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Capitolo 1

Spazi Vettoriali

In questo capitolo introdurremo la nozione di spazio vettoriale. Per motivare
le definizioni che daremo tratteremo dapprima il caso dei cosiddetti “vettori
geometrici.” Daremo poi la definizione generale di uno spazio vettoriale su
un campo e studieremo le sue principali proprieta. Introdurremo i concetti
fondamentali di vettori linearmente indipendenti, di sistemi di generatori e di
basi di uno spazio vettoriale. Studieremo poi in dettaglio le proprieta degli spazi
vettoriali di dimensione finita.

Prima di addentrarci nello studio degli spazi vettoriali riteniamo utile ri-
chiamare brevemente alcuni fatti fondamentali riguardanti i sistemi di equazioni
lineari.

1.1 Sistemi di equazioni lineari

In questa sezione studieremo i sistemi di equazioni lineari a coefficienti in un
campo, descrivendo un metodo elementare per determinare le loro soluzioni.
La trattazione approfondita della teoria dei sistemi lineari verra sviluppata in
un capitolo successivo, quando avremo a disposizione gli strumenti di algebra
lineare necessari.

Definizione 1.1.1. Un sistema di equazioni lineari a coefficienti in un campo
K ¢ un insieme S di equazioni del tipo

(1171 + 12T2 + -+ + A1 Ty = b1
2121 + a22T2 + - + a2nTy = b
2121 + A22T2 2nTn = b2 (1.1.1)

Am1%1 + AGmaT2 + -+ + ApTn = bm

con ai;, by, € K. Gli elementi a;; sono detti i coefficienti del sistema, mentre
b1,..., by sono i termini noti. Le x1,...,x, sono le incognite del sistema. Ri-
solvere il sistema S significa determinare tutti i valori delle incognite z1,...,x,
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che soddisfano contemporaneamente tutte le equazioni di S. Se tutti i termini
noti sono nulli il sistema ¢ detto omogeneo.

Descriveremo ora il metodo piu semplice che si possa immaginare per risol-
vere un generico sistema di m equazioni lineari in n incognite. Questo metodo,
noto come il “metodo della sostituzione,” puo essere sommariamente descritto
come segue:

Passo 1. Dato il sistema lineare S, scegliamo una qualunque delle sue equazioni,
ad esempio la i-esima,

a1 + a2 + 0+ AT+ AinTn = b

e scegliamo una delle incognite z; che compaiono effettivamente in tale equa-
zione. Ricaviamo x; in funzione delle incognite rimanenti:

bi —aj1ry — - — AinTy

Z; o
Passo 2. Sostituiamo ’espressione trovata per z; nelle rimanenti m — 1 equa-
zioni, ottenendo cosl un nuovo sistema S’ composto da m — 1 equazioni in n — 1
incognite.

Passo 3. Se il sistema S’ contiene ancora delle incognite, ritorniamo al Passo 1
con S’ al posto di S. In caso contrario le soluzioni del sistema, qualora esista-
no, possono essere ottenute con una semplice sostituzione all’indietro, partendo
dall’ultima incognita che ¢ stata determinata.

Vediamo ora di chiarire I’algoritmo appena descritto analizzando in dettaglio
tre esempi concreti, che rappresentano le tre situazioni tipiche che si possono
presentare.

Esempio 1. (Sistema privo di soluzioni) Consideriamo il seguente sistema di
equazioni lineari, a coeflicienti nel campo Q:

2.’131—1}2:1
S (E1+4IE2:—2
3‘%172562:3

Scegliamo la seconda equazione e da questa ricaviamo xi, ottenendo x; =
—2 — 4x4. Sostituiamo questa espressione nella prima e nella terza equazione,
ottenendo il sistema
—91‘2 =5
—14%2 =9

S

Consideriamo ora il sistema S’ e ricaviamo w dalla prima equazione: zy =
—5/9. Sostituendo questo valore nella terza equazione si ottiene l'uguaglianza
—14(—5/9) = 9, che non ¢ verificata. Da cio si deduce che il sistema S non
ammette soluzioni.

Esempio 2. (Sistema che ammette un’unica soluzione) Consideriamo ora il
seguente sistema lineare, a coefficienti in Q:

3.1‘1 — X9 = 2
2x1 + 5x9 = —3
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Dalla prima equazione ricaviamo xo = 3z — 2. Se sostituiamo questa espres-
sione nella seconda equazione otteniamo il “sistema” (che consiste di una sola
equazione)

S/ : ].7.%'1 =T.

Da questa equazione si ottiene 21 = 7/17. Ora non resta che “sostituire all’indie-
tro” il valore di 1 appena trovato nella precedente espressione per x5, ottenendo
x9 = —13/17. Si conclude pertanto che il sistema S ammette un’unica soluzione
data da

x1 =T7/17, x9=—-13/17.

Esempio 3. (Sistema con infinite soluzioni) Consideriamo il seguente sistema
di equazioni lineari, a coefficienti nel campo Q:

3x1+ 229 — a3+ x4 =2
21 +2x3 — 34 =0

Dalla prima equazione ricaviamo x3 = 3x1 + 224 + x4 — 2. Sostituiamo questa
espressione nella seconda equazione ottenendo il “sistema”

S" 8z +4xy — x4 = 4.

Da questa equazione possiamo ricavare, ad esempio, x4 = 8x1 +4ws—4. Arrivati
a questo punto ci dobbiamo arrestare, dato che non ci sono altre equazioni
che possano essere utilizzate. Abbiamo pertanto determinato il valore di x4
in funzione delle incognite x; e x2 che rimangono libere di assumere qualsiasi
valore. Sostituendo all’indietro I’espressione di x4 nella precedente espressione
per lincognita x3, otteniamo x3 = 11z1 + 6x2 — 6.

In conclusione, possiamo affermare che il sistema S ammette infinite solu-
zioni, le quali dipendono da due parametri® liberi di variare:

1 qualsiasi
o qualsiasi
xr3 = 11lx1 + 629 — 6
Ty = 8x1 + 4xo — 4

Naturalmente avremmo potuto seguire una strada diversa e ricavare, ad esempio,
le incognite x1 e x5 in funzione di x3 e z4. In questo modo avremmo ottenuto una
diversa espressione per le soluzioni del sistema S. Ovviamente tutte le possibili
espressioni per le soluzioni di uno stesso sistema sono tra loro equivalenti.

Esercizi

Esercizio 1.1.1. Risolvere il seguente sistema a coefficienti in Q:

3r—2y=1
2x + 5y = —1.

1Questo fatto viene a volte espresso affermando che il sistema ammette co? soluzioni.
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Esercizio 1.1.2. Risolvere il seguente sistema a coefficienti in Q:
2¢ +3y+4z=3
de—y—2z=1
S5r — 3y + 2z = —2.

Esercizio 1.1.3. Risolvere il seguente sistema a coefficienti in Q:
hx—2y+z=1

{3x—4y—22—3.

Esercizio 1.1.4. Risolvere il seguente sistema a coeflicienti in Z/27Z:

z+y+2z=0
r+z=1
r+y=1.

Esercizio 1.1.5. Risolvere il seguente sistema a coefficienti in Z/5Z:
r+3y+2z=3
20+ z2=2
3x+y+4z=23.
Esercizio 1.1.6. Risolvere il seguente sistema a coefficienti in Z/11Z:
e +y+2z2+3w=1
20 +Ty+z+bw=4
8r+2y+3z4+w="T.

Esercizio 1.1.7. Risolvere e discutere in funzione dei valori di m € Q il seguente
sistema:
{x+(m+1)y:m+2

mzx + (m+4)y = 3.

Esercizio 1.1.8. Risolvere e discutere in funzione dei valori di m € R il seguente
sistema:

mx 4+ (m— 1)y =m+ 2
(m+ 1)z —my =5m + 3.

Esercizio 1.1.9. Risolvere e discutere in funzione dei valori di a € R il seguente

sistema:
z+(a—1y+(2—-a)z=a+5

r+ay+2z2=4
z+ (a—2)y+(2—2a")z=6.

Esercizio 1.1.10. Al variare di A € Q si dica quante soluzioni vi sono per il seguente
sistema di equazioni lineari:

(A=1)z1 + 222+ 324 =0
Arz+ A+ 1)zy =1
21+ AT3+ 24 =0
(A=1Dx1 4+ 24 =0.
Esercizio 1.1.11. Dato il sistema di equazioni lineari
AT — py — pz = p
pwr — Ay = A
r—y—z=0

si dica per quali valori di A, u € R esso ¢ risolubile e per quali la soluzione ¢ unica.



Capitolo 1 Spazi Vettoriali 5

1.2 Vettori geometrici

Il concetto di vettore viene spesso introdotto ricorrendo a delle motivazioni che
provengono dalla fisica. In fisica infatti, accanto a grandezze che possono essere
adeguatamente espresse con un singolo numero, come ad esempio la tempera-
tura o il tempo, ce ne sono altre la cui descrizione richiede piu informazioni.
Per descrivere, ad esempio, lo spostamento di un punto, la sola informazione
numerica relativa alla “misura” di tale spostamento non basta; € necessario spe-
cificare anche la retta lungo la quale avviene lo spostamento e, per finire, occorre
specificare anche il verso di percorrenza di tale retta. In modo analogo, per spe-
cificare una forza, occorre fornire il valore numerico dell’entita di tale forza (in
una qualche unita di misura) assieme alla direzione e al verso di applicazione
della forza (in molti casi cid non & ancora sufficiente, ed occorre specificare anche
il punto di applicazione della forza).

Per motivare le considerazioni che faremo nel seguito, ricorreremo al concetto
geometrico di “movimento” o, pitl precisamente, alla nozione di traslazione in
un piano.

In base a cid che abbiamo appena detto, per descrivere una traslazione e
necessario specificare una retta (la direzione in cui avviene lo spostamento), un
verso di percorrenza di tale retta e, infine, un numero che, in qualche modo,
misura ’entita di tale traslazione.

Un modo particolarmente comodo per esprimere graficamen-
te tutte queste informazioni e quello di utilizzare un segmento v
orientato v. /

La retta su cui giace questo segmento individua la direzione,
la freccia posta in una delle due estremita specifica il verso di percorrenza e la
lunghezza del segmento stesso (espressa in qualche unita di misura) determina
I’entita dello spostamento.

Un oggetto di questo tipo e chiamato vettore. Dato un vettore v, rappre-
sentato da un segmento orientato come sopra, la lunghezza di tale segmento e
detta il modulo (o la norma) di v, ed & indicata con |v| (oppure con |[v]]).

A questo punto e forse necessaria una precisazione. Un vettore v non descri-
ve lo spostamento di un qualche punto fissato A verso un qualche altro punto
B; esso descrive una traslazione di tutto il piano (o di tutto lo spazio). In tal
senso, non ha alcuna importanza “dove” si disegni il segmento che rappresenta
graficamente il vettore. In altre parole, due diversi segmenti orientati che ab-
biamo, tuttavia, la stessa direzione (cioé che si trovino su due rette parallele),
lo stesso verso e la stessa lunghezza, sono due rappresentazioni grafiche diverse
dello stesso vettore.

Questa idea puo essere resa matematicamente precisa nel modo seguente.

Definizione 1.2.1. Due segmenti orientati sono detti equipollenti se hanno la
stessa direzione (cioe sono contenuti in due rette parallele), lo stesso verso e la
stessa lunghezza.

Si verifica facilmente che la relazione di equipollenza ¢ una relazione di
equivalenza nell’insieme di tutti i segmenti orientati. Possiamo quindi dare
la seguente definizione di vettore:

Definizione 1.2.2. Un vettore (geometrico) & una classe di equipollenza di
segmenti orientati.
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Osservazione 1.2.3. Come abbiamo gia fatto notare, a volte € importante spe-
cificare anche il punto in cui un vettore si intende “applicato” (come nel caso
di una forza). Cio porta alla definizione della nozione di vettore applicato, che
deve essere inteso come una coppia (P, v) costituita da un punto P (il punto di
applicazione) e da un vettore v.

Nell’insieme dei vettori geometrici sono definite, in modo del tutto naturale,
due operazioni. La prima consiste nella moltiplicazione di un vettore v per un
numero (reale) A. Se v rappresenta una determinata traslazione e se A > 0, il
vettore Av rappresenta una traslazione che avviene nella stessa direzione e nello
stesso verso di quella rappresentata da v, ma determina uno spostamento pari
a A volte quello effettuato dalla traslazione rappresentata da v. Il vettore \v e
quindi rappresentato da un segmento orientato che ha la stessa direzione e verso
di v, ma una lunghezza pari alla lunghezza di v moltiplicata per .

Se A = 0 si ottiene un vettore di lunghezza nulla, che corrisponde a una “tra-
slazione nulla.” In questo caso le nozioni di direzione e verso non hanno piu
alcun significato; il segmento orientato si riduce a un punto, il quale non ha piu
alcuna direzione e alcun verso.

Se A < 0 si intende che il vettore A\v rappresenta una trasla-
zione che avviene nella stessa direzione ma nel verso oppostoa Y —~
quella rappresentata da v, per uno spostamento pari al valore 4/1)
assoluto di A moltiplicato per lo spostamento effettuato dalla
traslazione rappresentata da v.

In questo modo si ha che la composizione delle traslazioni corrispondenti ai
vettori Av e —Av ¢ la traslazione nulla: Av + (—\v) = 0.

La seconda operazione che consideriamo ¢ la somma di
due vettori; essa corrisponde alla composizione di due tra-
slazioni. Se u e v sono due vettori, la loro somma w = u+v
¢, per definizione, il vettore che rappresenta la traslazione
che si ottiene effettuando prima la traslazione rappresenta-
ta da u e poi quella rappresentata da v. L’effetto di questa
composizione di traslazioni € rappresentato nella figura a lato.

Se la traslazione rappresentata da u porta il punto A nel punto B e la trasla-
zione rappresentata da v porta il punto B nel punto C, allora la composizione
delle due traslazioni, rappresentata da w = u+ v, porta il punto A nel punto C'.

Si verifica immediatamente che la somma di vettori go-
de della proprieta commutativa, cioe v + v = v + u, come
si puo vedere nella figura a fianco.

Questa figura illustra la cosiddetta regola del paral-
lelogramma: il vettore w = u + v ¢ la diagonale del
parallelogramma che ha come lati i vettori u e v.

Se fissiamo un sistema di coordinate cartesiane ortogo-
nali OXY nel piano, ogni vettore v puo essere rappresen-
tato da una coppia di numeri reali (v;,vy), che individuano le proiezioni di v
sugli assi coordinati (vedi figura 1.1).

Possiamo quindi identificare il vettore v con la coppia (vg,v,) € R% In
termini di questa identificazione, la somma dei due vettori v = (ug,uy) e v =

D
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Figura 1.1: Decomposizione di un vettore nelle sue componenti

(vg,vy) € data da
U+ v = (Ug + Vg, Uy + y),

mentre il prodotto di un numero reale A per il vettore v = (v, v,) & dato da
AU = (Avg, Avy).

Usando queste formule e ora immediato verificare che la somma di vettori gode
delle proprieta associativa e commutativa. Esiste poi un elemento neutro per la
somma, il vettore nullo, le cui componenti sono tutte nulle, e che indicheremo
con 0 = (0,0). Inoltre, per ogni vettore v = (v, v,) esiste il suo opposto
—v = (—vy, —vy), tale che v+ (—v) = 0.

Tutto cio si puo riassumere dicendo che 'insieme dei vettori, con ’operazione
di somma, forma un gruppo abeliano.

Consideriamo ora ’operazione di prodotto tra un numero reale e un vettore.
E immediato verificare che questa operazione soddisfa le seguenti proprieta:

per ogni A\, u € R e per ogni coppia di vettori v e v.

L’insieme dei vettori ha quindi una struttura piu ricca di quella di un sem-
plice gruppo abeliano. A questo tipo di struttura daremo il nome di spazio
vettoriale.

Prima di concludere osserviamo che delle considerazioni del tutto analoghe si
possono fare per vettori nell’'usuale spazio tridimensionale. Ad ogni tale vettore
v si pud associare una terna di numeri (vy, vy, v,) € R3, i quali rappresentano
le proiezioni di v sui tre assi coordinati di un opportuno sistema di riferimento
OXY Z fissato, come mostrato nella figura 1.2.

Si ottiene in questo modo un’identificazione tra vettori dello spazio tridimen-
sionale e terne di numeri reali, in termini della quale la somma di due vettori
U = (Ug, Uy, uz) € V= (Vg,Vy,v,) & data da

U+ = (Uy + Vg, Uy + Uy, Uy + V),
e il prodotto di un numero reale A per un vettore v = (vg, vy, v,) € dato da

A = (Avg, Aoy, Avy).
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Vz

Figura 1.2: Decomposizione di un vettore nelle sue componenti

Osservazione 1.2.4. Prendendo spunto dalle considerazioni precedenti possiamo
definire dei vettori a n componenti (vettori di uno spazio n-dimensionale) sem-
plicemente identificandoli con delle n-uple di numeri reali, v = (a1, as,...,a,) €
R™. Le operazioni di somma di due vettori e di prodotto di un numero reale
per un vettore saranno definite in modo analogo a quanto abbiamo gia visto nel
caso di R? e di R3:

(al,ag,...,an)+(b1,b2,...,bn) = (a1+b1,a2+b2,...,an+bn)

A(ag,as,...,a,) = (Aay, Aag, ..., Aay).

Questa costruzione verra ampiamente studiata (e opportunamente generalizza-
ta) nelle prossime sezioni.

1.3 Spazi vettoriali

Nella sezione precedente abbiamo visto che i vettori sono degli “oggetti” che
possono essere sommati tra loro e possono anche essere moltiplicati per dei
numeri, in modo tale che le operazioni cosi definite soddisfino tutta una serie
di proprieta, essenzialmente analoghe alle usuali proprieta che valgono per la
somma, e il prodotto tra numeri.

Se ora concentriamo la nostra attenzione non tanto sulla natura di tali “og-
getti” (definiti in precedenza come classi di equipollenza di segmenti orientati),
quanto piuttosto sull’esistenza di determinate operazioni tra di essi e sulle pro-
prieta che, ragionevolmente, dovrebbero essere soddisfatte da queste operazioni,
possiamo fornire una definizione astratta di “insieme di vettori” come un qual-
che insieme nel quale sono definite un’operazione di somma tra i suoi elementi
e un’operazione di prodotto tra un elemento di tale insieme e un numero, in
modo tale che siano soddisfatte delle proprieta analoghe a quelle elencate nella
sezione precedente.
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Cerchiamo ora di rendere precise le idee espresse fin’ora. Sia K un campo?
(tanto per fissare le idee, si puo supporre che K sia il campo Q dei numeri
razionali, oppure il campo R dei numeri reali, oppure ancora il campo C dei
numeri complessi).

Definizione 1.3.1. Uno spazio vettoriale su K € un insieme non vuoto V' dotato
di un’operazione +y-, detta somma,

v VXV =V, (v1,v2) = v1 +v 02,
e di un’operazione -y
v KxV =V, (Av)—Ayo,

detta prodotto per uno scalare, che soddisfano le seguenti proprieta: per ogni
A A1, A2 € K e ogni v,v1,v9 € V si ha:

1) (v1 +v v2) +v v3 = v1 +v (v2 +v v3);

2

) V1 Hv v2 = ve +y vr;
3) esiste un elemento Oy € V tale che v +y Oy = Oy +y v = v;
)

(

(

(

(4) per ogni v € V esiste un elemento v’ € V tale che v+ v/ = v' +y v = 0y.
Tale elemento v’ viene indicato con —v e detto 'opposto di v;

(5) Ay (v1+vv2) = (A v vr) +v (A v va);

(6) (A +X2)vo=(A-vo)+v (A2 v o)

(7) (MA2) vo=A1-v (A2 v o)

(8) 1yvv=m.

Gli elementi di uno spazio vettoriale V' sono detti vettori. Gli elementi del

campo K sono detti scalari.

Osservazione 1.3.2. Dalle proprieta sopra elencate segue che, in ogni spazio
vettoriale V', si ha 0 -y v = Oy, per ogni v € V. Infatti si ha:

v+0yv=1yvov4+0-yv=>14+0)yvv=0.
Sommando ad ambo i membri di questa uguaglianza ’opposto di v, si ottiene
—v+v+0-yvv=—-v+v=0y,

da cui segue 0 -y v = 0y. Da cid possiamo ora dedurre che (—1) -y v = —v.
Infatti, si ha:

OVZO'V’UZ(I—l)'V?}:l'v’l}—l-(—l)'Vv:U—F(—l)'v’U,

da cui segue che il vettore (—1) -y v & l'opposto di v.

D’ora in poi 'operazione di somma in uno spazio vettoriale V sara indicata
semplicemente con + mentre il simbolo del prodotto per uno scalare sara omesso:
si scrivera quindi vy + v al posto di v +y v2 e Av al posto di A -y v.

2Ricordiamo che un campo & un insieme dotato di due operazioni, che indicheremo con +
e -, le quali soddisfano delle proprieta del tutto analoghe a quelle della somma e del prodotto
di numeri razionali. Piu precisamente, un campo & un anello commutativo con unita in cui
ogni elemento diverso da 0 ammette un inverso moltiplicativo.
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Esempio 1.3.3. Sia V = K" e definiamo un’operazione di somma tra elementi
di V ponendo

(a1,a2,...,an) + (b1,b2,...,bp) = (a1 + b1, a2 + ba, ..., an + by),
e un’operazione di prodotto tra elementi dal campo K ed elementi di V ponendo
Aay,ag,...,a,) = (Aag, Aag, ..., Aay).

E immediato verificare che V, con le operazioni appena definite, ¢ uno spazio
vettoriale su K.

Esempio 1.3.4. Sia K un campo e indichiamo con K[X] l'insieme dei polinomi
a coefficienti in K nell’indeterminata X. Un generico elemento di K[X] si scrive
nella forma

p(X)=ao+ a1 X +as X+ 4 a, X",

per qualche n > 0, ove tutti i coefficienti a; sono elementi di K.
Rispetto alle operazioni di somma di polinomi e di prodotto di un polinomio
per un elemento di K, l'insieme K[X] & uno spazio vettoriale.

Esempio 1.3.5. Sia K un campo e sia S un insieme (non vuoto) qualsiasi.
Indichiamo con K*° I'insieme di tutte le funzioni f : S — K.
Date due funzioni f,g € K*° possiamo definire la loro somma ponendo

(f+9)(s) = f(s) +9(s),

e possiamo definire il prodotto di una funzione f per uno scalare A € K ponendo,

(Af)(s) = A(f(s)),

per ogni s € S.
Anche in questo caso ¢ immediato verificare che I'insieme K, con le opera-
zioni appena definite, € uno spazio vettoriale su K.

Esempio 1.3.6. Sia K = Q il campo dei numeri razionali e sia V' = R. Rispetto
alle usuali operazioni di somma e prodotto tra numeri, V risulta essere uno
spazio vettoriale su K.

Pit in generale, per ogni campo K e ogni estensione di campi K C L, L
risulta essere uno spazio vettoriale su K.

Osservazione 1.3.7. Vogliamo far notare che, nella definizione di spazio vetto-
riale, la proprieta (8) & necessaria. Infatti 'uguaglianza 1 -y v = v non discende
dalle prime sette proprieta, come si puo vedere dal seguente esempio.

Sia V = K". Definiamo la somma di vettori componente per componente
(come nell’Esempio 1.3.3) e definiamo il prodotto di un vettore per un elemento
di K come segue:

A(ay,az,...,a,) =(0,0,...,0),

per ogni A € K e ogni (a1, as,...,a,) € V.
E immediato verificare che le due operazioni cosi definite verificano tutte le
proprieta elencate nella definizione di spazio vettoriale, ad eccezione della (8).
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Osservazione 1.3.8. Si noti che nella definizione di spazio vettoriale non si usa
mai il fatto che K sia un campo.

Una definizione del tutto analoga si puo dare supponendo solo che K sia un
anello commutativo (con unita). L’analogo di uno spazio vettoriale & chiamato,
in questo caso, un modulo sull’anello K.

Tuttavia, come avremo occasione di osservare in seguito, molti risultati che
dimostreremo per gli spazi vettoriali dipendono in modo essenziale dal fatto che
K sia un campo e non valgono, invece, per un modulo su un anello. In effetti,
la teoria dei moduli risulta essere profondamente diversa dalla teoria degli spazi
vettoriali.

Terminiamo questa sezione con la seguente definizione:

Definizione 1.3.9. Sia V uno spazio vettoriale su K. Una combinazione lineare
di elementi di V' & una somma finita del tipo

A1U1 + A + -+ A Un,

con Ay,...,\p€Kewvy,...,v, €V.

1.3.1 Sottospazi vettoriali
Sia V' uno spazio vettoriale definito sul campo K.

Definizione 1.3.10. Un sottospazio vettoriale W di V ¢ un sottoinsieme non
vuoto W C V tale che la restrizione a W delle operazioni di somma e di prodotto
per uno scalare definite su V rende W uno spazio vettoriale sul campo K.

Dalla definizione si deduce che, affinché un sottoinsieme non vuoto W di V'
sia un sottospazio vettoriale, & necessario e sufficiente che valgano le seguenti
proprieta:

1) per ogni wy,wy € W, si ha wy +wq € W;
2) per ogni w € W, anche —w € W;
3) Oy e W;

(
(
(
(4) per ogni A\ € K e ogni w € W, si ha Aw e W.

In effetti, & sufficiente richiedere che W sia chiuso per le operazioni di somma e
di prodotto per uno scalare, cioe che si abbia
wy + we € W, Ywi,we € W

Aw €W, VA € K,YVw e W.

Queste due condizioni possono essere raggruppate in una sola:

Proposizione 1.3.11. Un sottoinsieme non vuoto W di uno spazio vettoriale
V' sul campo K ¢ un sottospazio vettoriale di V' se e solo se

Awi + dows € W,

per ogni A1, Ao € K e ogni wy,ws € W.
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Dimostrazione. E immediato verificare che, sotto questa ipotesi, le operazioni
di somma di vettori e di prodotto di un vettore per uno scalare definite in V'
rendono W un sottospazio vettoriale. O

Osservazione 1.3.12. Ogni spazio vettoriale V ¢, naturalmente, un sottospazio
vettoriale di sé stesso. Inoltre {0y} & banalmente un sottospazio vettoriale di
V', detto il sottospazio nullo. A volte scriveremo semplicemente 0 per indicare
il sottospazio {0y } (il significato sara chiaro dal contesto).

Esempio 1.3.13. Sia V = K™ e sia W l'insieme dei vettori w = (z1,22,...,Z,)
che sono soluzioni di un’equazione lineare del tipo

a121 + axxg + - + apx, = 0,

con ay,...,a, € K fissati.

E immediato verificare che una combinazione lineare di due elementi di W
fornisce ancora una soluzione della precedente equazione, quindi appartiene a
W. Cio significa che W & un sottospazio vettoriale di V.

Al contrario, I'insieme delle soluzioni di un’equazione del tipo

a1 + asxe + -+ apx, =k,

con k # 0, non & un sottospazio vettoriale di V', dato che non contiene il vettore
nullo 0.

Proposizione 1.3.14. Se {W,};cr é una famiglia di sottospazi vettoriali di uno
spazio vettoriale V', allora anche la loro intersezione W

W= W
iel
¢ un sottospazio vettoriale di V.

Dimostrazione. Siano Ay, s € K e wy,we € W. Allora wy,ws € W;, per ogni
i € I, quindi anche Ajw; + Aswso € W;, dato che W; € un sottospazio vettoriale
di V. Da cio segue che A\jw; + Aowy € W. O

Osservazione 1.3.15. Una proprieta analoga non vale invece per 'unione: se
W1 e Wy sono due sottospazi vettoriali di V', la loro unione W7 U W5 non e, in
generale, un sottospazio vettoriale di V.

A titolo di esempio, consideriamo lo spazio vettoriale V' = K?2. Poniamo
Wi = {(a,0)|a € K} e Wy = {(0,b)|b € K}. E immediato verificare che essi
sono due sottospazi vettoriali di V. Si ha (1,0) € Wy e (0,1) € Wy, tuttavia la
loro somma (1, 1) non appartiene né a Wy né a Ws. Cid dimostra che I'insieme
W1 U W5 non e chiuso per l'operazione di somma, quindi non puo essere un
sottospazio vettoriale.

Definizione 1.3.16. Sia S un sottoinsieme di uno spazio vettoriale V. 1II sot-
tospazio vettoriale generato da S, che indicheremo con L(S), & il piu piccolo®
sottospazio vettoriale di V' contenente S (se S ¢ vuoto si ha L(S) = {0}).

3Pin piccolo, inteso rispetto alla relazione d’ordine data dall’inclusione.
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Dato che l'intersezione di una famiglia di sottospazi vettoriali di V' & un sotto-
spazio vettoriale di V, ¢ immediato verificare che L(S) coincide con I'intersezione
di tutti i sottospazi vettoriali di V' che contengono S.

Un’altra descrizione, ancora piu esplicita, di L(S) ¢ data dalla seguente
proposizione.

Proposizione 1.3.17. Il sottospazio vettoriale L(S) generato da S ¢é l'insieme
di tutte le combinazioni lineari finite di elementi di S, cioé

L(S) = {imim EN, N\ € K, v € S},
=1

dove si intende che la combinazione lineare di zero elementi di S é il vettore
nullo 0 € V.

Dimostrazione. Poniamo
A(S) = {Z)\ivi IneN,\ € K,v; € S}.
i=1

Ovviamente S C A(S). Notiamo che ogni sottospazio vettoriale di V' contenente
S contiene anche tutte le combinazioni lineari finite di elementi di S, quindi
contiene A(S). Da cio segue che A(S) & contenuto nell'intersezione di tutti i
sottospazi vettoriali di V' che contengono S, quindi A(S) C L(S).

D’altra parte & evidente che A(S) & anch’esso un sottospazio vettoriale di V:
infatti la combinazione lineare di due combinazioni lineari finite di elementi di
S ¢ essa stessa una combinazione lineare finita di elementi di S. Poiché L(S) ¢ il
pil piccolo sottospazio vettoriale di V' contenente S, si ha dunque L(S) C A(S),

da cui segue che L(S) = A(S). O
Osservazione 1.3.18. Se S = {v1,va, ...,v,}, il sottospazio vettoriale L(.S) viene
anche indicato con (vy,va,...,Up).

Come abbiamo gia osservato, nel contesto degli spazi vettoriali I'operazio-
ne di unione di due sottospazi non ha delle buone proprieta: infatti 'unione
di due sottospazi vettoriali non &, in generale, un sottospazio vettoriale (vedi
I’Osservazione 1.3.15). Tale operazione viene quindi sostituita dall’operazione
di somma:

Definizione 1.3.19. Se W; e W5 sono sottospazi vettoriali di V', la loro somma
W1 + Ws & il sottospazio vettoriale L(W; U Ws) generato da Wy U Ws. Tale
definizione si generalizza, in modo ovvio, al caso della somma di una famiglia
qualsiasi (anche infinita) di sottospazi di V.

Una descrizione esplicita della somma di due sottospazi vettoriali e fornita
dalla seguente proposizione:

Proposizione 1.3.20. Si ha
Wi+ Wy = {U.)l -+ wo |w1 e Wi, wy € W2}
Dimostrazione. B immediato verificare che I'insieme

{w1 + wa |w1 e Wi, wy € WQ}
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¢ un sottospazio vettoriale di V' che contiene W7 e W5, quindi contiene anche
la loro unione. Poiché W; 4+ W5 e, per definizione, il pitt piccolo sottospazio
vettoriale di V' contenente W7 U Ws, si ha I'inclusione

Wi+ Wy C {wy 4wz |wy € Wi, we € Wa}.

D’altra parte, ogni vettore del tipo wi + ws appartiene necessariamente a Wy +
W,. Questo dimostra che vale anche 'inclusione opposta e quindi I'uguaglianza.
O

Osservazione 1.3.21. Un risultato del tutto analogo vale anche per la somma di
una famiglia finita di sottospazi vettoriali di V. Si ha cioe

Wi+ -+ Wy ={wi+ 4w, |w; € W;,peri=1,...,n}

Nel caso invece di una famiglia infinita {W;};c; di sottospazi vettoriali, & facile
verificare che la somma
>_W

iel
coincide con l'insieme di tutte le somme finite di vettori w; € W;.

Definizione 1.3.22. La somma di due sottospazi vettoriali W7 e W5 di V si
dice diretta, e si indica con Wy @ Wa, se W1 N Wy = {0}.

Pilt in generale, la somma di una famiglia qualsiasi {W;},c; di sottospazi
vettoriali di V' si dice diretta se W; N W; = {0}, per ogni 4,5 € I con i # j. La
somma diretta di una famiglia {W;};c; di sottospazi di V' si indica con

S
iel
Proposizione 1.3.23. Ogni vettore v € Wy @ Ws si scrive in modo unico nella
forma v = wy + wa, per qualche wy € Wi e qualche we € Wo (un risultato
analogo vale anche per una somma diretta di un numero qualunque di sottospazi
di V).

Dimostrazione. Nella proposizione precedente abbiamo visto che ogni v € W7 ®
Wy si puo scrivere nella forma v = w; + ws, per qualche w; € W; e qualche
wg € Ws. Dobbiamo solo dimostrare che tale scrittura ¢ unica.

Supponiamo che si abbia

! !
V=W + wy = w; + Wy,
con wy,wj € Wi e wy,wh € Wa. Allora si ha
wy — wi = wh —we € W1 N W,

Poiché la somma di W3 e Wy & diretta, si ha W3 N Ws = {0}, quindi wy —wj =
wh —wy = 0, da cui si deduce che wy = w} e wy = wh. O

Osservazione 1.3.24. La somma diretta di due sottospazi di uno spazio vettoriale
V', definita in precedenza, ¢ anche detta somma diretta interna. Ora vedremo
come sia possibile definire anche la somma diretta di due spazi vettoriali V e W
qualunque, in modo tale che V' e W si possano poi identificare con due sottospazi
vettoriali di V@ W. Una tale somma ¢ detta somma diretta esterna.
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Siano dunque V e W due spazi vettoriali sul campo K. Sul prodotto
cartesiano V' x W definiamo un’operazione di somma ponendo

(v1,wr) + (v2, wa) = (v1 + v, w1 +w2),
e un’operazione di prodotto per un elemento di K ponendo
/\(vl,wl) = ()\’Ul, /\wl),

per ogni (vy,w), (v2,ws) € V. X W e ogni A € K. E immediato verificare
che queste operazioni definiscono una struttura di spazio vettoriale su V' x W.
Indichiamo con V' & W lo spazio vettoriale cosi ottenuto.

Le due funzioni iy : V. - VW, v — (v,0w)eiw : W - VoW,
w +— (Oy, w) sono iniettive e permettono di identificare i due spazi vettoriali V'
e W con i due sottospazi vettoriali iy (V) =V x {Ow} e i (W) = {0y} x W
di V@ W. Si verifica facilmente che lo spazio vettoriale V& W appena definito
coincide con la somma diretta (interna) dei suoi due sottospazi iy (V) e iy (W).

Piu in generale, se V1, Vo, ...V, sono una famiglia finita di spazi vettoriali
sul campo K e possibile definire, in modo naturale, una struttura di spazio
vettoriale sul prodotto cartesiano Vi x V5 x --- x V,,, ponendo

(1,02, ..., 0n) + (W1, Wa, ..., wy) = (V1 + w1, V2 + Wa, ..., 0, + wWy)

Av1,v2, ... 0,) = (Mg, Ava, ..., Avy,),

per ogni A € K e ogni (v1,...,v,), (w1,...,wy,) € V1 X+ xV,. Ogni V; si iden-
tifica in modo naturale con il sottospazio V; del prodotto cartesiano V; x - - - x 'V,
che consiste di tutti gli elementi del tipo (0,...,0,v,0,...,0), al variare div € V;
(il vettore v si trova nella i-esima posizione). E ora immediato verificare che la
somma diretta di tutti questi sottospazi V; coincide con il prodotto cartesiano
Vi x --- X V,. Si definisce pertanto la somma diretta esterna della famiglia di
spazi vettoriali V1, V5, ..., V, ponendo

v~ IIv-
i=1 i=1

In conclusione, possiamo riassumere quanto visto finora, dicendo che, nel caso di
una famiglia finita di spazi vettoriali, la somma diretta coincide con il prodotto
cartesiano. Come vedremo in seguito, tale uguaglianza non vale nel caso della
somma diretta di una famiglia di infiniti spazi vettoriali.

1.3.2 Insiemi di generatori e basi
Sia V' uno spazio vettoriale su un campo K.

Definizione 1.3.25. Un sottoinsieme S C V & detto un insieme di generatori
di V se L(S) = V. In tal caso si dice anche che S genera V.

Notiamo che ogni spazio vettoriale possiede dei sistemi di generatori: 'intero
spazio V' & banalmente un insieme di generatori di V.

Dalla Proposizione 1.3.17 segue che, se S & un insieme di generatori di V,
ogni vettore v € V si puo scrivere come combinazione lineare finita di elementi
di S:

V= M1+ Aova + - AUy,
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per qualche vy,...,v, € S e Ay,..., A\, € K. Una tale espressione non ¢ pero,
in generale, unica.

Definizione 1.3.26. Un sottoinsieme S C V & detto un insieme libero di vettori
se esso ha la seguente proprieta: una combinazione lineare finita di elementi di
S ¢ il vettore nullo se e solo se tutti i coefficienti A\; sono nulli. Cioe

>\1U1+)\2’02+'°'+)\n1}n20

con vy,...,v, €5, implica Ay = Ay =--- =X, =0.

Se S = {v1,v9,...,v,} € un insieme libero, diremo anche che i vettori
V1,03, ..., Uy SONO linearmente indipendenti.

Quindi i vettori v, va, ..., v, € V sono linearmente indipendenti se e solo se

I’equazione
AV + Agvg + -+ Au, =0

ha come unica soluzione \;y = Ay = --- = \,, = 0.

Osservazione 1.3.27. Se S & l'insieme costituito da un unico vettore v, dire che
S ¢ libero equivale a dire che v # 0.

Analogamente, si trova che se i vettori vy, v, ..., v, sono linearmente indi-
pendenti, essi devono essere tutti diversi da zero.

Definizione 1.3.28. I vettori vi,vs,...,v, € V si dicono linearmente dipen-
denti se essi non sono linearmente indipendenti, cioe se esistono degli scalari
A1, A2, ..., Ay € K, non tutti nulli, per cui si abbia

AU + Agvg + -+ - + A\, = 0.

Proposizione 1.3.29. [ vettori vi,va,...,v, € V sono linearmente dipenden-
ti se e solo se uno di essi puo essere espresso come combinazione lineare dei
rimanenti, cioé se e solo se esiste un indice i tale che si abbia

n
v; = E Q;Vy,
=1, j#i
con o € K.

Dimostrazione. Se i vettori vy, vs,...,v, sono linearmente dipendenti, esiste
una combinazione lineare

>\1U1+)\2U2+"'+)\n1}n20

in cui i coefficienti A; non sono tutti nulli. Sia dunque 7 un indice tale che
A # 0. Possiamo quindi scrivere

Aivp = =A101 — 0 = Xim10im1 — Aip10ig1 — 0 — ApUn,

da culi si ricava

v — )\lv )\iflv )\i+1v )\nv
P = U = e V] — i+1 = — ~ Un-
Ai Ai Ai

Viceversa, supponiamo che un vettore v; sia combinazione lineare dei rimanenti,
cioe che si abbia

Uy = Q101+ QG101+ QUi e QpUn.
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Allora si ha
a1vr + -+ Q1o — U F Qi1 Vipr + o+ apvy =0,
il che dimostra che i vettori vy, ..., v, sono linearmente dipendenti. O]

Osservazione 1.3.30. Notiamo che la dimostrazione della proposizione preceden-
te dipende in modo essenziale dalla possibilita di poter dividere per un elemento
non nullo \; € K; ¢ pertanto indispensabile che K sia un campo. Nel caso in
cui V sia un modulo su un anello un analogo risultato non vale, come illustrato
dal seguente esempio.

Sia K = Z e V = Z2. Consideriamo i tre elementi u = (1,2), v = (2,1) e
w = (3,4). Essi sono linearmente dipendenti, infatti

5(1,2) +2(2,1) —3(3,4) =0,

tuttavia e facile verificare che nessuno di essi puo essere espresso come combi-
nazione lineare degli altri due.

