamento di un punto, la sola informazione
numerica relativa alla “misura” di tale spostamento non basta; è necessario spe-
cificare anche la retta lungo la quale avviene lo spostamento e, per finire, occorre
specificare anche il verso di percorrenza di tale retta. In modo analogo, per spe-
cificare una forza, occorre fornire il valore numerico dell’entità di tale forza (in
una qualche unità di misura) assieme alla direzione e al verso di applicazione
della forza (in molti casi ciò non è ancora sufficiente, ed occorre specificare anche
il punto di applicazione della forza).

Per motivare le considerazioni che faremo nel seguito, ricorreremo al concetto
geometrico di “movimento” o, più precisamente, alla nozione di traslazione in
un piano.

In base a ciò che abbiamo appena detto, per descrivere una traslazione è
necessario specificare una retta (la direzione in cui avviene lo spostamento), un
verso di percorrenza di tale retta e, infine, un numero che, in qualche modo,
misura l’entità di tale traslazione.

v

Un modo particolarmente comodo per esprimere graficamen-
te tutte queste informazioni è quello di utilizzare un segmento
orientato v.

La retta su cui giace questo segmento individua la direzione,
la freccia posta in una delle due estremità specifica il verso di percorrenza e la
lunghezza del segmento stesso (espressa in qualche unità di misura) determina
l’entità dello spostamento.

Un oggetto di questo tipo è chiamato vettore. Dato un vettore v, rappre-
sentato da un segmento orientato come sopra, la lunghezza di tale segmento è
detta il modulo (o la norma) di v, ed è indicata con |v| (oppure con ‖v‖).

A questo punto è forse necessaria una precisazione. Un vettore v non descri-
ve lo spostamento di un qualche punto fissato A verso un qualche altro punto
B; esso descrive una traslazione di tutto il piano (o di tutto lo spazio). In tal
senso, non ha alcuna importanza “dove” si disegni il segmento che rappresenta
graficamente il vettore. In altre parole, due diversi segmenti orientati che ab-
biamo, tuttavia, la stessa direzione (cioè che si trovino su due rette parallele),
lo stesso verso e la stessa lunghezza, sono due rappresentazioni grafiche diverse
dello stesso vettore.

Questa idea può essere resa matematicamente precisa nel modo seguente.

Definizione 1.2.1. Due segmenti orientati sono detti equipollenti se hanno la
stessa direzione (cioè sono contenuti in due rette parallele), lo stesso verso e la
stessa lunghezza.

Si verifica facilmente che la relazione di equipollenza è una relazione di
equivalenza nell’insieme di tutti i segmenti orientati. Possiamo quindi dare
la seguente definizione di vettore:

Definizione 1.2.2. Un vettore (geometrico) è una classe di equipollenza di
segmenti orientati.
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Osservazione 1.2.3. Come abbiamo già fatto notare, a volte è importante spe-
cificare anche il punto in cui un vettore si intende “applicato” (come nel caso
di una forza). Ciò porta alla definizione della nozione di vettore applicato, che
deve essere inteso come una coppia (P, v) costituita da un punto P (il punto di
applicazione) e da un vettore v.

Nell’insieme dei vettori geometrici sono definite, in modo del tutto naturale,
due operazioni. La prima consiste nella moltiplicazione di un vettore v per un
numero (reale) λ. Se v rappresenta una determinata traslazione e se λ > 0, il
vettore λv rappresenta una traslazione che avviene nella stessa direzione e nello
stesso verso di quella rappresentata da v, ma determina uno spostamento pari
a λ volte quello effettuato dalla traslazione rappresentata da v. Il vettore λv è
quindi rappresentato da un segmento orientato che ha la stessa direzione e verso
di v, ma una lunghezza pari alla lunghezza di v moltiplicata per λ.

v
1
2 v 2v

Se λ = 0 si ottiene un vettore di lunghezza nulla, che corrisponde a una “tra-
slazione nulla.” In questo caso le nozioni di direzione e verso non hanno più
alcun significato; il segmento orientato si riduce a un punto, il quale non ha più
alcuna direzione e alcun verso.

v

−v

Se λ < 0 si intende che il vettore λv rappresenta una trasla-
zione che avviene nella stessa direzione ma nel verso opposto a
quella rappresentata da v, per uno spostamento pari al valore
assoluto di λ moltiplicato per lo spostamento effettuato dalla
traslazione rappresentata da v.

In questo modo si ha che la composizione delle traslazioni corrispondenti ai
vettori λv e −λv è la traslazione nulla: λv + (−λv) = 0.

A

B

C

u

v

w

La seconda operazione che consideriamo è la somma di
due vettori; essa corrisponde alla composizione di due tra-
slazioni. Se u e v sono due vettori, la loro somma w = u+v
è, per definizione, il vettore che rappresenta la traslazione
che si ottiene effettuando prima la traslazione rappresenta-
ta da u e poi quella rappresentata da v. L’effetto di questa
composizione di traslazioni è rappresentato nella figura a lato.

Se la traslazione rappresentata da u porta il punto A nel punto B e la trasla-
zione rappresentata da v porta il punto B nel punto C, allora la composizione
delle due traslazioni, rappresentata da w = u+v, porta il punto A nel punto C.

A

B

C

D

u

v

u

v
w

Si verifica immediatamente che la somma di vettori go-
de della proprietà commutativa, cioè u + v = v + u, come
si può vedere nella figura a fianco.

Questa figura illustra la cosiddetta regola del paral-
lelogramma: il vettore w = u + v è la diagonale del
parallelogramma che ha come lati i vettori u e v.

Se fissiamo un sistema di coordinate cartesiane ortogo-
nali OXY nel piano, ogni vettore v può essere rappresen-
tato da una coppia di numeri reali (vx, vy), che individuano le proiezioni di v
sugli assi coordinati (vedi figura 1.1).

Possiamo quindi identificare il vettore v con la coppia (vx, vy) ∈ R2. In
termini di questa identificazione, la somma dei due vettori u = (ux, uy) e v =
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Y

X

v

vx

vy

Figura 1.1: Decomposizione di un vettore nelle sue componenti

(vx, vy) è data da
u+ v = (ux + vx, uy + vy),

mentre il prodotto di un numero reale λ per il vettore v = (vx, vy) è dato da

λv = (λvx, λvy).

Usando queste formule è ora immediato verificare che la somma di vettori gode
delle proprietà associativa e commutativa. Esiste poi un elemento neutro per la
somma, il vettore nullo, le cui componenti sono tutte nulle, e che indicheremo
con 0 = (0, 0). Inoltre, per ogni vettore v = (vx, vy) esiste il suo opposto
−v = (−vx,−vy), tale che v + (−v) = 0.

Tutto ciò si può riassumere dicendo che l’insieme dei vettori, con l’operazione
di somma, forma un gruppo abeliano.

Consideriamo ora l’operazione di prodotto tra un numero reale e un vettore.
È immediato verificare che questa operazione soddisfa le seguenti proprietà:

(i) (λµ)v = λ(µv),

(ii) λ(u+ v) = λu+ λv,

(iii) (λ+ µ)v = λv + µv,

(iv) 1v = v,

per ogni λ, µ ∈ R e per ogni coppia di vettori u e v.
L’insieme dei vettori ha quindi una struttura più ricca di quella di un sem-

plice gruppo abeliano. A questo tipo di struttura daremo il nome di spazio
vettoriale.

Prima di concludere osserviamo che delle considerazioni del tutto analoghe si
possono fare per vettori nell’usuale spazio tridimensionale. Ad ogni tale vettore
v si può associare una terna di numeri (vx, vy, vz) ∈ R3, i quali rappresentano
le proiezioni di v sui tre assi coordinati di un opportuno sistema di riferimento
OXY Z fissato, come mostrato nella figura 1.2.

Si ottiene in questo modo un’identificazione tra vettori dello spazio tridimen-
sionale e terne di numeri reali, in termini della quale la somma di due vettori
u = (ux, uy, uz) e v = (vx, vy, vz) è data da

u+ v = (ux + vx, uy + vy, uz + vz),

e il prodotto di un numero reale λ per un vettore v = (vx, vy, vz) è dato da

λv = (λvx, λvy, λvz).
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X

Y

Z

v

vx

vy

vz

Figura 1.2: Decomposizione di un vettore nelle sue componenti

Osservazione 1.2.4. Prendendo spunto dalle considerazioni precedenti possiamo
definire dei vettori a n componenti (vettori di uno spazio n-dimensionale) sem-
plicemente identificandoli con delle n-uple di numeri reali, v = (a1, a2, . . . , an) ∈
Rn. Le operazioni di somma di due vettori e di prodotto di un numero reale
per un vettore saranno definite in modo analogo a quanto abbiamo già visto nel
caso di R2 e di R3:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)
e

λ (a1, a2, . . . , an) = (λa1, λa2, . . . , λan).

Questa costruzione verrà ampiamente studiata (e opportunamente generalizza-
ta) nelle prossime sezioni.

1.3 Spazi vettoriali

Nella sezione precedente abbiamo visto che i vettori sono degli “oggetti” che
possono essere sommati tra loro e possono anche essere moltiplicati per dei
numeri, in modo tale che le operazioni cos̀ı definite soddisfino tutta una serie
di proprietà, essenzialmente analoghe alle usuali proprietà che valgono per la
somma e il prodotto tra numeri.

Se ora concentriamo la nostra attenzione non tanto sulla natura di tali “og-
getti” (definiti in precedenza come classi di equipollenza di segmenti orientati),
quanto piuttosto sull’esistenza di determinate operazioni tra di essi e sulle pro-
prietà che, ragionevolmente, dovrebbero essere soddisfatte da queste operazioni,
possiamo fornire una definizione astratta di “insieme di vettori” come un qual-
che insieme nel quale sono definite un’operazione di somma tra i suoi elementi
e un’operazione di prodotto tra un elemento di tale insieme e un numero, in
modo tale che siano soddisfatte delle proprietà analoghe a quelle elencate nella
sezione precedente.
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Cerchiamo ora di rendere precise le idee espresse fin’ora. Sia K un campo2

(tanto per fissare le idee, si può supporre che K sia il campo Q dei numeri
razionali, oppure il campo R dei numeri reali, oppure ancora il campo C dei
numeri complessi).

Definizione 1.3.1. Uno spazio vettoriale su K è un insieme non vuoto V dotato
di un’operazione +V , detta somma,

+V : V × V → V, (v1, v2) 7→ v1 +V v2,

e di un’operazione ·V

·V : K × V → V, (λ, v) 7→ λ ·V v,

detta prodotto per uno scalare, che soddisfano le seguenti proprietà: per ogni
λ, λ1, λ2 ∈ K e ogni v, v1, v2 ∈ V si ha:

(1) (v1 +V v2) +V v3 = v1 +V (v2 +V v3);

(2) v1 +V v2 = v2 +V v1;

(3) esiste un elemento 0V ∈ V tale che v +V 0V = 0V +V v = v;

(4) per ogni v ∈ V esiste un elemento v′ ∈ V tale che v+V v
′ = v′+V v = 0V .

Tale elemento v′ viene indicato con −v e detto l’opposto di v;

(5) λ ·V (v1 +V v2) = (λ ·V v1) +V (λ ·V v2);

(6) (λ1 + λ2) ·V v = (λ1 ·V v) +V (λ2 ·V v);

(7) (λ1λ2) ·V v = λ1 ·V (λ2 ·V v);

(8) 1 ·V v = v.

Gli elementi di uno spazio vettoriale V sono detti vettori. Gli elementi del
campo K sono detti scalari.

Osservazione 1.3.2. Dalle proprietà sopra elencate segue che, in ogni spazio
vettoriale V , si ha 0 ·V v = 0V , per ogni v ∈ V . Infatti si ha:

v + 0 ·V v = 1 ·V v + 0 ·V v = (1 + 0) ·V v = v.

Sommando ad ambo i membri di questa uguaglianza l’opposto di v, si ottiene

−v + v + 0 ·V v = −v + v = 0V ,

da cui segue 0 ·V v = 0V . Da ciò possiamo ora dedurre che (−1) ·V v = −v.
Infatti, si ha:

0V = 0 ·V v = (1− 1) ·V v = 1 ·V v + (−1) ·V v = v + (−1) ·V v,

da cui segue che il vettore (−1) ·V v è l’opposto di v.

D’ora in poi l’operazione di somma in uno spazio vettoriale V sarà indicata
semplicemente con + mentre il simbolo del prodotto per uno scalare sarà omesso:
si scriverà quindi v1 + v2 al posto di v1 +V v2 e λv al posto di λ ·V v.

2Ricordiamo che un campo è un insieme dotato di due operazioni, che indicheremo con +
e ·, le quali soddisfano delle proprietà del tutto analoghe a quelle della somma e del prodotto
di numeri razionali. Più precisamente, un campo è un anello commutativo con unità in cui
ogni elemento diverso da 0 ammette un inverso moltiplicativo.
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Esempio 1.3.3. Sia V = Kn e definiamo un’operazione di somma tra elementi
di V ponendo

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn),

e un’operazione di prodotto tra elementi dal campo K ed elementi di V ponendo

λ (a1, a2, . . . , an) = (λa1, λa2, . . . , λan).

È immediato verificare che V , con le operazioni appena definite, è uno spazio
vettoriale su K.

Esempio 1.3.4. Sia K un campo e indichiamo con K[X] l’insieme dei polinomi
a coefficienti in K nell’indeterminata X. Un generico elemento di K[X] si scrive
nella forma

p(X) = a0 + a1X + a2X
2 + · · ·+ anX

n,

per qualche n ≥ 0, ove tutti i coefficienti ai sono elementi di K.
Rispetto alle operazioni di somma di polinomi e di prodotto di un polinomio

per un elemento di K, l’insieme K[X] è uno spazio vettoriale.

Esempio 1.3.5. Sia K un campo e sia S un insieme (non vuoto) qualsiasi.
Indichiamo con KS l’insieme di tutte le funzioni f : S → K.

Date due funzioni f, g ∈ KS possiamo definire la loro somma ponendo

(f + g)(s) = f(s) + g(s),

e possiamo definire il prodotto di una funzione f per uno scalare λ ∈ K ponendo,

(λf)(s) = λ(f(s)),

per ogni s ∈ S.
Anche in questo caso è immediato verificare che l’insieme KS , con le opera-

zioni appena definite, è uno spazio vettoriale su K.

Esempio 1.3.6. Sia K = Q il campo dei numeri razionali e sia V = R. Rispetto
alle usuali operazioni di somma e prodotto tra numeri, V risulta essere uno
spazio vettoriale su K.

Più in generale, per ogni campo K e ogni estensione di campi K ⊂ L, L
risulta essere uno spazio vettoriale su K.

Osservazione 1.3.7. Vogliamo far notare che, nella definizione di spazio vetto-
riale, la proprietà (8) è necessaria. Infatti l’uguaglianza 1 ·V v = v non discende
dalle prime sette proprietà, come si può vedere dal seguente esempio.

Sia V = Kn. Definiamo la somma di vettori componente per componente
(come nell’Esempio 1.3.3) e definiamo il prodotto di un vettore per un elemento
di K come segue:

λ (a1, a2, . . . , an) = (0, 0, . . . , 0),

per ogni λ ∈ K e ogni (a1, a2, . . . , an) ∈ V .
È immediato verificare che le due operazioni cos̀ı definite verificano tutte le

proprietà elencate nella definizione di spazio vettoriale, ad eccezione della (8).
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Osservazione 1.3.8. Si noti che nella definizione di spazio vettoriale non si usa
mai il fatto che K sia un campo.

Una definizione del tutto analoga si può dare supponendo solo che K sia un
anello commutativo (con unità). L’analogo di uno spazio vettoriale è chiamato,
in questo caso, un modulo sull’anello K.

Tuttavia, come avremo occasione di osservare in seguito, molti risultati che
dimostreremo per gli spazi vettoriali dipendono in modo essenziale dal fatto che
K sia un campo e non valgono, invece, per un modulo su un anello. In effetti,
la teoria dei moduli risulta essere profondamente diversa dalla teoria degli spazi
vettoriali.

Terminiamo questa sezione con la seguente definizione:

Definizione 1.3.9. Sia V uno spazio vettoriale suK. Una combinazione lineare
di elementi di V è una somma finita del tipo

λ1v1 + λ2v2 + · · ·+ λnvn,

con λ1, . . . , λn ∈ K e v1, . . . , vn ∈ V .

1.3.1 Sottospazi vettoriali

Sia V uno spazio vettoriale definito sul campo K.

Definizione 1.3.10. Un sottospazio vettoriale W di V è un sottoinsieme non
vuoto W ⊆ V tale che la restrizione a W delle operazioni di somma e di prodotto
per uno scalare definite su V rende W uno spazio vettoriale sul campo K.

Dalla definizione si deduce che, affinché un sottoinsieme non vuoto W di V
sia un sottospazio vettoriale, è necessario e sufficiente che valgano le seguenti
proprietà:

(1) per ogni w1, w2 ∈W , si ha w1 + w2 ∈W ;

(2) per ogni w ∈W , anche −w ∈W ;

(3) 0V ∈W ;

(4) per ogni λ ∈ K e ogni w ∈W , si ha λw ∈W .

In effetti, è sufficiente richiedere che W sia chiuso per le operazioni di somma e
di prodotto per uno scalare, cioè che si abbia

w1 + w2 ∈W, ∀w1, w2 ∈W
e

λw ∈W, ∀λ ∈ K,∀w ∈W.

Queste due condizioni possono essere raggruppate in una sola:

Proposizione 1.3.11. Un sottoinsieme non vuoto W di uno spazio vettoriale
V sul campo K è un sottospazio vettoriale di V se e solo se

λ1w1 + λ2w2 ∈W,

per ogni λ1, λ2 ∈ K e ogni w1, w2 ∈W .
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Dimostrazione. È immediato verificare che, sotto questa ipotesi, le operazioni
di somma di vettori e di prodotto di un vettore per uno scalare definite in V
rendono W un sottospazio vettoriale.

Osservazione 1.3.12. Ogni spazio vettoriale V è, naturalmente, un sottospazio
vettoriale di sé stesso. Inoltre {0V } è banalmente un sottospazio vettoriale di
V , detto il sottospazio nullo. A volte scriveremo semplicemente 0 per indicare
il sottospazio {0V } (il significato sarà chiaro dal contesto).

Esempio 1.3.13. Sia V = Kn e sia W l’insieme dei vettori w = (x1, x2, . . . , xn)
che sono soluzioni di un’equazione lineare del tipo

a1x1 + a2x2 + · · ·+ anxn = 0,

con a1, . . . , an ∈ K fissati.
È immediato verificare che una combinazione lineare di due elementi di W

fornisce ancora una soluzione della precedente equazione, quindi appartiene a
W . Ciò significa che W è un sottospazio vettoriale di V .

Al contrario, l’insieme delle soluzioni di un’equazione del tipo

a1x1 + a2x2 + · · ·+ anxn = k,

con k 6= 0, non è un sottospazio vettoriale di V , dato che non contiene il vettore
nullo 0.

Proposizione 1.3.14. Se {Wi}i∈I è una famiglia di sottospazi vettoriali di uno
spazio vettoriale V , allora anche la loro intersezione W

W =
⋂
i∈I

Wi

è un sottospazio vettoriale di V .

Dimostrazione. Siano λ1, λ2 ∈ K e w1, w2 ∈ W . Allora w1, w2 ∈ Wi, per ogni
i ∈ I, quindi anche λ1w1 + λ2w2 ∈Wi, dato che Wi è un sottospazio vettoriale
di V . Da ciò segue che λ1w1 + λ2w2 ∈W .

Osservazione 1.3.15. Una proprietà analoga non vale invece per l’unione: se
W1 e W2 sono due sottospazi vettoriali di V , la loro unione W1 ∪W2 non è, in
generale, un sottospazio vettoriale di V .

A titolo di esempio, consideriamo lo spazio vettoriale V = K2. Poniamo
W1 = {(a, 0) | a ∈ K} e W2 = {(0, b) | b ∈ K}. È immediato verificare che essi
sono due sottospazi vettoriali di V . Si ha (1, 0) ∈ W1 e (0, 1) ∈ W2, tuttavia la
loro somma (1, 1) non appartiene né a W1 né a W2. Ciò dimostra che l’insieme
W1 ∪ W2 non è chiuso per l’operazione di somma, quindi non può essere un
sottospazio vettoriale.

Definizione 1.3.16. Sia S un sottoinsieme di uno spazio vettoriale V . Il sot-
tospazio vettoriale generato da S, che indicheremo con L(S), è il più piccolo3

sottospazio vettoriale di V contenente S (se S è vuoto si ha L(S) = {0}).
3Più piccolo, inteso rispetto alla relazione d’ordine data dall’inclusione.
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Dato che l’intersezione di una famiglia di sottospazi vettoriali di V è un sotto-
spazio vettoriale di V , è immediato verificare che L(S) coincide con l’intersezione
di tutti i sottospazi vettoriali di V che contengono S.

Un’altra descrizione, ancora più esplicita, di L(S) è data dalla seguente
proposizione.

Proposizione 1.3.17. Il sottospazio vettoriale L(S) generato da S è l’insieme
di tutte le combinazioni lineari finite di elementi di S, cioè

L(S) =
{ n∑
i=1

λivi |n ∈ N, λi ∈ K, vi ∈ S
}
,

dove si intende che la combinazione lineare di zero elementi di S è il vettore
nullo 0 ∈ V .

Dimostrazione. Poniamo

Λ(S) =
{ n∑
i=1

λivi |n ∈ N, λi ∈ K, vi ∈ S
}
.

Ovviamente S ⊆ Λ(S). Notiamo che ogni sottospazio vettoriale di V contenente
S contiene anche tutte le combinazioni lineari finite di elementi di S, quindi
contiene Λ(S). Da ciò segue che Λ(S) è contenuto nell’intersezione di tutti i
sottospazi vettoriali di V che contengono S, quindi Λ(S) ⊆ L(S).

D’altra parte è evidente che Λ(S) è anch’esso un sottospazio vettoriale di V :
infatti la combinazione lineare di due combinazioni lineari finite di elementi di
S è essa stessa una combinazione lineare finita di elementi di S. Poiché L(S) è il
più piccolo sottospazio vettoriale di V contenente S, si ha dunque L(S) ⊆ Λ(S),
da cui segue che L(S) = Λ(S).

Osservazione 1.3.18. Se S = {v1, v2, . . . , vn}, il sottospazio vettoriale L(S) viene
anche indicato con 〈v1, v2, . . . , vn〉.

Come abbiamo già osservato, nel contesto degli spazi vettoriali l’operazio-
ne di unione di due sottospazi non ha delle buone proprietà: infatti l’unione
di due sottospazi vettoriali non è, in generale, un sottospazio vettoriale (vedi
l’Osservazione 1.3.15). Tale operazione viene quindi sostituita dall’operazione
di somma:

Definizione 1.3.19. Se W1 e W2 sono sottospazi vettoriali di V , la loro somma
W1 + W2 è il sottospazio vettoriale L(W1 ∪W2) generato da W1 ∪W2. Tale
definizione si generalizza, in modo ovvio, al caso della somma di una famiglia
qualsiasi (anche infinita) di sottospazi di V .

Una descrizione esplicita della somma di due sottospazi vettoriali è fornita
dalla seguente proposizione:

Proposizione 1.3.20. Si ha

W1 +W2 = {w1 + w2 |w1 ∈W1, w2 ∈W2}.

Dimostrazione. È immediato verificare che l’insieme

{w1 + w2 |w1 ∈W1, w2 ∈W2}
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è un sottospazio vettoriale di V che contiene W1 e W2, quindi contiene anche
la loro unione. Poiché W1 + W2 è, per definizione, il più piccolo sottospazio
vettoriale di V contenente W1 ∪W2, si ha l’inclusione

W1 +W2 ⊆ {w1 + w2 |w1 ∈W1, w2 ∈W2}.

D’altra parte, ogni vettore del tipo w1 +w2 appartiene necessariamente a W1 +
W2. Questo dimostra che vale anche l’inclusione opposta e quindi l’uguaglianza.

Osservazione 1.3.21. Un risultato del tutto analogo vale anche per la somma di
una famiglia finita di sottospazi vettoriali di V . Si ha cioè

W1 + · · ·+Wn = {w1 + · · ·+ wn |wi ∈Wi, per i = 1, . . . , n}.

Nel caso invece di una famiglia infinita {Wi}i∈I di sottospazi vettoriali, è facile
verificare che la somma ∑

i∈I
Wi

coincide con l’insieme di tutte le somme finite di vettori wi ∈Wi.

Definizione 1.3.22. La somma di due sottospazi vettoriali W1 e W2 di V si
dice diretta, e si indica con W1 ⊕W2, se W1 ∩W2 = {0}.

Più in generale, la somma di una famiglia qualsiasi {Wi}i∈I di sottospazi
vettoriali di V si dice diretta se Wi ∩Wj = {0}, per ogni i, j ∈ I con i 6= j. La
somma diretta di una famiglia {Wi}i∈I di sottospazi di V si indica con⊕

i∈I
Wi.

Proposizione 1.3.23. Ogni vettore v ∈W1⊕W2 si scrive in modo unico nella
forma v = w1 + w2, per qualche w1 ∈ W1 e qualche w2 ∈ W2 (un risultato
analogo vale anche per una somma diretta di un numero qualunque di sottospazi
di V ).

Dimostrazione. Nella proposizione precedente abbiamo visto che ogni v ∈W1⊕
W2 si può scrivere nella forma v = w1 + w2, per qualche w1 ∈ W1 e qualche
w2 ∈W2. Dobbiamo solo dimostrare che tale scrittura è unica.

Supponiamo che si abbia

v = w1 + w2 = w′1 + w′2,

con w1, w
′
1 ∈W1 e w2, w

′
2 ∈W2. Allora si ha

w1 − w′1 = w′2 − w2 ∈W1 ∩W2.

Poiché la somma di W1 e W2 è diretta, si ha W1 ∩W2 = {0}, quindi w1−w′1 =
w′2 − w2 = 0, da cui si deduce che w1 = w′1 e w2 = w′2.

Osservazione 1.3.24. La somma diretta di due sottospazi di uno spazio vettoriale
V , definita in precedenza, è anche detta somma diretta interna. Ora vedremo
come sia possibile definire anche la somma diretta di due spazi vettoriali V e W
qualunque, in modo tale che V e W si possano poi identificare con due sottospazi
vettoriali di V ⊕W . Una tale somma è detta somma diretta esterna.
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Siano dunque V e W due spazi vettoriali sul campo K. Sul prodotto
cartesiano V ×W definiamo un’operazione di somma ponendo

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2),

e un’operazione di prodotto per un elemento di K ponendo

λ(v1, w1) = (λv1, λw1),

per ogni (v1, w1), (v2, w2) ∈ V × W e ogni λ ∈ K. È immediato verificare
che queste operazioni definiscono una struttura di spazio vettoriale su V ×W .
Indichiamo con V ⊕W lo spazio vettoriale cos̀ı ottenuto.

Le due funzioni iV : V → V ⊕ W , v 7→ (v,0W ) e iW : W → V ⊕ W ,
w 7→ (0V , w) sono iniettive e permettono di identificare i due spazi vettoriali V
e W con i due sottospazi vettoriali iV (V ) = V × {0W } e iW (W ) = {0V } ×W
di V ⊕W . Si verifica facilmente che lo spazio vettoriale V ⊕W appena definito
coincide con la somma diretta (interna) dei suoi due sottospazi iV (V ) e iW (W ).

Più in generale, se V1, V2, . . . , Vn sono una famiglia finita di spazi vettoriali
sul campo K è possibile definire, in modo naturale, una struttura di spazio
vettoriale sul prodotto cartesiano V1 × V2 × · · · × Vn, ponendo

(v1, v2, . . . , vn) + (w1, w2, . . . , wn) = (v1 + w1, v2 + w2, . . . , vn + wn)
e

λ(v1, v2, . . . , vn) = (λv1, λv2, . . . , λvn),

per ogni λ ∈ K e ogni (v1, . . . , vn), (w1, . . . , wn) ∈ V1×· · ·×Vn. Ogni Vi si iden-
tifica in modo naturale con il sottospazio V ′i del prodotto cartesiano V1×· · ·×Vn
che consiste di tutti gli elementi del tipo (0, . . . , 0, v, 0, . . . , 0), al variare di v ∈ Vi
(il vettore v si trova nella i-esima posizione). È ora immediato verificare che la
somma diretta di tutti questi sottospazi V ′i coincide con il prodotto cartesiano
V1 × · · · × Vn. Si definisce pertanto la somma diretta esterna della famiglia di
spazi vettoriali V1, V2, . . . , Vn ponendo

n⊕
i=1

Vi =
n∏
i=1

Vi.

In conclusione, possiamo riassumere quanto visto finora, dicendo che, nel caso di
una famiglia finita di spazi vettoriali, la somma diretta coincide con il prodotto
cartesiano. Come vedremo in seguito, tale uguaglianza non vale nel caso della
somma diretta di una famiglia di infiniti spazi vettoriali.

1.3.2 Insiemi di generatori e basi

Sia V uno spazio vettoriale su un campo K.

Definizione 1.3.25. Un sottoinsieme S ⊆ V è detto un insieme di generatori
di V se L(S) = V . In tal caso si dice anche che S genera V .

Notiamo che ogni spazio vettoriale possiede dei sistemi di generatori: l’intero
spazio V è banalmente un insieme di generatori di V .

Dalla Proposizione 1.3.17 segue che, se S è un insieme di generatori di V ,
ogni vettore v ∈ V si può scrivere come combinazione lineare finita di elementi
di S:

v = λ1v1 + λ2v2 + · · ·+ λnvn,
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per qualche v1, . . . , vn ∈ S e λ1, . . . , λn ∈ K. Una tale espressione non è però,
in generale, unica.

Definizione 1.3.26. Un sottoinsieme S ⊆ V è detto un insieme libero di vettori
se esso ha la seguente proprietà: una combinazione lineare finita di elementi di
S è il vettore nullo se e solo se tutti i coefficienti λi sono nulli. Cioè

λ1v1 + λ2v2 + · · ·+ λnvn = 0

con v1, . . . , vn ∈ S, implica λ1 = λ2 = · · · = λn = 0.
Se S = {v1, v2, . . . , vn} è un insieme libero, diremo anche che i vettori

v1, v2, . . . , vn sono linearmente indipendenti.

Quindi i vettori v1, v2, . . . , vn ∈ V sono linearmente indipendenti se e solo se
l’equazione

λ1v1 + λ2v2 + · · ·+ λnvn = 0

ha come unica soluzione λ1 = λ2 = · · · = λn = 0.

Osservazione 1.3.27. Se S è l’insieme costituito da un unico vettore v, dire che
S è libero equivale a dire che v 6= 0.

Analogamente, si trova che se i vettori v1, v2, . . . , vn sono linearmente indi-
pendenti, essi devono essere tutti diversi da zero.

Definizione 1.3.28. I vettori v1, v2, . . . , vn ∈ V si dicono linearmente dipen-
denti se essi non sono linearmente indipendenti, cioè se esistono degli scalari
λ1, λ2, . . . , λn ∈ K, non tutti nulli, per cui si abbia

λ1v1 + λ2v2 + · · ·+ λnvn = 0.

Proposizione 1.3.29. I vettori v1, v2, . . . , vn ∈ V sono linearmente dipenden-
ti se e solo se uno di essi può essere espresso come combinazione lineare dei
rimanenti, cioè se e solo se esiste un indice i tale che si abbia

vi =
n∑

j=1, j 6=i

αjvj ,

con αj ∈ K.

Dimostrazione. Se i vettori v1, v2, . . . , vn sono linearmente dipendenti, esiste
una combinazione lineare

λ1v1 + λ2v2 + · · ·+ λnvn = 0

in cui i coefficienti λj non sono tutti nulli. Sia dunque i un indice tale che
λi 6= 0. Possiamo quindi scrivere

λivi = −λ1v1 − · · · − λi−1vi−1 − λi+1vi+1 − · · · − λnvn,

da cui si ricava

vi = −λ1

λi
v1 − · · · −

λi−1

λi
vi−1 −

λi+1

λi
vi+1 − · · · −

λn
λi

vn.

Viceversa, supponiamo che un vettore vi sia combinazione lineare dei rimanenti,
cioè che si abbia

vi = α1v1 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αnvn.
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Allora si ha

α1v1 + · · ·+ αi−1vi−1 − vi + αi+1vi+1 + · · ·+ αnvn = 0,

il che dimostra che i vettori v1, . . . , vn sono linearmente dipendenti.

Osservazione 1.3.30. Notiamo che la dimostrazione della proposizione preceden-
te dipende in modo essenziale dalla possibilità di poter dividere per un elemento
non nullo λi ∈ K; è pertanto indispensabile che K sia un campo. Nel caso in
cui V sia un modulo su un anello un analogo risultato non vale, come illustrato
dal seguente esempio.

Sia K = Z e V = Z2. Consideriamo i tre elementi u = (1, 2), v = (2, 1) e
w = (3, 4). Essi sono linearmente dipendenti, infatti

5 (1, 2) + 2 (2, 1)− 3 (3, 4) = 0,

tuttavia è facile verificare che nessuno di essi può essere espresso come combi-
nazione lineare degli altri due.

Dimostriamo ora che, se un vettore si può scrivere come combinazione lineare
di un insieme di vettori linearmente indipendenti, tale espressione è unica.

Proposizione 1.3.31. Siano v1, v2, . . . , vn ∈ V dei vettori linearmente in-
dipendenti. Se v ∈ V si può scrivere come combinazione lineare dei vettori
v1, v2, . . . , vn,

v = λ1v1 + λ2v2 + · · ·+ λnvn,

allora gli scalari λ1, λ2, . . . , λn sono determinati in modo unico.

Dimostrazione. Supponiamo che sia possibile scrivere v in due modi, come

v = λ1v1 + λ2v2 + · · ·+ λnvn,
e come

v = µ1v1 + µ2v2 + · · ·+ µnvn.

Allora si ha

λ1v1 + λ2v2 + · · ·+ λnvn = µ1v1 + µ2v2 + · · ·+ µnvn,

che si può riscrivere come

(λ1 − µ1)v1 + (λ2 − µ2)v2 + · · ·+ (λn − µn)vn = 0.

Poiché i vettori v1, v2, . . . , vn sono linearmente indipendenti, si ha dunque

λ1 − µ1 = 0, λ2 − µ2 = 0, . . . , λn − µn = 0,

il che dimostra che λi = µi, per ogni i = 1, . . . , n.

Dalla proposizione appena dimostrata discende quindi che, se consideriamo
un insieme di generatori S di V con la proprietà aggiuntiva che i vettori di S
siano linearmente indipendenti, allora ogni vettore di V si può scrivere, in modo
unico, come combinazione lineare finita di elementi di S.

Definizione 1.3.32. Un insieme libero di generatori di uno spazio vettoriale V
è detto una base di V . In altri termini, una base di V è un insieme di vettori
linearmente indipendenti i quali generano l’intero spazio V .
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Osservazione 1.3.33. Solitamente una base di uno spazio vettoriale V viene
intesa come un insieme ordinato di generatori linearmente indipendenti di V .
Ciò significa, ad esempio, che se l’insieme costituito dai vettori v1 e v2 è una
base di uno spazio vettoriale V , allora v = {v1, v2} e v′ = {v2, v1} sono due
basi diverse di V .

Da quanto visto in precedenza, si deduce il seguente risultato:

Corollario 1.3.34. Sia S una base di V . Ogni vettore v ∈ V si può scrivere,
in modo unico, come combinazione lineare finita di elementi di S.

Osservazione 1.3.35. Supponiamo che S = {v1, v2, . . . , vn} sia una base di uno
spazio vettoriale V . Allora, per ogni v ∈ V , si ha

v = λ1v1 + λ2v2 + · · ·+ λnvn,

e gli scalari λi ∈ K sono unicamente determinati da v. Tali scalari sono anche
detti le coordinate del vettore v rispetto alla base v1, v2, . . . , vn fissata.

1.3.3 Spazi vettoriali finitamente generati

Nella sezione precedente non abbiamo fatto nessuna ipotesi sul numero di gene-
ratori di uno spazio vettoriale. Ora ci occuperemo in dettaglio del caso in cui
tale numero è finito.

Definizione 1.3.36. Uno spazio vettoriale V è detto finitamente generato se
esiste un insieme finito di generatori di V .

Cominciamo col dimostrare che ogni spazio vettoriale V finitamente generato
ammette una base. Più precisamente, dimostreremo che da ogni insieme di
generatori di V si può estrarre una base.

Proposizione 1.3.37. Sia S = {v1, v2, . . . , vn} un insieme di generatori di V .
Allora S contiene dei vettori vi1 , vi2 , . . . , vir , per qualche r ≤ n, che formano
una base di V .

Dimostrazione. Se i vettori v1, v2, . . . , vn sono linearmente indipendenti, essi
sono una base di V e la dimostrazione è cos̀ı terminata. Se invece essi sono li-
nearmente dipendenti, uno di essi può essere espresso come combinazione lineare
dei rimanenti. A meno di rinominarli, possiamo supporre che questo vettore sia
vn. Possiamo quindi scrivere

vn = λ1v1 + λ2v2 + · · ·+ λn−1vn−1.

Da ciò segue che i vettori v1, v2, . . . , vn−1 generano lo spazio vettoriale V ; infatti
ogni vettore che si scrive come combinazione lineare dei vettori v1, v2, . . . , vn si
può anche scrivere come combinazione lineare dei soli vettori v1, v2, . . . , vn−1.
Ora, se i vettori v1, v2, . . . , vn−1 sono linearmente indipendenti, essi sono una
base di V e la dimostrazione è terminata. In caso contrario uno di essi può
essere espresso come combinazione lineare dei rimanenti. Anche in questo caso,
a meno di riordinare i vettori, possiamo supporre che sia vn−1 a potersi scrivere
come combinazione lineare dei vettori v1, v2, . . . , vn−2. Ma ciò significa che i
vettori v1, v2, . . . , vn−2 sono un insieme di generatori di V .

Ripetendo il ragionamento sopra descritto si arriverà, prima o poi, a un
insieme di vettori v1, v2, . . . , vr, per qualche r ≤ n, che generano tutto lo spazio
V e sono linearmente indipendenti. Essi costituiscono quindi una base di V .
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Il seguente risultato chiarisce le relazioni che esistono tra insiemi di vettori
linearmente indipendenti, basi e insiemi di generatori.

Proposizione 1.3.38. Sia V uno spazio vettoriale finitamente generato. Con-
sideriamo un insieme {v1, v2, . . . , vn} di generatori di V e siano w1, w2, . . . , wr
dei vettori linearmente indipendenti. Allora r ≤ n.

Dimostrazione. Poiché i vettori v1, v2, . . . , vn generano V , il vettore w1 si può
scrivere come una loro combinazione lineare,

w1 = λ1v1 + λ2v2 + · · ·+ λnvn.

Dato che w1 6= 0, gli scalari λ1, . . . , λn non possono essere tutti nulli, quindi
esiste un indice i tale che λi 6= 0. Da ciò si deduce che il vettore vi può essere
espresso come combinazione lineare dei vettori w1, v1, . . . , vi−1, vi+1, . . . , vn.

A meno di rinominare i vettori vj , possiamo supporre che sia i = n, cioè
che vn si possa scrivere come combinazione lineare dei vettori w1, v1, . . . , vn−1;
ma ciò significa che anche {w1, v1, . . . , vn−1} è un insieme di generatori di
V . Il vettore w2 si può quindi scrivere come combinazione lineare dei vettori
w1, v1, . . . , vn−1:

w2 = α1w1 + λ1v1 + · · ·+ λn−1vn−1,

e gli scalari λ1, . . . , λn−1 non possono essere tutti nulli, perché altrimenti i vettori
w1 e w2 sarebbero linearmente dipendenti, contro l’ipotesi.

Esiste quindi un indice i per il quale λi 6= 0 e, ancora una volta, possia-
mo supporre che sia i = n − 1 (a meno di riordinare i vettori vj). Da ciò
segue che il vettore vn−1 si può scrivere come combinazione lineare dei vet-
tori w1, w2, v1, . . . , vn−2, quindi anche {w1, w2, v1, . . . , vn−2} è un insieme di
generatori di V .

Continuando in questo modo, si dimostra che tutti gli insiemi

{w1, w2, . . . , wh, v1, . . . , vn−h}

sono insiemi di generatori di V .
Se, per assurdo, fosse n < r, ponendo h = n si avrebbe che i vettori

w1, w2, . . . , wn generano tutto lo spazio V , quindi il vettore wn+1 si potrebbe
scrivere come combinazione lineare dei vettori w1, w2, . . . , wn, il che contraddice
l’ipotesi che i vettori w1, w2, . . . , wr siano linearmente indipendenti. Deve quindi
essere r ≤ n.

Corollario 1.3.39. Sia V uno spazio vettoriale finitamente generato e sia
{v1, v2, . . . , vn} una base di V . Allora, per ogni insieme di vettori linearmente
indipendenti {w1, w2, . . . , wr}, si ha r ≤ n e, per ogni insieme {u1, u2, . . . , us}
di generatori di V , si ha s ≥ n.

Dimostrazione. Questo risultato è una conseguenza immediata della proposi-
zione precedente; basta ricordare che i vettori v1, v2, . . . , vn sono linearmente
indipendenti e sono anche un insieme di generatori di V .

Corollario 1.3.40. Due basi qualunque di uno spazio vettoriale V (finitamente
generato) hanno lo stesso numero di elementi.
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Dimostrazione. Siano {v1, v2, . . . , vr} e {w1, w2, . . . , ws} due basi di V . Allo-
ra, dato che i vettori v1, v2, . . . , vr sono linearmente indipendenti e i vettori
w1, w2, . . . , ws sono dei generatori di V , si ha r ≤ s. Scambiando il ruolo delle
due basi, si ottiene anche s ≤ r, da cui segue l’uguaglianza r = s.

Il numero di vettori che compongono una base di uno spazio vettoriale fini-
tamente generato V è dunque indipendente dalla base scelta e dipende quindi
solo dallo spazio V . Possiamo pertanto dare la seguente definizione:

Definizione 1.3.41. La dimensione di uno spazio vettoriale (finitamente ge-
nerato) V , indicata con dimV , è il numero di elementi di una base di V .

Esempio 1.3.42. Consideriamo lo spazio vettoriale V = Kn, definito nell’Esem-
pio 1.3.3. Per ogni i = 1, . . . , n, indichiamo con ei la n-upla di elementi di K le
cui componenti sono tutte nulle tranne la i-esima, che è uguale a 1:

e1 = (1, 0, 0, 0, . . . , 0, 0),
e2 = (0, 1, 0, 0, . . . , 0, 0),
e3 = (0, 0, 1, 0, . . . , 0, 0),
· · · · · ·

en = (0, 0, 0, 0, . . . , 0, 1).

Notiamo che, per ogni λ1, . . . , λn ∈ K, si ha

λ1e1 + λ2e2 + · · ·+ λnen = (λ1, λ2, . . . , λn).

Da questa uguaglianza si deduce che i vettori e1, e2, . . . , en sono linearmente
indipendenti e generano lo spazio vettoriale V ; essi sono pertanto una base
di V = Kn. Questa base è detta la base canonica di Kn. Si ha pertanto
dimKn = n.

Esempio 1.3.43. Lo spazio vettoriale nullo, V = {0}, ha dimensione pari a zero.
Esso infatti contiene un solo vettore v = 0, ma tale vettore non forma una base
di V dato che esso non è linearmente indipendente! Infatti un insieme costituito
da un solo vettore v è un insieme libero (cioè v è linearmente indipendente) se
e solo se v 6= 0.

Dalla Proposizione 1.3.38 derivano anche i prossimi due risultati.

Corollario 1.3.44. Sia V uno spazio vettoriale finitamente generato. Allora
ogni sottospazio vettoriale W di V è finitamente generato e si ha dimW ≤
dimV .

Dimostrazione. Poniamo n = dimV . Se {w1, . . . , wr} è un insieme di vettori
linearmente indipendenti di W , essi sono anche dei vettori linearmente indipen-
denti di V ; deve quindi essere r ≤ n. Se questi vettori non sono un insieme
di generatori di W , ciò significa che esiste un vettore wr+1 ∈ W che non può
essere espresso come combinazione lineare di w1, . . . , wr. Da ciò segue che i
vettori w1, . . . , wr, wr+1 sono linearmente indipendenti. Se essi non sono ancora
un insieme di generatori di W , deve esistere un vettore wr+2 ∈W che non può
essere espresso come combinazione lineare di w1, . . . , wr, wr+1. Ma allora anche
i vettori w1, . . . , wr, wr+1, wr+2 sono linearmente indipendenti.
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Poiché il numero di vettori linearmente indipendenti non può eccedere n,
ripetendo il ragionamento precedente si arriva, dopo un numero finito di passi,
a costruire un insieme di vettori linearmente indipendenti {w1, . . . , ws}, con
s ≤ n, i quali generano il sottospazio W e sono quindi una base di W . Ciò
dimostra che dimW ≤ dimV .

Corollario 1.3.45. Sia V uno spazio vettoriale finitamente generato. Allora
ogni insieme di vettori linearmente indipendenti v1, . . . , vr può essere completato
a una base di V . In altri termini, esistono dei vettori vr+1, . . . , vn tali che
l’insieme {v1, . . . , vr, vr+1, . . . , vn} sia una base di V .

Dimostrazione. La dimostrazione di questo risultato è essenzialmente analoga a
quella del corollario precedente. Supponiamo che v1, . . . , vr ∈ V siano dei vettori
linearmente indipendenti. Se questi vettori non sono un insieme di generatori di
V , ciò significa che esiste un vettore vr+1 ∈ V che non può essere espresso come
combinazione lineare di v1, . . . , vr. Da ciò segue che i vettori v1, . . . , vr, vr+1 sono
linearmente indipendenti. Se essi non sono ancora un insieme di generatori di V ,
deve esistere un vettore vr+2 ∈ V che non può essere espresso come combinazione
lineare di v1, . . . , vr, vr+1. Ma allora anche i vettori v1, . . . , vr, vr+1, vr+2 sono
linearmente indipendenti. Continuando in questo modo, si deve necessariamente
ottenere un insieme di vettori linearmente indipendenti {v1, . . . , vr, vr+1, . . . , vn}
che sono anche un insieme di generatori di V , altrimenti si otterrebbe un insieme
infinito di vettori linearmente indipendenti, contro l’ipotesi che V sia finitamente
generato.

Se la dimensione di uno spazio vettoriale V è nota, la verifica che un deter-
minato insieme di vettori di V forma una base risulta semplificata. Vale infatti
il seguente risultato:

Proposizione 1.3.46. Sia V uno spazio vettoriale di dimensione n e siano
v1, . . . , vn dei vettori di V .

(i) Se i vettori v1, . . . , vn sono linearmente indipendenti, allora essi sono
anche un sistema di generatori di V , quindi sono una base di V .

(ii) Se i vettori v1, . . . , vn sono un sistema di generatori di V , allora essi sono
anche linearmente indipendenti, quindi sono una base di V .

Dimostrazione. (i) Supponiamo che i vettori v1, . . . , vn siano linearmente indi-
pendenti. Per il corollario precedente, essi sono contenuti in una base

{v1, . . . , vn, vn+1, . . . , vn+r}

di V . Ma, poiché V ha dimensione n, ogni base di V deve avere n elementi. Da
ciò si deduce che r = 0 e quindi i vettori v1, . . . , vn sono, in effetti, una base di
V .

(ii) Supponiamo che i vettori v1, . . . , vn siano un insieme di generatori di
V . Se, per assurdo, essi fossero linearmente dipendenti, uno di essi sarebbe
combinazione lineare dei rimanenti. A meno di riordinare i vettori, non è re-
strittivo supporre che vn sia combinazione lineare di v1, . . . , vn−1. Ma allora i
vettori v1, . . . , vn−1 sarebbero anch’essi un insieme di generatori di V . Questo
però è assurdo; infatti la cardinalità di un insieme di generatori di V deve essere
≥ dimV (vedi Corollario 1.3.39). Quindi i vettori v1, . . . , vn sono linearmente
indipendenti, cioè sono una base di V .
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Corollario 1.3.47. Sia V uno spazio vettoriale finitamente generato e sia W ⊂
V un suo sottospazio proprio. Allora dimW < dimV .

Dimostrazione. Nel Corollario 1.3.44 abbiamo dimostrato che si ha dimW ≤
dimV . Supponiamo, per assurdo, che si abbia dimW = dimV = n. Con-
sideriamo quindi una base w1, . . . , wn di W . Dato che questi sono n vettori
linearmente indipendenti di V , e dato che n è proprio la dimensione di V , per
il punto (i) della proposizione precedente essi sono una base di V . Ma da ciò
segue che W = V , contro l’ipotesi che W sia un sottospazio proprio di V .

Osservazione 1.3.48. SeK ⊂ L è una estensione4 di campi, ogni spazio vettoriale
V sul campo L può essere anche considerato come spazio vettoriale sul campo
K. Se {v1, . . . , vn} è una base di V in quanto K-spazio vettoriale, questi stessi
vettori generano V anche in quanto spazio vettoriale su L, tuttavia, in questo
caso, essi potrebbero non essere più linearmente indipendenti, come vedremo nel
successivo esempio. In generale, possiamo pertanto affermare che la dimensione
di V in quanto L-spazio vettoriale è minore o uguale alla dimensione di V
considerato come spazio vettoriale su K, cioè

dimL V ≤ dimK V.

Illustriamo quanto appena affermato con un esempio concreto. Sia K = R il
campo dei numeri reali e L = C il campo dei numeri complessi. L’insieme C
è identificato in modo naturale con l’insieme R2, associando ad ogni numero
complesso z = x+ iy la coppia di numeri reali (x, y). Poniamo quindi V = C ∼=
R2. Lo spazio vettoriale V = C, in quanto spazio vettoriale sul campo C, ha
naturalmente dimensione 1, e una sua base è costituita dal vettore v = 1. Se
invece consideriamo C in quanto spazio vettoriale su R, esso ha dimensione 2.
Una sua base è infatti costituita dai vettori v1 = 1 e v2 = i, i quali corrispondono,
nell’identificazione C ∼= R2 descritta in precedenza, ai due vettori (1, 0) e (0, 1)
della base canonica di R2.

Notiamo che i vettori v1 = 1 e v2 = i sono linearmente indipendenti sul
campo R dei numeri reali; infatti se αv1 + βv2 = α + iβ = 0, con α, β ∈ R, si
deve necessariamente avere α = β = 0. Essi sono invece linearmente dipendenti
sul campo C: si ha infatti

v1 + iv2 = 1 + i2 = 1− 1 = 0.

Più in generale, se V = Cn, si ha dimC V = n e dimR V = 2n.

Terminiamo questa sezione dimostrando un risultato che mette in relazione
le dimensioni di due sottospazi vettoriali di V con le dimensioni della loro somma
e della loro intersezione:

Proposizione 1.3.49 (Formula di Grassmann). Siano W1 e W2 due sotto-
spazi vettoriali di uno spazio vettoriale finitamente generato V . Si ha:

dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2).

Dimostrazione. Poniamo

r = dimW1, s = dimW2, t = dim(W1 ∩W2).
4Ciò significa semplicemente che L è un campo e K è un suo sottocampo.
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Consideriamo una base {v1, . . . , vt} di W1 ∩W2. Per il Corollario 1.3.45, que-
sto insieme di vettori può essere completato, tramite aggiunta di altri vetto-
ri, in modo da ottenere una base {v1, . . . , vt, vt+1, . . . , vr} di W1 e una base
{v1, . . . , vt, v

′
t+1, . . . , v

′
s} di W2.

Dato che ogni vettore diW1+W2 può essere scritto come somma di un vettore
di W1 e di uno di W2, esso può quindi essere espresso come combinazione linea-
re dei vettori v1, . . . , vt, vt+1, . . . , vr, v

′
t+1, . . . , v

′
s. Vogliamo ora dimostrare che

questi vettori, oltre a essere dei generatori di W1 +W2, sono anche linearmente
indipendenti.

Supponiamo quindi che sia

α1v1 + · · ·+ αtvt + β1vt+1 + · · ·+ βr−tvr + γ1v
′
t+1 + · · ·+ γs−tv

′
s = 0.

Da ciò segue che

α1v1 + · · ·+ αtvt + β1vt+1 + · · ·+ βr−tvr = −(γ1v
′
t+1 + · · ·+ γs−tv

′
s).

Se chiamiamo w il vettore precedente, si ha che w ∈W1∩W2. Poiché {v1, . . . , vt}
è una base di W1 ∩W2, il vettore w si può scrivere, in modo unico, nella forma

w = λ1v1 + · · ·+ λtvt.

Si hanno quindi le seguenti uguaglianze:

λ1v1 + · · ·+ λtvt = α1v1 + · · ·+ αtvt + β1vt+1 + · · ·+ βr−tvr

e
λ1v1 + · · ·+ λtvt = −(γ1v

′
t+1 + · · ·+ γs−tv

′
s).

Poiché, per ipotesi, i vettori v1, . . . , vt, vt+1, . . . , vr sono una base di W1 e i
vettori v1, . . . , vt, v

′
t+1, . . . , v

′
s sono una base di W2, dalle uguaglianze precedenti

segue che
λ1 = · · · = λt = 0,
β1 = · · · = βr−t = 0,

α1 = · · · = αt = 0,
γ1 = · · · = γs−t = 0.

Abbiamo cos̀ı dimostrato che l’insieme dei vettori

{v1, . . . , vt, vt+1, . . . , vr, v
′
t+1, . . . , v

′
s}

è una base di W1 +W2. Si ha pertanto

dim(W1 +W2) = r + s− t = dimW1 + dimW2 − dim(W1 ∩W2).

Osservazione 1.3.50. Sia V uno spazio vettoriale finitamente generato. Notiamo
che, per ogni sottospazio W ⊆ V , è possibile trovare un sottospazio W ′ di V
tale che V = W ⊕W ′, cioè tale che si abbia V = W +W ′ e W ∩W ′ = {0}. Un
tale W ′ è detto un sottospazio complementare di W .

A tal fine, è sufficiente considerare una base {w1, . . . , wr} di W e completarla
a una base {w1, . . . , wr, vr+1, . . . , vn} di V (cf. Corollario 1.3.45). Il sottospazio
W ′ = 〈vr+1, . . . , vn〉, generato dai vettori vr+1, . . . , vn, è il sottospazio cercato.

Notiamo infine che un tale sottospazio W ′ non è unico. Ad esempio, se
V = K2 e se W è il sottospazio generato dal vettore (1, 0), qualunque vettore
(a, b), con b 6= 0, genera un sottospazio W ′ tale che V = W ⊕W ′.
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Esercizi

Esercizio 1.3.1. Si dica se gli insiemi seguenti sono degli spazi vettoriali:

(1) L’insieme delle funzioni reali definite nell’intervallo [0, 1], continue, positive o
nulle, per le operazioni di addizione e di prodotto per un numero reale.

(2) L’insieme delle funzioni reali f definite in R, tali che

lim
x→+∞

f(x) = 0,

per le operazioni di addizione e di prodotto per un numero reale.

(3) L’insieme A = {x ∈ R |x > 0}, per le operazioni di somma e di prodotto per
uno scalare definite rispettivamente da

x⊕ y = xy, ∀x, y ∈ A

λ · x = xλ, ∀x ∈ A, λ ∈ R.

(4) L’insieme delle funzioni da R in R che si annullano in 1 oppure in 4.

(5) L’insieme dei polinomi di grado uguale a n (n intero positivo).

(6) L’insieme delle funzioni da R in R, di classe C2, tali che

f ′′ + ω2f = 0,

con ω ∈ R.

(7) L’insieme delle funzioni reali f(x) definite nell’intervallo [0, 1], continue, tali che∫ 1

0

f(x) sinx dx = 0.

Esercizio 1.3.2. Sia V lo spazio vettoriale dei polinomi, a coefficienti reali nell’in-
determinata x, di grado ≤ 3. Si verifichi che gli insiemi seguenti sono delle basi di
V :

(1) {1, x, x2, x3};
(2) {1, 1− x, x− x2, x2 − x3};
(3) {1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3}.

Esercizio 1.3.3. Nello spazio vettoriale V dei polinomi di grado ≤ 2 si considerino
i polinomi

p1(x) = x2 + x(1− x) + (1− x)2

p2(x) = x2 + (1− x)2

p3(x) = x2 + 1 + (1− x)2

p4(x) = x(1− x).

È possibile estrarre da {p1(x), p2(x), p3(x), p4(x)} delle basi di V ? In caso affermativo,

trovarle tutte.

Esercizio 1.3.4. Nello spazio vettoriale delle funzioni continue da R in R, si con-

siderino le funzioni f1(x) = sinx, f2(x) = sin 2x e f3(x) = sin 3x. Si dica se queste

funzioni sono linearmente indipendenti.

Esercizio 1.3.5. Si dica se, nei casi seguenti, i vettori v1, v2 e v3 costituiscono una
base di R3. In caso negativo si descriva il sottospazio da essi generato.

(1) v1 = (1, 1, 1), v2 = (3, 0,−1), v3 = (−1, 1,−1);

(2) v1 = (1, 2, 3), v2 = (3, 0,−1), v3 = (1, 8, 13);

(3) v1 = (1, 2,−3), v2 = (1, 0,−1), v3 = (1, 10,−11).
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Esercizio 1.3.6. In R4 i vettori seguenti formano:
(a) un insieme libero (cioè un insieme di vettori linearmente indipendenti)? In caso
affermativo, completarlo per ottenere una base di R4, altrimenti determinare le rela-
zioni di dipendenza lineare tra di loro ed estrarre da questo insieme di vettori almeno
un insieme libero.
(b) un insieme di generatori? In caso affermativo, estrarne almeno una base di R4,
altrimenti determinare la dimensione del sottospazio da essi generato.

(1) v1 = (1, 1, 1, 1), v2 = (0, 1, 2,−1), v3 = (1, 0,−2, 3),
v4 = (2, 1, 0,−1), v5 = (4, 3, 2, 1);

(2) v1 = (1, 2, 3, 4), v2 = (0, 1, 2,−1), v3 = (3, 4, 5, 16);

(3) v1 = (1, 2, 3, 4), v2 = (0, 1, 2,−1), v3 = (2, 1, 0, 11),
v4 = (3, 4, 5, 14).

Esercizio 1.3.7. Si determini una base del sottospazio vettoriale V di R5 costituito
dai vettori (x1, . . . , x5) che sono soluzioni del seguente sistema di equazioni lineari:

x1 − 3x2 + x4 = 0

x2 + 3x3 − x5 = 0

x1 + 2x2 + x3 − x4 = 0.

Esercizio 1.3.8. In R4 siano v1 = (1, 2, 3, 4) e v2 = (1,−2, 3,−4). È possibile deter-

minare due numeri reali x e y in modo tale che (x, 1, y, 1) ∈ L{v1, v2}? (Ricordiamo

che L{v1, v2} indica il sottospazio generato dai vettori v1 e v2.)

Esercizio 1.3.9. Sia V uno spazio vettoriale. Si dica se le affermazioni seguenti sono
vere o false.

(1) Se i vettori v1, v2 e v3 sono a due a due non proporzionali allora la famiglia
{v1, v2, v3} è libera.

(2) Se nessuno fra i vettori v1, . . . , vr è combinazione lineare dei vettori rimanenti
allora la famiglia {v1, . . . , vr} è libera.

Esercizio 1.3.10. In R4 siano v1 = (0, 1,−2, 1), v2 = (1, 0, 2,−1), v3 = (3, 2, 2,−1),
v4 = (0, 0, 1, 0), v5 = (0, 0, 0, 1). Si dica se le affermazioni seguenti sono vere o false.

(1) L{v1, v2, v3} = L{(1, 1, 0, 0), (−1, 1,−4, 2)};
(2) (1, 1, 0, 0) ∈ L{v1, v2} ∩ L{v2, v3, v4};
(3) dim(L{v1, v2} ∩ L{v2, v3, v4}) = 1;

(4) L{v1, v2}+ L{v2, v3, v4} = R4;

(5) L{v1, v2, v3}+ L{v4, v5} = R4.

Esercizio 1.3.11. Si studi la dipendenza o l’indipendenza lineare dei vettori seguenti,
e si determini in ogni caso una base del sottospazio da essi generato.

(1) (1, 0, 1), (0, 2, 2), (3, 7, 1), in R3;

(2) (1, 0, 0), (0, 1, 1), (1, 1, 1), in R3;

(3) (1, 2, 1, 2, 1), (2, 1, 2, 1, 2), (1, 0, 1, 1, 0), (0, 1, 0, 0, 1), in R5.

Esercizio 1.3.12. Sia V lo spazio vettoriale dei polinomi in x, a coefficienti in R, di
grado ≤ n, con n intero positivo. Si dimostri che, per ogni a ∈ R, l’insieme

{1, x− a, (x− a)2, . . . , (x− a)n}

è una base di V . Sia poi f(x) ∈ V ; si esprima f(x) come combinazione lineare dei

precedenti polinomi. Chi sono i coefficienti di tale combinazione lineare?
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Esercizio 1.3.13. Siano Ut = L{u1, u2} e Vt = L{v1, v2} due sottospazi di R4, con
u1 = (1, t, 2t, 0), u2 = (t, t, t, t), v1 = (t− 2,−t,−3t, t) e v2 = (2, t, 2t, 0).

(1) Si dica se esiste t ∈ R tale che Ut + Vt = R4.

(2) Per quali t ∈ R si ha dim(Ut ∩ Vt) = 1?

(3) Si determini una base di U1 ∩ V1 e la si estenda a una base di R4.

Esercizio 1.3.14. In R4 si considerino i sottospazi U = L{v1, v2, v3} e V =

L{v4, v5}, dove v1 = (1, 2, 3, 4), v2 = (2, 2, 2, 6), v3 = (0, 2, 4, 4), v4 = (1, 0,−1, 2)

e v5 = (2, 3, 0, 1). Si determinino delle basi dei sottospazi U ∩ V , U , V e U + V .

Esercizio 1.3.15. Siano U e W due sottospazi vettoriali di uno spazio vettoriale V .

Si dimostri che U ∪W è un sottospazio vettoriale di V se e solo se U ⊂ W oppure

W ⊂ U .

Esercizio 1.3.16. Siano U , V e W tre sottospazi di uno stesso spazio vettoriale. Si
dica se è vero o falso che

U ∩ (V +W ) = (U ∩ V ) + (U ∩W ).

Esercizio 1.3.17. Si dica se è diretta la somma dei due seguenti sottospazi di R4:

U = L{(1, 0, 1, 0), (1, 2, 3, 4)} e V = L{(0, 1, 1, 1), (0, 0, 0, 1)}.

Esercizio 1.3.18. Si considerino i seguenti sottospazi di R4:

U = L{(1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 0, 1)}
e

V = L{(1, 0, 1, 0), (0, 1, 1, 0)}.

Si determini un sottospazio W ⊂ R4 tale che U = V ⊕W , e si dica se tale W è unico.

Esercizio 1.3.19. Dati i seguenti sottospazi di R4,

U = L{(1, 0, 1, 0), (0, 0, 0, 1)}
e

V = L{(1, 0, 2, 0), (0, 0, 1, 1)},
esiste un sottospazio W ⊂ R4 tale che U ⊕W = V ⊕W = R4?

In caso affermativo si determini W e si dica se è unico.

Esercizio 1.3.20. Nello spazio vettoriale V dei polinomi, nell’indeterminata x a
coefficienti reali, di grado ≤ 5, si considerino i sottospazi seguenti:

U1 = {p(x) ∈ V | p(0) = 0},
U2 = {p(x) ∈ V | p′(1) = 0},

U3 = {p(x) ∈ V |x2 + 1 divide p(x)},
U4 = {p(x) ∈ V | p(−x) = p(x),∀x},
U5 = {p(x) ∈ V | p(x) = xp′(x), ∀x}.

(1) Si determinino delle basi dei seguenti sottospazi:

U1, U2, U3, U4, U5, U1 ∩ U2, U1 ∩ U3, U1 ∩ U2 ∩ U3, U1 ∩ U2 ∩ U3 ∩ U4.

(2) Si determinino dei sottospazi W1 e W2 di V tali che

W1 ⊕ U4 = W2 ⊕ (U1 ∩ U3) = V.



Capitolo 2

Applicazioni Lineari e Matrici

In questo capitolo svilupperemo la teoria delle funzioni lineari tra due spazi
vettoriali. Introdurremo il concetto di matrice, descriveremo il legame esistente
tra matrici e funzioni lineari e dimostreremo i principali risultati della teoria
delle matrici. Infine, utilizzeremo i risultati cos̀ı ottenuti per descrivere la teoria
dei sistemi di equazioni lineari.

2.1 Applicazioni lineari

In questo capitolo ci occuperemo dello studio delle funzioni, definite tra due
spazi vettoriali, che “rispettano” la struttura di spazio vettoriale, cioè che sono
compatibili con le operazioni di somma di vettori e di prodotto di un vettore
per uno scalare.

Definizione 2.1.1. Siano V e W due spazi vettoriali su un campo K. Una
funzione f : V →W è detta additiva se

f(v1 + v2) = f(v1) + f(v2),

per ogni v1, v2 ∈ V .
Una tale funzione è detta K-lineare (o, più semplicemente, lineare) se, oltre

ad essere additiva, essa soddisfa la seguente uguaglianza:

f(λv) = λf(v),

per ogni v ∈ V e ogni λ ∈ K.
Una funzione lineare tra due spazi vettoriali è anche detta un omomorfismo

di spazi vettoriali.

Osservazione 2.1.2. Supponiamo che f sia una funzione additiva tra due spazi
vettoriali V e W definiti sul campo K, e supponiamo che Q ⊆ K. Per ogni

27
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intero positivo n ed ogni v ∈ V , si ha

f(nv) = f(v + v + · · ·+ v︸ ︷︷ ︸
n

) = f(v) + f(v) + · · ·+ f(v)︸ ︷︷ ︸
n

= nf(v).

Si ha inoltre f(0V ) = 0W : infatti dall’additività di f si deduce che

f(v) = f(v + 0V ) = f(v) + f(0V ),

da cui, sommando ad ambo i membri il vettore −f(v), si conclude.
Utilizzando questo risultato si può dimostrare che f(−v) = −f(v): si ha

infatti
0W = f(0V ) = f(v + (−v)) = f(v) + f(−v),

da cui segue che f(−v) è l’opposto di f(v).
Combinando questi risultati, si conclude che l’uguaglianza f(nv) = nf(v)

vale per ogni vettore v ∈ V ed ogni n ∈ Z: una funzione additiva è quindi
automaticamente Z-lineare.

In effetti una funzione additiva è anche Q-lineare. Infatti, per ogni n 6= 0, si
ha

f(v) = f(n 1
n v) = nf( 1

n v),

da cui segue che f( 1
nv) = 1

nf(v). Infine, per ogni mn ∈ Q, si ha

f(mn v) = mf( 1
n v) = m

n f(v).

Tuttavia, se K contiene propriamente Q, dall’additività di una funzione non
si può dedurre, in generale, la sua K-linearità. Ad esempio, dimostreremo
in seguito (vedi Esempio 2.1.19) che esistono delle funzioni additive (e quindi
Q-lineari) che non sono R-lineari!