Dimostriamo ora che, se un vettore si puo scrivere come combinazione lineare
di un insieme di vettori linearmente indipendenti, tale espressione ¢ unica.

Proposizione 1.3.31. Siano vy,vs,...,v, € V dei vettori linearmente in-
dipendenti. Se v € V' si puo scrivere come combinazione lineare dei vettori
V1,0V2y...,Up,

V= Av1 + Aav2 + - + AUy,

allora gli scalari A1, s, ..., A\p, sono determinati in modo unico.

Dimostrazione. Supponiamo che sia possibile scrivere v in due modi, come

U= A1v1 + AgU2 + -+ + ApUp,
e come

V= [(41V1 + poU2 + -+ UpUn.
Allora si ha
A1U1 + AoV + - -+ ApUp = U1 F fiov2 + - -+ fnUnp,
che si puo riscrivere come
(M —p)vr + (Ao —p2)ve + -+ (A — pin)vn = 0.
Poiché i vettori vy, va,...,v, sono linearmente indipendenti, si ha dunque
A —p1 =0, —pe=0,..., A, — pp, =0,
il che dimostra che \; = p;, per ognii =1,...,n. O

Dalla proposizione appena dimostrata discende quindi che, se consideriamo
un insieme di generatori S di V' con la proprieta aggiuntiva che i vettori di S
siano linearmente indipendenti, allora ogni vettore di V' si puo scrivere, in modo
unico, come combinazione lineare finita di elementi di S.

Definizione 1.3.32. Un insieme libero di generatori di uno spazio vettoriale V'
¢ detto una base di V. In altri termini, una base di V' & un insieme di vettori
linearmente indipendenti i quali generano l'intero spazio V.



Capitolo 1 Spazi Vettoriali 18

Osservazione 1.3.33. Solitamente una base di uno spazio vettoriale V' viene
intesa come un insieme ordinato di generatori linearmente indipendenti di V.
Cio significa, ad esempio, che se I'insieme costituito dai vettori v; e vg € una
base di uno spazio vettoriale V, allora v = {v1,v2} e v/ = {va,v1} sono due
basi diverse di V.

Da quanto visto in precedenza, si deduce il seguente risultato:

Corollario 1.3.34. Sia S una base di V. Ogni vettore v € V' si puo scrivere,
in modo unico, come combinazione lineare finita di elementi di S.

Osservazione 1.3.35. Supponiamo che S = {v1,vs,...,v,} sia una base di uno
spazio vettoriale V. Allora, per ogni v € V, si ha

v = Av1 + Agva + - -+ ApUy,

e gli scalari A; € K sono unicamente determinati da v. Tali scalari sono anche
detti le coordinate del vettore v rispetto alla base vy, vs,...,v, fissata.

1.3.3 Spazi vettoriali finitamente generati

Nella sezione precedente non abbiamo fatto nessuna ipotesi sul numero di gene-
ratori di uno spazio vettoriale. Ora ci occuperemo in dettaglio del caso in cui
tale numero e finito.

Definizione 1.3.36. Uno spazio vettoriale V' e detto finitamente generato se
esiste un insieme finito di generatori di V.

Cominciamo col dimostrare che ogni spazio vettoriale V finitamente generato
ammette una base. Piu precisamente, dimostreremo che da ogni insieme di
generatori di V' si puo estrarre una base.

Proposizione 1.3.37. Sia S = {v1,vs,...,v,} un insieme di generatori di V.
Allora S contiene dei vettori v, ,vi,,...,v;., per qualche v < n, che formano
una base di 'V .

Dimostrazione. Se i vettori vy,vs,...,v, sono linearmente indipendenti, essi
sono una base di V e la dimostrazione ¢ cosi terminata. Se invece essi sono li-
nearmente dipendenti, uno di essi puo essere espresso come combinazione lineare
dei rimanenti. A meno di rinominarli, possiamo supporre che questo vettore sia
v,. Possiamo quindi scrivere

Up, = A01 + A2 + -+ Apm1Up—1.

Da cio segue che i vettori vy, vs, ..., v,—1 generano lo spazio vettoriale V'; infatti
ogni vettore che si scrive come combinazione lineare dei vettori vy, vs, ..., v, si
puo anche scrivere come combinazione lineare dei soli vettori vi,va,...,0n_1.
Ora, se i vettori vi,vo,...,v,_1 sono linearmente indipendenti, essi sono una
base di V e la dimostrazione ¢ terminata. In caso contrario uno di essi puo
essere espresso come combinazione lineare dei rimanenti. Anche in questo caso,
a meno di riordinare i vettori, possiamo supporre che sia v,,_; a potersi scrivere
come combinazione lineare dei vettori vy, vs,...,v,_2. Ma cio significa che i
vettori v, vs,...,V,_2 sono un insieme di generatori di V.

Ripetendo il ragionamento sopra descritto si arrivera, prima o poi, a un
insieme di vettori vy, vs,...,v,, per qualche 7 < n, che generano tutto lo spazio
V' e sono linearmente indipendenti. Essi costituiscono quindi una base di V. U
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Il seguente risultato chiarisce le relazioni che esistono tra insiemi di vettori
linearmente indipendenti, basi e insiemi di generatori.

Proposizione 1.3.38. Sia V' uno spazio vettoriale finitamente generato. Con-
sideriamo un insieme {v1,va,...,v,} di generatori di V e siano wy,ws, ..., w,
dei vettori linearmente indipendenti. Allora r < n.

Dimostrazione. Poiché i vettori vi,vs,...,v, generano V, il vettore wy si puo
scrivere come una loro combinazione lineare,

wy, = )\1'01 + )\21]2 + 4 )\n’l)n.

Dato che wy # 0, gli scalari Ay,..., A\, non possono essere tutti nulli, quindi
esiste un indice i tale che A; # 0. Da ci0 si deduce che il vettore v; puo essere
espresso come combinazione lineare dei vettori wy,v1,...,0—1,i41,...,Un.

A meno di rinominare i vettori v;, possiamo supporre che sia i = n, cio¢
che v, si possa scrivere come combinazione lineare dei vettori wy,vq,...,vn_1;
ma cio significa che anche {ws,v1,...,v,-1} & un insieme di generatori di
V. 1l vettore ws si puo quindi scrivere come combinazione lineare dei vettori
W1yV1yeeeyUp—1:

wy = aqwi + A1+ + A 1Vn-1,

e gliscalari A1, ..., \,_1 non possono essere tutti nulli, perché altrimenti i vettori
wj e wo sarebbero linearmente dipendenti, contro 'ipotesi.

Esiste quindi un indice i per il quale A\; # 0 e, ancora una volta, possia-
mo supporre che sia ¢ = n — 1 (a meno di riordinare i vettori v;). Da cio
segue che il vettore v,_1 si puo scrivere come combinazione lineare dei vet-
tori wy,ws,v1,...,0,—2, quindi anche {wy,ws,v1,...,Vy—2} & un insieme di
generatori di V.

Continuando in questo modo, si dimostra che tutti gli insiemi

{U}l,’U)Q,... awhavl7-~-avn—h}

sono insiemi di generatori di V.

Se, per assurdo, fosse n < r, ponendo h = n si avrebbe che i vettori
w1, Wa, ..., W, generano tutto lo spazio V', quindi il vettore w41 si potrebbe
scrivere come combinazione lineare dei vettori wy,ws, ..., w,, il che contraddice
I'ipotesi che i vettori wy, ws, ..., w, siano linearmente indipendenti. Deve quindi
essere r < n. O

Corollario 1.3.39. Sia V uno spazio vettoriale finitamente generato e sia
{v1,v2,...,v,} una base di V. Allora, per ogni insieme di vettori linearmente
indipendenti {wy,wa,...,w.}, st ha r < n e, per ogni insieme {uy, ua,...,us}
di generatori di 'V, si ha s > n.

Dimostrazione. Questo risultato € una conseguenza immediata della proposi-
zione precedente; basta ricordare che i vettori vy, vs,...,v, sono linearmente
indipendenti e sono anche un insieme di generatori di V. O

Corollario 1.3.40. Due basi qualunque di uno spazio vettoriale V (finitamente
generato) hanno lo stesso numero di elementi.
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Dimostrazione. Siano {vi,va,...,v,} e {w1,wa,...,ws} due basi di V. Allo-
ra, dato che i vettori vy, vs,...,v,. sono linearmente indipendenti e i vettori
wy,Wa, ..., ws sono dei generatori di V, si ha r < s. Scambiando il ruolo delle
due basi, si ottiene anche s < r, da cui segue 'uguaglianza r = s. O

Il numero di vettori che compongono una base di uno spazio vettoriale fini-
tamente generato V ¢ dunque indipendente dalla base scelta e dipende quindi
solo dallo spazio V. Possiamo pertanto dare la seguente definizione:

Definizione 1.3.41. La dimensione di uno spazio vettoriale (finitamente ge-
nerato) V', indicata con dim V, & il numero di elementi di una base di V.

Esempio 1.3.42. Consideriamo lo spazio vettoriale V' = K", definito nell’Esem-
pio 1.3.3. Per ogni ¢ = 1,...,n, indichiamo con e; la n-upla di elementi di K le
cui componenti sono tutte nulle tranne la i-esima, che ¢ uguale a 1:

er = (1,0,0,0,...,0,0),
ez = (0,1,0,0,...,0,0),
es = (0,0,1,0,...,0,0),

e, =(0,0,0,0,...,0,1).
Notiamo che, per ogni A1,..., A, € K, si ha
Aer + Agea + -+ Apen = (A1, A2, oo Ap).

Da questa uguaglianza si deduce che i vettori e, es,..., e, sono linearmente
indipendenti e generano lo spazio vettoriale V; essi sono pertanto una base
di V = K™ Questa base ¢ detta la base canonica di K™. Si ha pertanto
dim K™ = n.

Esempio 1.3.43. Lo spazio vettoriale nullo, V' = {0}, ha dimensione pari a zero.
Esso infatti contiene un solo vettore v = 0, ma tale vettore non forma una base
di V' dato che esso non ¢ linearmente indipendente! Infatti un insieme costituito
da un solo vettore v ¢ un insieme libero (cioé v ¢ linearmente indipendente) se
e solo se v # 0.

Dalla Proposizione 1.3.38 derivano anche i prossimi due risultati.

Corollario 1.3.44. Sia V uno spazio vettoriale finitamente generato. Allora
ogni sottospazio vettoriale W di V' ¢ finitamente generato e si ha dimW <
dim V.

Dimostrazione. Poniamo n = dimV. Se {ws,...,w,} & un insieme di vettori
linearmente indipendenti di W, essi sono anche dei vettori linearmente indipen-
denti di V; deve quindi essere r < n. Se questi vettori non sono un insieme
di generatori di W, cio significa che esiste un vettore w,+; € W che non puo
essere espresso come combinazione lineare di wi,...,w,. Da cio segue che i
vettori wi, . .., w,, w,41 sono linearmente indipendenti. Se essi non sono ancora
un insieme di generatori di W, deve esistere un vettore w, o € W che non puo
essere espresso come combinazione lineare di wy, ..., w,,w,4+1. Ma allora anche
i vettori wi, ..., Wy, Wyt1,Wr42 sono linearmente indipendenti.
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Poiché il numero di vettori linearmente indipendenti non puo eccedere n,
ripetendo il ragionamento precedente si arriva, dopo un numero finito di passi,

a costruire un insieme di vettori linearmente indipendenti {ws,...,ws}, con
s < n, i quali generano il sottospazio W e sono quindi una base di W. Cio
dimostra che dim W < dim V. O
Corollario 1.3.45. Sia V wuno spazio vettoriale finitamente generato. Allora
ogni insieme di vettori linearmente indipendenti vy, . . ., v, puo essere completato
a una base di V. In altri termini, esistono dei vettori v,41,...,v, tali che
Uinsieme {v1, ..., Up,Vpy1,...,Un} Sia una base di V.

Dimostrazione. La dimostrazione di questo risultato e essenzialmente analoga a
quella del corollario precedente. Supponiamo che vy, ..., v, € V siano dei vettori
linearmente indipendenti. Se questi vettori non sono un insieme di generatori di
V', cio significa che esiste un vettore v,;1 € V' che non puo essere espresso come
combinazione lineare di vy, ..., v,. Da cio segue che i vettori vy, ..., v,, v,41 sSono
linearmente indipendenti. Se essi non sono ancora un insieme di generatori di V/,
deve esistere un vettore v, 1o € V che non puo essere espresso come combinazione

lineare di vy, ...,v,,vr4+1. Ma allora anche i vettori vy, ..., 0p, Upy1,Vrq2 SONO
linearmente indipendenti. Continuando in questo modo, si deve necessariamente
ottenere un insieme di vettori linearmente indipendenti {vy, ..., vp, Upi1,..., 05}

che sono anche un insieme di generatori di V', altrimenti si otterrebbe un insieme
infinito di vettori linearmente indipendenti, contro 'ipotesi che V sia finitamente
generato. O

Se la dimensione di uno spazio vettoriale V' ¢ nota, la verifica che un deter-
minato insieme di vettori di V' forma una base risulta semplificata. Vale infatti
il seguente risultato:

Proposizione 1.3.46. Sia V wuno spazio vettoriale di dimensione n e siano
V1, ...,0, dei vettori di V.

(i) Se i wvettori vy,...,v, sono linearmente indipendenti, allora essi sono
anche un sistema di generatori di V, quindi sono una base di V.

(it) Se i vettorivy,...,v, sono un sistema di generatori di V', allora essi sono
anche linearmente indipendenti, quindi sono una base di V.

Dimostrazione. (i) Supponiamo che i vettori vq,. .., v, siano linearmente indi-
pendenti. Per il corollario precedente, essi sono contenuti in una base

{V1, - s Vny Uns1, - ooy Ungr

di V. Ma, poiché V' ha dimensione n, ogni base di V' deve avere n elementi. Da
cio si deduce che r = 0 e quindi i vettori vy, ..., v, sono, in effetti, una base di
V.

(4i) Supponiamo che i vettori vy,...,v, siano un insieme di generatori di
V. Se, per assurdo, essi fossero linearmente dipendenti, uno di essi sarebbe
combinazione lineare dei rimanenti. A meno di riordinare i vettori, non & re-
strittivo supporre che v,, sia combinazione lineare di vy,...,v,_1. Ma allora i
vettori vq,...,v,_1 sarebbero anch’essi un insieme di generatori di V. Questo
pero e assurdo; infatti la cardinalita di un insieme di generatori di V' deve essere
> dim V' (vedi Corollario 1.3.39). Quindi i vettori vy, ...,v, sono linearmente
indipendenti, cioé sono una base di V. O
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Corollario 1.3.47. Sia V uno spazio vettoriale finitamente generato e sia W C
V' un suo sottospazio proprio. Allora dimW < dim V.

Dimostrazione. Nel Corollario 1.3.44 abbiamo dimostrato che si ha dim W <
dim V. Supponiamo, per assurdo, che si abbia dimW = dimV = n. Con-
sideriamo quindi una base wy,...,w, di W. Dato che questi sono n vettori
linearmente indipendenti di V', e dato che n e proprio la dimensione di V', per
il punto (4) della proposizione precedente essi sono una base di V. Ma da cio
segue che W =V, contro 'ipotesi che W sia un sottospazio proprio di V. [

Osservazione 1.3.48. Se K C L & una estensione? di campi, ogni spazio vettoriale
V sul campo L puo essere anche considerato come spazio vettoriale sul campo
K. Se {v1,...,v,} € una base di V in quanto K-spazio vettoriale, questi stessi
vettori generano V' anche in quanto spazio vettoriale su L, tuttavia, in questo
caso, essi potrebbero non essere piu linearmente indipendenti, come vedremo nel
successivo esempio. In generale, possiamo pertanto affermare che la dimensione
di V in quanto L-spazio vettoriale & minore o uguale alla dimensione di V'
considerato come spazio vettoriale su K, cioe

dimL 1% S dimK V.

Tllustriamo quanto appena affermato con un esempio concreto. Sia K = R il
campo dei numeri reali e L = C il campo dei numeri complessi. L’insieme C
¢ identificato in modo naturale con l'insieme R?, associando ad ogni numero
complesso z = x + iy la coppia di numeri reali (x,y). Poniamo quindi V = C 2
R2. Lo spazio vettoriale V = C, in quanto spazio vettoriale sul campo C, ha
naturalmente dimensione 1, e una sua base € costituita dal vettore v = 1. Se
invece consideriamo C in quanto spazio vettoriale su R, esso ha dimensione 2.
Una sua base ¢ infatti costituita dai vettori v; = 1 e v9 = 4, i quali corrispondono,
nell'identificazione C 22 R? descritta in precedenza, ai due vettori (1,0) e (0,1)
della base canonica di R2.

Notiamo che i vettori vy = 1 e vo = ¢ sono linearmente indipendenti sul
campo R dei numeri reali; infatti se av; + fve = a+i8 =0, con a, 5 € R, si
deve necessariamente avere a = 3 = 0. Essi sono invece linearmente dipendenti
sul campo C: si ha infatti

vi+ive=1+4+32=1-1=0.

Pit in generale, se V= C", si ha dim¢ V =n e dimg V = 2n.

Terminiamo questa sezione dimostrando un risultato che mette in relazione
le dimensioni di due sottospazi vettoriali di V' con le dimensioni della loro somma
e della loro intersezione:

Proposizione 1.3.49 (FORMULA DI GRASSMANN). Siano Wy e Wy due sotto-
spazi vettoriali di uno spazio vettoriale finitamente generato V. Si ha:

dim(W1 + Wg) = dim W7 + dim W5 — dim(W1 N Wg)
Dimostrazione. Poniamo

rzdile, S :dimWQ, t:dlm(Wl OWQ)

4Cid significa semplicemente che L & un campo e K & un suo sottocampo.
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Consideriamo una base {vy,...,v:} di Wi N Wa. Per il Corollario 1.3.45, que-
sto insieme di vettori puo essere completato, tramite aggiunta di altri vetto-
ri, in modo da ottenere una base {v1,...,v,V441,...,0.} di Wi e una base
{vi, 00, v di o

Dato che ogni vettore di W;4+W5; puo essere scritto come somma di un vettore
di W7 e di uno di W, esso puo quindi essere espresso come combinazione linea-
re dei vettori vi,..., v, Vg1, .o, U, Uy g, ..., V5. Vogliamo ora dimostrare che
questi vettori, oltre a essere dei generatori di Wj 4+ Wa, sono anche linearmente
indipendenti.

Supponiamo quindi che sia

V1 + -+ v+ Broggr + o+ Brovr 1105 4+ Ys—gvl, = 0.
Da cio segue che
ovr 4+ v+ Broepr + o+ Brogvp = —(N10 1 F o A VemtV).

Se chiamiamo w il vettore precedente, si ha che w € WiNWy. Poiché {vy,... v}
¢ una base di W7 N Wy, il vettore w si puo scrivere, in modo unico, nella forma

w = A1 + -+ Ay
Si hanno quindi le seguenti uguaglianze:

Aor 4 Avr = cqvr + - v £ Srveen £ o Brogor

e
/ /
Ao+ M = _(’71'Ut+1 o Yoty
Poiché, per ipotesi, i vettori vq,...,vs,Vtq1,...,0, sono una base di Wy e i
vettori vy, ..., v, Vi 1, ..., Vs sono una base di W, dalle uguaglianze precedenti
segue che
)\1:"':At:07 alz...:at:07
Bri=-=Bet=0, m=-=7=0.

Abbiamo cosi dimostrato che I'insieme dei vettori
{vl,...,vt,vH_l,...,vr,véJrl,...,v;}
¢ una base di W71 + Was. Si ha pertanto
dim(Wy + W) =r + s — t = dim Wi + dim Wy — dim(W; N Ws). |

Osservazione 1.3.50. Sia V uno spazio vettoriale finitamente generato. Notiamo
che, per ogni sottospazio W C V, & possibile trovare un sottospazio W’ di V
tale che V. =W & W', cioe tale che si abbia V =W + W' e WNW' = {0}. Un
tale W' & detto un sottospazio complementare di W.

A tal fine, & sufficiente considerare una base {wy, ..., w,} di W e completarla
a una base {wy, ..., Wy, Vpy1,...,0,} di V (cf. Corollario 1.3.45). Il sottospazio
W' = (vy41,...,0,), generato dai vettori v.41,...,v,, ¢ il sottospazio cercato.

Notiamo infine che un tale sottospazio W’ non & unico. Ad esempio, se
V = K? e se W ¢ il sottospazio generato dal vettore (1,0), qualunque vettore
(a,b), con b # 0, genera un sottospazio W’ tale che V. =W & W'.
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Esercizi

Esercizio 1.3.1. Si dica se gli insiemi seguenti sono degli spazi vettoriali:

(1) L’insieme delle funzioni reali definite nell’intervallo [0, 1], continue, positive o
nulle, per le operazioni di addizione e di prodotto per un numero reale.

(2) L’insieme delle funzioni reali f definite in R, tali che

lim f(z) =

x——+o00

per le operazioni di addizione e di prodotto per un numero reale.

(3) L’insieme A = {z € R|z > 0}, per le operazioni di somma e di prodotto per
uno scalare definite rispettivamente da

rhy=zy, Vx,ycA
)vyc:xA, Vxe A NeER.

—
W~
Nus2

L’insieme delle funzioni da R in R che si annullano in 1 oppure in 4.

—
ut
=

L’insieme dei polinomi di grado uguale a n (n intero positivo).
L’insieme delle funzioni da R in R, di classe C?, tali che

—~
=)
=

f//+w2f:0,

con w € R.
(7) L’insieme delle funzioni reali f(z) definite nell’intervallo [0, 1], continue, tali che

/1 f(z)sinzdz = 0.
0

Esercizio 1.3.2. Sia V lo spazio vettoriale dei polinomi, a coefficienti reali nell’in-
determinata z, di grado < 3. Si verifichi che gli insiemi seguenti sono delle basi di
V.

(1) {1,2,2% 2%}
2) {1,1 -2,z — 22, 2% — 2®};
3) {L,1+z,1+a+2%1+a+x* +2%).

Esercizio 1.3.3. Nello spazio vettoriale V' dei polinomi di grado < 2 si considerino
i polinomi

p1(x)=:v +z(l—2z)+ (1 —2)?
p2(z) =2 + (1 — z)*
pg(x):x +1+(1—2)

pa(z) = z(1 — ).

I possibile estrarre da {p1(x), pa(z), p3(z), pa(z)} delle basi di V? In caso affermativo,
trovarle tutte.

Esercizio 1.3.4. Nello spazio vettoriale delle funzioni continue da R in R, si con-
siderino le funzioni fi(z) = sinz, f2(z) = sin2z e f3(z) = sin3z. Si dica se queste
funzioni sono linearmente indipendenti.

Esercizio 1.3.5. Si dica se, nei casi seguenti, i vettori vi, v2 e vs costituiscono una
base di R®. In caso negativo si descriva il sottospazio da essi generato.

(1) v =(1,1,1), v2 = (3,0, —1), v = (—1,1,—1);
(2) v =(1,2,3), v :( 1), v (1 8,13);
(3) v1 =(1,2,-3), v (1 o 1) = (1,10, —11).



Capitolo 1 Spazi Vettoriali 25

Esercizio 1.3.6. In R* i vettori seguenti formano:
(a) un insieme libero (cio¢ un insieme di vettori linearmente indipendenti)? In caso
affermativo, completarlo per ottenere una base di R*, altrimenti determinare le rela-
zioni di dipendenza lineare tra di loro ed estrarre da questo insieme di vettori almeno
un insieme libero.
(b) un insieme di generatori? In caso affermativo, estrarne almeno una base di R?,
altrimenti determinare la dimensione del sottospazio da essi generato.
(1) v1 =(1,1,1,1), v2 = (0,1,2,-1), v3 = (1,0, -2, 3),

Vg4 = (27 1,0, _1)7 Us = (47 3,2, 1)7
(2) v1 =(1,2,3,4), v2 = (0,1,2,—1), vs = (3,4, 5, 16);
(3) U1 = (17 27 37 4)7 V2 = (07 17 27 71)7 U3 = (27 17 07 11)7

ve = (3,4,5,14).
Esercizio 1.3.7. Si determini una base del sottospazio vettoriale V di R® costituito
dai vettori (x1,...,2s5) che sono soluzioni del seguente sistema di equazioni lineari:

x1 —3x2 +x24 =0
x2 +3xs —x5 =0

x1 + 222 +x3 — x4 = 0.

Esercizio 1.3.8. In R* siano v; = (1,2,3,4) e vz = (1, -2, 3, —4). E possibile deter-
minare due numeri reali z e y in modo tale che (z,1,y,1) € L{vi,v2}? (Ricordiamo
che L{v1,v2} indica il sottospazio generato dai vettori v1 e v2.)

Esercizio 1.3.9. Sia V uno spazio vettoriale. Si dica se le affermazioni seguenti sono
vere o false.

(1) Se i vettori vi, v2 e vs sono a due a due non proporzionali allora la famiglia
{v1,v2,v3} & libera.
(2) Se nessuno fra i vettori vy,...,v, & combinazione lineare dei vettori rimanenti
allora la famiglia {v1,...,v,} & libera.
Esercizio 1.3.10. In R* siano v1 = (0,1, -2,1), ve = (1,0,2, 1), vs = (3,2,2, —1),
vs = (0,0,1,0), vs = (0,0,0,1). Sidica se le affermazioni seguenti sono vere o false.
1) L{vi,v2,vs} = L{(1,1,0,0), (—1,1, —4,2)};
2) (1,1,0,0) € L{v1,v2} N L{vz2,v3,v4};
3) dim(L{vi,v2} N L{va,v3,v4}) = 1;
4) L{vi,va} + L{vz,v3,v4} = R*;
(5) L{Ul,UQ,U3} =+ L{’U4, ’U5} = R4.

(
(
(
(

Esercizio 1.3.11. Sistudi la dipendenza o I'indipendenza lineare dei vettori seguenti,
e si determini in ogni caso una base del sottospazio da essi generato.

(1) (1,0,1), (0,2,2), (3,7,1), in R?;

(2) (1,0,0), (0,1,1), (1,1,1), in R?;

(3) (1,2,1,2,1), (2,1,2,1,2), (1,0,1,1,0), (0,1,0,0,1), in R5.
Esercizio 1.3.12. Sia V lo spazio vettoriale dei polinomi in x, a coefficienti in R, di
grado < n, con n intero positivo. Si dimostri che, per ogni a € R, I'insieme

{1,z —a,(z—a) ..., (2—a)"}

¢ una base di V. Sia poi f(z) € V; si esprima f(x) come combinazione lineare dei
precedenti polinomi. Chi sono i coefficienti di tale combinazione lineare?
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Esercizio 1.3.13. Siano U; = L{ui,u2} e Vi = L{v1,v2} due sottospazi di R?*, con
ur = (1,¢,2t,0), us = (¢, ¢, ¢,t), vi = (t — 2, —t,—3t,t) e va = (2,¢,2¢,0).

(1) Si dica se esiste t € R tale che U; + V; = R*

(2) Per quali ¢t € R si ha dim(U; N V;) = 17

(3) Si determini una base di U; NV} e la si estenda a una base di R*.

Esercizio 1.3.14. In R?* si considerino i sottospazi U = L{vi,vs,u3} e V =
L{vs,vs}, dove v1 = (1,2,3,4), va = (2,2,2,6), vs = (0,2,4,4), va = (1,0,—1,2)
evs = (2,3,0,1). Si determinino delle basi dei sottospazi UNV, U, Ve U + V.

Esercizio 1.3.15. Siano U e W due sottospazi vettoriali di uno spazio vettoriale V.
Si dimostri che U U W & un sottospazio vettoriale di V' se e solo se U C W oppure
WcU.

Esercizio 1.3.16. Siano U, V e W tre sottospazi di uno stesso spazio vettoriale. Si
dica se e vero o falso che

UNn(V+W)=UnV)+UNW).
Esercizio 1.3.17. Si dica se & diretta la somma dei due seguenti sottospazi di R*:
U="L{(1,0,1,0),(1,2,3,4)} e V= L{(0,1,1,1),(0,0,0,1)}.

Esercizio 1.3.18. Si considerino i seguenti sottospazi di R*:

U =1L{(1,0,1,0),(0,1,1,1),(0,0,0,1)}

vV =L{(1,0,1,0),(0,1,1,0)}.
Si determini un sottospazio W C R* tale che U = V & W, e si dica se tale W & unico.

Esercizio 1.3.19. Dati i seguenti sottospazi di R*,

U = L{(1,0,1,0),(0,0,0,1)}

V = L{(17 07 27 0)7 (07 0? 17 1)}7

esiste un sottospazio W C R* tale che U@ W =V @ W = R*?
In caso affermativo si determini W e si dica se € unico.

Esercizio 1.3.20. Nello spazio vettoriale V' dei polinomi, nell’indeterminata = a
coefficienti reali, di grado < 5, si considerino i sottospazi seguenti:

Ur = {p(z) € V|p(0) = 0},

U2 = {p(z) € V|p'(1) = 0},

U3 = {p(z) € V|z* + 1 divide p(z)},
={p(z) € V[p(—z) = p(x),Vz},

Us = {p(z) € V|p(z) = ap/(x),Vz}.

(1) Si determinino delle basi dei seguenti sottospazi:
Ui, Uz, Us, Uy, Us, Uy NUz, U1 NUs, U1 NU2NUs, Uy NU2NUs NUpy.
(2) Si determinino dei sottospazi Wi e Wa di V tali che

Wi@Us=Wa® (U1NUs) =V.



Capitolo 2

Applicazioni Lineari e Matrici

In questo capitolo svilupperemo la teoria delle funzioni lineari tra due spazi
vettoriali. Introdurremo il concetto di matrice, descriveremo il legame esistente
tra matrici e funzioni lineari e dimostreremo i principali risultati della teoria
delle matrici. Infine, utilizzeremo i risultati cosi ottenuti per descrivere la teoria
dei sistemi di equazioni lineari.

2.1 Applicazioni lineari

In questo capitolo ci occuperemo dello studio delle funzioni, definite tra due
spazi vettoriali, che “rispettano” la struttura di spazio vettoriale, cioe che sono
compatibili con le operazioni di somma di vettori e di prodotto di un vettore
per uno scalare.

Definizione 2.1.1. Siano V e W due spazi vettoriali su un campo K. Una
funzione f: V — W e detta additiva se

f(ur +v2) = f(v1) + f(v2),

per ogni vy,ve € V.
Una tale funzione ¢ detta K -lineare (o, pitt semplicemente, lineare) se, oltre
ad essere additiva, essa soddisfa la seguente uguaglianza:

fw) = Af(v),

per ogniv € V e ogni A € K.
Una funzione lineare tra due spazi vettoriali &€ anche detta un omomorfismo
di spazi vettoriali.

Osservazione 2.1.2. Supponiamo che f sia una funzione additiva tra due spazi
vettoriali V' e W definiti sul campo K, e supponiamo che Q C K. Per ogni

27



Capitolo 2 Applicazioni Lineari e Matrici 28

intero positivo n ed ogni v € V', si ha
flo) = flo+ov+--+v)=f(v)+ f(v)+--+ fv) =nf(v).

Si ha inoltre f(0Oy) = Oy : infatti dall’additivita di f si deduce che
f(v) = fv+0v) = f(v) + f(Ov),

da cui, sommando ad ambo i membri il vettore — f(v), si conclude.
Utilizzando questo risultato si puo dimostrare che f(—v) = —f(v): si ha
infatti

Ow = f(Ov) = f(v+(=v)) = f(v) + f(—v),
da cui segue che f(—v) & l'opposto di f(v).

Combinando questi risultati, si conclude che I'uguaglianza f(nv) = nf(v)
vale per ogni vettore v € V ed ogni n € Z: una funzione additiva ¢ quindi
automaticamente Z-lineare.

In effetti una funzione additiva ¢ anche Q-lineare. Infatti, per ogni n # 0, si
ha

f) = f(ngv) =nf(50),

da cui segue che f(%v) = %f(v) Infine, per ogni 7> € Q, si ha

FOrv) =mf(5v) =2 f(v).

Tuttavia, se K contiene propriamente Q, dall’additivita di una funzione non
si puo dedurre, in generale, la sua K-linearita. Ad esempio, dimostreremo
in seguito (vedi Esempio 2.1.19) che esistono delle funzioni additive (e quindi
Q-lineari) che non sono R-lineari!

Veniamo ora alla definizione di isomorfismo di spazi vettoriali.

Definizione 2.1.3. Sia f : V — W un omomorfismo di spazi vettoriali. f e
un isomorfismo se esiste un omomorfismo g : W — V tale che go f = idy e
fog=idw.

In altre parole, dire che f € un isomorfismo di spazi vettoriali equivale a dire
che f & un omomorfismo invertibile e che la sua funzione inversa ¢ lineare.

Due spazi vettoriali V e W su K si dicono isomorfi se esiste un isomorfismo
f:V — W. Quando vorremo indicare che V' e W sono isomorfi senza specificare
quale sia I'isomorfismo, scriveremo semplicemente V' = W.

Dalla definizione data segue che un isomorfismo di spazi vettoriali & una
funzione biiettiva. Dimostriamo ora il viceversa:

Proposizione 2.1.4. Sia f : V — W un omomorfismo di spazi vettoriali. Se
la funzione f ¢é biiettiva essa € un isomorfismo.

Dimostrazione. Poiché f & biiettiva essa & invertibile. Rimane quindi solo da
dimostrare che la funzione inversa f~!: W — V & lineare.

Siano dunque wi,wy € W e poniamo v; = f~1(w;1) e vo = f~(wsy). Dal-
Padditivita di f si deduce che f(vy +v2) = f(v1) + f(v2) = w1 + wa, da cui
segue che f~1(wy +ws) = vy + vy = f 1 (wy) + £~ (ws); cid dimostra che f~1
e additiva.

Consideriamo ora uno scalare A € K. Dalla linearita di f segue che f(Av;) =
Af(v1) = Awy, da cui si deduce che f~1(Aw;) = Avy = Af~1(wy). Abbiamo
cosi dimostrato che f~! & lineare. O
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Osservazione 2.1.5. Un omomorfismo iniettivo di spazi vettoriali ¢ anche detto
un monomorfismo, mentre un omomorfismo suriettivo ¢ chiamato epimorfismo.
Un monomorfismo che sia anche epimorfismo ¢ dunque un omomorfismo biiettivo
e quindi, in base alla proposizione precedente, & un isomorfismo.

L’importanza della nozione di isomorfismo e data dal fatto che esso permette
di “identificare” spazi vettoriali diversi, a patto che siano isomorfi. Si puo cosi
arrivare a una classificazione degli spazi vettoriali, come descritto nel seguente
risultato:

Proposizione 2.1.6. Sia V uno spazio vettoriale di dimensione n sul campo
K. Allora V' ¢ isomorfo (non canonicamente) allo spazio vettoriale K™.

Dimostrazione. Fissiamo una base {v1,vs,...,v,} di V. Facciamo notare che
cio e sempre possibile, anche se non c’e, in generale, nessuna scelta “canonica”
per una tale base.

Ora possiamo definire una funzione f : V' — K™ la quale associa a un vettore
v € V l'unica n-upla (A1,...,\,) € K™ per cui si ha

v =AU+ -+ AUy

E immediato verificare che la funzione f € lineare. Essa € inoltre biiettiva, dato
che {v1,va,...,v,} € una base di V. Dalla Proposizione 2.1.4 si deduce quindi
che f & un isomorfismo.

Vogliamo far notare che la funzione f dipende dalla base di V' che e stata
scelta. La non esistenza, in generale, di una base canonica ha quindi come
conseguenza la non esistenza di una scelta canonica di un isomorfismo tra V' e
K". O
Corollario 2.1.7. Due spazi vettoriali di dimensione finita sul campo K sono

isomorfi (non in modo canonico) se e solo se hanno la stessa dimensione.

2.1.1 Nucleo e immagine

Introduciamo ora due sottospazi vettoriali particolarmente importanti associati
a una funzione lineare:

Definizione 2.1.8. Sia f : V' — W una funzione lineare tra due spazi vettoriali.
Il nucleo di f & 'insieme

Ker(f) = {v € V| (1) = 0}.
L’immagine di f e 'insieme
Im(f) ={w e W|w= f(v), per qualche v € V'}.

Proposizione 2.1.9. Il nucleo di una funzione lineare f : V. — W € un sot-
tospazio vettoriale di V', mentre l'immagine di f € un sottospazio vettoriale di

w.

Dimostrazione. Siano vy, ve € Ker(f) e consideriamo una combinazione lineare
A1v1 + Agvg, con A1, A € K. Dalla linearita di f segue che

FAqv1 + Aav2) = A1 f(v1) + A f(v2) =0,
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quindi Ajv; + Agvg € Ker(f). Questo dimostra che Ker(f) € un sottospazio
vettoriale di V.

Passiamo ora all’immagine di f. Siano wi,ws € Im(f) e siano vi,ve € V
tali che wy = f(v1) e wa = f(v2). Dalla linearita di f segue che

JAvr + Aova) = A1 f(v1) + Ao f(v2) = Mwr + Aows,

il che significa che A\jw; + Aaws € Im(f), per ogni A1, A2 € K. Cio dimostra che
Im(f) ¢ un sottospazio vettoriale di W. O

Il seguente risultato fornisce una caratterizzazione dei monomorfismi in ter-
mini di annullamento del nucleo.

Proposizione 2.1.10. Sia f : V — W wuna funzione lineare. Allora f ¢
iniettiva se e solo se Ker(f) = {0}.

Dimostrazione. Supponiamo che f sia iniettiva. Sia v € Ker(f): si ha quindi
f(v) = 0. Ricordando che f(0) = 0, dall’iniettivita di f si deduce che v = 0, il
che dimostra che Ker(f) = {0}.

Viceversa, supponiamo che Ker(f) = {0}. Siano vy,vy € V tali che f(v1) =
f(v2). Dalla linearita di f si ha

f(vr —v2) = f(v1) — f(v2) =0,

quindi v; — ve € Ker(f). Poiché, per ipotesi, Ker(f) = {0}, si ha v; — vy = 0,
cioe v = vs. Questo dimostra che f e iniettiva. O

Abbiamo visto come il nucleo di un’applicazione lineare f : V — W sia
sempre un sottospazio vettoriale di V. Ora dimostreremo che, piu in generale,
Iimmagine inversa di un qualsiasi vettore w € Im(f) si ottiene semplicemente
“traslando” il nucleo di f tramite un qualsiasi vettore v € f~1(w).

Proposizione 2.1.11. Sia f : V — W una funzione lineare e sia w € W. Se
w € Im(f) si ha

fHw) = v+ Ker(f) = {v+u|uc Ker(f)},

ove v é un qualsiasi vettore tale che f(v) = w; se invece w ¢ Im(f) si ha

S w) =2

Dimostrazione. Sia v € V tale che f(v) = w. Per ogni u € Ker(f), si ha
flo+u) = f(v) + f(u) = w+ 0 =w. Cio dimostra che v + Ker(f) C f~1(w).
Viceversa, per ogni v/ € f~!(w) poniamo v = v’ —v. Si ha f(u) = f(v') —
f(v) = w—w = 0, quindi v € Ker(f). Da cio discende che v = v+ u €
v + Ker(f), quindi vale anche l'inclusione f~'(w) C v + Ker(f). L’ultima
affermazione & ovvia. O

Le dimensioni del nucleo e dell'immagine di una funzione lineare sono legate
tra loro dalla seguente relazione:

Proposizione 2.1.12. Sia f : V — W una funzione lineare. Se V ha dimen-
sitone finita, si ha

dim(V) = dim Ker(f) + dim Im(f).
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Dimostrazione. Poniamo n = dim(V) e r = dim Ker(f); bisogna quindi dimo-
strare che dimIm(f) = n —r. Consideriamo una base {vy,va, ..., v, } di Ker(f)
e completiamola a una base {v1,va, ..., 0, Vry1,...,0,} di V. Ricordiamo che
le immagini tramite f dei vettori di una base di V' formano un insieme di gene-
ratori di Im(f). Dato che f(v1) = f(ve) = --- = f(v,) = 0, se ne deduce che i
vettori

wy = f(vr41), w2 = f(Vr42), .. Wn—y = f(vn)
generano l'immagine di f. Dimostriamo ora che tali vettori sono anche linear-
mente indipendenti. Consideriamo una combinazione lineare

Awy + Aowg + -+ -+ Ap—pwp—pr = 0.

Dalla linearita di f, si ha

0= Mwy + Xwz + -+ Ay pWp—y
= Alf(vr—i-l) + )\Zf(vr+2) +- /\n—rf(vn)
- f()\lvr+l + )\2vr+2 + -+ )\n—rvn)

e pertanto
AMUpp1 + AoUpgo + -+ Ay € Ker(f).

Poiché {vy,va,...,v,} € una base di Ker(f), si ha
AMUpg1 + AoUpgo + - 4+ Ay p Uy = 101 + pov2 + - -+ Uy
e quindi
H1V1 + floV2 + v fpUp — A1Upg1 — A2Upg2 — 0 — Ap_pUp = 0.
Dato che, per ipotesi, i vettori vq, vs, ..., v, sono una base di V, si conclude che
pr=prg=-=pr =0, Ay =Ap == Ay_p =0,

il che dimostra che i vettori wi,ws,...,w,_, sono linearmente indipendenti.
Concludiamo quindi che tali vettori sono una base dell’immagine di f e dunque
dim Im(f) = n — r, come volevasi dimostrare. O

Osservazione 2.1.13. Sia f : V — W una funzione lineare tra due spazi vetto-
riali. La dimensione dell'immagine di f & detta il rango di f,

rk(f) = dim Im(f)
mentre la dimensione del nucleo di f & detta la nullita di f,
null(f) = dim Ker(f).
La proposizione precedente afferma quindi che, per ogni omomorfismo f: V —

W, si ha
rk(f) + null(f) = dim(V).
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Osservazione 2.1.14. Siano V e W due spazi vettoriali su K e indichiamo con
Hom(V, W) l'insieme delle applicazioni lineari da V' a W. Definiamo la somma
di due applicazioni lineari f, g € Hom(V, W) ponendo (f + g)(v) = f(v) + g(v),
per ogni v € V; essa ¢ ancora una funzione lineare. Definiamo poi il prodotto di
uno scalare A € K per una funzione lineare f € Hom(V, W) ponendo (Af)(v) =
A(f(v)), per ogni v € V. Si verifica facilmente che I'insieme Hom(V, W), dotato
delle due operazioni appena definite, € uno spazio vettoriale su K.

Notiamo infine che, se W = V', la composizione di due applicazioni lineari
fig 'V — V & ancora una funzione lineare, cioé¢ g o f € Hom(V, V), per ogni
fyg € Hom(V,V). L’insieme Hom(V,V), dotato dell’operazione di somma e
dell’operazione di composizione, risulta essere un anello (unitario) non commu-
tativo. Se, in aggiunta a queste due operazioni, consideriamo anche il prodotto
di una funzione lineare per uno scalare A € K, si ottiene una struttura nota con
il nome di K-algebra.

Osservazione 2.1.15. Un omomorfismo di uno spazio vettoriale V' in sé stesso,
f:V — V & anche detto endomorfismo. Se esso e invertibile, si parla allora
di automorfismo. L’insieme degli endomorfismi di uno spazio vettoriale V &
indicato con End(V) e il sottoinsieme costituito dagli automorfismi & indicato
con Aut(V).

Osservazione 2.1.16. Un diagramma costituito da spazi vettoriali e omomorfi-
smi tra di essi e detto commutativo se, per ogni coppia di spazi vettoriali, tutte
le funzioni tra di essi che si possono ottenere come composizione di omomorfi-
smi del diagramma, sono uguali. A titolo di esempio, consideriamo il seguente
diagramma:

v f1 Vs f2 Va

N T

Vp——=Vs——V
fr fs

Dire che esso ¢ commutativo significa che fsof1 = f4, frofs = fu4, feofo = fsofs,

etc.

2.1.2 Applicazioni lineari e basi

Ci proponiamo ora di studiare le proprieta di una funzione lineare f: V — W,
in relazione alla scelta di basi per gli spazi vettoriali V e W.

Iniziamo col dimostrare che una funzione lineare f : V — W e completa-
mente determinata dalla conoscenza delle immagini dei vettori di una base di
V', le quali possono essere scelte arbitrariamente in W.

Proposizione 2.1.17. Siano V e W due spazi vettoriali sul campo K e sia
{vi}ier una base (non necessariamente finita) di V.

(i) Un omomorfismo f:V — W ¢ determinato, in modo unico, dalle imma-
gini des vettort v;, per ogni i € I.

(i) Scelti arbitrariamente dei vettori {w;},cr in W, esiste un unico omomor-
fismo f:V — W tale che f(v;) = w;, per ognii € I.
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Dimostrazione. (i) Sia f: V — W una funzione lineare e supponiamo di cono-
scere f(v;), per ogni i € I. Poiché {v;},cr € una base di V, ogni vettore v € V
si puo scrivere, in modo unico, come combinazione lineare finita dei vettori v;:

V= MV, + AV, + 00+ A,
Dalla linearita di f segue che

) = M f(vi,) + Ao f (vi,) + -+ + A f(vi,), (2.1.1)

il che dimostra che la conoscenza di f(v;), per ogni ¢ € I, determina, in modo
unico, f(v), per ogni v € V. In altre parole, se g : V — W & un omomorfismo
tale che g(v;) = f(v;), per ogni ¢ € I, da (2.1.1) segue che g(v) = f(v), per ogni
veV.

(i1) Per ogni i € I scegliamo arbitrariamente un vettore w; € W. Definiamo
una funzione f : V — W ponendo f(v;) = w;, per ogni i € I, ed estendendo f
per linearita a tutto V', cioé ponendo

f(’l)) = Alf(vil) + )‘2f(vi2> +F )\nf(vin)y

se v = A1vi; + Aavi, + -+ A,
Si verifica immediatamente che f ¢ ben definita ed e lineare. L’unicita di
una tale f discende dal punto (7). O

Corollario 2.1.18. Siano V e W due spazi vettoriali sul campo K, sia {v;}ics
una base (non necessariamente finita) di V e sia f : V. — W un’applicazione
lineare.

(i) f ¢é iniettiva se e solo se {f(v;)}icr € un insieme libero;

(i) f & suriettiva se e solo se {f(v;)}icr € un insieme di generatori di W;
(iii) f & un isomorfismo se e solo se {f(v;)}ier € una base di W.
Dimostrazione. (i) Ricordiamo, dalla Proposizione 2.1.10, che f & iniettiva se

e solo se Ker(f) = {0}. Dimostriamo quindi I'implicazione Ker(f) = {0} =
{f(vi) }ier € un insieme libero. Consideriamo una combinazione lineare

ALf(viy) + Aaf(viy) + -+ Anf(vi,) = 0.
Si ha

Af(iy) + Ao f(viy) + -+ A fvi,) = F(A1vi, + Aaviy + -+ Ay, ),

da cui segue
AU, 4 Aavi, + -+ Ay, € Ker(f).
Dato che, per ipotesi, Ker(f) = {0}, si ha
Avi, + Aaviy, + -+ Apug, =0,

da cui segue
>\1:)\2:"':>\TL203

perché i vettori {v;};cr sono una base di V.
Dimostriamo ora I'implicazione opposta. Sia v € Ker(f) e scriviamo

v =AM, + Avi, + o+ Apvy,,
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per qualche n e qualche Aq,..., A\, € K. Poiché f(v) = 0, dalla linearita di f si
deduce che

Arf(vig) + Ao f(vi) + -+ A f(vi,) = 0.
Poiché, per ipotesi, 'insieme {f(v;)}icr € libero, si ha

AM=Xdo=-=X =0

e dunque v = 0, il che dimostra che Ker(f) = {0}.

(i) Ricordiamo che affermare che f ¢ suriettiva equivale a dire che Im(f) =
W. Osserviamo inoltre che Im(f) & generata dai vettori f(v;), al variare dii € I.
Infatti, per ogni w € Im(f) esiste un vettore v € V tale che w = f(v). Poiché
{vi}ier © una base di V, & possibile esprimere v come combinazione lineare di
un numero finito di v;,

v = )\11)1'1 + )\2’[)i2 4+ -4 )\nvin.
Si ha dunque

w = f(v) = A f(vi,) + Xaf(vi,) + -+ A f(vi,,),

il che dimostra che I'insieme dei vettori {f(v;)}ier genera 'immagine di f.

Da quanto detto segue quindi che Im(f) = W se e solo se {f(v;)}icr € un
insieme di generatori di W.

(éi7) Poiché f & un isomorfismo se e solo se essa € biiettiva (vedi Proposizio-
ne 2.1.4), dai punti (4) e (i) segue che f & un isomorfismo se e solo se {f(v;) }ier
¢ un insieme libero di generatori di W, cioé una base di W. O

Esempio 2.1.19. In questo esempio vedremo come si possa costruire una funzione
additiva f : R — R che non sia R-lineare.

Consideriamo R come spazio vettoriale sul campo Q. I due “vettori” v; =1
e v3 = 7 sono linearmente indipendenti su Q (cid deriva dal fatto che w &
irrazionale), quindi esiste una base {v; };c; di R su Q che contiene i numeri 1 e
7 (osserviamo che una base di R su Q non pud essere numerabile).

Per la Proposizione 2.1.17 & possibile definire una funzione Q-lineare f : R —
R fissando arbitrariamente i valori di f(v;), per ogni ¢ € I. Se poniamo f(1) =1
e f(m) = 2 (e fissiamo arbitrariamente i rimanenti f(v;) € R), otteniamo una
funzione additiva (e quindi Q-lineare) la quale non & R-lineare. Se lo fosse si
avrebbe infatti

fm) = f(m1) == f(1) =m,
contro l'ipotesi che f(7r) = 2.

Esercizi

Esercizio 2.1.1. Si dica se sono lineari le seguenti funzioni:
(1) f:R* =R’ (z,9) = (¢ —y,z+y+1,0);
(2) f:R* = R?, (z,9) = (22,2 +y);
(3) f:R* =R, (z,y) — sin(z — y).
Esercizio 2.1.2. Si dica per quali valori di ¢t € R & lineare la seguente funzione:

[iR =R (2,9,2) = (¢ +ty, ty2).

Esercizio 2.1.3. Si consideri la funzione tra C-spazi vettoriali f : C2 — C data da
f(z,y) = z+ 7, ove § indica il numero complesso coniugato di y. Si dica se f ¢ lineare
(cioé C-lineare).
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Esercizio 2.1.4. Sia f: V — W un’applicazione tra due spazi vettoriali. Si dimostri
che f ¢ lineare se e solo se il suo grafico € un sottospazio vettoriale di V' x W.

2.2 Matrici

Siano V' e W due spazi vettoriali sul campo K, di dimensioni n e m, rispettiva-
mente, e fissiamo delle basi {vy,...,v,} di V e {wy,...,wy,} di W.

In base alla Proposizione 2.1.17, una funzione lineare f : V — W & determi-
nata, in modo unico, dalla conoscenza dei vettori f(v;), per j =1,...,n. Poiché
{w1,...,wy} & una base di W, per ogni j = 1,...,n possiamo scrivere

flog) =Y aijwi,
=1

per degli opportuni a;; € K,coni=1,...,mej=1,...,n.

Da quanto detto si deduce quindi che una funzione lineare f : V — W e
determinata in modo unico dal dato di mn elementi a;; del campo K. Tali
elementi costituiscono cio che va sotto il nome di matrice.

Definizione 2.2.1. Una matrice, con m righe e n colonne (o matrice m x n) a
coefficienti in K ¢ il dato di mn elementi di K, scritti solitamente sotto forma
di tabella rettangolare costituita da m righe e n colonne:

ail  ai2 A1n

azi a22 a2n
A= i

Am1 Am?2 Amn

Una matrice A di questo tipo sara spesso indicata semplicemente con la scrittura
A= (ai;),

dove i = 1,...,m & detto indice di riga mentre j = 1,...,n & detto indice di
colonna.

Ad ogni funzione lineare f : V' — W puo dunque essere associata una matrice
m X n a coefficienti in K. Naturalmente tale matrice dipende, oltre che dalla
funzione f, anche dalla scelta delle basi di V e W.

Osservazione 2.2.2. Ricordiamo che se un vettore v € V si scrive come combi-
nazione lineare
v =AU+ Ava + -+ Ay

degli elementi di una base {vy,...,v,} di V, i coefficienti Aq,..., A, che com-
paiono in una tale espressione si dicono le coordinate di v rispetto alla base
fissata.

Possiamo allora osservare che, dalla definizione della matrice A associata a un
omomorfismo f : V' — W, rispetto a delle basi {v1,...,v,} di Ve {wy,...,wn}
di W, segue che le coordinate del vettore f(v;), rispetto alla base di W fissata,
costituiscono la j-esima colonna della matrice A. Questa osservazione si rivela
utile quando € necessario scrivere esplicitamente la matrice associata a una data
funzione lineare.
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Osservazione 2.2.3. In tutta questa sezione supporremo sempre che gli spazi
vettoriali abbiano dimensione finita. Facciamo comunque notare che molti ri-
sultati si possono estendere, con opportune modifiche, anche a spazi vettoriali
di dimensione infinita.

Consideriamo ora due applicazioni lineari f,g : V' — W e indichiamo con
A = (a;;) e B = (b;;) le matrici ad esse associate. La somma di f e g &
Papplicazione lineare definita da (f + g)(v) = f(v) + g(v), per ogni v € V. In
particolare, per ogni vettore v; della base di V, si ha

(f +9)(v5) = f(vj) +g(vs) = Zaijwi + Zbijwi

= Z(aij + bij)w;.
=1

La matrice associata alla funzione f + g ha quindi come coefficienti le somme
a;; + bi; dei coeflicienti delle matrici A e B, associate rispettivamente a f e g.
Questo risultato motiva la seguente definizione:

Definizione 2.2.4. Siano A = (a;;) e B = (b;;) due matrici m x n a coefficienti
in K. La loro somma e la matrice

A+ B = (aij + bl‘j)7
ottenuta sommando i coefficienti di A e B che si trovano nelle stesse posizioni.

Sia ora A € K e consideriamo la funzione \f definita da (Af)(v) = Af(v),
per ogni v € V. Valutando questa funzione sui vettori della base di V, si ha

m

M) () = Mf(vy) = XD aswi = (Aagg)w,
i=1

i=1

da cui si deduce che la matrice associata alla funzione Af & la matrice i cui
coeflicienti sono dati dal prodotto di A per i coefficienti della matrice A di f.

Definizione 2.2.5. Per ogni A € K, il prodotto di A per una matrice A = (a;;)
a coefficienti in K e la matrice

M = ()\ai]‘).

Indicheremo con M,, ,,(K) I'insieme delle matrici con m righe e n colonne, a
coefficienti in K. Da quanto visto sopra si deduce che esiste una biiezione tra
I'insieme Hom(V, W) e M, ,(K). Dato che Hom(V, W), con le operazioni di
somma di funzioni e di prodotto di una funzione per uno scalare, & uno spazio
vettoriale su K, anche l'insieme M,, ,(K), con le due operazioni sopra definite,
risulta essere un K-spazio vettoriale. Inoltre, i due spazi vettoriali Hom(V, W)
e My, »(K) sono isomorfi.

Per analogia con la definizione della base canonica di K™, definiamo delle
matrici B, con i = 1,...,mej=1,...,n, i cui coefficienti sono tutti nulli
eccetto quello di posto (i,7) (cioé quello che si trova sulla i-esima riga e sulla
j-esima colonna), che ¢ uguale a 1. E immediato verificare che le mn matrici
E,; appena definite formano una base dello spazio vettoriale M,, ,,(K). Cio ¢
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conseguenza del fatto che ogni matrice A = (a;;) si scrive, in modo unico, come
segue:
A= E aijEij.
(2]

Possiamo riassumere quanto appena visto nel seguente risultato:

Proposizione 2.2.6. M,, ,(K) é uno spazio vettoriale di dimensione mn su
K. SeV eW sono due K-spazi vettoriali di dimensioni n e m rispettivamente,
vi & un isomorfismo Hom(V, W) = M,, ,(K). Tale isomorfismo non é canonico,
in quanto dipende dalla scelta di una base di V' e di una base di W.

In particolare, se V.= W e quindi m = n, lo spazio vettoriale End(V) =
Hom(V, V) ¢ isomorfo a M, (K) = M, ,(K) e ha dimensione n?.

Vediamo ora quale operazione tra matrici corrisponde alla composizione di
due funzioni lineari. A tal fine consideriamo tre spazi vettoriali U, V e W,
di dimensioni rispettivamente r, n e m, e fissiamo delle loro basi {uq,...,u.},
{vi,...,vn} e {wy,...,wy}. Siano f:V — W e g: U — V due applicazioni
lineari e indichiamo con A la matrice di f, con B la matrice di g e con C la
matrice di fog:U — W, rispetto alle basi indicate. Ricordiamo che A ¢ una
matrice m X n, B € una matrice n X r, mentre C' € una matrice m x r.

Per ogni vettore u; della base di U si ha:

h=1
m n

-3 ()
i=1 h=1

Poiché C' = (c¢;;) ¢ la matrice di f o g, si ha anche
(fog)(uy) = cijws.
i=1

Dall’'uguaglianza di queste due ultime espressioni (e dal fatto che i vettori

{wy,...,wy} sono una base di W) segue che
n
Cij = Zaihbhjy
h=1
perognit=1,...,mej=1,...,r. Utilizzeremo dunque questa formula per de-

finire un prodotto di matrici, in modo che il prodotto delle matrici A e B associa-
te agli omomorfismi f e g fornisca proprio la matrice associata all’omomorfismo
composto f o g.

Definizione 2.2.7. Date due matrici A € M,, ,(K) e B € M, ,(K), il loro
prodotto ¢ la matrice C € M, (K) i cui coefficienti sono dati da

Cij = Zaihbhj, (221)
h=1
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perognii=1,...,mej=1,...,r. Questo prodotto di matrici ¢ anche detto
prodotto righe per colonne.

Vediamo piu in dettaglio come si calcola un tale prodotto di matrici. Siano
A e B due matrici come sopra e vogliamo determinare il loro prodotto C = AB.
Per calcolare I’elemento c;;, che si trova sulla i-esima riga e sulla j-esima colonna
della matrice C', dobbiamo selezionare la i-esima riga della matrice A e la j-esima
colonna della matrice B:

blj
b2j
(aﬂ,aiz;-n’am) .
bnj

dopodiché dobbiamo “moltiplicare” questa riga per questa colonna nel modo
indicato dalla formula (2.2.1), cio¢ dobbiamo effettuare la somma dei prodotti
componente per componente dei due vettori indicati:

Cij = aj1bij + azeboj + - 4 ainby;.

Osserviamo che per fare cio ¢ indispensabile che la lunghezza delle righe di A
coincida con la lunghezza delle colonne di B. La matrice risultante dal prodotto
di A per B avra un numero di righe pari a quello della matrice A e un numero
di colonne pari a quello della matrice B.

Un caso particolare di prodotto tra matrici si ha quando la matrice B ha
una sola colonna, cioé quando B si riduce a un vettore (scritto in colonna): si
ottiene in questo modo il prodotto di una matrice per un vettore, il cui risultato
¢ ancora un vettore. Pill precisamente, data una matrice A € M, ,(K) e un
vettore v = (21,2, ...,2,) € K™ (che scriveremo in colonna), il prodotto Av &
un vettore w = (y1,¥y2,.-.,ym) € K™ dato da

Y1 a11  ai2 ... Qinp T
Y2 a1 A2 ... G2p T2
Ym Am1 Am2 CIEaE Amn Tn

Si ottiene in questo modo un’applicazione lineare
Fpo: K" — K™, v w = Fy(v) = Av.

La matrice associata a questa applicazione lineare (rispetto alle basi canoniche
di K™ e K™) & proprio la matrice A.

Osservazione 2.2.8. In modo del tutto equivalente si puo considerare il caso
particolare del prodotto di A per B, quando la matrice A si riduce a un vettore
(questa volta scritto in riga). Consideriamo dunque una matrice B € M, ,(K)
e un vettore v = (21, za,...,2,) € K™ (che scriveremo in riga). Il prodotto vB
& un vettore w = (y1,Yya2,...,¥-) € K" dato da

bir b2 ... b1,

bo1 by ... b
(y17y2w-~,yr)=($1,$2,~~'7xn) .

bnl an e bnr
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Anche in questo caso si ottiene un’applicazione lineare
Gp: K" — K", v—w=Gp(v) =vB.

Si conclude pertanto che un omomorfismo tra due spazi vettoriali quali K™ e K™
puo essere descritto sia dal prodotto di un vettore riga per una certa matrice,
sia dal prodotto di un’altra matrice per un vettore colonna. Naturalmente si
passa da una descrizione all’altra semplicemente scambiando tra loro i ruoli delle
righe con quelli delle colonne. L’operazione che trasforma una matrice m X n
in una matrice n X m scambiando tra di loro le righe con le colonne si chiama
trasposizione.

Definizione 2.2.9. Sia A = (a;;) € My, n(K). La trasposta di A ¢ la matrice
‘A € My, 1, (K) il cui coefficiente di posto (i, j) & aj;, cioe ¢ il coefficiente di posto
(4, 1) della matrice A.

Il trasposto di un vettore scritto in colonna & dunque un vettore scritto
in riga, e viceversa. Per comodita di notazione, d’ora in poi i vettori di K™
verranno sempre pensati come vettori colonna:

T1
T2

Tn

Per indicare invece un analogo vettore pensato come vettore riga, scriveremo
quindi f:

¢

U= ('Ilwr?v"wxn)'

Come ultimo caso particolare del prodotto di due matrici, vediamo cosa succede
quando sia A che B si riducono a dei vettori (scritti il primo in riga e il secondo

in colonna). In questo caso il risultato del prodotto & uno scalare, cioé¢ un
elemento di K:

b1
bo
(a1,a2,...,a,) | . | =a1by +agba + -+ + apb, € K.

bn,
Si ottiene in questo modo la definizione di un prodotto tra due vettori di K™, il

cui risultato € uno scalare: questo ¢ il cosiddetto prodotto scalare di due vettori.

Definizione 2.2.10. Siano v = Yw1,22,...,2,) ¢ w = (y1,¥2,...,Yyn) due
elementi di K™. 1l loro prodotto scalare, che indicheremo con v - w (o, a volte,
con (v,w)) ¢ definito da

n
vow = hw = E Y.
i=1

Di questa nozione di prodotto scalare, e delle sue generalizzazioni, ci occuperemo
in seguito. Vediamo ora alcune proprieta dell’operazione di trasposizione.

Proposizione 2.2.11. Siano A,B € M, ,(K) e sia A € K. Si ha:
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(1) (*4) = A;

(i1) {A+ B) ='A+'B;

(1) {AA) = XA,

Se Ae M, ,(K) e Be M, (K), siha inoltre
(iv) (AB) = 'BA.

Dimostrazione. Le prime tre proprieta sono ovvie, dimostriamo quindi la quarta.
Indichiamo con a;; i coefficienti di A e con a;; i coefficienti di ‘A: si ha quindi
a;; = aji. Analogamente indichiamo con b;; e con by; i coefficienti di B e 'B,
rispettivamente. Indichiamo poi con ¢;; i coefficienti del prodotto AB e con &;; i
coefficienti di {AB). Infine, indichiamo con d;; i coefficienti della matrice ‘B ‘A.
Ricordando la definizione del prodotto di due matrici, si ha:

= Cj; = E a’jhbhl)
dij = E binGn; = g ajnbni,
3 h

da cui segue che d;; = ¢;;, per ogni i e j. O

mentre

Ritorniamo ora al prodotto di matrici e studiamo piu in dettaglio alcune
delle sue proprieta.

Proposizione 2.2.12. Siano A, B e C tre matrici e siano \,u € K. Ogni
volta che le somme e i prodotti indicati sono definiti, si ha:

(i) (AB)C = A(BC);
(i) (A+ B)C = AC + BC;
(iii) A(B+C)=AB+ AC;
(iv) M(AB) = (M)B = A(\B);
(v) A+ p)A=XA+ pA;
i)

(vi) (AW)A = A(pA).

Dimostrazione. Tutte queste proprieta discendono dalle analoghe proprieta delle
operazioni definite sulle funzioni lineari: ad esempio, la proprieta associativa
del prodotto di matrici (AB)C = A(BC) equivale alla proprieta associativa del
prodotto di composizione (f o g) o h = f o (go h) delle funzioni. In ogni caso,
si possono dimostrare direttamente mediante un semplice calcolo. A titolo di
esempio, dimostriamo la prima.

Indichiamo con a;; i coefficienti della matrice A, con b;; quelli di B e con ¢;; i
coefficienti di C'. Indichiamo inoltre con d;; i coefficienti della matrice prodotto
di A per B e con e;; quelli del prodotto (AB)C. Dalla definizione del prodotto
di due matrici si ha:

i = E dinchj = E ( E aikbkh>chj = E aikbinch;j.
3 ok hok

Ora basta osservare che se calcoliamo, in modo analogo, i coefficienti del pro-
dotto A(BC), troviamo esattamente la stessa espressione. O
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Sia f : V — W un’applicazione lineare tra due spazi vettoriali di dimensioni
n e m rispettivamente. Abbiamo gia osservato che la scelta di una base v =
{v1,...,v,} di V determina un isomorfismo «, : V' 5 K™ che associa ad ogni
vettore v € V' la n-upla (A1,...,\,) delle sue coordinate rispetto alla base v.
Analogamente la scelta di una base w = {wy,...,wy,} di W determina un
isomorfismo By, : W = K™ che associa ad ogni vettore w € W la m-upla
(41, - - -, pom) delle sue coordinate rispetto alla base w.

Sia dunque A la matrice di f rispetto alle basi scelte. Essa determina
un’applicazione lineare F': K™ — K™, definita da

A1 1 A
F: — =A]

Proposizione 2.2.13. Con le notazioni precedenti, il diagramma

w (2.2.2)

e commutativo

Dimostrazione. Dobbiamo dimostrare che By o f = F o ay,. Sia dunque v € V
ed esprimiamo v come combinazione lineare dei vettori della base v:

U= A1 + AgV2 + - -+ Ap Uy,

Per definizione della funzione oy, si ha ay(v) = {\1,...,\,) (si ricordi che
abbiamo deciso di scrivere gli elementi di K™ come vettori colonna). Calcolando
ora F(ay(v)) si ottiene il vettore

A1
Al ],
An
la cui i-esima componente ¢
an i+ aigdo + o+ aimdn = 3 agh;. (2.2.3)

Calcoliamo ora f(v). Dalla linearita di f e dalla definizione della matrice A =
(ai;) associata a f, si ha:

flv) = f()\1111 + Avg + - 4 Ayuy)

_ZAva
()
<z% o

MS HM: |

(2
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Poniamo "
Hi = Zaij)\j, (224)
j=1
per i =1,...,m, in modo che si abbia
flv) = Z i W;.
i=1
La m-upla (g1, ..., um) rappresenta le coordinate del vettore f(v) rispetto al-

la base w e si ha pertanto Bw(f(v)) = Hp1,...,1m). A questo punto ba-
sta osservare che lespressione di p; in (2.2.4) coincide con l'espressione (2.2.3)
per la i-esima componente del vettore F'(ay(v)). Abbiamo cosi dimostrato che
F(ay(v)) = Bw(f(v)), per ogniv € V. O

Osservazione 2.2.14. Questo risultato fornisce un metodo diretto per calcolare
I'immagine tramite f : V — W di un qualsiasi vettore v € V, nota la matrice
di f rispetto a delle basi prefissate dei due spazi vettoriali Ve W.

Dapprima si determinano le coordinate (A1, . .., A, ) del vettore v rispetto alla
base di V, poi si moltiplica la matrice A associata a f per il vettore (A1, ..., An),
scritto in colonna. Il vettore risultante & costituito dalle coordinate di f(v)
rispetto alla base di W.

Dal diagramma commutativo (2.2.2) segue che il nucleo di f e il nucleo di
F sono tra loro isomorfi, essendo tale isomorfismo indotto dall’isomorfismo a,.
Analogamente, 'isomorfismo Sy, induce un isomorfismo tra Im(f) e Im(F'). In
particolare questi spazi vettoriali hanno la stessa dimensione. Si ha pertanto

null(f) = null(F) e rk(f) = rk(F).

Dato che 'applicazione lineare F' : K™ — K™ & data dalla moltiplicazione per
la matrice A, diamo la seguente definizione:

Definizione 2.2.15. Sia A una matrice m xn a coefficienti in K esia F' : K" —
K™ Dapplicazione lineare data dalla moltiplicazione di un vettore (colonna) per
la matrice A (a sinistra). Definiamo il rango e la nullita della matrice A ponendo

rk(A) =rk(F) = dimIm(F),
null(A) =null(F) = dim Ker(F).

Osserviamo che il sottospazio Im(F) di K™ & generato dalle colonne di A (pos-
siamo anche osservare che nell’isomorfismo By : W = K™ le colonne della
matrice A corrispondono alle immagini, tramite f : V' — W, dei vettori della
base di V, le quali generano il sottospazio Im(f) di W). Pertanto la dimen-
sione di Im(F), cioe il rango di F', coincide con il massimo numero di colonne
linearmente indipendenti della matrice A. Abbiamo cosi dimostrato il seguente
risultato:

Proposizione 2.2.16. Il rango di una matrice A é il massimo numero di
colonne linearmente indipendenti di A.
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Osservazione 2.2.17. 1l risultato della proposizione precedente viene spesso usa-
to come definizione del rango di una matrice. Si parla allora di rango per colonne,
per distinguerlo da un analogo rango per righe, definito come il massimo numero
di righe linearmente indipendenti. Vedremo in seguito che, in effetti, queste due
nozioni di rango coincidono sempre, cioe in ogni matrice il massimo numero di
colonne linearmente indipendenti ¢ sempre uguale al massimo numero di righe
linearmente indipendenti.

2.2.1 Matrici quadrate

Abbiamo visto che il prodotto di due matrici (cosl come la composizione di
due applicazioni) non & sempre definito: affinché il prodotto AB sia definito ¢
necessario (e sufficiente) che il numero di colonne della matrice A sia uguale al
numero di righe di B. Se ci restringiamo a considerare solo matrici di tipo n x n,
questi problemi scompaiono e il prodotto di due matrici ¢ sempre definito.

Definizione 2.2.18. Una matrice a coefficienti in K si dice quadrata di ordine
n se essa ha n righe e n colonne. L’insieme delle matrici quadrate di ordine n e
indicato semplicemente con M, (K), al posto di M, ,,(K).

Osservazione 2.2.19. Se V' & uno spazio vettoriale di dimensione n su K, e se e
stata fissata una base {v1,...,v,} di V, ad ogni endomorfismo f : V — V cor-
risponde una matrice quadrata A € M, (K). Questa corrispondenza stabilisce
una biiezione tra End(V') e M, (K). Poiché End(V), con le operazioni di somma
di funzioni, di prodotto di una funzione per uno scalare e di composizione di
due funzioni, € una K-algebra, lo stesso vale per 'insieme delle matrici quadrate
M, (K).

Proposizione 2.2.20. L’insieme M, (K) delle matrici quadrate di ordine n
a coefficienti in K, dotato delle operazioni di somma e di prodotto di matrici
e dell’operazione di prodotto di una matrice per un elemento di K, é una K-
algebra.

Facciamo notare che I’elemento neutro per ’operazione di somma ¢ la matrice
nulla

(la quale corrisponde all’applicazione nulla f : V. — V f(v) = 0, per ogni
v € V), mentre 'elemento neutro per l'operazione di prodotto di matrici ¢ la
matrice identica, definita da

1 0 0
0 1 0
0 0 1

(che corrisponde all’identita id : V' — V), cioe la matrice avente tutti i coefficien-
ti sulla cosiddetta diagonale principale pari a 1, mentre tutti gli altri coefficienti
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sono nulli. Infatti ¢ immediato verificare che, per ogni matrice A € M, (K), si
ha
1, A=A1,=A.

Infine notiamo che il prodotto di matrici non gode della proprieta commutativa:
se A e B sono due matrici in M, (K) si ha, in generale,

AB # BA.

Cio non deve stupire in quanto riflette semplicemente il fatto che la composizione
di due funzioni lineari f,g : V' — V non &, in generale, commutativa, cioe
fog#golf.

Una matrice del tipo A1,,, cioe

con A € K, & detta matrice scalare. Essa corrisponde all’omomorfismo f :
V — V definito da f(v) = Av. E immediato verificare che una matrice scalare
commuta con ogni altra matrice, cioe

(AL)A = A(\L,),

per ogni A € M, (K).
Pit in generale, una matrice del tipo

A O - 0
0 Ao - 0
0 0 - M\

cioé una matrice in cui tutti i coefficienti sono nulli, tranne al piu quelli sulla
diagonale principale, & detta matrice diagonale. Si noti che, in generale, una
matrice diagonale non commuta con un’altra matrice qualsiasi. Tuttavia le
matrici diagonali commutano tra loro.

Una matrice triangolare superiore € una matrice in cui tutti i coefficienti che
si trovano al di sotto della diagonale principale sono nulli, cioe una matrice del
tipo

a1l aiz aiz -+ QAin
0 a2 axg -+ az
0 0 ass s aszn
0 0 0 cor Apn

Analogamente si definisce una matrice triangolare inferiore come una matrice
in cui tutti i coefficienti che si trovano al di sopra della diagonale principale sono
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nulli, cioe una matrice del tipo

ail 0 O e 0
a21 as2 0 cee 0
as; asy agz -+ 0
apl  Ap2 Gp3 e Ann

Si noti che la somma e il prodotto di due matrici triangolari superiori (rispetti-
vamente, inferiori) ¢ ancora una matrice dello stesso tipo.

Osservazione 2.2.21. Consideriamo, a titolo di esempio, il caso di matrici qua-
drate di ordine 2, a coefficienti razionali. Siano, ad esempio,

a=(43) m=( )

Si verifica immediatamente che il prodotto AB ¢ la matrice nulla, tuttavia né
A né B sono nulle! Cid mostra che, in generale, nell’anello M,,(K) delle matrici
quadrate possono esistere degli elementi diversi da zero, con la proprieta che il
loro prodotto & uguale a zero (elementi di questo tipo sono detti divisori di zero):
non vale quindi la cosiddetta “legge di annullamento del prodotto,” secondo la
quale il prodotto di due fattori € nullo se e solo se almeno uno dei due fattori &

nullo.
0 1
=5 o)

Consideriamo ora la matrice
La matrice C non & nulla, tuttavia si ha C? = CC = 0. Pili in generale, si puo
dimostrare che nell’anello M, (K) esistono delle matrici C' # 0 con la proprieta
che C" = 0, per qualche r > 1. Tali elementi sono detti nilpotenti.

Veniamo ora al problema dell’invertibilita delle matrici di M, (K). Dato
che ’elemento neutro per il prodotto ¢ la matrice identica 1,, I'inversa di una
matrice A € M, (K) & una matrice B € M,,(K) tale che si abbia

AB=BA=1,.

Naturalmente Uesistenza in M,,(K) di divisori dello zero impedisce che esistano
gli inversi di tutte le matrici non nulle. Infatti, se A € M, (K) & un divisore
dello zero e se B € una matrice non nulla tale che AB = 0, allora, se per assurdo
esistesse la matrice A~! inversa di A, si avrebbe

B=1,B=(A"'A)B=A"YAB)=A"'0=0,

contro l'ipotesi che B # 0.

D’altra parte, se ripensiamo all’isomorfismo esistente tra End(V') e M, (K),
ove V € uno spazio vettoriale di dimensione n con una base fissata, notiamo
che affermare che una matrice A sia invertibile equivale ad affermare che la
corrispondente funzione lineare f : V' — V sia invertibile, ma cio & vero se e
solo se f e biiettiva, cioe se e solo se f & un isomorfismo.

Ricordiamo che il sottoinsieme di End(V') costituito dalle funzioni lineari
invertibili (cio¢ dagli isomorfismi) f : V' — V, & stato indicato con Aut(V).
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Il corrispondente sottoinsieme di M, (K), costituito dalle matrici associate a
elementi di Aut(V'), cioe dalle matrici invertibili, sara indicato con GL(n, K), e
detto il gruppo generale lineare di ordine n a coefficienti in K. Esso € infatti
un gruppo (non commutativo), rispetto all’operazione di prodotto tra matrici.

2.2.2 Cambiamenti di base

Abbiamo piu volte fatto notare che la matrice associata a una funzione lineare
f:V — W dipende dalla scelta di una base dello spazio vettoriale V' e di una
base di W: cambiando scelta delle basi cambia anche la matrice associata a f.
In questa sezione ci proponiamo di scoprire in che modo cambia la matrice di f
se cambiamo la nostra scelta delle basi di Ve W.

Siano dunque V' e W due spazi vettoriali su K, di dimensioni rispettivamente
nemesia f: V — W un’applicazione lineare. Siano v = {v1,...,v,} e
v ={vi,...,v.} due basi di V e siano w = {w1,...,wn} e w ={w],...,w,}
due basi di W. Infine, indichiamo con A = (a;;) la matrice di f rispetto alle
basi v e w e con A’ = (a;;) la matrice di f rispetto alle basi v/ e w’. Ricordiamo
che cio significa che

flo) = agwi, e f@) = duw,
1=1 )

perogni j=1,...,n.

Indichiamo con ay : V' = K™ lisomorfismo che associa ad ogni vettore
v € V la n-upla (A\1,...,\,) delle sue coordinate rispetto alla base v e con
ay 1 V5 K™ lisomorfismo che associa ad ogni v € V la n-upla (\,...,\))
delle sue coordinate rispetto alla base v'.

Indichiamo analogamente con By : W = K™ l’isomorfismo che associa ad
ogni vettore w € W la m-upla (1, ..., tm) delle sue coordinate rispetto alla
base w e con By : W = K™ l'isomorfismo che associa ad ogni w € W la m-upla
(1), ..., pl.) delle sue coordinate rispetto alla base w'.

Componendo ay- con I'inverso dell’isomorfismo a, otteniamo un isomorfismo
di K™ in sé, il quale corrisponde alla moltiplicazione per una qualche matrice
P € M,(K). Indicheremo questo isomorfismo con Fp : K™ = K™. Si ottiene
cosi il seguente diagramma commutativo:

v
y Y

n n
K — s K
Analogamente, componendo [y con linverso dell’isomorfismo G, otteniamo
un isomorfismo di K™ in sé, il quale corrisponde alla moltiplicazione per una

qualche matrice @ € M,,(K). Indicheremo questo isomorfismo con Fg : K™ —
K™, Si ottiene cosi il seguente diagramma commutativo:
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Facciamo notare che le due matrici P e @) sono invertibili, dato che le corrispon-
denti applicazioni lineari F'p e Fiy sono degli isomorfismi.

Vediamo ora di ottenere una descrizione piu esplicita delle matrici P e Q.
Cominciamo dalla matrice P, la quale corrisponde all’isomorfismo

Fp:K" 5 K"
Abbiamo gia osservato che le colonne di P sono date dalle immagini dei vettori
della base canonica di K™. Sia e; = f0,...,0,1,0,...,0) il j-esimo vettore
della base canonica di K™ (tutte le coordinate sono nulle tranne la j-esima che
¢ uguale a 1). Tramite l'isomorfismo ay, il vettore e; € K™ corrisponde al
j-esimo vettore v; della base v di V. Si ha quindi

Fp(ej) = avi(ag (7)) = av: (v)),

dove ricordiamo che ay/(v;) € K™ ¢ il vettore costituito dalle coordinate del
vettore v; calcolate rispetto alla base v’; questo vettore ¢ la j-esima colonna di
P.

In conclusione, possiamo affermare che le colonne della matrice P non sono
altro che le coordinate dei vettori vy, ..., v, della base v di V calcolate rispetto
alla seconda base v/. Con un analogo ragionamento, scambiando i ruoli delle
due basi, si potrebbe dimostrare che le colonne della matrice inversa P~! sono
precisamente le coordinate dei vettori vf,...,v] della base v/ di V calcolate
rispetto alla prima base v.

In modo del tutto analogo si dimostra che la j-esima colonna della matrice
Q ¢ costituita dal vettore delle coordinate del j-esimo vettore w; della base w
calcolate rispetto alla base w’. In altre parole, la matrice @) ¢ la matrice le cui
colonne sono date dalle coordinate dei vettori wy,...,w,, della base w di W
calcolate rispetto alla seconda base w’. Analogamente si dimostra che le colonne
della matrice inversa Q! sono le coordinate dei vettori wf,...,w’, della base
w’ di W calcolate rispetto alla prima base w.