Veniamo ora alla definizione di isomorfismo di spazi vettoriali.

Definizione 2.1.3. Sia f : V → W un omomorfismo di spazi vettoriali. f è
un isomorfismo se esiste un omomorfismo g : W → V tale che g ◦ f = idV e
f ◦ g = idW .

In altre parole, dire che f è un isomorfismo di spazi vettoriali equivale a dire
che f è un omomorfismo invertibile e che la sua funzione inversa è lineare.

Due spazi vettoriali V e W su K si dicono isomorfi se esiste un isomorfismo
f : V →W . Quando vorremo indicare che V e W sono isomorfi senza specificare
quale sia l’isomorfismo, scriveremo semplicemente V ∼= W .

Dalla definizione data segue che un isomorfismo di spazi vettoriali è una
funzione biiettiva. Dimostriamo ora il viceversa:

Proposizione 2.1.4. Sia f : V → W un omomorfismo di spazi vettoriali. Se
la funzione f è biiettiva essa è un isomorfismo.

Dimostrazione. Poiché f è biiettiva essa è invertibile. Rimane quindi solo da
dimostrare che la funzione inversa f−1 : W → V è lineare.

Siano dunque w1, w2 ∈ W e poniamo v1 = f−1(w1) e v2 = f−1(w2). Dal-
l’additività di f si deduce che f(v1 + v2) = f(v1) + f(v2) = w1 + w2, da cui
segue che f−1(w1 + w2) = v1 + v2 = f−1(w1) + f−1(w2); ciò dimostra che f−1

è additiva.
Consideriamo ora uno scalare λ ∈ K. Dalla linearità di f segue che f(λv1) =

λf(v1) = λw1, da cui si deduce che f−1(λw1) = λv1 = λf−1(w1). Abbiamo
cos̀ı dimostrato che f−1 è lineare.
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Osservazione 2.1.5. Un omomorfismo iniettivo di spazi vettoriali è anche detto
un monomorfismo, mentre un omomorfismo suriettivo è chiamato epimorfismo.
Un monomorfismo che sia anche epimorfismo è dunque un omomorfismo biiettivo
e quindi, in base alla proposizione precedente, è un isomorfismo.

L’importanza della nozione di isomorfismo è data dal fatto che esso permette
di “identificare” spazi vettoriali diversi, a patto che siano isomorfi. Si può cos̀ı
arrivare a una classificazione degli spazi vettoriali, come descritto nel seguente
risultato:

Proposizione 2.1.6. Sia V uno spazio vettoriale di dimensione n sul campo
K. Allora V è isomorfo (non canonicamente) allo spazio vettoriale Kn.

Dimostrazione. Fissiamo una base {v1, v2, . . . , vn} di V . Facciamo notare che
ciò è sempre possibile, anche se non c’è, in generale, nessuna scelta “canonica”
per una tale base.

Ora possiamo definire una funzione f : V → Kn la quale associa a un vettore
v ∈ V l’unica n-upla (λ1, . . . , λn) ∈ Kn per cui si ha

v = λ1v1 + · · ·+ λnvn.

È immediato verificare che la funzione f è lineare. Essa è inoltre biiettiva, dato
che {v1, v2, . . . , vn} è una base di V . Dalla Proposizione 2.1.4 si deduce quindi
che f è un isomorfismo.

Vogliamo far notare che la funzione f dipende dalla base di V che è stata
scelta. La non esistenza, in generale, di una base canonica ha quindi come
conseguenza la non esistenza di una scelta canonica di un isomorfismo tra V e
Kn.

Corollario 2.1.7. Due spazi vettoriali di dimensione finita sul campo K sono
isomorfi (non in modo canonico) se e solo se hanno la stessa dimensione.

2.1.1 Nucleo e immagine

Introduciamo ora due sottospazi vettoriali particolarmente importanti associati
a una funzione lineare:

Definizione 2.1.8. Sia f : V →W una funzione lineare tra due spazi vettoriali.
Il nucleo di f è l’insieme

Ker(f) = {v ∈ V | f(v) = 0}.

L’immagine di f è l’insieme

Im(f) = {w ∈W |w = f(v), per qualche v ∈ V }.

Proposizione 2.1.9. Il nucleo di una funzione lineare f : V → W è un sot-
tospazio vettoriale di V , mentre l’immagine di f è un sottospazio vettoriale di
W .

Dimostrazione. Siano v1, v2 ∈ Ker(f) e consideriamo una combinazione lineare
λ1v1 + λ2v2, con λ1, λ2 ∈ K. Dalla linearità di f segue che

f(λ1v1 + λ2v2) = λ1f(v1) + λ2f(v2) = 0,
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quindi λ1v1 + λ2v2 ∈ Ker(f). Questo dimostra che Ker(f) è un sottospazio
vettoriale di V .

Passiamo ora all’immagine di f . Siano w1, w2 ∈ Im(f) e siano v1, v2 ∈ V
tali che w1 = f(v1) e w2 = f(v2). Dalla linearità di f segue che

f(λ1v1 + λ2v2) = λ1f(v1) + λ2f(v2) = λ1w1 + λ2w2,

il che significa che λ1w1 +λ2w2 ∈ Im(f), per ogni λ1, λ2 ∈ K. Ciò dimostra che
Im(f) è un sottospazio vettoriale di W .

Il seguente risultato fornisce una caratterizzazione dei monomorfismi in ter-
mini di annullamento del nucleo.

Proposizione 2.1.10. Sia f : V → W una funzione lineare. Allora f è
iniettiva se e solo se Ker(f) = {0}.

Dimostrazione. Supponiamo che f sia iniettiva. Sia v ∈ Ker(f): si ha quindi
f(v) = 0. Ricordando che f(0) = 0, dall’iniettività di f si deduce che v = 0, il
che dimostra che Ker(f) = {0}.

Viceversa, supponiamo che Ker(f) = {0}. Siano v1, v2 ∈ V tali che f(v1) =
f(v2). Dalla linearità di f si ha

f(v1 − v2) = f(v1)− f(v2) = 0,

quindi v1 − v2 ∈ Ker(f). Poiché, per ipotesi, Ker(f) = {0}, si ha v1 − v2 = 0,
cioè v1 = v2. Questo dimostra che f è iniettiva.

Abbiamo visto come il nucleo di un’applicazione lineare f : V → W sia
sempre un sottospazio vettoriale di V . Ora dimostreremo che, più in generale,
l’immagine inversa di un qualsiasi vettore w ∈ Im(f) si ottiene semplicemente
“traslando” il nucleo di f tramite un qualsiasi vettore v ∈ f−1(w).

Proposizione 2.1.11. Sia f : V → W una funzione lineare e sia w ∈ W . Se
w ∈ Im(f) si ha

f−1(w) = v + Ker(f) = {v + u |u ∈ Ker(f)},

ove v è un qualsiasi vettore tale che f(v) = w; se invece w 6∈ Im(f) si ha
f−1(w) = ∅.

Dimostrazione. Sia v ∈ V tale che f(v) = w. Per ogni u ∈ Ker(f), si ha
f(v + u) = f(v) + f(u) = w + 0 = w. Ciò dimostra che v + Ker(f) ⊆ f−1(w).

Viceversa, per ogni v′ ∈ f−1(w) poniamo u = v′ − v. Si ha f(u) = f(v′) −
f(v) = w − w = 0, quindi u ∈ Ker(f). Da ciò discende che v′ = v + u ∈
v + Ker(f), quindi vale anche l’inclusione f−1(w) ⊆ v + Ker(f). L’ultima
affermazione è ovvia.

Le dimensioni del nucleo e dell’immagine di una funzione lineare sono legate
tra loro dalla seguente relazione:

Proposizione 2.1.12. Sia f : V → W una funzione lineare. Se V ha dimen-
sione finita, si ha

dim(V ) = dim Ker(f) + dim Im(f).
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Dimostrazione. Poniamo n = dim(V ) e r = dim Ker(f); bisogna quindi dimo-
strare che dim Im(f) = n− r. Consideriamo una base {v1, v2, . . . , vr} di Ker(f)
e completiamola a una base {v1, v2, . . . , vr, vr+1, . . . , vn} di V . Ricordiamo che
le immagini tramite f dei vettori di una base di V formano un insieme di gene-
ratori di Im(f). Dato che f(v1) = f(v2) = · · · = f(vr) = 0, se ne deduce che i
vettori

w1 = f(vr+1), w2 = f(vr+2), . . . , wn−r = f(vn)

generano l’immagine di f . Dimostriamo ora che tali vettori sono anche linear-
mente indipendenti. Consideriamo una combinazione lineare

λ1w1 + λ2w2 + · · ·+ λn−rwn−r = 0.

Dalla linearità di f , si ha

0 = λ1w1 + λ2w2 + · · ·+ λn−rwn−r

= λ1f(vr+1) + λ2f(vr+2) + · · ·+ λn−rf(vn)
= f(λ1vr+1 + λ2vr+2 + · · ·+ λn−rvn)

e pertanto
λ1vr+1 + λ2vr+2 + · · ·+ λn−rvn ∈ Ker(f).

Poiché {v1, v2, . . . , vr} è una base di Ker(f), si ha

λ1vr+1 + λ2vr+2 + · · ·+ λn−rvn = µ1v1 + µ2v2 + · · ·+ µrvr

e quindi

µ1v1 + µ2v2 + · · ·+ µrvr − λ1vr+1 − λ2vr+2 − · · · − λn−rvn = 0.

Dato che, per ipotesi, i vettori v1, v2, . . . , vn sono una base di V , si conclude che

µ1 = µ2 = · · · = µr = 0, λ1 = λ2 = · · · = λn−r = 0,

il che dimostra che i vettori w1, w2, . . . , wn−r sono linearmente indipendenti.
Concludiamo quindi che tali vettori sono una base dell’immagine di f e dunque
dim Im(f) = n− r, come volevasi dimostrare.

Osservazione 2.1.13. Sia f : V → W una funzione lineare tra due spazi vetto-
riali. La dimensione dell’immagine di f è detta il rango di f ,

rk(f) = dim Im(f)

mentre la dimensione del nucleo di f è detta la nullità di f ,

null(f) = dim Ker(f).

La proposizione precedente afferma quindi che, per ogni omomorfismo f : V →
W , si ha

rk(f) + null(f) = dim(V ).
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Osservazione 2.1.14. Siano V e W due spazi vettoriali su K e indichiamo con
Hom(V,W ) l’insieme delle applicazioni lineari da V a W . Definiamo la somma
di due applicazioni lineari f, g ∈ Hom(V,W ) ponendo (f + g)(v) = f(v) + g(v),
per ogni v ∈ V ; essa è ancora una funzione lineare. Definiamo poi il prodotto di
uno scalare λ ∈ K per una funzione lineare f ∈ Hom(V,W ) ponendo (λf)(v) =
λ(f(v)), per ogni v ∈ V . Si verifica facilmente che l’insieme Hom(V,W ), dotato
delle due operazioni appena definite, è uno spazio vettoriale su K.

Notiamo infine che, se W = V , la composizione di due applicazioni lineari
f, g : V → V è ancora una funzione lineare, cioè g ◦ f ∈ Hom(V, V ), per ogni
f, g ∈ Hom(V, V ). L’insieme Hom(V, V ), dotato dell’operazione di somma e
dell’operazione di composizione, risulta essere un anello (unitario) non commu-
tativo. Se, in aggiunta a queste due operazioni, consideriamo anche il prodotto
di una funzione lineare per uno scalare λ ∈ K, si ottiene una struttura nota con
il nome di K-algebra.

Osservazione 2.1.15. Un omomorfismo di uno spazio vettoriale V in sé stesso,
f : V → V , è anche detto endomorfismo. Se esso è invertibile, si parla allora
di automorfismo. L’insieme degli endomorfismi di uno spazio vettoriale V è
indicato con End(V ) e il sottoinsieme costituito dagli automorfismi è indicato
con Aut(V ).

Osservazione 2.1.16. Un diagramma costituito da spazi vettoriali e omomorfi-
smi tra di essi è detto commutativo se, per ogni coppia di spazi vettoriali, tutte
le funzioni tra di essi che si possono ottenere come composizione di omomorfi-
smi del diagramma, sono uguali. A titolo di esempio, consideriamo il seguente
diagramma:

V1
f1 //

f3

��

f4

  A
AA

AA
AA

V2

f5

��

f2 // V3

f6

��
V4

f7

// V5
f8

// V6

Dire che esso è commutativo significa che f5◦f1 = f4, f7◦f3 = f4, f6◦f2 = f8◦f5,
etc.

2.1.2 Applicazioni lineari e basi

Ci proponiamo ora di studiare le proprietà di una funzione lineare f : V →W ,
in relazione alla scelta di basi per gli spazi vettoriali V e W .

Iniziamo col dimostrare che una funzione lineare f : V → W è completa-
mente determinata dalla conoscenza delle immagini dei vettori di una base di
V , le quali possono essere scelte arbitrariamente in W .

Proposizione 2.1.17. Siano V e W due spazi vettoriali sul campo K e sia
{vi}i∈I una base (non necessariamente finita) di V .

(i) Un omomorfismo f : V → W è determinato, in modo unico, dalle imma-
gini dei vettori vi, per ogni i ∈ I.

(ii) Scelti arbitrariamente dei vettori {wi}i∈I in W , esiste un unico omomor-
fismo f : V →W tale che f(vi) = wi, per ogni i ∈ I.
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Dimostrazione. (i) Sia f : V →W una funzione lineare e supponiamo di cono-
scere f(vi), per ogni i ∈ I. Poiché {vi}i∈I è una base di V , ogni vettore v ∈ V
si può scrivere, in modo unico, come combinazione lineare finita dei vettori vi:

v = λ1vi1 + λ2vi2 + · · ·+ λnvin .

Dalla linearità di f segue che

f(v) = λ1f(vi1) + λ2f(vi2) + · · ·+ λnf(vin), (2.1.1)

il che dimostra che la conoscenza di f(vi), per ogni i ∈ I, determina, in modo
unico, f(v), per ogni v ∈ V . In altre parole, se g : V → W è un omomorfismo
tale che g(vi) = f(vi), per ogni i ∈ I, da (2.1.1) segue che g(v) = f(v), per ogni
v ∈ V .

(ii) Per ogni i ∈ I scegliamo arbitrariamente un vettore wi ∈W . Definiamo
una funzione f : V → W ponendo f(vi) = wi, per ogni i ∈ I, ed estendendo f
per linearità a tutto V , cioè ponendo

f(v) = λ1f(vi1) + λ2f(vi2) + · · ·+ λnf(vin),

se v = λ1vi1 + λ2vi2 + · · ·+ λnvin .
Si verifica immediatamente che f è ben definita ed è lineare. L’unicità di

una tale f discende dal punto (i).

Corollario 2.1.18. Siano V e W due spazi vettoriali sul campo K, sia {vi}i∈I
una base (non necessariamente finita) di V e sia f : V → W un’applicazione
lineare.

(i) f è iniettiva se e solo se {f(vi)}i∈I è un insieme libero;

(ii) f è suriettiva se e solo se {f(vi)}i∈I è un insieme di generatori di W ;

(iii) f è un isomorfismo se e solo se {f(vi)}i∈I è una base di W .

Dimostrazione. (i) Ricordiamo, dalla Proposizione 2.1.10, che f è iniettiva se
e solo se Ker(f) = {0}. Dimostriamo quindi l’implicazione Ker(f) = {0} ⇒
{f(vi)}i∈I è un insieme libero. Consideriamo una combinazione lineare

λ1f(vi1) + λ2f(vi2) + · · ·+ λnf(vin) = 0.
Si ha

λ1f(vi1) + λ2f(vi2) + · · ·+ λnf(vin) = f(λ1vi1 + λ2vi2 + · · ·+ λnvin),

da cui segue
λ1vi1 + λ2vi2 + · · ·+ λnvin ∈ Ker(f).

Dato che, per ipotesi, Ker(f) = {0}, si ha

λ1vi1 + λ2vi2 + · · ·+ λnvin = 0,
da cui segue

λ1 = λ2 = · · · = λn = 0,

perché i vettori {vi}i∈I sono una base di V .
Dimostriamo ora l’implicazione opposta. Sia v ∈ Ker(f) e scriviamo

v = λ1vi1 + λ2vi2 + · · ·+ λnvin ,
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per qualche n e qualche λ1, . . . , λn ∈ K. Poiché f(v) = 0, dalla linearità di f si
deduce che

λ1f(vi1) + λ2f(vi2) + · · ·+ λnf(vin) = 0.

Poiché, per ipotesi, l’insieme {f(vi)}i∈I è libero, si ha

λ1 = λ2 = · · · = λn = 0

e dunque v = 0, il che dimostra che Ker(f) = {0}.
(ii) Ricordiamo che affermare che f è suriettiva equivale a dire che Im(f) =

W . Osserviamo inoltre che Im(f) è generata dai vettori f(vi), al variare di i ∈ I.
Infatti, per ogni w ∈ Im(f) esiste un vettore v ∈ V tale che w = f(v). Poiché
{vi}i∈I è una base di V , è possibile esprimere v come combinazione lineare di
un numero finito di vi,

v = λ1vi1 + λ2vi2 + · · ·+ λnvin .
Si ha dunque

w = f(v) = λ1f(vi1) + λ2f(vi2) + · · ·+ λnf(vin),

il che dimostra che l’insieme dei vettori {f(vi)}i∈I genera l’immagine di f .
Da quanto detto segue quindi che Im(f) = W se e solo se {f(vi)}i∈I è un

insieme di generatori di W .
(iii) Poiché f è un isomorfismo se e solo se essa è biiettiva (vedi Proposizio-

ne 2.1.4), dai punti (i) e (ii) segue che f è un isomorfismo se e solo se {f(vi)}i∈I
è un insieme libero di generatori di W , cioè una base di W .

Esempio 2.1.19. In questo esempio vedremo come si possa costruire una funzione
additiva f : R→ R che non sia R-lineare.

Consideriamo R come spazio vettoriale sul campo Q. I due “vettori” v1 = 1
e v2 = π sono linearmente indipendenti su Q (ciò deriva dal fatto che π è
irrazionale), quindi esiste una base {vi}i∈I di R su Q che contiene i numeri 1 e
π (osserviamo che una base di R su Q non può essere numerabile).

Per la Proposizione 2.1.17 è possibile definire una funzione Q-lineare f : R→
R fissando arbitrariamente i valori di f(vi), per ogni i ∈ I. Se poniamo f(1) = 1
e f(π) = 2 (e fissiamo arbitrariamente i rimanenti f(vi) ∈ R), otteniamo una
funzione additiva (e quindi Q-lineare) la quale non è R-lineare. Se lo fosse si
avrebbe infatti

f(π) = f(π 1) = πf(1) = π,

contro l’ipotesi che f(π) = 2.

Esercizi

Esercizio 2.1.1. Si dica se sono lineari le seguenti funzioni:

(1) f : R2 → R3, (x, y) 7→ (x− y, x+ y + 1, 0);

(2) f : R2 → R2, (x, y) 7→ (2x, x+ y);

(3) f : R2 → R, (x, y) 7→ sin(x− y).

Esercizio 2.1.2. Si dica per quali valori di t ∈ R è lineare la seguente funzione:

f : R3 → R2, (x, y, z) 7→ (x+ ty, tyz).

Esercizio 2.1.3. Si consideri la funzione tra C-spazi vettoriali f : C2 → C data da

f(x, y) = x+ ȳ, ove ȳ indica il numero complesso coniugato di y. Si dica se f è lineare

(cioè C-lineare).
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Esercizio 2.1.4. Sia f : V →W un’applicazione tra due spazi vettoriali. Si dimostri

che f è lineare se e solo se il suo grafico è un sottospazio vettoriale di V ×W .

2.2 Matrici

Siano V e W due spazi vettoriali sul campo K, di dimensioni n e m, rispettiva-
mente, e fissiamo delle basi {v1, . . . , vn} di V e {w1, . . . , wm} di W .

In base alla Proposizione 2.1.17, una funzione lineare f : V →W è determi-
nata, in modo unico, dalla conoscenza dei vettori f(vj), per j = 1, . . . , n. Poiché
{w1, . . . , wm} è una base di W , per ogni j = 1, . . . , n possiamo scrivere

f(vj) =
m∑
i=1

aijwi,

per degli opportuni aij ∈ K, con i = 1, . . . ,m e j = 1, . . . , n.
Da quanto detto si deduce quindi che una funzione lineare f : V → W è

determinata in modo unico dal dato di mn elementi aij del campo K. Tali
elementi costituiscono ciò che va sotto il nome di matrice.

Definizione 2.2.1. Una matrice, con m righe e n colonne (o matrice m× n) a
coefficienti in K è il dato di mn elementi di K, scritti solitamente sotto forma
di tabella rettangolare costituita da m righe e n colonne:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


Una matrice A di questo tipo sarà spesso indicata semplicemente con la scrittura

A =
(
aij
)
,

dove i = 1, . . . ,m è detto indice di riga mentre j = 1, . . . , n è detto indice di
colonna.

Ad ogni funzione lineare f : V →W può dunque essere associata una matrice
m × n a coefficienti in K. Naturalmente tale matrice dipende, oltre che dalla
funzione f , anche dalla scelta delle basi di V e W .

Osservazione 2.2.2. Ricordiamo che se un vettore v ∈ V si scrive come combi-
nazione lineare

v = λ1v1 + λ2v2 + · · ·+ λnvn

degli elementi di una base {v1, . . . , vn} di V , i coefficienti λ1, . . . , λn che com-
paiono in una tale espressione si dicono le coordinate di v rispetto alla base
fissata.

Possiamo allora osservare che, dalla definizione della matrice A associata a un
omomorfismo f : V →W , rispetto a delle basi {v1, . . . , vn} di V e {w1, . . . , wm}
di W , segue che le coordinate del vettore f(vj), rispetto alla base di W fissata,
costituiscono la j-esima colonna della matrice A. Questa osservazione si rivela
utile quando è necessario scrivere esplicitamente la matrice associata a una data
funzione lineare.
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Osservazione 2.2.3. In tutta questa sezione supporremo sempre che gli spazi
vettoriali abbiano dimensione finita. Facciamo comunque notare che molti ri-
sultati si possono estendere, con opportune modifiche, anche a spazi vettoriali
di dimensione infinita.

Consideriamo ora due applicazioni lineari f, g : V → W e indichiamo con
A = (aij) e B = (bij) le matrici ad esse associate. La somma di f e g è
l’applicazione lineare definita da (f + g)(v) = f(v) + g(v), per ogni v ∈ V . In
particolare, per ogni vettore vj della base di V , si ha

(f + g)(vj) = f(vj) + g(vj) =
m∑
i=1

aijwi +
m∑
i=1

bijwi

=
m∑
i=1

(aij + bij)wi.

La matrice associata alla funzione f + g ha quindi come coefficienti le somme
aij + bij dei coefficienti delle matrici A e B, associate rispettivamente a f e g.
Questo risultato motiva la seguente definizione:

Definizione 2.2.4. Siano A = (aij) e B = (bij) due matrici m×n a coefficienti
in K. La loro somma è la matrice

A+B = (aij + bij),

ottenuta sommando i coefficienti di A e B che si trovano nelle stesse posizioni.

Sia ora λ ∈ K e consideriamo la funzione λf definita da (λf)(v) = λf(v),
per ogni v ∈ V . Valutando questa funzione sui vettori della base di V , si ha

(λf)(vj) = λf(vj) = λ

m∑
i=1

aijwi =
m∑
i=1

(λaij)wi,

da cui si deduce che la matrice associata alla funzione λf è la matrice i cui
coefficienti sono dati dal prodotto di λ per i coefficienti della matrice A di f .

Definizione 2.2.5. Per ogni λ ∈ K, il prodotto di λ per una matrice A = (aij)
a coefficienti in K è la matrice

λA = (λaij).

Indicheremo con Mm,n(K) l’insieme delle matrici con m righe e n colonne, a
coefficienti in K. Da quanto visto sopra si deduce che esiste una biiezione tra
l’insieme Hom(V,W ) e Mm,n(K). Dato che Hom(V,W ), con le operazioni di
somma di funzioni e di prodotto di una funzione per uno scalare, è uno spazio
vettoriale su K, anche l’insieme Mm,n(K), con le due operazioni sopra definite,
risulta essere un K-spazio vettoriale. Inoltre, i due spazi vettoriali Hom(V,W )
e Mm,n(K) sono isomorfi.

Per analogia con la definizione della base canonica di Kn, definiamo delle
matrici Eij , con i = 1, . . . ,m e j = 1, . . . , n, i cui coefficienti sono tutti nulli
eccetto quello di posto (i, j) (cioè quello che si trova sulla i-esima riga e sulla
j-esima colonna), che è uguale a 1. È immediato verificare che le mn matrici
Eij appena definite formano una base dello spazio vettoriale Mm,n(K). Ciò è
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conseguenza del fatto che ogni matrice A = (aij) si scrive, in modo unico, come
segue:

A =
∑
i,j

aijEij .

Possiamo riassumere quanto appena visto nel seguente risultato:

Proposizione 2.2.6. Mm,n(K) è uno spazio vettoriale di dimensione mn su
K. Se V e W sono due K-spazi vettoriali di dimensioni n e m rispettivamente,
vi è un isomorfismo Hom(V,W ) ∼= Mm,n(K). Tale isomorfismo non è canonico,
in quanto dipende dalla scelta di una base di V e di una base di W .

In particolare, se V = W e quindi m = n, lo spazio vettoriale End(V ) =
Hom(V, V ) è isomorfo a Mn(K) = Mn,n(K) e ha dimensione n2.

Vediamo ora quale operazione tra matrici corrisponde alla composizione di
due funzioni lineari. A tal fine consideriamo tre spazi vettoriali U , V e W ,
di dimensioni rispettivamente r, n e m, e fissiamo delle loro basi {u1, . . . , ur},
{v1, . . . , vn} e {w1, . . . , wm}. Siano f : V → W e g : U → V due applicazioni
lineari e indichiamo con A la matrice di f , con B la matrice di g e con C la
matrice di f ◦ g : U → W , rispetto alle basi indicate. Ricordiamo che A è una
matrice m× n, B è una matrice n× r, mentre C è una matrice m× r.

Per ogni vettore uj della base di U si ha:

(f ◦ g)(uj) = f(g(uj)) = f
( n∑
h=1

bhjvh

)
=

n∑
h=1

bhjf(vh) =
n∑
h=1

bhj

( m∑
i=1

aihwi

)
=

m∑
i=1

( n∑
h=1

aihbhj

)
wi.

Poiché C = (cij) è la matrice di f ◦ g, si ha anche

(f ◦ g)(uj) =
m∑
i=1

cijwi.

Dall’uguaglianza di queste due ultime espressioni (e dal fatto che i vettori
{w1, . . . , wm} sono una base di W ) segue che

cij =
n∑
h=1

aihbhj ,

per ogni i = 1, . . . ,m e j = 1, . . . , r. Utilizzeremo dunque questa formula per de-
finire un prodotto di matrici, in modo che il prodotto delle matrici A e B associa-
te agli omomorfismi f e g fornisca proprio la matrice associata all’omomorfismo
composto f ◦ g.

Definizione 2.2.7. Date due matrici A ∈ Mm,n(K) e B ∈ Mn,r(K), il loro
prodotto è la matrice C ∈Mm,r(K) i cui coefficienti sono dati da

cij =
n∑
h=1

aihbhj , (2.2.1)
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per ogni i = 1, . . . ,m e j = 1, . . . , r. Questo prodotto di matrici è anche detto
prodotto righe per colonne.

Vediamo più in dettaglio come si calcola un tale prodotto di matrici. Siano
A e B due matrici come sopra e vogliamo determinare il loro prodotto C = AB.
Per calcolare l’elemento cij , che si trova sulla i-esima riga e sulla j-esima colonna
della matrice C, dobbiamo selezionare la i-esima riga della matrice A e la j-esima
colonna della matrice B:

(ai1, ai2, . . . , ain)


b1j
b2j
...
bnj


dopodiché dobbiamo “moltiplicare” questa riga per questa colonna nel modo
indicato dalla formula (2.2.1), cioè dobbiamo effettuare la somma dei prodotti
componente per componente dei due vettori indicati:

cij = ai1b1j + ai2b2j + · · ·+ ainbnj .

Osserviamo che per fare ciò è indispensabile che la lunghezza delle righe di A
coincida con la lunghezza delle colonne di B. La matrice risultante dal prodotto
di A per B avrà un numero di righe pari a quello della matrice A e un numero
di colonne pari a quello della matrice B.

Un caso particolare di prodotto tra matrici si ha quando la matrice B ha
una sola colonna, cioè quando B si riduce a un vettore (scritto in colonna): si
ottiene in questo modo il prodotto di una matrice per un vettore, il cui risultato
è ancora un vettore. Più precisamente, data una matrice A ∈ Mm,n(K) e un
vettore v = (x1, x2, . . . , xn) ∈ Kn (che scriveremo in colonna), il prodotto Av è
un vettore w = (y1, y2, . . . , ym) ∈ Km dato da

y1

y2

...
ym

 =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn



x1

x2

...
xn


Si ottiene in questo modo un’applicazione lineare

FA : Kn → Km, v 7→ w = FA(v) = Av.

La matrice associata a questa applicazione lineare (rispetto alle basi canoniche
di Kn e Km) è proprio la matrice A.
Osservazione 2.2.8. In modo del tutto equivalente si può considerare il caso
particolare del prodotto di A per B, quando la matrice A si riduce a un vettore
(questa volta scritto in riga). Consideriamo dunque una matrice B ∈ Mn,r(K)
e un vettore v = (x1, x2, . . . , xn) ∈ Kn (che scriveremo in riga). Il prodotto vB
è un vettore w = (y1, y2, . . . , yr) ∈ Kr dato da

(y1, y2, . . . , yr) = (x1, x2, . . . , xn)


b11 b12 . . . b1r
b21 b22 . . . b2r
...

...
. . .

...
bn1 bn2 . . . bnr


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Anche in questo caso si ottiene un’applicazione lineare

GB : Kn → Kr, v 7→ w = GB(v) = vB.

Si conclude pertanto che un omomorfismo tra due spazi vettoriali quali Kn e Km

può essere descritto sia dal prodotto di un vettore riga per una certa matrice,
sia dal prodotto di un’altra matrice per un vettore colonna. Naturalmente si
passa da una descrizione all’altra semplicemente scambiando tra loro i ruoli delle
righe con quelli delle colonne. L’operazione che trasforma una matrice m × n
in una matrice n ×m scambiando tra di loro le righe con le colonne si chiama
trasposizione.

Definizione 2.2.9. Sia A = (aij) ∈Mm,n(K). La trasposta di A è la matrice
tA ∈Mn,m(K) il cui coefficiente di posto (i, j) è aji, cioè è il coefficiente di posto
(j, i) della matrice A.

Il trasposto di un vettore scritto in colonna è dunque un vettore scritto
in riga, e viceversa. Per comodità di notazione, d’ora in poi i vettori di Kn

verranno sempre pensati come vettori colonna:

v =


x1

x2

...
xn


Per indicare invece un analogo vettore pensato come vettore riga, scriveremo
quindi tv:

tv = (x1, x2, . . . , xn).

Come ultimo caso particolare del prodotto di due matrici, vediamo cosa succede
quando sia A che B si riducono a dei vettori (scritti il primo in riga e il secondo
in colonna). In questo caso il risultato del prodotto è uno scalare, cioè un
elemento di K:

(a1, a2, . . . , an)


b1
b2
...
bn

 = a1b1 + a2b2 + · · ·+ anbn ∈ K.

Si ottiene in questo modo la definizione di un prodotto tra due vettori di Kn, il
cui risultato è uno scalare: questo è il cosiddetto prodotto scalare di due vettori.

Definizione 2.2.10. Siano v = t(x1, x2, . . . , xn) e w = t(y1, y2, . . . , yn) due
elementi di Kn. Il loro prodotto scalare, che indicheremo con v · w (o, a volte,
con 〈v, w〉) è definito da

v · w = tvw =
n∑
i=1

xiyi.

Di questa nozione di prodotto scalare, e delle sue generalizzazioni, ci occuperemo
in seguito. Vediamo ora alcune proprietà dell’operazione di trasposizione.

Proposizione 2.2.11. Siano A,B ∈Mm,n(K) e sia λ ∈ K. Si ha:
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(i) t(tA) = A;

(ii) t(A+B) = tA+ tB;

(iii) t(λA) = λ tA.

Se A ∈Mm,n(K) e B ∈Mn,r(K), si ha inoltre

(iv) t(AB) = tB tA.

Dimostrazione. Le prime tre proprietà sono ovvie, dimostriamo quindi la quarta.
Indichiamo con aij i coefficienti di A e con ãij i coefficienti di tA: si ha quindi
ãij = aji. Analogamente indichiamo con bij e con b̃ij i coefficienti di B e tB,
rispettivamente. Indichiamo poi con cij i coefficienti del prodotto AB e con c̃ij i
coefficienti di t(AB). Infine, indichiamo con dij i coefficienti della matrice tB tA.
Ricordando la definizione del prodotto di due matrici, si ha:

c̃ij = cji =
∑
h

ajhbhi,

mentre
dij =

∑
h

b̃ihãhj =
∑
h

ajhbhi,

da cui segue che dij = c̃ij , per ogni i e j.

Ritorniamo ora al prodotto di matrici e studiamo più in dettaglio alcune
delle sue proprietà.

Proposizione 2.2.12. Siano A, B e C tre matrici e siano λ, µ ∈ K. Ogni
volta che le somme e i prodotti indicati sono definiti, si ha:

(i) (AB)C = A(BC);

(ii) (A+B)C = AC +BC;

(iii) A(B + C) = AB +AC;

(iv) λ(AB) = (λA)B = A(λB);

(v) (λ+ µ)A = λA+ µA;

(vi) (λµ)A = λ(µA).

Dimostrazione. Tutte queste proprietà discendono dalle analoghe proprietà delle
operazioni definite sulle funzioni lineari: ad esempio, la proprietà associativa
del prodotto di matrici (AB)C = A(BC) equivale alla proprietà associativa del
prodotto di composizione (f ◦ g) ◦ h = f ◦ (g ◦ h) delle funzioni. In ogni caso,
si possono dimostrare direttamente mediante un semplice calcolo. A titolo di
esempio, dimostriamo la prima.

Indichiamo con aij i coefficienti della matrice A, con bij quelli di B e con cij i
coefficienti di C. Indichiamo inoltre con dij i coefficienti della matrice prodotto
di A per B e con eij quelli del prodotto (AB)C. Dalla definizione del prodotto
di due matrici si ha:

eij =
∑
h

dihchj =
∑
h

(∑
k

aikbkh

)
chj =

∑
h,k

aikbkhchj .

Ora basta osservare che se calcoliamo, in modo analogo, i coefficienti del pro-
dotto A(BC), troviamo esattamente la stessa espressione.
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Sia f : V →W un’applicazione lineare tra due spazi vettoriali di dimensioni
n e m rispettivamente. Abbiamo già osservato che la scelta di una base v =
{v1, . . . , vn} di V determina un isomorfismo αv : V ∼→ Kn che associa ad ogni
vettore v ∈ V la n-upla (λ1, . . . , λn) delle sue coordinate rispetto alla base v.
Analogamente la scelta di una base w = {w1, . . . , wm} di W determina un
isomorfismo βw : W ∼→ Km che associa ad ogni vettore w ∈ W la m-upla
(µ1, . . . , µm) delle sue coordinate rispetto alla base w.

Sia dunque A la matrice di f rispetto alle basi scelte. Essa determina
un’applicazione lineare F : Kn → Km, definita da

F :

λ1

...
λn

 7→
µ1

...
µm

 = A

λ1

...
λn

 .

Proposizione 2.2.13. Con le notazioni precedenti, il diagramma

V
f //

αv o
��

W

βwo
��

Kn
F
// Km

(2.2.2)

è commutativo

Dimostrazione. Dobbiamo dimostrare che βw ◦ f = F ◦ αv. Sia dunque v ∈ V
ed esprimiamo v come combinazione lineare dei vettori della base v:

v = λ1v1 + λ2v2 + · · ·+ λnvn.

Per definizione della funzione αv, si ha αv(v) = t(λ1, . . . , λn) (si ricordi che
abbiamo deciso di scrivere gli elementi di Kn come vettori colonna). Calcolando
ora F (αv(v)) si ottiene il vettore

A

λ1

...
λn

 ,

la cui i-esima componente è

ai1λ1 + ai2λ2 + · · ·+ ainλn =
n∑
j=1

aijλj . (2.2.3)

Calcoliamo ora f(v). Dalla linearità di f e dalla definizione della matrice A =
(aij) associata a f , si ha:

f(v) = f(λ1v1 + λ2v2 + · · ·+ λnvn)

=
n∑
j=1

λjf(vj)

=
n∑
j=1

λj

( m∑
i=1

aijwi

)
=

m∑
i=1

( n∑
j=1

aijλj

)
wi.
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Poniamo

µi =
n∑
j=1

aijλj , (2.2.4)

per i = 1, . . . ,m, in modo che si abbia

f(v) =
m∑
i=1

µiwi.

La m-upla (µ1, . . . , µm) rappresenta le coordinate del vettore f(v) rispetto al-
la base w e si ha pertanto βw(f(v)) = t(µ1, . . . , µm). A questo punto ba-
sta osservare che l’espressione di µi in (2.2.4) coincide con l’espressione (2.2.3)
per la i-esima componente del vettore F (αv(v)). Abbiamo cos̀ı dimostrato che
F (αv(v)) = βw(f(v)), per ogni v ∈ V .

Osservazione 2.2.14. Questo risultato fornisce un metodo diretto per calcolare
l’immagine tramite f : V → W di un qualsiasi vettore v ∈ V , nota la matrice
di f rispetto a delle basi prefissate dei due spazi vettoriali V e W .

Dapprima si determinano le coordinate (λ1, . . . , λn) del vettore v rispetto alla
base di V , poi si moltiplica la matrice A associata a f per il vettore (λ1, . . . , λn),
scritto in colonna. Il vettore risultante è costituito dalle coordinate di f(v)
rispetto alla base di W .

Dal diagramma commutativo (2.2.2) segue che il nucleo di f e il nucleo di
F sono tra loro isomorfi, essendo tale isomorfismo indotto dall’isomorfismo αv.
Analogamente, l’isomorfismo βw induce un isomorfismo tra Im(f) e Im(F ). In
particolare questi spazi vettoriali hanno la stessa dimensione. Si ha pertanto

null(f) = null(F ) e rk(f) = rk(F ).

Dato che l’applicazione lineare F : Kn → Km è data dalla moltiplicazione per
la matrice A, diamo la seguente definizione:

Definizione 2.2.15. Sia A una matrice m×n a coefficienti in K e sia F : Kn →
Km l’applicazione lineare data dalla moltiplicazione di un vettore (colonna) per
la matrice A (a sinistra). Definiamo il rango e la nullità della matrice A ponendo

rk(A) = rk(F ) = dim Im(F ),
null(A) = null(F ) = dim Ker(F ).

Osserviamo che il sottospazio Im(F ) di Km è generato dalle colonne di A (pos-
siamo anche osservare che nell’isomorfismo βw : W ∼→ Km le colonne della
matrice A corrispondono alle immagini, tramite f : V → W , dei vettori della
base di V , le quali generano il sottospazio Im(f) di W ). Pertanto la dimen-
sione di Im(F ), cioè il rango di F , coincide con il massimo numero di colonne
linearmente indipendenti della matrice A. Abbiamo cos̀ı dimostrato il seguente
risultato:

Proposizione 2.2.16. Il rango di una matrice A è il massimo numero di
colonne linearmente indipendenti di A.
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Osservazione 2.2.17. Il risultato della proposizione precedente viene spesso usa-
to come definizione del rango di una matrice. Si parla allora di rango per colonne,
per distinguerlo da un analogo rango per righe, definito come il massimo numero
di righe linearmente indipendenti. Vedremo in seguito che, in effetti, queste due
nozioni di rango coincidono sempre, cioè in ogni matrice il massimo numero di
colonne linearmente indipendenti è sempre uguale al massimo numero di righe
linearmente indipendenti.

2.2.1 Matrici quadrate

Abbiamo visto che il prodotto di due matrici (cos̀ı come la composizione di
due applicazioni) non è sempre definito: affinché il prodotto AB sia definito è
necessario (e sufficiente) che il numero di colonne della matrice A sia uguale al
numero di righe di B. Se ci restringiamo a considerare solo matrici di tipo n×n,
questi problemi scompaiono e il prodotto di due matrici è sempre definito.

Definizione 2.2.18. Una matrice a coefficienti in K si dice quadrata di ordine
n se essa ha n righe e n colonne. L’insieme delle matrici quadrate di ordine n è
indicato semplicemente con Mn(K), al posto di Mn,n(K).

Osservazione 2.2.19. Se V è uno spazio vettoriale di dimensione n su K, e se è
stata fissata una base {v1, . . . , vn} di V , ad ogni endomorfismo f : V → V cor-
risponde una matrice quadrata A ∈ Mn(K). Questa corrispondenza stabilisce
una biiezione tra End(V ) e Mn(K). Poiché End(V ), con le operazioni di somma
di funzioni, di prodotto di una funzione per uno scalare e di composizione di
due funzioni, è una K-algebra, lo stesso vale per l’insieme delle matrici quadrate
Mn(K).

Proposizione 2.2.20. L’insieme Mn(K) delle matrici quadrate di ordine n
a coefficienti in K, dotato delle operazioni di somma e di prodotto di matrici
e dell’operazione di prodotto di una matrice per un elemento di K, è una K-
algebra.

Facciamo notare che l’elemento neutro per l’operazione di somma è la matrice
nulla

0 = 0n =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


(la quale corrisponde all’applicazione nulla f : V → V , f(v) = 0, per ogni
v ∈ V ), mentre l’elemento neutro per l’operazione di prodotto di matrici è la
matrice identica, definita da

1 = 1n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


(che corrisponde all’identità id : V → V ), cioè la matrice avente tutti i coefficien-
ti sulla cosiddetta diagonale principale pari a 1, mentre tutti gli altri coefficienti
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sono nulli. Infatti è immediato verificare che, per ogni matrice A ∈ Mn(K), si
ha

1nA = A1n = A.

Infine notiamo che il prodotto di matrici non gode della proprietà commutativa:
se A e B sono due matrici in Mn(K) si ha, in generale,

AB 6= BA.

Ciò non deve stupire in quanto riflette semplicemente il fatto che la composizione
di due funzioni lineari f, g : V → V non è, in generale, commutativa, cioè
f ◦ g 6= g ◦ f .

Una matrice del tipo λ1n, cioè
λ 0 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ


con λ ∈ K, è detta matrice scalare. Essa corrisponde all’omomorfismo f :
V → V definito da f(v) = λv. È immediato verificare che una matrice scalare
commuta con ogni altra matrice, cioè

(λ1n)A = A(λ1n),

per ogni A ∈Mn(K).
Più in generale, una matrice del tipo

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


cioè una matrice in cui tutti i coefficienti sono nulli, tranne al più quelli sulla
diagonale principale, è detta matrice diagonale. Si noti che, in generale, una
matrice diagonale non commuta con un’altra matrice qualsiasi. Tuttavia le
matrici diagonali commutano tra loro.

Una matrice triangolare superiore è una matrice in cui tutti i coefficienti che
si trovano al di sotto della diagonale principale sono nulli, cioè una matrice del
tipo 

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
...

...
. . .

...
0 0 0 · · · ann


Analogamente si definisce una matrice triangolare inferiore come una matrice
in cui tutti i coefficienti che si trovano al di sopra della diagonale principale sono



Capitolo 2 Applicazioni Lineari e Matrici 45

nulli, cioè una matrice del tipo
a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · ann


Si noti che la somma e il prodotto di due matrici triangolari superiori (rispetti-
vamente, inferiori) è ancora una matrice dello stesso tipo.

Osservazione 2.2.21. Consideriamo, a titolo di esempio, il caso di matrici qua-
drate di ordine 2, a coefficienti razionali. Siano, ad esempio,

A =
(

2 −1
−4 2

)
, B =

(
1 3
2 6

)
.

Si verifica immediatamente che il prodotto AB è la matrice nulla, tuttavia né
A né B sono nulle! Ciò mostra che, in generale, nell’anello Mn(K) delle matrici
quadrate possono esistere degli elementi diversi da zero, con la proprietà che il
loro prodotto è uguale a zero (elementi di questo tipo sono detti divisori di zero):
non vale quindi la cosiddetta “legge di annullamento del prodotto,” secondo la
quale il prodotto di due fattori è nullo se e solo se almeno uno dei due fattori è
nullo.

Consideriamo ora la matrice

C =
(

0 1
0 0

)
La matrice C non è nulla, tuttavia si ha C2 = CC = 0. Più in generale, si può
dimostrare che nell’anello Mn(K) esistono delle matrici C 6= 0 con la proprietà
che Cr = 0, per qualche r > 1. Tali elementi sono detti nilpotenti.

Veniamo ora al problema dell’invertibilità delle matrici di Mn(K). Dato
che l’elemento neutro per il prodotto è la matrice identica 1n, l’inversa di una
matrice A ∈Mn(K) è una matrice B ∈Mn(K) tale che si abbia

AB = BA = 1n.

Naturalmente l’esistenza in Mn(K) di divisori dello zero impedisce che esistano
gli inversi di tutte le matrici non nulle. Infatti, se A ∈ Mn(K) è un divisore
dello zero e se B è una matrice non nulla tale che AB = 0, allora, se per assurdo
esistesse la matrice A−1 inversa di A, si avrebbe

B = 1nB = (A−1A)B = A−1(AB) = A−10 = 0,

contro l’ipotesi che B 6= 0.
D’altra parte, se ripensiamo all’isomorfismo esistente tra End(V ) e Mn(K),

ove V è uno spazio vettoriale di dimensione n con una base fissata, notiamo
che affermare che una matrice A sia invertibile equivale ad affermare che la
corrispondente funzione lineare f : V → V sia invertibile, ma ciò è vero se e
solo se f è biiettiva, cioè se e solo se f è un isomorfismo.

Ricordiamo che il sottoinsieme di End(V ) costituito dalle funzioni lineari
invertibili (cioè dagli isomorfismi) f : V → V , è stato indicato con Aut(V ).



Capitolo 2 Applicazioni Lineari e Matrici 46

Il corrispondente sottoinsieme di Mn(K), costituito dalle matrici associate a
elementi di Aut(V ), cioè dalle matrici invertibili, sarà indicato con GL(n,K), e
detto il gruppo generale lineare di ordine n a coefficienti in K. Esso è infatti
un gruppo (non commutativo), rispetto all’operazione di prodotto tra matrici.

2.2.2 Cambiamenti di base

Abbiamo più volte fatto notare che la matrice associata a una funzione lineare
f : V → W dipende dalla scelta di una base dello spazio vettoriale V e di una
base di W : cambiando scelta delle basi cambia anche la matrice associata a f .
In questa sezione ci proponiamo di scoprire in che modo cambia la matrice di f
se cambiamo la nostra scelta delle basi di V e W .

Siano dunque V e W due spazi vettoriali su K, di dimensioni rispettivamente
n e m e sia f : V → W un’applicazione lineare. Siano v = {v1, . . . , vn} e
v′ = {v′1, . . . , v′n} due basi di V e siano w = {w1, . . . , wm} e w′ = {w′1, . . . , w′m}
due basi di W . Infine, indichiamo con A = (aij) la matrice di f rispetto alle
basi v e w e con A′ = (a′ij) la matrice di f rispetto alle basi v′ e w′. Ricordiamo
che ciò significa che

f(vj) =
m∑
i=1

aijwi, e f(v′j) =
m∑
i=1

a′ijw
′
i,

per ogni j = 1, . . . , n.
Indichiamo con αv : V ∼→ Kn l’isomorfismo che associa ad ogni vettore

v ∈ V la n-upla (λ1, . . . , λn) delle sue coordinate rispetto alla base v e con
αv′ : V ∼→ Kn l’isomorfismo che associa ad ogni v ∈ V la n-upla (λ′1, . . . , λ

′
n)

delle sue coordinate rispetto alla base v′.
Indichiamo analogamente con βw : W ∼→ Km l’isomorfismo che associa ad

ogni vettore w ∈ W la m-upla (µ1, . . . , µm) delle sue coordinate rispetto alla
base w e con βw′ : W ∼→ Km l’isomorfismo che associa ad ogni w ∈W la m-upla
(µ′1, . . . , µ

′
m) delle sue coordinate rispetto alla base w′.

Componendo αv′ con l’inverso dell’isomorfismo αv otteniamo un isomorfismo
di Kn in sé, il quale corrisponde alla moltiplicazione per una qualche matrice
P ∈ Mn(K). Indicheremo questo isomorfismo con FP : Kn ∼→ Kn. Si ottiene
cos̀ı il seguente diagramma commutativo:

V
αv

}}||
||

||
|| αv′

!!C
CC

CC
CC

C

Kn
FP

// Kn

Analogamente, componendo βw′ con l’inverso dell’isomorfismo βw otteniamo
un isomorfismo di Km in sé, il quale corrisponde alla moltiplicazione per una
qualche matrice Q ∈Mm(K). Indicheremo questo isomorfismo con FQ : Km ∼→
Km. Si ottiene cos̀ı il seguente diagramma commutativo:

W
βw

||zz
zz

zz
zz βw′

""D
DD

DD
DD

D

Km
FQ

// Km
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Facciamo notare che le due matrici P e Q sono invertibili, dato che le corrispon-
denti applicazioni lineari FP e FQ sono degli isomorfismi.

Vediamo ora di ottenere una descrizione più esplicita delle matrici P e Q.
Cominciamo dalla matrice P , la quale corrisponde all’isomorfismo

FP : Kn ∼→ Kn.

Abbiamo già osservato che le colonne di P sono date dalle immagini dei vettori
della base canonica di Kn. Sia ej = t(0, . . . , 0, 1, 0, . . . , 0) il j-esimo vettore
della base canonica di Kn (tutte le coordinate sono nulle tranne la j-esima che
è uguale a 1). Tramite l’isomorfismo αv, il vettore ej ∈ Kn corrisponde al
j-esimo vettore vj della base v di V . Si ha quindi

FP (ej) = αv′(α−1
v (ej)) = αv′(vj),

dove ricordiamo che αv′(vj) ∈ Kn è il vettore costituito dalle coordinate del
vettore vj calcolate rispetto alla base v′; questo vettore è la j-esima colonna di
P .

In conclusione, possiamo affermare che le colonne della matrice P non sono
altro che le coordinate dei vettori v1, . . . , vn della base v di V calcolate rispetto
alla seconda base v′. Con un analogo ragionamento, scambiando i ruoli delle
due basi, si potrebbe dimostrare che le colonne della matrice inversa P−1 sono
precisamente le coordinate dei vettori v′1, . . . , v

′
n della base v′ di V calcolate

rispetto alla prima base v.
In modo del tutto analogo si dimostra che la j-esima colonna della matrice

Q è costituita dal vettore delle coordinate del j-esimo vettore wj della base w
calcolate rispetto alla base w′. In altre parole, la matrice Q è la matrice le cui
colonne sono date dalle coordinate dei vettori w1, . . . , wm della base w di W
calcolate rispetto alla seconda base w′. Analogamente si dimostra che le colonne
della matrice inversa Q−1 sono le coordinate dei vettori w′1, . . . , w

′
m della base

w′ di W calcolate rispetto alla prima base w.
Ricordando il risultato enunciato nella Proposizione 2.2.13, possiamo rias-

sumere quanto detto finora nel seguente diagramma commutativo

Kn
FA //

FP o

��

Km

FQo

��

V
f //

αv

aaCCCCCCCC

αv′}}||
||

||
||

W

βw
<<zzzzzzzz

βw′ ""D
DD

DD
DD

D

Kn
FA′

// Km

ove FA e FA′ sono le applicazioni lineari date dalla moltiplicazione per A e per
A′, rispettivamente.

Dalla commutatività di questo diagramma si deduce che

FA′ ◦ FP = FQ ◦ FA,

che equivale alla seguente uguaglianza tra matrici

A′P = QA.
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Da ciò segue che
A′ = QAP−1 e A = Q−1A′P. (2.2.5)

Queste due espressioni equivalenti permettono di determinare la matrice A′ di
un’applicazione lineare f : V →W rispetto alle basi v′ di V e w′ di W quando è
nota la matrice A di f rispetto a delle basi v e w e quando sono note le matrici
di cambiamento di base P e Q.

Nel caso particolare in cui W = V , cioè quando f è un endomorfismo di uno
spazio vettoriale V , il diagramma commutativo precedente si riduce al seguente

Kn
FA //

FP o

��

Kn

FPo

��

V
f //

αv

aaCCCCCCCC

αv′}}||
||

||
||

V

αv

==||||||||

αv′ !!C
CC

CC
CC

C

Kn
FA′

// Kn

e le uguaglianze (2.2.5) diventano

A′ = PAP−1 e A = P−1A′P. (2.2.6)

Diamo ora la seguente definizione:

Definizione 2.2.22. Due matrici quadrate A e A′ di ordine n a coefficienti in K
si dicono simili se esiste una matrice invertibile P ∈Mn(K) (cioè P ∈ GLn(K))
tale che

A′ = PAP−1

o, equivalentemente,
A = P−1A′P.

Da quanto sopra detto si deduce il seguente risultato:

Corollario 2.2.23. Due matrici A,A′ ∈ Mn(K) rappresentano lo stesso en-
domorfismo f di uno spazio vettoriale V di dimensione n su K, rispetto a basi
diverse, se e solo se sono simili.

Osservazione 2.2.24. Si noti che la relazione di similitudine è una relazione di
equivalenza sull’insieme Mn(K) delle matrici quadrate di ordine n a coefficienti
in K.

Esercizi

Esercizio 2.2.1. Sia f : V → W un’applicazione lineare tra due spazi vettoriali.

Siano {v1, v2, v3} una base di V e {w1, w2, w3, w4} una base di W , e f sia data da

f(v1) = 2w1 − 3w2 + w4, f(v2) = w2 − 2w3 + 3w4 e f(v3) = w1 + w2 + w3 − 3w4. Si

scriva la matrice di f nelle basi date.

Esercizio 2.2.2. Siano V e W due spazi vettoriali di basi rispettivamente {v1, v2, v3}
e {w1, w2}, e sia f : V →W un’applicazione lineare di matrice (rispetto alle basi date)

A =

(
2 −1 1
3 2 −3

)
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(1) Si prenda per V la nuova base v′1 = v2 + v3, v′2 = v1 + v3, v′3 = v1 + v2. Qual è
la nuova matrice A′ di f rispetto alle basi {v′1, v′2, v′3} e {w1, w2}?

(2) Si prenda per W la nuova base w′1 = 1
2
(w1 +w2) e w′2 = 1

2
(w1 −w2). Qual è la

matrice A′′ di f rispetto alle basi {v′1, v′2, v′3} e {w′1, w′2}?

Esercizio 2.2.3. Si consideri il sottospazio V di C∞(R) generato dalle funzioni

f1(x) = e2x + cosx, f2(x) = cosx + sinx e f3(x) = sinx. Si dimostri che f1, f2 e f3
sono linearmente indipendenti e si determini la matrice (rispetto alla base {f1, f2, f3})
dell’endomorfismo di V che a una funzione associa la sua derivata.

Esercizio 2.2.4. Si determinino le matrici, rispetto alle basi canoniche, di tutte

le applicazioni lineari f : R3 → R4 tali che f(1, 2,−1) = (0, 1, 0, 1), f(3,−1, 2) =

(1, 2, 0,−1) e f(−1, 5,−4) = (2, 0, 3, 2).

Esercizio 2.2.5. Si determinino le matrici, rispetto alle basi canoniche, di tutte le

applicazioni lineari f : R3 → R2 tali che f(0,−2, 1) = (3,−1), f(1, 1,−2) = (1, 2) e

f(2,−4,−1) = (11, 1).

Esercizio 2.2.6. Sia V l’insieme delle funzioni polinomiali a coefficienti reali di
grado ≤ 4 che si annullano in 0 e 1, e sia W l’insieme delle funzioni polinomiali a
coefficienti reali di grado ≤ 3 tali che il loro integrale tra 0 e 1 è nullo.

(1) Si dimostri che V e W sono due spazi vettoriali e se ne determinino delle basi.

(2) Sia D : V →W l’applicazione lineare che associa a una funzione la sua derivata.
Si dimostri che D è ben definita e si determini una sua matrice rispetto alle basi
precedentemente trovate.

Esercizio 2.2.7. Sia φλ : R3 → R4 l’omomorfismo di matrice (rispetto alle basi
canoniche)

Aλ =


1 λ 0
0 λ 0
1 0 1
0 0 0


(1) È vero o falso che, per ogni λ ∈ R, esiste un omomorfismo ψ : R4 → R3 tale che

ψ ◦ φλ sia suriettivo?

(2) Per quali valori di λ esistono x, y, z ∈ R tali che, posto

B =

 1 x 0 0
0 y 0 0
−1 z 1 0


si abbia BAλ = 1?

Esercizio 2.2.8. Siano V e W due spazi vettoriali, con basi rispettivamente date

da {v1, v2, v3, v4} e {w1, w2, w3}. Si determini la matrice, rispetto alle basi date,

dell’applicazione lineare φ : V → W definita da φ(v1) = w1 − w2, φ(v2) = 2w2 − 6w3,

φ(v3) = −2w1 +2w2, φ(v4) = w2−3w3. Si determinino inoltre le dimensioni di Kerφ e

di Imφ e si scrivano delle basi di tali sottospazi. Si dica inoltre se w1+w2+w3 ∈ Imφ.

Esercizio 2.2.9. Si dica se l’endomorfismo di R3 definito da

f(x, y, z) = (x+ 2y, y + z, 2z − x)

è iniettivo o suriettivo. Si determinino delle basi di Ker f e di Im f e si dica se la

somma del nucleo e dell’immagine di f è diretta.
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Esercizio 2.2.10. Sia f : R3 → R3 l’endomorfismo definito ponendo

f(1, 0, 0) = (2,−1, 0)

f(0, 1, 0) = (1,−1, 1)

f(0, 1,−1) = (0, 2, 2).

Si determini la matrice di f rispetto alla base canonica di R3. Si determinino inoltre

le dimensioni del nucleo e dell’immagine di f e delle basi di tali sottospazi.

Esercizio 2.2.11. Sia f : R3 → R3 l’endomorfismo di matrice

A =

1 2 3
1 1 1
1 1 1


rispetto alla base canonica. Si determini il rango di f e delle basi di Ker f e di Im f .

Esercizio 2.2.12. Sia V uno spazio vettoriale di dimensione finita. Si dica sotto

quali condizioni su V esiste un endomorfismo φ : V → V tale che Kerφ = Imφ.

Esercizio 2.2.13. Si determini il rango della matrice

A =


0 1 2 1
1 1 1 0
0 −1 1 1
1 1 4 2


Esercizio 2.2.14. Si determini, al variare di a ∈ R, il rango della matrice

A =


0 1 2 1 0
1 2 2 1 1
1 1 a 0 1
0 a 2a a2 0



2.3 Sistemi lineari

Riprendiamo ora lo studio dei sistemi di equazioni lineari, alla luce di ciò che
abbiamo appreso al riguardo delle applicazioni lineari e delle matrici.

Dato un sistema di m equazioni lineari in n incognite

S :


a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

indichiamo con A = (aij) la matrice costituita dei coefficienti del sistema, con
X = t(x1, . . . , xn) il vettore colonna costituito dalle n incognite e con B =
t(b1, . . . , bm) il vettore colonna dei termini noti. Ricordando la definizione del
prodotto di una matrice per un vettore, è immediato verificare che il sistema S
è equivalente alla seguente equazione:

AX = B,
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cioè 
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn



x1

x2

...
xn

 =


b1
b2
...
bm


Se indichiamo con FA : Kn → Km l’applicazione lineare definita da FA(X) =
AX, per ogni X ∈ Kn (FA è l’applicazione lineare la cui matrice, rispetto alle
basi canoniche di Kn e Km è A), l’equazione AX = B equivale a FA(X) = B.
Da ciò si deduce che l’insieme delle soluzioni del sistema S non è altro che
l’antiimmagine tramite FA del vettore B ∈ Km:

F−1
A (B) = {X ∈ Kn |AX = B}.

Osservazione 2.3.1. Più in generale, data una funzione lineare f : V → W tra
due spazi vettoriali V e W , di dimensioni rispettivamente n e m sul campo K,
possiamo considerare il seguente problema: dato un vettore w ∈W , determinare
la sua antiimmagine f−1(w) ⊆ V , cioè determinare tutti i vettori v ∈ V tali che
f(v) = w.

Se scegliamo delle basi v = {v1, . . . , vn} di V e w = {w1, . . . , wm} di W ,
all’omomorfismo f risulta associata una matrice A = (aij), con m righe e n
colonne, a coefficienti in K, con la proprietà che, per ogni vettore

v = λ1v1 + · · ·+ λnvn ∈ V,

se esprimiamo f(v) come combinazione lineare dei vettori della base w

f(v) = µ1w1 + · · ·+ µmwm,

allora si ha 
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn



λ1

λ2

...
λn

 =


µ1

µ2

...
µm


Pertanto, se indichiamo con (b1, . . . , bm) ∈ Km il vettore delle coordinate di
w rispetto alla base w di W fissata e se indichiamo con (x1, . . . , xn) ∈ Kn le
coordinate di un generico vettore v ∈ V (rispetto alla base v di V fissata), il
problema di determinare i vettori v tali che f(v) = w si traduce nel problema
di determinare le soluzioni del seguente sistema di equazioni lineari:

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn



x1

x2

...
xn

 =


b1
b2
...
bm


Ricordiamo che un sistema lineare AX = B è detto omogeneo se B = 0.

Proposizione 2.3.2. L’insieme delle soluzioni di un sistema lineare omogeneo
di m equazioni in n incognite a coefficienti in K è un sottospazio vettoriale di
Kn.
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Dimostrazione. È sufficiente osservare che l’insieme delle soluzioni di un sistema
del tipo AX = 0 non è altro che il nucleo della funzione lineare FA : Kn → Km,
il quale è un sottospazio vettoriale di Kn (vedi Proposizione 2.1.9). Possiamo
tuttavia fornire anche una dimostrazione diretta.

Siano X1 e X2 due soluzioni del sistema AX = 0. Per ogni λ1, λ2 ∈ K, si ha

A(λ1X1 + λ2X2) = λ1AX1 + λ2AX2 = λ10 + λ20 = 0,

quindi anche λ1X1+λ2X2 è una soluzione del sistema in questione. Ciò significa
precisamente che l’insieme delle soluzioni del sistema AX = 0 è un sottospazio
vettoriale di Kn.

Nel caso di sistemi non omogenei, si ha:

Proposizione 2.3.3. Ogni soluzione del sistema lineare non omogeneo

S : AX = B

può essere espressa come somma di una soluzione particolare di S con una
soluzione del sistema omogeneo associato. In altri termini, se indichiamo con
ΣB l’insieme delle soluzioni di S e con Σ0 l’insieme delle soluzioni del sistema
omogeneo associato AX = 0, si ha ΣB = ∅ (se S non ammette soluzioni),
oppure

ΣB = X + Σ0 = {X + Y |Y ∈ Σ0}, (2.3.1)

ove X è una qualsiasi soluzione di S.

Dimostrazione. Sia FA : Kn → Km l’applicazione lineare di matrice A (rispetto
alle basi canoniche di Kn e Km). Allora si ha ΣB = F−1

A (B) e Σ0 = F−1
A (0) =

KerFA. L’uguaglianza (2.3.1) discende allora dalla Proposizione 2.1.11.

Siamo ora in grado di determinare delle condizioni che garantiscono l’esi-
stenza di soluzioni di un sistema di equazioni lineari.

Proposizione 2.3.4. Sia S : AX = B un sistema di m equazioni lineari in n
incognite. Sia FA : Kn → Km la funzione lineare data da FA(X) = AX, per
ogni X ∈ Kn. Le condizioni seguenti sono equivalenti:

(i) Il sistema S ammette soluzioni;

(ii) B ∈ Im(FA);

(iii) Il vettore B è combinazione lineare delle colonne di A;

(iv) Il rango della matrice A è uguale al rango della matrice completa1 (A|B),
ove quest’ultima è la matrice ottenuta aggiungendo ad A la colonna B dei
termini noti.

Dimostrazione. Dato che l’insieme delle soluzioni di S coincide con F−1
A (B),

l’equivalenza di (i) e (ii) discende dal fatto che F−1
A (B) 6= ∅ se e solo se B ∈

Im(FA).

1La matrice A è spesso chiamata la matrice incompleta del sistema lineare, mentre la
matrice (A|B) ottenuta aggiungendo alla matrice A la colonna B dei termini noti è detta la
matrice completa del sistema.
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Per dimostrare l’equivalenza di (ii) e (iii) è sufficiente ricordare che il sot-
tospazio Im(FA) di Km è generato dalle colonne di A. Pertanto B ∈ Im(FA) se
e solo se B è combinazione lineare delle colonne di A.

Dimostriamo ora che (iii)⇒ (iv). A tal fine basta ricordare che il rango della
matrice A (che coincide con la dimensione di Im(FA)) è il numero massimo di
colonne linearmente indipendenti di A. Pertanto, se la colonnaB è combinazione
lineare delle colonne di A, l’aggiunta di B alla matrice A non ne altera il rango.
Si ha quindi rk(A) = rk(A|B).

Viceversa, il fatto che le matrici A e (A|B) abbiano lo stesso rango significa
che l’aggiunta della colonna B alla matrice A non ne ha modificato il rango,
quindi B deve essere combinazione lineare delle colonne di A. Ciò dimostra che
(iv)⇒ (iii).

Quanto visto finora ci consente di dimostrare il seguente teorema:

Teorema 2.3.5 (Teorema di Rouché–Capelli). Sia S : AX = B un si-
stema di m equazioni lineari in n incognite. S ammette soluzioni se e solo se
rk(A) = rk(A|B). In tal caso, se indichiamo con r il valore comune dei ranghi
delle due matrici, si ha:

(i) se r = n il sistema ammette un’unica soluzione;

(ii) se r < n il sistema ammette infinite soluzioni, le quali dipendono da n−
r parametri liberi di variare (si suole anche dire che S ammette ∞n−r

soluzioni).

Dimostrazione. Che l’uguaglianza tra i ranghi delle matrici A e (A|B) sia una
condizione necessaria e sufficiente per la risolubilità del sistema S è stato dimo-
strato nella proposizione precedente. Inoltre, nella Proposizione 2.3.3 abbiamo
visto che l’insieme delle soluzioni di S è dato da

X + Σ0 = {X + Y |Y ∈ Σ0},

ove X è una soluzione particolare di S e Σ0 è l’insieme delle soluzioni del sistema
omogeneo AX = 0, associato a S. Si ha dunque Σ0 = Ker(FA), ove FA : Kn →
Km è la funzione lineare definita da FA(X) = AX. Poiché r = rk(A) =
dim(ImFA), dalla Proposizione 2.1.12 segue che

dim Σ0 = n− r.