Ricordando il risultato enunciato nella Proposizione 2.2.13, possiamo rias-
sumere quanto detto finora nel seguente diagramma commutativo

\f/
/\

ove Fy e Fa sono le applicazioni lineari date dalla moltiplicazione per A e per
A’, rispettivamente.
Dalla commutativita di questo diagramma si deduce che

FpoFp=1FgolFy,
che equivale alla seguente uguaglianza tra matrici

A'P = QA.
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Da cio segue che
A =QAP™! ¢ A=Q'A'P. (2.2.5)

Queste due espressioni equivalenti permettono di determinare la matrice A’ di
un’applicazione lineare f : V' — W rispetto alle basi v/ di V e w’ di W quando &
nota la matrice A di f rispetto a delle basi v e w e quando sono note le matrici
di cambiamento di base P e Q.

Nel caso particolare in cui W =V, cioé quando f & un endomorfismo di uno
spazio vettoriale V, il diagramma commutativo precedente si riduce al seguente

\ /
/ \

e le uguaglianze (2.2.5) diventano

A'=PAP™' ¢ A=P'AP (2.2.6)
Diamo ora la seguente definizione:

Definizione 2.2.22. Due matrici quadrate A e A’ di ordine n a coefficienti in K
si dicono simili se esiste una matrice invertibile P € M, (K) (cioe P € GL,(K))
tale che

A = PAP™!
0, equivalentemente,

A=PAP

Da quanto sopra detto si deduce il seguente risultato:

Corollario 2.2.23. Due matrici A, A’ € M, (K) rappresentano lo stesso en-
domorfismo f di uno spazio vettoriale V' di dimensione n su K, rispetto a basi
diverse, se e solo se sono simili.

Osservazione 2.2.24. Si noti che la relazione di similitudine ¢ una relazione di
equivalenza sull’'insieme M,,(K') delle matrici quadrate di ordine n a coefficienti
in K.

Esercizi

Esercizio 2.2.1. Sia f : V — W un’applicazione lineare tra due spazi vettoriali.
Siano {vi,v2,v3} una base di V e {w1, w2, ws, ws} una base di W, e f sia data da
f(’U1) = 2w; — 3wz + wa, f(’Uz) = wo — 2wz + 3wy € f(Ug) = wy + ws + w3 — 3ws. Si
scriva la matrice di f nelle basi date.

Esercizio 2.2.2. Siano V e W due spazi vettoriali di basi rispettivamente {v1, vz, v3}
e {wi, w2}, esia f : V — W un’applicazione lineare di matrice (rispetto alle basi date)

2 -1 1
A‘<3 2 —3)
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(1) Si prenda per V la nuova base v} = va + vz, v5 = v1 + v3, v3 = v1 + v2. Qual &
la nuova matrice A’ di f rispetto alle basi {v], v5,v5} e {wi,w2}?

(2) Si prenda per W la nuova base wi = (w1 +w2) e wh = (w1 — w2). Qual ¢ la
matrice A” di f rispetto alle basi {v],v5,v3} e {w], wy}?

Esercizio 2.2.3.  Si consideri il sottospazio V di C°°(R) generato dalle funzioni
fi(z) = €*® + cosz, f2(x) = cosz +sinx e f3(z) = sinz. Si dimostri che fi, fo e fa
sono linearmente indipendenti e si determini la matrice (rispetto alla base { f1, f2, f3})
dell’endomorfismo di V' che a una funzione associa la sua derivata.

Esercizio 2.2.4. Si determinino le matrici, rispetto alle basi canoniche, di tutte
le applicazioni lineari f : R® — R? tali che f(1,2,—1) = (0,1,0,1), f(3,—1,2) =
(17 27 07 71) € f(ila 57 74) = (2707 35 2)

Esercizio 2.2.5. Si determinino le matrici, rispetto alle basi canoniche, di tutte le
applicazioni lineari f : R®* — R? tali che f(0,—2,1) = (3,—1), f(1,1,-2) = (1,2) e
Esercizio 2.2.6. Sia V linsieme delle funzioni polinomiali a coefficienti reali di
grado < 4 che si annullano in 0 e 1, e sia W l’insieme delle funzioni polinomiali a
coefficienti reali di grado < 3 tali che il loro integrale tra 0 e 1 € nullo.

(1) Si dimostri che V' e W sono due spazi vettoriali e se ne determinino delle basi.

(2) Sia D : V — W lapplicazione lineare che associa a una funzione la sua derivata.
Si dimostri che D & ben definita e si determini una sua matrice rispetto alle basi
precedentemente trovate.

Esercizio 2.2.7. Sia ¢, : R* — R* 'omomorfismo di matrice (rispetto alle basi
canoniche)

Ay =

O O > >

0
0
1
0

O = O =

(1) E vero o falso che, per ogni A € R, esiste un omomorfismo ¢ : R* — R? tale che
1 o ¢ sia suriettivo?
(2) Per quali valori di A esistono z,y, z € R tali che, posto
1 =z 0 O
B=|0 gy 00
-1 2z 1 0
si abbia BA) =17

Esercizio 2.2.8. Siano V e W due spazi vettoriali, con basi rispettivamente date
da {v1,v2,vs,va} e {w1,w2,ws}. Si determini la matrice, rispetto alle basi date,
dell’applicazione lineare ¢ : V' — W definita da ¢(v1) = w1 — w2, ¢(v2) = 2wz — 6ws,
d(v3) = —2w1 +2w2, ¢(vs) = w2 —3ws. Si determinino inoltre le dimensioni di Ker ¢ e
di Im ¢ e si scrivano delle basi di tali sottospazi. Si dica inoltre se w1 +w2+ws € Im ¢.

Esercizio 2.2.9. Si dica se 'endomorfismo di R* definito da
f(:E,y,z) = ($+2y,y+z72z—x)

¢ iniettivo o suriettivo. Si determinino delle basi di Ker f e di Im f e si dica se la
somma del nucleo e dell’immagine di f & diretta.
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Esercizio 2.2.10. Sia f : R® — R® 'endomorfismo definito ponendo

f(la 07 0) = (27 715 0)

f(Oa 17 0) = (17 715 1)

f(07 17 _1) = (07 25 2)
Si determini la matrice di f rispetto alla base canonica di R3. Si determinino inoltre
le dimensioni del nucleo e dell’immagine di f e delle basi di tali sottospazi.

Esercizio 2.2.11. Sia f : R® — R® I'endomorfismo di matrice
1 2 3
A=1[1 1 1
1 1 1

rispetto alla base canonica. Si determini il rango di f e delle basi di Ker f e di Im f.

Esercizio 2.2.12. Sia V uno spazio vettoriale di dimensione finita. Si dica sotto
quali condizioni su V esiste un endomorfismo ¢ : V' — V tale che Ker ¢ = Im ¢.

Esercizio 2.2.13. Si determini il rango della matrice

0o 1 2 1
1 1 1 0
A= 0 -1 1 1
1 1 4 2

Esercizio 2.2.14. Si determini, al variare di a € R, il rango della matrice

2 1
2 1
a O

Q = N =

0
1
1
0

O = = O

a a2

[\]

2.3 Sistemi lineari

Riprendiamo ora lo studio dei sistemi di equazioni lineari, alla luce di cio che
abbiamo appreso al riguardo delle applicazioni lineari e delle matrici.
Dato un sistema di m equazioni lineari in n incognite

1171 + a12x2 + - -+ a1pTy = by

21T + G22T2 + - - + A2p Ty = bo

Am1T1 + Gm2X2 + -+ AmpTn = bm

indichiamo con A = (a;;) la matrice costituita dei coefficienti del sistema, con
X = Yx1,...,2,) il vettore colonna costituito dalle n incognite e con B =
b1, ...,by) il vettore colonna dei termini noti. Ricordando la definizione del
prodotto di una matrice per un vettore, ¢ immediato verificare che il sistema S
¢ equivalente alla seguente equazione:

AX =B

)
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cioe
ail a2 . A1n T b1
ao1 a9 e aon, Xro bg
Am1  Am2 -«  Gmn Ty bm,

Se indichiamo con Fy4 : K™ — K™ Dlapplicazione lineare definita da Fa(X) =
AX, per ogni X € K™ (Fa ¢ lapplicazione lineare la cui matrice, rispetto alle
basi canoniche di K™ e K™ ¢ A), 'equazione AX = B equivale a Fa(X) = B.
Da cio si deduce che 'insieme delle soluzioni del sistema S non & altro che
I’antiimmagine tramite F4 del vettore B € K™:

Fi'(B)={X € K"|AX = B}.

Osservazione 2.3.1. Pil in generale, data una funzione lineare f : V. — W tra
due spazi vettoriali V' e W, di dimensioni rispettivamente n e m sul campo K,
possiamo considerare il seguente problema: dato un vettore w € W, determinare
la sua antiimmagine f~!(w) C V, cio¢ determinare tutti i vettori v € V tali che
f(v) =w.

Se scegliamo delle basi v = {vy,...,v,} di Ve w = {wy,...,w,} di W,
all’omomorfismo f risulta associata una matrice A = (a;;), con m righe e n
colonne, a coefficienti in K, con la proprieta che, per ogni vettore

v=ANv1+ -+ A, €V
se esprimiamo f(v) come combinazione lineare dei vettori della base w

f(v) = pwr + - + W,
allora si ha

a1 a2 ... G1p A1 H1

azr a2 ... QA2p A2 M2

aml Am2 ... (mn An Hm
Pertanto, se indichiamo con (by,...,b,) € K™ il vettore delle coordinate di
w rispetto alla base w di W fissata e se indichiamo con (z1,...,z,) € K™ le

coordinate di un generico vettore v € V (rispetto alla base v di V fissata), il
problema di determinare i vettori v tali che f(v) = w si traduce nel problema
di determinare le soluzioni del seguente sistema di equazioni lineari:

a11 a2 ... A1n Z1 b1
ag1 a9 e aon, Xro bg
Ami Gm2  ---  Qmn Tn bm

Ricordiamo che un sistema lineare AX = B ¢ detto omogeneo se B = 0.

Proposizione 2.3.2. L’insieme delle soluzioni di un sistema lineare omogeneo
di m equazioni in n incognite a coefficienti in K € un sottospazio vettoriale di
K",
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Dimostrazione. E sufficiente osservare che I'insieme delle soluzioni di un sistema
del tipo AX = 0 non ¢ altro che il nucleo della funzione lineare F'y : K™ — K™,
il quale ¢ un sottospazio vettoriale di K™ (vedi Proposizione 2.1.9). Possiamo
tuttavia fornire anche una dimostrazione diretta.

Siano X7 e X5 due soluzioni del sistema AX = 0. Per ogni A1, Ay € K, si ha

AMX1 + A2 X2) = AMLAX] + A AXy = A0+ A0 = 0,

quindi anche A1 X7 + A2 X5 € una soluzione del sistema in questione. Cio significa
precisamente che 'insieme delle soluzioni del sistema AX = 0 & un sottospazio
vettoriale di K". O

Nel caso di sistemi non omogenei, si ha:

Proposizione 2.3.3. Ogni soluzione del sistema lineare non omogeneo
S:AX =B

puo essere espressa come somma di una soluzione particolare di S con una
soluzione del sistema omogeneo associato. In altri termini, se indichiamo con
Y. linsieme delle soluzioni di S e con Yg l'insieme delle soluzioni del sistema
omogeneo associato AX = 0, si ha ¥p = @ (se S non ammette soluzioni),
oppure

Sp=X+3={X+Y|Y € %o}, (2.3.1)

ove X ¢ una qualsiasi soluzione di S.

Dimostrazione. Sia F4 : K™ — K™ Dapplicazione lineare di matrice A (rispetto
alle basi canoniche di K™ e K™). Allora si ha X5 = F;'(B) e ¥g = F,'(0) =
Ker F4. L'uguaglianza (2.3.1) discende allora dalla Proposizione 2.1.11. O

Siamo ora in grado di determinare delle condizioni che garantiscono ’esi-
stenza di soluzioni di un sistema di equazioni lineari.

Proposizione 2.3.4. Sia S : AX = B un sistema di m equazioni lineari in n
incognite. Sia Fa : K™ — K™ la funzione lineare data da Fx(X) = AX, per
ogni X € K". Le condizioni sequenti sono equivalenti:
(i
(it

(iii

1l sistema S ammette soluzioni;
B eIm(Fa);

)
)
) 1l vettore B ¢é combinazione lineare delle colonne di A;

(iv) Il rango della matrice A & uguale al rango della matrice completa® (A|B),
ove quest’ultima € la matrice ottenuta aggiungendo ad A la colonna B dei

termini notu.

Dimostrazione. Dato che linsieme delle soluzioni di S coincide con F'(B),
I'equivalenza di (i) e (i) discende dal fatto che F;'(B) # @ se e solo se B €
Im(FA)

1La matrice A & spesso chiamata la matrice incompleta del sistema lineare, mentre la
matrice (A|B) ottenuta aggiungendo alla matrice A la colonna B dei termini noti & detta la
matrice completa del sistema.
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Per dimostrare equivalenza di (i) e (#4) ¢ sufficiente ricordare che il sot-
tospazio Im(F4) di K™ & generato dalle colonne di A. Pertanto B € Im(F4) se
e solo se B ¢ combinazione lineare delle colonne di A.

Dimostriamo ora che (44) = (iv). A tal fine basta ricordare che il rango della
matrice A (che coincide con la dimensione di Im(F4)) ¢ il numero massimo di
colonne linearmente indipendenti di A. Pertanto, se la colonna B & combinazione
lineare delle colonne di A, 'aggiunta di B alla matrice A non ne altera il rango.
Si ha quindi rk(A) = rk(A4|B).

Viceversa, il fatto che le matrici A e (A|B) abbiano lo stesso rango significa
che T'aggiunta della colonna B alla matrice A non ne ha modificato il rango,
quindi B deve essere combinazione lineare delle colonne di A. Cio dimostra che
(iv) = (449). O

Quanto visto finora ci consente di dimostrare il seguente teorema:

Teorema 2.3.5 (TEOREMA DI ROUCHE-CAPELLI). Sia S : AX = B un si-
stema di m equazioni lineari in n incognite. S ammette soluzioni se e solo se
rk(A) = rk(A|B). In tal caso, se indichiamo con r il valore comune dei ranghi
delle due matrici, si ha:

(i) ser =n il sistema ammette un’unica soluzione;

(ii) se r < n il sistema ammette infinite soluzioni, le quali dipendono da n —
r parametri liberi di variare (si suole anche dire che S ammette oo™ "
soluzioni).

Dimostrazione. Che 'uguaglianza tra i ranghi delle matrici A e (A|B) sia una
condizione necessaria e sufficiente per la risolubilita del sistema S & stato dimo-
strato nella proposizione precedente. Inoltre, nella Proposizione 2.3.3 abbiamo
visto che I'insieme delle soluzioni di S & dato da

Y+EOZ{Y+Y|Y€ZO}7

ove X & una soluzione particolare di S e X & I'insieme delle soluzioni del sistema
omogeneo AX = 0, associato a S. Si ha dunque X = Ker(Fg4), ove Fy : K™ —
K™ & la funzione lineare definita da F4(X) = AX. Poiché r = rk(A) =
dim(Im F4), dalla Proposizione 2.1.12 segue che

dim>g=n—r.

Se r = n si ha dunque ¥ = {0}, quindi S possiede I'unica soluzione X. Se
invece r < n, il sottospazio vettoriale 3o ha dimensione positiva, pari a n—r. Cio
significa che i suoi elementi possono essere descritti come combinazioni lineari
di n — r vettori di base. In una tale combinazione lineare compaiono quindi
n — r coefficienti i quali possono assumere qualunque valore nel campo K. [

2.3.1 Risoluzione di un sistema lineare: il metodo dell’elimi-
nazione (o metodo di Gauss)

Il metodo di risoluzione di un sistema lineare che ora descriveremo, noto co-
me metodo dell’eliminazione di Gauss, si basa sull’osservazione che determinate
manipolazioni algebriche, quali scambiare tra loro due equazioni, moltiplicare
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entrambi i membri di un’equazione per una stessa costante diversa da zero, som-
mare o sottrarre membro a membro due equazioni o, pill in generale, sommare
a un’equazione un multiplo di un’altra, trasformano un dato sistema lineare in
uno ad esso equivalente, cioe¢ in un nuovo sistema avente le stesse soluzioni di
quello precedente.

L’idea ¢ dunque quella di utilizzare le operazioni sopra descritte (note an-
che col nome di operazioni elementari) per trasformare un sistema di equa-
zioni lineari in sistemi, via via piu semplici, ad esso equivalenti. Cercheremo
ora di descrivere sommariamente come questa idea possa essere effettivamente
realizzata.

Consideriamo un sistema di m equazioni lineari in n incognite

1121 + a12%2 + -+ A1 Ty = by

G21%1 + a22%2 + -+ + G2, Ty = by

S
Am1%1 + AGmaT2 + -+ + AmpTn = bm

Indichiamo con A = (a;;) la matrice dei coefficienti e con (A|B) la matrice
completa del sistema, ottenuta aggiungendo ad A la colonna B dei termini noti.

Se la prima colonna della matrice A ¢ interamente nulla, 'incognita z; non
compare effettivamente nel sistema S. In tal caso passiamo alla colonna (cioe
all'incognita) successiva. In caso contrario scegliamo una riga di A in cui il
coefliciente dell’incognita x; sia diverso da zero. Supponiamo si tratti della riga
i-esima: si ha dunque a;; # 0. Possiamo quindi dividere ambo i membri della
i-esima equazione per a;1, € successivamente scambiare la i-esima equazione con
la prima. Si ottiene cosl un nuovo sistema, equivalente a quello dato, in cui la
matrice completa e del tipo

/ i /

1 ajy ... al, b}

i / i /
ah;  Ghy ...  Ghy, b5
/ I ! /

N b,

A questo punto, per ogni i > 2, sostituiamo la i-esima riga di questa matrice
(cioé la i-esima equazione del sistema) con la somma della riga in questione e
della prima riga moltiplicata per —a/;, ottenendo cosi un nuovo sistema la cui
matrice completa ¢ del tipo

l I /
1 aly ... aj, by
" " 11
0 ay ... ay, by
" " "
0 L IR Amn bm

Indichiamo con S’ il sottosistema ottenuto trascurando la prima equazione. Nel
sistema S’ non compare pil l'incognita 1. Ora possiamo ripetere la procedura
sopra descritta al sistema S’.

Alla fine di questo procedimento otterremo un sistema, equivalente a quello
iniziale, la cui matrice completa ¢ nella cosiddetta “forma a scala,” cioe in
una forma in cui, in ciascuna riga, il primo coefficiente diverso da zero (nel
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nostro caso specifico tale coefficiente & uguale a 1) si trova alla destra del primo
coefficiente non nullo della riga precedente.

A questo punto il sistema puo essere facilmente risolto partendo dall’ulti-
ma equazione tramite una semplice sostituzione all’indietro, analoga a quella
impiegata nel metodo della sostituzione.

Vediamo ora di chiarire I'algoritmo appena descritto per mezzo di alcuni
esempi concreti.

Esempio 1. (Sistema privo di soluzioni) Consideriamo il seguente sistema di
equazioni lineari, a coefficienti nel campo Q.

21’1 —41’2 =—4
S : 3x1 — 622 + 33 = —3
w1—2x2—x3=—2

La matrice completa di questo sistema e

2 -4 0 —4
3 —6 3 -3
1 -2 -1 —2

Per far comparire un coefficiente uguale a 1 nella posizione (1,1) della matrice
possiamo operare in tre modi diversi: dividere la prima riga per 2, dividere la
seconda riga per 3 e scambiarla con la prima, oppure scambiare tra loro la prima
e la terza riga. Scegliamo quest’ultima possibilita, ottenendo la matrice

1 -2 -1 -2
3 —6 3 -3
2 -4 0 —4

Ora dobbiamo far comparire degli zeri nella prima colonna, al di sotto del primo
coefficiente. Per fare cio sommiamo alla seconda riga la prima moltiplicata per
—3, e poi sommiamo alla terza riga la prima moltiplicata per —2. Si ottiene cosi

1 -2 -1 -2
0 0 6 3
0o 0 2 0

Ora ricominciamo dalla seconda riga, dividendola per 6 in modo tale che il suo
primo coefficiente non nullo sia 1.

1 -2 -1 | -2
0 0 1 | 1/2
0 0 2 0

Alla terza riga sommiamo quindi la seconda moltiplicata per —2, ottenendo la
matrice

1 -2 -1 | -2
0 0 1 1/2
0 0 0 -1

Questa matrice ¢ finalmente nella forma che vogliamo (la forma a scala). Essa
corrisponde al sistema

$1—2$2—£3=—2
S/: 1‘3:1/2
0=-1
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il quale & equivalente al sistema originario. Dato che la terza equazione e sta-
ta ridotta all’'uguaglianza 0 = —1, che non e verificata, concludiamo che tale
sistema non ammette soluzioni.

Esempio 2. (Sistema che ammette un’unica soluzione) Consideriamo il seguen-
te sistema di equazioni lineari, a coefficienti nel campo Q.

2I1 72.%2 +85€3 =5

219 4+ 623 =1
T — 229 + 43 = —1
Iy +1OLE3 =0

La matrice completa di questo sistema ¢

2 -2 8 )
0 2 6 1
1 -2 4 -1
1 0 10 0

Scambiamo tra loro la prima e la terza riga:

1 -2 4 -1
0 2 6 1
2 -2 8 5
1 0 10 0

Alla terza riga sommiamo la prima moltiplicata per —2 e alla quarta riga
sottraiamo la prima:

1 -2 4 -1
0 2 6 1
0 2 0 7
0 2 6 1
Ora dividiamo per 2 la seconda riga:
1 -2 4 -1
0 1 3 1/2
0 2 0 7
0 2 6 1

Continuiamo sommando alla terza riga la seconda moltiplicata per —2 e som-
mando alla quarta riga la seconda moltiplicata per —2. Si ottiene cosi:

1 -2 4 -1
0 1 3 | 1/2
0 0 —6 6
0 0 0 0

Ora dividiamo la terza riga per —6:

1 -2 4 | -1
0 1 3| 1/2
0 0 1| -1
0 0 0 0
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Questa matrice € nella forma che vogliamo. Essa corrisponde al sistema

T, — 2x9 +4x3 = —1

S/‘ $2+3$3:1/2
' Igifl
0=0

il quale & equivalente al sistema originario. La soluzione di questo sistema si
puo ottenere facilmente, partendo dall’ultima equazione, tramite una sostitu-

zione all’indietro: dalla terza equazione ricaviamo x3 = —1 che, sostituito nella
seconda, fornisce xo = 1/2—3xz5 = 7/2. Infine, sostituendo nella prima equazio-
ne i valori appena trovati, si ottiene x1 = —1 + 2x5 — 423 = 10. In conclusione,
il sistema dato ammette un’unica soluzione:

T = 10

To — 7/2

T3 = -1

Esempio 3. (Sistema che ammette infinite soluzioni) Consideriamo il seguente
sistema di equazioni lineari, a coefficienti nel campo Q.

2x1 +5x3 =1
S : 41‘1731’2+4ZE3:5
2x1 — x9 + 3x3 = 2

La matrice completa di questo sistema ¢

2 0 5 1
4 -3 4 5)
2 -1 3 2

Dividiamo la prima riga per 2:
1 0 5/2 1/2
4 -3 4 5
2 -1 3 2

Alla seconda riga sommiamo la prima moltiplicata per —4 e alla terza riga
sommiamo la prima moltiplicata per —2:

1 0 5/2 1/2
0 -3 -6 3
0 -1 -2 1
Ora dividiamo la seconda riga per —3:
1 0 5/2 1/2
0 1 2 -1
0 -1 -2 1

Infine, sommando alla terza riga la seconda, si ottiene:

1.0 5/2 | 1/2
01 2 -1
00 0 0
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Questa matrice € nella forma che vogliamo. Essa corrisponde al sistema

T +5£L’3/2: 1/2
S’ To + 2x3 = —1
0=0

il quale & equivalente al sistema originario. Si puo cosi notare che il sistema am-
mette infinite soluzioni. Infatti, dalla seconda equazione si ricava xo = —1 —2x3
mentre dalla prima si ottiene z1 = %— g.’L’g. L’incognita x3 rimane indeterminata
e puo dunque assumere qualsiasi valore. In conclusione, il sistema dato ammet-
te infinite soluzioni, dipendenti da un parametro (oo! soluzioni), che possono

essere espresse nella forma

Tr1 = 1/2—53’,‘3/2
o = -1 —2%3

r3 qualsiasi.

2.3.2 Calcolo del rango di una matrice

Sia A una matrice m x n a coefficienti nel campo K. Ricordiamo che il rango di
A ¢ stato definito come il massimo numero di colonne linearmente indipendenti
della matrice A (vedi Definizione 2.2.15). Tale numero coincide con la dimensio-
ne dell’immagine della funzione lineare F'y : K™ — K™ la cui matrice, rispetto
alle basi canoniche di K™ e K™, ¢ A.

In modo del tutto analogo, possiamo definire il rango per righe di A, come il
massimo numero di righe linearmente indipendenti, cioé come la dimensione del
sottospazio vettoriale di K™ generato dalle righe di A. A prima vista potrebbe
sembrare che non vi sia alcun motivo per cui il rango per colonne di una ma-
trice debba coincidere con il suo rango per righe. Tuttavia questi due numeri
risultano essere sempre uguali, come dimostreremo in seguito (vedi Capitolo 3,
Teorema 3.3.1).

Vedremo ora come il metodo di eliminazione di Gauss fornisca uno strumento
molto utile per il calcolo del rango per righe di una matrice. Cio discende
dal fatto che le operazioni elementari sulle righe di una matrice utilizzate nel
metodo di Gauss non alterano il numero di righe linearmente indipendenti. Di
conseguenza, se applichiamo ’eliminazione di Gauss per trasformare una matrice
A in una matrice A’ che si trovi nella forma a scala, il rango per righe di A’
sara necessariamente uguale al rango per righe di A. Arrivati a questo punto,
il calcolo del rango & immediato. Infatti vale il seguente risultato:

Proposizione 2.3.6. Se una matrice A é nella forma a scala, il suo rango per
righe coincide con il numero di righe non nulle.

Dimostrazione. Supponiamo che la matrice A abbia m righe, di cui le prime r
sono non nulle. Indichiamo con vy,vs,...,v, i vettori riga non nulli di A, ove
v; = (a1, 42, . .., 0in). Poiché A & nella forma a scala, il primo coefficiente non
nullo di ciascuna riga v; si trova alla destra del primo coefficiente non nullo della
riga precedente v;_;. Pertanto, se indichiamo con ajp, il primo coefliciente non
nullo della riga vy, tutti gli altri elementi della colonna hy della matrice A, cioe
gli elementi a;j,, con j > 2, sono nulli. Consideriamo ora una combinazione
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lineare dei vettori vy, v, ..., v,
Av1 + Agvg + - 4+ Apup. = 0.

Se concentriamo la nostra attenzione sulle componenti di posto hi, si trova
Maip, F A0+ 4+ X0=0

da cui segue A\ = 0.

In modo analogo, indichiamo con asp, il primo coefficiente non nullo della
riga vo. Allora tutti gli elementi della colonna ho, dalla terza riga in poi, cioe
gli elementi a;x, con j > 3, sono nulli. Dall’uguaglianza

AoV + -+ N\v, =0
si ottiene, considerando solo le componenti di posto hs,
A2a2h2+)\30+~~+)\r0:0

da cui segue Ao = 0.

Ripetendo il ragionamento sopra descritto si dimostra cosi che tutti i coef-
ficienti A1, Ao, ..., A sono nulli. Questo prova che i vettori vy, v, ..., v, sono
linearmente indipendenti, quindi il numero r di righe non nulle della matrice A
coincide con il numero di righe linearmente indipendenti, cioé con il rango per

righe di A. O

Esempio 2.3.7. Illustriamo su un esempio concreto il metodo appena descritto.
Vogliamo calcolare il rango (per righe) della seguente matrice:

0 2 -1 61
3 —4 14 3 2
A= 1 -2 5 3 3
1 0 4 3 0

Scambiamo la prima riga con la terza:

1 -2 5 3 3
3 -4 14 3 2
0 2 -1 61
1 0 4 3 0

Alla seconda riga sommiamo la prima moltiplicata per —3 e alla quarta riga
sottraiamo la prima:

1 -2 5 3 3

0o 2 -1 -6 -7

0 2 -1 6 1

o 2 -1 0 =3

Alla terza riga sottraiamo la seconda e alla quarta riga sottraiamo la seconda:

1 -2 5 3 3
0o 2 -1 -6 -7
0o 0 0 12 8
0o 0 0 6 4
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Infine, alla quarta riga sommiamo la terza moltiplicata per —1/2:

1 -2 5 3 3
0o 2 -1 -6 -7
0o 0 0 12 8
o 0 0 0 O

Questa matrice ¢ nella forma a scala. Poiché ci sono tre righe non nulle, si
conclude che il suo rango (per righe) ¢ 3. Questo ¢ allora anche il rango della
matrice A da cui eravamo partiti.

Come ulteriore esercizio si consiglia al lettore di applicare I’algoritmo appena
descritto alla matrice trasposta di A, al fine di verificare che anche il rango per
colonne ¢ uguale a 3.

Osservazione 2.3.8. Volendo calcolare il rango per colonne di una matrice A &
sufficiente applicare il metodo dell’eliminazione di Gauss alla matrice trasposta
di A. In alternativa si puo modificare il metodo di Gauss in modo da effettuare le
operazioni elementari sulle colonne di A piuttosto che sulle sue righe. L’obiettivo
¢ quello di portare la matrice data in un’appropriata “forma a scala,” che non &
altro che la trasposta della forma a scala descritta in precedenza. Si tratta cioe
di una forma a scala in cui il primo elemento non nullo di ciascuna colonna si
trova al di sotto del primo elemento non nullo della colonna precedente.

2.3.3 Calcolo dell’inversa di una matrice

Vogliamo ora descrivere un algoritmo, derivato dal metodo di eliminazione di
Gauss, per il calcolo dell’inversa di una matrice quadrata. Tale algoritmo si
basa sull’osservazione che effettuare delle operazioni elementari sulle righe di
una matrice A equivale a moltiplicare A, a sinistra, per un’opportuna matrice
invertibile.

Consideriamo, ad esempio, I'operazione elementare che consiste nello scam-
bio di due righe della matrice A. Per ogni 4,5 =1,...,n, con i # j, indichiamo
con P(i,7) la matrice i cui elementi ppy (con 1 < h,k < n) sono dati da:

1 seh=k, h#1i, h#j,
Pk =41 seh=iek=joppurese h=jek=r1,
0 altrimenti.

Se A ¢ una matrice n X n e se poniamo A’ = P(i, j) A, si verifica facilmente che
la matrice A’ & ottenuta dalla matrice A semplicemente scambiando tra loro le
righe i-esima e j-esima. Ad esempio, sen =4,i=1, j =3, si ha

0 01 0

01 0 O

PA3)=11 0 0 o

0 0 0 1

e

0 01 0 a1l a2 a3 G4 az1 azz a3z 34
0 1 020 a1 G A3 G4 | _ | G21 G2 d23 G4
1000 as1 as2 a3z asq a1 a2 a1z aiq
0 0 01 (41 Q42 Q43 Q44 (41 Q42 Q43 Q44



Capitolo 2 Applicazioni Lineari e Matrici 61

Da quanto appena detto segue immediatamente che
P(i,j)* = P(i,j)P(i,j) = 1,
quindi le matrici P(4, j) sono invertibili.
Consideriamo ora la matrice M (i; \) = (mpy) definita, per ognii =1,...,n
eogni A € K, A\ # 0, ponendo
1 seh=k, h#1i,
se h=k=1,

0 altrimenti.

Mmpr = A

La moltiplicazione a sinistra di M (i; \) per una matrice A ha come effetto quello
di moltiplicare la i-esima riga di A per A\. Ad esempio, se n =4 e i =2, si ha

1 0 0 O

0O XN 0 O

M(22) = 0 0 1 0

0 0 0 1

e

10 00 a1l a2 a3 a4 a1 a2 a1z a4
0O X 0 O a21 Q22 Q23 A4 . )\agl )\GQQ )\agg )\a24
0 0 1 0 as1 asz as3 a4 azr  azz a3z a34
0 0 01 41 Q42 Q43 Q44 aq1 Q42 (43 Q44

Notiamo che, poiché si & supposto A # 0, si ha
M(i; M (i; 271 =1,
quindi le matrici M (i; A) sono invertibili.
Infine, per ogni i,7 = 1,...,mn, con i # j, e ogni @ € K, definiamo una

matrice S(4, j; &) = (spi) ponendo

1 seh=k,

Spk=4qa seh=iek=y7,

0 altrimenti.

Se A & una matrice n X n e se poniamo A’ = S(i, j; a) A, & immediato verificare

che la matrice A’ & ottenuta dalla matrice A sommando alla i-esima riga la
j-esima moltiplicata per a. Ad esempio, se n =4,i =2, j =4, si ha

1 0 0 O
0 1 0 «
S(2,4; ) =
( ) b ) 0 O 1 0
0 0 0 1
e
1 O O 0 ail a12 ais aiq
01 0 « a21 QA22 A23 A4 o
0 0 1 0 asy as2 ass asq B
0 0 0 1 41 Q42 Q43 Q44
ai1 a12 a13 a14
| @21 +aaqr  age + aags a3 + @43 G4 + gy
a3 a32 a33 a34
41 42 a43 Q44
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Si ha pertanto
5(17],01)5(2,], 70‘) = 17

quindi le matrici S(4, j; o) sono invertibili.

Una successione di operazioni elementari sulle righe di una matrice A equi-
vale dunque a una successione di moltiplicazioni, a sinistra, per delle matrici
invertibili del tipo descritto in precedenza. Poiché il prodotto di un numero
qualsiasi di matrici invertibili ¢ ancora una matrice invertibile, concludiamo che
I'effetto di un numero qualunque di operazioni elementari sulle righe di una ma-
trice A puo essere ottenuto semplicemente moltiplicando la matrice A, a sinistra,
per un’opportuna matrice invertibile.

Osservazione 2.3.9. Si verifica facilmente che moltiplicare una matrice A a de-
stra per le matrici P(4, ), M(i;A) e S(4,7; o) descritte in precedenza equivale
ad effettuare delle operazioni elementari sulle colonne di A. Piu precisamen-
te, se poniamo A" = AP(i,j), la matrice A’ & ottenuta scambiando tra loro
la i-esima e la j-esima colonna di A, se A" = AM(i; \) allora A’ ¢ ottenuta
moltiplicando per A la i-esima colonna di A, e se A" = AS(i, j;a) allora A’
¢ ottenuta dalla matrice A sommando alla i-esima colonna la j-esima colonna
moltiplicata per «. Pertanto, 'effetto di un numero qualunque di operazioni
elementari sulle colonne di A puo essere ottenuto moltiplicando la matrice A, a

destra, per un’opportuna matrice invertibile.

Supponiamo ora che la matrice quadrata A, di ordine n, sia invertibile. Tra-
mite operazioni elementari sulle righe e possibile trasformare A in una matrice
nella forma a scala, in cui il primo coefficiente non nullo di ciascuna riga puo
essere reso uguale a 1. Poiché A ¢ invertibile, il suo rango deve essere n,? quindi
nella forma a scala non ci devono essere righe interamente nulle. Poiché A & una
matrice quadrata di ordine n cio equivale a dire che la forma a scala che otte-
niamo dopo 'applicazione dell’algoritmo di eliminazione di Gauss &€ una matrice
A’, triangolare superiore, con tutti gli elementi sulla diagonale principale uguali
al.

Arrivati a questo punto & facile convincersi che, mediante opportune opera-
zioni elementari sulle righe della matrice A’, & possibile trasformare quest’ultima,
nella matrice identica 1. Se indichiamo con B la matrice che rappresenta ’effetto
di tutte le operazioni elementari sulle righe che abbiamo eseguito per trasfor-
mare la matrice A nella matrice identica, si ha dunque BA = 1. La matrice
B ¢ pertanto 'inversa della matrice A. Essa pu0 quindi essere determinata te-
nendo scrupolosamente conto di tutte le matrici corrispondenti alle operazioni
elementari sulle righe che sono state effettuate.

Un metodo molto piu efficace per determinare la matrice B & il seguente.
Scriviamo a fianco della matrice A la matrice identica 1, in modo da ottenere una
matrice con n righe e 2n colonne che indicheremo con (A|1). In questo modo
tutte le operazioni che eseguiremo sulle righe di A dovranno essere effettuate
anche sulle righe della matrice 1. L’effetto di queste operazioni elementari &
equivalente alla moltiplicazione a sinistra per la matrice (incognita) B. Si ha
pertanto:

B(A|1)=(BA|B1)=(1]|B).

2Dire che A & invertibile equivale a dire che la corrispondente applicazione lineare Fu :
K™ — K™ & un isomorfismo, il che significa che Im F4 = K™, cio¢ che rk(A) = rk(F4) = n.
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Cio significa che quando avremo trasformato la matrice A nella matrice identica,
la matrice 1 scritta a destra di A sara stata automaticamente trasformata nella
matrice B, la quale non & altro che 'inversa di A.

A titolo di esempio, applichiamo I’algoritmo appena descritto per determi-
nare 'inversa della matrice

1 21
A=(1 3 0
1 2 2
Per prima cosa affianchiamo alla matrice A la matrice identica, ottenendo
1 2 1 1 00
1 30 01 0
1 2 2 0 0 1

A questo punto, utilizzando operazioni elementari sulle righe, cerchiamo di tra-
sformare la matrice A nella matrice identica. Se riusciamo a fare cio, la matrice
che troveremo a destra sara la matrice inversa di A.

In dettaglio le operazioni da fare sono, ad esempio, le seguenti: sottraiamo
alla seconda riga la prima, e alla terza riga la prima, ottenendo

1 2 1 1 0 0

0 1 -1 -1 1 0

0 0 1 -1 0 1
Ora sommiamo alla seconda riga la terza, mentre alla prima sottraiamo la terza,
ottenendo

1 2 0 2 0 -1
01 0 -2 1 1
0 0 1 -1 0 1

Ora sommiamo alla prima riga la seconda moltiplicata per —2, ottenendo

1 00 6 —2 -3
0 1 0 -2 1 1
0 0 1 -1 0 1
Si ha pertanto
6 -2 -3
Atl=-2 1 1
-1 0 1

Come esercizio si verifichi che la matrice appena trovata e effettivamente 1'in-
versa di A, cioe che AA™! =1.

Osservazione 2.3.10. Se la matrice A di cui si cerca l'inversa non fosse invertibile
essa avrebbe rango strettamente minore di n, quindi la sua forma a scala A’,
ottenuta nella prima parte dell’algoritmo precedentemente descritto, avrebbe
almeno una riga interamente nulla. A questo punto sapremmo che A non &
invertibile.



Capitolo 2 Applicazioni Lineari e Matrici 64

Esercizi

Esercizio 2.3.1. Si risolvano gli esercizi proposti alla fine della Sezione 1.1 del Cap. 1
utilizzando il metodo dell’eliminazione di Gauss.

Esercizio 2.3.2. Si calcoli I'inversa della matrice

2 -3 -1
A=12 -1 -3
1 -3 -1



Capitolo 3

Determinanti

In questo capitolo definiremo la nozione di determinante di una matrice quadrata
a coefficienti in un campo e studieremo le sue principali proprieta. Prima pero,
avremo bisogno di richiamare alcune proprieta elementari delle permutazioni di
un insieme finito di elementi.

3.1 Permutazioni

Definizione 3.1.1. Sia A = {a1,as9,...,a,} un insieme di n elementi. Una
permutazione degli elementi di A & una funzione biiettiva o : A — A.

Una tale permutazione o puo essere convenientemente rappresentata me-
diante una tabella del tipo

ove si conviene che o(a;) = aj,, peri=1,...,n.
Ad esempio, se n =4 e o ¢ la permutazione definita da o(a1) = as, o(az) =
as, o(ag) = a4 e o(ay) = aq, la tabella corrispondente sara

a; a2 a3 Qa4

az az a4 a1
In una tale rappresentazione la presenza del simbolo a ¢, in effetti, del tutto
superflua. E piti conveniente rappresentare o mediante la tabella

<1 2 3 ... n>
Ji J2 Jz3 .. Jn

il che equivale a interpretare o come una permutazione dell’insieme {1,2,...,n}.
Indicheremo con &,, I'insieme delle permutazioni di n oggetti. Osserviamo
che la composizione di due permutazioni ¢ ancora una permutazione e lo stesso

65
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vale per Dinversa di una permutazione. E immediato verificare che la compo-
sizione delle permutazioni definisce su &, una struttura di gruppo. Notiamo
inoltre che, se n > 3 e 0,7 € G, si ha, in generale 0 o 7 # 7 0 g, quindi &,, &
un gruppo non abeliano.