Se r = n si ha dunque Σ0 = {0}, quindi S possiede l’unica soluzione X. Se
invece r < n, il sottospazio vettoriale Σ0 ha dimensione positiva, pari a n−r. Ciò
significa che i suoi elementi possono essere descritti come combinazioni lineari
di n − r vettori di base. In una tale combinazione lineare compaiono quindi
n− r coefficienti i quali possono assumere qualunque valore nel campo K.

2.3.1 Risoluzione di un sistema lineare: il metodo dell’elimi-
nazione (o metodo di Gauss)

Il metodo di risoluzione di un sistema lineare che ora descriveremo, noto co-
me metodo dell’eliminazione di Gauss, si basa sull’osservazione che determinate
manipolazioni algebriche, quali scambiare tra loro due equazioni, moltiplicare
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entrambi i membri di un’equazione per una stessa costante diversa da zero, som-
mare o sottrarre membro a membro due equazioni o, più in generale, sommare
a un’equazione un multiplo di un’altra, trasformano un dato sistema lineare in
uno ad esso equivalente, cioè in un nuovo sistema avente le stesse soluzioni di
quello precedente.

L’idea è dunque quella di utilizzare le operazioni sopra descritte (note an-
che col nome di operazioni elementari) per trasformare un sistema di equa-
zioni lineari in sistemi, via via più semplici, ad esso equivalenti. Cercheremo
ora di descrivere sommariamente come questa idea possa essere effettivamente
realizzata.

Consideriamo un sistema di m equazioni lineari in n incognite

S :


a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

Indichiamo con A = (aij) la matrice dei coefficienti e con (A|B) la matrice
completa del sistema, ottenuta aggiungendo ad A la colonna B dei termini noti.

Se la prima colonna della matrice A è interamente nulla, l’incognita x1 non
compare effettivamente nel sistema S. In tal caso passiamo alla colonna (cioè
all’incognita) successiva. In caso contrario scegliamo una riga di A in cui il
coefficiente dell’incognita x1 sia diverso da zero. Supponiamo si tratti della riga
i-esima: si ha dunque ai1 6= 0. Possiamo quindi dividere ambo i membri della
i-esima equazione per ai1, e successivamente scambiare la i-esima equazione con
la prima. Si ottiene cos̀ı un nuovo sistema, equivalente a quello dato, in cui la
matrice completa è del tipo

1 a′12 . . . a′1n b′1
a′21 a′22 . . . a′2n b′2
...

...
. . .

...
...

a′m1 a′m2 . . . a′mn b′m


A questo punto, per ogni i ≥ 2, sostituiamo la i-esima riga di questa matrice
(cioè la i-esima equazione del sistema) con la somma della riga in questione e
della prima riga moltiplicata per −a′i1, ottenendo cos̀ı un nuovo sistema la cui
matrice completa è del tipo

1 a′12 . . . a′1n b′1
0 a′′22 . . . a′′2n b′′2
...

...
. . .

...
...

0 a′′m2 . . . a′′mn b′′m


Indichiamo con S′ il sottosistema ottenuto trascurando la prima equazione. Nel
sistema S′ non compare più l’incognita x1. Ora possiamo ripetere la procedura
sopra descritta al sistema S′.

Alla fine di questo procedimento otterremo un sistema, equivalente a quello
iniziale, la cui matrice completa è nella cosiddetta “forma a scala,” cioè in
una forma in cui, in ciascuna riga, il primo coefficiente diverso da zero (nel
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nostro caso specifico tale coefficiente è uguale a 1) si trova alla destra del primo
coefficiente non nullo della riga precedente.

A questo punto il sistema può essere facilmente risolto partendo dall’ulti-
ma equazione tramite una semplice sostituzione all’indietro, analoga a quella
impiegata nel metodo della sostituzione.

Vediamo ora di chiarire l’algoritmo appena descritto per mezzo di alcuni
esempi concreti.

Esempio 1. (Sistema privo di soluzioni) Consideriamo il seguente sistema di
equazioni lineari, a coefficienti nel campo Q.

S :


2x1 − 4x2 = −4
3x1 − 6x2 + 3x3 = −3
x1 − 2x2 − x3 = −2

La matrice completa di questo sistema è2 −4 0 −4
3 −6 3 −3
1 −2 −1 −2


Per far comparire un coefficiente uguale a 1 nella posizione (1, 1) della matrice
possiamo operare in tre modi diversi: dividere la prima riga per 2, dividere la
seconda riga per 3 e scambiarla con la prima, oppure scambiare tra loro la prima
e la terza riga. Scegliamo quest’ultima possibilità, ottenendo la matrice1 −2 −1 −2

3 −6 3 −3
2 −4 0 −4


Ora dobbiamo far comparire degli zeri nella prima colonna, al di sotto del primo
coefficiente. Per fare ciò sommiamo alla seconda riga la prima moltiplicata per
−3, e poi sommiamo alla terza riga la prima moltiplicata per −2. Si ottiene cos̀ı1 −2 −1 −2

0 0 6 3
0 0 2 0


Ora ricominciamo dalla seconda riga, dividendola per 6 in modo tale che il suo
primo coefficiente non nullo sia 1.1 −2 −1 −2

0 0 1 1/2
0 0 2 0


Alla terza riga sommiamo quindi la seconda moltiplicata per −2, ottenendo la
matrice 1 −2 −1 −2

0 0 1 1/2
0 0 0 −1


Questa matrice è finalmente nella forma che vogliamo (la forma a scala). Essa
corrisponde al sistema

S′ :


x1 − 2x2 − x3 = −2

x3 = 1/2
0 = −1
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il quale è equivalente al sistema originario. Dato che la terza equazione è sta-
ta ridotta all’uguaglianza 0 = −1, che non è verificata, concludiamo che tale
sistema non ammette soluzioni.

Esempio 2. (Sistema che ammette un’unica soluzione) Consideriamo il seguen-
te sistema di equazioni lineari, a coefficienti nel campo Q.

S :


2x1 − 2x2 + 8x3 = 5
2x2 + 6x3 = 1
x1 − 2x2 + 4x3 = −1
x1 + 10x3 = 0

La matrice completa di questo sistema è
2 −2 8 5
0 2 6 1
1 −2 4 −1
1 0 10 0


Scambiamo tra loro la prima e la terza riga:

1 −2 4 −1
0 2 6 1
2 −2 8 5
1 0 10 0


Alla terza riga sommiamo la prima moltiplicata per −2 e alla quarta riga
sottraiamo la prima: 

1 −2 4 −1
0 2 6 1
0 2 0 7
0 2 6 1


Ora dividiamo per 2 la seconda riga:

1 −2 4 −1
0 1 3 1/2
0 2 0 7
0 2 6 1


Continuiamo sommando alla terza riga la seconda moltiplicata per −2 e som-
mando alla quarta riga la seconda moltiplicata per −2. Si ottiene cos̀ı:

1 −2 4 −1
0 1 3 1/2
0 0 −6 6
0 0 0 0


Ora dividiamo la terza riga per −6:

1 −2 4 −1
0 1 3 1/2
0 0 1 −1
0 0 0 0


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Questa matrice è nella forma che vogliamo. Essa corrisponde al sistema

S′ :


x1 − 2x2 + 4x3 = −1

x2 + 3x3 = 1/2
x3 = −1
0 = 0

il quale è equivalente al sistema originario. La soluzione di questo sistema si
può ottenere facilmente, partendo dall’ultima equazione, tramite una sostitu-
zione all’indietro: dalla terza equazione ricaviamo x3 = −1 che, sostituito nella
seconda, fornisce x2 = 1/2−3x3 = 7/2. Infine, sostituendo nella prima equazio-
ne i valori appena trovati, si ottiene x1 = −1 + 2x2 − 4x3 = 10. In conclusione,
il sistema dato ammette un’unica soluzione:

x1 = 10
x2 = 7/2
x3 = −1

Esempio 3. (Sistema che ammette infinite soluzioni) Consideriamo il seguente
sistema di equazioni lineari, a coefficienti nel campo Q.

S :


2x1 + 5x3 = 1
4x1 − 3x2 + 4x3 = 5
2x1 − x2 + 3x3 = 2

La matrice completa di questo sistema è2 0 5 1
4 −3 4 5
2 −1 3 2


Dividiamo la prima riga per 2:1 0 5/2 1/2

4 −3 4 5
2 −1 3 2


Alla seconda riga sommiamo la prima moltiplicata per −4 e alla terza riga
sommiamo la prima moltiplicata per −2:1 0 5/2 1/2

0 −3 −6 3
0 −1 −2 1


Ora dividiamo la seconda riga per −3:1 0 5/2 1/2

0 1 2 −1
0 −1 −2 1


Infine, sommando alla terza riga la seconda, si ottiene:1 0 5/2 1/2

0 1 2 −1
0 0 0 0


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Questa matrice è nella forma che vogliamo. Essa corrisponde al sistema

S′ :


x1 + 5x3/2 = 1/2
x2 + 2x3 = −1

0 = 0

il quale è equivalente al sistema originario. Si può cos̀ı notare che il sistema am-
mette infinite soluzioni. Infatti, dalla seconda equazione si ricava x2 = −1−2x3

mentre dalla prima si ottiene x1 = 1
2−

5
2x3. L’incognita x3 rimane indeterminata

e può dunque assumere qualsiasi valore. In conclusione, il sistema dato ammet-
te infinite soluzioni, dipendenti da un parametro (∞1 soluzioni), che possono
essere espresse nella forma 

x1 = 1/2− 5x3/2
x2 = −1− 2x3

x3 qualsiasi.

2.3.2 Calcolo del rango di una matrice

Sia A una matrice m×n a coefficienti nel campo K. Ricordiamo che il rango di
A è stato definito come il massimo numero di colonne linearmente indipendenti
della matrice A (vedi Definizione 2.2.15). Tale numero coincide con la dimensio-
ne dell’immagine della funzione lineare FA : Kn → Km la cui matrice, rispetto
alle basi canoniche di Kn e Km, è A.

In modo del tutto analogo, possiamo definire il rango per righe di A, come il
massimo numero di righe linearmente indipendenti, cioè come la dimensione del
sottospazio vettoriale di Kn generato dalle righe di A. A prima vista potrebbe
sembrare che non vi sia alcun motivo per cui il rango per colonne di una ma-
trice debba coincidere con il suo rango per righe. Tuttavia questi due numeri
risultano essere sempre uguali, come dimostreremo in seguito (vedi Capitolo 3,
Teorema 3.3.1).

Vedremo ora come il metodo di eliminazione di Gauss fornisca uno strumento
molto utile per il calcolo del rango per righe di una matrice. Ciò discende
dal fatto che le operazioni elementari sulle righe di una matrice utilizzate nel
metodo di Gauss non alterano il numero di righe linearmente indipendenti. Di
conseguenza, se applichiamo l’eliminazione di Gauss per trasformare una matrice
A in una matrice A′ che si trovi nella forma a scala, il rango per righe di A′

sarà necessariamente uguale al rango per righe di A. Arrivati a questo punto,
il calcolo del rango è immediato. Infatti vale il seguente risultato:

Proposizione 2.3.6. Se una matrice A è nella forma a scala, il suo rango per
righe coincide con il numero di righe non nulle.

Dimostrazione. Supponiamo che la matrice A abbia m righe, di cui le prime r
sono non nulle. Indichiamo con v1, v2, . . . , vr i vettori riga non nulli di A, ove
vi = (ai1, ai2, . . . , ain). Poiché A è nella forma a scala, il primo coefficiente non
nullo di ciascuna riga vi si trova alla destra del primo coefficiente non nullo della
riga precedente vi−1. Pertanto, se indichiamo con a1h1 il primo coefficiente non
nullo della riga v1, tutti gli altri elementi della colonna h1 della matrice A, cioè
gli elementi ajh1 con j ≥ 2, sono nulli. Consideriamo ora una combinazione
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lineare dei vettori v1, v2, . . . , vr:

λ1v1 + λ2v2 + · · ·+ λrvr = 0.

Se concentriamo la nostra attenzione sulle componenti di posto h1, si trova

λ1a1h1 + λ20 + · · ·+ λr0 = 0

da cui segue λ1 = 0.
In modo analogo, indichiamo con a2h2 il primo coefficiente non nullo della

riga v2. Allora tutti gli elementi della colonna h2, dalla terza riga in poi, cioè
gli elementi ajh2 con j ≥ 3, sono nulli. Dall’uguaglianza

λ2v2 + · · ·+ λrvr = 0

si ottiene, considerando solo le componenti di posto h2,

λ2a2h2 + λ30 + · · ·+ λr0 = 0

da cui segue λ2 = 0.
Ripetendo il ragionamento sopra descritto si dimostra cos̀ı che tutti i coef-

ficienti λ1, λ2, . . . , λr sono nulli. Questo prova che i vettori v1, v2, . . . , vr sono
linearmente indipendenti, quindi il numero r di righe non nulle della matrice A
coincide con il numero di righe linearmente indipendenti, cioè con il rango per
righe di A.

Esempio 2.3.7. Illustriamo su un esempio concreto il metodo appena descritto.
Vogliamo calcolare il rango (per righe) della seguente matrice:

A =


0 2 −1 6 1
3 −4 14 3 2
1 −2 5 3 3
1 0 4 3 0


Scambiamo la prima riga con la terza:

1 −2 5 3 3
3 −4 14 3 2
0 2 −1 6 1
1 0 4 3 0


Alla seconda riga sommiamo la prima moltiplicata per −3 e alla quarta riga
sottraiamo la prima: 

1 −2 5 3 3
0 2 −1 −6 −7
0 2 −1 6 1
0 2 −1 0 −3


Alla terza riga sottraiamo la seconda e alla quarta riga sottraiamo la seconda:

1 −2 5 3 3
0 2 −1 −6 −7
0 0 0 12 8
0 0 0 6 4


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Infine, alla quarta riga sommiamo la terza moltiplicata per −1/2:
1 −2 5 3 3
0 2 −1 −6 −7
0 0 0 12 8
0 0 0 0 0


Questa matrice è nella forma a scala. Poiché ci sono tre righe non nulle, si
conclude che il suo rango (per righe) è 3. Questo è allora anche il rango della
matrice A da cui eravamo partiti.

Come ulteriore esercizio si consiglia al lettore di applicare l’algoritmo appena
descritto alla matrice trasposta di A, al fine di verificare che anche il rango per
colonne è uguale a 3.

Osservazione 2.3.8. Volendo calcolare il rango per colonne di una matrice A è
sufficiente applicare il metodo dell’eliminazione di Gauss alla matrice trasposta
di A. In alternativa si può modificare il metodo di Gauss in modo da effettuare le
operazioni elementari sulle colonne di A piuttosto che sulle sue righe. L’obiettivo
è quello di portare la matrice data in un’appropriata “forma a scala,” che non è
altro che la trasposta della forma a scala descritta in precedenza. Si tratta cioè
di una forma a scala in cui il primo elemento non nullo di ciascuna colonna si
trova al di sotto del primo elemento non nullo della colonna precedente.

2.3.3 Calcolo dell’inversa di una matrice

Vogliamo ora descrivere un algoritmo, derivato dal metodo di eliminazione di
Gauss, per il calcolo dell’inversa di una matrice quadrata. Tale algoritmo si
basa sull’osservazione che effettuare delle operazioni elementari sulle righe di
una matrice A equivale a moltiplicare A, a sinistra, per un’opportuna matrice
invertibile.

Consideriamo, ad esempio, l’operazione elementare che consiste nello scam-
bio di due righe della matrice A. Per ogni i, j = 1, . . . , n, con i 6= j, indichiamo
con P (i, j) la matrice i cui elementi phk (con 1 ≤ h, k ≤ n) sono dati da:

phk =


1 se h = k, h 6= i, h 6= j,

1 se h = i e k = j oppure se h = j e k = i,

0 altrimenti.

Se A è una matrice n× n e se poniamo A′ = P (i, j)A, si verifica facilmente che
la matrice A′ è ottenuta dalla matrice A semplicemente scambiando tra loro le
righe i-esima e j-esima. Ad esempio, se n = 4, i = 1, j = 3, si ha

P (1, 3) =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


e 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ·

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =


a31 a32 a33 a34

a21 a22 a23 a24

a11 a12 a13 a14

a41 a42 a43 a44


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Da quanto appena detto segue immediatamente che

P (i, j)2 = P (i, j)P (i, j) = 1,

quindi le matrici P (i, j) sono invertibili.
Consideriamo ora la matrice M(i;λ) = (mhk) definita, per ogni i = 1, . . . , n

e ogni λ ∈ K, λ 6= 0, ponendo

mhk =


1 se h = k, h 6= i,

λ se h = k = i,

0 altrimenti.

La moltiplicazione a sinistra di M(i;λ) per una matrice A ha come effetto quello
di moltiplicare la i-esima riga di A per λ. Ad esempio, se n = 4 e i = 2, si ha

M(2;λ) =


1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1


e 

1 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1

 ·

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =


a11 a12 a13 a14

λa21 λa22 λa23 λa24

a31 a32 a33 a34

a41 a42 a43 a44


Notiamo che, poiché si è supposto λ 6= 0, si ha

M(i;λ)M(i;λ−1) = 1,

quindi le matrici M(i;λ) sono invertibili.
Infine, per ogni i, j = 1, . . . , n, con i 6= j, e ogni α ∈ K, definiamo una

matrice S(i, j;α) = (shk) ponendo

shk =


1 se h = k,

α se h = i e k = j,

0 altrimenti.

Se A è una matrice n× n e se poniamo A′ = S(i, j;α)A, è immediato verificare
che la matrice A′ è ottenuta dalla matrice A sommando alla i-esima riga la
j-esima moltiplicata per α. Ad esempio, se n = 4, i = 2, j = 4, si ha

S(2, 4;α) =


1 0 0 0
0 1 0 α
0 0 1 0
0 0 0 1


e 

1 0 0 0
0 1 0 α
0 0 1 0
0 0 0 1

 ·

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =

=


a11 a12 a13 a14

a21 + αa41 a22 + αa42 a23 + αa43 a24 + αa44

a31 a32 a33 a34

a41 a42 a43 a44


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Si ha pertanto
S(i, j;α)S(i, j;−α) = 1,

quindi le matrici S(i, j;α) sono invertibili.
Una successione di operazioni elementari sulle righe di una matrice A equi-

vale dunque a una successione di moltiplicazioni, a sinistra, per delle matrici
invertibili del tipo descritto in precedenza. Poiché il prodotto di un numero
qualsiasi di matrici invertibili è ancora una matrice invertibile, concludiamo che
l’effetto di un numero qualunque di operazioni elementari sulle righe di una ma-
trice A può essere ottenuto semplicemente moltiplicando la matrice A, a sinistra,
per un’opportuna matrice invertibile.

Osservazione 2.3.9. Si verifica facilmente che moltiplicare una matrice A a de-
stra per le matrici P (i, j), M(i;λ) e S(i, j;α) descritte in precedenza equivale
ad effettuare delle operazioni elementari sulle colonne di A. Più precisamen-
te, se poniamo A′ = AP (i, j), la matrice A′ è ottenuta scambiando tra loro
la i-esima e la j-esima colonna di A, se A′ = AM(i;λ) allora A′ è ottenuta
moltiplicando per λ la i-esima colonna di A, e se A′ = AS(i, j;α) allora A′

è ottenuta dalla matrice A sommando alla i-esima colonna la j-esima colonna
moltiplicata per α. Pertanto, l’effetto di un numero qualunque di operazioni
elementari sulle colonne di A può essere ottenuto moltiplicando la matrice A, a
destra, per un’opportuna matrice invertibile.

Supponiamo ora che la matrice quadrata A, di ordine n, sia invertibile. Tra-
mite operazioni elementari sulle righe è possibile trasformare A in una matrice
nella forma a scala, in cui il primo coefficiente non nullo di ciascuna riga può
essere reso uguale a 1. Poiché A è invertibile, il suo rango deve essere n,2 quindi
nella forma a scala non ci devono essere righe interamente nulle. Poiché A è una
matrice quadrata di ordine n ciò equivale a dire che la forma a scala che otte-
niamo dopo l’applicazione dell’algoritmo di eliminazione di Gauss è una matrice
A′, triangolare superiore, con tutti gli elementi sulla diagonale principale uguali
a 1.

Arrivati a questo punto è facile convincersi che, mediante opportune opera-
zioni elementari sulle righe della matrice A′, è possibile trasformare quest’ultima
nella matrice identica 1. Se indichiamo con B la matrice che rappresenta l’effetto
di tutte le operazioni elementari sulle righe che abbiamo eseguito per trasfor-
mare la matrice A nella matrice identica, si ha dunque BA = 1. La matrice
B è pertanto l’inversa della matrice A. Essa può quindi essere determinata te-
nendo scrupolosamente conto di tutte le matrici corrispondenti alle operazioni
elementari sulle righe che sono state effettuate.

Un metodo molto più efficace per determinare la matrice B è il seguente.
Scriviamo a fianco della matrice A la matrice identica 1, in modo da ottenere una
matrice con n righe e 2n colonne che indicheremo con (A |1). In questo modo
tutte le operazioni che eseguiremo sulle righe di A dovranno essere effettuate
anche sulle righe della matrice 1. L’effetto di queste operazioni elementari è
equivalente alla moltiplicazione a sinistra per la matrice (incognita) B. Si ha
pertanto:

B(A |1) = (BA |B1) = (1 |B).

2Dire che A è invertibile equivale a dire che la corrispondente applicazione lineare FA :
Kn → Kn è un isomorfismo, il che significa che ImFA = Kn, cioè che rk(A) = rk(FA) = n.
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Ciò significa che quando avremo trasformato la matrice A nella matrice identica,
la matrice 1 scritta a destra di A sarà stata automaticamente trasformata nella
matrice B, la quale non è altro che l’inversa di A.

A titolo di esempio, applichiamo l’algoritmo appena descritto per determi-
nare l’inversa della matrice

A =

1 2 1
1 3 0
1 2 2


Per prima cosa affianchiamo alla matrice A la matrice identica, ottenendo1 2 1 1 0 0

1 3 0 0 1 0
1 2 2 0 0 1


A questo punto, utilizzando operazioni elementari sulle righe, cerchiamo di tra-
sformare la matrice A nella matrice identica. Se riusciamo a fare ciò, la matrice
che troveremo a destra sarà la matrice inversa di A.

In dettaglio le operazioni da fare sono, ad esempio, le seguenti: sottraiamo
alla seconda riga la prima, e alla terza riga la prima, ottenendo1 2 1 1 0 0

0 1 −1 −1 1 0
0 0 1 −1 0 1


Ora sommiamo alla seconda riga la terza, mentre alla prima sottraiamo la terza,
ottenendo 1 2 0 2 0 −1

0 1 0 −2 1 1
0 0 1 −1 0 1


Ora sommiamo alla prima riga la seconda moltiplicata per −2, ottenendo1 0 0 6 −2 −3

0 1 0 −2 1 1
0 0 1 −1 0 1


Si ha pertanto

A−1 =

 6 −2 −3
−2 1 1
−1 0 1


Come esercizio si verifichi che la matrice appena trovata è effettivamente l’in-
versa di A, cioè che AA−1 = 1.

Osservazione 2.3.10. Se la matrice A di cui si cerca l’inversa non fosse invertibile
essa avrebbe rango strettamente minore di n, quindi la sua forma a scala A′,
ottenuta nella prima parte dell’algoritmo precedentemente descritto, avrebbe
almeno una riga interamente nulla. A questo punto sapremmo che A non è
invertibile.
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Esercizi

Esercizio 2.3.1. Si risolvano gli esercizi proposti alla fine della Sezione 1.1 del Cap. 1

utilizzando il metodo dell’eliminazione di Gauss.

Esercizio 2.3.2. Si calcoli l’inversa della matrice

A =

2 −3 −1
2 −1 −3
1 −3 −1





Capitolo 3

Determinanti

In questo capitolo definiremo la nozione di determinante di una matrice quadrata
a coefficienti in un campo e studieremo le sue principali proprietà. Prima però,
avremo bisogno di richiamare alcune proprietà elementari delle permutazioni di
un insieme finito di elementi.

3.1 Permutazioni

Definizione 3.1.1. Sia A = {a1, a2, . . . , an} un insieme di n elementi. Una
permutazione degli elementi di A è una funzione biiettiva σ : A→ A.

Una tale permutazione σ può essere convenientemente rappresentata me-
diante una tabella del tipo(

a1 a2 a3 . . . an
aj1 aj2 aj3 . . . ajn

)
ove si conviene che σ(ai) = aji , per i = 1, . . . , n.

Ad esempio, se n = 4 e σ è la permutazione definita da σ(a1) = a3, σ(a2) =
a2, σ(a3) = a4 e σ(a4) = a1, la tabella corrispondente sarà(

a1 a2 a3 a4

a3 a2 a4 a1

)
In una tale rappresentazione la presenza del simbolo a è, in effetti, del tutto
superflua. È più conveniente rappresentare σ mediante la tabella(

1 2 3 . . . n
j1 j2 j3 . . . jn

)
il che equivale a interpretare σ come una permutazione dell’insieme {1, 2, . . . , n}.

Indicheremo con Sn l’insieme delle permutazioni di n oggetti. Osserviamo
che la composizione di due permutazioni è ancora una permutazione e lo stesso

65
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vale per l’inversa di una permutazione. È immediato verificare che la compo-
sizione delle permutazioni definisce su Sn una struttura di gruppo. Notiamo
inoltre che, se n ≥ 3 e σ, τ ∈ Sn, si ha, in generale σ ◦ τ 6= τ ◦ σ, quindi Sn è
un gruppo non abeliano.

Proposizione 3.1.2. La cardinalità di Sn è n!.

Dimostrazione. Per definire una permutazione σ ∈ Sn dobbiamo specificare
σ(i) per ogni i = 1, . . . , n. Per σ(1) ci sono n possibili valori, mentre per σ(2) i
valori possibili sono solo n−1, dato che deve essere σ(2) 6= σ(1). Analogamente,
per σ(3) i possibili valori sono solo n−2 (deve essere σ(3) 6= σ(1) e σ(3) 6= σ(2)).
Continuando in questo modo si conclude che i possibili valori che possiamo
attribuire a σ(j) sono n − j + 1, per ogni j = 1, . . . , n. Il numero di possibili
permutazioni è quindi dato dal prodotto n(n− 1)(n− 2) · · · 2 · 1 = n!.

Definizione 3.1.3. Consideriamo una permutazione σ ∈ Sn. Diremo che in σ
è presente una inversione ogni qual volta si ha i < j ma σ(i) > σ(j).

Ad esempio, nella permutazione

σ =
(

1 2 3 4 5
3 2 5 1 4

)
ci sono 5 inversioni: si ha infatti 1 < 2 ma σ(1) = 3 > σ(2) = 2, 1 < 4 ma
σ(1) = 3 > σ(4) = 1, 2 < 4 ma σ(2) = 2 > σ(4) = 1, 3 < 4 ma σ(3) = 5 >
σ(4) = 1 e 3 < 5 ma σ(3) = 5 > σ(5) = 4. Si noti che per contare il numero
di inversioni di σ basta osservare che nella seconda riga della tabella il numero
3 compare prima dei numeri 2 e 1 (due inversioni), 2 viene prima di 1 (un’altra
inversione) e infine il 5 precede i numeri 1 e 4 (altre due inversioni).

Definizione 3.1.4. Diremo che σ ∈ Sn è una permutazione pari (risp. dispari)
se il numero di inversioni presenti in σ è pari (risp. dispari). Definiamo inoltre
il segno di σ, indicato con sgn(σ), ponendo

sgn(σ) =

{
1 se σ è pari,
−1 se σ è dispari.

In altri termini, si ha
sgn(σ) = (−1)i(σ),

ove i(σ) è il numero di inversioni presenti in σ.

Consideriamo ora il polinomio

P =
∏

1≤i<j≤n

(xi − xj)

nelle n indeterminate x1, . . . , xn. Una permutazione σ ∈ Sn agisce su P
trasformandolo nel polinomio

σ(P ) =
∏

1≤i<j≤n

(xσ(i) − xσ(j)).
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Ad esempio, se n = 4 si ha

P = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

La permutazione

σ =
(

1 2 3 4
2 4 3 1

)
trasforma P nel polinomio

σ(P ) = (x2 − x4)(x2 − x3)(x2 − x1)(x4 − x3)(x4 − x1)(x3 − x1).

Poiché in P compaiono tutti i fattori del tipo xi−xj , per ogni i < j, e poiché una
permutazione σ scambia le indeterminate xi tra loro, ogni fattore xi − xj viene
trasformato in xσ(i)−xσ(j) il quale coincide, a meno del segno, con uno dei fattori
presenti in P . Più precisamente, se σ(i) < σ(j), il fattore xσ(i) − xσ(j) compare
in P , se invece σ(i) > σ(j) allora è il fattore xσ(j) − xσ(i) = −(xσ(i) − xσ(j))
che compare in P . Si conclude pertanto che, per ogni permutazione σ, si ha
σ(P ) = ±P . Più precisamente, quanto sopra detto mostra che ogni inversione
presente in σ corrisponde a un fattore −1 che moltiplica P , quindi si ha

σ(P ) = (−1)i(σ)P,

ove i(σ) denota, come sopra detto, il numero di inversioni presenti in σ. Poiché
(−1)i(σ) è precisamente il segno di σ, si ha:

σ(P ) = sgn(σ)P. (3.1.1)

Siamo ora in grado di dimostrare il seguente risultato:

Proposizione 3.1.5. Siano σ, τ ∈ Sn e consideriamo la loro composizione
σ ◦ τ . Si ha

sgn(σ ◦ τ) = sgn(σ) sgn(τ).
Si ha inoltre

sgn(σ−1) = sgn(σ),

per ogni σ ∈ Sn.

Dimostrazione. Applichiamo prima la permutazione τ e poi σ al polinomio P .
Si ottiene:

τ(P ) =
∏

1≤i<j≤n

(xτ(i) − xτ(j)),

quindi
σ(τ(P )) =

∏
1≤i<j≤n

(xσ(τ(i)) − xσ(τ(j)))

=
∏

1≤i<j≤n

(x(σ◦τ)(i) − x(σ◦τ)(j))

= (σ ◦ τ)(P ).

Dalla formula (3.1.1) segue che

sgn(σ ◦ τ)P = (σ ◦ τ)(P ) = σ(τ(P )) = sgn(σ) sgn(τ)P,

da cui si deduce che
sgn(σ ◦ τ) = sgn(σ) sgn(τ).
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Dato che σ−1 ◦ σ è la permutazione identica, il cui segno è 1, si ha

sgn(σ−1) sgn(σ) = 1,

e pertanto
sgn(σ−1) = sgn(σ)−1 = sgn(σ).

3.1.1 Cicli e trasposizioni

Definizione 3.1.6. Consideriamo r elementi i1, i2, . . . , ir ∈ {1, 2, . . . , n}. Una
permutazione σ ∈ Sn tale che σ(i1) = i2, σ(i2) = i3, . . . , σ(ir−1) = ir, σ(ir) =
i1, e σ(h) = h se h 6= i1, i2, . . . , ir, è detta un ciclo di lunghezza r, o r-ciclo;
essa permuta ciclicamente gli elementi i1, i2, . . . , ir e lascia fissi tutti gli altri.
Questa permutazione verrà indicata nel modo seguente:

σ = (i1 i2 . . . ir).

Due cicli sono detti disgiunti se nella loro rappresentazione non compaiono
simboli comuni.

Ad esempio, i cicli (1 4 2) e (3 5) sono disgiunti, mentre non lo sono i cicli
(2 1 3) e (1 4).

È un fatto del tutto elementare che ogni permutazione σ ∈ Sn può essere
scritta come prodotto (cioè come composizione) di un numero finito di cicli
disgiunti. Ad esempio, la permutazione

σ =
(

1 2 3 4 5 6 7 8
5 6 8 4 3 7 2 1

)
si scrive come segue:

σ = (1 5 3 8)(2 6 7)(4).

Per esprimere una data permutazione σ come prodotto di cicli disgiunti basta
vedere dove σ manda il numero 1, poi dove manda i1 = σ(1), poi dove manda
i2 = σ(i1), etc.

Si noti che un ciclo di lunghezza 1 (come il (4) nell’esempio precedente)
corrisponde alla permutazione identica, quindi può essere omesso. Si conclude
quindi che ogni permutazione può essere scritta come prodotto di cicli disgiunti
di lunghezza ≥ 2.

Definizione 3.1.7. Un ciclo di lunghezza 2 (o 2-ciclo) è detto una trasposizione.

Si verifica facilmente che ogni r-ciclo può essere scritto (non necessariamente
in modo unico) come prodotto di r − 1 trasposizioni. Si ha infatti

(i1 i2 . . . ir) = (i1 ir)(i1 ir−1) · · · (i1 i3)(i1 i2), (3.1.2)
oppure anche

(i1 i2 . . . ir) = (ir−1 ir)(ir−2 ir) · · · (i2 ir)(i1 ir). (3.1.3)

Conviene qui ricordare che, nel prodotto di composizione di due o più permu-
tazioni si usa la seguente convenzione: (σ ◦ τ)(i) = σ(τ(i)).

Dato che ogni permutazione è prodotto di un numero finito di cicli disgiun-
ti, e poiché ogni ciclo è un prodotto finito di trasposizioni, ne segue che ogni



Capitolo 3 Determinanti 69

permutazione può sempre essere scritta come prodotto di un numero finito di
trasposizioni.

Consideriamo ora una trasposizione σ = (i j) ∈ Sn, con i < j. Si verifica
facilmente che in questa permutazione sono presenti 2(j− i)−1 inversioni (farlo
per esercizio), quindi il suo segno è

sgn(σ) = (−1)2(j−i)−1 = −1.

Ogni trasposizione ha dunque segno −1, pertanto se una permutazione si espri-
me come prodotto di r trasposizioni, il suo segno è (−1)r. Dalle formule (3.1.2)
e (3.1.3) deriva quindi il seguente risultato:

Proposizione 3.1.8. Se σ è un r-ciclo, si ha sgn(σ) = (−1)r−1.

Dimostrazione. Abbiamo visto infatti che un r-ciclo (i1 i2 . . . ir) si può scrivere
come prodotto di r − 1 trasposizioni.

Corollario 3.1.9. Se una permutazione σ si scrive come prodotto di s cicli
disgiunti di lunghezze rispettivamente r1, r2, . . . , rs, il suo segno è dato da

sgn(σ) = (−1)r1+r2+···+rs−s.

Dimostrazione. Poiché il segno di un ciclo di lunghezza r è (−1)r−1, il segno di
σ è dato dal seguente prodotto:

(−1)r1−1(−1)r2−1 · · · (−1)rs−1 = (−1)r1+r2+···+rs−s.

Esempio 3.1.10. Consideriamo la seguente permutazione ξ ∈ Sn:

ξ =
(

1 2 3 . . . h h+ 1 . . . n
h 1 2 . . . h− 1 h+ 1 . . . n

)
Questa permutazione è un ciclo di lunghezza h, infatti si ha

ξ = (h h− 1 h− 2 . . . 2 1),

da cui segue che sgn(ξ) = (−1)h−1.

Consideriamo ora un particolare tipo di trasposizioni.

Definizione 3.1.11. Diremo che una permutazione σ ∈ Sn è uno scambio di
elementi contigui se si ha σ(i) = i+1 e σ(i+1) = i per qualche i = 1, . . . , n−1,
mentre σ(j) = j, per ogni j 6= i, i+ 1. Una tale permutazione scambia tra loro
due elementi contigui e lascia fissi tutti gli altri.

Concludiamo questa sezione dimostrando il seguente risultato:

Proposizione 3.1.12. Ogni permutazione σ ∈ Sn può essere ottenuta come
composizione di un numero finito (eventualmente nullo) di scambi di elementi
contigui.

Dimostrazione. Sia σ la permutazione

σ =
(

1 2 . . . n− 1 n
j1 j2 . . . jn−1 jn

)
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Partendo dalla permutazione identica(
1 2 . . . n− 1 n
1 2 . . . n− 1 n

)
e scambiando ripetutamente il numero jn con quello successivo, è possibile
portare jn nell’ultima posizione, ottenendo la permutazione(

1 2 . . . n− 1 n
j′1 j′2 . . . j′n−1 jn

)
Ora che l’ultimo elemento è stato sistemato, possiamo scambiare ripetutamente
il numero jn−1 con quello successivo in modo da ottenere la permutazione(

1 2 . . . n− 1 n
j′′1 j′′2 . . . jn−1 jn

)
Continuando in questo modo è possibile sistemare nella posizione corretta il
numero jn−2, etc., fino al numero j1, ottenendo cos̀ı la permutazione σ.

Osservazione 3.1.13. Poiché il segno di uno scambio di elementi contigui è −1,
se una permutazione σ è ottenuta come composizione di k scambi, si ha

sgn(σ) = (−1)k.

Quindi una permutazione è pari (risp. dispari) se e solo se può essere ottenu-
ta come composizione di un numero pari (risp. dispari) di scambi di elementi
contigui.

Esercizi

Esercizio 3.1.1. Consideriamo le permutazioni

σ =

(
1 2 3 4 5
3 5 1 4 2

)
, τ =

(
1 2 3 4 5
5 2 1 4 3

)
Si determinino σ ◦ τ , τ ◦ σ, σ−1 e τ−1.

Esercizio 3.1.2. Si determini il segno delle seguenti permutazioni:

σ1 =

(
1 2 3
3 2 1

)
, σ2 =

(
1 2 3 4
4 2 1 3

)
, σ3 =

(
1 2 3 4 5
3 2 5 4 1

)
Esercizio 3.1.3. Si scriva la permutazione

σ =

(
1 2 3 4 5 6 7 8
5 3 8 2 6 1 7 4

)
come prodotto di cicli disgiunti e come prodotto di trasposizioni. Se ne determini poi

il segno.

Esercizio 3.1.4. Si scrivano le seguenti permutazioni come prodotto di cicli disgiunti:(
1 2 3 4 5 6
4 6 5 1 3 2

)
,

(
1 2 3 4 5 6
5 3 2 6 4 1

)
,

(
1 2 3 4 5 6
3 5 6 4 1 2

)
Esercizio 3.1.5. Si considerino le permutazioni rappresentate dai seguenti prodotti
di cicli:

σ1 = (1 2 3 4)(5 6 7)(2 6 1)(4 7)

σ2 = (1 2 3 4 5)(6 7)(1 3 5 7)(1 6 3)

σ3 = (1 4)(1 2 3)(4 5)(1 4)

Si scrivano σ1, σ2 e σ3 come prodotto di cicli disgiunti.
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Esercizio 3.1.6. Si esprima la permutazione

σ =

(
1 2 3 4
2 4 1 3

)
come composizione di scambi di elementi contigui e se ne determini il segno.

3.2 Il determinante di una matrice quadrata

In questo paragrafo definiremo il determinante di una matrice quadrata a coef-
ficienti in un campo K e studieremo le sue principali proprietà.

Definizione 3.2.1. Sia A = (aij) ∈ Mn(K) una matrice quadrata di ordine n
a coefficienti in un campo K. Il determinante di A è definito da

detA =
∑
σ∈Sn

sgn(σ) a1σ(1)a2σ(2) · · · anσ(n),

ove la somma è estesa a tutte le permutazioni di n elementi σ ∈ Sn. Il
determinante di una matrice A viene spesso indicato anche con il simbolo |A|.

Osservazione 3.2.2. Notiamo che la definizione di determinante si applica anche
al caso in cui A è una matrice quadrata a coefficienti in un anello commutativo
R; in tal caso il determinante di A è un elemento dell’anello R.

A titolo di esempio, applichiamo questa definizione per calcolare esplicita-
mente il determinante di una matrice per piccoli valori di n.

Se n = 1, cioè se la matrice A è costituita da un solo elemento, A = a11,
si ha detA = a11 (l’unica permutazione di un solo elemento è la permutazione
identica, che ha segno 1).

Se n = 2, cioè se

A =
(
a11 a12

a21 a22

)
ci sono due permutazioni di due elementi,

σ1 =
(

1 2
1 2

)
, σ2 =

(
1 2
2 1

)
.

Si ha sgn(σ1) = 1 e sgn(σ2) = −1, da cui si ottiene

detA = a11a22 − a12a21.

Consideriamo infine il caso n = 3. Ci sono sei permutazioni di tre elementi, e
precisamente

σ1 =
(

1 2 3
1 2 3

)
, σ2 =

(
1 2 3
1 3 2

)
, σ3 =

(
1 2 3
2 3 1

)
,

σ4 =
(

1 2 3
2 1 3

)
, σ5 =

(
1 2 3
3 1 2

)
, σ6 =

(
1 2 3
3 2 1

)
.

Si verifica facilmente che sgn(σ1) = sgn(σ3) = sgn(σ5) = 1, mentre sgn(σ2) =
sgn(σ4) = sgn(σ6) = −1, quindi

detA = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31.



Capitolo 3 Determinanti 72

Osservazione 3.2.3. Un metodo pratico per ricordare la formula precedente per
il calcolo del determinante di una matrice di ordine 3 è la cosiddetta regola di
Sarrus. Si tratta di ricopiare, a destra dell’ultima colonna della matrice A, le
sue prime due colonne, come qui indicato:a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32


Ora bisogna considerare la somma dei prodotti degli elementi situati lungo le
tre diagonali orientate da nord-ovest a sud-est

a11a22a33 + a12a23a31 + a13a21a32

e a questa sottrarre la somma dei prodotti degli elementi situati lungo le tre
diagonali orientate da nord-est a sud-ovest

a13a22a31 + a11a23a32 + a12a21a33.

Si ottiene cos̀ı

a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33,

che è proprio il determinante di A.
Conviene far notare che non esiste un analogo della regola di Sarrus per il

calcolo del determinante di una matrice di ordine maggiore di 3.

In generale, ricordando che le permutazioni di n elementi sono n!, il calcolo
del determinante di una matrice quadrata A di ordine n consiste in una somma
di n! addendi, ciascuno dei quali è un prodotto di n elementi di A, presi uno
per ogni riga e ogni colonna, con un segno dato dal segno della permutazione
corrispondente.

Esempio 3.2.4. Cerchiamo di determinare quante “operazioni” sono necessarie
per calcolare il determinante di una matrice di ordine 50. Lo sviluppo di un
tale determinante consiste in una somma di 50! addendi, ciascuno dei quali
è un prodotto di 50 elementi della matrice (preso con il segno opportuno).
Ci sono pertanto 50 × 50! prodotti, seguiti da 50! somme, per un totale di
50×50!+50! = 50! (50+1) = 51! “operazioni” (e dove abbiamo trascurato tutte le
operazioni necessarie a determinare il segno di ciascuna delle 50! permutazioni).
Notiamo che 51! ≈ 1.55× 1066.

Se disponessimo di un calcolatore in grado di effettuare mille miliardi di tali
“operazioni” al secondo, il tempo necessario a calcolare un tale determinante
sarebbe all’incirca 1.55 × 1054 secondi, che equivale a circa 4.9 × 1046 anni, il
che corrisponde a più di 3× 1036 volte la vita dell’universo!

Nel caso di una matrice di ordine 30, lo stesso ragionamento porta a un
tempo necessario per il calcolo del determinante pari a circa 17300 volte la vita
dell’universo attuale.

Questo esempio mostra come la formula usata per definire il determinan-
te sia sostanzialmente inutilizzabile per il calcolo effettivo, tranne nei casi in
cui n è molto piccolo. Tuttavia ciò non significa affatto che una tale formula
sia “inutile.” Essa permette infatti di dimostrare molte proprietà notevoli dei
determinanti.
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Proposizione 3.2.5. Sia

A =


a11 0 0 . . . 0
0 a22 0 . . . 0
0 0 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann


una matrice diagonale. Si ha detA = a11a22 · · · ann.

Dimostrazione. Poiché tutti gli elementi al di fuori della diagonale principale
di A sono nulli l’unico prodotto non nullo che si trova nello sviluppo del deter-
minante è a11a22 · · · ann, il quale corrisponde alla permutazione identica che ha
segno 1.

Più in generale, vale il seguente risultato:

Proposizione 3.2.6. Sia

A =


a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n

...
...

...
. . .

...
0 0 0 . . . ann


una matrice triangolare superiore. Si ha detA = a11a22 · · · ann.

Dimostrazione. Dato che A = (aij) è una matrice triangolare superiore, si ha
aij = 0 se i > j. Osserviamo che per ogni permutazione σ di {1, 2, . . . , n},
diversa dalla permutazione identica, esiste almeno un indice i tale che i > σ(i).
Il prodotto a1σ(1)a2σ(2) · · · anσ(n) è quindi nullo, dato che almeno uno dei suoi
fattori è zero. Pertanto l’unica permutazione che fornisce un contributo non
nullo al calcolo del determinante è la permutazione identica, quindi si ha detA =
a11a22 · · · ann.

Naturalmente un risultato analogo (con un’analoga dimostrazione) vale an-
che per matrici triangolari inferiori. Ciò deriva anche dal risultato seguente:

Proposizione 3.2.7. Sia A ∈Mn(K) e sia tA la sua trasposta. Si ha

det(tA) = det(A).

Dimostrazione. Sia σ ∈ Sn e sia σ−1 la sua inversa. Notiamo che quando σ
varia tra tutti gli elementi di Sn lo stesso accade anche per la sua inversa.
Indichiamo con aij gli elementi della matrice A e con ãij gli elementi di tA.
Ricordiamo che ãij = aji. Dalla definizione di determinante, si ha

det(tA) =
∑
σ∈Sn

sgn(σ) ã1σ(1)ã2σ(2) · · · ãnσ(n)

=
∑
σ∈Sn

sgn(σ) aσ(1)1aσ(2)2 · · · aσ(n)n.
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Ora osserviamo che in ciascun prodotto aσ(1)1aσ(2)2 · · · aσ(n)n compaiono n ele-
menti, presi uno per ciascuna riga e per ciascuna colonna di A. Da ciò segue
che tale prodotto si può anche scrivere nella forma a1σ−1(1)a2σ−1(2) · · · anσ−1(n),
cioè si ha

aσ(1)1aσ(2)2 · · · aσ(n)n = a1σ−1(1)a2σ−1(2) · · · anσ−1(n),

per ogni σ ∈ Sn.
Un esempio può servire a chiarire quanto appena affermato. Sia n = 4 e

consideriamo la permutazione

σ =
(

1 2 3 4
3 1 4 2

)
la cui inversa è

σ−1 =
(

1 2 3 4
2 4 1 3

)
Allora si ha

aσ(1)1aσ(2)2aσ(3)3aσ(4)4 = a31a12a43a24
e

a1σ−1(1)a2σ−1(2)a3σ−1(3)a4σ−1(4) = a12a24a31a43

i quali sono evidentemente uguali.
Se ricordiamo inoltre che sgn(σ−1) = sgn(σ), possiamo scrivere:

det(tA) =
∑
σ∈Sn

sgn(σ) aσ(1)1aσ(2)2 · · · aσ(n)n

=
∑
σ∈Sn

sgn(σ) a1σ−1(1)a2σ−1(2) · · · anσ−1(n)

=
∑
σ∈Sn

sgn(σ−1) a1σ−1(1)a2σ−1(2) · · · anσ−1(n)

=
∑
τ∈Sn

sgn(τ) a1τ(1)a2τ(2) · · · anτ(n)

= detA,

ove abbiamo posto τ = σ−1.

Data una matrice A ∈ Mn(K) indicheremo con A(1), A(2), . . . , A(n) le sue
righe

A(i) = (ai1, ai2, . . . , ain),

e con A(1), A(2), . . . , A(n) le sue colonne

A(j) =


a1j

a2j

...
anj


Potremo quindi scrivere

A = (A(1), A(2), . . . , A(n)) =


A(1)

A(2)

...
A(n)


Possiamo ora enunciare e dimostrare la seguente proprietà:
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Proposizione 3.2.8. Se la i-esima riga di una matrice A è combinazione
lineare di due vettori riga

A(i) = αV + α′V ′,

con V = (v1, v2, . . . , vn) e V ′ = (v′1, v
′
2, . . . , v

′
n), allora si ha

detA = α det



A(1)

...
A(i−1)

V
A(i+1)

...
A(n)


+ α′ det



A(1)

...
A(i−1)

V ′

A(i+1)

...
A(n)


Analogamente, se la j-esima colonna di A è combinazione lineare di due vettori
colonna

A(j) = βW + β′W ′,

con W = t(w1, w2, . . . , wn) e W ′ = t(w′1, w
′
2, . . . , w

′
n), allora si ha

detA = β det(A(1), . . . , A(j−1),W,A(j+1), . . . , A(n))
+ β′ det(A(1), . . . , A(j−1),W

′, A(j+1), . . . , A(n)).

Dimostrazione. Dato che il determinante di una matrice coincide con quello
della sua trasposta, è sufficiente dimostrare l’asserto riguardante le righe. Sup-
poniamo dunque che sia A(i) = αV +α′V ′, cioè aij = αvj+α′v′j , per j = 1, . . . , n.
Si ha quindi:

detA =
∑
σ∈Sn

sgn(σ) a1σ(1) · · · aiσ(i) · · · anσ(n)

=
∑
σ∈Sn

sgn(σ) a1σ(1) · · · (αvσ(i) + α′v′σ(i)) · · · anσ(n)

= α
∑
σ∈Sn

sgn(σ) a1σ(1) · · · vσ(i) · · · anσ(n)

+ α′
∑
σ∈Sn

sgn(σ) a1σ(1) · · · v′σ(i) · · · anσ(n)

= α det



A(1)

...
V
...

A(n)

+ α′ det



A(1)

...
V ′

...
A(n)


Proposizione 3.2.9. Sia A′ la matrice ottenuta scambiando tra loro due righe
(oppure due colonne) di A. Allora è

detA′ = − detA.
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Dimostrazione. Dato che det(tA) = det(A), è sufficiente dimostrare l’affermazio-
ne riguardante le righe. Sia dunque A′ = (a′ij) la matrice ottenuta scambiando
tra loro le righe h-esima e k-esima di A, con 1 ≤ h < k ≤ n. Si ha dunque:

detA′ =
∑
σ∈Sn

sgn(σ) a′1σ(1) · · · a
′
hσ(h) · · · a

′
kσ(k) · · · a

′
nσ(n)

=
∑
σ∈Sn

sgn(σ) a1σ(1) · · · akσ(h) · · · ahσ(k) · · · anσ(n).

Indichiamo con τ la permutazione che scambia h con k, lasciando invariati tutti
gli altri elementi, e poniamo η = σ ◦ τ . Si ha cos̀ı

detA′ =
∑
σ∈Sn

sgn(σ) a1η(1) · · · ahη(h) · · · akη(k) · · · anη(n).

Ora basta osservare che quando σ percorre tutto l’insieme Sn lo stesso accade
anche per η, e che sgn(η) = sgn(σ) sgn(τ) = − sgn(σ), in quanto il segno di una
trasposizione è −1. Si ha pertanto

detA′ =
∑
σ∈Sn

sgn(σ) a1η(1) · · · ahη(h) · · · akη(k) · · · anη(n)

=
∑
η∈Sn

− sgn(η) a1η(1) · · · ahη(h) · · · akη(k) · · · anη(n)

= − detA.

Osservazione 3.2.10. Il determinante di una matrice può essere considerato come
una funzione delle sue n righe

det : Kn × · · · ×Kn → K, (A(1), . . . , A(n)) 7→ det

A
(1)

...
A(n)


oppure come una funzione delle sue n colonne

det : Kn × · · · ×Kn → K, (A(1), . . . , A(n)) 7→ det(A(1), . . . , A(n)).

La Proposizione 3.2.8 afferma che entrambe queste funzioni sono multilineari,
cioè sono lineari in ciascuna delle loro n variabili. La Proposizione 3.2.9 afferma
poi che queste due funzioni sono alternanti, cioè cambiano di segno ogni volta
che due delle loro variabili vengono scambiate tra loro. Il determinante fornisce
quindi un esempio di applicazione multilineare alternante.

Corollario 3.2.11. Sia A = (aij) una matrice quadrata di ordine n. Per ogni
permutazione σ ∈ Sn si ha:

det


A(σ(1))

A(σ(2))

...
A(σ(n))

 = sgn(σ) det


A(1)

A(2)

...
A(n)

 = sgn(σ) detA

e

det(A(σ(1)), A(σ(2)), . . . , A(σ(n))) = sgn(σ) det(A(1), A(2), . . . , A(n)) = detA.
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Dimostrazione. Basta ricordare che ogni permutazione si può scrivere come
prodotto di un numero finito di trasposizioni e che, se σ è un prodotto di r
trasposizioni, si ha sgn(σ) = (−1)r.

Corollario 3.2.12. Se una matrice quadrata A ha due righe (oppure due co-
lonne) uguali, allora detA = 0.

Dimostrazione. Scambiando tra loro le due righe uguali (oppure le due colonne
uguali) la matrice A non viene alterata, ma il suo determinante deve cambiare di
segno. Si ha pertanto detA = −detA, cioè 2 detA = 0. Se la caratteristica del
campo K è diversa da 2, si conclude che detA = 0, come volevasi dimostrare.
Per trattare il caso in cui K è un campo di caratteristica 2, utilizziamo la
definizione di determinante. Supponiamo dunque che le righe h-esima e k-esima
di A siano uguali, cioè che ahj = akj per j = 1, . . . , n. Poiché char (K) = 2, si
ha sgn(σ) = 1 per ogni σ ∈ Sn, quindi

detA =
∑
σ∈Sn

a1σ(1) · · · ahσ(h) · · · akσ(k) · · · anσ(n).

Per ogni permutazione σ ∈ Sn indichiamo con σ′ la composizione di σ con la
trasposizione che scambia tra loro h e k. Nello sviluppo del determinante di A,
l’addendo relativo a σ′ coincide con quello corrispondente a σ, infatti:

a1σ′(1) · · · ahσ′(h) · · · akσ′(k) · · · anσ′(n) = a1σ(1) · · · ahσ(k) · · · akσ(h) · · · anσ(n)

= a1σ(1) · · · akσ(k) · · · ahσ(h) · · · anσ(n)

ove nell’ultima uguaglianza abbiamo usato il fatto che le righe di indici h e k
sono uguali. Ciò significa che gli addendi che compaiono nella sommatoria su
tutte le permutazioni σ ∈ Sn sono a due a due uguali. Poiché la caratteristica
di K è 2, ciò implica che detA = 0.

Osservazione 3.2.13. Abbiamo già osservato che il determinante può essere pen-
sato come un’applicazione multilineare alternante delle righe o delle colonne di
una matrice quadrata. In realtà si tratta proprio dell’unica applicazione mul-
tilineare alternante che, valutata sulla matrice identica, è uguale a 1. Infatti
supponiamo che

F : Kn × · · · ×Kn → K

sia un’applicazione multilineare alternante tale che F (e1, e2, . . . , en) = 1, ove e1,
e2, . . . , en sono i vettori della base canonica di Kn. Sia A = (aij) una matrice
quadrata di ordine n e siano A(1), . . . , A(n) le sue righe. Per ogni i = 1, . . . , n,
il vettore A(i) ∈ Kn si può scrivere come combinazione lineare dei vettori della
base canonica come segue:

A(i) = ai1e1 + ai2e2 + · · ·+ ainen.
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Dato che F è multilineare alternante, si ha:

F (A(1), . . . , A(n)) = F
( n∑
j1=1

a1j1ej1 , . . . ,

n∑
jn=1

anjnejn

)
=

∑
j1,...,jn

a1j1 · · · anjn F (ej1 , . . . , ejn)

=
∑
σ∈Sn

a1σ(1) · · · anσ(n) F (eσ(1), . . . , eσ(n))

=
∑
σ∈Sn

sgn(σ) a1σ(1) · · · anσ(n) F (e1, . . . , en)

=
∑
σ∈Sn

sgn(σ) a1σ(1) · · · anσ(n)

= detA.

Proposizione 3.2.14. Se una matrice A ∈ Mn(K) ha una riga (oppure una
colonna) nulla, il suo determinante è nullo.

Dimostrazione. Dato che det(A) = det(tA), è sufficiente considerare il caso in
cui A ha una riga nulla. Supponiamo dunque che la i-esima riga di A sia nulla,
cioè che aij = 0 per j = 1, . . . , n. Per ogni permutazione σ ∈ Sn, nel prodotto

a1σ(1) · · · aiσ(i) · · · anσ(n)

compare il fattore aiσ(i) = 0, quindi tale prodotto è nullo. Dalla definizione di
determinante, segue che detA = 0.

Proposizione 3.2.15. Il determinante di una matrice A ∈Mn(K) non cambia
se a una riga (risp. a una colonna) di A si somma una combinazione lineare
delle righe (risp. delle colonne) rimanenti.

Dimostrazione. Anche in questo caso è sufficiente dimostrare l’affermazione ri-
guardante le righe. Sia dunque B la matrice ottenuta da A sostituendo la sua
i-esima riga A(i) con la riga

B(i) = A(i) +
∑
j 6=i

αjA
(j),

con αj ∈ K. Ricordando la multilinearità del determinante si ha:

detB = det



A(1)

...
A(i−1)

A(i)

A(i+1)

...
A(n)


+
∑
j 6=i

αj det



A(1)

...
A(i−1)

A(j)

A(i+1)

...
A(n)


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Poiché j è diverso da i, nella matrice

A(1)

...
A(i−1)

A(j)

A(i+1)

...
A(n)


ci sono due righe uguali, quindi il determinante di tale matrice è nullo. Si ha
pertanto detB = detA.

Proposizione 3.2.16. Se A ∈Mn(K) e α ∈ K, si ha

det(αA) = αn det(A).

Dimostrazione. Dalla multilinearità del determinante segue che

det(αA) = det


αA(1)

αA(2)

...
αA(n)

 = α det


A(1)

αA(2)

...
αA(n)

 = · · · = αn det


A(1)

A(2)

...
A(n)

 = αn detA.

Siamo ora in grado di dimostrare il seguente risultato:

Teorema 3.2.17 (Teorema di Binet). Date due matrici A,B ∈ Mn(K), si
ha:

det(AB) = det(A) det(B).

Dimostrazione. Siano A = (aij) e B = (bij) e scriviamo B come segue:

B =

B
(1)

...
B(n)


Sviluppando il prodotto righe per colonne di A per B, si ottiene

det(AB) = det


a11B

(1) + · · ·+ a1nB
(n)

a21B
(1) + · · ·+ a2nB

(n)

...
an1B

(1) + · · ·+ annB
(n)


Ricordando ora la multilinearità del determinante, si ha

det(AB) =
∑
j1

∑
j2

· · ·
∑
jn

a1j1a2j2 · · · anjn det

B
(j1)

...
B(jn)


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Dato che il determinante di una matrice avente due righe uguali è nullo, l’e-
spressione precedente si riduce a:

det(AB) =
∑
σ∈Sn

a1σ(1)a2σ(2) · · · anσ(n) det

B
(σ(1))

...
B(σ(n))


Infine, ricordando che il determinante è una funzione alternante (vedi Corolla-
rio 3.2.11), si ha:

det(AB) =
∑
σ∈Sn

a1σ(1)a2σ(2) · · · anσ(n) sgn(σ) det

B
(1)

...
B(n)


=
( ∑
σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n)

)
detB

= det(A) det(B).

Corollario 3.2.18. Se A ∈Mn(K) è una matrice invertibile, si ha

det(A−1) = (detA)−1.

Dimostrazione. Se A è invertibile, si ha AA−1 = 1n. Applicando il Teorema di
Binet, si ottiene:

1 = det(1n) = det(AA−1) = det(A) det(A−1),

quindi det(A−1) = (detA)−1.

Definizione 3.2.19. Data una matrice A = (aij) ∈ Mn(K), per ogni i, j ∈
{1, . . . , n} indicheremo con Aij la matrice di ordine n− 1 ottenuta da A cancel-
lando la sua i-esima riga e la sua j-esima colonna. Il determinante della matrice
Aij è detto il minore di indici i e j della matrice A. La quantità

a∗ij = (−1)i+j |Aij |

è detta il complemento algebrico (o cofattore) dell’elemento aij di A. La tra-
sposta della matrice costituita dai complementi algebrici degli elementi di A è
detta la matrice aggiunta (o matrice cofattore) di A, e sarà indicata con adj(A)
o, più semplicemente, con A∗:

A∗ = adj(A) = t
(
a∗ij
)
∈Mn(K).

Possiamo ora dimostrare il seguente risultato, che fornisce un metodo molto
utile per il calcolo del determinante di una matrice.

Proposizione 3.2.20 (Formula di Laplace). Sia A ∈ Mn(K). Per ogni
indice di riga i si ha:

detA =
n∑
h=1

(−1)i+h aih |Aih|. (3.2.1)
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Analogamente, per ogni indice di colonna j si ha:

detA =
n∑
k=1

(−1)k+j akj |Akj |. (3.2.2)

La prima formula è detta sviluppo del determinante di A secondo la i-esima
riga, mentre la seconda è lo sviluppo del determinante di A secondo la j-esima
colonna.

Dimostrazione. Poiché il determinante di una matrice coincide con quello della
sua trasposta, scambiando i ruoli delle righe e delle colonne della matrice A,
la formula (3.2.1) si riduce alla (3.2.2). Pertanto è sufficiente dimostrarne una
delle due, ad esempio la (3.2.1).

Ci proponiamo ora di mostrare che, in effetti, è sufficiente dimostrare la
formula (3.2.1) per i = 1. Supponiamo dunque che la formula di Laplace valga
per lo sviluppo del determinante di A secondo la prima riga. Fissiamo un indice
di riga i > 1 e scriviamo la matrice A nella forma

A =



A(1)

...
A(i−1)

A(i)

A(i+1)

...
A(n)


Mediante i− 1 scambi di righe contigue è possibile portare la i-esima riga di A
al posto della prima riga, ottenendo cos̀ı la matrice

A′ =



A(i)

A(1)

...
A(i−1)

A(i+1)

...
A(n)


Poiché ad ogni scambio di due righe il determinante cambia di segno, si ha

detA = (−1)i−1 detA′.

Possiamo ora sviluppare il determinante di A′ = (a′ij) secondo la prima riga,
ottenendo

detA′ =
n∑
h=1

(−1)1+h a′1h |A′1h|.

Ma, dalla definizione di A′, si vede che a′1h = aih e A′1h = Aih, quindi si ha

detA′ =
n∑
h=1

(−1)1+h aih |Aih|.
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Si conclude pertanto che

detA = (−1)i−1 detA′ =
n∑
h=1

(−1)i+h aih |Aih|,

che è precisamente lo sviluppo del determinante di A secondo la i-esima riga.
Non rimane altro che dimostrare la formula (3.2.1) nel caso in cui i = 1.

Dobbiamo quindi dimostrare che

detA =
n∑
h=1

(−1)1+h a1h |A1h|.

Notiamo che A1h è la seguente matrice quadrata di ordine n− 1

A1h =


a21 . . . a2,h−1 a2,h+1 . . . a2n

a31 . . . a3,h−1 a3,h+1 . . . a3n

...
...

...
...

an1 . . . an,h−1 an,h+1 . . . ann


Dalla definizione di determinante, si ha

|A1h| =
∑

τ∈S
(h)
n−1

sgn(τ) a2,τ(1) · · · ah,τ(h−1)ah+1,τ(h+1) · · · an,τ(n),

ove la sommatoria è estesa a tutte le permutazioni τ dell’insieme di n−1 elementi

{1, 2, . . . , h− 1, h+ 1, . . . , n}

(il simbolo S
(h)
n−1 indica proprio l’insieme di tali permutazioni).

Si ottiene cos̀ı la seguente espressione:

detA =
n∑
h=1

(−1)1+ha1h

∑
τ∈S

(h)
n−1

sgn(τ) a2,τ(1) · · · ah,τ(h−1)ah+1,τ(h+1) · · · an,τ(n)

=
n∑
h=1

∑
τ∈S

(h)
n−1

(−1)1+h sgn(τ) a1ha2,τ(1) · · · ah,τ(h−1)ah+1,τ(h+1) · · · an,τ(n).

Ora alla permutazione τ ∈ S
(h)
n−1

τ =
(

1 2 . . . h− 1 h+ 1 . . . n
τ(1) τ(2) . . . τ(h− 1) τ(h+ 1) . . . τ(n)

)
associamo la permutazione σ ∈ Sn definita da

σ =
(

1 2 . . . h− 1 h h+ 1 . . . n
h τ(1) . . . τ(h− 2) τ(h− 1) τ(h+ 1) . . . τ(n)

)
Precisamente, σ è definita ponendo:

σ(1) = h e σ(k) =

{
τ(k − 1) se 2 ≤ k ≤ h,
τ(k) se k > h.
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Osserviamo che, al variare dell’indice h da 1 a n e di τ nell’insieme S
(h)
n−1, le

corrispondenti permutazioni σ descrivono tutto l’insieme Sn delle permutazioni
degli n elementi {1, 2, . . . , n}.

L’ultima cosa che rimane da capire a questo punto è quale sia la relazione
tra il segno di τ e quello della corrispondente permutazione σ.

Possiamo notare che σ è ottenuta componendo la permutazione

ξ =
(

1 2 3 . . . h h+ 1 . . . n
h 1 2 . . . h− 1 h+ 1 . . . n

)
con la permutazione τ ′ definita da

τ ′ =
(

1 2 . . . h− 1 h h+ 1 . . . n
τ(1) τ(2) . . . τ(h− 1) h τ(h+ 1) . . . τ(n)

)
Si ha infatti σ = τ ′ ◦ ξ, come si può facilmente verificare. Da ciò segue che
sgn(σ) = sgn(τ ′) sgn(ξ). Ora osserviamo che le due permutazioni τ e τ ′ hanno la
stessa rappresentazione come prodotto di cicli disgiunti (nella rappresentazione
di τ ′ comparirebbe il ciclo di lunghezza uno (h) la cui presenza è irrilevante,
dato che esso rappresenta la permutazione identica), quindi sgn(τ) = sgn(τ ′).
Si ha poi sgn(ξ) = (−1)h−1 = (−1)h+1, come già visto nell’Esempio 3.1.10. Si
ottiene cos̀ı sgn(σ) = (−1)h+1 sgn(τ) e lo sviluppo di Laplace può dunque essere
riscritto come segue:

detA =
n∑
h=1

∑
τ∈S

(h)
n−1

(−1)1+h sgn(τ) a1ha2,τ(1) · · · ah,τ(h−1)ah+1,τ(h+1) · · · an,τ(n)

=
∑
σ∈Sn

sgn(σ) a1σ(1)a2σ(2) · · · ahσ(h)ah+1,σ(h+1) · · · anσ(n).

Ma quest’ultima è precisamente la definizione del determinante di A.