Proposizione 3.1.2. La cardinalita di G,, é n!.

Dimostrazione. Per definire una permutazione ¢ € &,, dobbiamo specificare
o(i) per ogni i =1,...,n. Per o(1) ci sono n possibili valori, mentre per o(2) i
valori possibili sono solo n—1, dato che deve essere 0(2) # o(1). Analogamente,
per o(3) i possibili valori sono solo n—2 (deve essere 0(3) # o(1) e 0(3) # 0(2)).
Continuando in questo modo si conclude che i possibili valori che possiamo
attribuire a o(j) sono n — j + 1, per ogni 5 = 1,...,n. Il numero di possibili
permutazioni & quindi dato dal prodotto n(n —1)(n —2)---2-1 =nl. O

Definizione 3.1.3. Consideriamo una permutazione o € &,,. Diremo che in o
¢ presente una inversione ogni qual volta si ha i < j ma o(i) > o(j).

Ad esempio, nella permutazione

ci sono 5 inversioni: si ha infatti 1 < 2 ma o(1) =3 > 0(2) =2, 1 < 4 ma
c(l)=3>0c(4)=1,2<4maoc(2)=2>04)=1,3<4maoc(3)=5>
o(4) =1e3 <5maoc(3) =5>0(5) =4. Sinoti che per contare il numero
di inversioni di o basta osservare che nella seconda riga della tabella il numero
3 compare prima dei numeri 2 e 1 (due inversioni), 2 viene prima di 1 (un’altra
inversione) e infine il 5 precede i numeri 1 e 4 (altre due inversioni).

Definizione 3.1.4. Diremo che o € &,, & una permutazione pari (risp. dispari)
se il numero di inversioni presenti in o & pari (risp. dispari). Definiamo inoltre
il segno di o, indicato con sgn(co), ponendo

{1 se o e pari,
sgn(o) =

—1 se o e dispari.

In altri termini, si ha _
sgn(o) = (=1)",

ove i(0) & il numero di inversioni presenti in o.

Consideriamo ora il polinomio

P= H (in —a:j)

1<i<j<n

nelle n indeterminate zi,...,z,. Una permutazione ¢ € &, agisce su P
trasformandolo nel polinomio

oP)= ] @ow — o))

1<i<j<n
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Ad esempio, se n = 4 si ha

P = (.Tl — .732)(.%‘1 — 333)(1‘1 — l‘4)($2 — Z‘3)($2 — $4)(l‘3 — 1‘4).
1 2 3 4
"(2 43 1>

o(P) = (w2 — x4) (w2 — x3) (22 — x1) (x4 — x3) (x4 — x1) (23 — T1).

La permutazione
trasforma P nel polinomio

Poiché in P compaiono tutti i fattori del tipo z; —x;, per ogni ¢ < j, e poiché una
permutazione o scambia le indeterminate x; tra loro, ogni fattore x; — z; viene
trasformato in 4 (;) — 24 ;) il quale coincide, a meno del segno, con uno dei fattori
presenti in P. Pill precisamente, se o(i) < o(j), il fattore z,(;) — x,(;) compare
in P, se invece o(i) > o(j) allora ¢ il fattore z,(;) — o) = —(To@) — Zo(s))
che compare in P. Si conclude pertanto che, per ogni permutazione o, si ha
o(P) = +P. Piu precisamente, quanto sopra detto mostra che ogni inversione
presente in o corrisponde a un fattore —1 che moltiplica P, quindi si ha

ove i(o) denota, come sopra detto, il numero di inversioni presenti in o. Poiché
(—1)%®) & precisamente il segno di o, si ha:

o(P) = sgn(o)P. (3.1.1)
Siamo ora in grado di dimostrare il seguente risultato:

Proposizione 3.1.5. Siano o,7 € &, e consideriamo la loro composizione
ocoT. Si ha

sgn(o o 1) = sgn(o)sgn(7).
Si ha inoltre

sgn(o ') = sgn(0),
per ogni o € &,,.

Dimostrazione. Applichiamo prima la permutazione 7 e poi o al polinomio P.

Si ottiene:
P = ][I @0 —z)s

1<i<j<n

o (P) = ] @otriy) = Totrii)

1<i<j<n

= I @wone —2@oni)

1<i<j<n
= (ocoT)(P).
Dalla formula (3.1.1) segue che

quindi

sgn(o o 7)P = (0 07)(P) = o(7(P)) = sgn(o) sgn(7) P,

da cui si deduce che
sgn(o o 7) = sgn(o) sgn(7).
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Dato che 0~ ! o o & la permutazione identica, il cui segno & 1, si ha
sgn(o Y sgn(o) =1,

e pertanto

sgn(o™!) = sgn(o) ™! = sgn(o). O
3.1.1 Cicli e trasposizioni
Definizione 3.1.6. Consideriamo r elementi iy, 4s,...,4, € {1,2,...,n}. Una
permutazione o € &, tale che o(i1) = iz, 0(i2) =3, ..., 0(ir_1) = ir, o(ir) =
i1, e o(h) = h se h # i1,i9,...,1i,, & detta un ciclo di lunghezza r, o r-ciclo;
essa permuta ciclicamente gli elementi 41,12, ..., e lascia fissi tutti gli altri.

Questa permutazione verra indicata nel modo seguente:
g = (iliQ ZT)

Due cicli sono detti disgiunti se nella loro rappresentazione non compaiono
simboli comuni.

Ad esempio, i cicli (142) e (35) sono disgiunti, mentre non lo sono i cicli
(213) e (14).

E un fatto del tutto elementare che ogni permutazione ¢ € G,, puo essere
scritta come prodotto (cioé come composizione) di un numero finito di cicli
disgiunti. Ad esempio, la permutazione

(123456 78
7=\5 6 8 4 3 7 21

o= (1538)(267)(4).

si scrive come segue:

Per esprimere una data permutazione o come prodotto di cicli disgiunti basta
vedere dove o manda il numero 1, poi dove manda i; = ¢(1), poi dove manda
ig = G(il), etc.

Si noti che un ciclo di lunghezza 1 (come il (4) nell’esempio precedente)
corrisponde alla permutazione identica, quindi puo essere omesso. Si conclude
quindi che ogni permutazione puo essere scritta come prodotto di cicli disgiunti
di lunghezza > 2.

Definizione 3.1.7. Un ciclo di lunghezza 2 (o 2-ciclo) ¢ detto una trasposizione.

Si verifica facilmente che ogni r-ciclo puo essere scritto (non necessariamente
in modo unico) come prodotto di r — 1 trasposizioni. Si ha infatti

(i1dg ... ip) = (41 00) (1 Gp1) - - - (i1 93) (41 12), (3.1.2)
oppure anche
(irdg <. iy) = (ip—18p)(ip—2y) -+ (i28) (41 0r). (3.1.3)
Conviene qui ricordare che, nel prodotto di composizione di due o pit permu-
tazioni si usa la seguente convenzione: (o o 7)(i) = o(7()).
Dato che ogni permutazione € prodotto di un numero finito di cicli disgiun-
ti, e poiché ogni ciclo & un prodotto finito di trasposizioni, ne segue che ogni
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permutazione puo sempre essere scritta come prodotto di un numero finito di
trasposizioni.

Consideriamo ora una trasposizione o = (ij) € &, con ¢ < j. Si verifica
facilmente che in questa permutazione sono presenti 2(j —4) — 1 inversioni (farlo
per esercizio), quindi il suo segno &

sgn(o) = (—1)2079-1 = 1,

Ogni trasposizione ha dunque segno —1, pertanto se una permutazione si espri-
me come prodotto di r trasposizioni, il suo segno ¢ (—1)". Dalle formule (3.1.2)
e (3.1.3) deriva quindi il seguente risultato:

Proposizione 3.1.8. Se o ¢ un r-ciclo, si ha sgn(c) = (—1)""1.

Dimostrazione. Abbiamo visto infatti che un r-ciclo (i1 i ... i) si pud scrivere
come prodotto di r — 1 trasposizioni. O

Corollario 3.1.9. Se una permutazione o si scrive come prodotto di s cicli
disgiunti di lunghezze rispettivamente ry, 1o, ..., 1, il suo segno € dato da

sgn(o) = (—1)trettre—s,

Dimostrazione. Poiché il segno di un ciclo di lunghezza r & (—1)"~1, il segno di
o ¢ dato dal seguente prodotto:

(1)t (—1)2 L (21t = ()b,
Esempio 3.1.10. Consideriamo la seguente permutazione £ € &,,:
- (1 2 3 ... h h+1 ... n>
h 1 2 ... h—1 h+1 ... n
Questa permutazione € un ciclo di lunghezza h, infatti si ha

E=(hh-1h-2..21),
da cui segue che sgn(¢) = (—1)"~1.

Consideriamo ora un particolare tipo di trasposizioni.

Definizione 3.1.11. Diremo che una permutazione o € &,, € uno scambio di
elementi contigui se si ha o(i) =i+ 1eo(i+1) =i per qualchei=1,...,n—1,
mentre o(j) = j, per ogni j # i,%+ 1. Una tale permutazione scambia tra loro
due elementi contigui e lascia fissi tutti gli altri.

Concludiamo questa sezione dimostrando il seguente risultato:

Proposizione 3.1.12. Ogni permutazione o € &,, puo essere ottenuta come
composizione di un numero finito (eventualmente nullo) di scambi di elementi
contigui.

Dimostrazione. Sia o la permutazione

(1 2 ... n—1 n)
g = . . . .
Ji o J2 - In—1 In
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Partendo dalla permutazione identica

1 2 ... n—1 n

1 2 ... n—1 n
e scambiando ripetutamente il numero j, con quello successivo, & possibile
portare j, nell’'ultima posizione, ottenendo la permutazione

(1 2 ... n—1 n)
Ji Ja oo Jne1

Ora che 'ultimo elemento ¢ stato sistemato, possiamo scambiare ripetutamente
il numero j,_1 con quello successivo in modo da ottenere la permutazione

1 2 ... n—1 n

]il ]g jn—l ]n
Continuando in questo modo & possibile sistemare nella posizione corretta il
numero j,_s, etc., fino al numero j;, ottenendo cosi la permutazione o. O

Osservazione 3.1.13. Poiché il segno di uno scambio di elementi contigui ¢ —1,
se una permutazione o ¢ ottenuta come composizione di k scambi, si ha

k
sgn(o) = (—=1)".
Quindi una permutazione & pari (risp. dispari) se e solo se puo essere ottenu-

ta come composizione di un numero pari (risp. dispari) di scambi di elementi
contigui.

Esercizi

Esercizio 3.1.1. Consideriamo le permutazioni

/1 2 3 45 /1 2 3 45
7=\3 5 1 4 2) T7\5 2 1 4 3
1

Si determinino c o7, o0, ot e 7L

Esercizio 3.1.2. Si determini il segno delle seguenti permutazioni:

/1 2 3 (1 2 3 4 (12 3 4 5
1=\3 2 1) 274 2 1 3)" 7 \3 2 5 4 1

Esercizio 3.1.3. Si scriva la permutazione

/1 2 3 45 6 7 8
= \5 38 26 1 7 4

come prodotto di cicli disgiunti e come prodotto di trasposizioni. Se ne determini poi
il segno.
Esercizio 3.1.4. Siscrivano le seguenti permutazioni come prodotto di cicli disgiunti:
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
4 6 5 1 3 2)7 \5h 3 2 6 4 1) \3 5 6 4 1 2
Esercizio 3.1.5. Si considerino le permutazioni rappresentate dai seguenti prodotti
di cicli:
01 =(1234)(567)(261)(47)
02 =(12345)(67)(1357)(163)
o3 =(14)(123)(45)(14)

Si scrivano o1, 02 € o3 come prodotto di cicli disgiunti.
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Esercizio 3.1.6. Si esprima la permutazione
(1 2 3 4
77\2 4 1 3

come composizione di scambi di elementi contigui e se ne determini il segno.

3.2 |l determinante di una matrice quadrata
In questo paragrafo definiremo il determinante di una matrice quadrata a coef-
ficienti in un campo K e studieremo le sue principali proprieta.
Definizione 3.2.1. Sia A = (a;;) € M, (K) una matrice quadrata di ordine n
a coefficienti in un campo K. Il determinante di A ¢ definito da
det A = Z SgH(O') A15(1)A20(2) " " Ano(n)>
o6,

ove la somma e estesa a tutte le permutazioni di n elementi ¢ € &,. 1l
determinante di una matrice A viene spesso indicato anche con il simbolo |A]|.

Osservazione 3.2.2. Notiamo che la definizione di determinante si applica anche
al caso in cui A & una matrice quadrata a coefficienti in un anello commutativo
R; in tal caso il determinante di A ¢ un elemento dell’anello R.

A titolo di esempio, applichiamo questa definizione per calcolare esplicita-
mente il determinante di una matrice per piccoli valori di n.

Se n = 1, cioe se la matrice A & costituita da un solo elemento, A = ay,
si ha det A = a1; (I'unica permutazione di un solo elemento ¢ la permutazione

identica, che ha segno 1).
A— air  ai2
a1 a2

Se n = 2, cioe se
ci sono due permutazioni di due elementi,

(12 (12
1=11 2)> 27\2 1)

Si ha sgn(oq) =1 e sgn(oz) = —1, da cui si ottiene
det A = a11a22 — 1204217 .

Consideriamo infine il caso n = 3. Ci sono sei permutazioni di tre elementi, e

precisamente
(1 2 3 (1 2 3 (1 2 3
91=41 2 3) 271 3 2) 7\ \2 3 1)
(1 2 3 (1 2 3 (1 2 3
94=\9 1 3) 7 3 1 2) 9%7\3 2 1)

Si verifica facilmente che sgn(o;) = sgn(o3) = sgn(os) = 1, mentre sgn(oq) =
sgn(oy4) = sgn(og) = —1, quindi

det A = a11a22a33 — ar1a23a32 + a12a23a31

— (12021033 + 13021032 — G13A22031 -
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Osservazione 3.2.3. Un metodo pratico per ricordare la formula precedente per
il calcolo del determinante di una matrice di ordine 3 & la cosiddetta regola di
Sarrus. Si tratta di ricopiare, a destra dell’ultima colonna della matrice A, le
sue prime due colonne, come qui indicato:

a1 a2 aiz aix a2
a21 Qg2 a3 G21 A22
a3z1 asz a3z a3 AaAs2

Ora bisogna considerare la somma dei prodotti degli elementi situati lungo le
tre diagonali orientate da nord-ovest a sud-est

11022033 + G12023G31 + Q13021032

e a questa sottrarre la somma dei prodotti degli elementi situati lungo le tre
diagonali orientate da nord-est a sud-ovest

13022031 + 411023032 + A12021033.-
Si ottiene cosi
11022033 + 12023031 + A13G21A32 — G13A22031 — Q11023032 — G12021033,

che ¢ proprio il determinante di A.
Conviene far notare che non esiste un analogo della regola di Sarrus per il
calcolo del determinante di una matrice di ordine maggiore di 3.

In generale, ricordando che le permutazioni di n elementi sono n!, il calcolo
del determinante di una matrice quadrata A di ordine n consiste in una somma
di n! addendi, ciascuno dei quali ¢ un prodotto di n elementi di A, presi uno
per ogni riga e ogni colonna, con un segno dato dal segno della permutazione
corrispondente.

Esempio 3.2.4. Cerchiamo di determinare quante “operazioni” sono necessarie
per calcolare il determinante di una matrice di ordine 50. Lo sviluppo di un
tale determinante consiste in una somma di 50! addendi, ciascuno dei quali
¢ un prodotto di 50 elementi della matrice (preso con il segno opportuno).
Ci sono pertanto 50 x 50! prodotti, seguiti da 50! somme, per un totale di
50x50!4-50! = 50! (504+1) = 51! “operazioni” (e dove abbiamo trascurato tutte le
operazioni necessarie a determinare il segno di ciascuna delle 50! permutazioni).
Notiamo che 51! ~ 1.55 x 1096,

Se disponessimo di un calcolatore in grado di effettuare mille miliardi di tali
“operazioni” al secondo, il tempo necessario a calcolare un tale determinante
sarebbe all’incirca 1.55 x 10°* secondi, che equivale a circa 4.9 x 10%® anni, il
che corrisponde a pilt di 3 x 103 volte la vita dell’universo!

Nel caso di una matrice di ordine 30, lo stesso ragionamento porta a un
tempo necessario per il calcolo del determinante pari a circa 17300 volte la vita
dell’universo attuale.

Questo esempio mostra come la formula usata per definire il determinan-
te sia sostanzialmente inutilizzabile per il calcolo effettivo, tranne nei casi in
cui n € molto piccolo. Tuttavia cid non significa affatto che una tale formula
sia “inutile.” Essa permette infatti di dimostrare molte proprieta notevoli dei
determinanti.
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Proposizione 3.2.5. Sia

anl 0 0 0

0 a2 0 0

A= 0 0 ass 0
0 0 0 Gnn,

una matrice diagonale. Si ha det A = aj1a99 « - App -

Dimostrazione. Poiché tutti gli elementi al di fuori della diagonale principale
di A sono nulli I'unico prodotto non nullo che si trova nello sviluppo del deter-
minante € a11a9s - - - Apn, il quale corrisponde alla permutazione identica che ha
segno 1. O

Pit in generale, vale il seguente risultato:

Proposizione 3.2.6. Sia

a11 a2 @13 ... Qip

0 a99 a3 e a2n

A= 0 0 asz ... asn
0 0 0 ... ann

una matrice triangolare superiore. Si ha det A = a11a22 - - app -

Dimostrazione. Dato che A = (a;;) € una matrice triangolare superiore, si ha
a;; = 0 se i > j. Osserviamo che per ogni permutazione o di {1,2,...,n},
diversa dalla permutazione identica, esiste almeno un indice 4 tale che i > o(4).
I prodotto ai4(1)a24(2) * * " Gno(n) ¢ quindi nullo, dato che almeno uno dei suoi
fattori & zero. Pertanto l'unica permutazione che fornisce un contributo non
nullo al calcolo del determinante & la permutazione identica, quindi si ha det A =
11022 * ** Gy - O

Naturalmente un risultato analogo (con un’analoga dimostrazione) vale an-
che per matrici triangolari inferiori. Cio deriva anche dal risultato seguente:

Proposizione 3.2.7. Sia A € M,(K) e sia *A la sua trasposta. Si ha
det(*A) = det(A).

Dimostrazione. Sia 0 € &, e sia ¢~ ! la sua inversa. Notiamo che quando o
varia tra tutti gli elementi di &,, lo stesso accade anche per la sua inversa.
Indichiamo con a;; gli elementi della matrice A e con a;; gli elementi di ‘A.
Ricordiamo che a;; = aj;. Dalla definizione di determinante, si ha

det(tA) = Z sgn(a) &10'(1)620'(2) o &na(n)
ceES,

= Z sgn(o) A5 (1)180(2)2 " * " Ao (n)n-
ceS,
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Ora osserviamo che in ciascun prodotto a,(1)105(2)2 " * * Gg(n)n cOMpaiono n ele-
menti, presi uno per ciascuna riga e per ciascuna colonna di A. Da cid segue
che tale prodotto si puo anche scrivere nella forma a;5-1(1)a25-1(2) * * * Apo—1(n)>
cioe si ha
A5 (1)105(2)2 """ Ao(n)n = A1o—1(1)020-1(2) ** " Ano—1(n)>

per ogni o € G,,.

Un esempio puo servire a chiarire quanto appena affermato. Sia n = 4 e
consideriamo la permutazione

/1 2 3 4
77\3 1 4 2

{1 2 3 4
T “\2 41 3

A5(1)100(2)200(3)300(4)4 = A31012043024

la cui inversa ¢

Allora si ha

A15-1(1)A20-1(2)A365-1(3)A4o—1(4) = Q12024031043
i quali sono evidentemente uguali.
Se ricordiamo inoltre che sgn(o~!) = sgn(o), possiamo scrivere:

det(tA) = Z sgn(U) A5(1)105(2)2 """ Ao(n)n

ceS,
= Z sgn(a) A15-1(1)A20-1(2) " "~ Ano—1(n)
ccG,
_ -1
= Z Sgn(077) A1o-1(1)025-1(2)  * * Gno—1(n)
oe6,
= Z SeN(T) A17(1)2r(2) ** * Anr(n)
TEG,
=det A,
ove abbiamo posto 7 = o1, O
Data una matrice A € M, (K) indicheremo con A, AR =AM le sue
righe '
AY = (a1, ai2, ..., ain),
e con Ay, Ay, ..., A le sue colonne
Qay1j
a2;
Ay =1 .
Qpj
Potremo quindi scrivere
A
A
A= (AnyA@)y, - Awy) =
An)

Possiamo ora enunciare e dimostrare la seguente proprieta:
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Proposizione 3.2.8. Se la i-esima riga di una matrice A é combinazione
lineare di due vettori riga

AD = oV 4+ o'V,

con'V = (v1,va,...,0,) e V! = (v],v},...,0)), allora si ha
A A)

A(i-—l) A(i'—l)
det A = adet 1% +a'det | V’

ACi+D) ACG+D)
A('n) Aﬁn)

Analogamente, se la j-esima colonna di A é combinazione lineare di due vettori

colonna
Ay = BW + W',

con W = Hwy,wa,...,wy,) e W =Hwl,wh,...,w,), allora si ha
det A = ﬂdet(A(l), ey A(j,l), VV, A(j+1), N ,A(n))
+ 5 det(A(1)7 R >A(j71)a w’, A(j+1), Ceey A(n))

Dimostrazione. Dato che il determinante di una matrice coincide con quello
della sua trasposta, e sufficiente dimostrare 1’asserto riguardante le righe. Sup-
poniamo dunque che sia AV = aV+a/V’, ciot a;; = avj+a'vy, perj=1,...,n.
Si ha quindi:

det A = Z sgn(0) A1o(1) " " Qio(i) " Ano(n)

o€eG,
= Z sen(0) a1(1) (Ao (iy + V(1)) - Ang(n)
cc6,
=« Z Sgn<0) A1o(1) """ Vo(3i) """ Ano(n)
oeS,
+a Z e (0) A15(1) " Vg (i) " Ano(n)
oc€eG,
A A

=adet| V | +ad/det| V'’

A A O

Proposizione 3.2.9. Sia A’ la matrice ottenuta scambiando tra loro due righe
(oppure due colonne) di A. Allora é

det A’ = —det A.
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Dimostrazione. Dato che det(*A) = det(A), & sufficiente dimostrare I’affermazio-
ne riguardante le righe. Sia dunque A" = (aj;) la matrice ottenuta scambiando
tra loro le righe h-esima e k-esima di A, con 1 < h < k < n. Si ha dunque:

det A" = " s5g0(0) alp1)  Gho(n)** Choth) " Tno(n)
ceS,

= Z sgn(o) A15(1) """ Ako(h) " " Cho(k) " Cno(n)-
oceS,

Indichiamo con 7 la permutazione che scambia h con k, lasciando invariati tutti
gli altri elementi, e poniamo n = ¢ o 7. Si ha cosi

det A" = )" sg0(0) aiy(1) - Ahn(n) ** Wn(k) *** Grn(n)-
oceS,

Ora basta osservare che quando o percorre tutto I'insieme &,, lo stesso accade
anche per 7, e che sgn(n) = sgn(o) sgn(rt) = —sgn(o), in quanto il segno di una
trasposizione € —1. Si ha pertanto

det A" = > sgn(0) aiy(1) - Ghy(n) * Cen(k) ** Crn(n)
cEG,,

= D —s8n(n) () hn(h) " Wen(h) ()
n€S,

= —det A. O

Osservazione 3.2.10. Il determinante di una matrice puo essere considerato come
una funzione delle sue n righe
A
det : K" x --- x K" - K, (A(l),...,A("))Hdet :
Aln)
oppure come una funzione delle sue n colonne

det : K" x -+ x K" - K, (A(1)77A(n)) — det(A(l),...,A(n)).

La Proposizione 3.2.8 afferma che entrambe queste funzioni sono multilineari,
cioe sono lineari in ciascuna delle loro n variabili. La Proposizione 3.2.9 afferma
poi che queste due funzioni sono alternanti, cioé cambiano di segno ogni volta
che due delle loro variabili vengono scambiate tra loro. Il determinante fornisce
quindi un esempio di applicazione multilineare alternante.

Corollario 3.2.11. Sia A = (a;;) una matrice quadrata di ordine n. Per ogni
permutazione o € &, si ha:

Ale1) A
A((2)) e

det . = sgn(o)det . =sgn(o)det A
Alom) ne

det(A(U(l)), A(U(g)), R A(fr(n))) = sgn(o) det(A(l), A(g), . 7A(n)) = det A.
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Dimostrazione. Basta ricordare che ogni permutazione si pud scrivere come
prodotto di un numero finito di trasposizioni e che, se ¢ ¢ un prodotto di r
trasposizioni, si ha sgn(o) = (—1)". O

Corollario 3.2.12. Se una matrice quadrata A ha due righe (oppure due co-
lonne) uguali, allora det A = 0.

Dimostrazione. Scambiando tra loro le due righe uguali (oppure le due colonne
uguali) la matrice A non viene alterata, ma il suo determinante deve cambiare di
segno. Si ha pertanto det A = —det A, cioe 2det A = 0. Se la caratteristica del
campo K ¢ diversa da 2, si conclude che det A = 0, come volevasi dimostrare.
Per trattare il caso in cui K € un campo di caratteristica 2, utilizziamo la
definizione di determinante. Supponiamo dunque che le righe h-esima e k-esima
di A siano uguali, cioe che ap; = ag; per j = 1,...,n. Poiché char (K) = 2, si
ha sgn(c) = 1 per ogni ¢ € &,,, quindi

det A = Z Q1o(1) """ Qho(h) """ Ako(k) * " " Ano(n)-
ce6,

Per ogni permutazione o € &,, indichiamo con ¢’ la composizione di o con la
trasposizione che scambia tra loro h e k. Nello sviluppo del determinante di A,
I’addendo relativo a ¢’ coincide con quello corrispondente a o, infatti:

QA167(1) """ Qho'(h) * " " Ak’ (k) """ Ano’(n) = Alo(1) """ Cho(k) " Cko(h) * " " Ono(n)

= Q16(1) """ Qko(k) """ Qho(h) " " Ano(n)

ove nell’ultima uguaglianza abbiamo usato il fatto che le righe di indici h e k
sono uguali. Cio significa che gli addendi che compaiono nella sommatoria su
tutte le permutazioni o € G,, sono a due a due uguali. Poiché la caratteristica
di K & 2, cio implica che det A = 0. O

Osservazione 3.2.13. Abbiamo gia osservato che il determinante puo essere pen-
sato come un’applicazione multilineare alternante delle righe o delle colonne di
una matrice quadrata. In realta si tratta proprio dell’unica applicazione mul-
tilineare alternante che, valutata sulla matrice identica, ¢ uguale a 1. Infatti

supponiamo che
F:K"x---xK"— K

sia un’applicazione multilineare alternante tale che F(ey,es,...,€e,) =1, ove ey,
es, ..., ey sono 1 vettori della base canonica di K. Sia A = (a;;) una matrice
quadrata di ordine n e siano AV, ..., A™ le sue righe. Per ogni i = 1,...,n,

il vettore A € K™ si pud scrivere come combinazione lineare dei vettori della
base canonica come segue:

AW = azer + apez + -+ + ainen.
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Dato che F' & multilineare alternante, si ha:

F(A(l)’ . 7A(”)) = F( Z Q151€j1y s Z anjnejn)

Jj1=1 Jn=1

= > a1y ccang, Flej,. .65,
J1sedn

= Z A1o(1) """ Ano(n) F(ea(l)a s aea(n))
oceS,

= Z Sgn(J) A1o(1) " " Ono(n) F(elv RN en)
cEG,

= Z Sgn(a) Alo(1) " " Qno(n)
oceG,

= det A.

Proposizione 3.2.14. Se una matrice A € M, (K) ha una riga (oppure una
colonna) nulla, il suo determinante é nullo.

Dimostrazione. Dato che det(A) = det(*A), ¢ sufficiente considerare il caso in
cui A ha una riga nulla. Supponiamo dunque che la i-esima riga di A sia nulla,
cioe che a;; = 0 per j = 1,...,n. Per ogni permutazione o € &,,, nel prodotto

A1o(1) """ Qio(i) " " Ano(n)

compare il fattore a;,(;y = 0, quindi tale prodotto & nullo. Dalla definizione di
determinante, segue che det A = 0. O

Proposizione 3.2.15. Il determinante di una matrice A € M,,(K) non cambia
se a una riga (risp. a una colonna) di A si somma una combinazione lineare
delle righe (risp. delle colonne) rimanenti.

Dimostrazione. Anche in questo caso ¢ sufficiente dimostrare I’affermazione ri-
guardante le righe. Sia dunque B la matrice ottenuta da A sostituendo la sua
i-esima riga A® con la riga

B® = A® 4 Z%A(j)7
J#i

con a; € K. Ricordando la multilinearita del determinante si ha:

A A
A(i.fl) A(i;l)

det B=det | AD | +> a;det| AV
Ali+1) i Ali+D)

Ain) A&n)
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Poiché j e diverso da 7, nella matrice
A
A(i.fl)

AW
A+

A('n)

ci sono due righe uguali, quindi il determinante di tale matrice € nullo. Si ha
pertanto det B = det A. O

Proposizione 3.2.16. Se A€ M, (K) ea € K, si ha
det(ad) = " det(A).

Dimostrazione. Dalla multilinearita del determinante segue che

aA® A AM
aA® aA®) A2

det(aA) = det ) = adet ) =...=qa"det ) =a" det A.
QA QG A® A -

Siamo ora in grado di dimostrare il seguente risultato:

Teorema 3.2.17 (TEOREMA DI BINET). Date due matrici A, B € M, (K), si
ha:
det(AB) = det(A) det(B).

Dimostrazione. Siano A = (a;;) e B = (b;;) e scriviamo B come segue:
B

B = :
B
Sviluppando il prodotto righe per colonne di A per B, si ottiene
a1 BY + - 4+ a1, B™
as1 BY + - 4 ay, B™
det(AB) = det .
an1BY + -+ + a,,, B™

Ricordando ora la multilinearita del determinante, si ha

B

det(AB) = Z Z ce Z A1j5, 0255 * * * Anj, det

Ji J2 Jn BUn)
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Dato che il determinante di una matrice avente due righe uguali & nullo, 'e-
spressione precedente si riduce a:

Ble(1)
det(AB) = Z A15(1)420(2) * * * Gno(n) det :
cEG, Blo(n)

Infine, ricordando che il determinante ¢ una funzione alternante (vedi Corolla-
rio 3.2.11), si ha:

B
det(AB) = Z A10(1)020(2) * * * Gno(n) SgN(0) det :
oe6, B(”)
= ( Z sgn(0)a15(1)a20(2) - "ano(n)) det B
ce6,
= det(A) det(B). O

Corollario 3.2.18. Se A € M, (K) ¢é una matrice invertibile, si ha
det(A™!) = (det A)~ 1.

Dimostrazione. Se A ¢ invertibile, si ha AA~! = 1,,. Applicando il Teorema di
Binet, si ottiene:

1 = det(1,) = det(AA™!) = det(A) det(A™1),
quindi det(A~!) = (det A)~. O

Definizione 3.2.19. Data una matrice A = (a;;) € M, (K), per ogni i,j €
{1,...,n} indicheremo con A;; la matrice di ordine n — 1 ottenuta da A cancel-
lando la sua i-esima riga e la sua j-esima colonna. Il determinante della matrice
A;j ¢ detto il minore di indici ¢ e j della matrice A. La quantita
afy = (1) |4y

e detta il complemento algebrico (o cofattore) dell’elemento a;; di A. La tra-
sposta della matrice costituita dai complementi algebrici degli elementi di A e
detta la matrice aggiunta (o matrice cofattore) di A, e sara indicata con adj(A)
0, piu semplicemente, con A*:

A* = adj(A) = Y(aj;) € My (K).

Possiamo ora dimostrare il seguente risultato, che fornisce un metodo molto
utile per il calcolo del determinante di una matrice.

Proposizione 3.2.20 (FORMULA DI LAPLACE). Sia A € M,(K). Per ogni
indice di riga i si ha:

det A= (1) ay | Ainl. (3.2.1)
h=1
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Analogamente, per ogni indice di colonna j si ha:
n )
det A =" (=1)"* ay; [Ag]. (3.2.2)
k=1

La prima formula & detta sviluppo del determinante di A secondo la i-esima
riga, mentre la seconda € lo sviluppo del determinante di A secondo la j-esima
colonna.

Dimostrazione. Poiché il determinante di una matrice coincide con quello della
sua trasposta, scambiando i ruoli delle righe e delle colonne della matrice A,
la formula (3.2.1) si riduce alla (3.2.2). Pertanto ¢ sufficiente dimostrarne una
delle due, ad esempio la (3.2.1).

Ci proponiamo ora di mostrare che, in effetti, & sufficiente dimostrare la
formula (3.2.1) per ¢ = 1. Supponiamo dunque che la formula di Laplace valga
per lo sviluppo del determinante di A secondo la prima riga. Fissiamo un indice
di riga i > 1 e scriviamo la matrice A nella forma

A

A(i'—l)
A= A®)
A1)

Aﬁn)

Mediante i — 1 scambi di righe contigue & possibile portare la i-esima riga di A
al posto della prima riga, ottenendo cosi la matrice

A®
A

A = A(i'fl)
AG+D)

A('n)
Poiché ad ogni scambio di due righe il determinante cambia di segno, si ha
det A= (—1)""'det A"

Possiamo ora sviluppare il determinante di A" = (a;;) secondo la prima riga,

ottenendo
n

det A" =" (=1)"*"al, |A},].
h=1

Ma, dalla definizione di A’, si vede che a};, = a;; e A}, = A, quindi si ha

n

det A" = Z(—l)Hh ain [Ainl.
h=1
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Si conclude pertanto che

det A= (=1)"'det A" = > (=1)"" aip | A,
h=1

che & precisamente lo sviluppo del determinante di A secondo la i-esima riga.
Non rimane altro che dimostrare la formula (3.2.1) nel caso in cui ¢ = 1.
Dobbiamo quindi dimostrare che

det A=Y (=1)""ay, [Au].
h=1

Notiamo che Ajj € la seguente matrice quadrata di ordine n — 1

a1 e a27h,1 ag’thl e agn

a31 LR a3 h—1 a3 h+1 LR a3n
Ay = . .

apl ... Gp,h—1 QAnh+1 - Gnn

Dalla definizione di determinante, si ha

|A1h| = Z sgn(7) a2, r(1) " " Qh,7(h—1)Ch+1,7(h+1) " " An,7(n)s
7665:1_)1

ove la sommatoria e estesa a tutte le permutazioni 7 dell’insieme di n—1 elementi
{1,2,...,h—1,h+1,...,n}
(il simbolo 6£Lh_)1 indica proprio l'insieme di tali permutazioni).

Si ottiene cosi la seguente espressione:

det A= "(=1)""ayn Y sgn(r)aor(1) - Ghr(h—1)Oht1,r(ht1) - Gnr(n)
h=1

76651}1'_)1

n

_ 1+h

= E E (=1) " sgn(7) a1naz (1) Ahr(h—1)Qhg1,r (A4 1) e (n)-
h=lres(,

Ora alla permutazione 7 € Gflh,)l

_ 1 2 h—1 h+1 n
TT\r() 7@ ... r(h=1) t(h+1) ... 7(n)
associamo la permutazione o € &,, definita da
(12 ... h-1 h h+1 ... n
77\ o) .. 7(h=2) 7(h=1) T(h+1) ... 7(n)

Precisamente, o ¢ definita ponendo:

T(k—1) se2<k<h,
7(k) se k> h.
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Osserviamo che, al variare dell’indice & da 1 a n e di 7 nell’insieme Gflh_)l, le

corrispondenti permutazioni o descrivono tutto I'insieme &,, delle permutazioni
degli n elementi {1,2,...,n}.

L’ultima cosa che rimane da capire a questo punto & quale sia la relazione
tra il segno di 7 e quello della corrispondente permutazione o.

Possiamo notare che o & ottenuta componendo la permutazione

- 1 2 3 ... h h+1 ... n
“\h 1 2 ... h—1 h+1 ... n
con la permutazione 7 definita da

,_( 1 2 ... h—1 h h+1 ... n)
(1) 7(2) ... 7(h—=1) h 7(h+1) ... 7(n)

Si ha infatti ¢ = 7/ o £, come si pud facilmente verificare. Da cid segue che
sgn(o) = sgn(7’) sgn(&). Ora osserviamo che le due permutazioni 7 e 7/ hanno la
stessa rappresentazione come prodotto di cicli disgiunti (nella rappresentazione
di 7/ comparirebbe il ciclo di lunghezza uno (h) la cui presenza & irrilevante,
dato che esso rappresenta la permutazione identica), quindi sgn(7) = sgn(7’).
Si ha poi sgn(§) = (=1)"~1 = (=1)"*, come gia visto nell’'Esempio 3.1.10. Si
ottiene cosi sgn(o) = (—1)ht1 sgn(7) e lo sviluppo di Laplace pud dunque essere
riscritto come segue:

det A = Z Z (_1)1+h SEN(T) A1ha2 r(1) " * " Ahyr(h—1)Cht Lr(ht1) " Onr(n)
h=1ree®,

= Z SgN(0) A15(1)020(2) " * Cho(h) h+1,0(h+1) " * " Ono(n)-
ceS,,

Ma quest’ultima ¢ precisamente la definizione del determinante di A. O

Esempio 3.2.21. Utilizziamo la formula di Laplace per calcolare il determinante
della seguente matrice:

2 0 1 1
-1 3 0 2
A= 0 2 -3 0
1 4 -1 0

Possiamo sviluppare questo determinante secondo una riga o una colonna qual-
siasi ma, ovviamente, converra scegliere una riga (o una colonna) tra quelle che
contengono il maggior numero di zeri. Scegliendo, ad esempio, la terza riga, si
ottiene:

2 1 1 2 01
detA=-2-1 0 2/-3|-1 3 2
1 -1 0 1 40

Consideriamo il primo di questi due determinanti di ordine tre e sviluppiamolo
secondo la seconda colonna:

1 1
-1 0 2|/=-
0
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Consideriamo ora il secondo determinante di ordine tre e sviluppiamolo secondo
la prima riga:

2 0
-1 3
1 4

3 2
4 0

-1 3
1 4

O N =

—2‘ ‘+’ ‘—167—23.

In conclusione, si trova det A = —14 + 69 = 55.

Come corollario del Teorema di Laplace otteniamo il seguente utile risultato,
che fornisce una formula esplicita per calcolare I'inversa di una matrice quadrata.

Corollario 3.2.22. Sia A € M, (K) e indichiamo con A* la matrice aggiunta
di A. Sussiste la sequente identitd:

A A" =det(A) 1,
Di conseguenza, se det(A) é invertibile, si ha
A7t = (det A)~t A%

Dimostrazione. L’identita A A* = det(A) 1,, equivale alle seguenti uguaglianze:

= : det A sei=j
SO (1, A = 4T T
Pyt 0 se i # j.

Se i = j, U'espressione precedente si riduce a

(=1 ag |Asnl,

NE

>
Il
—

la quale non ¢ altro che lo sviluppo di det A secondo la i-esima riga di A.
Consideriamo ora il caso i # j. L’espressione

(=1 " ag [Ajn

NE

>
Il
Ja

puo ora essere interpretata come lo sviluppo, secondo la j-esima riga, del deter-
minante della matrice B ottenuta da A sostituendo la sua j-esima riga con una
copia della ¢-esima:

ail a12 s A1n
a;1 @32 Ain
B =
aj—-11 Gj-12 ... Gj-1n
i1 @2 Ain
aj+1,1 G412 .. Gjyin

an1 an2 . Ann
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Poiché questa matrice ha due righe uguali, il suo determinante & nullo, pertanto

si ha
n

> (=17 Az =0,
h=1

per ogni i # j. O

Osservazione 3.2.23. Come abbiamo visto nel Corollario 3.2.18, dal Teorema di
Binet si deduce che I'invertibilita del determinante di una matrice A € M, (K)
¢ una condizione necessaria per l'invertibilita di A. Il risultato precedente di-
mostra che questa condizione e anche sufficiente. Si conclude pertanto che una
matrice A € M, (K) ¢ invertibile se e solo se il suo determinante ¢ invertibile.
Possiamo notare che questo risultato vale anche, pili in generale, per matri-
ci a coefficienti in un anello commutativo unitario. Ad esempio, una matrice
A € M,(Z) ¢ invertibile se e solo se det A = +1 (la condizione det A # 0
garantisce infatti 'esistenza di A=! nell’anello M,,(Q) e non in M, (Z)).