Esempio 3.2.21. Utilizziamo la formula di Laplace per calcolare il determinante
della seguente matrice:

A =


2 0 1 1
−1 3 0 2
0 2 −3 0
1 4 −1 0


Possiamo sviluppare questo determinante secondo una riga o una colonna qual-
siasi ma, ovviamente, converrà scegliere una riga (o una colonna) tra quelle che
contengono il maggior numero di zeri. Scegliendo, ad esempio, la terza riga, si
ottiene:

detA = −2

∣∣∣∣∣∣
2 1 1
−1 0 2
1 −1 0

∣∣∣∣∣∣− 3

∣∣∣∣∣∣
2 0 1
−1 3 2
1 4 0

∣∣∣∣∣∣
Consideriamo il primo di questi due determinanti di ordine tre e sviluppiamolo
secondo la seconda colonna:∣∣∣∣∣∣

2 1 1
−1 0 2
1 −1 0

∣∣∣∣∣∣ = −
∣∣∣∣−1 2

1 0

∣∣∣∣+
∣∣∣∣ 2 1
−1 2

∣∣∣∣ = −(−2) + 5 = 7.
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Consideriamo ora il secondo determinante di ordine tre e sviluppiamolo secondo
la prima riga:∣∣∣∣∣∣

2 0 1
−1 3 2
1 4 0

∣∣∣∣∣∣ = 2
∣∣∣∣3 2
4 0

∣∣∣∣+
∣∣∣∣−1 3

1 4

∣∣∣∣ = −16− 7 = −23.

In conclusione, si trova detA = −14 + 69 = 55.

Come corollario del Teorema di Laplace otteniamo il seguente utile risultato,
che fornisce una formula esplicita per calcolare l’inversa di una matrice quadrata.

Corollario 3.2.22. Sia A ∈ Mn(K) e indichiamo con A∗ la matrice aggiunta
di A. Sussiste la seguente identità:

AA∗ = det(A) 1n.

Di conseguenza, se det(A) è invertibile, si ha

A−1 = (detA)−1A∗.

Dimostrazione. L’identità AA∗ = det(A) 1n equivale alle seguenti uguaglianze:

n∑
h=1

(−1)j+h aih |Ajh| =

{
detA se i = j,
0 se i 6= j.

Se i = j, l’espressione precedente si riduce a

n∑
h=1

(−1)i+h aih |Aih|,

la quale non è altro che lo sviluppo di detA secondo la i-esima riga di A.
Consideriamo ora il caso i 6= j. L’espressione

n∑
h=1

(−1)j+h aih |Ajh|

può ora essere interpretata come lo sviluppo, secondo la j-esima riga, del deter-
minante della matrice B ottenuta da A sostituendo la sua j-esima riga con una
copia della i-esima:

B =



a11 a12 . . . a1n

...
...

...
ai1 ai2 . . . ain
...

...
...

aj−1,1 aj−1,2 . . . aj−1,n

ai1 ai2 . . . ain
aj+1,1 aj+1,2 . . . aj+1,n

...
...

...
an1 an2 . . . ann


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Poiché questa matrice ha due righe uguali, il suo determinante è nullo, pertanto
si ha

n∑
h=1

(−1)j+h aih |Ajh| = 0,

per ogni i 6= j.

Osservazione 3.2.23. Come abbiamo visto nel Corollario 3.2.18, dal Teorema di
Binet si deduce che l’invertibilità del determinante di una matrice A ∈ Mn(K)
è una condizione necessaria per l’invertibilità di A. Il risultato precedente di-
mostra che questa condizione è anche sufficiente. Si conclude pertanto che una
matrice A ∈ Mn(K) è invertibile se e solo se il suo determinante è invertibile.
Possiamo notare che questo risultato vale anche, più in generale, per matri-
ci a coefficienti in un anello commutativo unitario. Ad esempio, una matrice
A ∈ Mn(Z) è invertibile se e solo se detA = ±1 (la condizione detA 6= 0
garantisce infatti l’esistenza di A−1 nell’anello Mn(Q) e non in Mn(Z)).

Descriviamo ora un’applicazione di questi risultati alla teoria dei sistemi
lineari; si tratta di una formula, nota come regola di Cramer, che permette di
esprimere la soluzione di un sistema di n equazioni lineari in n incognite.

Teorema 3.2.24 (Regola di Cramer). Sia AX = B un sistema di n equa-
zioni lineari in n incognite, ove

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

 X =


x1

x2

...
xn

 B =


b1
b2
...
bn


Se detA è invertibile, il sistema ammette un’unica soluzione data, per ogni
i = 1, . . . , n, da

xi = ∆−1∆i,

ove ∆ = detA e ∆i è il determinante della matrice ottenuta da A sostituendo
la sua i-esima colonna con la colonna B dei termini noti.

Dimostrazione. Se detA è invertibile, la matrice A è invertibile, pertanto il
sistema AX = B ha un’unica soluzione data da X = A−1B. Ricordando che
l’inversa di A è data dalla formula A−1 = (detA)−1A∗, sviluppando il prodotto
righe per colonne di A−1 per B si ottiene

xi = ∆−1
n∑
h=1

(−1)i+h |Ahi| bh.

Consideriamo ora il determinante ∆i della matrice ottenuta da A sostituendo la
sua i-esima colonna con la colonna B dei termini noti. Sviluppando ∆i secondo
la i-esima colonna, si trova

∆i =
n∑
h=1

(−1)i+h bh |Ahi|,

da cui si deduce che xi = ∆−1∆i, come volevasi dimostrare.
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3.2.1 Calcolo del determinante di una matrice mediante l’eli-
minazione di Gauss

Tutti i metodi di calcolo del determinante di una matrice quadrata di ordine
n che abbiamo visto finora coinvolgono, in generale, una somma di n! termini,
ciascuno dei quali è, a sua volta, un prodotto di n elementi di A, preso con un
opportuno segno. L’utilizzo della formula di Laplace semplifica il calcolo del
determinante nel caso in cui la matrice contenga molti zeri; se invece la matrice
è priva di zeri, il numero di termini da sommare rimane sempre n!.

Vedremo ora come, sfruttando le proprietà di multilinearità e di alternan-
za del determinante, sia possibile trovare un algoritmo di calcolo molto più
efficiente.

Nel Capitolo 2, al paragrafo 2.3.2, abbiamo descritto un metodo per il calco-
lo del rango di una matrice basato sulla cosiddetta “eliminazione di Gauss.” Si
trattava di ridurre una matrice a una forma a scala tramite una successione di
opportune operazioni elementari sulle righe. Nel caso di una matrice quadrata,
la forma finale a scala non è altro che una matrice triangolare superiore. Ciò si-
gnifica che, se A = (aij) ∈Mn(K) è una matrice quadrata di ordine n, mediante
una successione di operazioni elementari sulle righe è possibile trasformarla in
una matrice triangolare superiore

A′ =


a′11 a′12 a′13 . . . a′1n
0 a′22 a′23 . . . a′2n
0 0 a′33 . . . a′3n
...

...
...

. . .
...

0 0 0 . . . a′nn


Il calcolo del determinante di A′ è immediato:

detA′ = a′11a
′
22 · · · a′nn.

Poiché l’effetto sul determinante di una matrice di ciascuna operazione elemen-
tare sulle righe è noto, è possibile tenerne conto per trovare la relazione esistente
tra il determinante della matrice A e quello di A′. Vale la pena ricordare i tre
tipi di operazioni elementari sulle righe e i loro effetti sul determinante di una
matrice:

(1) scambiare due righe tra loro: in tal caso il determinante cambia di segno;

(2) moltiplicare una riga per uno scalare λ: in tal caso il determinante risulta
moltiplicato per λ;

(3) sommare a una riga un multiplo di un’altra riga: in tal caso il determinante
non cambia.

Questo metodo permette dunque di calcolare il determinante di una matrice
A effettuando solamente delle operazioni elementari sulle sue righe, al fine di
ridurla a una forma triangolare superiore (naturalmente si potrebbero anche
effettuare operazioni elementari sulle colonne, oppure si potrebbe ridurre la
matrice a una forma triangolare inferiore).

Possiamo fare una stima grossolana del numero massimo di operazioni neces-
sarie per calcolare, nel modo appena descritto, il determinante di una matrice
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quadrata di ordine n. Gli elementi al di sotto della diagonale principale sono

1 + 2 + · · ·+ (n− 1) =
(n− 1)n

2

e tutti questi devono essere trasformati in zeri. La produzione di uno di questi
zeri avviene sommando a una riga un multiplo di un’altra riga, e la somma di due
vettori riga equivale a n somme di numeri (in realtà, più si avanza nell’algoritmo,
meno somme sono necessarie, perché molti elementi delle righe da sommare sono
degli zeri). Pertanto il numero di “operazioni” necessarie (trascurando eventuali
scambi di righe) è circa pari a

n
(n− 1)n

2
=
n3 − n2

2
.

Poiché, per n grande, il numero n3−n2

2 è molto più piccolo di n!, questo algorit-
mo per il calcolo del determinante risulta di gran lunga più efficiente di quelli
descritti in precedenza.
Esempio 3.2.25. Descriviamo ora il calcolo del determinante della seguente
matrice utilizzando il metodo dell’eliminazione di Gauss.

A =


2 1 −1 3
−1 3 1 2
2 −1 4 1
3 −2 1 4


Scambiando la prima con la seconda riga, si ha:

detA = −

∣∣∣∣∣∣∣∣
−1 3 1 2
2 1 −1 3
2 −1 4 1
3 −2 1 4

∣∣∣∣∣∣∣∣
Ora alla seconda riga sommiamo il doppio della prima, alla terza riga sommiamo
il doppio della prima e alla quarta riga sommiamo la prima moltiplicata per 3:

detA = −

∣∣∣∣∣∣∣∣
−1 3 1 2
0 7 1 7
0 5 6 5
0 7 4 10

∣∣∣∣∣∣∣∣
Ora scambiamo la seconda e la terza colonna, ottenendo:

detA =

∣∣∣∣∣∣∣∣
−1 1 3 2
0 1 7 7
0 6 5 5
0 4 7 10

∣∣∣∣∣∣∣∣
A questo punto, alla terza riga sommiamo la seconda moltiplicata per −6 e alla
quarta riga sommiamo la seconda moltiplicata per −4:

detA =

∣∣∣∣∣∣∣∣
−1 1 3 2
0 1 7 7
0 0 −37 −37
0 0 −21 −18

∣∣∣∣∣∣∣∣
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Ora raccogliamo −37 dalla terza riga:

detA = −37

∣∣∣∣∣∣∣∣
−1 1 3 2
0 1 7 7
0 0 1 1
0 0 −21 −18

∣∣∣∣∣∣∣∣
Infine, alla quarta riga sommiamo la terza moltiplicata per 21:

detA = −37

∣∣∣∣∣∣∣∣
−1 1 3 2
0 1 7 7
0 0 1 1
0 0 0 3

∣∣∣∣∣∣∣∣
Si ottiene cos̀ı

detA = −37 · (−3) = 111.

Esempio 3.2.26 (Il determinante di Vandermonde). Siano x1, . . . , xn ∈ K,
con n ≥ 2, e consideriamo la seguente matrice, detta matrice di Vandermonde:

1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n


Il determinante di questa matrice è detto determinante di Vandermonde e verrà
indicato con V (x1, x2, . . . , xn). Vogliamo dimostrare che si ha

V (x1, x2, . . . , xn) =
∏

1≤i<j≤n

(xj − xi). (3.2.3)

Procediamo per induzione su n. Per n = 2 si ha

V (x1, x2) =
∣∣∣∣ 1 1
x1 x2

∣∣∣∣ = x2 − x1.

Supponiamo dunque che sia n > 2 e che la formula (3.2.3) valga per n− 1. Per
calcolare V (x1, x2, . . . , xn) effettuiamo le seguenti operazioni elementari sulle
righe della matrice di Vandermonde: alla n-esima riga sottraiamo la (n − 1)-
esima moltiplicata per x1, alla (n − 1)-esima riga sottraiamo la (n − 2)-esima
moltiplicata per x1, . . . , alla seconda riga sottraiamo la prima moltiplicata per
x1. Si ottiene dunque

V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
0 x2 − x1 x3 − x1 . . . xn − x1

0 x2(x2 − x1) x3(x3 − x1) . . . xn(xn − x1)
...

...
...

...
0 xn−2

2 (x2 − x1) xn−2
3 (x3 − x1) . . . xn−2

n (xn − x1)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
x2 − x1 x3 − x1 . . . xn − x1

x2(x2 − x1) x3(x3 − x1) . . . xn(xn − x1)
...

...
...

xn−2
2 (x2 − x1) xn−2

3 (x3 − x1) . . . xn−2
n (xn − x1)

∣∣∣∣∣∣∣∣∣
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Ora dalla prima colonna possiamo raccogliere il termine x2−x1, dalla seconda il
termine x3−x1, . . . , dall’ultima colonna possiamo raccogliere xn−x1, ottenendo
cos̀ı

V (x1, . . . , xn) = (x2 − x1)(x3 − x1) · · · (xn − x1)

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
x2 x3 . . . xn
...

...
...

xn−2
2 xn−2

3 . . . xn−2
n

∣∣∣∣∣∣∣∣∣
Quest’ultimo determinante non è altro che il determinante di Vandermonde
V (x2, . . . , xn) che, per ipotesi induttiva, è uguale a

∏
2≤i<j≤n(xj − xi). Sosti-

tuendo nella formula precedente si ottiene

V (x1, x2, . . . , xn) =
∏

1≤i<j≤n

(xj − xi).

3.2.2 Il determinante di un endomorfismo

Sia f un endomorfismo di uno spazio vettoriale V di dimensione finita su K.
Fissando una base di V , è possibile associare a f una matrice A ∈Mn(K), ove
n = dimV . Naturalmente, a basi diverse di V corrispondono matrici diverse di
f , tuttavia tutte queste matrici sono simili tra loro.

Proposizione 3.2.27. Matrici simili hanno lo stesso determinante.

Dimostrazione. Due matrici A,A′ ∈ Mn(K) sono simili se e solo se esiste una
matrice invertibile P tale che

A′ = PAP−1.

Dal Teorema di Binet si deduce che

detA′ = (detP )(detA)(detP−1) = (detP )(detA)(detP )−1 = detA.

Questo risultato ci permette di definire il determinante di un endomorfismo f
come il determinante di una matrice A associata a f tramite la scelta di una
base di V , in quanto tale determinante non dipende dalla base scelta.

Definizione 3.2.28. Sia f un endomorfismo di V . Il determinante di f è il
determinante di una matrice di f rispetto a una qualche base di V .

Una conseguenza immediata del Teorema di Binet è la seguente:

Proposizione 3.2.29. Siano f e g due endomorfismi di V . Allora

det(g ◦ f) = (det g)(det f).
Se f è invertibile, si ha

det(f−1) = (det f)−1.

Vale inoltre il seguente risultato:

Proposizione 3.2.30. Un endomorfismo f di uno spazio vettoriale V di di-
mensione finita su K è un isomorfismo se e solo se det f 6= 0.

Dimostrazione. Sia A la matrice di f rispetto a una qualche base di V . Allora
f è un isomorfismo se e solo se A è invertibile ma, per il Corollario 3.2.22, A è
invertibile se e solo se detA = det f 6= 0.
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3.3 Determinanti e rango

Nel Capitolo 2, il rango (per colonne) di una matrice è stato definito come
il massimo numero di colonne linearmente indipendenti. Naturalmente si può
anche definire un analogo rango per righe, come il massimo numero di righe
linearmente indipendenti. In questa sezione dimostreremo che le due definizioni
di rango coincidono e analizzeremo le relazioni esistenti tra il rango di una
matrice A e i determinanti delle sottomatrici quadrate che si possono estrarre
da A.

Teorema 3.3.1. Il rango per righe e il rango per colonne di una matrice A ∈
Mm,n(K) coincidono.

Dimostrazione. Indichiamo con r il rango per righe e con c il rango per colonne
di A. Se r = 0 allora tutti gli elementi di A sono nulli e quindi anche c = 0.
Supponiamo quindi che sia r > 0. Una relazione di dipendenza lineare tra le
colonne di A

A(1)x1 +A(2)x2 + · · ·+A(n)xn = 0

è una soluzione non nulla del sistema omogeneo

AX = 0, (3.3.1)

ove X = t(x1, . . . , xn). Pertanto il rango per colonne di A è determinato1

dall’insieme delle soluzioni del sistema (3.3.1).
Poiché una permutazione delle righe di A non modifica l’insieme delle solu-

zioni del sistema (3.3.1), né tantomeno modifica il rango per righe di A, non è
restrittivo supporre che le r righe linearmente indipendenti di A siano proprio le
prime r. Di conseguenza, le righe A(r+1), A(r+2), . . . , A(m) sono delle combina-
zioni lineari delle prime r righe di A. Ciò significa che le ultime m− r equazioni
del sistema AX = 0 sono combinazioni lineari delle prime r e, pertanto, il si-
stema AX = 0 è equivalente al sistema A′X = 0, ove A′ è la matrice costituita
dalle prime r righe di A:

A′ =

A
(1)

...
A(r)


Poiché A e A′ individuano sistemi lineari aventi lo stesso insieme di soluzioni,
e poiché l’insieme delle soluzioni determina il rango per colonne della matrice,
le due matrici A e A′ devono avere lo stesso rango per colonne, quindi il rango
per colonne di A′ è uguale a c. Dato che le colonne di A′ sono vettori di Kr, si
ha necessariamente c ≤ r.

Ragionando allo stesso modo sulla matrice tA, si conclude che è anche r ≤ c,
e quindi deve essere r = c.

Da questo risultato discende che la distinzione tra rango per righe e rango
per colonne di una matrice è del tutto inutile. Si potrà dunque parlare sempli-
cemente del rango di una matrice per indicare il valore comune dei due tipi di
rango, per righe e per colonne.

1Ricordiamo che si ha rk(A) = n − null(A), ove null(A) è la dimensione dello spa-
zio delle soluzioni del sistema omogeneo AX = 0 (vedi Capitolo 2, Definizione 2.2.15 e
Osservazione 2.1.13).
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Corollario 3.3.2. Le operazioni elementari sulle righe o sulle colonne di una
matrice non ne modificano il rango.

Dimostrazione. È del tutto evidente che le operazioni elementari sulle righe di
una matrice non ne modificano il rango per righe, mentre le operazioni elemen-
tari sulle colonne non ne modificano il rango per colonne. Poiché i due tipi di
rango coincidono, si conclude.

Osservazione 3.3.3. Da quest’ultimo risultato discende che nel metodo dell’e-
liminazione di Gauss descritto nel Cap. 2, Sezione 2.3.2, per calcolare il rango
di una matrice si possono usare sia operazioni elementari sulle righe che sulle
colonne.

Proposizione 3.3.4. Siano A ∈Mm,n(K) e B ∈Mn,r(K) due matrici.

(i) Si ha:
rk(AB) ≤ min

(
rk(A), rk(B)

)
. (3.3.2)

(ii) Se m = n e A è invertibile, si ha

rk(AB) = rk(B).

(iii) Se n = r e B è invertibile, si ha

rk(AB) = rk(A).

Dimostrazione. (i) Siano FA : Kn → Km e FB : Kr → Kn le applicazioni
lineari definite dalle matrici A e B rispettivamente. Allora AB è la matrice
dell’applicazione composta FA ◦ FB : Kr → Km. Ricordando che il rango di
una matrice è uguale alla dimensione dell’immagine dell’applicazione lineare
corrispondente, la disuguaglianza (3.3.2) è equivalente alla seguente:

dim Im(FA ◦ FB) ≤ min
(

dim Im(FA),dim Im(FB)
)
,

la dimostrazione della quale è un facile esercizio.
(ii) Se m = n, dire che A è invertibile equivale a dire che FA : Kn → Kn è

un isomorfismo. Da ciò discende che Im(FB) ∼= FA(ImFB), quindi dim Im(FA ◦
FB) = dim Im(FB), cioè rk(AB) = rk(B).

(iii) Infine, se n = r, l’invertibilità di B equivale all’invertibilità di FB e
pertanto si ha Im(FA ◦ FB) ∼= Im(FA), e quindi rk(AB) = rk(A).

Nel caso delle matrici quadrate, si ha:

Teorema 3.3.5. Una matrice quadrata di ordine n è invertibile se e solo se ha
rango n.

Dimostrazione. Se A è invertibile, in base alla proposizione precedente si ha

rk(A) = rk(A−1A) = rk(1n) = n.

Viceversa, supponiamo che A abbia rango n. Allora le sue colonne A(1), . . . ,
A(n) costituiscono una base di Kn, quindi, per ogni j = 1, . . . , n, esistono
b1j , b2j , . . . , bnj ∈ K tali che

A(1)b1j +A(2)b2j + · · ·+A(n)bnj = ej , (3.3.3)
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ove ej è il j-esimo vettore della base canonica di Kn. Se poniamo B = (bij), le
equazioni (3.3.3) possono essere riscritte come segue:

AB = 1n,

da cui segue che A è invertibile.

Sia A ∈ Mm,n(K) una matrice con m righe e n colonne. Fissiamo degli
indici di riga 1 ≤ i1 < i2 < · · · < ip ≤ m e degli indici di colonna 1 ≤ j1 < j2 <
· · · < jq ≤ n e poniamo I = {i1, i2, . . . , ip} e J = {j1, j2, . . . , jq}. Indicheremo
con AIJ la sottomatrice p× q di A costituita dagli elementi comuni alle p righe
e alle q colonne determinate dagli indici degli insiemi I e J rispettivamente.

Proposizione 3.3.6. Se B è una sottomatrice della matrice A, allora rk(B) ≤
rk(A).

Dimostrazione. Siano A ∈ Mm,n(K), I = {i1, i2, . . . , ip} e J = {j1, j2, . . . , jq}
due insiemi di indici fissati e poniamo B = AIJ . Consideriamo la sottomatrice
C = AIN , ove N = {1, 2, . . . , n}. Se interpretiamo il rango come rango per
righe (cioè come massimo numero di righe linearmente indipendenti), allora la
relazione

rk(C) ≤ rk(A)

è ovvia. D’altra parte, B è anche una sottomatrice di C e se, questa volta,
interpretiamo il rango come rango per colonne, allora la relazione

rk(B) ≤ rk(C)

è ovvia. Da queste due disuguaglianze segue che rk(B) ≤ rk(A).

Siamo ora in grado di dimostrare il seguente teorema, il quale mette in
relazione la nozione di rango con quella di determinante.

Teorema 3.3.7. Il rango di una matrice A a coefficienti in un campo è uguale al
massimo degli ordini delle sue sottomatrici quadrate invertibili, cioè al massimo
degli ordini dei minori non nulli di A.

Dimostrazione. Sia ρ il massimo degli ordini delle sottomatrici quadrate inver-
tibili di A. Dal Teorema 3.3.5 e dalla Proposizione 3.3.6 segue che ρ ≤ rk(A).
D’altra parte, posto r = rk(A), siano A(i1), A(i2), . . . , A(ir) r righe linearmente
indipendenti di A. Allora la sottomatrice AIN di A (ove I = {i1, i2, . . . , ir} e
N = {1, 2, . . . , n}) ha rango r, quindi possiede r colonne, di indici, j1, j2, . . . , jr,
che sono linearmente indipendenti. Posto J = {j1, j2, . . . , jr}, ciò significa che
la sottomatrice quadrata di ordine r AIJ ha rango r, pertanto è invertibile. Da
ciò segue che ρ ≥ r = rk(A). Si conclude dunque che deve essere ρ = rk(A).

Osservazione 3.3.8. In base a questo risultato, il rango di una matrice A può
anche essere definito come il massimo ordine dei minori non nulli di A. Utiliz-
zando quest’ultima come definizione del rango di una matrice, e ricordando che
il determinante di una matrice coincide con quello della sua trasposta, il fatto
che il rango di una matrice coincida con il rango della sua trasposta risulta del
tutto ovvio.

Da quest’ultimo teorema si deduce immediatamente il seguente criterio per
stabilire se n vettori di Kn formano una base:
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Corollario 3.3.9. I vettori v1, v2, . . . , vn ∈ Kn formano una base se e solo se
il determinante della matrice che ha come righe (o come colonne) i vettori dati
è diverso da zero.

Il principio dei minori orlati

Sia data una matrice A ∈Mm,n(K) e supponiamo di volerne calcolare il rango
cercando di determinare il massimo ordine dei minori non nulli di A.

Supponiamo che A non sia la matrice nulla e quindi che il suo rango sia ≥ 1.
Dovremo quindi calcolare i minori di ordine via via crescente, a partire da quelli
di ordine 2. Quando per un certo r si sarà trovato un minore di ordine r non
nullo, mentre tutti i minori di ordine r + 1 sono nulli (oppure non esistono, nel
caso in cui r = min(m,n)), si concluderà che rk(A) = r. Infatti dall’annullarsi di
tutti i minori di ordine r+1 segue l’annullarsi di ogni minore di ordine superiore:
ciò si dimostra facilmente per induzione su s, sviluppando un minore di ordine
s > r + 1 secondo una sua riga o una sua colonna.

In realtà, nella situazione appena descritta non è necessario verificare che
tutti i minori di ordine r + 1 siano nulli; basta limitarsi a quei minori di ordine
r + 1 che contengono la sottomatrice quadrata di ordine r con determinante
diverso da zero che abbiamo considerato. Vale infatti il seguente risultato:

Teorema 3.3.10 (Teorema dei Minori Orlati). Sia A ∈ Mm,n(K) e sia
B = AIJ una sottomatrice quadrata di ordine r di A tale che detB 6= 0. Sup-
poniamo che ogni sottomatrice quadrata di ordine r + 1 di A ottenuta aggiun-
gendo a B una riga e una colonna di A (i cosiddetti minori orlati di B) abbia
determinante nullo. Allora A ha rango r.

Dimostrazione. Sia B = AIJ con I = {i1, i2, . . . , ir} e J = {j1, j2, . . . , jr}. Dal-
l’ipotesi detB 6= 0 discende che le colonne di indici j1, . . . , jr di A sono linear-
mente indipendenti. La condizione sull’annullamento dei determinanti di tutti
i minori orlati di B implica allora che ogni altra colonna di A è combinazione
lineare delle colonne di indici j1, . . . , jr. Quindi A ha rango r.

3.4 Orientamenti

In questa sezione supporremo che K sia un campo ordinato; ad esempio K = R,
con la relazione d’ordine usuale. Tutti gli spazi vettoriali che considereremo
saranno sempre finitamente generati.

Sia dunque V uno spazio vettoriale su K e siano v = {v1, v2, . . . , vn} e
w = {w1, w2, . . . , wn} due basi di V . Indichiamo con P =

(
pij
)

la matrice di
cambiamento di base, dalla base v alla base w. Si ha dunque

wj =
n∑
i=1

pijvi,

per ogni j = 1, . . . , n.

Definizione 3.4.1. Le basi v e w di V si dicono equiorientate se det(P ) > 0.

È immediato verificare che l’equiorientazione è una relazione di equivalenza
sull’insieme B di tutte le basi di V . Diamo quindi la seguente definizione:
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Definizione 3.4.2. Un orientamento di uno spazio vettoriale V (finitamente
generato su un campo ordinato K) è una classe di equivalenza per la relazione
di equiorientazione. Uno spazio vettoriale orientato è uno spazio vettoriale in
cui è stato scelto un orientamento.

Dato che, per una matrice P di cambiamento di base, si può solo avere
det(P ) > 0 oppure det(P ) < 0, la relazione di equiorientazione ha solo due classi
di equivalenza. Ciò significa che uno spazio vettoriale ammette solo due orien-
tamenti. Fissare un orientamento di uno spazio vettoriale V equivale dunque a
fissare una base di V , con la convenzione che due basi equiorientate definiscono
lo stesso orientamento. I due possibili orientamenti di uno spazio vettoriale sono
detti l’opposto uno dell’altro.

Esempio 3.4.3. Sia V = R2. Nella figura seguente le basi {v1, v2} e {w1, w2}
sono equiorientate, mentre le basi {v1, v2} e {u1, u2} non sono equiorientate.

v1

v2

w1

w2 v1

v2

u1 u2

Siano V e W due spazi vettoriali sul campo K. Se f : V →W è un isomorfismo,
l’immagine f(v) = {f(v1), . . . , f(vn)} di una base v = {v1, . . . , vn} di V è
una base di W . L’orientamento di W definito dalla base f(v) risulta essere
indipendente dalla scelta della base v all’interno della sua classe di equivalenza.
Si ha infatti:

Lemma 3.4.4. Sia f : V → W un isomorfismo di spazi vettoriali e siano
v = {v1, . . . , vn} e v′ = {v′1, . . . , v′n} due basi di V . Allora le basi f(v) =
{f(v1), . . . , f(vn)} e f(v′) = {f(v′1), . . . , f(v′n)} di W sono equiorientate se e
solo se lo sono le basi v e v′.

Dimostrazione. Sia P =
(
pij
)

la matrice di cambiamento di base, dalla base v
alla base v′. Si ha dunque

v′j =
n∑
i=1

pijvi,

per ogni j = 1, . . . , n. Dalla linearità di f segue che

f(v′j) = f
( n∑
i=1

pijvi

)
=

n∑
i=1

pijf(vi),

il che dimostra che P è anche la matrice di cambiamento di base dalla base f(v)
alla base f(v′).

Il risultato precedente ci permette di dare la seguente definizione:

Definizione 3.4.5. Siano V e W due spazi vettoriali orientati, di dimensione
n, sul campo K e siano v = {v1, . . . , vn} e w = {w1, . . . , wn} due basi che
rappresentano gli orientamenti fissati di V e W rispettivamente. Diremo che un
isomorfismo f : V →W è compatibile con gli orientamenti di V e W , o che f è
un isomorfismo di spazi vettoriali orientati, se le basi f(v) = {f(v1), . . . , f(vn)}
e w = {w1, . . . , wn} di W sono equiorientate.
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Nel caso particolare in cui W = V , si ha:

Definizione 3.4.6. Sia V uno spazio vettoriale orientato e sia v = {v1, . . . , vn}
una base che rappresenta l’orientamento di V . Diremo che un automorfismo
f : V → V preserva l’orientamento di V se le basi f(v) = {f(v1), . . . , f(vn)}
e v = {v1, . . . , vn} sono equiorientate. In caso contrario si dice che f inverte
l’orientamento di V .

Il seguente risultato fornisce una caratterizzazione degli automorfismi che
preservano l’orientamento:

Proposizione 3.4.7. Sia V uno spazio vettoriale orientato. Un automorfismo
f : V → V preserva l’orientamento di V se e solo se det(f) > 0.

Dimostrazione. Sia v = {v1, . . . , vn} una base che rappresenta l’orientamento
di V . Se indichiamo con A =

(
aij
)

la matrice di f rispetto alla base v, si ha

f(vj) =
n∑
i=1

aijvi,

per ogni j = 1, . . . , n. Ciò significa che A è la matrice di cambiamento di
base dalla base v = {v1, . . . , vn} alla base f(v) = {f(v1), . . . , f(vn)} e dunque
le basi v e f(v) sono equiorientate se e solo se det(A) > 0. Ricordando che
det(f) = det(A), si conclude.

Osservazione 3.4.8. È immediato verificare che la composizione di due automor-
fismi di V che preservano l’orientamento è ancora un automorfismo che preserva
l’orientamento. Analogamente, l’inverso di un automorfismo che preserva l’o-
rientamento è ancora un automorfismo che preserva l’orientamento. Pertanto
il sottoinsieme Aut+(V ) di Aut(V ) formato dagli automorfismi che preservano
l’orientamento è un sottogruppo del gruppo degli automorfismi di V .

Esercizi

Esercizio 3.4.1. Si calcoli

det


2 0 3 −1
4 1 2 0
0 3 0 1
2 0 2 −1


Esercizio 3.4.2. Si calcoli

det


2 3 4 −1 2
2 3 4 −1 1
2 3 5 1 1
2 1 1 1 1
1 2 −1 2 −1


Esercizio 3.4.3. Si calcoli l’inversa della matrice

A =

2 −3 −1
2 −1 −3
1 −3 −1


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Esercizio 3.4.4. Si calcoli l’inversa della matrice

A =

1 2 1
1 3 0
1 2 2


Esercizio 3.4.5. Si calcoli il rango della seguente matrice mediante il calcolo dei
suoi minori:

A =

1 2 3 1
4 5 6 1
7 8 9 1


Esercizio 3.4.6. Utilizzando il metodo di eliminazione di Gauss, si calcoli il
determinante della seguente matrice n× n:

1 1 1 · · · 1
1 2 1 · · · 1
1 1 3 · · · 1
...

...
...

...
1 1 1 · · · n


Esercizio 3.4.7. Si indichi con An la seguente matrice n× n:

An =



2 1 0 · · · 0

3 2 1 · · · 0

0 3 2
. . .

...
...

...
. . .

. . . 1

0 0 · · · 3 2


Determinare una formula ricorsiva per calcolare detAn, per ogni intero n ≥ 1.

Esercizio 3.4.8. Si indichi con Dn (per n ≥ 1) il determinante della seguente
matrice tridiagonale di ordine n:

Dn =



1 −1 0 · · · 0

1 1 −1 · · · 0

0 1 1
. . .

...
...

...
. . .

. . . −1

0 0 · · · 1 1


Si dimostri che Dn = Dn−1 + Dn−2. La successione dei Dn coincide pertanto con la

successione dei numeri di Fibonacci : 1, 2, 3, 5, 8, 13, . . .

Esercizio 3.4.9. Si indichi con An la seguente matrice n× n:

An =


1 + a1 1 1 · · · 1

1 1 + a2 1 · · · 1
1 1 1 + a3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1 + an


ove a1, . . . , an ∈ K. Si dimostri che, per ogni intero n ≥ 2, si ha

detAn = a1a2 · · · an +

n∑
i=1

a1a2 · · · âi · · · an,

dove âi significa che l’elemento ai non compare nel prodotto.
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Esercizio 3.4.10. Dati a, x ∈ K, si calcoli il determinante della seguente matrice
n× n: 

x a a · · · a
a x a · · · a
a a x · · · a
...

...
...

. . .
...

a a a · · · x


Esercizio 3.4.11. Sia A una matrice n × n e sia A∗ la sua matrice aggiunta. Si
dimostri la seguente formula dovuta a Cauchy:

|A∗| = |A|n−1.

Esercizio 3.4.12. Sia K un campo di caratteristica diversa da 2 e sia A ∈ Mn(K)

una matrice antisimmetrica, cioè tale che tA = −A. Si dimostri che se n è dispari

allora detA = 0.

Esercizio 3.4.13. Data una matrice A ∈ Mm,n(K), si dimostri che det(tAA) ≥ 0.

Si provi inoltre che det(tAA) > 0 se e solo se rk(A) = n.



Capitolo 4

Diagonalizzazione degli
Endomorfismi

In questo capitolo ci occuperemo del seguente problema: dato un endomorfismo
f di uno spazio vettoriale di dimensione finita V , è possibile trovare una base di
V rispetto alla quale la matrice di f assuma una qualche forma particolarmente
semplice (ad esempio, sia una matrice diagonale)?

Per rispondere a tale domanda introdurremo le nozioni di autovalore e auto-
vettore di un endomorfismo f di uno spazio vettoriale V e determineremo delle
condizioni necessarie e sufficienti affinché f sia diagonalizzabile. Per terminare,
descriveremo la forma canonica di Jordan di un endomorfismo di uno spazio
vettoriale di dimensione finita.

4.1 Autovalori e autovettori

Sia V uno spazio vettoriale di dimensione n sul campo K e sia f : V → V una
funzione lineare. Nel Capitolo 2 abbiamo visto come, fissando una base di V ,
sia possibile associare a f una matrice quadrata di ordine n, a coefficienti in
K. Naturalmente, a basi diverse di V corrispondono matrici diverse di f , tutte
simili tra loro. Ci si può dunque chiedere se sia possibile trovare una base di
V in modo tale che la corrispondente matrice di f assuma una qualche forma
canonica (particolarmente semplice) prefissata.

Supponiamo, ad esempio, che esista una base di V costituita da vettori
v1, v2, . . . , vn tali che f(vi) = λivi, per i = 1, . . . , n, per opportuni scalari λi ∈
K. Rispetto a tale base la matrice di f assumerebbe la seguente forma diagonale

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


98



Capitolo 4 Diagonalizzazione degli Endomorfismi 99

Diamo quindi la seguente definizione:

Definizione 4.1.1. Un endomorfismo f di V è diagonalizzabile se esiste una
base di V tale che la matrice di f rispetto a tale base sia diagonale.

Ricordando che due matrici quadrate si dicono simili quando esse rappre-
sentano lo stesso endomorfismo rispetto a basi diverse, possiamo anche dare la
seguente definizione:

Definizione 4.1.2. Una matrice quadrata A è diagonalizzabile se essa è simile
a una matrice diagonale, cioè se esiste una matrice invertibile S e una matrice
diagonale D tale che A = SDS−1.

Il nostro obiettivo sarà quindi quello di cercare di determinare sotto quali
condizioni una matrice quadrata (o un endomorfismo di uno spazio vettoriale)
è diagonalizzabile.

Iniziamo col dare la seguente definizione:

Definizione 4.1.3. Un autovalore di un endomorfismo f di V è un elemento
λ ∈ K per cui esiste almeno un vettore non nullo v ∈ V tale che f(v) = λv. Un
tale vettore v è detto un autovettore di f relativo all’autovalore λ.

Dato λ ∈ K indicheremo semplicemente con λ : V → V l’applicazione
λ idV , cioè l’applicazione che manda un vettore v nel vettore λv. L’equazione
f(v) = λv può quindi essere riscritta nella seguente forma: (f − λ)(v) = 0. Da
ciò si deduce che l’insieme degli autovettori relativi all’autovalore λ (assieme al
vettore nullo) non è altro che il nucleo dell’applicazione lineare

f − λ : V → V, v 7→ f(v)− λv.
Poniamo

Vλ = Ker(f − λ) = {v ∈ V | f(v) = λv}.
Si ha dunque:

Proposizione 4.1.4. Per ogni autovalore λ di un endomorfismo f di V , l’in-
sieme

Vλ = {v ∈ V | f(v) = λv}
è un sottospazio vettoriale di V . Esso è detto l’autospazio di f relativo all’au-
tovalore λ.

Prima di iniziare lo studio delle principali proprietà degli autovalori e degli
autovettori, vediamo come sia possibile determinarli.

Sia dunque f un endomorfismo di uno spazio vettoriale V di dimensione
n sul campo K. Dalla definizione segue subito che λ ∈ K è un autovalore
di f se e solo se Ker(f − λ) 6= {0}, il che equivale a dire che l’applicazione
lineare f − λ : V → V non è iniettiva. Ricordiamo ora che richiedere che
f − λ non sia iniettiva equivale a richiedere che det(f − λ) = 0 (vedi Cap. 3,
Proposizione 3.2.30). Possiamo cos̀ı concludere che λ è un autovalore di f se e
solo se det(f − λ) = 0.

Per calcolare questo determinante possiamo fissare arbitrariamente una base
di V e considerare la corrispondente matrice A associata a f . Se indichiamo con

λ · 1 =


λ 0 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ


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la matrice associata all’applicazione lineare λ idV , si ha

det(f − λ) = det(A− λ · 1).

Diamo ora la seguente definizione:

Definizione 4.1.5. Sia A una matrice quadrata di ordine n a coefficienti in K
e x una indeterminata. Il polinomio caratteristico di A è

PA(x) = det(A− x · 1).

Osserviamo che, se A ∈Mn(K), PA(x) è un polinomio di grado n a coefficienti
in K, il cui monomio di grado più elevato è (−1)nxn. A tale riguardo, facciamo
notare che alcuni autori definiscono il polinomio caratteristico di una matrice A
ponendo

PA(x) = det(x · 1−A) = (−1)n det(A− x · 1),

per fare in modo che PA(x) sia un polinomio monico.
Il prossimo risultato mostra che il polinomio caratteristico di una matrice

quadrata dipende, in effetti, solo dalla sua classe di simiglianza.

Proposizione 4.1.6. Sia f un endomorfismo di V e siano A e A′ due matrici
di f , rispetto a due basi diverse di V . Allora si ha PA(x) = PA′(x).

Dimostrazione. Ricordiamo che due matrici A e A′ sono associate allo stesso
endomorfismo f di V se e solo se esse sono simili, cioè se e solo se esiste una
matrice invertibile S tale che A′ = SAS−1. In tal caso si ha:

det(A′ − x · 1) = det(SAS−1 − x · 1)

= det
(
S(A− x · 1)S−1

)
= det(S) det(A− x · 1) det(S−1)
= det(A− x · 1),

dato che det(S−1) = (detS)−1.

In base a questo risultato, possiamo dare la seguente definizione:

Definizione 4.1.7. Il polinomio caratteristico Pf (x) di un endomorfismo f di
uno spazio vettoriale V di dimensione finita è il polinomio Pf (x) = det(f − x).
Esso coincide con il polinomio caratteristico PA(x) di una qualsiasi matrice
associata a f .

Da quanto detto in precedenza, concludiamo che λ ∈ K è un autovalore di
f se e solo se λ è una radice del polinomio caratteristico di f , cioè se e solo se
Pf (λ) = 0.

Osservazione 4.1.8. L’equazione det(A− x · 1) = 0 è detta l’equazione caratte-
ristica, o equazione secolare, della matrice A.

Osservazione 4.1.9. Notiamo che, poiché gli autovalori di una matrice quadrata
di ordine n sono le soluzioni della sua equazione caratteristica, la quale ha grado
n, non è detto che una matrice quadrata a coefficienti in un campo K abbia
necessariamente degli autovalori in K. Già nel caso in cui K = R e n = 2, è noto
che ci sono equazioni di secondo grado che non hanno soluzioni reali. Se invece
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K è un campo algebricamente chiuso, come ad esempio il campo C dei numeri
complessi, allora ogni polinomio di grado n ≥ 1 a coefficienti in K possiede n
zeri in K (contati con le appropriate molteplicità), quindi ogni matrice quadrata
a coefficienti in un campo algebricamente chiuso possiede degli autovalori.
Osservazione 4.1.10. Abbiamo visto che, se due matrici quadrate sono simili,
esse hanno lo stesso polinomio caratteristico. Non vale invece il viceversa. Ad
esempio, le seguenti matrici di ordine n

α 0 · · · 0 0
0 α · · · 0 0
...

...
. . .

...
...

0 0 · · · α 0
0 0 · · · 0 α

 e


α 1 0 · · · 0
0 α 1 · · · 0
...

...
. . . . . .

...
0 0 · · · α 1
0 0 · · · 0 α


hanno lo stesso polinomio caratteristico (α − x)n, ma, ovviamente, non sono
simili, dato che una matrice diagonale è simile solo a sé stessa.

Una volta noti gli autovalori, la determinazione degli autovettori non pre-
senta alcuna difficoltà. Se λ è un autovalore di f (o di una matrice A) gli
autovettori corrispondenti sono gli elementi non nulli del sottospazio vettoriale
Ker(f − λ). Si tratta dunque di determinare le soluzioni non nulle del seguente
sistema di equazioni lineari:

(A− λ · 1)

x1

...
xn

 = 0.

Vediamo ora alcuni esempi.
Esempio 4.1.11. Consideriamo la matrice a coefficienti reali

A =
(

0 −1
1 0

)
.

Essa corrisponde alla seguente applicazione lineare:

f : R2 → R2

(
a
b

)
7→
(
−b
a

)
Il polinomio caratteristico della matrice A è

det(A− x · 1) = det
(
−x −1
1 −x

)
= x2 + 1

che non ha zeri reali. La matrice A non ha dunque autovalori reali (ha tuttavia
due autovalori complessi, dati da x1 =

√
−1 e x2 = −

√
−1).

Esempio 4.1.12. Consideriamo la matrice a coefficienti reali

A =
(

0 4
−1 4

)
.

Il polinomio caratteristico di A è

det(A− x · 1) = det
(
−x 4
−1 4− x

)
= x2 − 4x+ 4 = (x− 2)2.
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Tale polinomio possiede un unico1 zero reale x = 2. Gli autovettori sono dunque
le soluzioni non nulle del seguente sistema:

(A− 2 · 1)
(
x1

x2

)
= 0,

cioè (
−2 4
−1 2

)(
x1

x2

)
=
(

0
0

)
Questo sistema si riscrive come segue{

−2x1 + 4x2 = 0
−x1 + 2x2 = 0

e le sue soluzioni sono dunque le soluzioni della singola equazione x1 = 2x2. Lo
spazio delle soluzioni è pertanto

V2 =
{(

2α
α

) ∣∣∣∣α ∈ R
}

il quale ha dimensione 1.
Abbiamo cos̀ı concluso che l’autospazio relativo all’autovalore λ = 2 ha

dimensione 1. Poiché non ci sono altri autovalori, ciò significa che non esiste
una base di R2 formata da autovettori di A. Quindi A non è diagonalizzabile.

Esempio 4.1.13. Consideriamo la matrice a coefficienti reali

A =
(
−5 8
−4 7

)
.

Il polinomio caratteristico di A è

det(A− x · 1) = det
(
−5− x 8
−4 7− x

)
= x2 − 2x− 3.

Tale polinomio possiede due radici reali x1 = −1 e x2 = 3; questi sono i due
autovalori di A.

Consideriamo l’autovalore λ1 = −1; i corrispondenti autovettori sono le
soluzioni non nulle del seguente sistema:

(
A− (−1) · 1

)(x1

x2

)
= 0,

cioè (
−4 8
−4 8

)(
x1

x2

)
=
(

0
0

)
.

Questo sistema si riscrive come segue{
−4x1 + 8x2 = 0
−4x1 + 8x2 = 0

1In questo caso, l’unica soluzione dell’equazione (x − 2)2 = 0 deve essere contata con
molteplicità 2, cioè considerata come due soluzioni coincidenti.
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e le soluzioni sono quindi quelle della singola equazione x1 = 2x2. Lo spazio
delle soluzioni è dunque

V−1 =
{(

2α
α

) ∣∣∣∣α ∈ R
}

il quale ha dimensione 1. Una base di tale sottospazio è costituita, ad esempio,
dal vettore v1 = (2, 1).

Consideriamo ora l’autovalore λ2 = 3; i corrispondenti autovettori sono le
soluzioni non nulle del seguente sistema:

(A− 3 · 1)
(
x1

x2

)
= 0,

cioè (
−8 8
−4 4

)(
x1

x2

)
=
(

0
0

)
.

Questo sistema si riscrive come segue{
−8x1 + 8x2 = 0
−4x1 + 4x2 = 0

e le sue soluzioni sono quindi le soluzioni della singola equazione x1 = x2. Lo
spazio delle soluzioni è dunque

V3 =
{(

β
β

) ∣∣∣∣β ∈ R
}

il quale ha dimensione 1. Una base di tale sottospazio è costituita, ad esempio,
dal vettore v2 = (1, 1).

Si può facilmente verificare che i vettori v1 = (2, 1) e v2 = (1, 1) sono
linearmente indipendenti, quindi formano una base di R2.

In conclusione, esiste una base di R2 formata da autovettori di A, quindi A
è diagonalizzabile.

Vediamo ora di studiare più in dettaglio alcune proprietà degli autovalori e
degli autovettori di un endomorfismo f di V .

Definizione 4.1.14. Sia f un endomorfismo di uno spazio vettoriale di di-
mensione finita V e sia Pf (x) il suo polinomio caratteristico. Sia λ ∈ K un
autovalore di f . La molteplicità (algebrica) di λ è il più grande intero m tale
che (x − λ)m divida Pf (x). La dimensione dell’autospazio Vλ = Ker(f − λ) è
detta la molteplicità geometrica (o la nullità) di λ.

Proposizione 4.1.15. Autovettori relativi ad autovalori distinti sono linear-
mente indipendenti, cioè: siano λ1, . . . , λr autovalori di un endomorfismo f ,
a due a due distinti, e sia vi un autovettore relativo all’autovalore λi, per
i = 1, . . . , r. Allora i vettori v1, . . . , vr sono linearmente indipendenti.

Dimostrazione. Dimostriamo l’asserto per induzione su r. Se r = 1 si ha un
solo autovettore v1 il quale, essendo non nullo, è linearmente indipendente.
Supponiamo quindi che l’asserto sia vero per r − 1 autovettori. Consideriamo
gli r autovettori v1, . . . , vr e consideriamo una loro combinazione lineare

α1v1 + · · ·+ αr−1vr−1 + αrvr = 0. (4.1.1)
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Applicando l’endomorfismo f , e ricordando che f(vi) = λivi, si ottiene

α1λ1v1 + · · ·+ αr−1λr−1vr−1 + αrλrvr = 0. (4.1.2)

Moltiplicando la (4.1.1) per λr e sottraendo la (4.1.2) si ottiene

α1(λr − λ1)v1 + · · ·+ αr−1(λr − λr−1)vr−1 = 0.

Per ipotesi induttiva i vettori v1, . . . , vr−1 sono linearmente indipendenti, quindi
si deve avere

α1(λr − λ1) = α2(λr − λ2) = · · · = αr−1(λr − λr−1) = 0.

Poiché gli autovalori λi sono a due a due distinti, si deduce che

α1 = α2 = · · · = αr−1 = 0.

Sostituendo questi valori nell’equazione (4.1.1), essa si riduce a αrvr = 0, da cui
segue αr = 0. Abbiamo cos̀ı dimostrato che i vettori v1, . . . , vr sono linearmente
indipendenti.

Le due molteplicità, algebrica e geometrica, di un autovalore di un endomor-
fismo soddisfano la seguente proprietà:

Proposizione 4.1.16. Sia V uno spazio vettoriale di dimensione finita su K
e sia f un endomorfismo di V . Sia λ ∈ K un autovalore di f di molteplicità
algebrica m. Allora si ha

dimVλ ≤ m,

cioè la molteplicità geometrica di un autovalore è minore o uguale della sua
molteplicità algebrica.

Dimostrazione. Sia r = dimVλ e sia v1, . . . , vr una base di Vλ. Completiamo,
in modo arbitrario, tale base ad una base v1, . . . , vr, vr+1, . . . , vn di V . Rispetto
a questa base, la matrice A di f assume la seguente forma a blocchi

A =
(
λ · 1r B

0 C

)
ove 1r è la matrice identica di ordine r, B è una matrice con r righe e n − r
colonne e C è una matrice quadrata di ordine n− r.

La matrice A può dunque essere usata per calcolare il polinomio caratteri-
stico di f , ottenendo

Pf (x) = det(A−x ·1) = det
(
(λ−x) ·1r

)
det(C−x ·1) = (λ−x)r det(C−x ·1).

Da ciò si deduce che λ è una radice di molteplicità ≥ r del polinomio Pf (x),
pertanto si ha m ≥ r = dimVλ, che è ciò che si voleva dimostrare.

Siamo ora in grado di dimostrare il seguente risultato:

Teorema 4.1.17. Sia f : V → V un endomorfismo di uno spazio vettoriale V
di dimensione n sul campo K. Indichiamo con λ1, λ2, . . . , λr, gli autovalori di
f in K e con m1,m2, . . . ,mr le rispettive molteplicità algebriche. Allora f è
diagonalizzabile se e solo se m1 +m2 + · · ·+mr = n e, per ogni autovalore λi,
la sua molteplicità geometrica coincide con la molteplicità algebrica.
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Dimostrazione. Se f è diagonalizzabile esiste una base di V rispetto alla quale
la matrice di f è una matrice a blocchi del tipo

λ1 · 1m1 0 · · · 0
0 λ2 · 1m2 0
...

. . .
...

0 · · · 0 λr · 1mr


Utilizzando questa matrice per calcolare il polinomio caratteristico di f , si trova

Pf (x) = (λ1 − x)m1(λ2 − x)m2 · · · (λr − x)mr ,

da cui si deduce che m1 + m2 + · · · + mr = degPf (x) = n. Inoltre, poiché f
è diagonalizzabile, esiste una base di V costituita da autovettori di f , da cui
segue che

dimVλ1 + dimVλ2 + · · ·+ dimVλr = n = dimV.

Viceversa, supponiamo che esistano r autovalori di f in K, λ1, λ2, . . . , λr, di
molteplicità algebrica rispettivamente m1,m2, . . . ,mr, tali che m1 +m2 + · · ·+
mr = n e che, per ogni autovalore λi di f , la sua molteplicità geometrica
coincida con la molteplicità algebrica; dobbiamo dimostrare che esiste una base
di V costituita da autovettori di f .

Dato che, per ipotesi, dimVλi = mi, per ogni autovalore λi, esiste una base
v

(i)
1 , v(i)

2 , . . . , v(i)
mi dell’autospazio Vλi

, per ogni i = 1, . . . , r. Poiché, sempre per
ipotesi, è m1 + · · ·+mr = n, l’insieme

{v(1)
1 , . . . , v(1)

m1
, v

(2)
1 , . . . , v(2)

m2
, . . . , v

(r)
1 , . . . , v(r)

mr
}

contiene esattamente n vettori, i quali sono linearmente indipendenti, come si
verifica facilmente ricordando che autovettori relativi ad autovalori distinti sono
linearmente indipendenti (Proposizione 4.1.15). Questi n vettori costituisco-
no quindi una base di V . Abbiamo cos̀ı costruito una base di V formata da
autovettori di f ; f è pertanto diagonalizzabile.

Osservazione 4.1.18. In base a quanto visto, possiamo affermare che un endo-
morfismo f di uno spazio vettoriale V di dimensione finita su K è diagonaliz-
zabile se e solo se f possiede autovalori λ1, . . . , λr ∈ K e si ha

V = Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ Vλr
.

4.2 La forma canonica di Jordan

Sia V uno spazio vettoriale di dimensione n sul campo C dei numeri complessi
e sia f : V → V una funzione lineare.

Per ogni λ ∈ C indicheremo semplicemente con λ : V → V l’applicazione
lineare data da v 7→ λv (sarebbe più corretto, ma più noioso, indicare tale
funzione con λ idV , ove idV è l’applicazione identica di V in sé).

Ricordiamo che λ ∈ C è un autovalore di f se Ker(f − λ) 6= {0} e che
un vettore non nullo v ∈ V è un autovettore associato all’autovalore λ se v ∈
Ker(f−λ), cioè se f(v) = λv. Se λ è un autovalore di f , il sottospazio vettoriale
Ker(f − λ) di V è l’autospazio relativo all’autovalore λ.



Capitolo 4 Diagonalizzazione degli Endomorfismi 106

Ora generalizzeremo la nozione di autovettore. Per ogni intero m > 0
indicheremo con (f − λ)m l’applicazione lineare composta

(f − λ) ◦ (f − λ) ◦ · · · ◦ (f − λ)︸ ︷︷ ︸
m

Definizione 4.2.1. Sia λ ∈ C un autovalore di f : V → V . Un vettore non
nullo v ∈ V è detto un autovettore generalizzato di f , relativo all’autovalore λ,
se v ∈ Ker(f − λ)m, per qualche m > 0.

Il minimo m per cui v ∈ Ker(f − λ)m è detto il periodo di v (se m = 1, v è
un autovettore ordinario).

Si noti che valgono le seguenti inclusioni

Ker(f − λ) ⊆ Ker(f − λ)2 ⊆ · · · ⊆ Ker(f − λ)m ⊆ · · · ⊆ V. (4.2.1)

Indicheremo con
Vλ =

⋃
m>0

Ker(f − λ)m

il sottospazio vettoriale di V costituito dagli autovettori generalizzati relativi
all’autovalore λ. Naturalmente si ha Vλ = Ker(f − λ)r, per r sufficientemente
grande.

Lemma 4.2.2. Sia v un autovettore generalizzato per f , relativo all’autovalore
λ, e sia m il periodo di v (ciò significa che v ∈ Ker(f − λ)m ma v 6∈ Ker(f −
λ)m−1). Allora gli m vettori

v, (f − λ)(v), (f − λ)2(v), · · · , (f − λ)m−1(v)

sono linearmente indipendenti.

Dimostrazione. Consideriamo una combinazione lineare

α0v + α1(f − λ)(v) + α2(f − λ)2(v) + · · ·+ αm−1(f − λ)m−1(v) = 0.

Se applichiamo (f−λ)m−1 ad ambo i membri (e ricordiamo che (f−λ)m(v) = 0),
otteniamo

α0(f − λ)m−1(v) + 0 = 0,

da cui segue α0 = 0. La precedente combinazione lineare si riduce pertanto a

α1(f − λ)(v) + α2(f − λ)2(v) + · · ·+ αm−1(f − λ)m−1(v) = 0.

Applicando ora (f − λ)m−2 ad ambo i membri, si ottiene

α1(f − λ)m−1(v) + 0 = 0,

da cui segue α1 = 0. Continuando in questo modo si dimostra che tutti i
coefficienti αi sono nulli.

Da questo risultato discende che ogni autovettore generalizzato per f ha
periodo ≤ n. Infatti, se un autovettore generalizzato v avesse periodo m > n,
glim vettori v, (f−λ)(v), . . . , (f−λ)m−1(v) sarebbero linearmente indipendenti,
il che è assurdo dato che m > n = dimV . Quindi si ha

Vλ = Ker(f − λ)n.
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Il risultato seguente è una generalizzazione, al caso degli autovettori generaliz-
zati, del fatto che autovettori relativi ad autovalori distinti sono linearmente
indipendenti.

Proposizione 4.2.3. Siano V ed f come sopra e siano λ1, . . . , λr autovalori di
f , a due a due distinti. Per ogni i = 1, . . . , r, sia vi ∈ Vλi

un autovettore gene-
ralizzato relativo all’autovalore λi. Allora i vettori v1, . . . , vr sono linearmente
indipendenti.

Dimostrazione. Per ogni i = 1, . . . , r, indichiamo con mi il periodo di vi e
consideriamo l’endomorfismo (f − λi)mi−1.

Come prima cosa osserviamo che, per ogni i e j, gli endomorfismi (f − λi)s
e (f − λj)t commutano tra loro, per ogni s, t ≥ 1. Ciò discende dal fatto che le
potenze di f commutano tra loro e f commuta con la moltiplicazione per ogni
scalare λ (perché f è lineare). Inoltre, per ogni i = 1, . . . , r, il vettore

wi = (f − λi)mi−1(vi)

è un autovettore di f relativo all’autovalore λi, infatti si ha

(f − λi)(wi) = (f − λi)(f − λi)mi−1(vi) = (f − λi)mi(vi) = 0.

Da ciò discende che

(f − λj)m(wi) = (λi − λj)mwi,

per ogni i, j = 1, . . . , r ed ogni m ≥ 1.
Consideriamo ora una combinazione lineare

α1v1 + α2v2 + · · ·+ αrvr = 0

e applichiamo ad ambo i membri l’endomorfismo

(f − λ1)m1−1(f − λ2)m2(f − λ3)m3 · · · (f − λr)mr .

Da quanto detto in precedenza si ottiene:

α1(λ1 − λ2)m2(λ1 − λ3)m3 · · · (λ1 − λr)mr (f − λ1)m1−1(v1) = 0

da cui, ricordando che gli autovalori λ1, . . . , λr sono a due a due distinti, discende
che α1 = 0.

La combinazione lineare precedente si riduce quindi a

α2v2 + · · ·+ αrvr = 0.

Applicando ora l’endomorfismo

(f − λ2)m2−1(f − λ3)m3 · · · (f − λr)mr

si ottiene:

α2(λ2 − λ3)m3 · · · (λ2 − λr)mr (f − λ2)m2−1(v2) = 0

da cui segue α2 = 0.
Continuando in questo modo si dimostra che tutti gli αi, i = 1, . . . , r, sono

nulli.
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Ricordiamo che, anche se una funzione lineare f : V → V possiede tutti
i suoi autovalori nel campo di definizione K (il che accade sempre, se K è
algebricamente chiuso), gli autovettori di f potrebbero non generare l’intero
spazio vettoriale V . In tal caso non esiste una base di V costituita da autovettori
di f , quindi f non è diagonalizzabile. Vedremo ora che con gli autovettori
generalizzati un problema del genere non si presenta.

Proposizione 4.2.4. Sia V uno spazio vettoriale di dimensione finita su C. Per
ogni endomorfismo f : V → V , esiste una base di V costituita da autovettori
generalizzati di f .

Dimostrazione. Dimostreremo l’enunciato per induzione sulla dimensione di V .
Se dimV = 1 ogni funzione lineare f : V → V è data dalla moltiplicazione per
uno scalare λ, quindi ogni vettore v ∈ V è autovettore di f .

Supponiamo dunque che il risultato sia vero per tutti gli spazi vettoriali di
dimensione strettamente minore di n = dimV . Sia λ ∈ C un autovalore di f e
sia Vλ = Ker(f−λ)n il sottospazio di V costituito dagli autovettori generalizzati
di f relativi all’autovalore λ. Se V = Vλ la dimostrazione è terminata (si veda
il Lemma 4.2.2). In caso contrario poniamo Wλ = Im(f − λ)n. Vogliamo
dimostrare che V = Vλ ⊕Wλ.

Dato che dimVλ + dimWλ = dimV , è sufficiente dimostrare che Vλ ∩Wλ =
{0}. Sia dunque v ∈ Vλ ∩ Wλ. Dato che v ∈ Wλ = Im(f − λ)n, si ha
v = (f − λ)n(u), per qualche u ∈ V . Ma, dato che v ∈ Vλ = Ker(f − λ)n,
si ha (f − λ)n(v) = (f − λ)2n(u) = 0. Ciò significa che anche u è un autovet-
tore generalizzato per f , relativo all’autovalore λ e, poiché il periodo di ogni
autovettore generalizzato è ≤ n, si deve avere (f − λ)n(u) = 0, cioè v = 0.

Ora dimostriamo che Wλ è stabile per f , cioè che f(Wλ) ⊆Wλ. Sia v ∈Wλ,
allora v = (f − λ)n(u), per qualche u ∈ V . Si ha

f(v) = f
(
(f − λ)n(u)

)
= (f − λ)n

(
f(u)

)
,

perché f commuta con (f − λ)n. Ciò significa quindi che f(v) ∈ Wλ, che è
quello che volevamo dimostrare.

Possiamo cos̀ı considerare lo spazio vettoriale Wλ dotato della restrizione
della funzione lineare f . Poiché dimWλ < dimV , per l’ipotesi induttiva si
ha che Wλ è generato da autovettori generalizzati di f . Questo conclude la
dimostrazione.

Possiamo riassumere quanto visto finora nel seguente teorema:

Teorema 4.2.5. Siano V ed f come sopra. Siano λ1, . . . , λr tutti gli autovalori
di f , che supponiamo essere a due a due distinti, e sia

P (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er

il polinomio caratteristico di f . Allora si ha:

(i) V = Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ Vλr
, ove Vλi

è il sottospazio vettoriale costituito
dagli autovettori generalizzati di f relativi all’autovalore λi.

(ii) Ogni Vλi è stabile per f , cioè si ha

f(Vλi
) ⊆ Vλi

,

per ogni i = 1, . . . , r.
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(iii) dimVλi
= ei, quindi si ha

Vλi = Ker(f − λi)n = Ker(f − λi)ei ,

per ogni i = 1, . . . , r.

Dimostrazione. (i) Per la proposizione precedente V è generato da autovettori
generalizzati di f , cioè V = Vλ1 + Vλ2 + · · · + Vλr

. Poiché abbiamo già dimo-
strato che autovettori generalizzati corrispondenti ad autovalori distinti sono
linearmente indipendenti, tale somma è diretta.

(ii) Ricordiamo che f commuta con gli endomorfismi del tipo (f − λ)m, per
ogni λ e ogni m ≥ 1. Se v ∈ Vλi si ha (f − λi)n(v) = 0, quindi

0 = f
(
(f − λi)n(v)

)
= (f − λi)n

(
f(v)

)
,

cioè f(v) ∈ Vλi
.

(iii) Da quanto visto al punto (ii) segue che f induce un endomorfismo di
Vλi , per i = 1, . . . , r. La restrizione di f a Vλi ha come unico autovalore λi,
quindi il suo polinomio caratteristico è (x − λi)di , ove di = dimVλi

. Dato che
il polinomio caratteristico di f è il prodotto dei polinomi caratteristici delle
restrizioni di f ai vari sottospazi Vλi

, si deve avere

(x− λ1)e1 · · · (x− λr)er = (x− λ1)d1 · · · (x− λr)dr ,

da cui segue di = ei, per ogni i = 1, . . . , r. Ricordando il Lemma 4.2.2, si ottiene

Vλi = Ker(f − λi)n = Ker(f − λi)ei .

Osservazione 4.2.6. Il punto (iii) del teorema precedente afferma che il periodo
di un autovettore generalizzato di f relativo all’autovalore λi è minore o uguale
dell’esponente ei con cui il fattore (x−λi) compare nel polinomio caratteristico
di f , cioè il periodo di ogni autovettore generalizzato è minore o uguale della
molteplicità algebrica dell’autovalore corrispondente.

Dai punti (i) e (ii) del teorema precedente si deduce che, se scegliamo una
base {w(i)

1 , w
(i)
2 , . . . , w

(i)
di
} di Vλi , per i = 1, . . . , r, allora l’insieme

{w(1)
1 , . . . , w

(1)
d1
, w

(2)
1 , . . . , w

(2)
d2
, . . . , w

(r)
1 , . . . , w

(r)
dr
}

è una base di V rispetto alla quale la matrice di f è una matrice a blocchi del
tipo

A =



A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · Ar


ove ciascuna matrice Ai (per i = 1, . . . , r) è la matrice della restrizione di f al
sottospazio Vλi

rispetto alla base {w(i)
1 , w

(i)
2 , . . . , w

(i)
di
}.
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Concentriamo ora la nostra attenzione sulla restrizione di f ad un singolo
sottospazio Vλi

. Sia mi il massimo dei periodi degli elementi di Vλi
; è mi ≤

di = dimVλi
e si ha la seguente catena di inclusioni

Ker(f − λi) ⊂ Ker(f − λi)2 ⊂ · · · ⊂ Ker(f − λi)mi = Vλi
,

ove tutte le inclusioni sono proprie. Possiamo quindi scegliere la base di Vλi nel
modo seguente: cominciamo scegliendo una base di Ker(f −λi), completiamola
poi ad una base di Ker(f − λi)2, che completeremo a sua volta ad una base di
Ker(f − λi)3 e cos̀ı via, sino ad ottenere una base di tutto Vλi

.
Ora osserviamo che, se v ∈ Ker(f − λi)k, si ha

f(v) = λiv + (f − λi)(v),

e (f − λi)(v) ∈ Ker(f − λi)k−1. Da ciò segue che, se {w(i)
1 , w

(i)
2 , . . . , w

(i)
di
} è la

base di Vλi
costruita nel modo appena descritto, si ha

f(w(i)
j ) = λiw

(i)
j +

j−1∑
h=1

αhw
(i)
h ,

per ogni j = 1, . . . , di. Questo significa che la matrice Ai di f rispetto ad una
tale base è del tipo

Ai =


λi ∗ ∗ · · · ∗
0 λi ∗ · · · ∗
0 0 λi · · · ∗
...

...
. . . . . . ∗

0 0 · · · 0 λi


cioè è una matrice triangolare superiore con tutti gli elementi diagonali uguali
all’autovalore λi.

Questo è un buon risultato: afferma che ogni matrice quadrata A, sul campo
C dei numeri complessi, è simile ad una matrice diagonale a blocchi, dove i
blocchi diagonali Ai sono delle matrici triangolari superiori in cui gli elementi
sulla diagonale principale sono gli autovalori λi della matrice A.

Se però ci impegnamo un po’ di più, possiamo ottenere un risultato mi-
gliore. Prima di continuare, tuttavia, vogliamo introdurre la nozione di poli-
nomio minimo di un endomorfismo di V (o, equivalentemente, di una matrice
quadrata).

Siano V ed f come sopra e sia

P (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er

il polinomio caratteristico di f , ove si suppone che gli autovalori λ1, . . . , λr siano
a due a due distinti. Abbiamo già osservato che il periodo di ogni autovettore
generalizzato di f , relativo all’autovalore λi, è minore o uguale a ei. Sia dunque
mi il massimo dei periodi degli elementi di Vλi ; naturalmente è mi ≤ ei, per
ogni i = 1, . . . , r.

Diamo ora la seguente definizione:

Definizione 4.2.7. Con le notazioni precedentemente introdotte, il polinomio

Q(x) = (x− λ1)m1(x− λ2)m2 · · · (x− λr)mr



Capitolo 4 Diagonalizzazione degli Endomorfismi 111

è detto il polinomio minimo2 dell’endomorfismo f di V .

Notiamo subito che, poiché mi ≤ ei, per ogni i = 1, . . . , r, il polinomio
minimo di f divide il suo polinomio caratteristico. Inoltre il polinomio minimo
e il polinomio caratteristico di un endomorfismo f hanno gli stessi zeri, che sono
precisamente gli autovalori di f .

Possiamo ora fornire un criterio di diagonalizzabilità di un endomorfismo in
termini del suo polinomio minimo.

Proposizione 4.2.8. Siano V ed f come sopra. L’endomorfismo f è diago-
nalizzabile se e solo se il suo polinomio minimo è prodotto di fattori lineari
distinti.

Dimostrazione. Dire che il polinomio minimo di f è prodotto di fattori lineari
distinti equivale a dire che i periodi m1, . . . ,mr degli autovettori generalizzati
sono tutti uguali a 1. Ma ciò equivale a dire che gli autovettori generalizzati
sono, in realtà, dei veri e propri autovettori. Dal Teorema 4.2.5 (punto (i)) si
deduce quindi l’esistenza di una base di V costituita da autovettori di f , il che
equivale a dire che f è diagonalizzabile.

Possiamo anche dimostrare il seguente risultato:

Teorema 4.2.9 (Hamilton–Cayley). Siano V ed f come sopra e sia

Q(x) = (x− λ1)m1(x− λ2)m2 · · · (x− λr)mr

il polinomio minimo di f . Allora si ha Q(f) = 0.

Dimostrazione. Q(f) è l’endomorfismo di V dato da

(f − λ1)m1(f − λ2)m2 · · · (f − λr)mr .

Se v ∈ Vλi
, per qualche i = 1, . . . , r, si ha (f−λi)mi(v) = 0, quindi Q(f)(v) = 0.

Dato che ogni vettore di V si può scrivere come somma di vettori appartenenti
ai vari sottospazi Vλi

(punto (i) del Teorema 4.2.5), si ha Q(f)(v) = 0 per ogni
v ∈ V , il che significa che Q(f) è l’endomorfismo nullo.

Corollario 4.2.10. Sia A una matrice quadrata di ordine n e sia Q(x) il suo
polinomio minimo. Allora Q(A) = 0. In particolare, se P (x) è il polinomio
caratteristico di A, si ha anche P (A) = 0 (basta ricordare che Q(x) divide
P (x)).

Ritorniamo ora al problema di migliorare la scelta della base di ciascun
sottospazio Vλi , al fine di semplificare ulteriormente la forma delle matrici Ai
che compaiono come blocchi diagonali della matrice A di f .

Concentriamo la nostra attenzione su un singolo autovalore, che indicheremo
con λ, e sul relativo sottospazio di autovettori generalizzati Vλ. Indichiamo
con m il massimo dei periodi degli elementi di Vλ e consideriamo la catena di
inclusioni proprie

Ker(f − λ) ⊂ Ker(f − λ)2 ⊂ · · · ⊂ Ker(f − λ)m = Vλ.

2Il nome polinomio minimo deriva dal fatto che esso è il polinomio monico di grado minimo
che si annulla su f , cioè tale che Q(f) è l’endomorfismo nullo.
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Per ogni j = 1, . . . ,m, poniamo dj = dim Ker(f − λ)j .
Preso un vettore non nullo v ∈ Ker(f − λ)m r Ker(f − λ)m−1, gli m vettori

wm = v, wm−1 = (f − λ)(v), wm−2 = (f − λ)2(v), . . . , w1 = (f − λ)m−1(v),

sono linearmente indipendenti (vedi Lemma 4.2.2). Notiamo che (f − λ)(w1) =
(f − λ)m(v) = 0, cioè

f(w1) = λw1,
mentre

(f − λ)(wj) = (f − λ)(f − λ)m−j(v) = (f − λ)m−j+1(v) = wj−1,
cioè

f(wj) = λwj + wj−1,

per j = 2, . . . ,m.
Ciò significa che f induce un endomorfismo del sottospazio di Vλ generato

dai vettori w1, w2, . . . , wm, la cui matrice, rispetto alla base {w1, w2, . . . , wm}
di tale sottospazio è la seguente matrice quadrata di ordine m:

Jλ =



λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
0 0 λ 1 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · 0 λ 1
0 0 · · · 0 0 λ


Una matrice di questo tipo è detta un blocco di Jordan di ordine m relativo
all’autovalore λ.

Sia s = dm−dm−1 = dim Ker(f−λ)m−dim Ker(f−λ)m−1. Ricordiamo che
s ≥ 1. Vogliamo dimostrare che la matrice della restrizione di f al sottospazio
Vλ contiene, lungo la diagonale principale, s blocchi di Jordan Jλ di ordine m.
A tal fine consideriamo s vettori

v1, v2, . . . , vs ∈ Ker(f − λ)m r Ker(f − λ)m−1

tali che si abbia

Ker(f − λ)m = Ker(f − λ)m−1 ⊕ 〈v1, . . . , vs〉. (4.2.2)

Applicando a ciascuno dei vettori v1, . . . , vs il procedimento descritto in prece-
denza, otteniamo il seguente insieme di vettori:

v1, (f − λ)(v1), (f − λ)2(v1), . . . , (f − λ)m−1(v1),

v2, (f − λ)(v2), (f − λ)2(v2), . . . , (f − λ)m−1(v2),
· · · · · · · · · · · · · ·
vs, (f − λ)(vs), (f − λ)2(vs), . . . , (f − λ)m−1(vs)

(4.2.3)

(ciascuna di queste righe corrisponde a un blocco di Jordan di ordine m).
Si tratta ora di dimostrare che tutti questi vettori sono linearmente indipen-

denti. Consideriamo una loro combinazione lineare

α
(0)
1 v1 + · · ·+ α(0)

s vs + α
(1)
1 (f − λ)(v1) + · · ·+ α(1)

s (f − λ)(vs)+

+ α
(2)
1 (f − λ)2(v1) + · · ·+ α(2)

s (f − λ)2(vs) + · · ·

· · ·+ α
(m−1)
1 (f − λ)m−1(v1) + · · ·+ α(m−1)

s (f − λ)m−1(vs) = 0.
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Lasciando solo α(0)
1 v1 + · · · + α

(0)
s vs a primo membro e portando tutti gli altri

addendi al secondo membro si deduce che

α
(0)
1 v1 + · · ·+ α(0)

s vs ∈ Ker(f − λ)m−1,

da cui segue α(0)
1 = α

(0)
2 = · · · = α

(0)
s = 0 (si ricordi che, in base a (4.2.2), si ha

Ker(f − λ)m−1 ∩ 〈v1, . . . , vs〉 = {0}).
La combinazione lineare precedente si riduce quindi a

α
(1)
1 (f − λ)(v1) + · · ·+ α(1)

s (f − λ)(vs)+

+ α
(2)
1 (f − λ)2(v1) + · · ·+ α(2)

s (f − λ)2(vs) + · · ·

· · ·+ α
(m−1)
1 (f − λ)m−1(v1) + · · ·+ α(m−1)

s (f − λ)m−1(vs) = 0.

Procedendo come prima si ha

α
(1)
1 (f − λ)(v1) + · · ·+ α(1)

s (f − λ)(vs) ∈ Ker(f − λ)m−2,

quindi
α

(1)
1 v1 + · · ·+ α(1)

s vs ∈ Ker(f − λ)m−1,

da cui, esattamente come prima, segue che α(1)
1 = α

(1)
2 = · · · = α

(1)
s = 0.

Continuando in questo modo si dimostra che tutti i coefficienti α(i)
j sono

nulli, il che conclude la dimostrazione dell’indipendenza lineare.
Ora osserviamo che se dm − dm−1 = s allora di − di−1 ≥ s per ogni i =

1, . . . ,m (ove si intende che d0 = dim Ker(f − λ)0 = 0). Infatti, dato che i
vettori v1, . . . , vs hanno periodo m, i vettori

(f − λ)m−i(v1), (f − λ)m−i(v2), . . . , (f − λ)m−i(vs)

hanno periodo esattamente i e, come abbiamo appena visto, sono linearmente
indipendenti.

Se accade che di − di−1 = s, per ogni i = 1, . . . ,m, si ha

dim Ker(f − λ) = s

dim Ker(f − λ)2 = 2s
· · · · · ·
dim Ker(f − λ)m = ms

e, dato che Vλ = Ker(f − λ)m, gli ms vettori di cui in (4.2.3) sono una base
di Vλ. Ricordando quanto visto in precedenza è ora immediato verificare che la
matrice della restrizione di f a Vλ consiste di s blocchi di Jordan di ordine m:

Jλ 0 · · · 0

0 Jλ · · · 0

...
...

. . .
...

0 0 · · · Jλ


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Se invece si ha di − di−1 > s, per qualche i, indichiamo con j il massimo indice
< m tale che dj−dj−1 = t > s e prendiamo dei vettori w1, w2, . . . , wt−s tali che
si abbia

Ker(f − λ)j = Ker(f − λ)j−1 ⊕ 〈(f − λ)m−j(v1), . . . , (f − λ)m−j(vs)〉
⊕ 〈w1, . . . , wt−s〉.

Ragionando in modo analogo a quanto fatto in precedenza, si dimostra che i
vettori

w1, (f − λ)(w1), (f − λ)2(w1), . . . , (f − λ)j−1(w1),

w2, (f − λ)(w2), (f − λ)2(w2), . . . , (f − λ)j−1(w2),
· · · · · · · · · · · · · ·
wt−s, (f − λ)(wt−s), (f − λ)2(wt−s), . . . , (f − λ)j−1(wt−s)

sono linearmente indipendenti. Da ciò segue che, in questo caso, la matrice della
restrizione di f a Vλ contiene anche, lungo la diagonale principale, t− s blocchi
di Jordan relativi all’autovalore λ, di ordine j (oltre agli s blocchi Jλ di ordine
m già menzionati).

Procedendo in modo analogo con gli autovettori generalizzati di periodo via
via minore, si arriva a concludere che, in generale, la matrice della restrizione
di f a Vλ è una matrice diagonale a blocchi, in cui i blocchi diagonali sono dei
blocchi di Jordan relativi all’autovalore λ di ordine ≤ m, ove m è il massimo dei
periodi degli elementi di Vλ (inoltre esiste almeno un blocco di Jordan di ordine
esattamente m). Tale intero m non è altro che l’esponente con cui il fattore
(x− λ) compare nel polinomio minimo di f .

Abbiamo cos̀ı dimostrato il seguente teorema:

Teorema 4.2.11 (Jordan). Sia V uno spazio vettoriale di dimensione n sul
campo3 C e sia f : V → V una funzione lineare. Sia

P (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er

il polinomio caratteristico di f (in cui si suppone che gli autovalori λ1, . . . , λr
siano a due a due distinti). Allora esiste una base di V rispetto alla quale la
matrice di f è una matrice a blocchi del tipo

J =



J1 0 · · · 0

0 J2 · · · 0

...
...

. . .
...

0 0 · · · Jr


3Un risultato analogo vale, in realtà, su ogni campo algebricamente chiuso.
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ove ogni Ji è, a sua volta, una matrice a blocchi del tipo

Ji =



J1
λi

0 · · · 0

0 J2
λi

· · · 0

...
...

. . .
...

0 0 · · · Jsi

λi


ove J1

λi
, . . . , Jsi

λi
sono opportuni blocchi di Jordan relativi all’autovalore λi.

Una matrice J di questo tipo è detta forma canonica di Jordan e una base
di V rispetto a cui f ha questa matrice è detta base di Jordan.

Cerchiamo ora di chiarire quanto sopra esposto applicando i risultati finora
ottenuti in un esempio concreto.

Esercizio. Sia V uno spazio vettoriale di dimensione 5 sul campo complesso4 C
e sia {v1, . . . , v5} una sua base. Sia f : V → V l’applicazione lineare di matrice

A =


1 0 −2 0 0
−2 3 −2 0 0
2 0 5 0 0
0 2 2 2 −1
0 0 0 1 4


rispetto alla base data. Si determinino il polinomio caratteristico e il polinomio
minimo di f . Si determini inoltre una matrice di Jordan di f e una base di
Jordan di V .

Soluzione. Il polinomio caratteristico di f è

P (x) = det(x · 1−A) =

∣∣∣∣∣∣∣∣∣∣
x− 1 0 2 0 0

2 x− 3 2 0 0
−2 0 x− 5 0 0
0 −2 −2 x− 2 1
0 0 0 −1 x− 4

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
x− 1 0 2

2 x− 3 2
−2 0 x− 5

∣∣∣∣∣∣ ·
∣∣∣∣x− 2 1
−1 x− 4

∣∣∣∣
= (x− 3)[(x− 1)(x− 5) + 4][(x− 2)(x− 4) + 1]

= (x− 3)(x− 3)2(x− 3)2 = (x− 3)5,

quindi f ha un unico autovalore λ = 3, con molteplicità 5. Poiché il polinomio
minimo Q(x) deve dividere il polinomio caratteristico, deve essere

Q(x) = (x− 3)m, con 1 ≤ m ≤ 5.

4Come vedremo, in questo esempio non è necessario supporre che il campo sia al-
gebricamente chiuso. Tutto quello che diremo vale anche per il campo Q dei numeri
razionali.
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Osserviamo che

A− 3 =


−2 0 −2 0 0
−2 0 −2 0 0
2 0 2 0 0
0 2 2 −1 −1
0 0 0 1 1



(A− 3)2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −2 −2 0 0
0 2 2 0 0


e infine (A − 3)3 = 0, quindi il polinomio minimo è Q(x) = (x − 3)3. Questo
significa che il massimo periodo degli autovettori generalizzati di f (relativi
all’unico autovalore 3) è m = 3, quindi si ha la catena di inclusioni proprie

Ker(f − 3) ⊂ Ker(f − 3)2 ⊂ Ker(f − 3)3 = V.
Si ha:

dim Ker(f − 3) = 5− rk(A− 3 · 1) = 5− 3 = 2,

dim Ker(f − 3)2 = 5− rk(A− 3 · 1)2 = 5− 1 = 4,

dim Ker(f − 3)3 = dimV = 5.

Ponendo di = dim Ker(f −3)i, l’intero s = dm−dm−1 = d3−d2 della dimostra-
zione del teorema di Jordan è, in questo caso, s = 5−4 = 1, quindi la matrice di
Jordan J contiene un blocco di Jordan di ordine m = 3, relativo all’autovalore
λ = 3, 3 1 0

0 3 1
0 0 3

 .

Dato che si ha poi dim Ker(f−3)2−dim Ker(f−3) = 4−2 = 2, usando le stesse
notazioni impiegate nella dimostrazione del teorema di Jordan, si ha j = 2 e
d2 − d1 = t = 2 > s = 1, quindi t − s = 1 e la matrice di Jordan J contiene
anche un blocco di Jordan di ordine j = 2(

3 1
0 3

)
.

In conclusione, la matrice di Jordan di f è la seguente:

J =


3 1 0 0 0
0 3 1 0 0
0 0 3 0 0

0 0 0 3 1
0 0 0 0 3


Rimane ora solo da determinare una base {w1, . . . , w5} di V rispetto alla quale
la matrice di f sia J . A tal fine scegliamo un vettore v ∈ Ker(f − 3)3 tale che
v 6∈ Ker(f − 3)2: ad esempio, il vettore v2 soddisfa a tali richieste. Poniamo
allora

w3 = v2, w2 = (f − 3)(v2) = 2v4, w1 = (f − 3)2(v2) = −2v4 + 2v5.
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I vettori {w1, w2, w3} sono linearmente indipendenti e formano quella parte della
base di V che è responsabile della presenza del blocco di Jordan di ordine 3.

Per continuare dobbiamo ora scegliere un vettore u tale che si abbia

Ker(f − 3)2 = Ker(f − 3)⊕ 〈(f − 3)3−2(v2)〉 ⊕ 〈u〉,

cioè u deve essere un vettore in Ker(f − 3)2 che non appartenga al sottospazio
generato da Ker(f − 3) e dal vettore (f − 3)(v2) = w2 = 2v4.

A tal fine determiniamo, innanzitutto, il nucleo di f − 3: esso è dato dai
vettori x1v1 +x2v2 + · · ·+x5v5 tali che le xi siano soluzioni del seguente sistema
di equazioni lineari: 

−2x1 − 2x3 = 0
2x2 + 2x3 − x4 − x5 = 0
x4 + x5 = 0.

Risolvendo tale sistema si trova 
x1 = −x3

x2 = −x3

x4 = −x5

quindi una base di Ker(f − 3) è formata dai vettori v1 + v2− v3 e v4− v5. Si ha
pertanto

Ker(f − 3)⊕ 〈w2〉 = 〈v1 + v2 − v3, v4 − v5, 2v4〉
= 〈v1 + v2 − v3, v4, v5〉.

Si può ora vedere facilmente che il vettore v1 non appartiene a questo sottospa-
zio, ma appartiene al nucleo di (f − 3)2: questo è il vettore u che cercavamo. I
due vettori mancanti per completare la base di Jordan sono quindi

w5 = v1, w4 = (f − 3)(v1) = −2v1 − 2v2 + 2v3.

In conclusione, i vettori

w1 = −2v4 + 2v5

w2 = 2v4

w3 = v2

w4 = −2v1 − 2v2 + 2v3

w5 = v1

formano una base di V rispetto alla quale la funzione lineare f ha matrice

J =


3 1 0 0 0
0 3 1 0 0
0 0 3 0 0
0 0 0 3 1
0 0 0 0 3


Per terminare, osserviamo che la matrice di cambiamento di base (cioè la ma-
trice le cui colonne sono costituite dalle coordinate dei vettori della nuova base



Capitolo 4 Diagonalizzazione degli Endomorfismi 118

{w1, . . . , w5} rispetto alla vecchia base {v1, . . . , v5}) è la matrice

P =


0 0 0 −2 1
0 0 1 −2 0
0 0 0 2 0
−2 2 0 0 0
2 0 0 0 0


Si ha pertanto

J = P−1AP
o, equivalentemente,

PJ = AP,

come si può facilmente verificare con un calcolo diretto.

Esercizi

Esercizio 4.1. Si determini la forma canonica di Jordan dell’endomorfismo φ : R3 →
R3 la cui matrice, rispetto alla base canonica, è

A =

 3 4 4
−3 −6 −8
3 7 9

 .

Si determini inoltre una base di R3 rispetto a cui la matrice di φ sia la forma canonica

trovata.

Esercizio 4.2. Si determini la forma canonica di Jordan dell’endomorfismo φ : Q4 →
Q4 la cui matrice, rispetto alla base canonica, è

A =


−1 0 0 0
0 1 0 0
1 −3 −1 −1
0 −2 0 1

 .

Si determini inoltre una base di Q4 rispetto a cui la matrice di φ sia la forma canonica

trovata.

Esercizio 4.3. Si determini la forma canonica di Jordan dell’endomorfismo φ : R4 →
R4 la cui matrice, rispetto alla base canonica, è

A =


2 0 0 0
−4 2 −4 −3
4 0 5 3
−3 0 −2 0

 .

Si determini inoltre una base di R4 rispetto a cui la matrice di φ sia la forma canonica

trovata.

Esercizio 4.4. Si determini la forma canonica di Jordan dell’endomorfismo φ : R4 →
R4 la cui matrice, rispetto alla base canonica, è

A =


0 0 2 −4
1 2 −1 2
0 0 2 0
1 0 −1 4

 .

Si determini inoltre una base di R4 rispetto a cui la matrice di φ sia la forma canonica

trovata.



Capitolo 4 Diagonalizzazione degli Endomorfismi 119

Esercizio 4.5. Sia A una matrice n × n a coefficienti reali tale che A2 = A. Si

dimostri che A è diagonalizzabile e che i suoi autovalori sono solo 0 oppure 1. Si

dimostri inoltre che, se anche B è una matrice tale che B2 = B, allora A e B sono

simili se e solo se hanno lo stesso rango.

Esercizio 4.6. Si fornisca un esempio di due matrici quadrate A e B dello stesso

ordine, aventi lo stesso polinomio caratteristico e lo stesso polinomio minimo, ma tali

che A non sia simile a B.

Esercizio 4.7. Sia V uno spazio vettoriale complesso di dimensione 9. Si determinino
tutti gli endomorfismi φ di V che soddisfano le seguenti condizioni:

dim Ker(φ− 2) = 1, dim Ker(φ− 2)3 = 3,

dim Ker(φ− 3) = 2, dim Ker(φ− 3)2 = 4,

dim Im(φ2) = 7.

Esercizio 4.8. Sia V uno spazio vettoriale di dimensione 10 su Q. Si determini
il polinomio caratteristico, il polinomio minimo e la matrice di Jordan di tutti gli
endomorfismi φ di V che soddisfano le seguenti condizioni:

dim Ker(φ− 5) = 2, dim Ker(φ− 5)2 = 3, dim Ker(φ− 5)3 = 4,

dim Ker(φ+ 2) = 2, dim Ker(φ+ 2)2 = 4,

dim Im(φ) = 8.

Esercizio 4.9. Sia V uno spazio vettoriale complesso di dimensione 6. Si determinino

tutti gli endomorfismi φ di V che hanno rango ≥ 4 ed il cui polinomio minimo è

x4 − 6x3 + 9x2.

Esercizio 4.10. Sia A una matrice quadrata di ordine n a coefficienti in C. Si

dimostri che A è nilpotente5 se e solo se tr(A) = tr(A2) = · · · = tr(An) = 0.

5Una matrice A si dice nilpotente se Ar = 0, per qualche r ≥ 1.



Capitolo 5

Spazi Vettoriali Euclidei

In questo capitolo introdurremo il concetto di prodotto scalare di due vettori (si
tratta di un particolare prodotto di due vettori il cui risultato è uno scalare).
Vedremo poi come questo prodotto permetta di definire la lunghezza di un
vettore e l’angolo compreso tra due vettori. Queste nozioni ci permetteranno
poi, a loro volta, di calcolare aree, volumi, ecc.

5.1 Lunghezze e angoli

Nella geometria euclidea vengono definite, in modo del tutto naturale, le nozioni
di lunghezza di un segmento (o distanza tra due punti) e di angolo tra due
rette. Uno dei risultati più importanti riguardanti le lunghezze è il Teorema di
Pitagora, che permette di ricavare la lunghezza dell’ipotenusa di un triangolo
rettangolo quando sono note le lunghezze dei due cateti. Noi prenderemo spunto
dalla validità del Teorema di Pitagora in R2 e R3 per definire la lunghezza di
un vettore in Rn.

5.1.1 Lunghezza di un vettore

Iniziamo considerando un vettore v = (a1, a2) ∈ R2 nel piano euclideo, che
possiamo rappresentare graficamente come nella figura a lato.

O

P

Q

v

a1

a2

Il vettore v è rappresentato dal segmento orientato−−→
OP , mentre le lunghezze dei segmenti OQ e PQ sono
rispettivamente |a1| e |a2|, ossia le due componenti del
vettore v prese in valore assoluto per evitare problemi
nel caso in cui esse fossero negative. Poiché il trian-
golo 4OPQ è un triangolo rettangolo, dal teorema di
Pitagora segue che

‖OP‖2 = ‖OQ‖2 + ‖PQ‖2,

120



Capitolo 5 Spazi Vettoriali Euclidei 121

ove con il simbolo ‖AB‖ indichiamo la lunghezza di un segmento AB. Ricordan-
do che ‖OQ‖ = |a1| e ‖PQ‖ = |a2|, si ottiene la seguente formula che esprime
la lunghezza del segmento che rappresenta il vettore v:

‖OP‖ =
√
a2

1 + a2
2.

Consideriamo ora un vettore v = (a1, a2, a3) ∈ R3, rappresentato dal segmento
orientato

−−→
OP come nella figura seguente:

O

P

Q
R

v

Dato che 4OPQ è un triangolo rettangolo, si ha

‖OP‖2 = ‖OQ‖2 + ‖PQ‖2

e, osservando che anche il triangolo 4OQR è rettangolo, si ha

‖OQ‖2 = ‖OR‖2 + ‖QR‖2,

da cui segue che
‖OP‖2 = ‖OR‖2 + ‖QR‖2 + ‖PQ‖2.

Notando che ‖OR‖ = |a1|, ‖QR‖ = |a2| e ‖PQ‖ = |a3|, si conclude che la
lunghezza del (segmento che rappresenta il) vettore v = (a1, a2, a3) è data da

‖OP‖ =
√
a2

1 + a2
2 + a2

3.

Questi due risultati motivano la seguente definizione:

Definizione 5.1.1. Sia v = (a1, a2, . . . , an) ∈ Rn. La lunghezza di v (detta
anche la norma o il modulo di v) è data da

‖v‖ =
√
a2

1 + a2
2 + · · ·+ a2

n.

Osservazione 5.1.2. La lunghezza di un vettore v viene spesso chiamata il mo-
dulo di v e indicata con il simbolo |v|. Per evitare possibili confusioni con la
nozione di modulo (cioè valore assoluto) di un numero, noi preferiamo usare il
simbolo ‖v‖, che chiameremo norma di v.

La norma definisce quindi una funzione

‖ · ‖ : Rn → R, v 7→ ‖v‖

che soddisfa le seguenti proprietà:
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(i) ‖v‖ ≥ 0, per ogni v ∈ Rn, e ‖v‖ = 0 se e solo se v = 0;

(ii) ‖λv‖ = |λ|‖v‖, per ogni λ ∈ R e ogni v ∈ Rn;

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖, per ogni v, w ∈ Rn.

La proprietà (i) è del tutto ovvia (una somma di quadrati di numeri reali è
sempre ≥ 0 ed è nulla se e solo se tutti i numeri in questione sono zero), mentre
la proprietà (ii) può essere verificata con un facile calcolo.

v

w

v+w

La proprietà (iii), detta disuguaglianza triangolare, ha
un evidente significato geometrico: essa equivale al noto ri-
sultato di geometria euclidea che afferma che, in ogni trian-
golo, la lunghezza di un lato è minore della somma delle
lunghezze degli altri due (vedi figura a lato). La dimostra-
zione algebrica di questa proprietà verrà data in seguito (vedi
Proposizione 5.1.8).

Esempio. A titolo di esempio, vedremo ora come si possa calcolare la lunghezza
della diagonale di un (iper)cubo in Rn, per ogni n ≥ 2.

v

Nel caso del piano (n = 2), consideriamo un quadrato di la-
to unitario, che possiamo sempre supporre avente un vertice
nell’origine e i lati paralleli agli assi coordinati. I vertici di
tale quadrato sono dunque i punti di coordinate (0, 0), (0, 1),
(1, 0) e (1, 1) e come diagonale possiamo considerare il segmen-
to che ha come estremi i vertici (0, 0) e (1, 1). Tale segmento

rappresenta il vettore v = (1, 1) la cui lunghezza è data da ‖v‖ =
√

2.

v

Nel caso dello spazio tridimensionale (n = 3), consi-
deriamo un cubo di lato unitario avente un vertice nel-
l’origine e i lati paralleli agli assi coordinati. I vertici del
cubo sono dunque i punti di coordinate (0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) e (1, 1, 1), e
la diagonale è il segmento che ha come estremi i vertici
(0, 0, 0) e (1, 1, 1). Questo segmento rappresenta il vettore
v = (1, 1, 1) la cui lunghezza è ‖v‖ =

√
3.

In modo del tutto analogo possiamo definire l’ipercubo unitario in Rn: esso è
la “figura” avente come vertici i 2n punti di coordinate (0, 0, . . . , 0), (0, 0, . . . , 1),
(0, . . . , 1, 0), . . . , (1, 1, . . . , 1). La diagonale è allora rappresentata dal vettore
v = (1, 1, . . . , 1), la cui lunghezza è ‖v‖ =

√
n. Si può osservare che, al cre-

scere di n, la diagonale dell’ipercubo unitario aumenta tendendo a diventare
infinitamente lunga, mentre la lunghezza del lato dell’ipercubo stesso rimane,
naturalmente, sempre uguale a 1.

5.1.2 Angoli

Consideriamo ora il problema di determinare l’angolo compreso tra due vettori.

v

w
φ

2π−φ

Due vettori non nulli v e w in R2 (oppure in R3) indivi-
duano due angoli la cui somma è un angolo giro. Con l’e-
spressione “angolo compreso tra due vettori” noi intende-
remo sempre l’angolo convesso (non orientato), cioè quello
il cui valore è nell’intervallo [0, π].
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Consideriamo dunque lo spazio vettoriale V = R2, oppure V = R3. In fisica
viene definito il prodotto scalare di due vettori v e w ∈ V ponendo

v · w = ‖v‖‖w‖ cosφ,

ove φ è l’angolo compreso tra i due vettori (a tal proposito si noti che cosφ =
cos(2π−φ) quindi, nella definizione di prodotto scalare, non è importante quale
dei due angoli determinati da v e w si considera). Il prodotto scalare definisce
quindi una funzione

· : V × V → R, (v, w) 7→ v · w.

Vogliamo dimostrare che questa funzione è bilineare (cioè lineare rispetto a
ciascuno dei suoi due argomenti) e simmetrica, ossia che soddisfa le seguenti
proprietà:

(i) (λv) · w = λ(v · w),

(ii) (v1 + v2) · w = v1 · w + v2 · w,

(iii) v · (µw) = µ(v · w),

(iv) v · (w1 + w2) = v · w1 + v · w2,

(v) v · w = w · v,

per ogni λ, µ ∈ R e ogni v, v1, v2, w, w1, w2 ∈ V .
La proprietà di simmetria (v) è ovvia. Grazie a questa è quindi sufficiente

dimostrare la linearità del prodotto scalare rispetto a uno solo dei suoi due
argomenti, ad esempio rispetto al secondo (proprietà (iii) e (iv)).

Per dimostrare la proprietà (iii) consideriamo separatamente i casi µ = 0,
µ > 0 e µ < 0. Se µ = 0, si ha v · (0w) = v · 0 = 0 = 0(v · w). Nel caso
in cui µ > 0 si ha ‖µw‖ = |µ|‖w‖ = µ‖w‖ e il vettore µw è parallelo e ha lo
stesso verso del vettore w. Di conseguenza l’angolo compreso tra i vettori v e
µw coincide con l’angolo φ compreso tra v e w. Si ha pertanto:

v · (µw) = ‖v‖‖µw‖ cosφ = µ‖v‖‖w‖ cosφ = µ(v · w).

Se invece µ < 0 si ha ‖µw‖ = |µ|‖w‖ = −µ‖w‖ e in questo caso il vettore µw è
parallelo ma ha verso opposto al vettore w. Di conseguenza l’angolo compreso
tra i vettori v e µw è π − φ, se φ denota l’angolo compreso tra v e w. Si ha
pertanto:

v · (µw) = ‖v‖‖µw‖ cos(π − φ) = −µ‖v‖‖w‖(− cosφ) = µ(v · w).

O P v r

w

φ

Dimostriamo ora l’additività del prodotto scalare rispet-
to al secondo argomento (proprietà (iv)). Premettia-
mo la seguente osservazione. Consideriamo due vettori
v, w ∈ V (con v 6= 0) e indichiamo con

−−→
OP la proiezione

ortogonale del vettore w sulla retta r generata dal vet-
tore v, come indicato nella figura a lato. Il prodotto ‖w‖ cosφ non è altro che
la lunghezza del segmento OP (considerata negativa se il vettore

−−→
OP ha verso

opposto a quello del vettore v, cioè se π
2 < φ ≤ π). Possiamo quindi affermare

che il prodotto scalare di v per w è il prodotto della norma di v per la norma
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della proiezione ortogonale di w sulla retta generata dal vettore v (sempre con la
convenzione che tale norma va considerata con il segno negativo se π

2 < φ ≤ π).
Siano w1 e w2 due vettori di V e poniamo w = w1+w2. Dobbiamo dimostrare

che v · w = v · w1 + v · w2. Consideriamo dunque le proiezioni ortogonali dei
vettori w1, w2 e w sulla retta r generata dal vettore v, come illustrato nella
figura seguente

O D E F v r

A
G

B

C

w1

w2
w

ove, per semplicità, abbiamo considerato solo il caso in cui gli angoli compresi
tra v e w1, tra v e w2 e tra v e w sono tutti minori di un angolo retto. Indicando
rispettivamente con

−−→
OE la proiezione ortogonale del vettore w1 sulla retta r,

con
−−→
OD quella di w2 e con

−−→
OF quella del vettore w, si ha:

v · w1 = ‖v‖‖OE‖, v · w2 = ‖v‖‖OD‖, v · w = ‖v‖‖OF‖.

Dall’uguaglianza dei triangoli4OCD e4ABG si deduce l’uguaglianza ‖OD‖ =
‖AG‖ = ‖EF‖, quindi si ha ‖OF‖ = ‖OE‖ + ‖EF‖ = ‖OE‖ + ‖OD‖. Si ha
pertanto:

v · w = ‖v‖‖OF‖ = ‖v‖‖OE‖+ ‖v‖‖OD‖ = v · w1 + v · w2,

come volevasi dimostrare.
Possiamo ora dimostrare il seguente risultato:

Proposizione 5.1.3. Siano v = (a1, a2), w = (b1, b2) ∈ R2 (oppure, v =
(a1, a2, a3), w = (b1, b2, b3) ∈ R3). Allora si ha:

v · w = a1b1 + a2b2 (risp., v · w = a1b1 + a2b2 + a3b3).

Dimostrazione. Effettuiamo la dimostrazione per R3 (il caso in cui v, w ∈ R2

è del tutto analogo). Siano dunque v = (a1, a2, a3), w = (b1, b2, b3) ∈ R3 e
indichiamo con e1, e2, e3 i tre vettori della base canonica di R3. Possiamo
quindi scrivere v = a1e1 + a2e2 + a3e3 e w = b1e1 + b2e2 + b3e3. Utilizzando la
bilinearità del prodotto scalare si ottiene:

v · w = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3) =
3∑

i,j=1

aibj (ei · ej).

Notiamo che ei · ei = ‖ei‖2 = 1 per i = 1, 2, 3, mentre ei · ej = 0 per ogni i 6= j,
perché i vettori della base canonica sono a due a due ortogonali. Sostituendo
nell’espressione precedente si ottiene quindi

v · w =
3∑
i=1

aibi.
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Osservazione 5.1.4. Nel caso di due vettori di R2 si può fornire una dimostrazio-
ne diretta del risultato precedente, senza ricorrere alla bilinearità del prodotto
scalare (ma utilizzando qualche risultato di trigonometria).

Siano infatti v = (a1, a2) e w = (b1, b2) due vettori di R2, come rappresentato
nella figura seguente:

v

w

α
β
φ

L’angolo φ compreso tra v e w è dato dalla differenza φ = β − α tra l’angolo
β che il vettore w forma con l’asse X e l’angolo α compreso tra l’asse X e il
vettore v. Il prodotto scalare di v per w è pertanto:

v · w = ‖v‖‖w‖ cosφ
= ‖v‖‖w‖ cos(β − α)
= ‖v‖‖w‖ cosβ cosα+ ‖v‖‖w‖ sinβ sinα
= a1b1 + a2b2,

dato che a1 = ‖v‖ cosα, a2 = ‖v‖ sinα, b1 = ‖w‖ cosβ e b2 = ‖w‖ sinβ.

I risultati precedenti permettono di ricavare l’angolo φ compreso tra due
vettori non nulli v e w di R2 o R3. Si ha infatti:

cosφ =
v · w
‖v‖‖w‖

. (5.1.1)

Possiamo quindi concludere che, nel caso di vettori di R2 o R3, il prodotto scalare
permette di calcolare sia la norma di un vettore che l’angolo (non orientato)
formato da due vettori non nulli. Nella prossima sezione vedremo come questi
risultati si possano estendere a vettori di Rn, per ogni n ≥ 2.

5.1.3 Il prodotto scalare in Rn

I risultati ottenuti nei paragrafi precedenti motivano la seguente definizione:

Definizione 5.1.5. Dati due vettori v = (a1, a2, . . . , an), w = (b1, b2, . . . , bn) ∈
Rn, il loro prodotto scalare è definito ponendo

v · w = a1b1 + a2b2 + · · ·+ anbn =
n∑
i=1

aibi.

In base a questa definizione, per ogni v ∈ Rn, si ha

v · v =
n∑
i=1

a2
i = ‖v‖2,

quindi
‖v‖ =

√
v · v.

Poiché sappiamo che in R2 e in R3 vale la formula (5.1.1), vorremmo usare una
formula analoga per definire l’angolo φ compreso tra due vettori non nulli di
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Rn, per ogni n ≥ 2. Tuttavia, dato che il coseno di un angolo assume solo valori
compresi nell’intervallo [−1, 1], dobbiamo prima verificare che, per ogni coppia
di vettori non nulli v, w ∈ Rn, si abbia

−1 ≤ v · w
‖v‖‖w‖

≤ 1.

Proposizione 5.1.6 (Disuguaglianza di Cauchy–Schwarz). Per ogni cop-
pia di vettori v, w ∈ Rn, si ha

|v · w| ≤ ‖v‖‖w‖. (5.1.2)

Inoltre vale il segno di uguaglianza se e solo se i due vettori sono linearmente
dipendenti.

Dimostrazione. Iniziamo col dimostrare la prima affermazione. Osserviamo che
se uno dei due vettori è nullo, il risultato è banalmente verificato. Supponiamo
quindi che v e w siano vettori non nulli. Ponendo uα = v + αw, con α ∈ R, si
ha:

‖uα‖2 = uα · uα = (v + αw) · (v + αw) = ‖v‖2 + 2α (v · w) + α2‖w‖2 ≥ 0,

per ogni α ∈ R. Il trinomio di secondo grado in α

α2‖w‖2 + 2α (v · w) + ‖v‖2

assume dunque sempre valori ≥ 0, pertanto il suo discriminante deve essere ≤ 0.
Si ha quindi

∆ = 4(v · w)2 − 4‖v‖2‖w‖2 ≤ 0,

da cui si deduce che |v · w| ≤ ‖v‖‖w‖.
Dimostriamo ora la seconda affermazione. Se i due vettori sono linearmente

dipendenti uno dei due deve essere multiplo dell’altro. Possiamo supporre, ad
esempio, che sia w = λv, per qualche λ ∈ R. In tal caso ‖w‖ = |λ|‖v‖ e si
ottiene

|v · w| = |v · λv| = |λ|‖v‖2 = ‖v‖‖w‖.
Viceversa, supponiamo che nell’espressione (5.1.2) valga il segno di uguaglianza.
Si ha quindi

v · w = ±‖v‖‖w‖.
Se w = 0 i due vettori sono (banalmente) linearmente dipendenti; in caso
contrario poniamo

ᾱ =

−
‖v‖
‖w‖ se v · w = ‖v‖‖w‖
‖v‖
‖w‖ se v · w = −‖v‖‖w‖

e consideriamo il vettore u = v + ᾱw. Si ha:

‖u‖2 = (v + ᾱw) · (v + ᾱw)

= ‖v‖2 + 2ᾱ (v · w) + ᾱ2‖w‖2

= ‖v‖2 ± 2ᾱ ‖v‖‖w‖+ ᾱ2‖w‖2

=
(
‖v‖ ± ᾱ ‖w‖

)2
=
(
‖v‖ − ‖v‖‖w‖‖w‖

)2

= 0.
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Poiché l’unico vettore che ha norma nulla è il vettore nullo, si conclude che
u = v + ᾱw = 0, il che dimostra che v e w sono linearmente dipendenti.

Dalla disuguaglianza di Cauchy–Schwarz segue che, per ogni coppia di vettori
non nulli v, w ∈ Rn, è

−1 ≤ v · w
‖v‖‖w‖

≤ 1.

Inoltre, dalla dimostrazione della Proposizione 5.1.6, si deduce facilmente che
è v·w
‖v‖‖w‖ = 1 se e solo se i vettori v e w sono paralleli e hanno lo stesso verso,

mentre v·w
‖v‖‖w‖ = −1 se e solo se v e w sono paralleli ma hanno versi opposti.

Osservando che, per ogni numero reale t ∈ [−1, 1] esiste un unico angolo φ ∈
[0, π] tale che t = cosφ, possiamo dare la seguente definizione:

Definizione 5.1.7. Dati due vettori non nulli v, w ∈ Rn, l’angolo (non orien-
tato) tra essi compreso è l’unico φ ∈ [0, π] tale che

cosφ =
v · w
‖v‖‖w‖

. (5.1.3)

Si noti che, in base alle osservazioni precedenti, l’angolo compreso tra due vettori
è nullo se e solo se i due vettori sono paralleli e hanno lo stesso verso, mentre
esso è pari a π se e solo se i due vettori sono paralleli ma hanno versi opposti.

Un’altra conseguenza della disuguaglianza di Cauchy–Schwarz è la cosiddetta
disuguaglianza triangolare, che ora dimostreremo.

Proposizione 5.1.8 (Disuguaglianza Triangolare). Per ogni v, w ∈ Rn,
si ha

‖v + w‖ ≤ ‖v‖+ ‖w‖.

Dimostrazione. Si ha:

‖v + w‖2 = (v + w) · (v + w)

= ‖v‖2 + 2 (v · w) + ‖w‖2

≤ ‖v‖2 + 2 |v · w|+ ‖w‖2

≤ ‖v‖2 + 2 ‖v‖‖w‖+ ‖w‖2

= (‖v‖+ ‖w‖)2.

Estraendo la radice quadrata si ottiene ‖v + w‖ ≤ ‖v‖ + ‖w‖, come volevasi
dimostrare.

Osservazione 5.1.9. Dalla definizione di angolo tra due vettori segue la seguente
condizione di perpendicolarità: due vettori non nulli sono ortogonali se e solo
se il loro prodotto scalare è zero. Infatti, si ha v · w = 0 se e solo se ‖v‖ = 0
(e quindi v = 0) oppure ‖w‖ = 0 (cioè w = 0) oppure ancora cosφ = 0 (cioè
φ = π

2 ).

5.2 Aree e volumi

In questa sezione vedremo come, utilizzando il prodotto scalare, sia possibile
calcolare aree e volumi in Rn.
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Consideriamo due vettori v, w ∈ Rn. Poiché due vettori qualunque sono
sempre contenuti in un piano (cioè in un sottospazio di dimensione 2 di Rn)
possiamo concentrare la nostra attenzione su tale piano. Indichiamo con

P(v, w) = {λv + µw | 0 ≤ λ, µ ≤ 1}

il parallelogramma determinato dai due vettori v e w, come nella figura seguente:

v

w

h
φ

L’area di tale parallelogramma è data dal prodotto della lunghezza del vettore v
(la base) per l’altezza h relativa a tale base. Indicando con φ l’angolo compreso
tra i vettori v e w, si ha h = ‖w‖ sinφ. Otteniamo quindi:

Area P(v, w) = ‖v‖‖w‖ sinφ.

Ricordando che sin2 φ = 1− cos2 φ e utilizzando la formula (5.1.3), si trova

sin2 φ = 1− (v · w)2

‖v‖2‖w‖2
=
‖v‖2‖w‖2 − (v · w)2

‖v‖2‖w‖2
.

Si ha dunque(
Area P(v, w)

)2 = ‖v‖2‖w‖2 − (v · w)2 = (v · v)(w · w)− (v · w)2.

Questa formula può essere riscritta come segue:

Area P(v, w) =

√
det
(
v · v v · w
w · v w · w

)
.

Vedremo ora che se n = 2, cioè nel caso di due vettori v, w ∈ R2, è possibile
calcolare l’area del parallelogramma P(v, w) senza ricorrere al prodotto scalare.

v

w

O D A

BC

E
F

G
H

I
Siano dunque v = (a1, a2), w = (b1, b2) ∈ R2 e con-

sideriamo la situazione descritta nella figura a lato (ove,
per semplicità, abbiamo supposto a1, a2, b1, b2 ≥ 0).
L’area del parallelogramma P(v, w) può essere otte-
nuta, per differenza di aree, dall’area del rettangolo
OABC sottraendo le aree dei due rettangoli ADEF
e CGHI e dei quattro triangoli ODE, BEF , BHI e
OGH. Osservando che ‖OD‖ = ‖BI‖ = a1, ‖DE‖ = ‖AF‖ = ‖CG‖ =
‖HI‖ = a2, ‖CI‖ = ‖GH‖ = ‖DA‖ = ‖EF‖ = b1, ‖OG‖ = ‖BF‖ = b2, si
ottiene:

Area(OABC) = (a1 + b1)(a2 + b2),

Area(ODE) = Area(BHI) = 1
2 a1a2,

Area(OGH) = Area(BEF ) = 1
2 b1b2,

Area(ADEF ) = Area(CGHI) = b1a2,

da cui si ricava:

Area P(v, w) = (a1 + b1)(a2 + b2)− a1a2 − b1b2 − 2b1a2

= a1b2 − b1a2 = det
(
a1 b1
a2 b2

)
.
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Il determinante della matrice quadrata costituita dalle componenti dei due vet-
tori v e w (scritti indifferentemente in colonna oppure in riga) fornisce quindi il
valore dell’area del parallelogramma P(v, w). Tuttavia, ricordando che

det
(
a1 b1
a2 b2

)
= −det

(
b1 a1

b2 a2

)
conviene prendere tale determinante in valore assoluto, per evitare il rischio
di trovare valori negativi per l’area di un parallelogramma. Sarà dunque più
corretto scrivere la seguente formula:

Area P(v, w) =
∣∣∣∣det

(
a1 b1
a2 b2

)∣∣∣∣ , (5.2.1)

per ogni v = (a1, a2), w = (b1, b2) ∈ R2.
Passiamo ora al caso dei volumi. A tal fine consideriamo tre vettori u, v, w ∈

Rn e indichiamo con

P(u, v, w) = {λu+ µv + νw | 0 ≤ λ, µ, ν ≤ 1}

il parallelepipedo da essi determinato. Poiché tre vettori qualunque di Rn sono
sempre contenuti in un sottospazio di dimensione 3, possiamo concentrare la
nostra attenzione su tale sottospazio tridimensionale. Consideriamo dunque la
situazione schematizzata nella figura seguente:

u

v

w

w′

h

Il volume di tale parallelepipedo è dato dal prodotto dell’area del parallelogram-
ma P(u, v) (l’area di base) per l’altezza h relativa a tale base. La determina-
zione dell’altezza h può essere effettuata come segue: consideriamo un generico
vettore αu+βv appartenente al piano generato da u e v. Dobbiamo determinare
i valori di α e β che rendono minima1 la norma del vettore w − αu − βv. Il
valore minimo della norma di tale vettore è precisamente l’altezza h che stiamo

1In alternativa si potrebbe richiedere che il vettore w − αu − βv sia ortogonale al piano
generato da u e v (l’altezza di un parallelepipedo deve essere perpendicolare alla sua base).
Questo equivale a richiedere che {

(w − αu− βv) · u = 0

(w − αu− βv) · v = 0.

Si trova cos̀ı un sistema equivalente a (5.2.2).



Capitolo 5 Spazi Vettoriali Euclidei 130

cercando. Sviluppando i calcoli, si trova:

‖w − αu− βv‖2 = (w − αu− βv) · (w − αu− βv)
= w · w − 2α (u · w)− 2β (v · w) + 2αβ (u · v)

+ α2(u · u) + β2(v · v).

Per trovare il valore minimo di tale espressione basta calcolarne le due derivate
parziali, rispetto a α e β, e imporre che queste siano nulle. Si ottiene cos̀ı il
seguente sistema: {

2α (u · u) + 2β (u · v)− 2 (u · w) = 0
2α (u · v) + 2β (v · v)− 2 (v · w) = 0

(5.2.2)

la cui soluzione è data da
ᾱ =

(u · w)(v · v)− (u · v)(v · w)
(u · u)(v · v)− (u · v)2

β̄ =
(u · u)(v · w)− (u · v)(u · w)

(u · u)(v · v)− (u · v)2
.

Ponendo w′ = ᾱu + β̄v, il vettore w − w′ rappresenta l’altezza del paral-
lelepipedo P(u, v, w), relativa alla base P(u, v). Ricordando che l’area del
parallelogramma P(u, v) è data da

Area P(u, v) =

√
det
(
u · u u · v
v · u v · v

)
,

siamo ora in grado di calcolare il volume del parallelepipedo P(u, v, w) molti-
plicando tale espressione per h = ‖w − w′‖. Sviluppando i calcoli si trova la
seguente formula per il volume:

Vol P(u, v, w) =

√√√√√det

u · u u · v u · w
v · u v · v v · w
w · u w · v w · w

.
Se n = 3, cioè nel caso di tre vettori u, v, w ∈ R3, è possibile calcolare il volume
del parallelepipedo P(u, v, w) anche come il valore assoluto del determinante
della matrice le cui colonne (o righe) sono costituite dalle componenti dei vettori
dati. Si può cioè dimostrare che, dati u = (a1, a2, a3), v = (b1, b2, b3), w =
(c1, c2, c3) ∈ R3, si ha

Vol P(u, v, w) =

∣∣∣∣∣∣det

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ . (5.2.3)

I risultati che abbiamo ottenuto per le aree dei parallelogrammi e i volumi dei
parallelepipedi motivano la seguente definizione:

Definizione 5.2.1. Dati r vettori v1, v2, . . . , vr ∈ Rn (con r ≤ n), il paralle-
lotopo da essi generato è il sottoinsieme di Rn dato da

P(v1, v2, . . . , vr) =
{ r∑
i=1

λivi

∣∣∣ 0 ≤ λi ≤ 1, i = 1, . . . , r
}
.
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La sua misura (o volume) r-dimensionale è definita ponendo

Mis P(v1, . . . , vr) =
√

det
(
vi · vj

)
i,j=1,...,r

.

Si noti che, nei casi r = 2 o r = 3, questa definizione si riduce rispettivamente
alla definizione di area di un parallelogramma o volume di un parallelepipedo,
mentre, per r = 1, si ritrova la definizione della norma di un vettore.

Osservazione 5.2.2. Se gli r vettori v1, v2, . . . , vr sono linearmente dipendenti
è facile dimostrare che la misura r-dimensionale di P(v1, v2, . . . , vr) è nulla.
Infatti in tal caso uno degli r vettori si può esprimere come combinazione lineare
degli altri. A meno di un riordinamento, possiamo quindi supporre che sia

vr = λ1v1 + λ2v2 + · · ·+ λr−1vr−1.

È ora immediato verificare che, nella matrice
(
vi ·vj

)
i,j=1,...,r

, l’ultima colonna è
una combinazione lineare delle colonne precedenti, quindi il determinante di tale
matrice è nullo. Questa è la ragione per cui, nella Definizione 5.2.1, abbiamo
supposto r ≤ n; infatti nel caso r > n, gli r vettori v1, . . . , vr sarebbero sempre
linearmente dipendenti.

Scrivendo in colonna le componenti degli r vettori v1 = t(a11, a21, . . . , an1),
v2 = t(a12, a22, . . . , an2), . . . , vr = t(a1r, a2r, . . . , anr), otteniamo la seguente
matrice con n righe e r colonne (ove abbiamo supposto r ≤ n)

A =


a11 a12 · · · a1r

a21 a22 · · · a2r

...
...

...
an1 an2 · · · anr

 .

La matrice dei prodotti scalari vi · vj può allora essere scritta come segue:(
vi · vj

)
i,j=1,...,r

= tAA.

Nel caso particolare in cui r = n, la matrice A è quadrata e dal Teorema di
Binet segue che

det
(
vi · vj

)
i,j=1,...,n

= (detA)2,

da cui si ottiene
Mis P(v1, . . . , vn) = |detA|, (5.2.4)

ove A è la matrice le cui colonne sono costituite dalle componenti degli n vettori
v1, . . . , vn ∈ Rn. Per n = 2 e n = 3 si ritrovano cos̀ı le due formule (5.2.1)
e (5.2.3) citate in precedenza. Notiamo che, da quest’ultima formula, risulta
evidente che Mis P(v1, . . . , vn) = 0 se e solo se detA = 0, cioè se e solo se i
vettori v1, v2, . . . , vn sono linearmente dipendenti.

5.3 Forme bilineari

Sia V uno spazio vettoriale definito sul campo K.
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Definizione 5.3.1. Una forma bilineare su V è una funzione

g : V × V → K, (v, w) 7→ g(v, w),

lineare rispetto a ciascuno dei suoi due argomenti, cioè tale che

(i) g(λ1v1 + λ2v2, w) = λ1g(v1, w) + λ2g(v2, w),

(ii) g(v, µ1w1 + µ2w2) = µ1g(v, w1) + µ2g(v, w2),

per ogni λ1, λ2, µ1, µ2 ∈ K e ogni v, v1, v2, w, w1, w2 ∈ V .

Definizione 5.3.2. Una forma bilineare g : V × V → K è detta simmetrica
se g(v, w) = g(w, v), per ogni v, w ∈ V . Se la caratteristica del campo K è
diversa da 2, g è detta antisimmetrica (o alternante) se, per ogni v, w ∈ V , si
ha g(v, w) = −g(w, v).

Osservazione 5.3.3. Notiamo che, se K è un campo di caratteristica diversa da
2, ogni forma bilineare g si può decomporre come segue

g(v, w) = gs(v, w) + ga(v, w),

ove gs e ga sono le due forme bilineari definite ponendo

gs(v, w) =
g(v, w) + g(w, v)

2
, ga(v, w) =

g(v, w)− g(w, v)
2

.

Poiché gs è una forma bilineare simmetrica mentre ga è una forma bilineare
alternante, ciò significa che ogni forma bilineare su V può essere espressa come
somma di una forma bilineare simmetrica e di una forma bilineare alternante. Lo
studio delle forme bilineari è quindi riconducibile allo studio delle forme bilineari
simmetriche e di quelle alternanti. Nel seguito ci occuperemo esclusivamente
dello studio delle forme bilineari simmetriche.

Osservazione 5.3.4. Se g1 e g2 sono due forme bilineari definite su uno spazio
vettoriale V , è immediato verificare che la funzione g1 +g2 : V ×V → K definita
ponendo (g1 + g2)(v, w) = g1(v, w) + g2(v, w), per ogni v, w ∈ V , è una forma
bilineare su V . Analogamente, per ogni λ ∈ K e ogni forma bilineare g, anche la
funzione λg è una forma bilineare su V . L’insieme Bil(V ) delle forme bilineari
su V è quindi dotato, in modo naturale, di una struttura di spazio vettoriale
su K. Poiché una combinazione lineare di forme bilineari simmetriche è ancora
una forma bilineare simmetrica, l’insieme delle forme bilineari simmetriche è un
sottospazio vettoriale di Bil(V ). Un risultato analogo vale naturalmente anche
per le forme bilineari alternanti.

Sia V uno spazio vettoriale e siano U , W due sottospazi vettoriali di V tali
che V = U ⊕W . Siano inoltre

gU : U × U → K, gW : W ×W → K,

due forme bilineari definite, rispettivamente, su U e su W . Ricordando che ogni
vettore v ∈ V si può scrivere in modo unico come v = u + w, con u ∈ U e
w ∈W , definiamo una funzione

gV : V × V → K
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ponendo
gV (u1 + w1, u2 + w2) = gU (u1, u2) + gW (w1, w2),

per ogni u1, u2 ∈ U , w1, w2 ∈ W . Si verifica facilmente che gV è una forma
bilineare su V e che essa è simmetrica se e solo se lo sono sia gU che gW .

Tale forma bilineare verrà indicata con gV = gU ⊕ gW e detta la somma
diretta2 di gU e gW .

Consideriamo ora una forma bilineare simmetrica g definita su uno spazio
vettoriale V . Diamo la seguente definizione:

Definizione 5.3.5. Il nucleo di g è il seguente sottoinsieme di V :

Ker(g) = {v ∈ V | g(v, w) = 0, per ogni w ∈ V }.

Osservazione 5.3.6. Si dimostra facilmente, usando la bilinearità di g, che Ker(g)
è un sottospazio vettoriale di V . Inoltre, dalla simmetria di g, segue che è anche

Ker(g) = {w ∈ V | g(v, w) = 0, per ogni v ∈ V }.

Definizione 5.3.7. Una forma bilineare simmetrica g : V × V → K è detta
non degenere se Ker(g) = {0}. In caso contrario essa è detta degenere.

Per ogni spazio vettoriale V indicheremo con g0 la forma bilineare nulla su
V , cioè la forma bilineare definita ponendo g0(v, w) = 0, per ogni v, w ∈ V .
Si noti che, per ogni forma bilineare simmetrica g su V , la restrizione di g a
Ker(g)×Ker(g) è la forma bilineare nulla sul sottospazio Ker(g) di V .

Siamo ora in grado di enunciare e dimostrare il seguente risultato:

Proposizione 5.3.8. Sia g una forma bilineare simmetrica definita su uno
spazio vettoriale V . Esiste un sottospazio vettoriale U di V tale che:

(i) V = U ⊕Ker(g);

(ii) la restrizione di g a U×U , che indicheremo con gU , è una forma bilineare
simmetrica non degenere su U ;

(iii) g = gU ⊕ g0, ove g0 è la forma bilineare nulla su Ker(g).

Dimostrazione. Dati V e g, esiste certamente un sottospazio vettoriale U di V
tale che V = U ⊕ Ker(g). Indicando con gU la restrizione di g a U × U e con
g0 la forma bilineare nulla definita su Ker(g), consideriamo la forma bilineare
gU ⊕ g0 definita su U ⊕Ker(g) = V . Dobbiamo dimostrare che g = gU ⊕ g0.

Consideriamo dunque due vettori v1, v2 ∈ V e scriviamo v1 = u1 + w1 e
v2 = u2 + w2, ove u1, u2 ∈ U e w1, w2 ∈ Ker(g). Si ha:

(gU ⊕ g0)(v1, v2) = (gU ⊕ g0)(u1 + w1, u2 + w2)
= gU (u1, u2) + g0(w1, w2)
= gU (u1, u2) = g(u1, u2),

e
g(v1, v2) = g(u1 + w1, u2 + w2)

= g(u1, u2) + g(u1, w2) + g(w1, u2) + g(w1, w2).

2La forma bilineare gV = gU ⊕ gW ha la seguente proprietà: gV (v1, v2) = 0 se v1 ∈ U e
v2 ∈ W , oppure se v1 ∈ W e v2 ∈ U . Per tale motivo è anche detta la somma ortogonale di
gU e gW ed è spesso indicata con la notazione gV = gU � gW .
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Dato che w1, w2 ∈ Ker(g), si ha g(u1, w2) = g(w1, u2) = g(w1, w2) = 0 e
pertanto g(v1, v2) = (gU ⊕ g0)(v1, v2).

Rimane solo da dimostrare che la forma bilineare gU : U × U → K è non
degenere. Consideriamo un vettore u0 ∈ Ker(gU ) e un generico vettore v ∈ V .
Scrivendo v nella forma v = u+ w, con u ∈ U e w ∈ Ker(g), si ha

g(u0, v) = g(u0, u+ w)
= g(u0, u) + g(u0, w)
= gU (u0, u) + 0 = 0

perché w ∈ Ker(g) e u0 ∈ Ker(gU ). Da ciò segue che u0 ∈ Ker(g), quindi
deve essere u0 = 0, dato che U ∩ Ker(g) = {0}. Abbiamo cos̀ı dimostrato che
Ker(gU ) = {0}, quindi gU è non degenere.

Osservazione 5.3.9. La proposizione precedente afferma che ogni forma bilineare
simmetrica è somma diretta di una forma bilineare simmetrica non degenere e di
una forma bilineare nulla. Possiamo quindi limitarci a studiare le forme bilineari
simmetriche non degeneri.

Ricordando che il prodotto scalare usuale in Rn è una forma bilineare sim-
metrica non degenere, e ricordando inoltre la condizione di ortogonalità tra due
vettori di Rn, possiamo dare la seguente definizione:

Definizione 5.3.10. Sia V uno spazio vettoriale dotato di una forma bili-
neare simmetrica non degenere g. Due vettori v, w ∈ V si dicono ortogonali
se g(v, w) = 0. Due sottospazi vettoriali U1, U2 ⊆ V si dicono ortogonali se
g(u1, u2) = 0, per ogni u1 ∈ U1 e ogni u2 ∈ U2.

Esempio 5.3.11. Nello spazio vettoriale V = R2 consideriamo la forma bilineare
simmetrica g definita ponendo

g
(
(x1, x2), (y1, y2)

)
= x1y2 + x2y1.

È immediato verificare che Ker(g) = {(0, 0)}, quindi g è non degenere. Si
noti che g

(
(1, 1), (1,−1)

)
= 0, quindi i vettori v1 = (1, 1) e v2 = (1,−1) sono

ortogonali. Tuttavia, si ha anche g
(
(1, 0), (1, 0)

)
= 0, pertanto il vettore e1 =

(1, 0) risulta essere ortogonale a sé stesso!

Definizione 5.3.12. Sia V uno spazio vettoriale dotato di una forma bilineare
simmetrica g. Un vettore v ∈ V tale che g(v, v) = 0 è detto isotropo. Un
sottospazio U ⊆ V è detto isotropo se la restrizione di g a U × U è la forma
bilineare nulla, cioè se g(u1, u2) = 0, per ogni u1, u2 ∈ U .

Osservazione 5.3.13. Si noti che se U ⊆ V è un sottospazio isotropo, allora
ogni vettore u ∈ U è un vettore isotropo. Il viceversa, in generale, è falso. Se
u ∈ V è un vettore isotropo, certamente il sottospazio 〈u〉 da esso generato
è un sottospazio isotropo, tuttavia se u1, u2 ∈ V sono due vettori isotropi,
non è detto che il sottospazio U = 〈u1, u2〉 da essi generato sia un sottospazio
isotropo. Infatti è ovviamente g(u1, u1) = 0 e g(u2, u2) = 0, ma non è detto
che sia anche g(u1, u2) = 0. La forma bilineare considerata nell’Esempio 5.3.11
illustra precisamente questo fatto: i due vettori della base canonica e1 = (1, 0)
ed e2 = (0, 1) sono due vettori isotropi, ma si ha g(e1, e2) = 1.
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Definizione 5.3.14. Sia V uno spazio vettoriale dotato di una forma bilineare
simmetrica g. Dato un sottoinsieme S di V definiamo il suo ortogonale ponendo

S⊥ = {v ∈ V | g(v, w) = 0,∀w ∈ S}.

Proposizione 5.3.15. Siano V uno spazio vettoriale dotato di una forma
bilineare simmetrica g e S un sottoinsieme di V . Allora:

(i) S⊥ è un sottospazio vettoriale di V ;

(ii) Si ha S ⊆ 〈S〉 ⊆ (S⊥)⊥, ove 〈S〉 denota il sottospazio vettoriale di V
generato da S.

Dimostrazione. Per dimostrare la prima affermazione consideriamo due vettori
v1, v2 ∈ S⊥ e due scalari λ1, λ2 ∈ K. Per ogni w ∈ S, si ha:

g(λ1v1 + λ2v2, w) = λ1g(v1, w) + λ2g(v2, w) = λ1 0 + λ2 0 = 0,

quindi λ1v1 + λ2v2 ∈ S⊥.
Per quanto riguarda la seconda affermazione, l’inclusione S ⊆ 〈S〉 è ovvia.

Per dimostrare che 〈S〉 ⊆ (S⊥)⊥ consideriamo un generico vettore w ∈ 〈S〉; esso
si potrà scrivere nella forma

w = λ1w1 + λ2w2 + · · ·+ λrwr,

per qualche λ1, . . . , λr ∈ K e qualche w1, . . . , wr ∈ S. Per ogni v ∈ S⊥, si ha

g(w, v) = g
( r∑
i=1

λiwi, v
)

=
r∑
i=1

λi g(wi, v) = 0,

dato che wi ∈ S e v ∈ S⊥. Ciò significa che w è ortogonale a tutti i vettori di
S⊥, quindi w ∈ (S⊥)⊥.

Proposizione 5.3.16. Siano V uno spazio vettoriale dotato di una forma
bilineare simmetrica g e S, T due sottoinsiemi di V . Valgono le seguenti
proprietà:

(i) S ⊆ T ⇒ T⊥ ⊆ S⊥;

(ii) S⊥ = 〈S〉⊥.

Dimostrazione. (i) Sia v ∈ T⊥; si ha g(v, w) = 0, per ogni w ∈ T . Dato che
S ⊆ T , si ha quindi anche g(v, w) = 0, per ogni w ∈ S, il che significa che
v ∈ S⊥.

(ii) Dall’inclusione S ⊆ 〈S〉 e dalla proprietà (i) segue che 〈S〉⊥ ⊆ S⊥. Per
dimostrare l’inclusione opposta, consideriamo un vettore v ∈ S⊥. Ogni vettore
w ∈ 〈S〉 si può esprimere nella forma

w = λ1w1 + λ2w2 + · · ·+ λrwr,

per qualche λ1, . . . , λr ∈ K e qualche w1, . . . , wr ∈ S. Si ha quindi

g(v, w) = g
(
v,

r∑
i=1

λiwi

)
=

r∑
i=1

λi g(v, wi) = 0.

Ciò significa che v è ortogonale a tutti i vettori di 〈S〉, quindi v ∈ 〈S〉⊥.
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Definizione 5.3.17. Sia V uno spazio vettoriale su K e g : V × V → K una
forma bilineare simmetrica. Una base {v1, v2, . . . , vn} di V costituita da vettori
a due a due ortogonali è detta una base ortogonale di V .

In uno spazio vettoriale V dotato di una forma bilineare simmetrica g, po-
tremmo definire il quadrato della norma di un vettore v ponendo ‖v‖2 = g(v, v).
Tale definizione è motivata dal fatto che, nello spazio vettoriale Rn dotato del
prodotto scalare usuale, si ha ‖v‖2 = v · v, per ogni v ∈ Rn. In generale, non è
però possibile definire la norma di v; infatti non è detto che nel campo K esista
una radice quadrata di g(v, v).

A titolo di esempio, consideriamo lo spazio vettoriale V = Q2, sul campo Q
dei numeri razionali, dotato del prodotto scalare usuale. Il vettore v = (1, 1) è
tale che ‖v‖2 = v · v = 2, quindi nel campo Q non è possibile definire la norma
di v, dato che dovrebbe essere ‖v‖ =

√
2, ma

√
2 6∈ Q. Un esempio analogo

si ottiene considerando lo spazio vettoriale reale V = R2, dotato della forma
bilineare simmetrica definita nell’Esempio 5.3.11. In questo caso, per il vettore
v = (1,−1) si ha ‖v‖2 = g(v, v) = −2, pertanto dovrebbe essere ‖v‖ =

√
−2,

ma
√
−2 6∈ R.