Descriviamo ora un’applicazione di questi risultati alla teoria dei sistemi
lineari; si tratta di una formula, nota come regola di Cramer, che permette di
esprimere la soluzione di un sistema di n equazioni lineari in n incognite.

Teorema 3.2.24 (REGOLA DI CRAMER). Sia AX = B un sistema di n equa-
zions lineart in n incognite, ove

ail a12 . QA1n T b1

a1 a2 e a9on To b2
A= . . . X=1. B =

Gn1 QAp2 ... Qpn Tn bn

Se det A ¢ invertibile, il sistema ammette un’unica soluzione data, per ogni
i=1,...,n, da
xXr; = A_lAi,

ove A =det A e A; ¢é il determinante della matrice ottenuta da A sostituendo
la sua i-esima colonna con la colonna B dei termini noti.

Dimostrazione. Se det A ¢ invertibile, la matrice A ¢ invertibile, pertanto il
sistema AX = B ha un’unica soluzione data da X = A~!B. Ricordando che
l'inversa di A & data dalla formula A~! = (det A)~! A*, sviluppando il prodotto
righe per colonne di A~! per B si ottiene

x; = A7! Z(—l)Hh | Api| b
h=1

Consideriamo ora il determinante A; della matrice ottenuta da A sostituendo la
sua i-esima colonna con la colonna B dei termini noti. Sviluppando A; secondo
la i-esima colonna, si trova

A= (=1 by [ Al
h=1

da cui si deduce che z; = A™!A;, come volevasi dimostrare. O
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3.2.1 Calcolo del determinante di una matrice mediante I'eli-
minazione di Gauss

Tutti i metodi di calcolo del determinante di una matrice quadrata di ordine
n che abbiamo visto finora coinvolgono, in generale, una somma di n! termini,
ciascuno dei quali &, a sua volta, un prodotto di n elementi di A, preso con un
opportuno segno. L’utilizzo della formula di Laplace semplifica il calcolo del
determinante nel caso in cui la matrice contenga molti zeri; se invece la matrice
¢ priva di zeri, il numero di termini da sommare rimane sempre n!.

Vedremo ora come, sfruttando le proprieta di multilinearita e di alternan-
za del determinante, sia possibile trovare un algoritmo di calcolo molto piu
efficiente.

Nel Capitolo 2, al paragrafo 2.3.2, abbiamo descritto un metodo per il calco-
lo del rango di una matrice basato sulla cosiddetta “eliminazione di Gauss.” Si
trattava di ridurre una matrice a una forma a scala tramite una successione di
opportune operazioni elementari sulle righe. Nel caso di una matrice quadrata,
la forma finale a scala non ¢ altro che una matrice triangolare superiore. Cio si-
gnifica che, se A = (a;5) € M, (K) ¢ una matrice quadrata di ordine n, mediante
una successione di operazioni elementari sulle righe € possibile trasformarla in
una matrice triangolare superiore

/ Vi ! !
ap; Q@12 aiz ... Ay
/ i A
0 ay ayy ... ay,
i A
A =10 0 a33 ... aj,
0 0 0o ... d

11 calcolo del determinante di A’ &€ immediato:

det A" = alyaby -+ al,,.
Poiché l'effetto sul determinante di una matrice di ciascuna operazione elemen-
tare sulle righe € noto, € possibile tenerne conto per trovare la relazione esistente
tra il determinante della matrice A e quello di A’. Vale la pena ricordare i tre
tipi di operazioni elementari sulle righe e i loro effetti sul determinante di una
matrice:

(1) scambiare due righe tra loro: in tal caso il determinante cambia di segno;

(2) moltiplicare una riga per uno scalare A: in tal caso il determinante risulta
moltiplicato per A;

(3) sommare a una riga un multiplo di un’altra riga: in tal caso il determinante
non cambia.

Questo metodo permette dunque di calcolare il determinante di una matrice
A effettuando solamente delle operazioni elementari sulle sue righe, al fine di
ridurla a una forma triangolare superiore (naturalmente si potrebbero anche
effettuare operazioni elementari sulle colonne, oppure si potrebbe ridurre la
matrice a una forma triangolare inferiore).

Possiamo fare una stima grossolana del numero massimo di operazioni neces-
sarie per calcolare, nel modo appena descritto, il determinante di una matrice



Capitolo 3 Determinanti 87

quadrata di ordine n. Gli elementi al di sotto della diagonale principale sono

(n—1)n
2

e tutti questi devono essere trasformati in zeri. La produzione di uno di questi
zeri avviene sommando a una riga un multiplo di un’altra riga, e la somma di due
vettori riga equivale a n somme di numeri (in realtd, piu si avanza nell’algoritmo,
meno somime sono necessarie, perché molti elementi delle righe da sommare sono
degli zeri). Pertanto il numero di “operazioni” necessarie (trascurando eventuali
scambi di righe) & circa pari a

1+24+---+(n—-1)=

_ 3_ 2
n(n 1)n:n n
2 2

_— . 3_,2 A . .
Poiché, per n grande, il numero *—"- ¢ molto piu piccolo di n!, questo algorit-

mo per il calcolo del determinante risulta di gran lunga piu efficiente di quelli
descritti in precedenza.

Esempio 3.2.25. Descriviamo ora il calcolo del determinante della seguente
matrice utilizzando il metodo dell’eliminazione di Gauss.

2 1 -1 3

-1 3 1 2

A= 2 -1 4 1

3 -2 1 4

Scambiando la prima con la seconda riga, si ha:

-1 3 1 2
2 1 -1 3
detA=—)y 41 4 1
3 -2 1 4

Ora alla seconda riga sommiamo il doppio della prima, alla terza riga sommiamo
il doppio della prima e alla quarta riga sommiamo la prima moltiplicata per 3:

det A= —

A questo punto, alla terza riga sommiamo la seconda moltiplicata per —6 e alla
quarta riga sommiamo la seconda moltiplicata per —4:

-1 1 3 2
0o 1 7 7
0 0 =37 =37
0
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Ora raccogliamo —37 dalla terza riga:

-1 1 3 2

0 1 7 7
det A = —37 00 1 1

0 0 —-21 -18

Infine, alla quarta riga sommiamo la terza moltiplicata per 21:

-1 1 3 2
0o 1 7 7
det A = —37 0 o0 1 1
0 0 0 3

Si ottiene cosi
det A =—-37-(-3) =111

Esempio 3.2.26 (IL DETERMINANTE DI VANDERMONDE). Siano z1,...,%, € K,
con n > 2, e consideriamo la seguente matrice, detta matrice di Vandermonde:

1 1 1
T T2 T
2 2 2
Ty T3 Ty
—1 n—1 n—1
Ly ) T

Il determinante di questa matrice ¢ detto determinante di Vandermonde e verra

indicato con V(x1,xa,...,x,). Vogliamo dimostrare che si ha
V(o oan) = [ (25— ). (3.2.3)
1<i<j<n

Procediamo per induzione su n. Per n = 2 si ha

1 1

V(.Tl,fﬂg) = T To

= T9 — T1.

Supponiamo dunque che sia n > 2 e che la formula (3.2.3) valga per n — 1. Per
calcolare V(x1,x2,...,2,) effettuiamo le seguenti operazioni elementari sulle
righe della matrice di Vandermonde: alla n-esima riga sottraiamo la (n — 1)-
esima moltiplicata per z, alla (n — 1)-esima riga sottraiamo la (n — 2)-esima
moltiplicata per x1, ..., alla seconda riga sottraiamo la prima moltiplicata per
1. Si ottiene dunque

1 1 1 1
0 To — X1 T3 — X1 Tp — T
V(... 2n) = 0  xo(xa—21) z3(xs —x1) ... zp(m,—x1)

L L L

0 ay “(xe—z1) 25 “(xg—ax1) ... a0 %(zp—21)
Xro — I r3 — I Ty — X1

xo(xo — 1) z3(xs —x1) ... xp(Th—x1)
w§_2(m2 — 1) xg_Q(xg —x1) ... 2 2%(x, — 1)
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Ora dalla prima colonna possiamo raccogliere il termine x5 — x1, dalla seconda il

termine x3—x1, ..., dall’'ultima colonna possiamo raccogliere x,, —x1, ottenendo
cosl
1 1 1
To T3 SN Tn
V(ﬂfl,...,ﬂjn):(332—$1)($3—5E1)"'(1‘n—5€1) .
n—2 n—2 n—2
2 T3 Tn

Quest’ultimo determinante non & altro che il determinante di Vandermonde
V(za,...,x,) che, per ipotesi induttiva, & uguale a H2§i<j§n(xj — x;). Sosti-
tuendo nella formula precedente si ottiene

V(z1,22,...,2,) = H () — x;).

1<i<j<n

3.2.2 |l determinante di un endomorfismo

Sia f un endomorfismo di uno spazio vettoriale V' di dimensione finita su K.
Fissando una base di V', & possibile associare a f una matrice A € M,,(K), ove
n = dim V. Naturalmente, a basi diverse di V' corrispondono matrici diverse di
f, tuttavia tutte queste matrici sono simili tra loro.

Proposizione 3.2.27. Matrici simili hanno lo stesso determinante.

Dimostrazione. Due matrici A, A’ € M, (K) sono simili se e solo se esiste una
matrice invertibile P tale che

A= PAP.
Dal Teorema di Binet si deduce che

det A’ = (det P)(det A)(det P™1) = (det P)(det A)(det P)™! =det A. [

Questo risultato ci permette di definire il determinante di un endomorfismo f
come il determinante di una matrice A associata a f tramite la scelta di una
base di V, in quanto tale determinante non dipende dalla base scelta.

Definizione 3.2.28. Sia f un endomorfismo di V. Il determinante di f e il
determinante di una matrice di f rispetto a una qualche base di V.

Una conseguenza immediata del Teorema di Binet ¢ la seguente:
Proposizione 3.2.29. Siano f e g due endomorfismi di V. Allora
det(go f) = (det g)(det f).
Se f & invertibile, si ha
det(f~1) = (det f)~ 1.
Vale inoltre il seguente risultato:

Proposizione 3.2.30. Un endomorfismo f di uno spazio vettoriale V di di-
mensione finita su K é un isomorfismo se e solo se det f # 0.

Dimostrazione. Sia A la matrice di f rispetto a una qualche base di V. Allora
f € un isomorfismo se e solo se A ¢ invertibile ma, per il Corollario 3.2.22, A &
invertibile se e solo se det A = det f # 0. O
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3.3 Determinanti e rango

Nel Capitolo 2, il rango (per colonne) di una matrice ¢ stato definito come
il massimo numero di colonne linearmente indipendenti. Naturalmente si puo
anche definire un analogo rango per righe, come il massimo numero di righe
linearmente indipendenti. In questa sezione dimostreremo che le due definizioni
di rango coincidono e analizzeremo le relazioni esistenti tra il rango di una
matrice A e i determinanti delle sottomatrici quadrate che si possono estrarre
da A.

Teorema 3.3.1. [l rango per righe e il rango per colonne di una matrice A €

My n(K) coincidono.

Dimostrazione. Indichiamo con r il rango per righe e con c il rango per colonne
di A. Se r = 0 allora tutti gli elementi di A sono nulli e quindi anche ¢ = 0.
Supponiamo quindi che sia 7 > 0. Una relazione di dipendenza lineare tra le
colonne di A

A(l)l'l + A(g)l‘g + -+ A(n)xn =0

¢ una soluzione non nulla del sistema omogeneo
AX =0, (3.3.1)

ove X = Yz1,...,7,). Pertanto il rango per colonne di A & determinato?
dall’insieme delle soluzioni del sistema (3.3.1).

Poiché una permutazione delle righe di A non modifica 'insieme delle solu-
zioni del sistema (3.3.1), né tantomeno modifica il rango per righe di A, non &
restrittivo supporre che le r righe linearmente indipendenti di A siano proprio le
prime 7. Di conseguenza, le righe AT+D_ AC+2) - A(M) gono delle combina-
zioni lineari delle prime r righe di A. Cio significa che le ultime m — r equazioni
del sistema AX = 0 sono combinazioni lineari delle prime r e, pertanto, il si-
stema AX = 0 & equivalente al sistema A’X = 0, ove A’ ¢ la matrice costituita
dalle prime r righe di A:

A
A = :
A

Poiché A e A’ individuano sistemi lineari aventi lo stesso insieme di soluzioni,
e poiché l'insieme delle soluzioni determina il rango per colonne della matrice,
le due matrici A e A’ devono avere lo stesso rango per colonne, quindi il rango
per colonne di A’ & uguale a c. Dato che le colonne di A’ sono vettori di K", si
ha necessariamente ¢ < r.

Ragionando allo stesso modo sulla matrice A, si conclude che ¢ anche r < ¢,
e quindi deve essere r = c. O

Da questo risultato discende che la distinzione tra rango per righe e rango
per colonne di una matrice € del tutto inutile. Si potra dunque parlare sempli-
cemente del rango di una matrice per indicare il valore comune dei due tipi di
rango, per righe e per colonne.

IRicordiamo che si ha rk(A) = n — null(A), ove null(A) & la dimensione dello spa-
zio delle soluzioni del sistema omogeneo AX = 0 (vedi Capitolo 2, Definizione 2.2.15 e
Osservazione 2.1.13).
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Corollario 3.3.2. Le operazioni elementari sulle righe o sulle colonne di una
matrice non ne modificano il rango.

Dimostrazione. E del tutto evidente che le operazioni elementari sulle righe di
una matrice non ne modificano il rango per righe, mentre le operazioni elemen-
tari sulle colonne non ne modificano il rango per colonne. Poiché i due tipi di
rango coincidono, si conclude. O

Osservazione 3.3.3. Da quest’ultimo risultato discende che nel metodo dell’e-
liminazione di Gauss descritto nel Cap. 2, Sezione 2.3.2, per calcolare il rango
di una matrice si possono usare sia operazioni elementari sulle righe che sulle
colonne.

Proposizione 3.3.4. Siano A € M, ,(K) e B € M, »(K) due matrici.
(i) Si ha:
rk(AB) < min (rk(4),1k(B)). (3.3.2)
(it) Sem=mn e A é invertibile, si ha

rk(AB) = rk(B).

(iii) Sen=r e B é invertibile, si ha

rk(AB) = rk(A).

Dimostrazione. (i) Siano Fy : K" — K™ e Fg : K" — K" le applicazioni
lineari definite dalle matrici A e B rispettivamente. Allora AB & la matrice
dell’applicazione composta F4 o Fg : K™ — K™. Ricordando che il rango di
una matrice € uguale alla dimensione dell'immagine dell’applicazione lineare
corrispondente, la disuguaglianza (3.3.2) & equivalente alla seguente:

dim Im(F4 o F) < min (dimIm(F4), dimIm(Fg)),

la dimostrazione della quale & un facile esercizio.

(ii) Se m = n, dire che A & invertibile equivale a dire che F4 : K™ — K™ &
un isomorfismo. Da cid discende che Im(Fp) = Fa(Im Fg), quindi dimIm(Fy4 o
Fp) = dimIm(Fg), cioe rk(AB) = rk(B).

(éi2) Infine, se n = r, linvertibilitdh di B equivale all’invertibilitd di Fg e
pertanto si ha Im(F4 o Fg) = Im(F4), e quindi rk(AB) = rk(A). O

Nel caso delle matrici quadrate, si ha:

Teorema 3.3.5. Una matrice quadrata di ordine n é invertibile se e solo se ha
rango m.

Dimostrazione. Se A & invertibile, in base alla proposizione precedente si ha
tk(A) = rk(A71A) = 1k(1,,) = n.

Viceversa, supponiamo che A abbia rango n. Allora le sue colonne Ay, ...,
A(p) costituiscono una base di K", quindi, per ogni j = 1,...,n, esistono
blj, bgj, . ,bnj € K tali che

Aybij + A@ybay + - + A@ybnj = €, (3.3.3)
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ove e; ¢ il j-esimo vettore della base canonica di K™. Se poniamo B = (b;;), le
equazioni (3.3.3) possono essere riscritte come segue:

AB =1,,
da cui segue che A & invertibile. O

Sia A € M, ,(K) una matrice con m righe e n colonne. Fissiamo degli
indici di riga 1 <4y < i < --- < i, <m e degli indici di colonna 1 < j; < ja <
-+ < jq <neponiamo I = {iy,ia,...,5} e J = {j1,52,...,7q}. Indicheremo
con Ayy la sottomatrice p x ¢ di A costituita dagli elementi comuni alle p righe
e alle ¢ colonne determinate dagli indici degli insiemi I e J rispettivamente.

Proposizione 3.3.6. Se B ¢ una sottomatrice della matrice A, allora rk(B) <
rk(A).

Dimostrazione. Siano A € My, n(K), I = {i1,42,...,ip} e J = {j1,42,. -, Jq}
due insiemi di indici fissati e poniamo B = Aj;. Consideriamo la sottomatrice
C = Arn, ove N = {1,2,...,n}. Se interpretiamo il rango come rango per
righe (cioé come massimo numero di righe linearmente indipendenti), allora la
relazione

rk(C) < rk(A)

¢ ovvia. D’altra parte, B ¢ anche una sottomatrice di C e se, questa volta,
interpretiamo il rango come rango per colonne, allora la relazione

rk(B) < rk(C)
¢ ovvia. Da queste due disuguaglianze segue che rk(B) < rk(A). O

Siamo ora in grado di dimostrare il seguente teorema, il quale mette in
relazione la nozione di rango con quella di determinante.

Teorema 3.3.7. Il rango di una matrice A a coefficienti in un campo é uguale al
massimo degli ordini delle sue sottomatrici quadrate invertibili, cioé al massimo
degli ordini dei minori non nulli di A.

Dimostrazione. Sia p il massimo degli ordini delle sottomatrici quadrate inver-
tibili di A. Dal Teorema 3.3.5 e dalla Proposizione 3.3.6 segue che p < rk(A).
D’altra parte, posto r = rk(A), siano A1) AG2) = AGr) ¢ righe linearmente
indipendenti di A. Allora la sottomatrice A;y di A (ove I = {iy,42,...,%,} €
N =1{1,2,...,n}) harango r, quindi possiede r colonne, di indici, j1, j2, - - -, jr,
che sono linearmente indipendenti. Posto J = {j1,j2,..., -}, cio significa che
la sottomatrice quadrata di ordine r A;; ha rango r, pertanto & invertibile. Da
cio segue che p > r =rk(A). Si conclude dunque che deve essere p = rk(A). O

Osservazione 3.3.8. In base a questo risultato, il rango di una matrice A puo
anche essere definito come il massimo ordine dei minori non nulli di A. Utiliz-
zando quest’ultima come definizione del rango di una matrice, e ricordando che
il determinante di una matrice coincide con quello della sua trasposta, il fatto
che il rango di una matrice coincida con il rango della sua trasposta risulta del
tutto ovvio.

Da quest’ultimo teorema si deduce immediatamente il seguente criterio per
stabilire se n vettori di K™ formano una base:
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Corollario 3.3.9. [ vettori vi,va,...,v, € K" formano una base se e solo se
il determinante della matrice che ha come righe (o come colonne) i vettori dati
e diverso da zero.

Il principio dei minori orlati

Sia data una matrice A € M, ,(K) e supponiamo di volerne calcolare il rango
cercando di determinare il massimo ordine dei minori non nulli di A.

Supponiamo che A non sia la matrice nulla e quindi che il suo rango sia > 1.
Dovremo quindi calcolare i minori di ordine via via crescente, a partire da quelli
di ordine 2. Quando per un certo r si sara trovato un minore di ordine r non
nullo, mentre tutti i minori di ordine r + 1 sono nulli (oppure non esistono, nel
caso in cui 7 = min(m, n)), si concludera che rk(A) = r. Infatti dall’annullarsi di
tutti i minori di ordine r+1 segue ’annullarsi di ogni minore di ordine superiore:
cio si dimostra facilmente per induzione su s, sviluppando un minore di ordine
s > r + 1 secondo una sua riga o una sua colonna.

In realta, nella situazione appena descritta non & necessario verificare che
tutti i minori di ordine 7 + 1 siano nulli; basta limitarsi a quei minori di ordine
r + 1 che contengono la sottomatrice quadrata di ordine r con determinante
diverso da zero che abbiamo considerato. Vale infatti il seguente risultato:

Teorema 3.3.10 (TEOREMA DEI MINORI ORLATI). Sia A € M,, ,(K) e sia
B = Ajj una sottomatrice quadrata di ordine r di A tale che det B # 0. Sup-
poniamo che ogni sottomatrice quadrata di ordine r + 1 di A ottenuta aggiun-
gendo a B una riga e una colonna di A (i cosiddetti minori orlati di B) abbia
determinante nullo. Allora A ha rango r.

Dimostrazione. Sia B = Ary con I = {iy,i2,...,ir} e J ={j1,J2,...,4r}. Dal-
I'ipotesi det B # 0 discende che le colonne di indici ji, ..., j di A sono linear-
mente indipendenti. La condizione sull’annullamento dei determinanti di tutti
i minori orlati di B implica allora che ogni altra colonna di A & combinazione
lineare delle colonne di indici ji, ..., j-. Quindi A ha rango r. O

3.4 Orientamenti

In questa sezione supporremo che K sia un campo ordinato; ad esempio K = R,
con la relazione d’ordine usuale. Tutti gli spazi vettoriali che considereremo
saranno sempre finitamente generati.

Sia dunque V uno spazio vettoriale su K e siano v = {vy,va,...,0,} €
w = {wy,wa,...,w,} due basi di V. Indichiamo con P = (pij) la matrice di
cambiamento di base, dalla base v alla base w. Si ha dunque

n
wj; = E PijVi,
i=1

perogni j=1,...,n.
Definizione 3.4.1. Le basi v e w di V si dicono equiorientate se det(P) > 0.

E immediato verificare che ’equiorientazione & una relazione di equivalenza
sull’insieme £ di tutte le basi di V. Diamo quindi la seguente definizione:
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Definizione 3.4.2. Un orientamento di uno spazio vettoriale V (finitamente
generato su un campo ordinato K) € una classe di equivalenza per la relazione
di equiorientazione. Uno spazio vettoriale orientato € uno spazio vettoriale in
cui e stato scelto un orientamento.

Dato che, per una matrice P di cambiamento di base, si puod solo avere
det(P) > 0 oppure det(P) < 0, la relazione di equiorientazione ha solo due classi
di equivalenza. Cio significa che uno spazio vettoriale ammette solo due orien-
tamenti. Fissare un orientamento di uno spazio vettoriale V' equivale dunque a
fissare una base di V, con la convenzione che due basi equiorientate definiscono
lo stesso orientamento. I due possibili orientamenti di uno spazio vettoriale sono
detti 'opposto uno dell’altro.

Esempio 3.4.3. Sia V = R2. Nella figura seguente le basi {vi,vo} e {wy,ws}
sono equiorientate, mentre le basi {v1,v2} e {u1,u2} non sono equiorientate.

v

U1

v1

Siano V' e W due spazi vettoriali sul campo K. Se f : V — W & un isomorfismo,
limmagine f(v) = {f(v1),...,f(vn)} di una base v = {vy,...,v,} di V &
una base di W. L’orientamento di W definito dalla base f(v) risulta essere
indipendente dalla scelta della base v all’interno della sua classe di equivalenza.
Si ha infatti:

Lemma 3.4.4. Sia f : V. — W un isomorfismo di spazi vettoriali e siano
v = {v1,...,0,} e v = {vf,...,v},} due basi di V. Allora le basi f(v) =
{fv1)y..., flon)} e fF(¥v) = {f(W)),..., f(v,)} di W sono equiorientate se e
solo se lo sono le basi v e v'.

Dimostrazione. Sia P = (pij) la matrice di cambiamento di base, dalla base v
alla base v/. Si ha dunque

U; = Zpijvia
i=1

per ogni 5 = 1,...,n. Dalla linearita di f segue che

f() = f(znjpijvi) - znjpijf(vo,

il che dimostra che P & anche la matrice di cambiamento di base dalla base f(v)
alla base f(v'). O

Il risultato precedente ci permette di dare la seguente definizione:

Definizione 3.4.5. Siano V e W due spazi vettoriali orientati, di dimensione
n, sul campo K e siano v = {vy,...,v,} e w = {ws,...,w,} due basi che
rappresentano gli orientamenti fissati di V' e W rispettivamente. Diremo che un
isomorfismo f : V — W & compatibile con gli orientamenti di V e W, o che f &
un isomorfismo di spazi vettoriali orientati, se le basi f(v) = {f(v1),..., f(vn)}
ew = {wy,...,w,} di W sono equiorientate.
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Nel caso particolare in cui W =V, si ha:

Definizione 3.4.6. Sia V uno spazio vettoriale orientato e sia v = {vy,...,v,}
una base che rappresenta l'orientamento di V. Diremo che un automorfismo
f:V = V preserva Uorientamento di V se le basi f(v) = {f(v1),..., f(vn)}
e v = {vy,...,v,} sono equiorientate. In caso contrario si dice che f inverte
lorientamento di V.

Il seguente risultato fornisce una caratterizzazione degli automorfismi che
preservano 'orientamento:

Proposizione 3.4.7. Sia V uno spazio vettoriale orientato. Un automorfismo
f:V =V preserva Uorientamento di V' se e solo se det(f) > 0.

Dimostrazione. Sia v = {v1,...,v,} una base che rappresenta l’orientamento
di V. Se indichiamo con A = (aij) la matrice di f rispetto alla base v, si ha

flv;) = Zaiﬂ}n
i=1

per ogni 7 = 1,...,n. Cio significa che A ¢ la matrice di cambiamento di
base dalla base v = {vy,...,v,} alla base f(v) = {f(v1),..., f(vn)} e dunque
le basi v e f(v) sono equiorientate se e solo se det(A) > 0. Ricordando che
det(f) = det(A), si conclude. O

Osservazione 3.4.8. E immediato verificare che la composizione di due automor-
fismi di V' che preservano 'orientamento & ancora un automorfismo che preserva
lorientamento. Analogamente, I'inverso di un automorfismo che preserva l’o-
rientamento € ancora un automorfismo che preserva 'orientamento. Pertanto
il sottoinsieme Auty (V) di Aut(V) formato dagli automorfismi che preservano
Porientamento ¢ un sottogruppo del gruppo degli automorfismi di V.

Esercizi

Esercizio 3.4.1. Si calcoli

2 0 3 -1

4 1 2 0

det g 3 9

2 0 2 -1

Esercizio 3.4.2. Si calcoli

2 3 4 —1 2
2 3 4 -1 1
det |2 3 5 1 1
2 1 1 1 1
1 2 -1 2 —1

Esercizio 3.4.3. Si calcoli 'inversa della matrice
2 -3 -1

A=1(2 -1 -3

1 -3 -1
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Esercizio 3.4.4. Si calcoli 'inversa della matrice

1 2 1
A=11 3 0
1 2 2

Esercizio 3.4.5. Si calcoli il rango della seguente matrice mediante il calcolo dei

suoi minori:

1 2 3 1
A=|(4 5 6 1
7 8 9 1
Esercizio 3.4.6. Utilizzando il metodo di eliminazione di Gauss, si calcoli il

determinante della seguente matrice n x n:

11 1 --- 1
1 2 1 -+ 1
11 3 --- 1
11 1 -+ n

Esercizio 3.4.7. Si indichi con A, la seguente matrice n X n:

2 1 0
3 2 1
A, =10 3 2

Determinare una formula ricorsiva per calcolare det A,,, per ogni intero n > 1.

Esercizio 3.4.8.  Si indichi con D, (per n > 1) il determinante della seguente

matrice tridiagonale di ordine n:

1 -1 0

Si dimostri che D,, = Dyp—1 + D, —2. La successione dei D,, coincide pertanto con la

successione dei numeri di Fibonacci: 1, 2, 3, 5, 8, 13, ...

Esercizio 3.4.9. Si indichi con A,, la seguente matrice n X n:

14+ a: 1 1
1 1+ a2 1
A, = 1 1 1+ as
1 1 1
ove ai,...,a, € K. Si dimostri che, per ogni intero n > 2, si ha

n
det A, = a1az2---an + E a1a - Q- An,
i=1

dove a; significa che I’elemento a; non compare nel prodotto.
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Esercizio 3.4.10. Dati a,x € K, si calcoli il determinante della seguente matrice
n xn:

r a a a
a T a a
a a T a
a a a ZT

Esercizio 3.4.11. Sia A una matrice n X n e sia A* la sua matrice aggiunta. Si
dimostri la seguente formula dovuta a Cauchy:

AT = 1A]"

Esercizio 3.4.12. Sia K un campo di caratteristica diversa da 2 e sia A € M, (K)
una matrice antisimmetrica, cioé tale che ‘A = —A. Si dimostri che se n & dispari
allora det A = 0.

Esercizio 3.4.13. Data una matrice A € My, »(K), si dimostri che det(tAA) > 0.
Si provi inoltre che det(*AA) > 0 se e solo se tk(A) = n.



Capitolo 4

Diagonalizzazione degli
Endomorfismi

In questo capitolo ci occuperemo del seguente problema: dato un endomorfismo
f di uno spazio vettoriale di dimensione finita V', & possibile trovare una base di
V rispetto alla quale la matrice di f assuma una qualche forma particolarmente
semplice (ad esempio, sia una matrice diagonale)?

Per rispondere a tale domanda introdurremo le nozioni di autovalore e auto-
vettore di un endomorfismo f di uno spazio vettoriale V' e determineremo delle
condizioni necessarie e sufficienti affinché f sia diagonalizzabile. Per terminare,
descriveremo la forma canonica di Jordan di un endomorfismo di uno spazio
vettoriale di dimensione finita.

4.1 Autovalori e autovettori

Sia V' uno spazio vettoriale di dimensione n sul campo K esia f: V — V una
funzione lineare. Nel Capitolo 2 abbiamo visto come, fissando una base di V,
sia possibile associare a f una matrice quadrata di ordine n, a coefficienti in
K. Naturalmente, a basi diverse di V' corrispondono matrici diverse di f, tutte
simili tra loro. Ci si puo dunque chiedere se sia possibile trovare una base di
V' in modo tale che la corrispondente matrice di f assuma una qualche forma
canonica (particolarmente semplice) prefissata.

Supponiamo, ad esempio, che esista una base di V costituita da vettori
V1,2, ..., U, tali che f(v;) = \jv;, per i = 1,...,n, per opportuni scalari \; €
K. Rispetto a tale base la matrice di f assumerebbe la seguente forma diagonale

M O -0
0 X -+ 0
0 0 - A

98
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Diamo quindi la seguente definizione:

Definizione 4.1.1. Un endomorfismo f di V' & diagonalizzabile se esiste una
base di V tale che la matrice di f rispetto a tale base sia diagonale.

Ricordando che due matrici quadrate si dicono simili quando esse rappre-
sentano lo stesso endomorfismo rispetto a basi diverse, possiamo anche dare la
seguente definizione:

Definizione 4.1.2. Una matrice quadrata A & diagonalizzabile se essa € simile
a una matrice diagonale, cioe se esiste una matrice invertibile S e una matrice

diagonale D tale che A = SDS™!.

Il nostro obiettivo sara quindi quello di cercare di determinare sotto quali
condizioni una matrice quadrata (o un endomorfismo di uno spazio vettoriale)
¢ diagonalizzabile.

Iniziamo col dare la seguente definizione:

Definizione 4.1.3. Un autovalore di un endomorfismo f di V' & un elemento
A € K per cui esiste almeno un vettore non nullo v € V tale che f(v) = Av. Un
tale vettore v & detto un autovettore di f relativo all’autovalore \.

Dato A € K indicheremo semplicemente con A : V. — V D’applicazione
A idy, cioe I'applicazione che manda un vettore v nel vettore Av. L’equazione
f(v) = Av pud quindi essere riscritta nella seguente forma: (f — A)(v) = 0. Da
cio si deduce che l'insieme degli autovettori relativi all’autovalore A (assieme al
vettore nullo) non & altro che il nucleo dell’applicazione lineare

f=2: V=V, v f(v)= .
Poniamo
Vi=Ker(f — ) ={veV]|flv) = v}
Si ha dunque:

Proposizione 4.1.4. Per ogni autovalore A di un endomorfismo f di V, l'in-
steme

W={veV|f(v) =}
e un sottospazio vettoriale di V. Esso & detto ’autospazio di f relativo all’au-
tovalore .

Prima di iniziare lo studio delle principali proprieta degli autovalori e degli
autovettori, vediamo come sia possibile determinarli.

Sia dunque f un endomorfismo di uno spazio vettoriale V' di dimensione
n sul campo K. Dalla definizione segue subito che A € K & un autovalore
di f se e solo se Ker(f — A) # {0}, il che equivale a dire che 'applicazione
lineare f — A : V. — V non ¢ iniettiva. Ricordiamo ora che richiedere che
f — X non sia iniettiva equivale a richiedere che det(f — A) = 0 (vedi Cap. 3,
Proposizione 3.2.30). Possiamo cosi concludere che A ¢ un autovalore di f se e
solo se det(f — A) = 0.

Per calcolare questo determinante possiamo fissare arbitrariamente una base
di V' e considerare la corrispondente matrice A associata a f. Se indichiamo con

A0 --- 0
0O A --- 0
A=) .
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la matrice associata all’applicazione lineare X idy,, si ha
det(f — A) =det(A—X-1).
Diamo ora la seguente definizione:

Definizione 4.1.5. Sia A una matrice quadrata di ordine n a coefficienti in K
e x una indeterminata. Il polinomio caratteristico di A &

Py(x) =det(A—2z-1).

Osserviamo che, se A € M,,(K), P4(z) & un polinomio di grado n a coeflicienti
in K, il cui monomio di grado pit elevato & (—1)"a™. A tale riguardo, facciamo
notare che alcuni autori definiscono il polinomio caratteristico di una matrice A
ponendo

Py(z) =det(x-1—A) = (-1)"det(A —z - 1),

per fare in modo che P4(z) sia un polinomio monico.
Il prossimo risultato mostra che il polinomio caratteristico di una matrice
quadrata dipende, in effetti, solo dalla sua classe di simiglianza.

Proposizione 4.1.6. Sia [ un endomorfismo di V e siano A e A’ due matrici
di f, rispetto a due basi diverse di V. Allora si ha Pa(x) = Pas(x).

Dimostrazione. Ricordiamo che due matrici A e A’ sono associate allo stesso
endomorfismo f di V se e solo se esse sono simili, cioe se e solo se esiste una
matrice invertibile S tale che A’ = SAS~!. In tal caso si ha:

det(A" —z-1) = det(SAS™! —2-1)
=det (S(A—z-1)S™)
= det(S) det(A — x - 1) det(S™)
=det(A—z-1),

dato che det(S~1!) = (det )L O
In base a questo risultato, possiamo dare la seguente definizione:

Definizione 4.1.7. 1l polinomio caratteristico Py(x) di un endomorfismo f di
uno spazio vettoriale V' di dimensione finita ¢ il polinomio Py(z) = det(f — x).
Esso coincide con il polinomio caratteristico P4(z) di una qualsiasi matrice
associata a f.

Da quanto detto in precedenza, concludiamo che A € K & un autovalore di
f se e solo se A & una radice del polinomio caratteristico di f, cioé se e solo se
Py(N) =0.
Osservazione 4.1.8. L’equazione det(A — z - 1) = 0 ¢ detta I’equazione caratte-
ristica, o equazione secolare, della matrice A.

Osservazione 4.1.9. Notiamo che, poiché gli autovalori di una matrice quadrata
di ordine n sono le soluzioni della sua equazione caratteristica, la quale ha grado
n, non ¢ detto che una matrice quadrata a coefficienti in un campo K abbia
necessariamente degli autovalori in K. Gia nel caso in cui K = Ren = 2, & noto
che ci sono equazioni di secondo grado che non hanno soluzioni reali. Se invece
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K & un campo algebricamente chiuso, come ad esempio il campo C dei numeri
complessi, allora ogni polinomio di grado n > 1 a coefficienti in K possiede n
zeri in K (contati con le appropriate molteplicita), quindi ogni matrice quadrata
a coefficienti in un campo algebricamente chiuso possiede degli autovalori.

Osservazione 4.1.10. Abbiamo visto che, se due matrici quadrate sono simili,
esse hanno lo stesso polinomio caratteristico. Non vale invece il viceversa. Ad
esempio, le seguenti matrici di ordine n

a 0 --- 0 O a 1 0 - 0
0O o --- 0 O 0O o 1 --- 0
Do ; e ;

0 0 a 0 0 0 a 1
0 0 0 o 0 0 0 o

hanno lo stesso polinomio caratteristico (o — )™, ma, ovviamente, non sono
simili, dato che una matrice diagonale & simile solo a sé stessa.

Una volta noti gli autovalori, la determinazione degli autovettori non pre-
senta alcuna difficolta. Se A & un autovalore di f (o di una matrice A) gli
autovettori corrispondenti sono gli elementi non nulli del sottospazio vettoriale
Ker(f — A). Si tratta dunque di determinare le soluzioni non nulle del seguente
sistema di equazioni lineari:

T
(A=X-1)| : | =0.

Ln

Vediamo ora alcuni esempi.

Esempio 4.1.11. Consideriamo la matrice a coefficienti reali

A:G?Bv'

Essa corrisponde alla seguente applicazione lineare:

fiR? LR <®HCﬁ
Il polinomio caratteristico della matrice A &

det(A —x-1) = det (—33 _1) =22 +1
1 —=

che non ha zeri reali. La matrice A non ha dunque autovalori reali (ha tuttavia

due autovalori complessi, dati da 1 = vV—1 e 29 = —y/—1).

Esempio 4.1.12. Consideriamo la matrice a coefficienti reali

(0.

Il polinomio caratteristico di A e

—x 4

det(A—az:-l)zdet(1 4y

>:x2—4x+4:(x—2)2.



Capitolo 4 Diagonalizzazione degli Endomorfismi 102

Tale polinomio possiede un unico' zero reale x = 2. Gli autovettori sono dunque
le soluzioni non nulle del seguente sistema:

(A—2-1) (2) =0,

(2 ()= )

Questo sistema si riscrive come segue

cioe

—2x1 +425 =0
—x1 + 21‘2 =0

e le sue soluzioni sono dunque le soluzioni della singola equazione x1 = 2z5. Lo
spazio delle soluzioni & pertanto
o€ R}

2a
=1 (%)
il quale ha dimensione 1.

Abbiamo cosi concluso che 'autospazio relativo all’autovalore A = 2 ha
dimensione 1. Poiché non ci sono altri autovalori, cio significa che non esiste
una base di R? formata da autovettori di A. Quindi A non ¢ diagonalizzabile.

Esempio 4.1.13. Consideriamo la matrice a coefficienti reali

-5 8
A= (_ ; 7) |
11 polinomio caratteristico di A &

det(A:c~1)det<_5_x 8 )x22x3.

—4 7T—x
Tale polinomio possiede due radici reali x;1 = —1 e x5 = 3; questi sono i due
autovalori di A.
Consideriamo 'autovalore Ay = —1; i corrispondenti autovettori sono le

soluzioni non nulle del seguente sistema:

(2 )E)-6)

Questo sistema si riscrive come segue

74.%1 + 81‘2 =0
—4x1 4+ 8x5 =0

n questo caso, 'unica soluzione dell’equazione (z — 2)2 = 0 deve essere contata con
molteplicita 2, cioé considerata come due soluzioni coincidenti.
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e le soluzioni sono quindi quelle della singola equazione x1; = 2z5. Lo spazio

delle soluzioni ¢ dunque
@

il quale ha dimensione 1. Una base di tale sottospazio e costituita, ad esempio,
dal vettore v1 = (2,1).

Consideriamo ora ’autovalore Ay = 3; i corrispondenti autovettori sono le
soluzioni non nulle del seguente sistema:

(A-3-1) (2) =0,

(2 96)-0)

Questo sistema si riscrive come segue

cioe

—8x1 + 8z =0
—4.’E1 + 41’2 =0

e le sue soluzioni sono quindi le soluzioni della singola equazione x1 = x2. Lo
spazio delle soluzioni € dunque

() s

il quale ha dimensione 1. Una base di tale sottospazio e costituita, ad esempio,
dal vettore vy = (1,1).