Naturalmente, nel caso particolare in cui g(v, v) = 1, si ha anche ‖v‖ = 1.
Possiamo quindi dare la seguente definizione:

Definizione 5.3.18. Sia V uno spazio vettoriale dotato di una forma bilineare
simmetrica g. Un vettore v ∈ V si dice normalizzato se g(v, v) = 1.

Osservazione 5.3.19. Se v non è un vettore isotropo, cioè se g(v, v) 6= 0, e se
nel campo K esiste una radice quadrata di g(v, v), è possibile normalizzare il
vettore v dividendolo per

√
g(v, v). Infatti, ponendo v′ = v/

√
g(v, v), si ha:

‖v′‖2 = g(v′, v′) =
1(√

g(v, v)
)2 g(v, v) = 1.

Definizione 5.3.20. Sia V uno spazio vettoriale dotato di una forma bilineare
simmetrica g. Una base {v1, v2, . . . , vn} di V si dice ortonormale se essa è
una base ortogonale e se tutti i vettori v1, . . . , vn sono normalizzati, cioè se
g(vi, vj) = 0 per i 6= j, mentre g(vi, vi) = 1, per ogni i = 1, . . . , n.

Consideriamo ora più in dettaglio il problema di definire la norma di un
vettore in uno spazio vettoriale V dotato di una forma bilineare simmetrica g.
Come già accennato in precedenza, ciò è possibile se, per ogni v ∈ V , esiste
nel campo K una radice quadrata di g(v, v). È quindi naturale imporre delle
condizioni su g che garantiscano l’esistenza di

√
g(v, v), per ogni v ∈ V .

Notiamo, ad esempio, che se K è il campo C dei numeri complessi tale
richiesta è soddisfatta per ogni forma bilineare simmetrica g. Ciò non vale
invece se K è il campo R dei numeri reali: in tal caso è necessario richiedere che
g(v, v) ≥ 0, per ogni v ∈ V .

Diamo quindi la seguente definizione:

Definizione 5.3.21. Sia V uno spazio vettoriale reale. Una forma bilineare
simmetrica g su V è detta:

(i) definita positiva se g(v, v) > 0, per ogni v ∈ V , v 6= 0;

(ii) definita negativa se g(v, v) < 0, per ogni v ∈ V , v 6= 0;
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(iii) semidefinita positiva se g(v, v) ≥ 0, per ogni v ∈ V ;

(iv) semidefinita negativa se g(v, v) ≤ 0, per ogni v ∈ V ;

(v) indefinita se esistono v, w ∈ V tali che g(v, v) > 0 e g(w,w) < 0.

Nel caso in cui la forma bilineare simmetrica g sia semidefinita positiva è pos-
sibile porre ‖v‖ =

√
g(v, v). Notiamo tuttavia che se si desidera che l’unico

vettore avente norma nulla sia il vettore nullo, è necessario richiedere che g sia
definita positiva. Diamo quindi la seguente definizione:

Definizione 5.3.22. Sia V uno spazio vettoriale reale dotato di una forma
bilineare simmetrica definita positiva g. La norma di un vettore v ∈ V è definita
ponendo

‖v‖ =
√
g(v, v).

La norma cos̀ı definita soddisfa le seguenti proprietà, la cui verifica è immediata:

(i) ‖v‖ ≥ 0, per ogni v ∈ V , e ‖v‖ = 0 se e solo se v = 0;

(ii) ‖λv‖ = |λ|‖v‖, per ogni λ ∈ R e ogni v ∈ V .

Come per l’usuale norma dei vettori in Rn, vale poi il seguente risultato:

Proposizione 5.3.23 (Disuguaglianza di Cauchy–Schwarz). Sia g una
forma bilineare simmetrica definita positiva su uno spazio vettoriale reale V .
Per ogni coppia di vettori v, w ∈ V , si ha

|g(v, w)| ≤ ‖v‖‖w‖. (5.3.1)

Inoltre vale il segno di uguaglianza se e solo se i due vettori sono linearmente
dipendenti.

Dimostrazione. La dimostrazione è esattamente la stessa di quella della Propo-
sizione 5.1.6. Per adattarla al presente contesto è sufficiente definire il “prodotto
scalare” di due vettori v, w ∈ V ponendo v · w = g(v, w).

Una conseguenza immediata della disuguaglianza di Cauchy–Schwarz è la
disuguaglianza triangolare:

Proposizione 5.3.24 (Disuguaglianza Triangolare). Sia V uno spazio
vettoriale reale dotato di una forma bilineare simmetrica definita positiva g.
Per ogni v, w ∈ V , si ha

‖v + w‖ ≤ ‖v‖+ ‖w‖.

Dimostrazione. La dimostrazione è del tutto analoga a quella della Proposizio-
ne 5.1.8.

La validità della disuguaglianza di Cauchy–Schwarz ci permette, a sua volta,
di definire l’angolo compreso tra due vettori in modo del tutto analogo a quanto
abbiamo fatto per i vettori di Rn:

Definizione 5.3.25. Sia V uno spazio vettoriale reale e sia g una forma bili-
neare simmetrica definita positiva su V . Dati due vettori non nulli v, w ∈ V ,
l’angolo (non orientato) tra essi compreso è l’unico φ ∈ [0, π] tale che

cosφ =
g(v, w)
‖v‖‖w‖

. (5.3.2)
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I risultati descritti finora mostrano come una forma bilineare simmetrica de-
finita positiva su uno spazio vettoriale reale V permetta di definire le lunghezze
dei vettori e gli angoli tra vettori in modo del tutto analogo a quanto accadeva
per lo spazio vettoriale Rn dotato del prodotto scalare usuale. Per tale ragione,
uno spazio vettoriale reale dotato di una forma bilineare simmetrica definita
positiva viene detto uno spazio vettoriale euclideo.

In uno spazio vettoriale euclideo (V, g) si definisce il prodotto scalare di due
vettori v, w ∈ V ponendo v · w = g(v, w). Con tale definizione nello spazio
vettoriale V valgono, senza alcuna modifica, (quasi)3 tutti i risultati sulle aree
e i volumi descritti nella Sezione 5.2.

Prima di affrontare lo studio dettagliato degli spazi vettoriali euclidei ci
occuperemo delle matrici associate alle forme bilineari.

5.4 Forme bilineari e matrici

Sia V uno spazio vettoriale di dimensione finita su un campo K e sia g una
forma bilineare definita su V . Consideriamo una base v = {v1, . . . , vn} di V e
poniamo gij = g(vi, vj), per ogni i, j = 1, . . . , n. Gli scalari gij formano una
matrice quadrata, di ordine n, a coefficienti in K.

Definizione 5.4.1. Con le notazioni precedenti, la matrice G =
(
gij
)

è detta
la matrice della forma bilineare g, rispetto alla base v di V .

La conoscenza della matrice di g permette di calcolare g(v, w) per ogni coppia
di vettori v, w ∈ V . Infatti, esprimendo v e w come combinazioni lineari dei
vettori della base di V ,

v =
n∑
i=1

λivi, w =
n∑
j=1

µjvj ,

grazie alla bilinearità di g, si ha:

g(v, w) = g
( n∑
i=1

λivi,

n∑
j=1

µjvj

)
=

n∑
i,j=1

λiµj g(vi, vj)

=
n∑

i,j=1

λiµjgij .

Considerando i vettori (λ1, λ2, . . . , λn) e (µ1, µ2, . . . , µn), costituiti dalle com-
ponenti di v e w rispetto alla base fissata di V , è possibile esprimere g(v, w) in
termini di prodotti tra matrici e vettori come segue:

g(v, w) = (λ1, . . . , λn)G

µ1

...
µn

 .

3Più precisamente, tutti tranne quelli che usano il fatto che la base canonica è una base
ortonormale.
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Ad ogni forma bilineare g su V possiamo quindi associare una matrice quadrata
G a coefficienti in K la quale, ovviamente, dipende dalla scelta di una base di
V . È immediato verificare che la forma bilineare g è simmetrica se e solo se
gij = gji, per ogni i, j = 1, . . . , n, cioè se e solo se G è una matrice simmetrica.
Analogamente, g è antisimmetrica se e solo se gij = −gji, per ogni i, j = 1, . . . , n,
cioè se e solo se G è una matrice antisimmetrica.

Osservazione 5.4.2. Siano U e W due sottospazi vettoriali di uno spazio vetto-
riale V e sia gV = gU ⊕ gW , ove gU e gW sono delle forme bilineari definite su
U e W rispettivamente. Sia u = {u1, . . . , ur} una base di U e indichiamo con
GU la matrice di gU rispetto alla base u. Analogamente, consideriamo una base
w = {w1, . . . , ws} di W e indichiamo con GW la matrice di gW rispetto alla base
w. Se indichiamo con G la matrice di gV rispetto alla base v di V costituita
dai vettori u1, . . . , ur, w1, . . . , ws, è immediato verificare che la matrice G ha la
seguente forma a blocchi

G =

GU 0r,s

0s,r GW


ove 0r,s indica la matrice nulla con r righe e s colonne.

Descriviamo ora il nucleo di una forma bilineare simmetrica g in termini
della matrice ad essa associata:

Proposizione 5.4.3. Siano V uno spazio vettoriale su K, g una forma bilineare
simmetrica su V e v = {v1, . . . , vn} una base di V . Indichiamo con G ∈Mn(K)
la matrice di g rispetto alla base v di V . Il nucleo di g è l’insieme dei vettori v
del tipo v = λ1v1 +λ2v2 + · · ·+λnvn, ove la n-upla (λ1, . . . , λn) è una soluzione
del sistema lineare omogeneo GX = 0.

Dimostrazione. Un vettore v = λ1v1 +λ2v2 + · · ·+λnvn appartiene al nucleo di
g se e solo se g(w, v) = 0 per ogni w ∈ V . Poiché i vettori v1, v2, . . . , vn formano
una base di V , ciò equivale a richiedere che g(vi, v) = 0, per i = 1, . . . , n. Si ha
dunque, per ogni vettore vi della base di V ,

g(vi, v) = g(vi, λ1v1 + λ2v2 + · · ·+ λnvn)
= λ1g(vi, v1) + λ2g(vi, v2) + · · ·+ λng(vi, vn)
= gi1λ1 + gi2λ2 + · · ·+ ginλn = 0.

Queste sono precisamente le n equazioni del sistema lineare

G

x1

...
xn

 = 0.

Corollario 5.4.4. Sia V uno spazio vettoriale di dimensione finita su K. Una
forma bilineare simmetrica g definita su V è non degenere se e solo se la sua
matrice G, rispetto a una qualunque base di V , è non singolare, cioè se e solo
se detG 6= 0.
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Dimostrazione. Ricordiamo che g è non degenere se e solo se Ker(g) = {0}. In
base alla proposizione precedente, ciò equivale a richiedere che il sistema lineare
GX = 0 abbia come unica soluzione il vettore nullo. Per il Teorema di Cramer
questo avviene se e solo se la matrice G è non singolare.

Proposizione 5.4.5. Siano V uno spazio vettoriale di dimensione n su K e g
una forma bilineare simmetrica non degenere su V . Per ogni sottospazio U di
V , si ha

dimU⊥ = n− dimU.

Dimostrazione. Sia U un sottospazio di dimensione r di V e consideriamo una
base v1, v2, . . . , vr di U . Completiamo questa base in modo da ottenere una base
v1, . . . , vr, vr+1, . . . , vn di V . Un vettore v = λ1v1 +λ2v2 + · · ·+λnvn appartiene
a U⊥ se e solo se g(u, v) = 0, per ogni u ∈ U . Poiché i vettori v1, v2, . . . , vr
sono una base di U , ciò equivale a richiedere che g(vi, v) = 0 per i = 1, . . . , r.
Si hanno dunque le seguenti equazioni

g(vi, v) = g(vi, λ1v1 + λ2v2 + · · ·+ λnvn)
= λ1g(vi, v1) + λ2g(vi, v2) + · · ·+ λng(vi, vn)
= gi1λ1 + gi2λ2 + · · ·+ ginλn = 0,

(5.4.1)

per i = 1, . . . , r. In questo modo si ottiene un sistema di equazioni lineari
omogenee la cui matrice G′ è precisamente la sottomatrice costituita dalle prime
r righe della matrice G. Poiché, per ipotesi, g è non degenere, la matrice G è non
singolare, quindi tutte le sue righe sono linearmente indipendenti. Da ciò deriva
che la sottomatrice G′ ha rango massimo, pari a r. Dal Teorema di Rouché–
Capelli segue quindi che lo spazio delle soluzioni del sistema lineare (5.4.1) ha
dimensione n−r. Dato che le soluzioni di tale sistema forniscono le componenti,
rispetto alla base v1, . . . , vn, dei vettori appartenenti al sottospazio U⊥ di V , si
conclude che dimU⊥ = n− r.

Corollario 5.4.6. Sia V uno spazio vettoriale di dimensione finita su K e g
una forma bilineare simmetrica non degenere su V . Per ogni sottospazio U di
V , si ha

(U⊥)⊥ = U.

Dimostrazione. Se n = dimV , per la proposizione precedente si ha:

dim(U⊥)⊥ = n− dimU⊥ = n− (n− dimU) = dimU.

Pertanto U e (U⊥)⊥ sono due sottospazi vettoriali della stessa dimensione. Poi-
ché sappiamo che U ⊆ (U⊥)⊥ (vedi Proposizione 5.3.15), deve necessariamente
essere U = (U⊥)⊥.

Osservazione 5.4.7. Si noti che la dimostrazione del risultato precedente usa in
modo essenziale il fatto che V abbia dimensione finita. Si potrebbe infatti di-
mostrare che, nel caso di uno spazio V di dimensione infinita, per un sottospazio
U di V si ha, in generale, solo un’inclusione propria U ⊂ (U⊥)⊥.

Terminiamo questa sezione dimostrando il seguente risultato:

Proposizione 5.4.8. Siano V uno spazio vettoriale sul campo K e g una forma
bilineare simmetrica non degenere su V . Per ogni W1, W2 sottospazi di V , si
ha:
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(i) (W1 +W2)⊥ = W⊥1 ∩W⊥2 ;

(ii) (W1 ∩W2)⊥ ⊇W⊥1 +W⊥2 .

Inoltre, se V ha dimensione finita, nella (ii) vale l’uguaglianza.

Dimostrazione. (i) Sia v ∈ (W1+W2)⊥. Si ha g(v, w) = 0 per ogni w ∈W1+W2

e dunque anche g(v, w1) = 0 e g(v, w2) = 0, per ogni w1 ∈ W1 e ogni w2 ∈ W2.
Ciò dimostra che v ∈W⊥1 ∩W⊥2 .

Viceversa, supponiamo che v appartenga a W⊥1 ∩W⊥2 , cioè che sia g(v, w1) =
0 e g(v, w2) = 0, per ogni w1 ∈W1 e ogni w2 ∈W2. Ricordando che ogni vettore
w ∈W1 +W2 si scrive nella forma w = w1 +w2, con w1 ∈W1 e w2 ∈W2, si ha
g(v, w) = g(v, w1) + g(v, w2) = 0, il che dimostra che v ∈ (W1 +W2)⊥.

(ii) Sia v ∈ W⊥1 +W⊥2 . Allora si ha v = v1 + v2, con v1 ∈ W⊥1 e v2 ∈ W⊥2 .
Per ogni w ∈ W1 ∩W2 si ha dunque g(v, w) = g(v1, w) + g(v2, w) = 0, quindi
v ∈ (W1 ∩W2)⊥, come volevasi dimostrare.

Infine, se V ha dimensione finita, poniamo n = dimV , m1 = dimW1 e
m2 = dimW2. Dalla Proposizione 5.4.5 segue che

dimW⊥1 = n−m1

dimW⊥2 = n−m2

dim(W1 ∩W2)⊥ = n− dim(W1 ∩W2).

Per la formula di Grassmann, si ha

dim(W⊥1 +W⊥2 ) = dimW⊥1 + dimW⊥2 − dim(W⊥1 ∩W⊥2 )

= 2n−m1 −m2 − dim(W⊥1 ∩W⊥2 ).
(5.4.2)

Per il punto (i) si ha

dim(W⊥1 ∩W⊥2 ) = dim(W1 +W2)⊥

= n− dim(W1 +W2)

e dunque, usando ancora la formula di Grassmann, si trova

dim(W⊥1 ∩W⊥2 ) = n−m1 −m2 + dim(W1 ∩W2).

Sostituendo nella (5.4.2) si trova infine

dim(W⊥1 +W⊥2 ) = n− dim(W1 ∩W2) = dim(W1 ∩W2)⊥.

Dall’inclusione (ii) e dall’uguaglianza delle dimensioni dei due sottospazi si
deduce che vale l’uguaglianza (W1 ∩W2)⊥ = W⊥1 +W⊥2 .

5.4.1 Cambiamenti di base

La matrice associata a una forma bilineare g, definita su uno spazio vettoriale
di dimensione finita V , dipende dalla scelta di una base di V . In questa sezione
ci proponiamo di descrivere come cambia la matrice di g in corrispondenza di
un cambiamento della base di V .

Consideriamo quindi uno spazio vettoriale V di dimensione n su K e una
forma bilineare g su V . Siano v = {v1, . . . , vn} e v′ = {v′1, . . . , v′n} due basi di V
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e indichiamo con G = (gij) la matrice di g rispetto alla base v e con G′ = (g′ij)
la matrice di g rispetto alla base v′. Ricordiamo che ciò significa che

gij = g(vi, vj), e g′ij = g(v′i, v
′
j),

per ogni j = 1, . . . , n.
Indichiamo con αv : V ∼→ Kn l’isomorfismo che associa ad ogni vettore

v ∈ V la n-upla (x1, . . . , xn) delle sue componenti rispetto alla base v e con
αv′ : V ∼→ Kn l’isomorfismo che associa ad ogni v ∈ V la n-upla (x′1, . . . , x

′
n)

delle sue componenti rispetto alla base v′.
Componendo αv′ con l’inverso dell’isomorfismo αv otteniamo un isomorfismo

di Kn in sé, il quale corrisponde alla moltiplicazione per una qualche matrice
P ∈ Mn(K). Indicheremo questo isomorfismo con FP : Kn ∼→ Kn. Si ottiene
cos̀ı il seguente diagramma commutativo:

V
αv

}}||
||

||
|| αv′

!!C
CC

CC
CC

C

Kn
FP

// Kn

Facciamo notare che la matrice P è invertibile, dato che la corrispondente
applicazione lineare FP è un isomorfismo.

Vediamo ora di ottenere una descrizione più esplicita della matrice P . Ri-
cordiamo che le colonne di P sono date dalle immagini, tramite l’isomorfismo
FP , dei vettori della base canonica di Kn. Sia ej = t(0, . . . , 0, 1, 0, . . . , 0) il j-
esimo vettore della base canonica di Kn (tutte le coordinate sono nulle tranne
la j-esima che è uguale a 1). Tramite l’isomorfismo αv, il vettore ej ∈ Kn

corrisponde al j-esimo vettore vj della base v di V . Si ha quindi

FP (ej) = αv′(α−1
v (ej)) = αv′(vj),

dove ricordiamo che αv′(vj) ∈ Kn è il vettore costituito dalle componenti del
vettore vj calcolate rispetto alla base v′; questo vettore è la j-esima colonna di
P .

In conclusione, possiamo affermare che le colonne della matrice P non sono
altro che le componenti dei vettori v1, . . . , vn della base v di V calcolate rispetto
alla seconda base v′. Con un analogo ragionamento, scambiando i ruoli delle
due basi, si potrebbe dimostrare che le colonne della matrice inversa P−1 sono
precisamente le componenti dei vettori v′1, . . . , v

′
n della base v′ di V calcolate

rispetto alla prima base v.
In dettaglio, se X = t(x1, x2, . . . , xn) è il vettore costituito dalle componenti

di un vettore v rispetto alla base v e se X ′ = t(x′1, x
′
2, . . . , x

′
n) è il vettore

costituito dalle componenti dello stesso vettore v rispetto alla base v′, si ha

v =
n∑
j=1

xjvj =
n∑
i=1

x′iv
′
i, X ′ = PX.
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Si ha pertanto x′i =
∑n
j=1 pijxj , da cui si ricava

n∑
j=1

xjvj =
n∑
i=1

x′iv
′
i

=
n∑
i=1

( n∑
j=1

pijxj

)
v′i

=
n∑

i,j=1

pijxjv
′
i

=
n∑
j=1

xj

( n∑
i=1

pijv
′
i

)
da cui si deduce che

vj =
n∑
i=1

pijv
′
i.

Siamo ora in grado di determinare la relazione esistente tra le due matrici G e
G′ di g. Si ha infatti:

gij = g(vi, vj)

= g
( n∑
h=1

phiv
′
h,

n∑
k=1

pkjv
′
k

)
=

n∑
h,k=1

phipkjg(v′h, v
′
k)

=
n∑

h,k=1

phig
′
hkpkj .

Questa uguaglianza può essere riscritta in termini di matrici come segue:

G = tPG′P. (5.4.3)

Un metodo alternativo per ricavare quest’ultima formula è il seguente. In-
dichiamo con X = t(x1, x2, . . . , xn) e Y = t(y1, y2, . . . , yn) i vettori costituiti
dalle componenti di v e w rispetto alla base v e con X ′ = t(x′1, x

′
2, . . . , x

′
n) e

Y ′ = t(y′1, y
′
2, . . . , y

′
n) i vettori costituiti dalle componenti di v e w rispetto alla

base v′. Si ha pertanto:

g(v, w) = tXGY = tX ′G′Y ′, X ′ = PX, Y ′ = PY.

Sostituendo, si ottiene:

tXGY = tX ′G′Y ′ = t(PX)G′(PY ) = tXtPG′PY.

Poiché questa uguaglianza vale per ogni v, w ∈ V , cioè per ogni X,Y ∈ Kn, si
deduce che deve sussistere l’uguaglianza (5.4.3).

Diamo ora la seguente definizione:
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Definizione 5.4.9. Due matrici quadrate G e G′ di ordine n a coefficienti
in K si dicono congruenti se esiste una matrice invertibile P ∈ Mn(K) (cioè
P ∈ GLn(K)) tale che

G = tPG′P.

Da quanto sopra detto si deduce il seguente risultato:

Corollario 5.4.10. Due matrici G,G′ ∈Mn(K) rappresentano la stessa forma
bilineare g definita su uno spazio vettoriale V di dimensione n su K, rispetto a
basi diverse, se e solo se esse sono congruenti.

Osservazione 5.4.11. Si verifica facilmente che la relazione di congruenza è una
relazione di equivalenza sull’insieme Mn(K) delle matrici quadrate di ordine n
a coefficienti in K.

Terminiamo questa sezione estendendo alle matrici la Definizione 5.3.21 data
per le forme bilineari simmetriche:

Definizione 5.4.12. Sia G ∈ Mn(R) una matrice simmetrica e sia g : Rn ×
Rn → R la corrispondente forma bilineare simmetrica (cioè la forma bilineare
la cui matrice, rispetto alla base canonica di Rn, è G). La matrice G è detta:

(i) definita positiva se g è definita positiva;

(ii) definita negativa se g è definita negativa;

(iii) semidefinita positiva se g è semidefinita positiva;

(iv) semidefinita negativa se g è semidefinita negativa;

(v) indefinita se g è indefinita.

5.4.2 Basi ortogonali e ortonormali

In questa sezione dimostreremo che ogni spazio vettoriale reale V di dimensio-
ne finita, dotato di una forma bilineare simmetrica definita positiva, ammette
una base ortonormale. Descriveremo inoltre un procedimento che permette di
costruire una base ortonormale partendo da una base qualunque di V .

Iniziamo col dimostrare il seguente risultato:

Proposizione 5.4.13. Sia V uno spazio vettoriale reale e sia g una forma
bilineare simmetrica definita positiva su V . Se i vettori v1, v2, . . . , vr sono a due
a due ortogonali, essi sono anche linearmente indipendenti.

Dimostrazione. Consideriamo una combinazione lineare

λ1v1 + λ2v2 + · · ·+ λrvr = 0.

Per ogni i = 1, . . . , r, si ha

g
(
vi,

r∑
j=1

λjvj

)
=

r∑
j=1

λj g(vi, vj) = λi g(vi, vi) = 0,

dato che g(vi, vj) = 0 per ogni i 6= j. Essendo g definita positiva, è g(vi, vi) >
0, quindi deve essere λi = 0. Questo dimostra che i vettori v1, . . . , vr sono
linearmente indipendenti.
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Possiamo ora dimostrare il seguente risultato:

Teorema 5.4.14. Ogni spazio vettoriale V di dimensione finita sul campo
dei numeri reali, dotato di una forma bilineare simmetrica definita positiva g,
possiede una base ortonormale.

Dimostrazione. Procediamo per induzione su n = dimV . Se n = 1 consideriamo
un vettore non nullo v ∈ V . Poiché g è definita positiva, si ha g(v, v) > 0,
quindi possiamo porre w = v/

√
g(v, v). Il vettore w è normalizzato, cioè si ha

g(w,w) = 1, e constituisce pertanto una base ortonormale di V .
Supponiamo quindi che il teorema valga per ogni spazio vettoriale reale di

dimensione n − 1 e proviamo che allora esso vale anche per spazi di dimensio-
ne n. Sia V uno spazio vettoriale di dimensione n, come nell’enunciato, e sia
v ∈ V un vettore non nullo. Consideriamo il sottospazio W = 〈v〉⊥ dotato della
forma bilineare simmetrica definita positiva indotta da g. Per la Proposizio-
ne 5.4.5, si ha dimW = n− 1 pertanto, per l’ipotesi induttiva, W possiede una
base ortonormale w1, . . . , wn−1. Poiché, per ipotesi, g è definita positiva, si ha
g(v, v) > 0; possiamo quindi porre wn = v/

√
g(v, v). È ora immediato verificare

che {w1, . . . , wn−1, wn} è una base ortonormale di V .

Descriviamo ora in dettaglio un metodo, noto come procedimento di ortonor-
malizzazione di Gram–Schmidt, che permette di costruire una base ortonormale
partendo da una base qualsiasi di V .

Consideriamo quindi uno spazio vettoriale V di dimensione n sul campo dei
numeri reali, dotato di una forma bilineare simmetrica definita positiva g. Sia
v = {v1, . . . , vn} una base qualunque di V . Poniamo w1 = v1 e cerchiamo un
vettore w2, ortogonale a w1, della forma w2 = α1w1 +v2 (notiamo che, in questo
modo, il sottospazio vettoriale generato da w1 e w2 coincide con quello generato
da v1 e v2). La condizione di ortogonalità tra w1 e w2 si esprime ponendo
g(w1, w2) = 0. Si ha pertanto

g(w1, w2) = g(w1, α1w1 + v2) = α1g(w1, w1) + g(w1, v2) = 0,

da cui si ottiene

α1 = − g(w1, v2)
g(w1, w1)

.

Il vettore cercato è quindi

w2 = v2 −
g(w1, v2)
g(w1, w1)

w1. (5.4.4)

Cerchiamo ora un vettore w3, ortogonale al sottospazio generato da w1 e w2,
della forma w3 = α1w1 + α2w2 + v3. Imponendo che w3 sia ortogonale a w1

e w2, si ottengono le equazioni g(w1, w3) = 0 e g(w2, w3) = 0. Sviluppando i
calcoli, si trova:

g(w1, w3) = g(w1, α1w1 + α2w2 + v3)
= α1g(w1, w1) + α2g(w1, w2) + g(w1, v3)
= α1g(w1, w1) + g(w1, v3) = 0,

g(w2, w3) = g(w2, α1w1 + α2w2 + v3)
= α1g(w2, w1) + α2g(w2, w2) + g(w2, v3)
= α2g(w2, w2) + g(w2, v3) = 0,
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da cui si ottiene

α1 = − g(w1, v3)
g(w1, w1)

, α2 = − g(w2, v3)
g(w2, w2)

.

Il vettore cercato è quindi

w3 = v3 −
g(w1, v3)
g(w1, w1)

w1 −
g(w2, v3)
g(w2, w2)

w2. (5.4.5)

Continuando in questo modo, si ottiene una base ortogonale {w1, w2, . . . , wn} di
V . Più precisamente, supponiamo (per ipotesi induttiva) di aver già costruito
i vettori w1, w2, . . . , wr−1, che sono tra essi a due a due ortogonali. Cerchiamo
allora un vettore wr, della forma

wr = α1w1 + α2w2 + · · ·αr−1wr−1 + vr,

ortogonale al sottospazio generato da w1, . . . , wr−1 (notiamo che, in questo mo-
do, il sottospazio generato dai vettori w1, . . . , wr coincide con il sottospazio
generato dai vettori v1, . . . , vr). Per ogni i = 1, . . . , r − 1, la condizione di
ortogonalità tra wr e wi fornisce la seguente equazione

g(wi, wr) = g
(
wi,

r−1∑
j=1

αjwj + vr

)

=
r−1∑
j=1

αjg(wi, wj) + g(wi, vr)

= αig(wi, wi) + g(wi, vr) = 0,

da cui si ricava

αi = − g(wi, vr)
g(wi, wi)

.

Il vettore wr cercato è quindi dato da:

wr = vr −
g(w1, vr)
g(w1, w1)

w1 −
g(w2, vr)
g(w2, w2)

w2 − · · · −
g(wr−1, vr)
g(wr−1, wr−1)

wr−1.

Gli n vettori w1, . . . , wn cos̀ı costruiti sono a due a due ortogonali, quindi so-
no linearmente indipendenti (vedi Proposizione 5.4.13); essi sono pertanto una
base ortogonale di V . Per ottenere una base ortonormale non rimane altro che
normalizzare i vettori trovati. A tal fine è sufficiente porre

w′i =
wi√

g(wi, wi)
,

per ogni i = 1, . . . , n (ancora una volta, ciò è possibile perché si è supposto
che g sia definita positiva). I vettori w′1, . . . , w

′
n cos̀ı costruiti sono una base

ortonormale di V .
Se indichiamo con G la matrice di g rispetto alla base v = {v1, . . . , vn} di V

e con G′ la matrice di g rispetto alla base w′ = {w′1, . . . , w′n}, si ha

G′ = tPGP,
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ove P è la matrice di cambiamento di base, cioè la matrice le cui colonne sono le
componenti dei vettori w′1, . . . , w

′
n della nuova base, rispetto ai vettori v1, . . . , vn

della base originale di V . Dato che w′ = {w′1, . . . , w′n} è una base ortonormale,
si ha

g′ij = g(w′i, w
′
j) =

{
1 se i = j,
0 se i 6= j,

quindi G′ è la matrice identica.
Osservazione 5.4.15. Si noti che ogni vettore w′j della base ortonormale w′ si
scrive come combinazione lineare dei vettori v1, v2, . . . , vj della base v. Ciò
significa che, nella matrice di cambiamento di base P , tutti gli elementi sotto la
diagonale principale sono nulli; P è quindi una matrice triangolare superiore.

Possiamo riassumere quanto detto finora nella seguente proposizione:

Proposizione 5.4.16. Sia G ∈Mn(R) una matrice simmetrica definita positi-
va. Esiste una matrice invertibile P ∈ Mn(R) tale che tPGP = 1. Inoltre, tale
matrice P può essere scelta triangolare superiore.

Esempio 5.4.17. Applichiamo ora su un esempio concreto il metodo di orto-
normalizzazione di Gram–Schmidt descritto in precedenza. Sia V uno spazio
vettoriale reale di dimensione 4 e sia g la forma bilineare simmetrica su V di
matrice

G =


4 2 −2 2
2 10 −7 −2
−2 −7 6 3
2 −2 3 10


rispetto alla base v = {v1, v2, v3, v4} di V . Ci proponiamo di costruire una base
ortonormale di V .

Iniziamo ponendo w1 = v1. Si ha

g(w1, w1) = g(v1, v1) = 4, g(w1, v2) = g(v1, v2) = 2,

quindi, dalla formula (5.4.4), otteniamo

w2 = v2 −
g(w1, v2)
g(w1, w1)

w1 = v2 −
1
2
v1.

Ora si ha:

g(w1, v3) = g(v1, v3) = −2,

g(w2, v3) = g
(
v2 −

1
2
v1, v3

)
= g(v2, v3)− 1

2
g(v1, v3) = −6,

g(w2, w2) = g
(
v2 −

1
2
v1, v2 −

1
2
v1

)
= g(v2, v2)− g(v2, v1) +

1
4
g(v1, v1) = 9.

Dalla formula (5.4.5) si ricava

w3 = v3 −
g(w1, v3)
g(w1, w1)

w1 −
g(w2, v3)
g(w2, w2)

w2 = v3 +
1
6
v1 +

2
3
v2.

Infine, in modo del tutto analogo, si ha

w4 = v4 −
g(w1, v4)
g(w1, w1)

w1 −
g(w2, v4)
g(w2, w2)

w2 −
g(w3, v4)
g(w3, w3)

w3.
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Sviluppando i calcoli, si trova

g(w1, v4) = 2
g(w3, v4) = 2

g(w2, v4) = −3
g(w3, w3) = 1,

da cui si ricava
w4 = −v1 − v2 − 2v3 + v4.

Calcoliamo infine g(w4, w4):

g(w4, w4) = g(−v1 − v2 − 2v3 + v4,−v1 − v2 − 2v3 + v4) = 4.

Ora non rimane altro che normalizzare i vettori trovati:

w′1 =
w1√

g(w1, w1)
=
w1√

4
=

1
2
v1,

w′2 =
w2√

g(w2, w2)
=
w2√

9
= −1

6
v1 +

1
3
v2,

w′3 =
w3√

g(w3, w3)
=
w3√

1
=

1
6
v1 +

2
3
v2 + v3,

w′4 =
w4√

g(w4, w4)
=
w4√

4
= −1

2
v1 −

1
2
v2 − v3 +

1
2
v4.

La matrice di cambiamento di base è quindi

P =


1
2 − 1

6
1
6 − 1

2

0 1
3

2
3 − 1

2

0 0 1 −1
0 0 0 1

2


che, come si vede, è triangolare superiore. È ora immediato verificare che
tPGP = 1.

5.5 Classificazione delle forme bilineari simmetriche
reali

In questa sezione ci occuperemo dello studio e della classificazione delle forme
bilineari simmetriche definite su uno spazio vettoriale reale di dimensione finita.

Sia dunque V uno spazio vettoriale di dimensione n sul campo R dei numeri
reali e sia g una forma bilineare simmetrica definita su V . Per la Proposizio-
ne 5.3.8, esiste un sottospazio vettoriale U di V tale che V = Ker(g) ⊕ U e
tale che la restrizione di g a U × U sia una forma bilineare non degenere. Ciò
significa che è sempre possibile scegliere una base {v1, . . . , vk, vk+1, . . . , vn} di
V (ove {v1, . . . , vk} è una base di Ker(g)) rispetto alla quale la matrice G di g
sia una matrice a blocchi del tipo

G =

 0k,k 0k,n−k

0n−k,k GU


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ove 0r,s indica la matrice nulla con r righe e s colonne mentre GU è la matrice
della restrizione di g al sottospazio U generato dai vettori {vk+1, . . . , vn}. Per
classificare le forme bilineari simmetriche è quindi sufficiente classificare quelle
non degeneri. Descriveremo ora la classificazione reale di tali forme.

Sia dunque g una forma bilineare simmetrica non degenere su uno spazio
vettoriale reale V . Se g è definita positiva il procedimento di Gram–Schmidt
permette di costruire una base ortonormale di V . Rispetto a tale base la matrice
di g è la matrice identica. Se g è definita negativa allora −g è definita positiva.
Da ciò si deduce che esiste una base di V rispetto a cui la matrice di g è l’opposto
della matrice identica. Poiché g è supposta non degenere, rimane dunque solo
da studiare il caso in cui g è indefinita, cioè il caso in cui esistono dei vettori v
tali che g(v, v) > 0 e dei vettori w tali che g(w,w) < 0.

L’idea per trattare tale caso è la seguente: si parte da una base qualsiasi di
V e si usa un metodo simile al procedimento di Gram–Schmidt per costruire una
base ortogonale di V . La matrice di g rispetto ad una tale base sarà dunque
diagonale. Ogni elemento diagonale positivo α > 0 può essere reso uguale
a 1 dividendo il corrispondente vettore di base per

√
α, mentre ogni elemento

diagonale negativo β < 0 può essere reso uguale a −1 dividendo il corrispondente
vettore di base per

√
−β; non ci possono essere elementi diagonali nulli perché

la forma g è non degenere. In questo modo si ottiene una base di V rispetto alla
quale la matrice di g è una matrice diagonale, in cui gli elementi sulla diagonale
sono 1 o −1.

Teorema 5.5.1 (Teorema di Sylvester). Siano V uno spazio vettoriale
reale di dimensione n e g : V × V → R una forma bilineare simmetrica non
degenere. Esiste una base di V rispetto alla quale la matrice di g è una matrice
a blocchi del tipo  1r,r 0r,s

0s,r −1s,s


ove r+s = n e ove 1r,r indica la matrice identica di ordine r e −1s,s è l’opposto
della matrice identica di ordine s. Inoltre i numeri r ed s (i numeri di 1 e −1
sulla diagonale) sono univocamente determinati (dipendono solo da g e non
dalla base scelta). La coppia (r, s) è detta la segnatura della forma g, mentre
la differenza r − s è anche detta l’ indice d’inerzia di g.

Dimostrazione. Per quanto detto in precedenza l’enunciato del teorema è ba-
nalmente verificato se g è definita positiva o negativa. Supponiamo quindi che
g sia indefinita. In tal caso esiste un vettore v ∈ V tale che g(v, v) = α > 0. Se
poniamo v1 = v/

√
α, si ha g(v1, v1) = 1. Sia W = 〈v1〉⊥; si ha dimW = n− 1.

Se {w2, . . . , wn} è una base di W , i vettori {v1, w2, . . . , wn} sono una base di V ,
rispetto alla quale la matrice G di g è una matrice a blocchi del tipo

G =

 1 01,n−1

0n−1,1 GW


ove GW è la matrice della restrizione di g a W (rispetto alla base di W indicata).
Ora basta ripetere il ragionamento appena descritto applicandolo alla restrizione
di g a W (in alternativa, si ragioni per induzione sulla dimensione di V ).
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Questo dimostra l’esistenza di una base di V rispetto alla quale la matrice
di g ha la forma voluta. Rimane ora da dimostrare l’unicità dei numeri r e s,
ovvero la loro indipendenza dalla particolare base scelta.

Supponiamo che esistano due basi {v1, . . . , vn} e {v′1, . . . , v′n} di V rispetto
alle quali le matrici di g siano

G =

 1r,r 0r,s

0s,r −1s,s

 , G′ =

1r′,r′ 0r′,s′

0s′,r′ −1s′,s′


con r + s = r′ + s′ = n.

PoniamoW+ = 〈v1, . . . , vr〉, W− = 〈vr+1, . . . , vn〉, Z+ = 〈v′1, . . . , v′r′〉, Z− =
〈v′r′+1, . . . , v

′
n〉. Si ha dimW+ = r, dimW− = s, dimZ+ = r′, dimZ− = s′,

V = W+ ⊕W− = Z+ ⊕ Z−,

inoltre la restrizione di g a W+ e Z+ è definita positiva, mentre g ristretta a
W− e Z− è definita negativa.

Supponiamo, per assurdo, che sia r < r′. Ogni vettore v′i (i = 1, . . . , r′) della
base di Z+ si può scrivere (in modo unico) nella forma

v′i = ui + wi,

con ui ∈W+ e wi ∈W−.
Dato che r′ > r = dimW+, i vettori u1, . . . , ur′ devono essere linearmente

dipendenti. Si ha quindi

λ1u1 + · · ·+ λr′ur′ = 0,

con λ1, . . . , λr′ non tutti nulli.
Sia z = λ1v

′
1 + · · · + λr′v

′
r′ . Allora z 6= 0, perché i λj non sono tutti nulli

e i vettori {v′1, . . . , v′r′} sono una base di Z+, quindi g(z, z) > 0 (perché la
restrizione di g a Z+ è definita positiva). Tuttavia si ha

z = λ1v
′
1 + · · ·+ λr′v

′
r′

= λ1(u1 + w1) + · · ·+ λr′(ur′ + wr′)

= λ1w1 + · · ·+ λr′wr′ ∈W−

quindi g(z, z) < 0, perché la restrizione di g a W− è definita negativa. Siamo
cos̀ı arrivati ad un assurdo, che nasce dall’aver supposto r′ > r. Deve quindi
essere r′ ≤ r.

Ripetendo il ragionamento dopo aver scambiato i ruoli di r e r′, si conclude
che deve anche essere r ≤ r′, il che dimostra l’uguaglianza r = r′ (e quindi
anche s = s′).

Possiamo riassumere quanto visto finora nel seguente risultato:

Teorema 5.5.2. Sia V uno spazio vettoriale di dimensione n sul campo R dei
numeri reali e sia g : V × V → R una forma bilineare simmetrica. Esiste una
base di V rispetto alla quale la matrice di g è una matrice a blocchi del tipo

0k,k 0k,r 0k,s

0r,k 1r,r 0r,s

0s,k 0s,r −1s,s


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ove k = dim Ker(g) e k + r + s = n. Gli interi k, r e s sono unicamente
determinati e r+ s coincide con il rango della matrice di g rispetto ad una base
qualunque di V .

Dimostrazione. L’unica affermazione che non è stata ancora dimostrata è quella
che identifica r+s con il rango di una matrice di g rispetto a una base qualunque
di V . Ciò discende dal fatto che il rango della matrice indicata nell’enuncia-
to è precisamente r + s e che due diverse matrici G e G′ di g sono collegate
dall’uguaglianza G′ = tPGP , per una qualche matrice invertibile P . Basta ora
osservare che moltiplicare una matrice G a destra oppure a sinistra per una
matrice invertibile non ne modifica il rango.

Vediamo ora alcuni esempi concreti di applicazione di quanto precedente-
mente descritto.

Esercizio 1. Sia V uno spazio vettoriale reale e sia g la forma bilineare
simmetrica di matrice

G =

0 2 1
2 3 −1
1 −1 2


rispetto alla base {v1, v2, v3} di V . Si determini una base di V rispetto alla
quale la matrice di g sia diagonale, con soli elementi 1 e −1 sulla diagonale.

Soluzione. Utilizziamo un analogo del procedimento di Gram–Schmidt. Os-
serviamo tuttavia che il vettore v1 è isotropo, pertanto non possiamo prendere
come primo vettore v′1 della nuova base un suo multiplo. Per ovviare a questo
inconveniente è sufficiente scambiare tra loro i vettori v1 e v2 della base data ed
applicare il procedimento di ortogonalizzazione partendo dunque da v2. Dato
che g(v2, v2) = 3, bisognerà porre v′1 = v2/

√
3. Si ha cos̀ı g(v′1, v

′
1) = 1. Conti-

nuando, poniamo v′′2 = αv′1 + v1 ed imponiamo che sia g(v′1, v
′′
2 ) = 0. Si trova

allora α = −g(v′1, v1) = −2/
√

3, e quindi v′′2 = −2/
√

3 v′1 + v1 = − 2
3 v2 + v1.

Dato che si ha g(v′′2 , v
′′
2 ) = − 4

3 , e dato che
√
− 4

3 non esiste in R, dovremo porre

v′2 = v′′2/
√

4
3 =

√
3

2 v′′2 = −
√

3
3 v2 +

√
3

2 v1, ottenendo però g(v′2, v
′
2) = −1.

Per trovare il terzo e ultimo vettore della base, poniamo v′′3 = αv′1 +βv′2 +v3

ed imponiamo che g(v′1, v
′′
3 ) = 0 e g(v′2, v

′′
3 ) = 0. Si ottiene cos̀ı α = −g(v′1, v3) =

1/
√

3 e β = g(v′2, v3) = 5
√

3/6 (attenzione che in questo caso si ha g(v′2, v
′
2) =

−1). Si ha dunque v′′3 = 1√
3
v′1 + 5

√
3

6 v′2 + v3 = − 1
2 v2 + 5

4 v1 + v3. Si ha allora
g(v′′3 , v

′′
3 ) = 15/4 e quindi si deve porre v′3 = 2√

15
v′′3 = 5

2
√

15
v1− 1√

15
v2 + 2√

15
v3,

ottenendo cos̀ı g(v′3, v
′
3) = 1.

La matrice di g nella base {v′1, v′2, v′3} è dunque

G′ =

1 0 0
0 −1 0
0 0 1

 .

Per terminare possiamo osservare che si ha

G′ = tPGP,
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ove la matrice di cambiamente di base P è la matrice le cui colonne sono le
componenti dei vettori v′1, v′2 e v′3 rispetto alla base {v1, v2, v3}. Si ha dunque

P =


0

√
3

2
5

2
√

15

1√
3
−
√

3
3 − 1√

15

0 0 2√
15

 =


0

√
3

2

√
15
6

√
3

3 −
√

3
3 −

√
15

15

0 0 2
√

15
15

 .

Esercizio 2. Sia V uno spazio vettoriale reale di dimensione 3, e indichiamo
con {v1, v2, v3} una sua base. Si consideri la forma bilineare simmetrica g di
matrice

G =

−3 1 0
1 2 −1
0 −1 −1

 ,

rispetto alla base data.

(i) Si verifichi che g è non degenere e si determini una base ortogonale di V
relativamente a g.

(ii) Si calcoli l’indice d’inerzia i(g).

(iii) Si dica se esistono vettori isotropi non nulli relativamente a g e, in caso
affermativo, si determini un sottospazio isotropo di dimensione massima.

Soluzione. (i) Si ha

detG = −3
∣∣∣∣ 2 −1
−1 −1

∣∣∣∣− ∣∣∣∣1 −1
0 −1

∣∣∣∣ = 10,

quindi g è non degenere.
Procediamo quindi alla determinazione di una base ortogonale. Poniamo

w1 = v1; si ha g(w1, w1) = −3. Si noti che non è necessario normalizzare i
vettori della nuova base, perché è richiesta solo una base ortogonale.

Osservando la matrice G si nota che il vettore v3 è ortogonale a w1, quindi
come secondo vettore della base ortogonale possiamo prendere w2 = v3; si ha
quindi g(w2, w2) = −1.

Rimane ora solo da determinare un terzo vettore w3 ortogonale ai due prece-
denti. Poniamo w3 = λ1v1 +λ2v2 +λ3v3 ed imponiamo a w3 di essere ortogonale
a w1 e w2. Si ottiene il seguente sistema:{

g(w1, w3) = −3λ1 + λ2 = 0
g(w2, w3) = −λ2 − λ3 = 0,

da cui si ricava {
λ1 = − 1

3 λ3

λ2 = −λ3.

Ponendo, ad esempio, λ3 = 3, si ottiene il vettore w3 = −v1 − 3v2 + 3v3. Si
trova ora g(w3, w3) = 30, da cui si deduce che la matrice di g rispetto alla base
ortogonale {w1, w2, w3} è −3 0 0

0 −1 0
0 0 30

 .
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(ii) Osservando la matrice appena trovata si scopre che la restrizione di g al
sottospazio 〈w1, w2〉, generato da w1 e w2, è definita negativa, mentre la restri-
zione di g al sottospazio generato da w3 è definita positiva. Si deduce quindi
che l’indice d’inerzia di g è dato da i(g) = 1− 2 = −1.
(iii) Dato che g è indefinita, esistono sicuramente dei vettori isotropi non nulli.
Ad esempio, se consideriamo un vettore w = λ1w1 +λ2w2 +λ3w3, la condizione
che w sia isotropo è

g(w,w) = −3λ2
1 − λ2

2 + 30λ2
3 = 0,

che ha ovviamente soluzioni reali non nulle.
Sia dunque U un sottospazio isotropo; si ha quindi U ⊂ U⊥, e dimU⊥ =

3 − dimU . Da ciò si deduce che U può avere al più dimensione 1. Quindi
per determinare un sottospazio isotropo di dimensione massima è sufficiente
trovare un vettore isotropo non nullo; ad esempio il vettore w =

√
30w2 +w3. Il

sottospazio U = 〈w〉 è pertanto un sottospazio isotropo di dimensione massima
(ovviamente tale sottospazio non è unico).

Esercizio 3. Sullo spazio vettoriale R4 si consideri la forma bilineare simmetrica
g di matrice

G =


0 2 −2 0
2 0 1 −3
−2 1 0 −1
0 −3 −1 0


rispetto alla base canonica.

(i) Si determini l’indice d’inerzia di g.

(ii) Si determini, se esiste, una base di R4 rispetto a cui g ha matrice
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(iii) Si determini, se esiste, una base di R4 rispetto a cui g ha matrice

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


(iv) Si determini, se esiste, una base di R4 rispetto a cui g ha matrice

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


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Soluzione. (i) Per determinare l’indice d’inerzia cerchiamo innanzitutto una ba-
se ortogonale (dato che sarà utile anche nel seguito). Indichiamo con {e1, . . . , e4}
la base canonica di R4. In questo caso tutti e quattro i vettori della base cano-
nica sono isotropi, quindi non possiamo prendere nessuno di questi come primo
vettore di una base ortogonale. Prendiamo allora v1 = e1 + e2; questo vettore
non è isotropo, dato che si ha g(v1, v1) = 2g(e1, e2) = 4.

Come secondo vettore si vede immediatamente che si può prendere v2 =
e1− e2, dato che esso è ortogonale a v1: g(v1, v2) = 0. Si ha poi g(v2, v2) = −4.

A questo punto possiamo prendere

v3 = λ1v1 + λ2v2 + e3,

ed imporre che g(v1, v3) = g(v2, v3) = 0. Si trova allora λ1 = 1
4 e λ2 = − 3

4 . Si
ha quindi

v3 = 1
4 v1 − 3

4 v2 + e3 = − 1
2 e1 + e2 + e3,

da cui si ottiene g(v3, v3) = 2. Analogamente, ponendo

v4 = λ1v1 + λ2v2 + λ3v3 + e4,

ed imponendo che g(v1, v4) = g(v2, v4) = g(v3, v4) = 0, si trova λ1 = 3
4 , λ2 = 3

4
e λ3 = 2, da cui si ottiene

v4 = 3
4 v1 + 3

4 v2 + 2v3 + e4 = 1
2 e1 + 2e2 + 2e3 + e4,

e g(v4, v4) = −8. La matrice di g rispetto alla base {v1, . . . , v4} è quindi
4 0 0 0
0 −4 0 0
0 0 2 0
0 0 0 −8


da cui si deduce che l’indice d’inerzia di g è i(g) = 2− 2 = 0.

(ii) Dato che, come si verifica immediatamente, la matrice
(

0 1
1 0

)
ha indice

d’inerzia 0, si deduce che la matrice
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


ha indice d’inerzia 2+0 = 2, che è diverso dall’indice d’inerzia di g. Dal teorema
di Sylvester segue allora che non esiste una base di R4 rispetto a cui g abbia la
matrice indicata.
(iii) Da quanto detto sopra segue che la matrice

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


ha indice d’inerzia 0 + 0 = 0, che coincide con l’indice d’inerzia di g. Il teorema
di Sylvester afferma allora che esiste una base di R4 rispetto a cui g abbia la
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matrice indicata. Ricordando la matrice di g rispetto alla base {v1, . . . , v4}
trovata in precedenza, è facile vedere che ponendo, ad esempio, w1 = v1 + v2,
w2 = 1

4 (v1−v2), w3 = v3 + 1
2 v4 e w4 = 1

4 (v3− 1
2 v4), si ottiene una base rispetto

alla quale la matrice di g coincide con la matrice in questione.
(iv) Da quanto visto in precedenza segue che la matrice

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


ha indice d’inerzia 0 − 2 = −2, che è diverso dall’indice d’inerzia di g. Dal
teorema di Sylvester segue allora che non esiste una base di R4 rispetto a cui g
abbia la matrice indicata.

5.6 Isometrie

Siano (V, g) e (W,h) due spazi vettoriali sul campo K dotati di due forme
bilineari simmetriche

g : V × V → K, h : W ×W → K.

Definizione 5.6.1. Una funzione lineare f : V →W è compatibile con le forme
bilineari simmetriche g e h se, per ogni v1, v2 ∈ V , si ha

h
(
f(v1), f(v2)

)
= g(v1, v2). (5.6.1)

In tal caso diremo anche che f : (V, g) → (W,h) è un omomorfismo di spazi
vettoriali dotati di forme bilineari simmetriche.

La condizione di compatibilità (5.6.1) determina l’esistenza di alcune rela-
zioni tra i nuclei delle funzioni f , g e h. Più precisamente, si ha:

Lemma 5.6.2. Sia f : (V, g) → (W,h) un omomorfismo di spazi vettoriali
dotati di forme bilineari simmetriche. Valgono le seguenti inclusioni:

Ker f ⊆ f−1(Kerh) ⊆ Ker g. (5.6.2)

Dimostrazione. La prima inclusione è ovvia: se v ∈ Ker f è f(v) = 0, pertanto
h
(
f(v), w

)
= 0 per ogni w ∈W , quindi f(v) ∈ Kerh.

Dimostriamo ora la seconda inclusione. Per ogni v ∈ f−1(Kerh) e ogni
v′ ∈ V , si ha g(v, v′) = h

(
f(v), f(v′)

)
= 0, dato che f(v) ∈ Kerh. Si conclude

pertanto che v ∈ Ker g.

Da questo risultato discendono alcune interessanti conseguenze:

Corollario 5.6.3. Sia f : (V, g) → (W,h) un omomorfismo di spazi vettoriali
dotati di forme bilineari simmetriche. Allora:

(i) se h è non degenere, Ker f = f−1(Kerh);

(ii) se g è non degenere, si ha Ker f = f−1(Kerh) = {0}. In particolare, f è
iniettiva e la restrizione di h a Im(f)× Im(f) è non degenere;
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(iii) se g è non degenere e f è suriettiva, allora anche h è non degenere. Inoltre,
in tal caso, f è un isomorfismo di spazi vettoriali e f−1 : (W,h)→ (V, g)
è compatibile con le forme bilineari h e g.

Dimostrazione. Per dimostrare la proprietà (i) basta ricordare che h è non
degenere se e solo se Kerh = {0}.

(ii) Se g è non degenere, cioè se Ker g = {0}, la (5.6.2) si riduce a Ker f =
f−1(Kerh) = {0}, quindi f è iniettiva. Indicando con h̃ la restrizione di h
a Im(f) × Im(f), per ogni w1, w2 ∈ Im(f) si ha h̃(w1, w2) = g(v1, v2), ove
v1, v2 ∈ V sono tali che w1 = f(v1) e w2 = f(v2). Dato che g è non degenere si
conclude quindi che anche h̃ è non degenere.

Dimostriamo infine la proprietà (iii). Se f è suriettiva, si ha Im f = W
quindi, poiché g è non degenere, dalla (ii) segue che h è non degenere e che f è
iniettiva. La funzione f : V →W è quindi biiettiva e pertanto è un isomorfismo
di spazi vettoriali. Rimane solo da dimostrare che la sua inversa f−1 : W → V
è compatibile con le forme bilineari h e g. Siano dunque v1, v2 ∈ V e poniamo
w1 = f(v1) e w2 = f(v2). Si ha v1 = f−1(w1), v2 = f−1(w2) e quindi

g
(
f−1(w1), f−1(w2)

)
= g(v1, v2) = h

(
f(v1), f(v2)

)
= h(w1, w2).

Ciò dimostra che anche f−1 è un omomorfismo di spazi vettoriali dotati di forme
bilineari simmetriche.

Notiamo anche che, sotto opportune ipotesi, la condizione di compatibi-
lità (5.6.1) implica la linearità di f .

Proposizione 5.6.4. Siano (V, g) e (W,h) due spazi vettoriali dotati di forme
bilineari simmetriche e sia f : V → W una funzione qualunque (in particolare,
non stiamo supponendo che f sia lineare) che soddisfa l’uguaglianza (5.6.1), per
ogni v1, v2 ∈ V . Se h è non degenere e f è suriettiva, allora f è lineare.

Dimostrazione. Siano v1, v2 ∈ V e λ1, λ2 ∈ K. Vogliamo dimostrare che

f(λ1v1 + λ2v2) = λ1f(v1) + λ2f(v2).

Per ogni v ∈ V , si ha:

h
(
f(λ1v1 + λ2v2)− λ1f(v1)− λ2f(v2), f(v)

)
=

= h
(
f(λ1v1 + λ2v2), f(v)

)
− λ1h

(
f(v1), f(v)

)
− λ2h

(
f(v2), f(v)

)
= g(λ1v1 + λ2v2, v)− λ1g(v1, v)− λ2g(v2, v) = 0,

per la bilinearità di h e g. Poiché f è suriettiva e h è non degenere, da ciò segue
che

f(λ1v1 + λ2v2)− λ1f(v1)− λ2f(v2) = 0,

il che dimostra la linearità di f .

Vediamo ora come si esprime in termini di matrici la condizione di compa-
tibilità (5.6.1).

Proposizione 5.6.5. Siano (V, g) e (W,h) due spazi vettoriali dotati di for-
me bilineari simmetriche e sia f : V → W una funzione lineare. Siano v =
{v1, . . . , vn} e w = {w1, . . . , wm} basi di V e W rispettivamente. Indichiamo
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con A la matrice di f rispetto alle basi v e w, con G la matrice di g rispetto
alla base v e con H la matrice di h rispetto alla base w. Allora f è compatibile
con le forme bilineari g e h se e solo se

G = tAHA. (5.6.3)

Dimostrazione. Dalla definizione di matrice associata a un’applicazione lineare
segue che, per ogni vettore vi della base v, si ha

f(vi) =
m∑
r=1

ariwr.

Per ogni i, j = 1, . . . , n, la condizione di compatibilità (5.6.1) equivale a:

gij = g(vi, vj)

= h
(
f(vi), f(vj)

)
= h

( m∑
r=1

ariwr,
m∑
s=1

asjws

)
=

m∑
r,s=1

ariasjh(wr, ws)

=
m∑

r,s=1

ariasjhrs.

Questa uguaglianza, riscritta in termini di matrici, non è altro che la (5.6.3).

Specializzando questo risultato al caso in cui (W,h) = (V, g), si ottiene:

Corollario 5.6.6. Sia V uno spazio vettoriale sul campo K e sia g una forma
bilineare simmetrica definita su V . Indichiamo con G la matrice di g rispetto a
una base v = {v1, . . . , vn} di V . Un endomorfismo f di V , di matrice A rispetto
alla base v, è compatibile con la forma bilineare g se e solo se A soddisfa la
seguente uguaglianza:

G = tAGA.

Restringiamo ora la nostra attenzione al caso di spazi vettoriali dotati di forme
bilineari simmetriche non degeneri.

Definizione 5.6.7. Siano (V, g) e (W,h) due spazi vettoriali dotati di forme bi-
lineari simmetriche non degeneri. Una funzione lineare f : V →W compatibile
con le forme bilineari g e h è detta una isometria di V in W .

Osserviamo che, per il Corollario 5.6.3, f è necessariamente iniettiva, per-
tanto determina un isomorfismo di V con il sottospazio Im(f) di W .

Definizione 5.6.8. Due spazi vettoriali dotati di forme bilineari simmetriche
non degeneri (V, g) e (W,h) si dicono isometrici se esiste un’isometria di V su
tutto W , cioè se esiste un isomorfismo f : V ∼→ W compatibile con le forme
bilineari g e h.

Osservazione 5.6.9. Se f : (V, g) → (W,h) è un’isometria di V in W , lo spazio
vettoriale V è isometrico al sottospazio vettoriale Im(f) di W dotato della forma
bilineare simmetrica non degenere indotta, per restrizione, da h.
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Osservazione 5.6.10. Nel caso degli spazi vettoriali euclidei (cioè degli spazi
vettoriali reali dotati di forme bilineari simmetriche definite positive) le isometrie
preservano le lunghezze dei vettori e gli angoli tra vettori. Consideriamo infatti
due spazi vettoriali euclidei (V, g) e (W,h) e un’isometria f : V →W . Per ogni
v ∈ V , si ha:

‖f(v)‖ =
√
h
(
f(v), f(v)

)
=
√
g(v, v) = ‖v‖.

Inoltre, se indichiamo con φ l’angolo compreso tra due vettori v1, v2 ∈ V e con
φ′ l’angolo compreso tra le loro immagini f(v1), f(v2) ∈W , si ha

cosφ′ =
h
(
f(v1), f(v2)

)
‖f(v1)‖‖f(v2)‖

=
g(v1, v2)
‖v1‖‖v2‖

= cosφ.

È facile dimostrare che una qualunque funzione lineare f : V →W che preservi
la norma dei vettori è un’isometria. Infatti, dati v1, v2 ∈ V , si ha

‖v1 + v2‖2 = g(v1 + v2, v1 + v2)
= g(v1, v1) + 2g(v1, v2) + g(v2, v2)

= ‖v1‖2 + 2g(v1, v2) + ‖v2‖2.

Analogamente,

‖f(v1 + v2)‖2 = ‖f(v1) + f(v2)‖2

= h
(
f(v1) + f(v2), f(v1) + f(v2)

)
= h

(
f(v1), f(v1)

)
+ 2h

(
f(v1), f(v2)

)
+ h
(
f(v2), f(v2)

)
= ‖f(v1)‖2 + 2h

(
f(v1), f(v2)

)
+ ‖f(v2)‖2.

Poiché f , per ipotesi, preserva la norma dei vettori, si ha

‖f(v1)‖ = ‖v1‖, ‖f(v2)‖ = ‖v2‖, ‖f(v1 + v2)‖ = ‖v1 + v2‖.

Da ciò segue che si ha anche h
(
f(v1), f(v2)

)
= g(v1, v2), quindi f è un’isometria.

Abbiamo già osservato, nel Corollario 5.6.3, che se un’isometria f : V →W
è biiettiva, allora anche la sua inversa f−1 : W → V è un’isometria. Inoltre,
è immediato verificare che la composizione di due isometrie è anch’essa un’i-
sometria. Da queste osservazioni segue che l’insieme O(V, g) delle isometrie
f : V → V di uno spazio vettoriale V dotato di una forma bilineare simmetrica
non degenere g, rispetto alla legge di composizione, è un gruppo. Tale gruppo,
detto il gruppo delle isometrie o gruppo ortogonale di (V, g), è un sottogruppo
del gruppo GL(V ) di tutti gli automorfismi di V .

Consideriamo ora uno spazio vettoriale V dotato di una forma bilineare
simmetrica non degenere g, fissiamo una base v = {v1, . . . , vn} di V e indichiamo
conG la matrice di g rispetto alla base v. Come abbiamo visto, un endomorfismo
f : V → V è un’isometria se e solo se la sua matrice A, rispetto alla base v,
soddisfa l’uguaglianza tAGA = G. In termini di matrici, il gruppo delle isometrie
di (V, g) ha quindi la seguente espressione:

O(G) = {A ∈ GL(n) | tAGA = G}.

Dal Teorema di Binet segue che, per ogni A ∈ O(G), si ha

det(G) = det(tAGA) = det(G) det(A)2.
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Poiché g è non degenere si ha det(G) 6= 0, quindi deve essere det(A)2 = 1,
cioè det(A) = ±1. Si verifica facilmente che le isometrie con determinante 1
formano un sottogruppo (di indice 2) del gruppo di tutte le isometrie di (V, g).
Tale gruppo, indicato con SO(V, g), è detto il gruppo delle isometrie dirette,
o anche il gruppo speciale ortogonale, dello spazio vettoriale V dotato della
forma bilineare simmetrica g. In termini di matrici tale gruppo ha la seguente
descrizione:

SO(G) = {A ∈ GL(n) | tAGA = G, det(A) = 1}.

Se (V, g) è uno spazio vettoriale euclideo, il Teorema 5.4.14 garantisce l’esistenza
di una base ortonormale v = {v1, . . . , vn} di V . Rispetto a tale base la matrice
di g è la matrice identica, pertanto le matrici delle isometrie di (V, g) sono
caratterizzate dalla seguente equazione:

tAA = 1.

Il gruppo costituito da tali matrici è il gruppo ortogonale di ordine n

O(n) = {A ∈ GL(n) | tAA = 1}.

Una matrice A ∈ O(n), cioè una matrice quadrata A, di ordine n, tale che
tAA = 1 o, equivalentemente, tale che tA = A−1, è detta una matrice ortogonale.
Indicando con A(1), . . . , A(n) le colonne di A, l’equazione tAA = 1 equivale a

A(i) ·A(j) =

{
1 se i = j

0 se i 6= j,

il che significa che le colonne di A formano una base ortonormale di Rn, rispetto
al prodotto scalare usuale.

5.6.1 Isometrie di R2

Studiamo ora in dettaglio la struttura delle isometrie dello spazio vettoriale
euclideo R2, dotato del prodotto scalare usuale. Il gruppo di tali isometrie è il
gruppo ortogonale di ordine 2

O(2) = {A ∈ GL(2) | tAA = 1}.

Data una matrice

A =
(
a b
c d

)
,

la condizione tAA = 1 equivale al seguente sistema:
a2 + c2 = 1

b2 + d2 = 1
ab+ cd = 0.

Dall’equazione a2 + c2 = 1 si deduce che esiste un angolo α tale che

a = cosα, c = sinα.
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Analogamente, da b2 + d2 = 1 si deduce che esiste un angolo β tale che

b = sinβ, d = cosβ.

La terza equazione, ab+ cd = 0, diventa allora

cosα sinβ + sinα cosβ = sin(α+ β) = 0,

da cui si ottiene α+ β = kπ, cioè β = kπ−α, con k ∈ Z. Si ottengono cos̀ı due
diversi tipi di isometrie, a seconda che k sia pari o dispari. Più precisamente,
se k è pari la matrice A ha la forma seguente:(

cosα − sinα
sinα cosα

)
. (5.6.4)

Il determinante di questa matrice è pari a 1; si tratta quindi di una isometria
diretta. In termini geometrici, questa è la matrice di una rotazione del piano
R2, attorno all’origine, di un angolo α in senso antiorario. Le due colonne

u1 =
(

cosα
sinα

)
u2 =

(
− sinα
cosα

)
della matrice (5.6.4) sono infatti i trasformati dei vettori e1 ed e2 della ba-
se canonica di R2 mediante la suddetta rotazione, come indicato nella figura
seguente:

e1

e2

u1

u2

α

α

Se invece k è dispari, si ottengono matrici del tipo seguente:(
cosα sinα
sinα − cosα

)
(5.6.5)

Queste matrici hanno determinante pari a −1 e rappresentano pertanto delle
isometrie inverse. Geometricamente esse corrispondono a una riflessione del pia-
no rispetto all’asse delle ascisse, seguita da una rotazione, attorno all’origine, di
un angolo α in senso antiorario. La situazione è illustrata nella figura seguente:

e1

e2

−e2

u1

u2

α

α
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Come si vede facilmente da questa figura, i vettori u1 e u2, immagini dei vettori
e1 ed e2 della base canonica, hanno le seguenti coordinate:

u1 =
(

cosα
sinα

)
u2 =

(
sinα
− cosα

)
Essi coincidono quindi con le colonne della matrice (5.6.5).

Esercizi

Esercizio 5.1. Sia V uno spazio vettoriale sul campo complesso C con base
{v1, v2, v3} e sia g la forma bilineare simmetrica di matrice, rispetto alla base data,

G =

 2 3 −1
3 4 0
−1 0 1

 .

Si determini una matrice invertibile P tale che tPGP = 1.

Esercizio 5.2. Sia V uno spazio vettoriale sul campo dei numeri reali, con base
{v1, v2, v3}, e sia g la forma bilineare simmetrica di matrice, rispetto alla base data,

G =

0 2 1
2 3 −1
1 −1 2

 .

Si determini una base di V rispetto alla quale la matrice di g sia diagonale, con soli

elementi 1 e −1 sulla diagonale.

Esercizio 5.3. Sia V uno spazio vettoriale sul campo dei numeri reali, con base
{v1, v2, v3}, e sia g la forma bilineare simmetrica di matrice, rispetto alla base data,

G =

 0 2 −1
2 0 3
−1 3 0

 .

Si determini una base di V rispetto alla quale la matrice di g sia diagonale, con soli

elementi 1 e −1 sulla diagonale.

Esercizio 5.4. Sia V uno spazio vettoriale reale di dimensione 3, e sia {v1, v2, v3}
una sua base. Si consideri la forma bilineare simmetrica g di matrice

G =

−3 1 0
1 2 −1
0 −1 −1

 ,

rispetto alla base data.

(1) Si verifichi che g è non-degenere e si determini una base ortogonale di V relati-
vamente a g.

(2) Si calcoli l’indice d’inerzia i(g).

(3) Si dica se esistono vettori isotropi non nulli relativamente a g e, in caso affer-
mativo, si determini un sottospazio isotropo di dimensione massima.

Esercizio 5.5. Sia V = R4 e sia g la forma bilineare simmetrica di matrice

G =


3 −2 1 1
−2 1 −1 −1
1 −1 1 4
1 −1 4 2

 ,

rispetto alla base canonica.
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(1) Si verifichi che g è non-degenere, se ne calcoli l’indice d’inerzia e si determini
una base ortogonale di V relativamente a g.

(2) (R4, g) è isometrico allo spazio R4 dotato del prodotto scalare usuale?

Esercizio 5.6. Sia V uno spazio vettoriale reale di dimensione finita e sia g : V ×V →
R una forma bilineare simmetrica definita positiva. Se φ : V → V è una isometria, si
dimostri che si ha

Im(φ− id) = Ker(φ− id)⊥.

Esercizio 5.7. Si consideri C come spazio vettoriale su R e si ponga su di esso
l’applicazione bilineare g : C× C→ R definita da

g(z1, z2) = 2<(z1z2),

ove <(z) indica la parte reale del numero complesso z.

(1) Si dimostri che g è bilineare e non-degenere.

(2) Si determini la matrice di g rispetto alla base {1, i} di C.

(3) Siano z1, z2 ∈ C, linearmente indipendenti su R (cioè z1 e z2 sono una base di
C, visto come R-spazio vettoriale). Si determini la matrice G di g rispetto alla
base {z1, z2} e si dimostri che

detG =

[
det

(
z1 z2
z̄1 z̄2

)]2
,

ove z̄ indica il numero complesso coniugato di z ∈ C.

Esercizio 5.8. Sia A una matrice simmetrica ad elementi in R. È vero o falso che

la matrice 1 +A2 è invertibile?



Capitolo 6

Geometria Affine

In questo capitolo vedremo come l’algebra lineare possa essere utilizzata per lo
studio di problemi geometrici. Partendo dalla nozione di vettore e di spazio
vettoriale, introdurremo il concetto di spazio affine come ambiente naturale
per lo studio della Geometria Euclidea. Studieremo poi le principali proprietà
geometriche di tali spazi e dei loro sottospazi.

6.1 Spazi affini

Il concetto di spazio vettoriale, che è alla base degli sviluppi dell’algebra li-
neare, si rivela inadeguato a fornire un modello di “spazio” per lo studio della
geometria euclidea.1 Come abbiamo visto nel Capitolo 1, i vettori sono stati
originariamente introdotti per rappresentare degli spostamenti; è quindi neces-
sario disporre di uno “spazio” (cioè di un insieme di punti) del quale i vettori
possano rappresentare le traslazioni.

Queste semplici considerazioni ci portano a concludere che un modello di spa-
zio adatto allo studio della geometria dovrà consistere di un insieme di punti e di
un insieme di vettori, cioè di uno spazio vettoriale, il quale dovrà rappresentare
l’insieme delle traslazioni di tali punti.

•

•

P

Q

v

Due modi equivalenti di esprimere questo fatto sono i
seguenti: (1) stabilire che una coppia ordinata di punti P e
Q determina un vettore v (rappresentato graficamente co-
me un segmento orientato che ha l’origine nel punto P e
l’estremità della freccia in Q), oppure (2) stabilire che un punto P e un vetto-
re v determinano un altro punto Q (che rappresenta l’effetto della traslazione
indicata dal vettore v, applicata al punto P ).

1Un esempio di questa inadeguatezza è dato dal fatto che in ogni spazio vettoriale esiste un
elemento privilegiato, il vettore nullo 0. Al contrario, nello spazio della Geometria Euclidea,
non esiste alcun punto privilegiato O che si possa far corrispondere al vettore nullo.

163



Capitolo 6 Geometria Affine 164

Da questa seconda interpretazione segue che il nostro spazio dovrà essere
dotato di una legge di composizione, che indicheremo con il simbolo +, la quale
associa alla coppia punto-vettore (P, v) il puntoQ; scriveremo dunqueQ = P+v.

Possiamo ora formalizzare il concetto di spazio affine seguendo l’idea appena
descritta.

Definizione 6.1.1. Uno spazio affine A sul campo K è il dato di un insieme
non vuoto A , detto l’insieme dei punti di A, di uno spazio vettoriale V su K e
di un’operazione

+A : A × V → A , (P, v) 7→ Q = P +A v,

che soddisfa le seguenti proprietà:

(i) (P +A v1) +A v2 = P +A (v1 + v2), per ogni P ∈ A e ogni v1, v2 ∈ V ;

(ii) P +A 0 = P , per ogni P ∈ A ;

(iii) per ogni P,Q ∈ A esiste un unico vettore v ∈ V tale che Q = P +A v.

Lo spazio vettoriale V è detto lo spazio vettoriale soggiacente allo spazio affine
A (o lo spazio direttore di A) e la dimensione di V è detta la dimensione dello
spazio affine A. Uno spazio affine è detto di dimensione finita se lo spazio
vettoriale soggiacente è finitamente generato.

Nel seguito uno spazio affine A = (A , V,+A) verrà spesso identificato con il
suo insieme di punti A . Per indicare che P è un punto di A scriveremo dunque
P ∈ A al posto di P ∈ A . Analogamente, per indicare che v è un vettore
appartenente allo spazio vettoriale V soggiacente allo spazio affine A, potremo
scrivere v ∈ A. Il significato di tali espressioni sarà sempre chiaro dal contesto.

Osservazione 6.1.2. L’operazione di “somma tra punti e vettori” in uno spazio
affine A = (A , V,+A) è stata indicata con il simbolo +A al fine di distinguerla
dall’operazione di somma tra vettori dello spazio vettoriale V , indicata sempli-
cemente con +. Tuttavia, poiché sarà sempre chiaro dal contesto di quale delle
due operazioni di somma si tratti, nel seguito indicheremo con il simbolo + sia
l’operazione di somma tra vettori che l’operazione di somma tra un punto e un
vettore.

Osservazione 6.1.3. Per ogni coppia di punti P e Q di uno spazio affine A,
la proprietà (iii) della Definizione 6.1.1 garantisce l’esistenza e l’unicità di un
vettore v tale che Q = P + v; tale vettore verrà indicato con la notazione

−−→
PQ.

Ricavando formalmente v dall’espressione Q = P + v, scriveremo anche

v =
−−→
PQ = Q− P,

in modo da avere l’identità P + (Q− P ) = Q. Come già menzionato, il vettore
−−→
PQ = Q − P verrà rappresentato graficamente come un segmento orientato
avente l’origine in P e l’estremità della freccia nel punto Q.

Osservazione 6.1.4. In uno spazio affine A = (A , V,+A) il gruppo additivo dello
spazio vettoriale V agisce sull’insieme A dei punti di A; tale azione è libera e
transitiva. È facile verificare che uno spazio affine può essere definito, in modo
del tutto equivalente, come un insieme non vuoto dotato di un’azione libera e
transitiva del gruppo additivo di uno spazio vettoriale.
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Per ogni punto P di uno spazio affine A = (A , V,+) possiamo definire la
funzione

fP : V → A , v 7→ fP (v) = P + v.

Una conseguenza immediata della Definizione 6.1.1 è il seguente risultato:

Proposizione 6.1.5. Per ogni punto P di uno spazio affine A, la funzione
fP : V → A è biiettiva.

Dimostrazione. Siano v1, v2 ∈ V due vettori tali che fP (v1) = fP (v2). Si ha
dunque P + v1 = P + v2 da cui, sommando ad ambo i membri il vettore −v2, si
ottiene

(P + v1) + (−v2) = (P + v2) + (−v2) = P + (v2 − v2) = P + 0 = P.

Poiché (P + v1) + (−v2) = P + (v1 − v2), dall’uguaglianza P + (v1 − v2) = P e
dalle proprietà (ii) e (iii) della definizione di spazio affine, segue che v1−v2 = 0
e quindi v1 = v2; fP è dunque una funzione iniettiva. La suriettività di fP è
una conseguenza immediata della proprietà (iii) della Definizione 6.1.1.

Osservazione 6.1.6. L’esistenza di una biiezione tra l’insieme dei punti A e lo
spazio vettoriale V di uno spazio affine A = (A , V,+) permette di concludere
che A può essere identificato con V . Si noti tuttavia che non esiste alcuna
biiezione canonica tra V e A ; una tale biiezione dipende infatti dalla scelta di
un punto P di A . Osserviamo inoltre che nella biiezione fP : V → A il punto
P corrisponde al vettore nullo di V . Possiamo quindi concludere che, in ogni
spazio affine A, l’insieme dei punti può essere identificato con lo spazio vettoriale
soggiacente solo dopo aver fissato (arbitrariamente) un punto di A.

Osservazione 6.1.7. Dato uno spazio affine A = (A , V,+), per ogni vettore
v ∈ V la funzione

τv : A → A , P 7→ P + v,

è detta la traslazione parallela al vettore v. Se v è il vettore nullo, τ0 è l’identità,
mentre per ogni v 6= 0, la traslazione τv è una biiezione priva di punti fissi, cioè
τv(P ) 6= P , per ogni P ∈ A e ogni v 6= 0.

Esempio 6.1.8. Mostreremo ora come ogni spazio vettoriale possieda una strut-
tura canonica di spazio affine.

Dato uno spazio vettoriale V sul campo K, definiamo lo spazio affine V =
(V , V,+V) ad esso associato ponendo V = V . In questo modo l’operazione +V
coincide con l’operazione di somma tra elementi di V :

+V : V × V → V , (P, v) 7→ P +V v = P +V v.

È facile verificare che, con queste definizioni, V risulta essere uno spazio affine
sul campo K, avente V come spazio vettoriale soggiacente. Notiamo che que-
sta struttura di spazio affine dipende esclusivamente dalla struttura di spazio
vettoriale di V : essa è detta pertanto la struttura affine canonica dello spazio
vettoriale V .

Esempio 6.1.9. L’esempio fondamentale di spazio affine è fornito dallo spazio
affine n-dimensionale standard sul campo K, che indicheremo con AnK . Si trat-
ta dello spazio affine associato, in modo canonico, allo spazio vettoriale Kn,
come descritto nell’esempio precedente. AnK è dunque lo spazio affine il cui
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insieme di punti è l’insieme Kn e il cui spazio direttore è lo spazio vettoriale
Kn. L’operazione di somma tra punti e vettori è definita come l’usuale somma
componente per componente di due n-uple di elementi di K; più precisamente,
se P = (p1, p2, . . . , pn) è un punto e v = (a1, a2, . . . , an) è un vettore di AnK , si
ha

Q = P + v = (p1 + a1, p2 + a2, . . . , pn + an).

È immediato verificare che le proprietà (i), (ii) e (iii) della Definizione 6.1.1 sono
soddisfatte, quindi AnK è uno spazio affine. Si noti inoltre che, dalla definizione
data, segue subito che se P = (p1, p2, . . . , pn) e Q = (q1, q2, . . . , qn) sono due
punti di AnK , il vettore v = Q− P è dato da

v = (q1 − p1, q2 − p2, . . . , qn − pn).

Come vedremo in seguito, questo esempio ha un’importanza particolare: infatti
ogni spazio affine di dimensione n sul campo K risulta essere isomorfo2 (anche
se non in modo canonico) allo spazio affine standard AnK .
Osservazione 6.1.10. Nello spazio affine AnK sia i punti che i vettori sono sempli-
cemente delle n-uple di elementi di K. Osserviamo però che mentre la somma di
un punto e un vettore, oppure la differenza di due punti, sono operazioni lecite,
la somma di due punti, benché algebricamente possibile, non è un’operazione
lecita. A tale riguardo facciamo notare che per distinguere le n-uple di elementi
di K che rappresentano dei punti da quelle che rappresentano dei vettori è pos-
sibile adottare la seguente convenzione: ad ogni n-upla (a1, a2, . . . , an) ∈ Kn

viene aggiunto un elemento a0 ∈ {0, 1}, con la convenzione che se a0 = 0 la
n-upla (a1, a2, . . . , an) rappresenta un vettore, mentre se a0 = 1 tale n-upla
rappresenta un punto dello spazio affine. In altre parole, i vettori di AnK si
scrivono nella forma

v = (0, a1, a2, . . . , an),

mentre i punti si scrivono nella forma

A = (1, a1, a2, . . . , an).

Si noti che tale convenzione è compatibile con la definizione delle operazioni tra
punti e vettori di uno spazio affine: una combinazione lineare di vettori è ancora
un vettore (la prima componente è 0), la somma di un punto e di un vettore
dà come risultato un punto (infatti, se osserviamo la prima componente, si ha
1+0 = 1) e la differenza tra due punti è un vettore (nella prima componente si ha
1− 1 = 0). La somma di due punti, al contrario, non è un’operazione lecita; ciò
è evidenziato dal fatto che, sommando due punti, si otterrebbe una (n+ 1)-upla
avente come prima componente a0 = 2, che non è un valore permesso.

6.2 Sottospazi affini

Sia A = (A , V,+A) uno spazio affine sul campo K.

Definizione 6.2.1. Un sottospazio affine (o sottovarietà lineare) di A è uno
spazio affine B = (B,W,+B), ove B è un sottoinsieme di A , W è un sottospazio
vettoriale di V e l’operazione +B : B × W → B è indotta, per restrizione,
dall’operazione +A : A × V → A definita nello spazio affine A.

2La definizione di isomorfismo tra spazi affini verrà data nel Paragrafo 6.6.
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La struttura dei sottospazi affini di uno spazio affine A è ulteriormente
precisata dal seguente risultato:

Proposizione 6.2.2. Sia B = (B,W,+B) un sottospazio affine dello spazio
affine A = (A , V,+A). Per ogni punto P ∈ B, si ha

B = P +B W = {P +B w |w ∈W}.

Dimostrazione. Fissato P ∈ B, dalla definizione di spazio affine segue che, per
ogni vettore w ∈W , il punto Q = P +B w appartiene all’insieme B. Viceversa,
dalla proprietà (iii) della Definizione 6.1.1, segue che, per ogni Q ∈ B, esiste
un unico vettore w ∈W tale che Q = P +B w.

Osservazione 6.2.3. Se A = (A , V,+A) è uno spazio affine e W è un sottospazio
vettoriale di V , per ogni punto P ∈ A si può costruire un sottospazio affine
B = (B,W,+B) di A ponendo

B = P +A W = {P +A w |w ∈W}

e definendo l’operazione +B come la restrizione dell’operazione di somma tra
punti e vettori definita in A. La verifica che B è uno spazio affine è immediata.
A titolo di esempio verifichiamo che la funzione

+B : B ×W → B

è ben definita. Più precisamente, verifichiamo che, per ogni A ∈ B e ogni
w ∈W , si ha A+B w ∈ B.

Sia dunque A ∈ B e sia u ∈ W tale che A = P +A u. Allora, per ogni
w ∈W , si ha:

A+B w = A+A w = (P +A u) +A w = P +A (u+ w) ∈ B,

dato che u+ w ∈W , essendo W un sottospazio vettoriale di V .
Il sottospazio affine B cos̀ı definito verrà spesso indicato semplicemente con

B = P + W : esso è detto il sottospazio affine di A passante per il punto P e
parallelo al sottospazio W . Il sottospazio vettoriale W è anche detto la giacitura
di B.

Osservazione 6.2.4. Un sottospazio affine di A di dimensione 0 è semplicemente
un punto di A. Un sottospazio affine di dimensione 1 è detto una retta, un sot-
tospazio affine di dimensione 2 è detto un piano e, se dim A = n, un sottospazio
affine di A di dimensione n− 1 è detto un iperpiano.

Definizione 6.2.5. Sia S un sottoinsieme non vuoto (dell’insieme dei punti)
di uno spazio affine A. Il più piccolo sottospazio affine di A contenente S è
detto il sottospazio affine generato da S ed è indicato con 〈S 〉.

Proposizione 6.2.6. Sia A = (A , V,+) uno spazio affine e S un sottoinsieme
non vuoto di A . Fissato arbitrariamente un punto P ∈ S indichiamo con W
il sottospazio vettoriale di V generato dall’insieme dei vettori vQ = Q − P , al
variare del punto Q in S . Allora si ha 〈S 〉 = P +W .
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Dimostrazione. Indichiamo con B il sottospazio affine B = P + W di A. Per
ogni Q ∈ S , si ha Q = P + (Q − P ) = P + vQ ∈ B, il che dimostra che
S ⊆ B. Per dimostrare che 〈S 〉 = B bisogna quindi dimostrare che B è il più
piccolo sottospazio affine di A contenente S , cioè che ogni sottospazio affine di
A contenente S contiene anche B. Sia dunque A′ = (A ′, V ′,+) un sottospazio
affine di A contenente S . Per ogni P,Q ∈ S si ha anche P,Q ∈ A′ e quindi
vQ = Q − P ∈ V ′. Il sottospazio vettoriale V ′ contiene dunque l’insieme dei
vettori vQ = Q−P , al variare di Q in S , e pertanto contiene anche il sottospazio
vettoriale W da essi generato. Per ogni vettore w ∈W si ha quindi P +w ∈ A′,
il che dimostra che B ⊆ A.

Come già accadeva nel caso degli spazi vettoriali, l’unione di due sottospazi
affini di uno spazio affine A non è, in generale, un sottospazio affine di A.
Definiamo dunque la somma di due sottospazi affini L e M, che indicheremo3

con L∨M, come il sottospazio affine generato dall’unione di L e M, cioè come il
più piccolo sottospazio affine di A contenente L e M. Nel caso particolare in cui
i sottospazi affini in questione sono due punti, P e Q, con la notazione P ∨Q si
indica dunque il più piccolo sottospazio affine contenente i punti P e Q, cioè la
retta passante per P e Q (se i punti P e Q sono distinti). Analogamente, dati
tre punti P , Q e R di uno spazio affine A, la notazione P ∨Q ∨R indica il più
piccolo sottospazio affine di A contenente i tre punti dati, cioè il piano passante
per P , Q e R, se i tre punti in questione non sono allineati.

Per la somma di due sottospazi affini vale il seguente risultato:

Proposizione 6.2.7. Siano L = (L , L,+) e M = (M ,M,+) due sottospazi
affini di uno spazio affine A. Se L ∩M 6= ∅, allora

L ∨M = P + (L+M) = {P + v | v ∈ L+M},

per ogni punto P ∈ L ∪M . Se invece L ∩M = ∅, allora

L ∨M = P + (L+M + 〈u〉) = {P + v | v ∈ L+M + 〈u〉},

ove P ∈ L ∪M e u = B −A, con A ∈ L e B ∈M .

Dimostrazione. Consideriamo dapprima il caso in cui L ∩M 6= ∅. Sia A ∈
L ∩M e fissiamo un punto P ∈ L ∪M . A meno di scambiare i ruoli di L e
M , non è restrittivo supporre che P ∈ L . Consideriamo dunque il sottospazio
affine B = P + (L + M). Per dimostrare che B = L ∨M dobbiamo dimostrare
che B è il più piccolo sottospazio affine di A che contiene L e M. Per ogni
punto Q ∈ L il vettore v = Q − P appartiene allo spazio vettoriale L, quindi
Q = P + v ∈ P + L ⊆ B; ciò dimostra che L ⊆ B. Per dimostrare che anche
M ⊆ B, consideriamo un punto R ∈ M e poniamo w = R − A (notiamo che
w ∈ M , dato che anche il punto A appartiene a M). Dato che i punti A e P
appartengono a L, il vettore u = A− P appartiene al sottospazio vettoriale L.
Si ha dunque

R = P + (A− P ) + (R−A) = P + u+ w ∈ P + (L+M),

pertanto R ∈ B. Abbiamo cos̀ı dimostrato che B contiene L e M.
3Un’altra notazione comunemente usata per indicare la somma dei due sottospazi affini L

e M è L + M.
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Sia ora B′ un sottospazio affine di A contenente L e M. Se indichiamo con
W lo spazio vettoriale soggiacente a B′, si ha W ⊇ L e W ⊇ M , pertanto
W ⊇ L+M . Poiché anche P ∈ B′, si ha B = P + (L+M) ⊆ B′, il che dimostra
che B è il più piccolo sottospazio affine di A contenente L e M, cioè B = L∨M.

Consideriamo ora il caso in cui L ∩M = ∅. Siano A ∈ L , B ∈ M e
poniamo u = B−A, fissiamo inoltre un punto P ∈ L ∪M . Anche in questo caso,
a meno di scambiare i ruoli di L e M , non è restrittivo supporre che P ∈ L .
Consideriamo il sottospazio affine B = P + (L+M + 〈u〉). Per dimostrare che
B = L ∨M bisogna dimostrare che B è il più piccolo sottospazio affine di A che
contiene L e M. Come nel caso precedente, per ogni punto Q ∈ L il vettore
v = Q− P appartiene allo spazio vettoriale L, quindi Q = P + v ∈ P + L ⊆ B;
ciò dimostra che L ⊆ B. Per dimostrare che anche M ⊆ B, consideriamo un
punto R ∈M e notiamo che si ha

R = P + (A− P ) + (B −A) + (R−B).

Ora basta osservare che il vettore A−P appartiene a L, dato che A,P ∈ L, che
R − B ∈ M dato che i punti B e R appartengono a M e che B − A = u, per
concludere che R ∈ P + (L + M + 〈u〉) = B. Abbiamo cos̀ı dimostrato che B
contiene L e M.

Consideriamo ora un sottospazio affine B′ contenente L e M. Se indichiamo
con W lo spazio vettoriale soggiacente a B′, si ha W ⊇ L e W ⊇ M . Inoltre,
poiché A,B ∈ B′, si ha anche u = B −A ∈W , quindi W ⊇ L+M + 〈u〉. Si ha
dunque B = P + (L + M + 〈u〉) ⊆ B′. Pertanto B è il più piccolo sottospazio
affine di A contenente L e M, cioè B = L ∨M.

A differenza dell’unione, l’intersezione di due o più sottospazi affini è, soli-
tamente, un sottospazio affine. Si ha infatti:

Proposizione 6.2.8. Sia Bi = (Bi,Wi,+), i ∈ I, una famiglia di sottospazi
affini di uno spazio affine A = (A , V,+). Se

⋂
i∈I Bi 6= ∅, l’intersezione

dei sottospazi affini Bi è un sottospazio affine di A, il cui insieme dei punti è⋂
i∈I Bi e il cui spazio direttore è

⋂
i∈IWi. Si ha cioè⋂

i∈I
Bi =

(⋂
i∈I

Bi,
⋂
i∈I

Wi,+
)
.

Dimostrazione. La dimostrazione si riduce alla verifica che per la terna(⋂
i∈I

Bi,
⋂
i∈I

Wi,+
)

valgono le proprietà (i), (ii) e (iii) della definizione di spazio affine, il che è del
tutto ovvio.

Osservazione 6.2.9. L’unico caso in cui l’intersezione di due o più sottospazi
affini non è un sottospazio affine si ha quando tale intersezione è l’insieme vuoto.
Risulta pertanto conveniente considerare anche l’insieme vuoto come uno spazio
affine. Naturalmente, la dimensione di un tale spazio affine non è definita. È
comunque possibile attribuire una dimensione allo spazio affine vuoto ponendo
dim ∅ = −1 (a tal proposito, si ricordi che uno spazio affine di dimensione zero
non è vuoto, ma è costituito da un solo punto).
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Osservazione 6.2.10. Dato un sottoinsieme S di uno spazio affine A, si può ora
facilmente verificare che il sottospazio affine di A generato da S coincide con
l’intersezione di tutti i sottospazi affini di A contenenti S .

Per quanto riguarda le posizioni reciproche di due sottospazi affini, possiamo
dare la seguente definizione:

Definizione 6.2.11. Siano L e M due sottospazi affini di uno spazio affine A,
di sottospazi direttori L e M , rispettivamente.

(i) L e M sono incidenti se L ∩M 6= ∅;

(ii) L e M sono paralleli se L ⊆M oppure M ⊆ L;

(iii) L e M sono sghembi se L ∩M = ∅ e L ∩M = {0}.

Dalle Proposizioni 6.2.7 e 6.2.8 discende subito il seguente risultato:

Corollario 6.2.12. Siano L e M due sottospazi affini di A. Se L e M sono
incidenti oppure sghembi, si ha

dim(L ∨M) = dim L + dim M− dim(L ∩M),

altrimenti
dim(L ∨M) < dim L + dim M− dim(L ∩M).

Dimostrazione. Indichiamo con L e M i sottospazi direttori di L e M, rispetti-
vamente. Se L e M sono incidenti, L ∩M è un sottospazio affine il cui spazio
direttore è L∩M , mentre lo spazio vettoriale soggiacente a L∨M è la somma dei
sottospazi L e M . Dalla formula di Grassmann (Cap. 1, Proposizione 1.3.49)
segue allora che

dim(L ∨M) = dim(L+M)
= dimL+ dimM − dim(L ∩M)
= dim L + dim M− dim(L ∩M).

Se L e M sono sghembi, si ha L ∩M = ∅ e L ∩M = {0}. Avendo posto, per
convenzione, dim ∅ = −1 (vedi Osservazione 6.2.9), dalla Proposizione 6.2.7 e
dalla formula di Grassmann si deduce che

dim(L ∨M) = dim(L+M + 〈u〉)
= dimL+ dimM + 1
= dim L + dim M− dim(L ∩M).

Se invece L e M non sono incidenti né sghembi, si ha L∩M = ∅ e L∩M 6= {0},
e dunque dim(L ∩M) > 0. In questo caso si deduce facilmente che

dim(L ∨M) = dim(L+M + 〈u〉)
= dimL+ dimM − dim(L ∩M) + 1
< dimL+ dimM + 1
= dim L + dim M− dim(L ∩M).
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6.3 Sistemi di riferimento

Un sistema di riferimento in uno spazio affine è l’analogo di una base per uno
spazio vettoriale. Ricordiamo che la scelta di una base di uno spazio vettoriale
n-dimensionale V permette di associare ad ogni vettore v ∈ V una n-upla di
elementi del campo K. In modo del tutto analogo, la scelta di un sistema di
riferimento in uno spazio affine n-dimensionale A permette di associare a ogni
punto (e a ogni vettore) di A una n-upla di elementi di K.

Definizione 6.3.1. Sia A = (A , V,+) uno spazio affine n-dimensionale sul
campo K. Un sistema di riferimento R in A è il dato di un punto O ∈ A (detto
origine) e di una base v1, v2, . . . , vn di V .

Equivalentemente, un sistema di riferimento in A è il dato di n + 1 punti,
P0, P1, . . . , Pn, tali che i vettori v1 = P1 − P0, v2 = P2 − P0, . . . , vn = Pn − P0,
siano una base di V (in tal caso si può prendere come origine del sistema di
riferimento il punto O = P0).

Sia dunque R = {O, v1, v2, . . . , vn} un sistema di riferimento in uno spazio
affine A sul campo K. Per ogni punto P ∈ A esiste un vettore v ∈ V tale
che P = O + v. Scrivendo v come combinazione lineare dei vettori di base
v1, v2, . . . , vn,

v = λ1v1 + λ2v2 + · · ·+ λnvn,

si ottiene
P = O + λ1v1 + λ2v2 + · · ·+ λnvn.

Gli scalari λ1, . . . , λn sono detti le coordinate del punto P nel sistema di ri-
ferimento dato. Ad ogni punto P ∈ A possiamo quindi associare una n-upla
(λ1, . . . , λn) ∈ Kn; si noti che al punto O (l’origine del sistema di riferimen-
to) viene associata la n-upla nulla (0, 0, . . . , 0). Analogamente, ad ogni vet-
tore v ∈ V risulta associata la n-upla delle sue componenti rispetto alla base
v1, v2, . . . , vn. La scelta di un sistema di riferimento determina quindi una biie-
zione tra lo spazio affine n-dimensionale A sul campo K e lo spazio affine AnK ;
tale biiezione è ottenuta associando ad ogni punto P ∈ A le sue coordinate
(λ1, . . . , λn) ∈ Kn e ad ogni vettore v ∈ V le sue componenti rispetto alla base
data.

Definizione 6.3.2. Sia R = {O, v1, v2, . . . , vn} un sistema di riferimento in
uno spazio affine A. Le n rette passanti per O e parallele ai vettori v1, v2, . . . , vn
sono dette gli assi del sistema di riferimento (o assi coordinati). Gli n iperpiani
πi (i = 1, . . . , n) passanti per O e paralleli ai sottospazi generati dai vettori
v1, . . . , v̂i, . . . , vn (la notazione v̂i significa che tale vettore va escluso) sono detti
gli iperpiani coordinati.

Definizione 6.3.3. Dati n + 1 punti di uno spazio affine A, diremo che essi
sono affinemente indipendenti (o in posizione generica) se il sottospazio affine
da essi generato ha dimensione n.

Proposizione 6.3.4. Un sistema di riferimento in uno spazio affine A =
(A , V,+) di dimensione n è costituito da n+ 1 punti affinemente indipendenti.

Dimostrazione. Dati n + 1 punti P0, P1, . . . , Pn, poniamo v1 = P1 − P0, v2 =
P2 − P0, . . . , vn = Pn − P0 e indichiamo con W il sottospazio vettoriale di V
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generato dai vettori vi, per i = 1, . . . , n. Per la Proposizione 6.2.6, il sottospazio
affine generato dai punti P0, . . . , Pn è

〈P0, . . . , Pn〉 = P0 +W.

Da ciò segue che i punti P0, . . . , Pn sono affinemente indipendenti se e solo se
dimW = n, cioè se e solo se i vettori v1, . . . , vn sono una base di V . Ciò
equivale ad affermare che gli n+ 1 punti P0, P1, . . . , Pn costituiscono un sistema
di riferimento in A.

Osservazione 6.3.5. Sia P0, P1, . . . , Pn un sistema di riferimento in uno spazio
affine A. Si verifica facilmente che, per ogni permutazione σ ∈ Sn+1, i punti
Pσ(0), Pσ(1), . . . , Pσ(n) formano anch’essi un sistema di riferimento in A.

6.4 Equazioni dei sottospazi affini

Come abbiamo visto nel paragrafo precedente, la scelta di un sistema di rife-
rimento in uno spazio affine permette di introdurre un sistema di coordinate.
In questo modo ogni spazio affine di dimensione n sul campo K può essere
identificato con lo spazio affine standard AnK .

In questa sezione mostreremo come i sottospazi affini di uno spazio affine
dotato di un sistema di riferimento possano essere identificati con gli insiemi
delle soluzioni dei sistemi di equazioni lineari.

Indichiamo dunque con A = AnK lo spazio affine n-dimensionale sul campo
K e consideriamo un sottospazio affine B, di dimensione r, di A. Sia W ⊆ Kn

il sottospazio direttore di B e sia w1, w2, . . . , wr una base di W . Dato un punto
P ∈ B, si ha:

B = P +W = {P + w |w ∈W}.

Poiché ogni vettore w ∈ W può essere espresso come combinazione lineare dei
vettori di base w1, w2, . . . , wr, il generico punto X = (x1, x2, . . . , xn) di B può
essere dunque espresso nella forma

X = P + λ1w1 + λ2w2 + · · ·+ λrwr, (6.4.1)

al variare di λ1, λ2, . . . , λr ∈ K. In coordinate, l’equazione (6.4.1) si traduce nel
seguente sistema di equazioni:

x1 = p1 + λ1a11 + λ2a12 + · · ·+ λra1r

x2 = p2 + λ1a21 + λ2a22 + · · ·+ λra2r

· · ·
xn = pn + λ1an1 + λ2an2 + · · ·+ λranr

(6.4.2)

ove P = (p1, p2, . . . , pn) e wi = (a1i, a2i, . . . , ani) ∈ Kn, per ogni i = 1, . . . , r.
Gli scalari λ1, λ2, . . . , λr sono anche chiamati parametri e le equazioni precedenti
sono dette le equazioni parametriche del sottospazio affine B.

Nel sistema di equazioni (6.4.2) è possibile eliminare i parametri λ1, . . . , λr
ottenendo cos̀ı un sistema di equazioni lineari (non omogenee) nelle indetermi-
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nate x1, x2, . . . xn, del tipo

S :


a′11x1 + a′12x2 + · · ·+ a′1nxn = b1

a′21x1 + a′22x2 + · · ·+ a′2nxn = b2

· · ·
a′s1x1 + a′s2x2 + · · ·+ a′snxn = bs

(6.4.3)

per opportuni coefficienti a′ij e bi in K. Quest’ultime sono dette le equazioni
cartesiane di B.

Viceversa, dato un sistema S di equazioni lineari come in (6.4.3), indichia-
mo con W il sottospazio vettoriale di Kn costituito dalle soluzioni del sistema
omogeneo S0 ad esso associato (vedi Cap. 2, Proposizione 2.3.2):

S0 :


a′11x1 + a′12x2 + · · ·+ a′1nxn = 0
a′21x1 + a′22x2 + · · ·+ a′2nxn = 0
· · ·

a′s1x1 + a′s2x2 + · · ·+ a′snxn = 0.

Se il sistema S è incompatibile l’insieme Σ delle soluzioni di S è vuoto: esso può
quindi essere considerato un sottospazio affine di A (vedi Osservazione 6.2.9). Se
invece S ammette soluzioni ogni tale soluzione può essere espressa come somma
di una soluzione particolare P = (p1, . . . , pn) di S con una soluzione w ∈ W
del sistema omogeneo associato (vedi Cap. 2, Proposizione 2.3.3). In tal caso
l’insieme Σ delle soluzioni di S è dato da Σ = P+W e dunque Σ è un sottospazio
affine di A.

Possiamo quindi concludere che i sottospazi affini di AnK possono essere de-
scritti come insiemi delle soluzioni di sistemi di equazioni lineari in n incognite.
Si noti tuttavia che tale corrispondenza tra sistemi di equazioni lineari e sot-
tospazi affini non è biunivoca; infatti esistono sistemi diversi aventi lo stesso
insieme di soluzioni.

Vediamo ora alcuni esempi particolarmente significativi.

Esempio 6.4.1 (Equazione di una retta nel piano affine). Sia r una retta
nel piano affine A2

K . Il sottospazio direttore di r ha dimensione 1 ed è quindi
generato da un vettore (non nullo) v = (a1, a2) ∈ K2. Se P = (p1, p2) è un
punto di r e se indichiamo con X = (x1, x2) un punto generico del piano, si ha

X ∈ r ⇐⇒ X = P + λv, λ ∈ K.

L’equazione vettoriale X = P +λv si traduce nel seguente sistema di equazioni:{
x1 = p1 + λa1

x2 = p2 + λa2.

Queste sono dunque le equazioni parametriche di una retta nel piano affine.
Ricavando λ da una delle due equazioni precedenti e sostituendo l’espressione

trovata nell’altra, si ottiene un’equazione di primo grado nelle incognite x1 e x2,
del tipo

ax1 + bx2 + c = 0,

ove a, b, c ∈ K. Possiamo quindi concludere che una retta nel piano affine è il
luogo degli zeri di un polinomio di primo grado nelle indeterminate x1 e x2.
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Esempio 6.4.2 (Equazione di un piano nello spazio affine tridimensio-
nale). Sia π un piano nello spazio affine A3

K . Il sottospazio direttore di π ha
dimensione 2 ed è quindi generato da due vettori (linearmente indipendenti)
v1 = (a11, a21, a31) e v2 = (a12, a22, a32). Se P = (p1, p2, p3) è un punto del
piano π e se indichiamo con X = (x1, x2, x3) un punto generico dello spazio
affine, si ha

X ∈ π ⇐⇒ X = P + λ1v1 + λ2v2, λ1, λ2 ∈ K.

L’equazione vettoriale X = P + λ1v1 + λ2v2 corrisponde al seguente sistema di
equazioni: 

x1 = p1 + λ1a11 + λ2a12

x2 = p2 + λ1a21 + λ2a22

x3 = p3 + λ1a31 + λ2a32.

Queste sono pertanto le equazioni parametriche di un piano nello spazio affine
tridimensionale.

Eliminando i parametri λ1 e λ2 dalle equazioni precedenti si ottiene un’e-
quazione di primo grado nelle incognite x1, x2 e x3, del tipo

ax1 + bx2 + cx3 + d = 0,

ove a, b, c, d ∈ K. Possiamo quindi concludere che un piano nello spazio affi-
ne tridimensionale è il luogo degli zeri di un polinomio di primo grado nelle
indeterminate x1, x2, x3.
Esempio 6.4.3 (Equazione di un iperpiano nello spazio affine n-dimen-
sionale). Generalizzando i due esempi precedenti è possibile ricavare l’equa-
zione di un sottospazio affine di dimensione n− 1 dello spazio affine AnK .

Sia dunque π un iperpiano in AnK . Il sottospazio direttore di π ha dimen-
sione n − 1 ed è quindi generato da n − 1 vettori (linearmente indipendenti)
v1 = (a11, a21, . . . , an1), . . . , vn−1 = (a1,n−1, a2,n−1, . . . , an,n−1) ∈ Kn. Se
P = (p1, p2, . . . , pn) è un punto dell’iperpiano π e se indichiamo con X =
(x1, x2, . . . , xn) un punto generico di AnK , si ha

X ∈ π ⇐⇒ X = P + λ1v1 + · · ·+ λn−1vn−1, λ1, . . . , λn−1 ∈ K.

L’equazione vettoriale X = P + λ1v1 + · · · + λn−1vn−1 si traduce nel seguente
sistema di equazioni:

x1 = p1 + λ1a11 + λ2a12 + · · ·+ λn−1a1,n−1

x2 = p2 + λ1a21 + λ2a22 + · · ·+ λn−1a2,n−1

· · ·
xn = pn + λ1an1 + λ2an2 + · · ·+ λn−1an,n−1.

Queste sono dunque le equazioni parametriche di un iperpiano nello spazio affine
n-dimensionale.

Eliminando i parametri λ1, λ2, . . . , λn−1 dalle equazioni precedenti si ottiene
un’equazione di primo grado nelle incognite x1, x2, . . . , xn, del tipo

a1x1 + a2x2 + · · ·+ anxn + an+1 = 0,

con a1, . . . , an+1 ∈ K. Possiamo quindi concludere che un iperpiano nello spazio
affine n-dimensionale è il luogo degli zeri di un polinomio di primo grado nelle
indeterminate x1, x2, . . . , xn.
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Esempio 6.4.4 (Equazione di una retta nello spazio affine tridimen-
sionale). Sia r una retta nello spazio affine A3

K . Il sottospazio direttore di r ha
dimensione 1 ed è quindi generato da un vettore (non nullo) v = (a1, a2, a3) ∈
K3. Se P = (p1, p2, p3) è un punto di r e se indichiamo con X = (x1, x2, x3) un
punto generico dello spazio affine, si ha

X ∈ r ⇐⇒ X = P + λv, λ ∈ K.

L’equazione vettoriale X = P + λv fornisce il seguente sistema di equazioni:
x1 = p1 + λa1

x2 = p2 + λa2

x3 = p3 + λa3.

Queste sono dunque le equazioni parametriche di una retta nello spazio affine
tridimensionale.

Ricavando λ da una delle tre equazioni precedenti e sostituendo l’espressione
trovata nelle altre due, si ottiene un sistema di due equazioni di primo grado
nelle incognite x1, x2 e x3, del tipo{

ax1 + bx2 + cx3 + d = 0
ex1 + fx2 + gx3 + h = 0.

Possiamo quindi concludere che una retta nello spazio affine tridimensionale può
essere identificata con l’insieme delle soluzioni di un sistema di due equazioni
di primo grado nelle incognite x1, x2, x3. Non vale invece il viceversa, cioè non
è vero che ogni sistema di due equazioni lineari in tre incognite determina una
retta: ad esempio, l’insieme delle soluzioni di un tale sistema potrebbe essere
vuoto.

Osserviamo che questo risultato ha un’ovvia interpretazione geometrica. In-
fatti, come abbiamo visto nell’Esempio 6.4.2, l’insieme delle soluzioni di un’e-
quazione lineare nelle incognite x1, x2, x3 è un piano nello spazio affine tridi-
mensionale. Pertanto l’insieme delle soluzioni di un sistema di due equazioni
lineari corrisponde all’insieme dei punti comuni a due piani. Se tali piani sono
paralleli e distinti, la loro intersezione è l’insieme vuoto; in questo caso il cor-
rispondente sistema di equazioni lineari è incompatibile. Se invece i due piani
non sono paralleli, la loro intersezione è una retta.
Osservazione 6.4.5. Dalle considerazioni precedenti si deduce anche che, se il
sottospazio affine (non vuoto) B = (B,W,+) dello spazio affine A è dato dalle
soluzioni del sistema di equazioni lineari

S : AX = B,

allora il sottospazio direttore W di B è l’insieme dalle soluzioni del sistema
omogeneo associato

S0 : AX = 0.

Inoltre, se B non è vuoto, la sua dimensione è data da

dim B = n− rk(A),

ove n è la dimensione dello spazio affine A. In particolare, B è un iperpiano di
A se e solo se rk(A) = 1, cioè se e solo se B può essere descritto da una sola
equazione non banale.
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Consideriamo ora il problema di determinare l’intersezione di due sottospazi
affini in termini delle loro equazioni cartesiane. Siano dunque L = (L , L,+) e
M = (M ,M,+) due sottospazi affini dello spazio affine A = AnK e siano

AX = B e CX = D

i corrispondenti sistemi di equazioni lineari. Le coordinate dei punti apparte-
nenti a L ∩M soddisfano sia le equazioni del sistema AX = B che quelle del
sistema CX = D; esse sono pertanto le soluzioni del sistema lineare ottenuto
considerando tutte le equazioni dei due sistemi precedenti. Se denotiamo con
EX = F tale sistema, la matrice E e il vettore colonna F sono dati da

E =
(
A

C

)
, F =

(
B

D

)
.

Dal Teorema di Rouché-Capelli si deduce ora il seguente risultato, che fornisce
un criterio per determinare la posizione reciproca di due sottovarietà lineari di
uno spazio affine.

Proposizione 6.4.6. Siano L = (L , L,+) e M = (M ,M,+) due sottovarietà
lineari dello spazio affine A = AnK , rappresentate dai sistemi lineari AX = B e
CX = D, rispettivamente. Allora si ha:

(i) L e M sono incidenti se e solo se

rk
(
A B

C D

)
= rk

(
A

C

)
.

In tal caso L ∩M è una sottovarietà lineare di dimensione n− t, ove t è
il valore comune dei due ranghi precedenti.

(ii) L e M sono sghembe se e solo se

rk
(
A B

C D

)
> rk

(
A

C

)
e rk

(
A

C

)
= n.

(iii) Se si ha

rk
(
A B

C D

)
> rk

(
A

C

)
e rk

(
A

C

)
= t < n,

allora L contiene una sottovarietà lineare di dimensione n− t parallela a
M.

Dimostrazione. (i) L e M sono incidenti se e solo se il sistema(
A

C

)
X =

(
B

D

)
(6.4.4)

ammette soluzioni. Per il Teorema di Rouché-Capelli questo avviene se e solo
se le matrici completa e incompleta di tale sistema hanno lo stesso rango, cioè
se e solo se

rk
(
A B

C D

)
= rk

(
A

C

)
.
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(ii) Ricordiamo che le due sottovarietà lineari L e M sono sghembe se e solo se
L ∩M = ∅ e L ∩M = {0}. Per il Teorema di Rouché-Capelli, la condizione
L ∩M = ∅ equivale a

rk
(
A B

C D

)
> rk

(
A

C

)
.

La seconda condizione,

rk
(
A

C

)
= n,

equivale a richiedere che il sistema omogeneo associato(
A

C

)
X = 0

abbia come unica soluzione il vettore nullo, cioè che sia L ∩M = {0}.
(iii) La disuguaglianza

rk
(
A B

C D

)
> rk

(
A

C

)
implica che il sistema (6.4.4) non ammette soluzioni, cioè che L ∩M = ∅. La
condizione

rk
(
A

C

)
= t < n

implica che l’insieme delle soluzioni del sistema omogeneo associato(
A

C

)
X = 0

forma un sottospazio vettoriale Z di dimensione n− t; si ha dunque Z = L∩M .
Scelto arbitrariamente un punto P ∈ L, la sottovarietà lineare L′ = P + Z è
contenuta in L, ha dimensione n− t ed è parallela a M.

Corollario 6.4.7. Sia L un sottospazio affine di dimensione r di uno spazio
affine n-dimensionale A. Allora L è intersezione di n− r iperpiani di A.

Dimostrazione. Abbiamo già visto che L può essere identificato con l’insieme
delle soluzioni di un sistema formato da n − r equazioni lineari. Basta ora
ricordare che ogni tale equazione rappresenta un iperpiano di A.

Definizione 6.4.8. Sia L una sottovarietà lineare di dimensione r di uno spazio
affine n-dimensionale A. L’insieme degli iperpiani di A contenenti L è detto
la stella di iperpiani di centro L (nel caso in cui sia r = n − 2, si parla di
fascio di iperpiani). Più in generale, dato m con r ≤ m ≤ n, la stella di
sottovarietà lineari m-dimensionali di centro L è l’insieme di tutti i sottospazi
affini di dimensione m di A che contengono L.

Definizione 6.4.9. Sia W un sottospazio vettoriale di dimensione r dello spazio
direttore di uno spazio affine n-dimensionale A. L’insieme degli iperpiani di A
contenenti W nel loro spazio direttore è detto la stella impropria di iperpiani
paralleli a W (se r = n − 2 si parla di fascio improprio di iperpiani). Più in
generale, dato m con r ≤ m ≤ n, la stella impropria di sottovarietà lineari di
dimensione m parallele a W è l’insieme di tutti i sottospazi affini di dimensione
m di A che contengono W nel loro spazio direttore.
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Esempio 6.4.10. Nello spazio affine AnK sia L la sottovarietà lineare data dalle
soluzioni del seguente sistema:

a11x1 + a12x2 + · · ·+ a1nxn + b1 = 0
a21x1 + a22x2 + · · ·+ a2nxn + b2 = 0
· · ·

am1x1 + am2x2 + · · ·+ amnxn + bm = 0

Allora le equazioni cartesiane degli iperpiani che formano la stella di centro L
sono date da

λ1(a11x1 + a12x2 + · · ·+ a1nxn + b1)
+ λ2(a21x1 + a22x2 + · · ·+ a2nxn + b2)
+ · · ·+ λm(am1x1 + am2x2 + · · ·+ amnxn + bm) = 0,

per ogni λ1, λ2, . . . , λm ∈ K, non tutti nulli.

6.5 Alcuni risultati di geometria affine

Data una sottovarietà lineare L in uno spazio affine A, per ogni punto P ∈ A
esiste un’unica sottovarietà lineare L′, con dim L′ = dim L, passante per P e
parallela a L; tale sottovarietà lineare è infatti data da

L′ = P + L,

ove L è il sottospazio direttore di L. Questo risultato, nel caso in cui L sia
una retta, non è altro che il famoso “Quinto Postulato” di Euclide. È poi
altrettanto immediato verificare che uno spazio affine soddisfa tutti i rimanenti
assiomi che sono alla base della classica Geometria Euclidea. Pertanto, come
già osservato all’inizio di questo capitolo, uno spazio affine fornisce un modello
di spazio adeguato per lo studio di tale geometria.

In questa sezione presenteremo dunque alcuni classici risultati di geometria
euclidea, che dimostreremo utilizzando il linguaggio e gli strumenti dell’algebra
lineare sviluppati finora. Vedremo come tali tecniche permettano non solo di
ottenere delle dimostrazioni particolarmente semplici, ma anche di estendere
tali risultati al caso di spazi affini di dimensione qualunque.

Teorema 6.5.1 (Teorema di Talete). Siano π1, π2 e π3 tre iperpiani pa-
ralleli e distinti di uno spazio affine n-dimensionale A sul campo K e siano r,
s due rette di A, non parallele a tali iperpiani. Per ogni i = 1, 2, 3, poniamo

Pi = r ∩ πi, Qi = s ∩ πi.

Siano inoltre α, β ∈ K tali che

−−−→
P1P3 = α

−−−→
P1P2,

−−−→
Q1Q3 = β

−−−→
Q1Q2.

Allora si ha α = β.
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Dimostrazione. Innanzitutto osserviamo che il fatto che ciascuna delle rette r e
s intersechi l’iperpiano πi in un punto è una conseguenza del Corollario 6.2.12.
La situazione, nel caso in cui dim A = 3, è rappresentata nella seguente figura:

•

•

•

•

•

•

π1

π2

π3

r s

P1

P2

P3

Q1

Q2

Q3

Indichiamo con W il sottospazio direttore degli iperpiani π1, π2, π3. Dall’ugua-
glianza −−−→

P1Q1 +
−−−→
Q1Q2 =

−−−→
P1P2 +

−−−→
P2Q2

si ottiene −−−→
Q1Q2 −

−−−→
P1P2 =

−−−→
P2Q2 −

−−−→
P1Q1 ∈W,

quindi −−−→
Q1Q2 =

−−−→
P1P2 + w, (6.5.1)

per qualche w ∈W . Analogamente, da

−−−→
P1Q1 +

−−−→
Q1Q3 =

−−−→
P1P3 +

−−−→
P3Q3

si deduce che −−−→
Q1Q3 −

−−−→
P1P3 =

−−−→
P3Q3 −

−−−→
P1Q1 ∈W.

Ricordando che
−−−→
P1P3 = α

−−−→
P1P2 e

−−−→
Q1Q3 = β

−−−→
Q1Q2, si ha dunque

β
−−−→
Q1Q2 − α

−−−→
P1P2 ∈W

e quindi, dato che è β 6= 0,

−−−→
Q1Q2 −

α

β

−−−→
P1P2 ∈W.

Da quest’ultima espressione e dalla (6.5.1) si deduce infine che(
1− α

β

)−−−→
P1P2 ∈W.

Se fosse α/β 6= 1, si avrebbe
−−−→
P1P2 ∈W e dunque la retta r sarebbe parallela agli

iperpiani dati, contro l’ipotesi. Si conclude pertanto che deve essere α = β.

Notiamo che, nel caso di uno spazio affine di dimensione due, il risultato
appena dimostrato non è altro che il classico Teorema di Talete della geome-
tria piana. Vale la pena osservare, inoltre, che il Teorema di Talete si può
ulteriormente generalizzare come segue:
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Teorema 6.5.2. Siano L1, L2 e L3 tre sottovarietà lineari di dimensione r,
parallele e distinte, di uno spazio affine n-dimensionale A sul campo K e siano
H, K due sottovarietà lineari di dimensione n−r di A che intersecano ciascuna
delle sottovarietà Li in un punto. Per ogni i = 1, 2, 3, poniamo

Pi = H ∩ Li, Qi = K ∩ Li.

Siano inoltre α, β ∈ K tali che
−−−→
P1P3 = α

−−−→
P1P2,

−−−→
Q1Q3 = β

−−−→
Q1Q2.

Allora si ha α = β.

Dimostrazione. La dimostrazione di questo risultato è del tutto analoga a quella
del Teorema 6.5.1.

Utilizzando il Teorema di Talete possiamo ora dimostrare il seguente risul-
tato di geometria piana:

Teorema 6.5.3 (Teorema di Pappo). In un piano affine A siano date due
rette distinte r e r′. Siano poi P,Q,R ∈ r, P ′, Q′, R′ ∈ r′, punti distinti tra
loro e distinti anche dall’eventuale punto di intersezione di r e r′. Se la retta
passante per P e Q′ è parallela alla retta passante per P ′ e Q e la retta passante
per Q e R′ è parallela alla retta passante per Q′ e R, allora la retta passante
per P e R′ è parallela alla retta passante per P ′ e R.

Dimostrazione. Supponiamo che le rette r e r′ siano incidenti e indichiamo con
O il loro punto di intersezione.

•

•

••

•

•
•

r

r′

O

R′
Q′

P ′

P Q

R

Per il Teorema di Talete, si ha:
−−→
OQ = α

−−→
OR

−−→
OR′ = α

−−→
OQ′

e

−−→
OP = β

−−→
OQ

−−→
OQ′ = β

−−→
OP ′,

con α, β 6= 0. Da ciò segue che
−−→
PR′ =

−−→
OR′ −

−−→
OP = α

−−→
OQ′ − β

−−→
OQ

−−→
RP ′ =

−−→
OP ′ −

−−→
OR =

1
β

−−→
OQ′ − 1

α

−−→
OQ.

Si conclude pertanto che
−−→
PR′ = αβ

−−→
RP ′ e dunque la retta passante per i punti

P e R′ è parallela a quella passante per P ′ e R.
Se invece le rette r e r′ sono parallele, i quadrilateri PQP ′Q′ e QRQ′R′ sono

dei parallelogrammi, quindi si ha
−−→
PQ =

−−−→
Q′P ′ e

−−→
QR =

−−−→
R′Q′. Da ciò si deduce

che −→
PR =

−−→
PQ+

−−→
QR =

−−−→
Q′P ′ +

−−−→
R′Q′ =

−−→
R′P ′
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e quindi −−→
PR′ =

−→
PR+

−−→
RR′ =

−−→
R′P ′ +

−−→
RR′ =

−−→
RP ′.

Anche in questo caso si conclude dunque che la retta passante per i punti P e
R′ è parallela a quella passante per P ′ e R.

Un’altra conseguenza del Teorema di Talete è il seguente risultato:

Teorema 6.5.4 (Teorema di Desargues). In un piano affine A siano dati
due triangoli PQR e P ′Q′R′, con vertici a due a due distinti. Se la retta
passante per P e Q è parallela alla retta per P ′ e Q′, la retta per Q e R è
parallela a quella passante per Q′ e R′ e la retta per P e R è parallela a quella
per P ′ e R′, allora le rette passanti per P e P ′, per Q e Q′ e per R e R′

rispettivamente, sono parallele oppure hanno un punto in comune.

Dimostrazione. Indichiamo con r la retta passante per P e P ′, con s quella
passante per Q e Q′ e con t quella per R e R′. Supponiamo che le rette r, s e t
non siano parallele. Allora due di esse, non è restrittivo supporre che siano r e
s, si intersecano in un punto che indichiamo con O.

•• •

•

•

•

•

O

P

P ′

Q Q′

R

R′

r

s

t

Per il Teorema di Talete, applicato alle rette parallele passanti per P , Q e per
P ′, Q′, tagliate dalle trasversali r e s, si ha

−−→
OP = α

−−→
OP ′,

−−→
OQ = α

−−→
OQ′,

per qualche α ∈ K. Consideriamo ora la retta passante per i punti O e R. Se
tale retta è parallela alla retta per P ′ e R′, essa coincide necessariamente con
la retta per P e R. Da ciò si deduce che i punti P , P ′, R, R′ e O sono allineati,
quindi le rette r e t coincidono. In questo caso le rette r, s e t passano per il
punto O, come volevasi dimostrare. Supponiamo quindi che le rette passanti
per i punti O, R e per P ′, R′ non siano parallele; esse si intersecano dunque
in un punto, che indicheremo con R′′. Se applichiamo il Teorema di Talete alle
rette parallele passanti per P , R e per P ′, R′, si conclude che

−−→
OR = β

−−→
OR′′,

−−→
OP = β

−−→
OP ′,

per qualche β ∈ K. Dal confronto con le espressioni precedenti si deduce che
β = α, quindi si ha

−−→
OR = α

−−→
OR′′.

Ora consideriamo le rette passanti per O, R e per Q′, R′. Se esse sono parallele,
la retta passante per i punti O e R coincide necessariamente con quella passante
per Q e R. Da ciò si deduce che i punti Q, Q′, R, R′ e O sono allineati, quindi
le rette s e t coincidono. Anche in questo caso le rette r, s e t passano per il
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punto O. Supponiamo allora che le rette passanti per i punti O, R e per Q′,
R′ non siano parallele; esse si intersecano dunque in un punto, che indicheremo
con R′′′. Applicando il Teorema di Talete alle rette parallele passanti per Q, R
e per Q′, R′, si ottiene

−−→
OR = γ

−−−→
OR′′′,

−−→
OQ = γ

−−→
OQ′,

per qualche γ ∈ K. Dal confronto con le espressioni precedenti si deduce che
γ = α, quindi si ha

−−→
OR = α

−−−→
OR′′′.

Da ciò segue che i punti R′′ e R′′′ coincidono, ma ciò è possibile solo se entrambi
coincidono con il punto R′. Si ha pertanto R′ = R′′ = R′′′, il che dimostra che
anche la retta t passa per il punto O.

Osservazione 6.5.5. I teoremi di Pappo e Desargues ammettono altre formu-
lazioni, diverse da quelle che abbiamo presentato. In particolare, essi si pos-
sono riformulare nell’ambito della geometria proiettiva. L’importanza di tali
risultati è dovuta, in modo particolare, alla relazione che essi hanno con la
caratterizzazione degli spazi affini per mezzo di proprietà di natura grafica.

Terminiamo questa sezione con una discussione relativa alla costruzione del
punto medio di un segmento e, più in generale, del baricentro di un insieme
finito di punti.

Definizione 6.5.6. Sia K un campo ordinato4 e sia A uno spazio affine su K.
Dati due punti A,B ∈ A, il segmento di estremi A e B è l’insieme dei punti

X = A+ λ(B −A),

al variare di λ ∈ K, con 0 ≤ λ ≤ 1.

Definizione 6.5.7. Sia K un campo ordinato e sia A uno spazio affine sul
campo K. Siano A e B due punti di A e poniamo v = B −A. Il punto

M = A+
1
2
v

è detto il punto medio del segmento AB.

Si ha infatti M −A = B −M = 1
2v.

•

•

•

A

M
B

v/2

Formalmente si può dunque scrivere

M = A+
1
2

(B −A) =
A+B

2
.

4Un campo ordinato è un campo K dotato di una relazione d’ordine totale ≤ che soddisfa
le seguenti proprietà:

(i) a ≤ b =⇒ a+ c ≤ b+ c, per ogni c ∈ K;

(ii) per ogni a, b ∈ K con a > 0 e b > 0, si ha ab > 0.

Due esempi classici di campi ordinati sono dati dal campo Q dei numeri razionali e dal campo
R dei numeri reali, dotati della relazione d’ordine usuale.
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L’ultima espressione va intesa in senso puramente formale dato che, in uno
spazio affine, la somma di due punti non è un’operazione definita. Naturalmente,
in termini di coordinate, le due espressioni

A+
1
2

(B −A) e
A+B

2

forniscono lo stesso risultato. Osserviamo infine che, in coordinate, la scrittura

M =
A+B

2

è compatibile con la convenzione descritta nell’Osservazione 6.1.10. Infatti, se
A = (1, a1, . . . , an) e B = (1, b1, . . . , bn), si ha

A+B

2
=
(

1,
a1 + b1

2
, . . . ,

an + bn
2

)
che rappresenta effettivamente un punto dello spazio affine, dato che la prima
coordinata è 1.

Osservazione 6.5.8. Se il campo K non è ordinato non ha più senso parlare del
“segmento” di estremi A e B. Tuttavia, se la caratteristica di K è diversa da 2,
è comunque possibile costruire il punto

M =
A+B

2
.

In tal caso M è detto il baricentro dell’insieme di punti {A,B}.
Prendendo spunto da quanto detto sopra, possiamo dare la seguente defini-

zione:

Definizione 6.5.9. Sia K un campo di caratteristica zero e sia A = AnK . Dati
r punti A1, A2, . . . , Ar ∈ A, il punto G le cui coordinate sono date da

G =
A1 +A2 + · · ·+Ar

r

è detto il baricentro5 dell’insieme di punti {A1, A2, . . . , Ar}.

Come applicazione delle tecniche finora introdotte, dimostriamo il seguente
risultato di geometria elementare:

Proposizione 6.5.10. Sia K un campo ordinato.6 Nello spazio affine AnK ,
il baricentro di un triangolo è il punto d’incontro delle tre mediane. Inoltre,
ogni mediana viene divisa da tale punto in due parti, delle quali una è doppia
dell’altra.

5La nozione di baricentro di un insieme di punti deriva dalla fisica. Più in generale, se
A1, A2, . . . , Ar rappresentano dei punti materiali di masse rispettivamente m1,m2, . . . ,mr, il
loro baricentro è il punto le cui coordinate sono date dalla seguente espressione:

G =
m1A1 +m2A2 + · · ·+mrAr

m1 +m2 + · · ·+mr
.

6In effetti è sufficiente richiedere che K sia un campo di caratteristica 6= 2, 3.
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Dimostrazione. Consideriamo un triangolo di vertici A, B e C nello spazio af-
fine AnK . Indichiamo con M , N , P i punti medi dei segmenti AB, BC e CA,
rispettivamente, e indichiamo con G il baricentro dei tre punti A, B e C.

•
•

•

•

•
•

•

A

B

C

M

N
P

G

Si ha dunque

M =
A+B

2
, N =

B + C

2
, P =

A+ C

2
, G =

A+B + C

3
.

Le tre mediane del triangolo ABC sono le rette AN , BP e CM , le cui equazioni
parametriche sono:

retta AN : X = A+ α(N −A)
retta BP : X = B + β(P −B)
retta CM : X = C + γ(M − C).

È ora immediato verificare che, per α = β = γ = 2/3, le tre equazioni pre-
cedenti forniscono precisamente le coordinate del baricentro G. Ad esempio,
considerando l’equazione della retta AN , si ha infatti

A+
2
3

(N −A) = A+
2
3

(B + C

2
−A

)
=
A+B + C

3
.

Ciò dimostra che il punto G giace sulle tre mediane. Per dimostrare l’ultima
asserzione basta osservare che

−→
AG = G−A =

A+B + C

3
−A =

B + C − 2A
3

mentre
−−→
GN = N −G =

B + C

2
− A+B + C

3
=
B + C − 2A

6
,

quindi
−→
AG = 2

−−→
GN (per le altre due mediane il ragionamento è analogo).

6.6 Applicazioni affini

In questa sezione studieremo le funzioni tra due spazi affini che “rispettano” la
struttura di spazio affine. Tali funzioni saranno dette applicazioni affini.

Definizione 6.6.1. Siano A = (A , V,+A) e A′ = (A ′, V ′,+A′) due spazi affini
sul campo K. Un’applicazione affine F : A → A′ è il dato di una funzione tra
gli insiemi di punti f : A → A ′ e di una funzione lineare tra gli spazi vettoriali
φ : V → V ′ che soddisfano la seguente proprietà:

f(P +A v) = f(P ) +A′ φ(v),

per ogni P ∈ A e ogni v ∈ V . L’applicazione φ è detta l’applicazione lineare
soggiacente all’applicazione affine F .
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Per ogni spazio affine A = (A , V,+A) è immediato verificare che l’identità
I = (idA , idV ) : A→ A è un’applicazione affine.

Se A = (A , V,+A), A′ = (A ′, V ′,+A′) e A′′ = (A ′′, V ′′,+A′′) sono tre
spazi affini su K e se F = (f, φ) : A → A′ e G = (g, ψ) : A′ → A′′ sono due
applicazioni affini, l’applicazione composta

G ◦ F = (g ◦ f, ψ ◦ φ) : A→ A′′

è anch’essa un’applicazione affine. Si ha infatti

(g ◦ f)(P + v) = g
(
f(P + v)

)
= g
(
f(P ) + φ(v)

)
= g
(
f(P )

)
+ ψ

(
φ(v)

)
= (g ◦ f)(P ) + (ψ ◦ φ)(v).

Infine, data un’applicazione affine F = (f, φ) : A→ A′, se le funzioni f e φ sono
biiettive è possibile definire l’applicazione F−1 = (f−1, φ−1) : A′ → A, inversa
di F . Questa è un’applicazione affine: infatti, se poniamo Q = f(P ) e w = φ(v),
si ha

f−1(Q+ w) = f−1
(
f(P ) + φ(v)

)
= f−1

(
f(P + v)

)
= P + v

= f−1(Q) + φ−1(w).

Osservazione 6.6.2. Se F = (f, φ) : A → A′ è un’applicazione affine, le due
funzioni f e φ sono strettamente collegate tra loro. Infatti, per ogni coppia di
punti P,Q ∈ A , posto v = Q−P , si ha Q = P + v, quindi f(Q) = f(P ) +φ(v),
da cui segue che φ(v) = f(Q)− f(P ). La funzione lineare φ : V → V ′ è dunque
completamente determinata dalla funzione insiemistica f : A → A ′.

Data una funzione insiemistica f : A → A ′ tale che, per ogni P,Q, P ′, Q′ ∈
A , si abbia

Q− P = Q′ − P ′ =⇒ f(Q)− f(P ) = f(Q′)− f(P ′), (6.6.1)

è possibile definire un’applicazione φ : V → V ′ ponendo, per ogni v ∈ V ,

φ(v) = f(P + v)− f(P ),

per qualche P ∈ A . La proprietà (6.6.1) garantisce che tale definizione non
dipende dalla scelta del punto P . Se poi f è tale che la funzione φ cos̀ı definita
è lineare, la coppia (f, φ) definisce un’applicazione affine F : A→ A′.

Mostriamo ora che, dati due spazi affini A = (A , V,+A) e A′ = (A ′, V ′,+A′)
sul campo K, per ogni funzione lineare φ : V → V ′ esiste un’applicazione affine
F = (f, φ) : A → A′ che invia un qualsiasi punto prefissato P ∈ A in un
qualsiasi punto P ′ ∈ A ′.

Proposizione 6.6.3. Siano A = (A , V,+A) e A′ = (A ′, V ′,+A′) due spazi
affini sul campo K e sia φ : V → V ′ una funzione lineare. Per ogni P ∈ A e
ogni P ′ ∈ A ′ esiste un’unica applicazione affine F = (f, φ) : A → A′ tale che
f(P ) = P ′.
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Dimostrazione. Fissato P ∈ A , per ogni punto Q ∈ A sia vQ = Q − P .
Possiamo definire una funzione f : A → A ′ ponendo, per ogni Q ∈ A ,

f(Q) = P ′ + φ(vQ).