Si pud facilmente verificare che i vettori v; = (2,1) e v = (1,1) sono
linearmente indipendenti, quindi formano una base di R2.

In conclusione, esiste una base di R? formata da autovettori di A4, quindi A
¢ diagonalizzabile.

Vediamo ora di studiare piu in dettaglio alcune proprieta degli autovalori e
degli autovettori di un endomorfismo f di V.

Definizione 4.1.14. Sia f un endomorfismo di uno spazio vettoriale di di-
mensione finita V' e sia P(x) il suo polinomio caratteristico. Sia A € K un
autovalore di f. La molteplicita (algebrica) di A & il pitt grande intero m tale
che (z — A)™ divida P(z). La dimensione dell’autospazio Vy = Ker(f — \) &
detta la molteplicita geometrica (o la nullita) di A.

Proposizione 4.1.15. Autovettori relativi ad autovalori distinti sono linear-

mente indipendenti, cioé: siano Ai,..., A autovalori di un endomorfismo f,
a due a due distinti, e sia v; un autovettore relativo all’autovalore N\;, per
i=1,...,r. Allora i vettori vy, ..., v, sono linearmente indipendenti.

Dimostrazione. Dimostriamo 'asserto per induzione su r. Se r = 1 si ha un
solo autovettore vy il quale, essendo non nullo, & linearmente indipendente.
Supponiamo quindi che ’asserto sia vero per r — 1 autovettori. Consideriamo
gli r autovettori vy, ..., v, e consideriamo una loro combinazione lineare

QU1+ QU1 + Uy, = 0. (411)



Capitolo 4 Diagonalizzazione degli Endomorfismi 104

Applicando 'endomorfismo f, e ricordando che f(v;) = A\;v;, si ottiene
ANV F o e A1 U1+ ap A, = 0. (4.1.2)
Moltiplicando la (4.1.1) per A, e sottraendo la (4.1.2) si ottiene
art(Ar — Ao+ -+ a1 (A — A1) = 0.

Per ipotesi induttiva i vettori vy, ..., v,_1 sono linearmente indipendenti, quindi
si deve avere

al(/\r — )\1) = Otz(/\r — )\2) == Oérfl(/\r — )\Tfl) =0.

Poiché gli autovalori \; sono a due a due distinti, si deduce che

Sostituendo questi valori nell’equazione (4.1.1), essa si riduce a v, = 0, da cui
segue ;. = 0. Abbiamo cosi dimostrato che i vettori vy, ..., v, sono linearmente
indipendenti. O

Le due molteplicita, algebrica e geometrica, di un autovalore di un endomor-
fismo soddisfano la seguente proprieta:

Proposizione 4.1.16. Sia V uno spazio vettoriale di dimensione finita su K
e sia f un endomorfismo di V. Sia A € K un autovalore di f di molteplicita
algebrica m. Allora si ha

dim V) < m,

cioé la molteplicita geometrica di un autovalore e minore o uguale della sua
molteplicita algebrica.

Dimostrazione. Sia r = dim V), e sia vyp,...,v, una base di V). Completiamo,
in modo arbitrario, tale base ad una base v1, ..., v, Uy41,...,v, di V. Rispetto
a questa base, la matrice A di f assume la seguente forma a blocchi
A1, B
A= "

ove 1, e la matrice identica di ordine r, B & una matrice con r righe e n — r
colonne e C' & una matrice quadrata di ordine n — r.

La matrice A puod dunque essere usata per calcolare il polinomio caratteri-
stico di f, ottenendo

Py(z) = det(A—z-1) = det (A—2)-1,)det(C—z-1) = (A—2)" det(C —z-1).

Da cio si deduce che X & una radice di molteplicita > r del polinomio Py (z),
pertanto si ha m > r = dim V), che ¢ cio che si voleva dimostrare.

Siamo ora in grado di dimostrare il seguente risultato:

Teorema 4.1.17. Sia f : V — V un endomorfismo di uno spazio vettoriale V
di dimensione n sul campo K. Indichiamo con A1, Aa, ..., A\, gli autovalori di
fin K e con my,ma,...,m, le rispettive molteplicita algebriche. Allora f €
diagonalizzabile se e solo se my +ms + -+ 4+ m, = n e, per ogni autovalore \;,
la sua molteplicita geometrica coincide con la molteplicita algebrica.
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Dimostrazione. Se f e diagonalizzabile esiste una base di V rispetto alla quale
la matrice di f ¢ una matrice a blocchi del tipo

A1, 0 0
0 X1, 0
0 0 A\ -1,

Utilizzando questa matrice per calcolare il polinomio caratteristico di f, si trova
Pf($) = (A — ac)M1()\2 — x)mz (A — x)7nr7

da cui si deduce che m; +mgo + --- + m, = deg Pr(x) = n. Inoltre, poiché f
¢ diagonalizzabile, esiste una base di V costituita da autovettori di f, da cui
segue che

dimVy, +dimVy, +---+dim V), =n=dimV.

Viceversa, supponiamo che esistano r autovalori di f in K, A1, Ag,..., A, di
molteplicita algebrica rispettivamente mq,mo, ..., m,, tali che my +ms+---+
m, = m e che, per ogni autovalore A\; di f, la sua molteplicita geometrica
coincida con la molteplicita algebrica; dobbiamo dimostrare che esiste una base
di V costituita da autovettori di f.

Dato che, per ipotesi, dim V), = m;, per ogni autovalore \;, esiste una base

Ug )7 vél), .. 1)7(71)1 dell’autospazio Vy,, per ogni ¢ = 1,...,r. Poiché, sempre per

ipotesi, &€ my + - - - + m, = n, 'insieme
1
{Ug )7...,1}7(%371); ),..., 7(727"'=U( ,v%l}

contiene esattamente n vettori, i quali sono linearmente indipendenti, come si
verifica facilmente ricordando che autovettori relativi ad autovalori distinti sono
linearmente indipendenti (Proposizione 4.1.15). Questi n vettori costituisco-
no quindi una base di V. Abbiamo cosi costruito una base di V formata da
autovettori di f; f e pertanto diagonalizzabile. O

Osservazione 4.1.18. In base a quanto visto, possiamo affermare che un endo-
morfismo f di uno spazio vettoriale V' di dimensione finita su K & diagonaliz-
zabile se e solo se f possiede autovalori A1,...,\. € K e si ha

V=V Vy,d  -BV,.

4.2 La forma canonica di Jordan

Sia V' uno spazio vettoriale di dimensione n sul campo C dei numeri complessi
esia f:V — V una funzione lineare.

Per ogni A € C indicheremo semplicemente con A\ : V' — V D’applicazione
lineare data da v — Av (sarebbe piu corretto, ma pilt noioso, indicare tale
funzione con Aidy, ove idy & lapplicazione identica di V' in sé).

Ricordiamo che A € C & un autovalore di f se Ker(f — A) # {0} e che
un vettore non nullo v € V' & un autovettore associato all’autovalore \ se v €
Ker(f—\), cioe se f(v) = Av. Se A & un autovalore di f, il sottospazio vettoriale
Ker(f — A) di V & lautospazio relativo all’autovalore .



Capitolo 4 Diagonalizzazione degli Endomorfismi 106

Ora generalizzeremo la nozione di autovettore. Per ogni intero m > 0
indicheremo con (f — A)™ Dlapplicazione lineare composta

(f=A)o(f=Ao---o(f =)

m

Definizione 4.2.1. Sia A € C un autovalore di f : V — V. Un vettore non
nullo v € V e detto un autovettore generalizzato di f, relativo all’autovalore A,
se v € Ker(f — A\)™, per qualche m > 0.

Il minimo m per cui v € Ker(f — A)™ & detto il periodo di v (se m =1, v &
un autovettore ordinario).

Si noti che valgono le seguenti inclusioni
Ker(f —\) CKer(f —A\)?C--- CKer(f —A)™ C---CV. (4.2.1)

Indicheremo con
Vi = Ker(f - 0"

m>0

il sottospazio vettoriale di V' costituito dagli autovettori generalizzati relativi
all’autovalore A. Naturalmente si ha V) = Ker(f — A)", per r sufficientemente
grande.

Lemma 4.2.2. Sia v un autovettore generalizzato per f, relativo all’autovalore
A, e sia m il periodo di v (cio significa che v € Ker(f — A)™ ma v & Ker(f —
AN)™1). Allora gli m vettori

o, (f =N)@), (f = X)), -, (f =)™} (v)
sono linearmente indipendenti.

Dimostrazione. Consideriamo una combinazione lineare
v+ ar(f = N)) + ao(f = N2(0) + -+ am1(f =" (v) =0.

Se applichiamo (f—A)™~! ad ambo i membri (e ricordiamo che (f—\)™(v) = 0),
otteniamo

ag(f =A™ (v) +0=0,
da cui segue ay = 0. La precedente combinazione lineare si riduce pertanto a
ar(f = M) + o2(f = X)*(V) + - + am-1(f = A" (v) = 0.
Applicando ora (f — A)"™~2 ad ambo i membri, si ottiene
ar(f = A" (v) +0=0,

da cui segue ;7 = 0. Continuando in questo modo si dimostra che tutti i
coefficienti «; sono nulli. O

Da questo risultato discende che ogni autovettore generalizzato per f ha
periodo < n. Infatti, se un autovettore generalizzato v avesse periodo m > n,
gli m vettori v, (f—\)(v), ..., (f—A)™~(v) sarebbero linearmente indipendenti,
il che e assurdo dato che m > n = dim V. Quindi si ha

V)\ = Ker(f - )\)n
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Il risultato seguente € una generalizzazione, al caso degli autovettori generaliz-
zati, del fatto che autovettori relativi ad autovalori distinti sono linearmente
indipendenti.

Proposizione 4.2.3. Siano V ed f come sopra e siano A1, ..., A, autovalori di
f, a due a due distinti. Per ognii=1,...,r, sia v; € V), un autovettore gene-
ralizzato relativo all’autovalore \;. Allora i vettori vy, ...,v, sono linearmente
indipendenti.

Dimostrazione. Per ogni ¢+ = 1,...,r, indichiamo con m; il periodo di v; e

consideriamo I'endomorfismo (f — A\;)™i L.

Come prima cosa osserviamo che, per ogni i e j, gli endomorfismi (f — A;)*
e (f = \j)! commutano tra loro, per ogni s,t > 1. Cio discende dal fatto che le
potenze di f commutano tra loro e f commuta con la moltiplicazione per ogni
scalare A (perché f & lineare). Inoltre, per ogni ¢ = 1,...,r, il vettore

w; = (f = X)™ (vi)
¢ un autovettore di f relativo all’autovalore J\;, infatti si ha
(f = ) (wi) = (f = A)(f = X)™ Hwi) = (f = X)™ (vi) = 0.
Da cio discende che
(f = A" (wi) = N = Aj) " wi,

perognii,j =1,...,r ed ogni m > 1.
Consideriamo ora una combinazione lineare

Q1v1 + vz + -+ apv. =0
e applichiamo ad ambo i membri I’endomorfismo
(F=2)™7HF = X)™2(f = Xa)™ -+ (f = A)™.
Da quanto detto in precedenza si ottiene:
ar(Ar = A2)™2 (AL = A3)™ - (AL = A)™ (f = A)™ 7 (01) = 0

da cui, ricordando che gli autovalori A1, ..., A, sono a due a due distinti, discende
che oy = 0.
La combinazione lineare precedente si riduce quindi a

gV + -+ + apv, = 0.
Applicando ora ’endomorfismo

(f = A2)™ 7 = Aa)™ - (f = A)™

si ottiene:
as(Xa = Ag)"™ - (A2 = A)™ (f — A2)™  H(v2) =0

da cui segue as = 0.
Continuando in questo modo si dimostra che tutti gli o;, ¢ = 1,...,7, sono
nulli. O
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Ricordiamo che, anche se una funzione lineare f : V' — V possiede tutti
i suoi autovalori nel campo di definizione K (il che accade sempre, se K &
algebricamente chiuso), gli autovettori di f potrebbero non generare I'intero
spazio vettoriale V. In tal caso non esiste una base di V' costituita da autovettori
di f, quindi f non e diagonalizzabile. Vedremo ora che con gli autovettori
generalizzati un problema del genere non si presenta.

Proposizione 4.2.4. Sia V' uno spazio vettoriale di dimensione finita su C. Per
ogni endomorfismo f : V. — V esiste una base di V costituita da autovettori
generalizzati di f.

Dimostrazione. Dimostreremo I'enunciato per induzione sulla dimensione di V.
Se dim V' = 1 ogni funzione lineare f : V' — V e data dalla moltiplicazione per
uno scalare A, quindi ogni vettore v € V' ¢ autovettore di f.

Supponiamo dunque che il risultato sia vero per tutti gli spazi vettoriali di
dimensione strettamente minore di n = dim V. Sia A € C un autovalore di f e
sia V), = Ker(f —\)™ il sottospazio di V' costituito dagli autovettori generalizzati
di f relativi all’autovalore A. Se V' = V) la dimostrazione ¢ terminata (si veda
il Lemma 4.2.2). In caso contrario poniamo Wy = Im(f — A\)". Vogliamo
dimostrare che V =V, & W,.

Dato che dim V), + dim W) = dim V, ¢ sufficiente dimostrare che V\ " W) =
{0}. Sia dunque v € Vy N W,. Dato che v € W) = Im(f — A\)", si ha
v = (f — A)™(u), per qualche u € V. Ma, dato che v € V) = Ker(f — \)",
siha (f — A\)"(v) = (f — A)?"(u) = 0. Cid significa che anche u ¢ un autovet-
tore generalizzato per f, relativo all’autovalore A e, poiché il periodo di ogni
autovettore generalizzato ¢ < n, si deve avere (f — X)"(u) = 0, cio¢ v = 0.

Ora dimostriamo che W), & stabile per f, cioe che f(Wy) C W). Siav € Wy,
allora v = (f — A)™(u), per qualche u € V. Si ha

F@)=F((f =N"(w) = (f = 2)"(f(u)),

perché f commuta con (f — A)™. Ciod significa quindi che f(v) € Wy, che &
quello che volevamo dimostrare.

Possiamo cosi considerare lo spazio vettoriale Wy dotato della restrizione
della funzione lineare f. Poiché dim W, < dimV, per lipotesi induttiva si
ha che W) & generato da autovettori generalizzati di f. Questo conclude la
dimostrazione. O

Possiamo riassumere quanto visto finora nel seguente teoremas:

Teorema 4.2.5. Siano V ed f come sopra. Siano \1,..., A, tutti gli autovalori
di f, che supponiamo essere a due a due distinti, e sia

Plr) = (x = M) (@ = Ag) - (& = An)™
il polinomio caratteristico di f. Allora si ha:

(@) V=V, ®dV\, D @V, ove V), é il sottospazio vettoriale costituito
dagli autovettori generalizzati di f relativi all’autovalore ;.

(i) Ogni Vy, é stabile per f, cioé si ha
f(V)\L) c VAM

perognii=1,...,7.
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(4ii) dimVy, = e;, quindi si ha
Vi, = Ker(f — X\)" =Ker(f — \)%,
perognit=1,...,r.

Dimostrazione. (i) Per la proposizione precedente V' & generato da autovettori
generalizzati di f, cioe V = V), + V), +--- + V). Poiché abbiamo gia dimo-
strato che autovettori generalizzati corrispondenti ad autovalori distinti sono
linearmente indipendenti, tale somma & diretta.

(i1) Ricordiamo che f commuta con gli endomorfismi del tipo (f — A\)™, per
ogni A e ognim > 1. Se v € Vy, si ha (f —\;)"(v) =0, quindi

0=f((f=2)"() = (f = 2)"(f(v),

cioe f(v) € Vi,.

(4ii) Da quanto visto al punto (i7) segue che f induce un endomorfismo di
Vi, per ¢ = 1,...,r. La restrizione di f a V), ha come unico autovalore \;,
quindi il suo polinomio caratteristico & (z — \;)%, ove d; = dim V. Dato che
il polinomio caratteristico di f e il prodotto dei polinomi caratteristici delle
restrizioni di f ai vari sottospazi V), si deve avere

(= A) (= A) = (2= M) T (= M),
da cui segue d; = e;, perogni i = 1,...,r. Ricordando il Lemma 4.2.2, si ottiene
Vi, = Ker(f — )" = Ker(f — \;)®. m

Osservazione 4.2.6. 1l punto (#4) del teorema precedente afferma che il periodo
di un autovettore generalizzato di f relativo all’autovalore \; &€ minore o uguale
dell’esponente e; con cui il fattore (2 — \;) compare nel polinomio caratteristico
di f, cioe il periodo di ogni autovettore generalizzato & minore o uguale della
molteplicita algebrica dell’autovalore corrispondente.

Dai punti () e (ii) del teorema precedente si deduce che, se scegliamo una

base {wgi), wéi), e 7“’51?} di Vy,, per i =1,...,r, allora I'insieme
1 1 2 2 T r
{w; ),...,wgl),wg ),...,w((b),...,wg )7"'7w£l7.)}

¢ una base di V rispetto alla quale la matrice di f & una matrice a blocchi del
tipo

Al o | 0
0 Ay . 0
A =
0 0 . A,
ove clascuna matrice A; (per i = 1,...,r) & la matrice della restrizione di f al

sottospazio Vy, rispetto alla base {wgi), wgi), o ,wfii)}.
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Concentriamo ora la nostra attenzione sulla restrizione di f ad un singolo
sottospazio Vy,. Sia m; il massimo dei periodi degli elementi di V);; ¢ m; <
d; = dim Vy, e si ha la seguente catena di inclusioni

Ker(f —\;) C Ker(f — X\)2 C--- C Ker(f — X\)™ = Vi,

ove tutte le inclusioni sono proprie. Possiamo quindi scegliere la base di V), nel
modo seguente: cominciamo scegliendo una base di Ker(f — );), completiamola
poi ad una base di Ker(f — \;)?, che completeremo a sua volta ad una base di
Ker(f — \;)? e cosi via, sino ad ottenere una base di tutto Vj,.

Ora osserviamo che, se v € Ker(f — \;)¥, si ha

fw) =Xv+ (f = \i)(v),

e (f —X\)(v) € Ker(f — \;)*~1. Da cid segue che, se {wii),wy), . .,wg,)} e la
base di V), costruita nel modo appena descritto, si ha

i

j—1
f(wj(-’)) = )\Z-w](.l) + Z ahw,(f),

h=1
per ogni j = 1,...,d;. Questo significa che la matrice A; di f rispetto ad una
tale base ¢ del tipo
>\’L * *
A; = 0 0 X\
o 0 --- 0 XN

cioe € una matrice triangolare superiore con tutti gli elementi diagonali uguali
all’autovalore \;.

Questo & un buon risultato: afferma che ogni matrice quadrata A, sul campo
C dei numeri complessi, e simile ad una matrice diagonale a blocchi, dove i
blocchi diagonali A; sono delle matrici triangolari superiori in cui gli elementi
sulla diagonale principale sono gli autovalori \; della matrice A.

Se pero ci impegnamo un po’ di piu, possiamo ottenere un risultato mi-
gliore. Prima di continuare, tuttavia, vogliamo introdurre la nozione di poli-
nomio minimo di un endomorfismo di V' (o, equivalentemente, di una matrice
quadrata).

Siano V' ed f come sopra e sia

Plx)=(x— X)) (x— X))+ (x — \)

il polinomio caratteristico di f, ove si suppone che gli autovalori Ay, ..., A, siano
a due a due distinti. Abbiamo gia osservato che il periodo di ogni autovettore
generalizzato di f, relativo all’autovalore A;, ¢ minore o uguale a ¢;. Sia dunque
m; il massimo dei periodi degli elementi di V),; naturalmente ¢ m; < e;, per
ognit=1,...,r.

Diamo ora la seguente definizione:

Definizione 4.2.7. Con le notazioni precedentemente introdotte, il polinomio

Q(x) = (z = A)™ (x = Ag)™2 -+ (= Ap)™
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¢ detto il polinomio minimo? dell’endomorfismo f di V.

Notiamo subito che, poiché m; < e;, per ogni ¢ = 1,...,r, il polinomio
minimo di f divide il suo polinomio caratteristico. Inoltre il polinomio minimo
e il polinomio caratteristico di un endomorfismo f hanno gli stessi zeri, che sono
precisamente gli autovalori di f.

Possiamo ora fornire un criterio di diagonalizzabilita di un endomorfismo in
termini del suo polinomio minimo.

Proposizione 4.2.8. Siano V ed f come sopra. L’endomorfismo f e diago-
nalizzabile se e solo se il suo polinomio minimo € prodotto di fattor: lineari
distinti.

Dimostrazione. Dire che il polinomio minimo di f € prodotto di fattori lineari
distinti equivale a dire che i periodi myq,...,m, degli autovettori generalizzati
sono tutti uguali a 1. Ma cio equivale a dire che gli autovettori generalizzati
sono, in realta, dei veri e propri autovettori. Dal Teorema 4.2.5 (punto (¢)) si
deduce quindi l'esistenza di una base di V' costituita da autovettori di f, il che
equivale a dire che f ¢ diagonalizzabile. O

Possiamo anche dimostrare il seguente risultato:

Teorema 4.2.9 (HAMILTON-CAYLEY). Siano V ed f come sopra e sia
Qx) = (x = A)™ (z = Ag)™ -+ (x = A)™
il polinomio minimo di f. Allora si ha Q(f) = 0.

Dimostrazione. Q(f) ¢ 'endomorfismo di V' dato da

(f - )\1)m1 (f - /\2)m2 co (f _ )\r)mr.

Sewv € Vy,, per qualche i =1,...,r,siha (f—X\;)™(v) = 0, quindi Q(f)(v) = 0.
Dato che ogni vettore di V' si puo scrivere come somma di vettori appartenenti
ai vari sottospazi Vy, (punto (i) del Teorema 4.2.5), si ha Q(f)(v) = 0 per ogni
v € V, il che significa che Q(f) ¢ endomorfismo nullo. O

Corollario 4.2.10. Sia A una matrice quadrata di ordine n e sia Q(x) il suo
polinomio minimo. Allora Q(A) = 0. In particolare, se P(x) ¢é il polinomio
caratteristico di A, si ha anche P(A) = 0 (basta ricordare che Q(x) divide
P(z)).

Ritorniamo ora al problema di migliorare la scelta della base di ciascun
sottospazio V), al fine di semplificare ulteriormente la forma delle matrici A;
che compaiono come blocchi diagonali della matrice A di f.

Concentriamo la nostra attenzione su un singolo autovalore, che indicheremo
con A, e sul relativo sottospazio di autovettori generalizzati V). Indichiamo
con m il massimo dei periodi degli elementi di V) e consideriamo la catena di
inclusioni proprie

Ker(f — ) C Ker(f —\)? C--- C Ker(f — \)™ = Vj.

211 nome polinomio minimo deriva dal fatto che esso & il polinomio monico di grado minimo
che si annulla su f, cio¢ tale che Q(f) ¢ 'endomorfismo nullo.
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Per ogni j = 1,...,m, poniamo d; = dim Ker(f — \)7.

Preso un vettore non nullo v € Ker(f — X\)™ \ Ker(f — A\)™ ™!, gli m vettori
Wm = U, Wm—-1 = (f - )‘)(U)v Wm—2 = (f - >‘)2<U)7 ceey, W1 = (f - )\)m—l(v)7
sono linearmente indipendenti (vedi Lemma 4.2.2). Notiamo che (f — \)(w;y) =

(f = A)™(v) =0, cioe
flwr) = Awy,

mentre
(f =N (wj) = (f =N =N () = (f =N (0) = w1,

f(w]) = )\wj + Wij—1,

cioe

per j =2,...,m.
Cio significa che f induce un endomorfismo del sottospazio di V) generato

dai vettori wy, ws,...,wn,, la cui matrice, rispetto alla base {w1,wa, ..., wn}
di tale sottospazio € la seguente matrice quadrata di ordine m:

A1 0 0 --- 0

o x 1 0o --- 0

oo Xx 1 --- 0

Iy =
o0 -+ 0 X 1
o0 --- 0 0 A

Una matrice di questo tipo & detta un blocco di Jordan di ordine m relativo
all’autovalore \.

Sia s = dp, —dy,—1 = dim Ker(f — )™ —dim Ker(f —\)™~!. Ricordiamo che
s > 1. Vogliamo dimostrare che la matrice della restrizione di f al sottospazio
V\ contiene, lungo la diagonale principale, s blocchi di Jordan Jy di ordine m.
A tal fine consideriamo s vettori

V1, g, ..., vs € Ker(f — A)™ ~ Ker(f — A)™ 1
tali che si abbia
Ker(f — )™ =Ker(f — N1 @ (v1,...,vs). (4.2.2)

Applicando a ciascuno dei vettori vy, ..., v, il procedimento descritto in prece-
denza, otteniamo il seguente insieme di vettori:

U1, (f - A)(Ul)v (f_ )‘)2(1}1)7 ey (.f - )‘)m_l(vl)7
2 m—1
e, (f = N)(s), (F = X)), -y (F =A™ ()

(ciascuna di queste righe corrisponde a un blocco di Jordan di ordine m).
Si tratta ora di dimostrare che tutti questi vettori sono linearmente indipen-
denti. Consideriamo una loro combinazione lineare

ol 4+ a@u, + ol (F = A1) + -+ aD(f = A)(ve)+
+ai? (F =22 ) - al (= AP () +
e ™Y N ) 4 el = 0™ (v) = 0.
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Lasciando solo ago)m + 4 ago)vs a primo membro e portando tutti gli altri

addendi al secondo membro si deduce che
ozgo)m + -+ oWy, e Ker(f — N)™ L,

da cui segue ago) = aéo) =...=a”=0 (si ricordi che, in base a (4.2.2), si ha
Ker(f —AN)™ N0 (vy,...,vs) = {0}).
La combinazione lineare precedente si riduce quindi a

o (f = N)(wr) + -+ al(f = V(v +
+af? (= ) (00) + -+ ol (f = NP 0) + -
o™ (=N ) el = ) () = 0

Procedendo come prima si ha

af(F = X)) + -+ + ol (f = N)(v,) € Kex(f = 1),
quindi
agl)vl + -+ oM, e Ker(f —A)™ 1,

gl) :aél) = :agl) =0.

Continuando in questo modo si dimostra che tutti i coefficienti ozg-i) sono
nulli, il che conclude la dimostrazione dell’indipendenza lineare.

Ora osserviamo che se d,, — d,;,—1 = s allora d; — d;_1 > s per ogni i =
1,...,m (ove si intende che dy = dimKer(f — \)? = 0). Infatti, dato che i
vettori vy, ...,vs hanno periodo m, i vettori

(f = 2™ (wa), (f = 0™ (v2), s (F = N ()

da cui, esattamente come prima, segue che a

hanno periodo esattamente i e, come abbiamo appena visto, sono linearmente
indipendenti.
Se accade che d; —d;—1 = s, perogni i =1,...,m, si ha

dimKer(f —\) =s
dimKer(f — \)? = 2s

dim Ker(f — A\)™ = ms

e, dato che V), = Ker(f — A\)™, gli ms vettori di cui in (4.2.3) sono una base
di V). Ricordando quanto visto in precedenza ¢ ora immediato verificare che la
matrice della restrizione di f a V) consiste di s blocchi di Jordan di ordine m:

5\ 0 0

0 J 0
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Se invece si ha d; — d;—1 > s, per qualche 7, indichiamo con j il massimo indice
< m tale che d; —d;_; =t > s e prendiamo dei vettori wi, ws,...,w;—, tali che
si abbia

Ker(f = X)7 =Ker(f = \)/7H @ ((f = )™ (v1),..., (f = 2)™ 7 (vs))

D (wy, ..., We_g).

Ragionando in modo analogo a quanto fatto in precedenza, si dimostra che i
vettori

wi, (f = N (w), (f = X (i), .., (f = X7 (wn),
w27(f7)‘)(wz)a(f7>‘)2(w2)7"'7(f7A)jil(w2)7

wi—s, (f = N(wes), (f = ) (we—s), -, (f = N7 (we—s)

sono linearmente indipendenti. Da cio segue che, in questo caso, la matrice della
restrizione di f a V) contiene anche, lungo la diagonale principale, ¢ — s blocchi
di Jordan relativi all’autovalore A, di ordine j (oltre agli s blocchi Jy di ordine
m gid menzionati).

Procedendo in modo analogo con gli autovettori generalizzati di periodo via
via minore, si arriva a concludere che, in generale, la matrice della restrizione
di f a V) & una matrice diagonale a blocchi, in cui i blocchi diagonali sono dei
blocchi di Jordan relativi all’autovalore A di ordine < m, ove m € il massimo dei
periodi degli elementi di V) (inoltre esiste almeno un blocco di Jordan di ordine
esattamente m). Tale intero m non & altro che 'esponente con cui il fattore
(z — A) compare nel polinomio minimo di f.

Abbiamo cosi dimostrato il seguente teorema:

Teorema 4.2.11 (JORDAN). Sia V' uno spazio vettoriale di dimensione n sul
campo® C e sia f : V — V una funzione lineare. Sia

Plx)=(x—X) (=) (x = A\)*

il polinomio caratteristico di f (in cui si suppone che gli autovalori A1, ..., A,
siano a due a due distinti). Allora esiste una base di V' rispetto alla quale la
matrice di f & una matrice a blocchi del tipo

J1 0 0

0 Jo 0
J =

0 0 J,

3Un risultato analogo vale, in realtd, su ogni campo algebricamente chiuso.
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ove ogni J; e, a sua volta, una matrice a blocchi del tipo

J3, 0 e 0
0 Ji . 0
Ji =
0 0 o Ji:
ove Jii, ey Ji sono opportuni blocchi di Jordan relativi all’autovalore \;.

Una matrice J di questo tipo e detta forma canonica di Jordan e una base
di V rispetto a cui f ha questa matrice e detta base di Jordan.

Cerchiamo ora di chiarire quanto sopra esposto applicando i risultati finora
ottenuti in un esempio concreto.

Esercizio. Sia V uno spazio vettoriale di dimensione 5 sul campo complesso? C

e sia {v1,...,vs} una sua base. Sia f : V — V lapplicazione lineare di matrice
1 0 -2 0 O
-2 3 =2 0 0
A= 2 0 5 0 O
0o 2 2 2 -1
0 0 0 1 4

rispetto alla base data. Si determinino il polinomio caratteristico e il polinomio
minimo di f. Si determini inoltre una matrice di Jordan di f e una base di
Jordan di V.

Soluzione. Il polinomio caratteristico di f e

x—1 0 2 0 0
2 -3 2 0 0
P(z)=det(x-1-A)=| -2 0 z-5 0 0
0 -2 -2 z-2 1
0 0 0 -1 z-4
z—1 0 2

= 2 r—3 2
-2 0 r—5

=(x—=3)[(x = 1)(x —5) +4][(z — 2)(x — 4) + 1]
= (¢ —3)(z —3)*(x —3)* = (z — 3)°,

-1 x—4

quindi f ha un unico autovalore A = 3, con molteplicita 5. Poiché il polinomio
minimo Q(z) deve dividere il polinomio caratteristico, deve essere

Qz) = (x —3)™, con 1 <m <5.

4Come vedremo, in questo esempio non & necessario supporre che il campo sia al-
gebricamente chiuso. Tutto quello che diremo vale anche per il campo Q dei numeri
razionali.
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Osserviamo che

-2 0 -2 0 0
-2 0 -2 0 0
A-3=12 0 2 0 0
0 2 2 -1 -1

0 0 0 1 1

00 0 00

00 0 00
(A=3?%=1]10 0 0 0 0
0 -2 -2 0 0

0 2 2 00

e infine (A — 3)® = 0, quindi il polinomio minimo & Q(x) = (z — 3)3. Questo
significa che il massimo periodo degli autovettori generalizzati di f (relativi
all’unico autovalore 3) ¢ m = 3, quindi si ha la catena di inclusioni proprie

Ker(f — 3) C Ker(f —3)* C Ker(f —3)* =V.
Si ha:
dimKer(f —3)=5—-1k(A-3-1)=5-3=2,
dimKer(f —3)2 =5—-rk(4A—-3-1)>=5-1=4,
dim Ker(f —3)% = dimV = 5.

Ponendo d; = dim Ker(f —3)*, I'intero s = d,, —d,,,_1 = d3 — dz della dimostra-
zione del teorema di Jordan e, in questo caso, s = 5—4 = 1, quindi la matrice di

Jordan J contiene un blocco di Jordan di ordine m = 3, relativo all’autovalore
A=3,

OO W
S W =
w = o

Dato che si ha poi dim Ker(f —3)% —dim Ker(f —3) = 4—2 = 2, usando le stesse
notazioni impiegate nella dimostrazione del teorema di Jordan, si ha j = 2 e
do—dy =t=2>s=1, quindi t — s = 1 e la matrice di Jordan .J contiene
anche un blocco di Jordan di ordine j = 2

3 1
0 3/)°
In conclusione, la matrice di Jordan di f & la seguente:

310 0 0
0 3 1 0 0
0 0 3 0 0

J =
0 0 O 3 1
0 00 0 3
Rimane ora solo da determinare una base {ws,...,ws} di V rispetto alla quale

la matrice di f sia J. A tal fine scegliamo un vettore v € Ker(f — 3)3 tale che
v & Ker(f — 3)%: ad esempio, il vettore vy soddisfa a tali richieste. Poniamo
allora

w3 = Vg, w9 = (f - 3)(’112) = 2’[)4, w1 = (f - 3)2(’02) = 72’1}4 + 2’[}5.
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I vettori {w1, wa, w3} sono linearmente indipendenti e formano quella parte della
base di V' che & responsabile della presenza del blocco di Jordan di ordine 3.
Per continuare dobbiamo ora scegliere un vettore u tale che si abbia

Ker(f —3)% = Ker(f = 3) @ ((f — 3)°7(v2)) ® (u),

ciod u deve essere un vettore in Ker(f — 3)? che non appartenga al sottospazio
generato da Ker(f — 3) e dal vettore (f — 3)(v2) = wa = 2vy4.

A tal fine determiniamo, innanzitutto, il nucleo di f — 3: esso ¢ dato dai
vettori x1v, +2v2 + - - -+ 505 tali che le x; siano soluzioni del seguente sistema
di equazioni lineari:

—21’1 — 21’3 =0
209 + 223 — x4 — x5 =0
x4 + x5 =0.

Risolvendo tale sistema si trova

1 = —X3
Ty = —T3
Ty =— —T5

quindi una base di Ker(f — 3) ¢ formata dai vettori vy + vy —v3 e v4 —v5. Siha
pertanto
Ker(f —3) ® (we) = (v1 + va — v3,v4 — Us, 204)

- <U1 + Vo — U37U47U5>'

Si puo ora vedere facilmente che il vettore v; non appartiene a questo sottospa-
zio, ma appartiene al nucleo di (f — 3)%: questo & il vettore u che cercavamo. I
due vettori mancanti per completare la base di Jordan sono quindi

ws = V1, ’UJ4:(f*g)(’l)l):f2"l}172l)2+2’l}3.

In conclusione, i vettori

w1 = 721)4 + 2’[)5

W9 = 2’U4

w3 = V2

wy = —2v1 — 202 + 2v3
Ws = V1

formano una base di V rispetto alla quale la funzione lineare f ha matrice

31 0 00
0 3100
J=10 0 3 0 O
0 00 31
0 0 0 0 3

Per terminare, osserviamo che la matrice di cambiamento di base (cioe¢ la ma-
trice le cui colonne sono costituite dalle coordinate dei vettori della nuova base
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{wi,...,ws} rispetto alla vecchia base {v1,...,vs}) & la matrice
0 00 -2 1
0 01 -2 0
P=]10 00 2 0
-2 2 0 0 O
2 00 0 O
Si ha pertanto
J=P AP
0, equivalentemente,
PJ = AP,

come si puo facilmente verificare con un calcolo diretto.

Esercizi

Esercizio 4.1. Si determini la forma canonica di Jordan dell’endomorfismo ¢ : R® —
R3 la cui matrice, rispetto alla base canonica, &

3 4 4
A=|-3 —6 -8
3.7 9

Si determini inoltre una base di R rispetto a cui la matrice di ¢ sia la forma canonica
trovata.

Esercizio 4.2. Si determini la forma canonica di Jordan dell’endomorfismo ¢ : Q* —
Q* la cui matrice, rispetto alla base canonica, &

-1 0 0 0

Si determini inoltre una base di Q* rispetto a cui la matrice di ¢ sia la forma canonica
trovata.

Esercizio 4.3. Si determini la forma canonica di Jordan dell’endomorfismo ¢ : R* —
R* la cui matrice, rispetto alla base canonica, &

2 0 O 0
-4 2 -4 -3
A= 4 0 5 3
-3 0 -2 0

Si determini inoltre una base di R* rispetto a cui la matrice di ¢ sia la forma canonica
trovata.

Esercizio 4.4. Si determini la forma canonica di Jordan dell’endomorfismo ¢ : R* —
R* la cui matrice, rispetto alla base canonica, &

o0 2 -4
1 2 -1 2
A= 0 0 2 0
1 0 -1 4

Si determini inoltre una base di R* rispetto a cui la matrice di ¢ sia la forma canonica
trovata.
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Esercizio 4.5. Sia A una matrice n x n a coefficienti reali tale che A*> = A. Si
dimostri che A ¢ diagonalizzabile e che i suoi autovalori sono solo 0 oppure 1. Si
dimostri inoltre che, se anche B & una matrice tale che B? = B, allora A e B sono
simili se e solo se hanno lo stesso rango.

Esercizio 4.6. Si fornisca un esempio di due matrici quadrate A e B dello stesso
ordine, aventi lo stesso polinomio caratteristico e lo stesso polinomio minimo, ma tali
che A non sia simile a B.

Esercizio 4.7. Sia V uno spazio vettoriale complesso di dimensione 9. Si determinino
tutti gli endomorfismi ¢ di V' che soddisfano le seguenti condizioni:
dimKer(¢ —2) =1, dimKer(¢ — 2)* = 3,
dim Ker(¢ — 3) =2, dim Ker(¢ — 3)* = 4,
dim Im(¢*) = 7.
Esercizio 4.8. Sia V uno spazio vettoriale di dimensione 10 su Q. Si determini
il polinomio caratteristico, il polinomio minimo e la matrice di Jordan di tutti gli
endomorfismi ¢ di V' che soddisfano le seguenti condizioni:
dimKer(¢ —5) =2, dimKer(¢ —5)> =3, dimKer(¢ —5)* = 4,
dimKer(¢ +2) =2, dimKer(¢ + 2)* = 4,
dim Im(¢) = 8.
Esercizio 4.9. Sia V uno spazio vettoriale complesso di dimensione 6. Si determinino

tutti gli endomorfismi ¢ di V' che hanno rango > 4 ed il cui polinomio minimo &
zt — 6% + 927,

Esercizio 4.10. Sia A una matrice quadrata di ordine n a coefficienti in C. Si
dimostri che A & nilpotente® se e solo se tr(A) = tr(A?) = --- = tr(A™) = 0.

5Una matrice A si dice nilpotente se A” = 0, per qualche r > 1.



Capitolo 5

Spazi Vettoriali Euclidei

In questo capitolo introdurremo il concetto di prodotto scalare di due vettori (si
tratta di un particolare prodotto di due vettori il cui risultato ¢ uno scalare).
Vedremo poi come questo prodotto permetta di definire la lunghezza di un
vettore e I’angolo compreso tra due vettori. Queste nozioni ci permetteranno
poi, a loro volta, di calcolare aree, volumi, ecc.

5.1 Lunghezze e angoli

Nella geometria euclidea vengono definite, in modo del tutto naturale, le nozioni
di lunghezza di un segmento (o distanza tra due punti) e di angolo tra due
rette. Uno dei risultati pitt importanti riguardanti le lunghezze ¢ il Teorema di
Pitagora, che permette di ricavare la lunghezza dell’ipotenusa di un triangolo
rettangolo quando sono note le lunghezze dei due cateti. Noi prenderemo spunto
dalla validita del Teorema di Pitagora in R? e R3 per definire la lunghezza di
un vettore in R™.

5.1.1 Lunghezza di un vettore

Iniziamo considerando un vettore v = (ai,as) € R? nel piano euclideo, che
possiamo rappresentare graficamente come nella figura a lato.