Dato che vP = P − P = 0, si ha f(P ) = P ′ + φ(vP ) = P ′. La funzione
F = (f, φ) : A→ A′ cos̀ı definita è un’applicazione affine: infatti, dati Q ∈ A e
v ∈ V , ponendo R = Q+ v, si ha

f(R) = P ′ + φ(vR)
= P ′ + φ(Q+ v − P )
= P ′ + φ(vQ + v)
= P ′ + φ(vQ) + φ(v)
= f(Q) + φ(v).

Per dimostrare l’unicità di F , supponiamo che G = (g, φ) : A→ A′ sia anch’essa
un’applicazione affine tale che g(P ) = P ′. Per ogni Q ∈ A si ha

g(Q) = g(P + vQ) = g(P ) + φ(vQ) = P ′ + φ(vQ) = f(Q),

pertanto f = g e quindi F = G.

Le applicazioni affini trasformano sottospazi affini del loro dominio in sotto-
spazi affini del codominio. Più precisamente, vale il seguente risultato:

Proposizione 6.6.4. Siano A = (A , V,+A) e A′ = (A ′, V ′,+A′) due spazi
affini sul campo K e sia F = (f, φ) : A→ A′ un’applicazione affine.

(i) Per ogni sottospazio affine B = (B,W,+) di A, ponendo B′ = f(B) e
W ′ = φ(W ), si ottiene un sottospazio affine B′ = (B′,W ′,+) di A′. Tale
sottospazio affine è detto l’ immagine tramite F del sottospazio B, e sarà
indicato con F (B).

(ii) Per ogni sottospazio affine B′ = (B′,W ′,+) di A′, ponendo B = f−1(B′)
e W = φ−1(W ′), si ottiene un sottospazio affine B = (B,W,+) di A. Tale
sottospazio affine è detto l’ immagine inversa tramite F del sottospazio B′,
e sarà indicato con F−1(B′).

Dimostrazione. (i) Osserviamo innanzitutto che W ′ = φ(W ) è un sottospazio
vettoriale di V ′. Dimostriamo ora che l’operazione +A′ : A ′×V ′ → A ′ induce,
per restrizione, un’operazione

+ : B′ ×W ′ → B′.

Siano dunque P ′ ∈ B′, w′ ∈ W ′ e poniamo Q′ = P ′ + w′ ∈ A ′. Dobbiamo
dimostrare che Q′ ∈ B′. Siano P ∈ B e w ∈W tali che P ′ = f(P ) e w′ = φ(w).
Il punto Q = P + w appartiene a B, dato che B è uno spazio affine. Poiché
F è un’applicazione affine, si ha f(Q) = f(P ) + φ(w) = P ′ + w′ = Q′, quindi
Q′ ∈ B′. È ora del tutto evidente che la terna B′ = (B′,W ′,+) soddisfa le
proprietà (i) e (ii) della Definizione 6.1.1. Dimostriamo quindi che vale anche
la proprietà (iii). Dati due punti P ′, Q′ ∈ B′, esiste un unico vettore w′ ∈ V ′
tale che Q′ = P ′ + w′: dobbiamo solo dimostrare che w′ ∈ W ′, cioè che esiste
un vettore w ∈ W tale che φ(w) = w′. Siano P,Q ∈ B tali che f(P ) = P ′ e
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f(Q) = Q′ e poniamo w = Q−P ; notiamo che w ∈W perché B è un sottospazio
affine. Si ha dunque Q = P +w e quindi Q′ = f(Q) = f(P )+φ(w) = P ′+φ(w),
da cui si deduce che φ(w) = Q′ − P ′ = w′, come volevasi dimostrare.

(ii) Iniziamo con l’osservare che W = φ−1(W ′) è un sottospazio vettoriale di
V . Dimostriamo ora che l’operazione +A : A × V → A induce, per restrizione,
un’operazione

+ : B ×W → B.

Siano dunque P ∈ B, w ∈W e poniamo Q = P+w ∈ A . Dobbiamo dimostrare
che Q ∈ B, cioè che Q′ = f(Q) ∈ B′. Ponendo P ′ = f(P ) e w′ = φ(w), si ha

Q′ = f(Q) = f(P ) + φ(w) = P ′ + w′ ∈ B′,

dato che B′ è un sottospazio affine. È ora del tutto evidente che la terna B =
(B,W,+) soddisfa le proprietà (i) e (ii) della Definizione 6.1.1. Dimostriamo
quindi che vale anche la proprietà (iii). Dati due punti P,Q ∈ B, esiste un
unico vettore w ∈ V tale che Q = P +w: dobbiamo solo dimostrare che w ∈W ,
cioè che w′ = φ(w) ∈W ′. Ponendo P ′ = f(P ) e w′ = φ(w), si ha

Q′ = f(Q) = f(P ) + φ(w) = P ′ + w′,

quindi w′ = Q′ − P ′ ∈W ′, dato che B′ è un sottospazio affine.

Definizione 6.6.5. Un’applicazione affine F : A → A′ è un isomorfismo di
spazi affini se esiste un’applicazione affine G : A′ → A tale che le applicazioni
composte F ◦G e G ◦ F siano l’identità. Un’isomorfismo di spazi affini di A in
sé stesso è detto un’affinità di A.

Osservazione 6.6.6. Dato uno spazio affine A, indicheremo con Aff(A) l’insieme
delle affinità di A. Ricordando che la composizione di due affinità è un’affinità
e che l’inversa di un’affinità è un’affinità, è immediato verificare che Aff(A) è un
gruppo per la legge di composizione delle applicazioni.

Notiamo che, per quanto visto in precedenza, un’applicazione affine F =
(f, φ) : A → A′ è un’isomorfismo se e solo se le funzioni f e φ sono biiettive.
In effetti, come ora dimostreremo, per un’applicazione affine F = (f, φ) : A →
A′ l’iniettività (risp., la suriettività) dell’applicazione insiemistica f equivale
all’iniettività (risp., alla suriettività) dell’applicazione lineare φ.

Proposizione 6.6.7. Sia F = (f, φ) : A → A′ un’applicazione affine. Valgono
le seguenti proprietà:

(i) f è iniettiva se e solo se φ è iniettiva;

(ii) f è suriettiva se e solo se φ è suriettiva.

Dimostrazione. (i) Supponiamo che f : A → A ′ sia iniettiva. Siano v1, v2 ∈ V
tali che φ(v1) = φ(v2). Dato un punto P ∈ A , si ha:

f(P + v1) = f(P ) + φ(v1) = f(P ) + φ(v2) = f(P + v2).

Dall’iniettività di f discende allora che P + v1 = P + v2, da cui segue v1 = v2.
Viceversa, supponiamo che φ : V → V ′ sia iniettiva. Dati P,Q ∈ A con

f(P ) = f(Q), poniamo v = Q− P . Si ha dunque

f(P ) = f(Q) = f(P + v) = f(P ) + φ(v),
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da cui si deduce che φ(v) = 0. Dall’iniettività di φ segue che v = 0, quindi
P = Q.

(ii) Supponiamo ora che f : A → A ′ sia suriettiva. Dato v′ ∈ V ′, scegliamo
un punto P ′ ∈ A ′ e poniamo Q′ = P ′ + v′. Poiché f è suriettiva, esistono
due punti P,Q ∈ A tali che f(P ) = P ′ e f(Q) = Q′. Sia dunque v = Q − P :
vogliamo dimostrare che φ(v) = v′. Si ha infatti

Q′ = f(Q) = f(P + v) = f(P ) + φ(v) = P ′ + φ(v),

da cui segue che φ(v) = Q′ − P ′ = v′, come volevasi dimostrare.
Viceversa, supponiamo che φ : V → V ′ sia suriettiva. Dato P ′ ∈ A ′ sce-

gliamo un punto A ∈ A , poniamo A′ = f(A) e v′ = P ′ − A′. Dato che φ è
suriettiva, esiste v ∈ V tale che φ(v) = v′. Ponendo P = A+ v, si ha

f(P ) = f(A+ v) = f(A) + φ(v) = A′ + v′ = P ′,

il che dimostra la suriettività di f .

Come applicazione di quanto abbiamo visto finora, possiamo dimostrare il
seguente risultato:

Proposizione 6.6.8. Siano A = (A , V,+) e A′ = (A ′, V ′,+) due spazi affini
di dimensione n sul campo K. Dati due sistemi di riferimento

R = {P0, P1, . . . , Pn}, R′ = {P ′0, P ′1, . . . , P ′n},

in A e A′ rispettivamente, esiste un unico isomorfismo di spazi affini

F = (f, φ) : A→ A′

tale che f(Pi) = P ′i , per ogni i = 0, . . . , n.

Dimostrazione. Poiché R è un sistema di riferimento in A, i vettori

v1 = P1 − P0, v2 = P2 − P0, . . . , vn = Pn − P0

costituiscono una base dello spazio vettoriale V . In modo del tutto analogo, i
vettori

v′1 = P ′1 − P ′0, v′2 = P ′2 − P ′0, . . . , v′n = P ′n − P ′0
sono una base dello spazio vettoriale V ′, dato che R′ è un sistema di riferimen-
to in A′. Esiste pertanto un’unica applicazione lineare φ : V → V ′ tale che
φ(vi) = v′i, per i = 1, . . . , n; inoltre tale applicazione lineare è un isomorfismo
di spazi vettoriali. Dalla Proposizione 6.6.3 si deduce che esiste un’unica ap-
plicazione affine F = (f, φ) : A → A′ tale che f(P0) = P ′0; tale applicazione è
un isomorfismo di spazi affini, visto che φ è un isomorfismo di spazi vettoriali.
Notiamo infine che, per ogni i = 1, . . . , n, si ha Pi = P0 + vi quindi, poiché F è
un’applicazione affine, si ha

f(Pi) = f(P0) + φ(vi) = P ′0 + v′i = P ′i .

F soddisfa pertanto le proprietà richieste.



Capitolo 6 Geometria Affine 189

Terminiamo questa sezione dimostrando che ogni spazio affine di dimensione
n sul campo K è isomorfo (non in modo canonico) allo spazio affine standard
AnK .

Sia dunque A = (A , V,+) uno spazio affine di dimensione n sul campo K e
sia R = {O, v1, . . . , vn} un sistema di riferimento in A. Ad ogni punto P ∈ A
è possibile associare la n-upla (p1, . . . , pn) delle sue coordinate nel sistema di
riferimento R; ricordiamo che ciò significa che P si scrive nella forma

P = O + p1v1 + · · ·+ pnvn.

Come già osservato nel Paragrafo 6.3, risulta cos̀ı definita una biiezione

f = fR : A → Kn, P 7→ f(P ) = (p1, . . . , pn).

Analogamente, associando ad ogni vettore v ∈ V la n-upla (α1, . . . , αn) delle
sue componenti rispetto alla base v1, . . . , vn, si ottiene un isomorfismo di spazi
vettoriali

φ = φR : V → Kn.

Possiamo ora dimostrare il seguente risultato:

Proposizione 6.6.9. Con le notazioni precedenti, la coppia (fR, φR) definisce
un isomorfismo di spazi affini ΦR : A ∼−→ AnK .

Dimostrazione. Per dimostrare che ΦR = (fR, φR) è un’applicazione affine con-
sideriamo un punto P ∈ A e un vettore v ∈ V . Poniamo (p1, . . . , pn) = fR(P )
e (α1, . . . , αn) = φR(v): si ha dunque

P = O + p1v1 + · · ·+ pnvn, v = α1v1 + · · ·+ αnvn.

Da ciò segue che

P + v = O + (p1 + α1)v1 + · · ·+ (pn + αn)vn

e dunque le coordinate del punto P + v nel sistema di riferimento R sono date
da (p1 + α1, . . . , pn + αn). Si ha pertanto:

fR(P + v) = (p1 + α1, . . . , pn + αn) = fR(P ) + φR(v),

il che dimostra che ΦR = (fR, φR) è un’applicazione affine. Dalla biiettività
delle funzioni fR e φR si deduce che ΦR è un isomorfismo.

6.6.1 Matrici associate alle applicazioni affini

Siano A = (A , V,+) e B = (B,W,+) due spazi affini sul campo K, di di-
mensioni n e m rispettivamente, e sia F = (f, φ) : A → B un’applicazione
affine. Indichiamo con R = {OA, v1, . . . , vn} un sistema di riferimento in A e
con S = {OB, w1, . . . , wm} un sistema di riferimento in B.

Come abbiamo visto nel Paragrafo 6.3, ogni punto P ∈ A si può scrivere, in
modo unico, nella forma

P = OA + λ1v1 + λ2v2 + · · ·+ λnvn,
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ove (λ1, λ2, . . . , λn) ∈ Kn sono le coordinate di P nel sistema di riferimento R.
Dalla definizione di applicazione affine si deduce allora che

f(P ) = f(OA) + λ1φ(v1) + λ2φ(v2) + · · ·+ λnφ(vn).

Se indichiamo con A =
(
aij
)

la matrice dell’applicazione lineare φ : V → W
rispetto alle basi {v1, . . . , vn} di V e {w1, . . . , wm} di W , si ha

φ(vj) =
m∑
i=1

aijwi,

per ogni j = 1, . . . , n. Indicando poi con (t1, . . . , tm) ∈ Km le coordinate del
punto f(OA) nel sistema di riferimento S , si ha

f(OA) = OB + t1w1 + t2w2 + · · ·+ tmwm

e quindi

f(P ) = OB +
m∑
i=1

tiwi +
n∑
j=1

λjφ(vj)

= OB +
m∑
i=1

tiwi +
n∑
j=1

λj

m∑
i=1

aijwi

= OB +
m∑
i=1

tiwi +
m∑
i=1

( n∑
j=1

aijλj

)
wi

= OB +
m∑
i=1

(
ti +

n∑
j=1

aijλj

)
wi.

L’applicazione affine F = (f, φ) è dunque completamente determinata dalle
coordinate (t1, . . . , tm) del punto f(OA) e dalla matrice A =

(
aij
)

dell’applica-
zione lineare φ. Indicando con (x1, . . . , xn) le coordinate di un generico pun-
to X ∈ A e con (x′1, . . . , x

′
m) le coordinate del punto f(X) ∈ B, la formula

precedente si riscrive come segue:x′1
...
x′m

 =

a11 · · · a1n

...
...

am1 · · · amn


x1

...
xn

+

 t1
...
tm

 (6.6.2)

Quest’ultima è dunque l’espressione, in coordinate, di una generica applicazione
affine F tra due spazi affini A e B, di dimensioni n e m rispettivamente.

Osservazione 6.6.10. Se rappresentiamo le coordinate dei punti X e X ′ = f(X)
nella forma X = (1, x1, . . . , xn) e X ′ = (1, x′1, . . . , x

′
m) (vedi la convenzione

introdotta nell’Osservazione 6.1.10) e se associamo alla matrice A =
(
aij
)

e alla
m-upla (t1, . . . , tm) la matrice

1 0 0 · · · 0
t1 a11 a12 · · · a1n

t2 a21 a22 · · · a2n

...
...

...
...

tm am1 am2 · · · amn


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possiamo riscrivere la formula (6.6.2) come segue:
1
x′1
...
x′m

 =


1 0 · · · 0
t1 a11 · · · a1n

...
...

...
tm am1 · · · amn




1
x1

...
xn

 (6.6.3)

È dunque possibile rappresentare un’applicazione affine F = (f, φ) tra due spazi
affini A e B, di dimensioni n e m rispettivamente, mediante una matrice (m +
1)× (n+ 1) del tipo (

1 0
t A

)
ove t = t(t1, . . . , tm) ∈ Km sono le coordinate dell’immagine tramite f del-
l’origine del sistema di riferimento fissato in A, A ∈ Mm,n(K) è la matrice
dell’applicazione lineare φ rispetto alle basi {v1, . . . , vn} di V e {w1, . . . , wm} di
W e 0 = (0, . . . , 0) ∈ Kn è il vettore nullo (scritto in riga).

Osservazione 6.6.11. Prendendo spunto dalla formula (6.6.2) possiamo definire,
per ogni matrice A ∈Mm,n(K) e ogni m-upla t = t(t1, . . . , tm) ∈ Km, un’appli-
cazione insiemistica f : Kn → Km ponendo f(X) = AX + t e un’applicazione
lineare φ : Kn → Km ponendo φ(v) = Av. Per ogni punto P ∈ AnK e ogni
vettore v ∈ Kn si ha

f(P + v) = A(P + v) + t = AP + t +Av = f(P ) + φ(v),

quindi la coppia (f, φ) definisce un’applicazione affine

F = F(t,A) : AnK → AmK .

È immediato verificare che F(t,A) è un isomorfismo se e solo se la matrice A è
invertibile: infatti sappiamo che F(t,A) = (f, φ) è un isomorfismo di spazi affini
se e solo se φ è un isomorfismo di spazi vettoriali, il che accade precisamente se
e solo se A è invertibile.

Osservazione 6.6.12. Sia F : AnK → AmK , F (X) = AX+t, un’applicazione affine
e sia L la sottovarietà lineare di AmK costituita dalle soluzioni di un sistema di
equazioni lineari CY = D. Nella Proposizione 6.6.4 abbiamo dimostrato che
l’immagine inversa di L tramite F è una sottovarietà lineare di AnK :

F−1(L) = {X ∈ AnK |F (X) ∈ L}.

Vogliamo determinare il sistema lineare corrispondente alla sottovarietà F−1(L).
A tale scopo basta osservare che, dalle definizioni date, si ha

X ∈ F−1(L) ⇐⇒ F (X) ∈ L
⇐⇒ AX + t ∈ L
⇐⇒ C(AX + t) = D

⇐⇒ (CA)X = D − Ct.

Si conclude quindi che la sottovarietà lineare F−1(L) di AnK è costituita dalle
soluzioni del sistema di equazioni lineari EX = G, ove E = CA e G = D −Ct.
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Nel caso in cui F : AnK → AmK sia un isomorfismo di spazi affini (e quindi m =
n), l’applicazione inversa F−1 : AmK → AnK è data da F−1(Y ) = A−1Y − A−1t.
Se L′ è una sottovarietà lineare di AnK , costituita dalle soluzioni di un sistema
di equazioni lineari C ′X = D′, la sua immagine tramite F è una sottovarietà
lineare dello spazio affine AmK e si ha

F (L′) = (F−1)−1(L′).

Applicando quanto detto sopra alla funzione inversa di F , si deduce che il siste-
ma di equazioni lineari corrispondente alla sottovarietà F (L′) è E′Y = G′, ove
E′ = C ′A−1 e G′ = D′ + C ′A−1t.

Osservazione 6.6.13. Siano A = (A , V,+) e B = (B,W,+) due spazi affini
sul campo K, di dimensioni n e m rispettivamente. Fissiamo un sistema di
riferimento R = {OA, v1, . . . , vn} in A e indichiamo con ΦR : A ∼→ AnK l’isomor-
fismo di spazi affini definito nella Proposizione 6.6.9. Fissiamo poi un sistema
di riferimento S = {OB, w1, . . . , wm} in B e indichiamo con ΨS : B ∼→ AmK
l’isomorfismo di spazi affini corrispondente. Data un’applicazione affine F =
(f, φ) : A → B, indichiamo con t = (t1, . . . , tm) le coordinate del punto f(OA)
nel sistema di riferimento S e con A ∈ Mm,n(K) la matrice dell’applicazione
lineare φ rispetto alle basi {v1, . . . , vn} di V e {w1, . . . , wm} di W . Sia poi
F(t,A) : AnK → AmK l’applicazione affine definita nell’Osservazione precedente.
Ricordando la formula (6.6.2), è immediato verificare che il seguente diagramma
è commutativo:

A F //

ΦR o
��

B

ΨSo
��

AnK F(t,A)

// AmK

Osservazione 6.6.14. Quanto visto finora permette di affermare che esiste una
corrispondenza biunivoca tra l’insieme delle applicazioni affini di AnK in AmK e
l’insieme delle coppie (t, A), ove t ∈ Km e A è una matrice m× n a coefficienti
in K. Vedremo ora come si esprime, in termini di coppie (t, A), l’operazione di
composizione di due applicazioni affini.

Consideriamo dunque le applicazioni affini

F(t,A) : AnK → AmK e F(u,B) : AmK → ArK ,

corrispondenti alle coppie (t, A) e (u, B), ove A ∈ Mm,n(K), B ∈ Mr,m(K),
t ∈ Km e u ∈ Kr. Dato che l’applicazione composta

F(u,B) ◦ F(t,A) : AnK → ArK

è un’applicazione affine, essa corrisponderà a una coppia (v, C), per qualche
C ∈Mr,n(K) e v ∈ Kr. Per ogni punto X ∈ AnK , si ha dunque:

F(v,C)(X) = (F(u,B) ◦ F(t,A))(X)
= F(u,B)(AX + t)
= B(AX + t) + u

= (BA)X + (Bt + u).
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D’altra parte, si ha anche

F(v,C)(X) = CX + v

da cui si deduce che C = BA e v = u+Bt. Concludiamo quindi che, in termini
di coppie, l’operazione di composizione di due applicazioni affini si esprime come
segue:

(u, B) ◦ (t, A) = (u +Bt, BA).

Osservazione 6.6.15. Per ogni spazio affine A di dimensione n sul campo K, la
scelta di un sistema di riferimento R in A permette di associare ad ogni affinità
F di A una coppia (t, A), ove t ∈ Kn e A ∈Mn(K) è una matrice invertibile. Si
stabilisce cos̀ı una biiezione (dipendente dalla scelta di R) tra l’insieme Aff(A)
e il prodotto cartesiano Kn × GLn(K). Come abbiamo visto nell’Osservazio-
ne precedente, la legge di gruppo di Aff(A) si traduce nella seguente legge di
composizione di coppie:

(u, B) · (t, A) = (u +Bt, BA).

L’insieme Kn × GLn(K), con la legge di composizione sopra descritta, è un
gruppo, detto il prodotto semidiretto del gruppo additivo (Kn,+) per il grup-
po moltiplicativo (GLn(K), ·). Tale gruppo viene indicato con la notazione
seguente:7

Kn o GLn(K).

L’elemento identico per tale legge di gruppo è la coppia (0,1) (la quale corri-
sponde all’applicazione affine identica di A in sé) mentre l’inverso di una coppia
(t, A) risulta essere la coppia (−A−1t, A−1). Concludiamo quindi che, per ogni
spazio affine A di dimensione n sul campo K, il gruppo Aff(A) delle affinità di
A è isomorfo (non canonicamente) al prodotto semidiretto Kn o GLn(K).

Osservazione 6.6.16. Come abbiamo visto nell’Osservazione 6.6.10, ad ogni
coppia (t, A) ∈ Kn o GLn(K) è possibile associare la matrice(

1 0
t A

)
∈ GLn+1(K). (6.6.4)

Vogliamo dimostrare che tale associazione definisce un omomorfismo iniettivo
di gruppi

j : Kn o GLn(K)→ GLn+1(K),

il quale permette dunque di identificare il prodotto semidiretto Kn o GLn(K)
con il sottogruppo di GLn+1(K) costituito dalle matrici della forma (6.6.4).

A tale scopo basta osservare che si ha

j
(
(u, B) ◦ (t, A)

)
= j(u +Bt, BA) =

(
1 0

u +Bt BA

)
e che tale matrice coincide con il prodotto righe per colonne delle matrici j(u, B)
e j(t, A).

7La notazione G = N oH, per indicare il prodotto semidiretto di due gruppi N e H, serve
a ricordare che N è un sottogruppo normale di G, N CG, mentre H è solo un sottogruppo di
G, H < G.
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6.7 Spazi affini euclidei

In questa sezione studieremo gli spazi affini i cui spazi direttori sono degli spazi
vettoriali euclidei, cioè degli spazi vettoriali reali dotati di un prodotto scalare.
Come vedremo, la presenza di una tale struttura nello spazio vettoriale V sog-
giacente a uno spazio affine A = (A , V,+) permetterà di introdurre in A nozioni
di natura metrica come distanze, angoli, aree, volumi.

Definizione 6.7.1. Uno spazio affine euclideo è uno spazio affine A, definito sul
campo R dei numeri reali, in cui lo spazio direttore V è dotato di una struttura
di spazio vettoriale euclideo, cioè di una forma bilineare simmetrica definita
positiva g : V × V → R. Commettendo un abuso di notazione, dati due vettori
v, w ∈ V , nel seguito scriveremo v · w al posto di g(v, w).

Esempio 6.7.2. L’esempio fondamentale di spazio affine euclideo è costituito
dallo spazio affine AnR, in cui lo spazio vettoriale soggiacente Rn è dotato del
prodotto scalare usuale. Tale spazio verrà chiamato semplicemente lo spazio
affine euclideo AnR.

Definizione 6.7.3. In uno spazio affine euclideo A (di dimensione finita), un
sistema di riferimento R = {O, v1, v2, . . . , vn} è detto ortogonale (risp., ortonor-
male) se i vettori v1, v2, . . . , vn sono una base ortogonale (risp., ortonormale)
dello spazio vettoriale euclideo V . Un sistema di riferimento ortonormale è
anche detto cartesiano.

Osservazione 6.7.4. Si noti che l’esistenza di sistemi di riferimento ortonormali
in uno spazio affine euclideo è garantita dall’esistenza di basi ortonormali negli
spazi vettoriali euclidei (vedi Cap. 5, Paragrafo 5.4.2). Inoltre, la scelta di
un sistema di riferimento ortonormale R in uno spazio affine euclideo A di
dimensione n, determina un isomorfismo di spazi affini (vedi Proposizione 6.6.9)

ΦR : A ∼−→ AnR

Mediante tale isomorfismo la forma bilineare g definita sullo spazio vettoriale V
soggiacente allo spazio affine A viene identificata con il prodotto scalare usuale
di Rn.

Dalla Definizione 6.7.1 segue che tutti i risultati ottenuti nel Capitolo 5 per
gli spazi vettoriali euclidei si possono riformulare, in modo del tutto ovvio, nel
contesto degli spazi affini euclidei.

La presenza di un prodotto scalare, definito nello spazio vettoriale V sog-
giacente a uno spazio affine euclideo A, permette di definire la distanza tra due
punti di A:

Definizione 6.7.5. Siano A uno spazio affine euclideo e P , Q due punti di A.
La distanza d(P,Q) tra P e Q è la norma del vettore Q− P :

d(P,Q) = ‖Q− P‖ =
√

(Q− P ) · (Q− P ).

Dalle proprietà della norma di un vettore studiate nel Capitolo 5, si deduce che,
in uno spazio affine euclideo A = (A , V,+), la funzione distanza

d : A ×A → R

gode delle seguenti proprietà:
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(i) d(P,Q) ≥ 0, per ogni P,Q ∈ A , e d(P,Q) = 0 se e solo se P = Q;

(ii) d(P,Q) = d(Q,P ), per ogni P,Q ∈ A ;

(iii) d(P,R) ≤ d(P,Q) + d(Q,R), per ogni P,Q,R ∈ A .

La proprietà (iii) è detta disuguaglianza triangolare: essa afferma che, in un
triangolo, ogni lato è minore o uguale della somma degli altri due (vedi Cap. 5,
Proposizioni 5.1.8 e 5.3.24).

Se S e T sono due sottoinsiemi non vuoti (dell’insieme dei punti) di uno
spazio affine euclideo A, risulta naturale definire la distanza di S da T come
l’estremo inferiore delle distanze dei punti di S dai punti di T :

d(S ,T ) = inf{d(P,Q) |P ∈ S , Q ∈ T }.

Dalla definizione data segue subito che

S ∩T 6= ∅ =⇒ d(S ,T ) = 0.

L’osservazione seguente mostra che non vale l’implicazione opposta.

Osservazione 6.7.6. Se S e T sono due sottoinsiemi di uno spazio affine euclideo
A, non è detto che esistano dei punti P ∈ S e Q ∈ T tali che d(P,Q) =
d(S ,T ). Ad esempio, considerando la retta affine reale A1

R e ponendo

S = {x ∈ R |x ≤ 0}, T = {x ∈ R |x > 0},

si ha d(S ,T ) = 0, ma d(P,Q) > 0 per ogni P ∈ S e ogni Q ∈ T .

Nel caso particolare in cui i sottoinsiemi S e T sono (gli insiemi dei punti
di) due sottospazi affini L e M dello spazio affine euclideo A, la funzione distanza

d : L×M→ R, (P,Q) 7→ d(P,Q)

ammette minimo, cioè esistono dei punti P0 ∈ L e Q0 ∈M tali che

d(L,M) = d(P0, Q0).

Prima di dimostrare questo risultato enunciamo e dimostriamo il seguente lem-
ma:

Lemma 6.7.7. Siano L = (L , L,+) e M = (M ,M,+) due sottospazi affini
di uno spazio affine euclideo A e siano P0 ∈ L e Q0 ∈ M due punti tali che il
vettore u = Q0 − P0 sia ortogonale a L e M. Allora, per ogni P ∈ L e ogni
Q ∈M, si ha d(P0, Q0) ≤ d(P,Q). Inoltre, se P1 ∈ L e Q1 ∈M sono due punti
tali che d(P1, Q1) = d(P0, Q0), deve necessariamente essere Q1−P1 = Q0−P0.

Dimostrazione. Per ogni P ∈ L e ogni Q ∈M, si ha Q−P = (Q−Q0) + (Q0−
P0) + (P0 − P ), cioè Q − P = u + v + w, ove u = Q0 − P0, v = P0 − P ∈ L e
w = Q−Q0 ∈M .

L

M

•P0 • P

•Q0 •Q

u

v

w
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Dato che u è ortogonale a L e M, si ha u · v = u · w = 0. Da ciò segue che

‖Q− P‖2 = (u+ v + w) · (u+ v + w)

= ‖u‖2 + ‖v‖2 + ‖w‖2 + 2v · w
= ‖u‖2 + ‖v + w‖2

≥ ‖u‖2,

e quindi d(P,Q) ≥ d(P0, Q0). Specializzando ora il ragionamento precedente al
caso in cui P = P1 e Q = Q1, si ha

‖Q1 − P1‖2 = ‖u‖2 + ‖v + w‖2 = ‖Q0 − P0‖2 + ‖v + w‖2.

Poiché, per ipotesi, si ha d(P1, Q1) = d(P0, Q0), deve essere ‖Q1 − P1‖2 =
‖Q0 − P0‖2 e quindi ‖v + w‖2 = 0. Da ciò si deduce che v + w = 0 e dunque
w = −v. Si ha pertanto Q1 − P1 = u+ v+w = u+ v− v = u = Q0 − P0, come
volevasi dimostrare.

Proposizione 6.7.8. Siano L = (L , L,+) e M = (M ,M,+) due sottospazi
affini (non vuoti) di uno spazio affine euclideo A. Allora esistono dei punti
P0 ∈ L e Q0 ∈M tali che

d(P0, Q0) ≤ d(P,Q),

per ogni P ∈ L e ogni Q ∈M.

Dimostrazione. Se L e M sono incidenti, è sufficiente prendere P0 = Q0 ∈ L∩M.
Possiamo quindi supporre che i due sottospazi affini L e M non abbiano punti
in comune.

Consideriamo due punti qualsiasi P1 ∈ L, Q1 ∈ M e indichiamo con u1

il vettore Q1 − P1. Osserviamo che u1 non può appartenere alla somma dei
due sottospazi L e M . Infatti, se fosse u1 = Q1 − P1 ∈ L + M , si avrebbe
Q1 − P1 = v + w, per qualche v ∈ L, w ∈ M . Da ciò seguirebbe che il punto
R = P1 + v = Q1 − w apparterrebbe sia a L che a M, contro l’ipotesi che L e
M siano disgiunti.

Indichiamo con u′1 la proiezione ortogonale di u1 sul sottospazio L+M . Si
ha dunque

u1 = u′1 + u′′1 ,

con u′1 ∈ L + M e u′′1 ∈ (L + M)⊥ = L⊥ ∩M⊥ (si veda la Proposizione 5.4.8
del Cap. 5). Notiamo che, da quanto detto sopra, segue che u′′1 6= 0. Dato che
u′1 ∈ L + M , possiamo scrivere u′1 = v + w, per qualche v ∈ L e w ∈ M (si
noti che tale decomposizione non è, in generale, unica; lo è solo nel caso in cui
L ∩M = {0}, cioè quando i due sottospazi affini L e M sono sghembi). Ora
poniamo P0 = P1 + v e Q0 = Q1 − w; si ha ovviamente P0 ∈ L e Q0 ∈ M.
Affermiamo che P0 e Q0 sono i punti cercati. Infatti, si ha

Q0 − P0 = (Q1 − w)− (P1 + v)
= (Q1 − P1)− (v + w)
= u1 − u′1
= u′′1 ∈ L⊥ ∩M⊥,

quindi il vettore u = u′′1 = Q0 − P0 è ortogonale ad entrambi i sottospazi affini
L e M. Per il Lemma 6.7.7 si conclude.



Capitolo 6 Geometria Affine 197

Il risultato seguente afferma che la distanza tra due sottospazi affini non
incidenti L e M di uno spazio affine euclideo A si misura lungo una direzione
perpendicolare ad entrambi i sottospazi. Inoltre, in base al Lemma 6.7.7, una
tale direzione risulta essere unica.

Proposizione 6.7.9. Siano L = (L , L,+) e M = (M ,M,+) due sottospazi
affini (non vuoti) di uno spazio affine euclideo A e siano P0 ∈ L e Q0 ∈M due
punti tali che d(P0, Q0) = d(L,M). Allora, indicando con u il vettore Q0−P0, si
ha u ∈ L⊥ ∩M⊥, cioè, per ogni vettore v ∈ L e ogni w ∈M , è u · v = u ·w = 0.

Dimostrazione. Se L e M sono incidenti si ha P0 = Q0, quindi u = Q0−P0 = 0.
In questo caso la tesi è banalmente verificata.

Supponiamo quindi che L ∩M = ∅. Siano dunque P0 ∈ L e Q0 ∈ M tali
che d(P0, Q0) = d(L,M): si ha pertanto d(P0, Q0) ≤ d(A,B), per ogni A ∈ L
e ogni B ∈M . Poniamo u = Q0−P0 e supponiamo, per assurdo, che u 6∈M⊥.
Ciò significa che esiste un vettore w ∈ M tale che u · w 6= 0. La situazione è
schematizzata nella figura seguente:

L

r w

u

M

•P0

•
Q0

•
R

Indichiamo con r la retta passante per Q0 e parallela al vettore w: tale retta è
contenuta in M, dato che Q0 ∈ M e w ∈ M . Sia R il punto della retta r per
cui il vettore

−−→
P0R è ortogonale al vettore w; R è dato da

R = Q0 −
( u · w
w · w

)
w.

Il quadrato della distanza di P0 da R è:

d(P0, R)2 = ‖R− P0‖2

=
∥∥∥u− ( u · w

w · w

)
w
∥∥∥2

= ‖u‖2 −
(u · w
‖w‖

)2

.

Poiché abbiamo supposto che sia u · w 6= 0, si ha

d(P0, R) < ‖u‖ = d(P0, Q0),

il che contraddice l’ipotesi che P0 e Q0 siano i punti di minima distanza di L e
M. L’assurdo deriva dall’aver supposto che il vettore u non sia perpendicolare
al sottospazio M ; deve pertanto essere u ∈M⊥. Scambiando i ruoli di L e M si
dimostra, in modo del tutto analogo, che vale anche u ∈ L⊥.

Osservazione 6.7.10. Nel caso in cui il sottospazio affine L si riduce a un punto P
i risultati precedenti permettono di concludere che esiste un unico punto Q ∈M
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tale che d(P,Q) = d(P,M). In tal caso, inoltre, il vettore
−−→
PQ risulta essere

ortogonale a M.
Possiamo dunque affermare che, per ogni punto P e ogni sottovarietà lineare

M di uno spazio affine euclideo A, esiste un unico punto Q ∈ M tale che il
vettore

−−→
PQ sia ortogonale a M; tale punto Q è detto la proiezione ortogonale

di P su M. Risulta cos̀ı definita una funzione

πM : A→M

che associa ad ogni P ∈ A la sua proiezione ortogonale πM(P ) = Q sul sottospa-
zio affine M. Lasciamo come esercizio la verifica che πM è un’applicazione affine,
la cui applicazione lineare soggiacente è la funzione πM : V →M che associa ad
ogni vettore v ∈ V la sua proiezione ortogonale sul sottospazio M (ove, come di
consueto, abbiamo indicato con V e M gli spazi vettoriali soggiacenti agli spazi
affini A e M, rispettivamente).

Si noti infine che, per ogni punto P ∈M, si ha πM(P ) = P . Da ciò segue che
πM
(
πM(P )

)
= πM(P ), per ogni P ∈ A. Questa proprietà viene comunemente

espressa con la seguente notazione: π2
M = πM ◦ πM = πM.

I risultati precedenti suggeriscono un metodo per determinare la distanza tra
due sottovarietà lineari L e M, di dimensioni rispettivamente r e s, di uno spazio
affine euclideo A. Si considerari un punto generico P ∈ L, le cui coordinate di-
penderanno quindi da r parametri, e un punto generico Q ∈M, le cui coordinate
dipenderanno da s parametri. Si calcoli il vettore u = Q−P , le cui componenti
dipenderanno dunque da r + s parametri, e si imponga che u sia ortogonale ai
sottospazi L e M. La condizione di ortogonalità a L si esprime imponendo che
il prodotto scalare di u con gli r vettori di una base del sottospazio direttore di
L sia nullo (si ottengono cos̀ı r equazioni lineari). Analogamente, la condizione
di ortogonalità a M si esprime imponendo che il prodotto scalare di u con gli s
vettori di una base del sottospazio direttore di M sia nullo (si ottengono cos̀ı s
equazioni lineari). Si ottiene pertanto un sistema di r + s equazioni lineari in
r + s incognite, la cui soluzione permette di determinare due punti P0 ∈ L e
Q0 ∈M tali che il vettore Q0 − P0 sia ortogonale a L e M. Per quanto visto in
precedenza, la distanza tra P0 e Q0 coincide con la distanza tra L e M.

Illustriamo ora quanto sopra esposto mediante alcuni esempi.

Esempio 6.7.11 (Distanza di un punto da una retta). Sia A uno spazio
affine euclideo e indichiamo con r la retta passante per un punto A e parallela
a un vettore v. Dato un punto P ∈ A, vogliamo determinare la distanza h di P
dalla retta r.

•

•

A

P

v

r

h

Un generico punto X della retta r è dato da X = A+λv, al variare del parametro
λ ∈ R. Il vettore u =

−−→
PX è quindi dato da u = X − P = (A − P ) + λv.

Imponendo che questo vettore sia ortogonale alla retta r (cioè al vettore v), si
ottiene

0 = u · v = (A− P ) · v + λ v · v,
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da cui si ricava

λ = − (A− P ) · v
‖v‖2

.

Se indichiamo con Q il punto di r corrispondente a tale valore del parametro λ,
si ha

Q = A− (A− P ) · v
‖v‖2

v.

Il punto Q è dunque il punto della retta r per cui il vettore
−−→
PQ è ortogonale

alla retta r stessa: Q è dunque il piede della perpendicolare tracciata per P alla
retta r. Si ha pertanto

d(P, r) = d(P,Q) = ‖Q− P‖ =
∥∥∥(A− P )− (A− P ) · v

‖v‖2
v
∥∥∥.

Sviluppando i calcoli, si ottiene

d(P, r)2 =
(

(A− P )− (A− P ) · v
‖v‖2

v
)
·
(

(A− P )− (A− P ) · v
‖v‖2

v
)

= ‖A− P‖2 − 2

(
(A− P ) · v

)2
‖v‖2

+

(
(A− P ) · v

)2
‖v‖2

= ‖A− P‖2 −
(
(A− P ) · v

)2
‖v‖2

,

da cui si ricava la seguente formula per la distanza di un punto da una retta:

d(P, r) =

√
‖A− P‖2 −

(
(A− P ) · v

)2
‖v‖2

.

Il problema della determinazione della distanza di un punto da una retta può
essere affrontato anche in un altro modo, come ora spiegheremo.

Utilizzando le notazioni precedenti, poniamo B = A + v, C = P + v e
consideriamo il parallelogramma ABCP , avente come base il segmento AB e
come altezza la distanza h del punto P dalla retta r.

•

•

•

•

A
B

P
C

v

w

r

h

Poiché l’area di un parallelogramma è il prodotto della sua base per la relativa
altezza, si ha

h =
Area(ABCP )

AB
.

Indicando con w il vettore
−→
AP e ricordando che

−−→
AB = v, l’area del parallelo-

gramma ABCP è data dalla seguente formula (vedi Cap. 5, Sezione 5.2)

Area(ABCP ) =

√
det
(
v · v v · w
w · v w · w

)
.
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Si ottiene pertanto:

h =

√
det
(
v · v v · w
w · v w · w

)
‖v‖

=

√
1
v · v

det
(
v · v v · w
w · v w · w

)
.

Nel caso particolare in cui A è lo spazio affine euclideo A3
R, l’area di un pa-

rallelogramma di lati v e w coincide con la norma del prodotto vettoriale v ×
w:

Area(ABCP ) = ‖v × w‖.

In questo caso la distanza h di P dalla retta r si può dunque calcolare come
segue:

h =
‖v × w‖
‖v‖

.

Nel prossimo esempio ricaveremo un’utile formula per determinare la distanza di
un punto da un iperpiano dello spazio affine euclideo AnR. Prima però abbiamo
bisogno del seguente risultato:

Proposizione 6.7.12. Nello spazio affine euclideo AnR consideriamo un iper-
piano π di equazione

π : a1x1 + a2x2 + · · ·+ anxn + b = 0

e indichiamo con u il vettore le cui componenti sono i coefficienti delle incognite
x1, x2, . . . , xn nell’equazione di π,

u = (a1, a2, . . . , an).

Allora il vettore u è ortogonale all’iperpiano π.

Dimostrazione. Sia P = (p1, p2, . . . , pn) un punto di π; si ha dunque

a1p1 + a2p2 + · · ·+ anpn + b = 0.

Per ogni vettore v = (α1, α2, . . . , αn) appartenente al sottospazio direttore di π,
il punto Q = P + v = (p1 +α1, p2 +α2, . . . , pn +αn) appartiene all’iperpiano π,
quindi si ha

a1(p1 + α1) + a2(p2 + α2) + · · ·+ an(pn + αn) + b = 0.

Sottraendo le due uguaglianze precedenti, si ottiene

a1α1 + a2α2 + · · ·+ anαn = 0,

cioè u · v = 0. Poiché questo vale per ogni vettore v appartenente al sottospazio
direttore di π, si conclude che il vettore u è ortogonale all’iperpiano π.

Esempio 6.7.13 (Distanza di un punto da un iperpiano). Nello spazio affine
euclideo A = AnR indichiamo con π l’iperpiano di equazione

π : a1x1 + a2x2 + · · ·+ anxn + b = 0
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e con P = (p1, p2, . . . , pn) un punto di A. Vogliamo determinare la distanza di
P dall’iperpiano π. Per quanto visto in precedenza, tale distanza coincide con
la distanza di P dall’unico punto Q ∈ π per cui il vettore

−−→
PQ è ortogonale a π.

•

•

P

Q

r

u

π

Come abbiamo visto nella Proposizione 6.7.12, il vettore u = (a1, a2, . . . , an) è
ortogonale all’iperpiano π, quindi la retta r passante per il punto P e perpen-
dicolare a π ha equazione

r : X = P + λu.

Il punto Q cercato è dunque il punto di intersezione tra la retta r e l’iperpiano
π:

Q = r ∩ π.

In coordinate, le equazioni parametriche della retta r sono
x1 = p1 + λa1

x2 = p2 + λa2

· · ·
xn = pn + λan.

Sostituendo queste espressioni nell’equazione di π si ottiene l’equazione

a1(p1 + λa1) + a2(p2 + λa2) + · · ·+ an(pn + λan) + b = 0,

la cui soluzione è

λ̄ = −a1p1 + a2p2 + · · ·+ anpn + b

a2
1 + a2

2 + · · ·+ a2
n

.

Il punto della retta r corrispondente a tale valore di λ è il punto Q cercato:

Q = P + λ̄u.

Si ha pertanto

d(P, π) = d(P,Q) = ‖Q− P‖ = ‖λ̄u‖ = |λ̄|‖u‖.

Sviluppando i calcoli, si ottiene cos̀ı

d(P, π) =
|a1p1 + a2p2 + · · ·+ anpn + b|√

a2
1 + a2

2 + · · ·+ a2
n

.

Generalizzando gli esempi precedenti, vediamo ora come si possa determinare la
distanza di un punto da una sottovarietà lineare qualunque di uno spazio affine
euclideo.
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Esempio 6.7.14 (Distanza di un punto da una sottovarietà lineare
qualunque). Sia A uno spazio affine euclideo e sia L = (L , L,+) una sottova-
rietà lineare di dimensione r di A. Dato un punto P ∈ A, vogliamo determinare
la distanza di P da L; tale distanza coinciderà con la distanza di P dall’unico
punto Q di L per cui il vettore

−−→
PQ è ortogonale a L.

Sia A un punto qualunque di L e indichiamo con {v1, v2, . . . , vr} una base
ortonormale8 di L. Un generico punto X di L è dato da

X = A+ λ1v1 + · · ·+ λrvr,

al variare dei parametri λ1, . . . , λr ∈ R. Indicando con u il vettore X −P e con
w il vettore A− P , si ha dunque

u = w +
r∑
j=1

λjvj .

La richiesta che questo vettore sia ortogonale a L si esprime imponendo che il
prodotto scalare di u per i vettori della base di L sia nullo. Ricordando che i
vettori v1, . . . , vr formano una base ortonormale di L, per ogni i = 1, . . . , r, si
ha

0 = u · vi = w · vi +
r∑
j=1

λjvj · vi = w · vi + λi,

da cui si ricava
λi = −w · vi.

Il punto Q cercato è quindi dato da

Q = A− (w · v1)v1 − · · · − (w · vr)vr.

Si ha pertanto

d(P,L) = d(P,Q) = ‖Q− P‖ = ‖w − (w · v1)v1 − · · · − (w · vr)vr‖.

Sviluppando i calcoli si trova

d(P,L)2 = ‖w‖2 − (w · v1)2 − · · · − (w · vr)2,

da cui si ottiene infine la seguente formula per la distanza di P da L:

d(P,L) =
√
‖w‖2 − (w · v1)2 − · · · − (w · vr)2.

Esempio 6.7.15 (Distanza tra due rette). Indichiamo con r e s due rette
in uno spazio affine euclideo A. Per determinare la distanza di r da s cerchiamo
due punti P ∈ r e Q ∈ s tali che il vettore

−−→
PQ sia ortogonale alle rette r e s.

Sia v un vettore direttore di r e scegliamo arbitrariamente un punto A ∈ r:
un generico punto X di r è quindi dato da

X = A+ λv.

8L’ipotesi che la base {v1, v2, . . . , vr} sia ortonormale non è indispensabile, ma permette
di semplificare i calcoli.
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Analogamente, indicando con w un vettore direttore di s e fissando un punto
B ∈ s, un generico punto Y della retta s è dato da:

Y = B + µw.

Se indichiamo con u il vettore
−−→
XY , si ha

u = (B −A)− λv + µw.

La richiesta che questo vettore sia ortogonale alle rette r e s si esprime impo-
nendo che i prodotti scalari di u con v e w siano nulli:{

u · v = (B −A) · v − λv · v + µw · v = 0
u · w = (B −A) · w − λv · w + µw · w = 0.

Se i vettori v e w sono linearmente indipendenti (cioè se le rette r e s non
sono parallele) il determinante della matrice dei coefficienti di questo sistema è
diverso da zero, quindi il sistema ammette un’unica soluzione λ = λ̄ e µ = µ̄.
Sostituendo tali valori nelle espressioni di X e Y si ottengono i punti P e Q
cercati. Se invece le rette r e s sono parallele, il determinante della matrice dei
coefficienti del sistema precedente è nullo. In questo caso esso ammette infinite
soluzioni (dipendenti da un parametro). Una qualunque di queste soluzioni
fornisce una coppia di punti P e Q tali che d(r, s) = d(P,Q).

6.7.1 Angoli

Parliamo ora del concetto di angolo in uno spazio affine euclideo. Come già
osservato nel Capitolo 5, la presenza di una forma bilineare simmetrica definita
positiva su uno spazio vettoriale reale V permette di definire la nozione di angolo
compreso tra due vettori non nulli di V . Le stesse considerazioni si applicano
quindi al caso di uno spazio affine euclideo. Utilizzando la nozione di angolo
compreso tra due vettori è poi possibile definire l’angolo compreso tra due rette
incidenti.

r

s

vr

vs

−vs

−vr

αα

β

β

Siano dunque r e s due rette incidenti in uno spazio
affine euclideo A e indichiamo con vr e vs rispettivamente
due generatori dei sottospazi direttori di r e s.

Si noti che i vettori vr e vs sono determinati a me-
no della moltiplicazione per uno scalare non nullo. Ri-
cordiamo ora che il coseno dell’angolo α compreso tra vr e vs è dato dal
rapporto

vr · vs
‖vr‖‖vs‖

(6.7.1)

Sostituendo vr e vs con i vettori λvr e µvs, con λ, µ ∈ R, λ, µ 6= 0, il rapporto
precedente diventa

λvr · µvs
|λ|‖vr‖|µ|‖vs‖

= ± vr · vs
‖vr‖‖vs‖

ove il segno dipende dal segno del prodotto λµ. In altri termini, ciò significa
che, date due rette r e s, il rapporto (6.7.1) è ben definito solo a meno del segno.
Ciò corrisponde al fatto che, se indichiamo con α l’angolo compreso tra i vettori
vr e vs, allora l’angolo compreso tra vr e −vs, oppure tra −vr e vs è β = π−α,
come illustrato nella figura precedente.

Fatte queste premesse, possiamo dare la seguente definizione:
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Definizione 6.7.16. Con le notazioni precedenti, chiameremo angolo compreso
tra le due rette incidenti r e s quello, tra i due angoli α e β = π−α, che risulta
compreso nell’intervallo [0, π/2].

La definizione appena data può essere generalizzata al caso dell’angolo com-
preso tra una retta r e una sottovarietà lineare L, di dimensione ≥ 1, ad essa
incidente.

Sia dunque L una sottovarietà lineare di dimensione ≥ 1 di uno spazio affine
euclideo A e indichiamo con πL : A→ L la proiezione ortogonale su L. Data una
retta r incidente a L, indichiamo con r′ = πL(r) la sua proiezione ortogonale9

su L. Se la retta r è ortogonale a L, r′ è un punto, il quale è precisamente il
punto di intersezione tra r e L; in caso contrario r′ è una retta.

•

r

r′

L

α

Definizione 6.7.17. Con le notazioni precedenti, chiameremo angolo compreso
tra la retta r e la sottovarietà lineare L ad essa incidente l’angolo α compreso
tra r e la sua proiezione ortogonale r′ su L, con la convenzione che, se r′ è un
punto, α è un angolo retto.

Nel caso in cui la sottovarietà lineare L è un iperpiano di A, il sottospazio
L⊥, ortogonale del sottospazio direttore di L, ha dimensione 1. Indicando con
P il punto di intersezione tra la retta r e l’iperpiano L, la retta s = P + L⊥ è
la retta perpendicolare a L passante per il punto P . Se r non è ortogonale a
L, indicata con r′ la proiezione ortogonale di r sull’iperpiano L, le tre rette s, r
e r′ sono complanari e, inoltre, s e r′ sono tra loro ortogonali. La situazione è
illustrata nella figura seguente:

•

r

r′

s

P

L

α
β

Di conseguenza, se indichiamo con α l’angolo compreso tra la retta r e l’iperpiano
L (cioè l’angolo tra r e r′) e con β l’angolo compreso tra le rette r e s, si ha

α+ β =
π

2
.

Questa osservazione fornisce un metodo alternativo per calcolare l’angolo α
compreso tra la retta r e l’iperpiano L: basta infatti determinare la retta s

9Per determinare la proiezione ortogonale della retta r sulla sottovarietà lineare L è suffi-
ciente considerare due punti P,Q ∈ r e determinare le loro proiezioni ortogonali P ′ = πL(P )
e Q′ = πL(Q) su L. Se P ′ 6= Q′, la retta passante per P ′ e Q′ è la retta r′ cercata, se invece
P ′ = Q′ la retta r risulta essere ortogonale a L e pertanto la sua proiezione ortogonale su L
si riduce a un punto.
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perpendicolare a L, calcolare l’angolo β tra r e s e ricordare che α + β è un
angolo retto.

Per terminare, osserviamo che le considerazioni precedenti ci permettono
di definire la nozione di angolo compreso tra due iperpiani incidenti o, più in
generale, tra un iperpiano e una sottovarietà lineare di dimensione ≥ 1 ad esso
incidente.

Definizione 6.7.18. Siano L e M due iperpiani incidenti in uno spazio affine
euclideo A. Sia P ∈ L ∩ M e indichiamo con r e s rispettivamente le rette
passanti per il punto P e perpendicolari agli iperpiani L e M. Definiamo l’angolo
α, compreso tra gli iperpiani L e M, come l’angolo compreso tra le rette r e s
(nel caso in cui dim A = 3 la situazione è illustrata nella figura seguente).

•P

L

M

r s

Definizione 6.7.19. Sia L un iperpiano in uno spazio affine euclideo A e sia M
una sottovarietà lineare di A, di dimensione ≥ 1, incidente a L. Sia P ∈ L∩M e
indichiamo con r la retta perpendicolare a L passante per il punto P . L’angolo
α compreso tra L e M è definito ponendo α = π/2−β, ove β è l’angolo compreso
tra la retta r e la sottovarietà lineare M.

Osservazione 6.7.20. Come già accennato in precedenza, le nozioni di distanza
e angolo permettono poi di introdurre anche i concetti di area e volume. La
trattazione delle aree e dei volumi negli spazi affini euclidei è del tutto analoga
è quella svolta nel caso degli spazi vettoriali euclidei, a cui rimandiamo (vedi
Cap. 5, Sezione 5.2).

6.8 Isometrie degli spazi affini euclidei

In questo paragrafo studieremo le applicazioni tra due spazi affini euclidei A e B
che rispettano la struttura di spazio affine euclideo, cioè le applicazioni affini che
sono compatibili con i prodotti scalari definiti negli spazi vettoriali soggiacenti
agli spazi affini A e B.

Siano dunque A = (A , V,+), B = (B,W,+) due spazi affini euclidei e
indichiamo con g e h i prodotti scalari definiti sugli spazi vettoriali V e W ,
rispettivamente.

Definizione 6.8.1. Un’applicazione affine F = (f, φ) : A → B è detta un’iso-
metria (di spazi affini euclidei) se la funzione lineare φ : V →W è un’isometria
di spazi vettoriali euclidei, cioè se, per ogni v1, v2 ∈ V , si ha

h
(
φ(v1), φ(v2)

)
= g(v1, v2).
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Tutti i risultati riguardanti le isometrie degli spazi vettoriali euclidei, ottenuti
nel Capitolo 5, si estendono in modo ovvio al contesto degli spazi affini euclidei.
Il seguente risultato, ad esempio, è una conseguenza diretta del Corollario 5.6.3:

Proposizione 6.8.2. Siano A = (A , V,+) e B = (B,W,+) due spazi affini
euclidei e sia F = (f, φ) : A → B un’applicazione affine. Se F è un’isometria
allora essa è iniettiva.

Dimostrazione. Se F è un’isometria di spazi affini euclidei, l’applicazione linea-
re φ : V → W è un’isometria di spazi vettoriali euclidei e pertanto è iniet-
tiva. Come abbiamo visto nella Proposizione 6.6.7, l’iniettività di φ equivale
all’iniettività di F .

Le isometrie degli spazi affini euclidei preservano le distanze tra i punti. Se
A, B sono due spazi affini euclidei e F = (f, φ) : A→ B è un’isometria, per ogni
coppia di punti P,Q ∈ A si ha infatti

d(P,Q) = ‖Q− P‖ = ‖φ(Q− P )‖ = ‖f(Q)− f(P )‖ = d
(
f(P ), f(Q)

)
.

È facile verificare che questa proprietà caratterizza le isometrie:

Proposizione 6.8.3. Siano A e B due spazi affini euclidei e sia F = (f, φ) :
A→ B un’applicazione affine tale che d(P,Q) = d

(
f(P ), f(Q)

)
, per ogni P,Q ∈

A. Allora F è un’isometria.

Dimostrazione. Dati P ∈ A e v ∈ V , poniamo Q = P + v. Si ha dunque φ(v) =
f(Q)−f(P ) e quindi ‖v‖ = d(P,Q) = d

(
f(P ), f(Q)

)
= ‖f(Q)−f(P )‖ = ‖φ(v)‖.

Si deduce pertanto che φ : V → W è un’applicazione lineare che preserva le
norme dei vettori e quindi è un’isometria (vedi Cap. 5, Osservazione 5.6.10).

Come nel caso delle applicazioni affini, è del tutto evidente che l’applicazione
identica di uno spazio affine euclideo in sé è un’isometria e che la composizione
di due isometrie è ancora un’isometria. Inoltre se un’isometria è biiettiva, anche
la sua inversa è un’isometria. Pertanto le isometrie di uno spazio affine euclideo
A formano un sottogruppo del gruppo delle affinità di A; tale sottogruppo è
indicato con Isom(A).

Esempio 6.8.4. Dato uno spazio affine euclideo A = (A , V,+), le traslazioni
costituiscono degli esempi di isometrie di A (vedi Osservazione 6.1.7). Per ogni
v ∈ V , la funzione τv : A→ A definita ponendo τv(P ) = P + v, per ogni P ∈ A,
è un’isometria di A; infatti l’applicazione lineare φ : V → V soggiacente a τv
è l’applicazione identica. Si noti che, se v 6= 0, la traslazione τv è un’isometria
priva di punti fissi.

L’insieme delle traslazioni è un sottogruppo del gruppo delle isometrie di A,
isomorfo al gruppo additivo dello spazio vettoriale V .

Esempio 6.8.5. Sia A = (A , V,+) uno spazio affine euclideo e sia φ : V → V
un’isometria. Per ogni punto P0 ∈ A , definiamo una funzione f : A → A
ponendo f(P ) = P0+φ(P−P0). Si ottiene cos̀ı un’isometria F = (f, φ) : A→ A
per la quale P0 è un punto fisso.

Se A e B sono due spazi affini euclidei, la scelta di due sistemi di riferimento
R = {OA, v1, . . . , vn} in A e S = {OB, w1, . . . , wm} in B permette di associare a
ogni applicazione affine F = (f, φ) : A→ B una coppia formata da un elemento
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t = (t1, . . . , tm) ∈ Rm e una matrice A ∈ Mm,n(R), la quale non è altro che
la matrice dell’applicazione lineare φ : V → W , rispetto alle basi {v1, . . . , vn}
di V e {w1, . . . , wm} di W . Da quanto detto si deduce che F è un’isometria di
spazi affini euclidei se e solo se A è la matrice di un’isometria di spazi vettoriali
euclidei (vedi Cap. 5, Paragrafo 5.6). Se inoltre i sistemi di riferimento R e S
sono ortonormali, e quindi le matrici associate alle forme bilineari simmetriche
g e h sono le matrici identiche, F è un’isometria se e solo se A è una matrice
ortogonale, cioè se e solo se tAA = 1.

Osservazione 6.8.6. Come abbiamo già notato in precedenza, dato uno spazio
affine A di dimensione n sul campo K, la scelta di un sistema di riferimento
R in A permette di identificare il gruppo delle affinità di A con il prodotto
semidiretto Kn o GLn(K). Nel caso in cui A sia uno spazio affine euclideo,
dalle considerazioni precedenti si deduce che la scelta di un sistema di riferimento
ortonormale in A permette di identificare il gruppo delle isometrie di A con il
prodotto semidiretto Rn o On(R).

Esercizi

Esercizio 6.1. Nello spazio affine A3
R sia r la retta di equazioni{

2x− 3y + 1 = 0

2x− 2y + z − 1 = 0.

Si determini la retta s passante per l’origine e parallela ad r, ed il piano del fascio di

asse r passante per l’origine.

Esercizio 6.2. Siano r1 e r2 rispettivamente le rette passanti per P1 = (0, 1, 2) e

P2 = (2,−1, 0) e parallele ai vettori v1 = (2, 1, 1) e v2 = (−2, 3, 0). Siano F1 e F2

rispettivamente i fasci di piani di asse r1 e r2. Si determinino i piani π1 di F1 e π2

di F2 passanti per il punto P = (1, 1, 1), e le intersezioni della retta r = π1 ∩ π2 con

i piani coordinati. Si determini infine il triangolo individuato dalle intersezioni delle

rette r, r1 e r2 con il piano di equazione x = 0.

Esercizio 6.3. Determinare l’equazione del piano contenente le rette r e s di
equazioni

r :

{
y + 1 = 0

2x+ 2z − 3 = 0
s :

{
2x− 3y + 2z − 1 = 0

x− 2y + z = 0.

Esercizio 6.4. Sia r la retta passante per i punti P = (1, 0,−2) e Q = (0,−1, 3), e sia

s la retta passante per il punto R = (−1, 1, 0) e parallela al vettore v = (1,−1,−1/2).

Si determinino il piano π1, passante per i punti P , Q e R, il piano π2 contenente la

retta s e passante per il punto medio del segmento PQ, ed infine un vettore u parallelo

alla retta π1 ∩ π2.

Esercizio 6.5. Si determini la distanza del punto P = (2, 0,−1) dalla retta r di
equazioni parametriche 

x = t+ 1

y = 2

z = t− 1.

Esercizio 6.6. Si determinino le rette passanti per il punto Q = (0, 1,−1), distanti

1 dal punto P = (1, 1, 0) e contenute nel piano π di equazione y + z = 0.
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Esercizio 6.7. Si determini l’equazione del luogo dei punti dello spazio affine euclideo

A3
R appartenenti alle rette passanti per il punto P = (2, 1, 1) che formano un angolo

pari a π
6

con il piano π di equazione 2x+ y − z = 0.

Esercizio 6.8. Si determini l’equazione del luogo dei punti dello spazio affine A3
R

appartenenti alle rette passanti per il punto P = (3, 3, 3) che intersecano la curva C
di equazione {

x2 + 2y2 + 3z2 = 4

x+ z = 0.

Esercizio 6.9. Si determinino le rette del piano π di equazione x − y + 2z = 0

parallele al vettore v = (1, 3, 1) e distanti
√

6 dal punto P = (1, 0, 0).

Esercizio 6.10. Nello spazio affine euclideo reale tridimensionale, si determini

l’equazione del luogo dei punti appartenenti alle rette distanti 1 dal punto P = (1, 1, 2)

e formanti un angolo pari a π
3

con i piani π1 : x+ y = 0 e π2 : x− z = 0.

Esercizio 6.11. Nello spazio affine euclideo A3
R sia π il piano contenente la retta r di

equazioni 1
2
(x− 1) = y + 1 = 1

3
z ed il punto P = (0, 1, 1). Si determinino le rette del

piano π passanti per P e distanti
√

3 dal punto Q = (1, 1,−1). Si determinino inoltre

la proiezione ortogonale Q0 di Q su π e le rette di π passanti per Q0 e ortogonali alle

rette trovate in precedenza.

Esercizio 6.12. Nello spazio affine euclideo A3
R si determinino le equazioni delle

rette passanti per P = (1, 0, 0), incidenti la retta r di equazioni

r :

{
y + z − 1 = 0

x = 0

e formanti con quest’ultima un angolo pari a π
6

.

Esercizio 6.13. Nel piano affine euclideo A2
R siano r1 e r2 le rette di equazioni

x − 2y + 1 = 0 e 3x − y + 2 = 0, rispettivamente. Si determinino le equazioni delle

rette s1 e s2 bisettrici degli angoli formati da r1 e r2.
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lunghezza di un vettore, 121

M
matrice, 35

aggiunta, 80
cofattore, 80
completa, 52
di un’applicazione affine, 191
di una forma bilineare, 138
diagonale, 44
diagonalizzabile, 99
identica, 43
inversa, 45
nulla, 43
ortogonale, 159
quadrata, 43
scalare, 44
trasposta, 39
triangolare, 44

matrici
congruenti, 144
simili, 48

minore, 80, 92
minori orlati, 93
misura, 131
modulo, 5, 121
modulo (su un anello), 11
molteplicità, 103
monomorfismo, 29
multilineare, 76

N
nilpotenti (elementi), 45
non degenere, 133
norma, 5, 121, 137
normalizzato (vettore), 136
nucleo, 29

di una forma bilineare, 133
nullità

di un autovalore, 103
di una funzione lineare, 31
di una matrice, 42
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O
omomorfismo, 27, 155
operazioni elementari, 54, 62
orientamento, 94
origine, 171
ortogonale

base, 136
di un sottospazio vettoriale, 135

ortogonali, 134
ortonormale (base), 136

P
paralleli, 170
parallelogramma (regola del), 6
parallelotopo, 130
parametri, 172
periodo, 106
permutazione, 65

dispari, 66
pari, 66
segno di una, 66

piano affine, 167
polinomi, 10
polinomio

caratteristico, 100
minimo, 111

posizione generica, 171
Postulato di Euclide, 178
procedimento di Gram–Schmidt, 145
prodotto

di matrici, 37, 40
di una matrice per un vettore, 38
di una matrice per uno scalare, 36
righe per colonne, 38
scalare, 39, 123, 125, 138
semidiretto, 193

proiezione ortogonale, 198
punto medio, 182

Q
Quinto Postulato di Euclide, 178

R
rango, 90, 92

di una funzione lineare, 31
di una matrice, 42
per colonne, 43, 58
per righe, 43, 58

regola
del parallelogramma, 6
di Cramer, 85
di Sarrus, 72

retta affine, 167
righe, 35

S
Sarrus (regola di), 72
scalare, 9
scambio di elementi contigui, 69
segmenti equipollenti, 5
segmento, 182

orientato, 5
segno (di una permutazione), 66
semidefinita negativa, 136, 144
semidefinita positiva, 136, 144
sghembi, 170
simili (matrici), 48
similitudine, 48
sistema

di equazioni lineari, 1
lineare, 50
non omogeneo, 52
omogeneo, 2, 51

sistema di riferimento, 171
cartesiano, 194
ortogonale, 194
ortonormale, 194

somma
di vettori, 6
di matrici, 36
di sottospazi affini, 168
di sottospazi vettoriali, 13

somma diretta, 14
di forme bilineari, 133
esterna, 14
interna, 14

somma ortogonale, 133
sostituzione, 2
sottospazio

affine, 166, 167
complementare, 23
nullo, 12
vettoriale, 11, 12

sottovarietà lineare, 166
spazio

affine, 164
affine euclideo, 194
direttore, 164
euclideo, 138
vettoriale, 7, 9
vettoriale orientato, 94

stella, 177
struttura canonica (spazio affine), 165

T
Teorema

dei minori orlati, 93
di Binet, 79
di Desargues, 181
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di Hamilton–Cayley, 111
di Jordan, 114
di Pappo, 180
di Rouché–Capelli, 53
di Sylvester, 149
di Talete, 178, 180

traslazione, 165
trasposizione, 39, 68
trasposta, 39

U
unione (di sottospazi vettoriali), 12

V
Vandermonde (determinante), 88
vettore, 9

applicato, 6
geometrico, 5
nullo, 7

volume, 129, 131