Il vettore v e rappresentato dal segmento orientato
O—P>, mentre le lunghezze dei segmenti OQ e PQ sono
rispettivamente |a;| e |az|, ossia le due componenti del
vettore v prese in valore assoluto per evitare problemi
nel caso in cui esse fossero negative. Poiché il trian-
golo AOPQ ¢é un triangolo rettangolo, dal teorema di
Pitagora segue che

IOP|* = |0QIP* + [I1PQI%,

120
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ove con il simbolo || AB|| indichiamo la lunghezza di un segmento AB. Ricordan-
do che ||OQ|| = |a1] e ||PQ]| = |az|, si ottiene la seguente formula che esprime
la lunghezza del segmento che rappresenta il vettore v:

|OP| = \/a? + 3.

Consideriamo ora un vettore v = (ay,az,a3) € R3, rappresentato dal segmento
—
orientato OP come nella figura seguente:

Dato che AOPQ ¢ un triangolo rettangolo, si ha
lOP|? = [l0Q|* +[|PQ|?

e, osservando che anche il triangolo AOQR & rettangolo, si ha
10Q|* = ORI + |QRI*,

da cui segue che
|OP|* = OR|* + |QR|* + | PQI1*.

Notando che ||OR|| = |ai|, |QR| = |az| e ||PQ]|| = |as]|, si conclude che la
lunghezza del (segmento che rappresenta il) vettore v = (a1, as,a3) ¢ data da

|OP| = /a2 + a3 + d3.

Questi due risultati motivano la seguente definizione:

Definizione 5.1.1. Sia v = (a1, a2,...,a,) € R". La lunghezza di v (detta
anche la norma o il modulo di v) & data da

loll = y/a? + a3+ + a2

Osservazione 5.1.2. La lunghezza di un vettore v viene spesso chiamata il mo-
dulo di v e indicata con il simbolo |v|. Per evitare possibili confusioni con la
nozione di modulo (cio¢ valore assoluto) di un numero, noi preferiamo usare il
simbolo ||v||, che chiameremo norma di v.

La norma definisce quindi una funzione
I-1:R*" =R, v

che soddisfa le seguenti proprieta:
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(@) |lv]] > 0, per ogni v € R™, e |jv]| = 0 se e solo se v = 0;

(i) ||Av]| = |Al|jv]l, per ogni A € R e ogni v € R™;

(iii) [[o +w] < [loll + Jaoll, per ogni v, w € R™.

La proprieta (i) e del tutto ovvia (una somma di quadrati di numeri reali &
sempre > 0 ed & nulla se e solo se tutti i numeri in questione sono zero), mentre
la proprieta (i) puo essere verificata con un facile calcolo.

La proprieta (iii), detta disuguaglianza triangolare, ha
un evidente significato geometrico: essa equivale al noto ri-

sultato di geometria euclidea che afferma che, in ogni trian-

v+w

golo, la lunghezza di un lato ¢ minore della somma delle
lunghezze degli altri due (vedi figura a lato). La dimostra-

zione algebrica di questa proprieta verra data in seguito (vedi

v

Proposizione 5.1.8).

Esempio. A titolo di esempio, vedremo ora come si possa calcolare la lunghezza
della diagonale di un (iper)cubo in R™, per ogni n > 2.

Nel caso del piano (n = 2), consideriamo un quadrato di la-
to unitario, che possiamo sempre supporre avente un vertice
nell’origine e i lati paralleli agli assi coordinati. I vertici di
tale quadrato sono dunque i punti di coordinate (0,0), (0,1),
(1,0) e (1,1) e come diagonale possiamo considerare il segmen-
to che ha come estremi i vertici (0,0) e (1,1). Tale segmento

rappresenta il vettore v = (1,1) la cui lunghezza & data da ||v|| = v/2.
Nel caso dello spazio tridimensionale (n = 3), consi-

deriamo un cubo di lato unitario avente un vertice nel-
Porigine e i lati paralleli agli assi coordinati. I vertici del
cubo sono dunque i punti di coordinate (0,0, 0), (0,0,1),
(0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0) e (1,1,1), e
la diagonale ¢ il segmento che ha come estremi i vertici
(0,0,0) e (1,1,1). Questo segmento rappresenta il vettore

v =(1,1,1) la cui lunghezza & |v|| = v/3.
In modo del tutto analogo possiamo definire 1’ipercubo unitario in R™: esso e

la “figura” avente come vertici i 2" punti di coordinate (0,0, ...,0), (0,0,...,1),
(0,...,1,0), ..., (1,1,...,1). La diagonale & allora rappresentata dal vettore
v =(1,1,...,1), la cui lunghezza & ||v|| = y/n. Si pud osservare che, al cre-

scere di n, la diagonale dell’ipercubo unitario aumenta tendendo a diventare
infinitamente lunga, mentre la lunghezza del lato dell’ipercubo stesso rimane,
naturalmente, sempre uguale a 1.

5.1.2 Angoli

Consideriamo ora il problema di determinare I’angolo compreso tra due vettori.
Due vettori non nulli v e w in R? (oppure in R?) indivi-

duano due angoli la cui somma & un angolo giro. Con l’e-
spressione “angolo compreso tra due vettori” noi intende-
remo sempre I’angolo convesso (non orientato), cioe quello
il cui valore & nell’intervallo [0, 7.
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Consideriamo dunque lo spazio vettoriale V' = R?, oppure V = R3. In fisica
viene definito il prodotto scalare di due vettori v e w € V ponendo

v-w = |v][[Jw] cos 6,

ove ¢ & langolo compreso tra i due vettori (a tal proposito si noti che cos¢ =
cos(2m — ¢) quindi, nella definizione di prodotto scalare, non & importante quale
dei due angoli determinati da v e w si considera). Il prodotto scalare definisce
quindi una funzione

VXV =R, (v,w) — v -w.

Vogliamo dimostrare che questa funzione & bilineare (cioe lineare rispetto a
ciascuno dei suoi due argomenti) e simmetrica, ossia che soddisfa le seguenti
proprieta:

(4)
(ii

Av) - w = A(v-w),
v F U)W =v1 - W+ Vg - W,

(
(

v (pw) = pv-w),

per ogni A\, u € R e ogni v, vy, ve, w,wy,ws € V.

La proprieta di simmetria (v) ¢ ovvia. Grazie a questa ¢ quindi sufficiente
dimostrare la linearita del prodotto scalare rispetto a uno solo dei suoi due
argomenti, ad esempio rispetto al secondo (proprieta (i) e (iv)).

Per dimostrare la proprieta (iii) consideriamo separatamente i casi u = 0,
w>0epu<0 Sepu=0,sihav-(0w)=v-0=0=0(v-w). Nel caso
in cui g > 0 si ha ||pw| = |p|||w]] = pllw] e il vettore pw & parallelo e ha lo
stesso verso del vettore w. Di conseguenza ’angolo compreso tra i vettori v e
pw coincide con I'angolo ¢ compreso tra v e w. Si ha pertanto:

v (pw) = [Jolll|pw]| cos ¢ = pllv[lflw]| cos ¢ = p(v - w).

Se invece p < 0 si ha ||uw]|| = |p|||w|| = —p||w]|| e in questo caso il vettore pw &
parallelo ma ha verso opposto al vettore w. Di conseguenza ’angolo compreso
tra i vettori v e pw & ™ — ¢, se ¢ denota ’angolo compreso tra v e w. Si ha
pertanto:

v - (pw) = [ofl|pw]| cos(m — ¢) = —pljo][[w]|(= cos ¢) = p(v - w).

Dimostriamo ora ’additivita del prodotto scalare rispet-

to al secondo argomento (proprietd (iv)). Premettia- w
mo la seguente osservazione. Consideriamo due vettori

v,w € V (con v # 0) e indichiamo con OP la proiezione | - & —
ortogonale del vettore w sulla retta r generata dal vet-
tore v, come indicato nella figura a lato. Il prodotto ||w]|| cos ¢ non & altro che
la lunghezza del segmento OP (considerata negativa se il vettore OP ha verso
opposto a quello del vettore v, cioe se § < ¢ < 7). Possiamo quindi affermare
che il prodotto scalare di v per w ¢ il prodotto della norma di v per la norma
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della proiezione ortogonale di w sulla retta generata dal vettore v (sempre con la
convenzione che tale norma va considerata con il segno negativo se § < ¢ < ).

Siano wy e wo due vettori di V' e poniamo w = w;+wy. Dobbiamo dimostrare
che v-w = v-w; +v-wy. Consideriamo dunque le proiezioni ortogonali dei
vettori wy, we e w sulla retta r generata dal vettore v, come illustrato nella
figura seguente

ove, per semplicita, abbiamo considerato solo il caso in cui gli angoli compresi
tra v e wy, tra v e we e tra v e w sono tutti minori di un angolo retto. Indicando

—
rispettivamente con OF la proiezione ortogonale del vettore wy sulla retta r,
— —
con OD quella di we e con OF quella del vettore w, si ha:

v-wy = [o[OE],  v-wy = [ll[[OD]], v-w = ol [OF].

Dall’uguaglianza dei triangoli AOC'D e AABG si deduce 1'uguaglianza ||OD|| =
|AG|| = ||[EF||, quindi si ha [|OF|| = |OE|| + ||[EF| = |OE|| + ||JOD]. Si ha
pertanto:

v-w = [[o[|OF| = [[o[[| OB + [[0][|OD]| = v - wy + v - wy,

come volevasi dimostrare.
Possiamo ora dimostrare il seguente risultato:

Proposizione 5.1.3. Siano v = (ai,as), w = (by,be) € R? (oppure, v =
(a1,az,a3), w= (by,bs,b3) € R?). Allora si ha:

v-w = a1b; + azbsy (risp., v -w = arby + azbs + azbs).

Dimostrazione. Effettuiamo la dimostrazione per R? (il caso in cui v,w € R?
¢ del tutto analogo). Siano dunque v = (ai,as,a3), w = (b1,be,b3) € R3 e
indichiamo con e;, es, e3 i tre vettori della base canonica di R3. Possiamo
quindi scrivere v = ajeq + ases + azez e w = byey + baes 4 bzes. Utilizzando la
bilinearita del prodotto scalare si ottiene:

3
v-w = (alel + ases + a3€3) . (blel + baes + bgeg) = Z CLibj (6,‘ . ej).

ij=1

Notiamo che e; - €; = ||e;||*> = 1 per i = 1,2, 3, mentre ¢, - e; = 0 per ogni i # j,
perché i vettori della base canonica sono a due a due ortogonali. Sostituendo

nell’espressione precedente si ottiene quindi

3
v-w = E a;b;.
i=1
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Osservazione 5.1.4. Nel caso di due vettori di R? si puo fornire una dimostrazio-
ne diretta del risultato precedente, senza ricorrere alla bilinearita del prodotto
scalare (ma utilizzando qualche risultato di trigonometria).

Siano infatti v = (a1, a2) e w = (b, bz) due vettori di R?, come rappresentato
nella figura seguente:

L’angolo ¢ compreso tra v e w € dato dalla differenza ¢ = 8 — « tra ’angolo
0 che il vettore w forma con l'asse X e I’angolo o compreso tra ’asse X e il
vettore v. Il prodotto scalare di v per w ¢ pertanto:

0w = [Joll[w] cos ¢
= Jlollllw] cos(8 - a)
— [Joll{fwll cos Beos o + [[v] ] sin Bsin a

= a1by + azby,

dato che a3 = ||v]| cosa, az = ||v]| sinc, by = |Jw||cos B e by = ||w]| sin S.

I risultati precedenti permettono di ricavare ’angolo ¢ compreso tra due
vettori non nulli v e w di R% o R3. Si ha infatti:

v-w

cos ¢ = (5.1.1)

lvllllwl”

Possiamo quindi concludere che, nel caso di vettori di R? o R3, il prodotto scalare
permette di calcolare sia la norma di un vettore che l’angolo (non orientato)
formato da due vettori non nulli. Nella prossima sezione vedremo come questi
risultati si possano estendere a vettori di R™, per ogni n > 2.

5.1.3 Il prodotto scalare in R”

I risultati ottenuti nei paragrafi precedenti motivano la seguente definizione:

Definizione 5.1.5. Dati due vettori v = (ai,az,...,a,), w = (by,b2,...,b,) €
R™, il loro prodotto scalare & definito ponendo

n
v-w :a1b1 +a2b2 + +anbn = Zazbl
i=1

In base a questa definizione, per ogni v € R", si ha

n
veoo=) af =l
i=1

lv]] = Vv - .

Poiché sappiamo che in R? e in R3 vale la formula (5.1.1), vorremmo usare una
formula analoga per definire ’angolo ¢ compreso tra due vettori non nulli di

quindi
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R™, per ogni n > 2. Tuttavia, dato che il coseno di un angolo assume solo valori
compresi nell’intervallo [—1, 1], dobbiamo prima verificare che, per ogni coppia
di vettori non nulli v,w € R™, si abbia

v-w

= ollllwl =

Proposizione 5.1.6 (DISUGUAGLIANZA DI CAUCHY—SCHWARZ). Per ogni cop-
pia di vettori v,w € R™, si ha

v w] < [Jvffjw]- (5.1.2)

Inoltre vale il segno di uguaglianza se e solo se i due vettori sono linearmente
dipendenti.

Dimostrazione. Iniziamo col dimostrare la prima affermazione. Osserviamo che
se uno dei due vettori e nullo, il risultato € banalmente verificato. Supponiamo
quindi che v e w siano vettori non nulli. Ponendo u, = v 4+ aw, con o € R, si
ha:

luall® = ta - ue = (v+ aw) - (v+ aw) = ||v]|* + 22 (v-w) + ?|w|* > 0,
per ogni & € R. Il trinomio di secondo grado in «
o?llwl? +2a (v - w) + [|v]?

assume dunque sempre valori > 0, pertanto il suo discriminante deve essere < 0.
Si ha quindi
A = 4(v-w)* — 4lv]*|lw]* < 0,

da cui si deduce che |v - w| < ||[v]|]Jw]|.

Dimostriamo ora la seconda affermazione. Se i due vettori sono linearmente
dipendenti uno dei due deve essere multiplo dell’altro. Possiamo supporre, ad
esempio, che sia w = v, per qualche A € R. In tal caso ||w] = |A|||v] e si
ottiene

v w| = |v- x| = M[Jv]]? = (o]l [[w]-
Viceversa, supponiamo che nell’espressione (5.1.2) valga il segno di uguaglianza.
Si ha quindi
v-w = %o ||lwl].

Se w = 0 i due vettori sono (banalmente) linearmente dipendenti; in caso
contrario poniamo

lloll
[w]

flwll

- sevew = ol

Ql
I
T —

se v-w = —[[v[w]|
e consideriamo il vettore u = v + aw. Si ha:
lull = (v + aw) - (v + aw)
= [[ol* + 2a (v - w) + &2 ||wl|?
= [[olf* £ 2a o]l [Jw]| + & [lw]?

= (o]l % & [lw]])®
= (ol - f2hon)” =o0.
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Poiché 'unico vettore che ha norma nulla ¢ il vettore nullo, si conclude che
u = v+ aw = 0, il che dimostra che v e w sono linearmente dipendenti. O

Dalla disuguaglianza di Cauchy—Schwarz segue che, per ogni coppia di vettori

non nulli v,w € R”, ¢
1< Y g,
[ollllwll

Inoltre, dalla dimostrazione della Proposizione 5.1.6, si deduce facilmente che

e m =1 se e solo se i vettori v e w sono paralleli e hanno lo stesso verso,
mentre m = —1 se e solo se v e w sono paralleli ma hanno versi opposti.

Osservando che, per ogni numero reale ¢ € [—1, 1] esiste un unico angolo ¢ €
[0, 7] tale che t = cos ¢, possiamo dare la seguente definizione:

Definizione 5.1.7. Dati due vettori non nulli v,w € R™, I’angolo (non orien-
tato) tra essi compreso ¢ 'unico ¢ € [0, 7] tale che

v-w

cos ¢ = (5.1.3)

[vllfjewll

Si noti che, in base alle osservazioni precedenti, ’angolo compreso tra due vettori
¢ nullo se e solo se i due vettori sono paralleli e hanno lo stesso verso, mentre
esso € pari a 7 se e solo se i due vettori sono paralleli ma hanno versi opposti.

Un’altra conseguenza della disuguaglianza di Cauchy—Schwarz ¢ la cosiddetta
disuguaglianza triangolare, che ora dimostreremo.

Proposizione 5.1.8 (DISUGUAGLIANZA TRIANGOLARE). Per ogni v,w € R,
si ha
[o+wlf < lofl + [Jw]-

Dimostrazione. Si ha:
lo+wll* = (v +w) - (v +w)
= [[ol* +2 (v - w) + Jwlf?
< JJoll* + 2o - w] + [lw]®
< [loll* + 2ol [l + [lw]?
= ([[oll + fJwl)*.

Estraendo la radice quadrata si ottiene ||[v + w|| < ||v|| + ||w]||, come volevasi
dimostrare. O

Osservazione 5.1.9. Dalla definizione di angolo tra due vettori segue la seguente
condizione di perpendicolarita: due vettori non nulli sono ortogonali se e solo

se il loro prodotto scalare & zero. Infatti, si ha v-w = 0 se e solo se ||v]| = 0
(e quindi v = 0) oppure ||w| = 0 (cio& w = 0) oppure ancora cos¢ = 0 (cioe
)

5.2 Aree e volumi

In questa sezione vedremo come, utilizzando il prodotto scalare, sia possibile
calcolare aree e volumi in R™.
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Consideriamo due vettori v,w € R™. Poiché due vettori qualunque sono
sempre contenuti in un piano (cioé in un sottospazio di dimensione 2 di R"™)
possiamo concentrare la nostra attenzione su tale piano. Indichiamo con

P(v,w) = Ao+ jw] 0 < A < 1}

il parallelogramma determinato dai due vettori v e w, come nella figura seguente:

L’area di tale parallelogramma ¢ data dal prodotto della lunghezza del vettore v
(la base) per altezza h relativa a tale base. Indicando con ¢ ’angolo compreso
tra i vettori v e w, si ha h = ||w]| sin ¢. Otteniamo quindi:

Area Z(v,w) = ||v||||w|| sin ¢.

Ricordando che sin? ¢ = 1 — cos? ¢ e utilizzando la formula (5.1.3), si trova

2 2 2 2
o1 0w [Pl - (o)
[[v]|?{|w]]? [[v]|?{|w]]?
Si ha dunque
(Area 2(v,w))” = [[v]*w]* — (v- w)* = (v v)(w - w) — (v w)?.

Questa formula puo essere riscritta come segue:

Area@(v,w):\/det (U.U v~w>.
wev w-w

Vedremo ora che se n = 2, cioe nel caso di due vettori v,w € R2, & possibile
calcolare I’area del parallelogramma (v, w) senza ricorrere al prodotto scalare.
Siano dunque v = (a1, az), w = (by,bz) € R? e con- ,

sideriamo la situazione descritta nella figura a lato (ove, | C B
per semplicita, abbiamo supposto ai,as,bi;,by > 0). | ¢
L’area del parallelogramma Z(v,w) pud essere otte- w
nuta, per differenza di aree, dall’area del rettangolo r
OABC sottraendo le aree dei due rettangoli ADEF 5 v R
e CGHI e dei quattro triangoli ODFE, BEF, BHI e

OGH. Osservando che ||OD| = |BI|| = a1, |DE| = ||AF| = ||CG| =
|HI| = az, |CI| = |GH| = [DA| = ||EF| = by, [|0G] = |BF|| = bz, si
ottiene:

H

Area(OABC) = (a1 + b1)(az + b2),

Area(ODE) = Area(BHI) = 1 ajas,
(OGH) = Area(BEF) = 1 b1bo,

Area(ADEF) = Area(CGHI) = byaq,

Area

da cui si ricavas:

Area Z(v,w) = (a1 + b1)(az + b2) — ajas — brby — 2b1as

b
= (11[)2 - b1a2 = det (Z; b;) .
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Il determinante della matrice quadrata costituita dalle componenti dei due vet-
tori v e w (scritti indifferentemente in colonna oppure in riga) fornisce quindi il
valore dell’area del parallelogramma (v, w). Tuttavia, ricordando che

det [ b = —det b o
as b2 b2 a9

conviene prendere tale determinante in valore assoluto, per evitare il rischio
di trovare valori negativi per I'area di un parallelogramma. Sara dunque piu

corretto scrivere la seguente formula:
a; b
det ( ! 1)
az bo
per ogni v = (a1, as), w = (by,be) € R2.
Passiamo ora al caso dei volumi. A tal fine consideriamo tre vettori u, v, w €
R"™ e indichiamo con

Area Z(v,w) = ) (5.2.1)

P(u,v,w) ={ A u~+ pv+vw|0 < A\ p,v <1}

il parallelepipedo da essi determinato. Poiché tre vettori qualunque di R™ sono
sempre contenuti in un sottospazio di dimensione 3, possiamo concentrare la
nostra attenzione su tale sottospazio tridimensionale. Consideriamo dunque la
situazione schematizzata nella figura seguente:

Il volume di tale parallelepipedo e dato dal prodotto dell’area del parallelogram-
ma Z(u,v) (Parea di base) per laltezza h relativa a tale base. La determina-
zione dell’altezza h puo essere effettuata come segue: consideriamo un generico
vettore au+ Gv appartenente al piano generato da u e v. Dobbiamo determinare
i valori di @ e 8 che rendono minima! la norma del vettore w — o — Bv. 11
valore minimo della norma di tale vettore ¢ precisamente 1’altezza h che stiamo

1In alternativa si potrebbe richiedere che il vettore w — o — Bv sia ortogonale al piano
generato da u e v (l'altezza di un parallelepipedo deve essere perpendicolare alla sua base).
Questo equivale a richiedere che

(w—au—pBv) - u=0
(w—au—Bv)-v=0.

Si trova cosl un sistema equivalente a (5.2.2).
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cercando. Sviluppando i calcoli, si trova:

|lw — au — Bv||? = (w — au — Bv) - (w — au — Bv)

=w-w-—2a(u-w)—20w- w)+2a8 (u-v)
+ o (u-u) + B (v-v).
Per trovare il valore minimo di tale espressione basta calcolarne le due derivate

parziali, rispetto a a e 3, e imporre che queste siano nulle. Si ottiene cosi il
seguente sistema:

20 (u-u)+28(w-v)—2(u-w)=0
{2a(u~v)+2ﬁ(v-u)—2(v-w):0 (5:2.2)

la cui soluzione ¢ data da

_ (u-w)(v-v) = (u-v)(v-w)

“= (u-u)(v-v)—(u-v)?

5 (u-u)(v-w)—(u-v)(u-w)

A= (u-u)(v-v) = (u-v)?
Ponendo w’ = au + fv, il vettore w — w’ rappresenta laltezza del paral-

lelepipedo & (u,v,w), relativa alla base Z(u,v). Ricordando che l'area del
parallelogramma & (u,v) ¢ data da

Areaﬁ(u,v)z\/det (u~u u~v)7
veou v-v

siamo ora in grado di calcolare il volume del parallelepipedo &2 (u,v,w) molti-
plicando tale espressione per h = ||w — w’||. Sviluppando i calcoli si trova la
seguente formula per il volume:

LU UV UW
Vol Z(u,v,w) = |det [ v-u v-v v-w
weu wev w-w

Se n = 3, cioe nel caso di tre vettori u, v, w € R3, & possibile calcolare il volume
del parallelepipedo #(u,v,w) anche come il valore assoluto del determinante
della matrice le cui colonne (o righe) sono costituite dalle componenti dei vettori
dati. Si puo cioé dimostrare che, dati u = (a1,a2,a3), v = (by,ba,b3), w =
(c1,c2,c3) € R3, si ha

ap b1 c
Vol Z(u,v,w) = |det | a2 b2 c2 |]|. (5.2.3)
as b3 C3

I risultati che abbiamo ottenuto per le aree dei parallelogrammi e i volumi dei
parallelepipedi motivano la seguente definizione:

Definizione 5.2.1. Dati r vettori vy, vg, ..., v, € R (con r < n), il paralle-
lotopo da essi generato ¢ il sottoinsieme di R™ dato da

P(v1,v9,...,0,) = {Z)\Z"UZ‘ 0< N < 1,@':17...,7"}.
i=1
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La sua misura (o volume) r-dimensionale ¢ definita ponendo

Mis Z(v1,...,0,) = \/dEt (Ui ’ /U]')q;’j:l,.“,r'

Si noti che, nei casi r = 2 o r = 3, questa definizione si riduce rispettivamente
alla definizione di area di un parallelogramma o volume di un parallelepipedo,
mentre, per r = 1, si ritrova la definizione della norma di un vettore.

Osservazione 5.2.2. Se gli r vettori vy, va, ..., v, sono linearmente dipendenti
¢ facile dimostrare che la misura r-dimensionale di #(vy,vs,...,v,) ¢ nulla.
Infatti in tal caso uno degli r vettori si puo esprimere come combinazione lineare
degli altri. A meno di un riordinamento, possiamo quindi supporre che sia

Up = AU+ AU + -+ AU

E ora immediato verificare che, nella matrice (vi ~vj) , I'ultima colonna e

i,7=1,...,7
una combinazione lineare delle colonne precedenti, quindi il determinante di tale
matrice & nullo. Questa e la ragione per cui, nella Definizione 5.2.1, abbiamo
supposto r < n; infatti nel caso r > n, gli r vettori vy, ..., v, sarebbero sempre

linearmente dipendenti.

Scrivendo in colonna le componenti degli r vettori v1 = {a11,a21,--.,an1),
vy = Ha12,a22,...,an2), ..., vy = a1, a2,...,a,.), otteniamo la seguente
matrice con n righe e r colonne (ove abbiamo supposto r < n)

aix a2 -+ G1p

a1 Q22 - G2p
A =

an1 An2 tee Apy

La matrice dei prodotti scalari v; - v; puo allora essere scritta come segue:
. . f— t
(vi vj)i,j:l,...,r ="AA.

Nel caso particolare in cui r = n, la matrice A ¢ quadrata e dal Teorema di
Binet segue che

2
det (Ui . Uj)i,j:L...,n = (det A) s

da cui si ottiene

Mis Z(vy,...,v,) = |det 4], (5.2.4)
ove A € la matrice le cui colonne sono costituite dalle componenti degli n vettori
Viy...,0p € R™. Per n = 2 e n = 3 si ritrovano cosi le due formule (5.2.1)
e (5.2.3) citate in precedenza. Notiamo che, da quest’ultima formula, risulta
evidente che Mis Z(vq,...,v,) = 0 se e solo se det A = 0, cioe se e solo se i
vettori vy, vg, ..., v, sono linearmente dipendenti.

5.3 Forme bilineari

Sia V' uno spazio vettoriale definito sul campo K.
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Definizione 5.3.1. Una forma bilineare su V & una funzione
g:VxV K, (v,w) — g(v,w),
lineare rispetto a ciascuno dei suoi due argomenti, cioe tale che
(1) g(A1v1 + Agva, w) = Aig(v1, w) + Aag(v2, w),
(i1) g(v, pwy + pows) = prg(v, wr) + p2g(v, ws),
per ogni A1, Ag, t1, o € K e ogni v, vy, ve, w, wi,we € V.

Definizione 5.3.2. Una forma bilineare g : V x V — K e detta simmetrica
se g(v,w) = g(w,v), per ogni v,w € V. Se la caratteristica del campo K &
diversa da 2, g ¢ detta antisimmetrica (o alternante) se, per ogni v,w € V, si
ha g(v, ) = —g(w, v).

Osservazione 5.3.3. Notiamo che, se K ¢ un campo di caratteristica diversa da
2, ogni forma bilineare g si pud decomporre come segue

9(v,w) = gs(v, w) + ga(v, W),
ove gs e g, sono le due forme bilineari definite ponendo

g9(v,w) + g(w, v)

g(v,w) — g(w,v)
5 R .

2

gs(v,w) = ga(v, W) =
Poiché g; ¢ una forma bilineare simmetrica mentre g, ¢ una forma bilineare
alternante, cio significa che ogni forma bilineare su V' puo essere espressa come
somma di una forma bilineare simmetrica e di una forma bilineare alternante. Lo
studio delle forme bilineari & quindi riconducibile allo studio delle forme bilineari
simmetriche e di quelle alternanti. Nel seguito ci occuperemo esclusivamente
dello studio delle forme bilineari simmetriche.

Osservazione 5.3.4. Se g1 e go sono due forme bilineari definite su uno spazio
vettoriale V', € immediato verificare che la funzione g1 +g- : V xV — K definita
ponendo (g1 + ¢2)(v,w) = g1(v,w) 4+ g2(v,w), per ogni v,w € V, & una forma
bilineare su V. Analogamente, per ogni A € K e ogni forma bilineare g, anche la
funzione Ag ¢ una forma bilineare su V. L’insieme Bil(V) delle forme bilineari
su V e quindi dotato, in modo naturale, di una struttura di spazio vettoriale
su K. Poiché una combinazione lineare di forme bilineari simmetriche & ancora
una forma bilineare simmetrica, 'insieme delle forme bilineari simmetriche & un
sottospazio vettoriale di Bil(V'). Un risultato analogo vale naturalmente anche
per le forme bilineari alternanti.

Sia V uno spazio vettoriale e siano U, W due sottospazi vettoriali di V' tali
che V =U @ W. Siano inoltre

gy :UxU — K, gw W xW — K,

due forme bilineari definite, rispettivamente, su U e su W. Ricordando che ogni
vettore v € V si puo scrivere in modo unico come v = v+ w, con u € U e
w € W, definiamo una funzione

gy VxV oK
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ponendo
gv (u1 +wy,ug + w2) = gu(uy,u) + gw (wi, w2),

per ogni ui,us € U, wy,ws € W. Si verifica facilmente che gy & una forma
bilineare su V' e che essa e simmetrica se e solo se lo sono sia gy che gy .

Tale forma bilineare verra indicata con gy = gy ® gw e detta la somma
diretta® di gy e gw.

Consideriamo ora una forma bilineare simmetrica g definita su uno spazio
vettoriale V. Diamo la seguente definizione:

Definizione 5.3.5. Il nucleo di g € il seguente sottoinsieme di V':
Ker(g) = {v e V|g(v,w) =0, per ogni w € V}.

Osservazione 5.3.6. Si dimostra facilmente, usando la bilinearita di g, che Ker(g)
€ un sottospazio vettoriale di V. Inoltre, dalla simmetria di g, segue che & anche

Ker(g) = {w € V| g(v,w) =0, per ogni v € V}.

Definizione 5.3.7. Una forma bilineare simmetrica g : V x V — K & detta
non degenere se Ker(g) = {0}. In caso contrario essa & detta degenere.

Per ogni spazio vettoriale V' indicheremo con gg la forma bilineare nulla su
V, ciog la forma bilineare definita ponendo go(v,w) = 0, per ogni v,w € V.
Si noti che, per ogni forma bilineare simmetrica g su V, la restrizione di g a
Ker(g) x Ker(g) ¢ la forma bilineare nulla sul sottospazio Ker(g) di V.

Siamo ora in grado di enunciare e dimostrare il seguente risultato:

Proposizione 5.3.8. Sia g una forma bilineare simmetrica definita su uno
spazio vettoriale V. Esiste un sottospazio vettoriale U di V tale che:
(i) V=U®Ker(g);

(it) la restrizione di g a U x U, che indicheremo con gy, é una forma bilineare
simmetrica non degenere su U ;

(iit) g = gu ® go, ove go ¢ la forma bilineare nulla su Ker(g).

Dimostrazione. Dati V e g, esiste certamente un sottospazio vettoriale U di V'
tale che V- = U @ Ker(g). Indicando con gy la restrizione di g a U x U e con
go la forma bilineare nulla definita su Ker(g), consideriamo la forma bilineare
gu @ go definita su U @ Ker(g) = V. Dobbiamo dimostrare che g = gy @ go.
Consideriamo dunque due vettori vy,vo € V e scriviamo v; = u; + wy e
Vg = Ug + wa, ove ug,us € U e wy,ws € Ker(g). Si ha:
)

(9 ® go)(vi,v2) = (9u & go)(u1 + wi, uz + wa)
:gU(u17u2

= gu(u1,us

) =+ 90(w17w2)
) = g(u1,u2),
(w1 + wq, ug + wa)

g(vi,v2) =g
= g(u1,u2) + g(ui,w2) + g(wy, u2) + glwy, ws).

2La forma bilineare gy = gy @ gw ha la seguente proprieta: gy (v1,v2) = 0sewv; € U e
vg € W, oppure se v1 € W e vy € U. Per tale motivo ¢ anche detta la somma ortogonale di
gu e gw ed & spesso indicata con la notazione gy = gy H gw .
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Dato che wy,wy € Ker(g), si ha g(uj,ws) = g(wy,uz) = glwy,ws) = 0 e
pertanto g(v1,v2) = (gu B go)(v1,v2).

Rimane solo da dimostrare che la forma bilineare gy : U x U — K & non
degenere. Consideriamo un vettore ug € Ker(gy) e un generico vettore v € V.
Scrivendo v nella forma v = u + w, con v € U e w € Ker(g), si ha

g(ug,v) = g(ug, u + w)
= g(UO,U) + g(’LLO,'LU)
= gu(ug,u) +0=0

perché w € Ker(g) e up € Ker(gy). Da cid segue che uy € Ker(g), quindi
deve essere uy = 0, dato che U NKer(g) = {0}. Abbiamo cosi dimostrato che
Ker(gy) = {0}, quindi gy & non degenere. O

Osservazione 5.3.9. La proposizione precedente afferma che ogni forma bilineare
simmetrica ¢ somma diretta di una forma bilineare simmetrica non degenere e di
una forma bilineare nulla. Possiamo quindi limitarci a studiare le forme bilineari
simmetriche non degeneri.

Ricordando che il prodotto scalare usuale in R™ ¢ una forma bilineare sim-
metrica non degenere, e ricordando inoltre la condizione di ortogonalita tra due
vettori di R™, possiamo dare la seguente definizione:

Definizione 5.3.10. Sia V uno spazio vettoriale dotato di una forma bili-
neare simmetrica non degenere g. Due vettori v,w € V si dicono ortogonali
se g(v,w) = 0. Due sottospazi vettoriali Uy,Us C V si dicono ortogonali se
g(uy,us) =0, per ogni uy € Uy e ogni us € Us.

Esempio 5.3.11. Nello spazio vettoriale V' = R? consideriamo la forma bilineare
simmetrica g definita ponendo

9(($17$2), (y17y2)) = T1Y2 + Z2Y1-

E immediato verificare che Ker(g) = {(0,0)}, quindi g & non degenere. Si
noti che g((1,1),(1,—1)) = 0, quindi i vettori v; = (1,1) e vy = (1,—1) sono
ortogonali. Tuttavia, si ha anche g((l,O)7 (1, 0)) = 0, pertanto il vettore e; =
(1,0) risulta essere ortogonale a sé stesso!

Definizione 5.3.12. Sia V' uno spazio vettoriale dotato di una forma bilineare
simmetrica g. Un vettore v € V tale che g(v,v) = 0 & detto isotropo. Un
sottospazio U C V' e detto isotropo se la restrizione di g a U x U & la forma
bilineare nulla, cioe se g(uy,us) = 0, per ogni uy, ug € U.

Osservazione 5.3.13. Si noti che se U C V ¢ un sottospazio isotropo, allora
ogni vettore u € U & un vettore isotropo. Il viceversa, in generale, & falso. Se
u € V & un vettore isotropo, certamente il sottospazio (u) da esso generato
¢ un sottospazio isotropo, tuttavia se uq, us € V sono due vettori isotropi,
non ¢ detto che il sottospazio U = (u1,us) da essi generato sia un sottospazio
isotropo. Infatti & ovviamente g(ui,u;) = 0 e g(uz,uz) = 0, ma non ¢ detto
che sia anche g(uy,u2) = 0. La forma bilineare considerata nell’Esempio 5.3.11
illustra precisamente questo fatto: i due vettori della base canonica e; = (1,0)
ed ex = (0,1) sono due vettori isotropi, ma si ha g(ey,ez) = 1.
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Definizione 5.3.14. Sia V uno spazio vettoriale dotato di una forma bilineare
simmetrica g. Dato un sottoinsieme S di V' definiamo il suo ortogonale ponendo

St ={veV|gvw) =0Ywe S}.

Proposizione 5.3.15. Siano V wuno spazio vettoriale dotato di una forma
bilineare simmetrica g e S un sottoinsieme di V. Allora:

(i) St & un sottospazio vettoriale di V ;
(7i) Si ha S C (S) C (SH)*, ove (S) denota il sottospazio vettoriale di V
generato da S.

Dimostrazione. Per dimostrare la prima affermazione consideriamo due vettori
v1, Vg € ST e due scalari A1, Ao € K. Per ogni w € 9, si ha:

g()\l’U1 + /\2112,11)) = )\19(’[11, ’lU) + )\gg(vg,w) = )\1 0+ )\2 0= 0,

quindi A\jv; + Agvg € St

Per quanto riguarda la seconda affermazione, I'inclusione S C (S) & ovvia.
Per dimostrare che (S) C (S+)~ consideriamo un generico vettore w € (S); esso
si potra scrivere nella forma

w = Atwy + Aowa + - + Apwy,

per qualche Aj,...,\. € K e qualche w1, ..., w, € S. Per ogni v € S*, si ha

g(w,v) = Q(Z)\iwuv) = Xig(wi,v) =0,
i=1 i=1

dato che w; € S e v € S*+. Cid significa che w & ortogonale a tutti i vettori di
S+, quindi w € (S*+)*. O

Proposizione 5.3.16. Siano V wuno spazio vettoriale dotato di una forma
bilineare simmetrica g e S, T due sottoinsiemi di V. Valgono le sequenti
proprieta:

(i) SCT=T+CS+;

(ii) S+ =(9)* .
Dimostrazione. (i) Sia v € T*; si ha g(v,w) = 0, per ogni w € T. Dato che
S C T, si ha quindi anche g(v,w) = 0, per ogni w € S, il che significa che
ve St

(i) Dall’inclusione S C (S) e dalla proprieta (i) segue che (S)* C S+. Per

dimostrare I'inclusione opposta, consideriamo un vettore v € S+. Ogni vettore
w € (S) si puo esprimere nella forma

w = Atwy + Aswa + - + Apwy,

per qualche Aq,..., A\, € K e qualche wq,...,w, € S. Si ha quindi

g(v,w) = 9(% > )\iwi) => Aig(v,w;) = 0.
i=1 i=1

Cid significa che v & ortogonale a tutti i vettori di (S), quindi v € (S)*. O
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Definizione 5.3.17. Sia V uno spazio vettoriale su K e g : V xV — K una
forma bilineare simmetrica. Una base {v1,vs,...,v,} di V costituita da vettori
a due a due ortogonali & detta una base ortogonale di V.

In uno spazio vettoriale V' dotato di una forma bilineare simmetrica g, po-
tremmo definire il quadrato della norma di un vettore v ponendo ||v||? = g(v,v).
Tale definizione ¢ motivata dal fatto che, nello spazio vettoriale R™ dotato del
prodotto scalare usuale, si ha ||v]|> = v - v, per ogni v € R™. In generale, non &
pero possibile definire la norma di v; infatti non € detto che nel campo K esista
una radice quadrata di g(v,v).

A titolo di esempio, consideriamo lo spazio vettoriale V = Q2, sul campo Q
dei numeri razionali, dotato del prodotto scalare usuale. Il vettore v = (1,1) &
tale che ||v||? = v - v = 2, quindi nel campo Q non & possibile definire la norma
di v, dato che dovrebbe essere |[v]| = v/2, ma v/2 ¢ Q. Un esempio analogo
si ottiene considerando lo spazio vettoriale reale V' = R?, dotato della forma
bilineare simmetrica definita nell’Esempio 5.3.11. In questo caso, per il vettore
v = (1,-1) si ha |[v||* = g(v,v) = —2, pertanto dovrebbe essere |[v| = /=2,
ma /-2 ¢ R.

Naturalmente, nel caso particolare in cui g(v,v) = 1, si ha anche ||v]| = 1.
Possiamo quindi dare la seguente definizione:

Definizione 5.3.18. Sia V uno spazio vettoriale dotato di una forma bilineare
simmetrica g. Un vettore v € V si dice normalizzato se g(v,v) = 1.

Osservazione 5.3.19. Se v non & un vettore isotropo, cioe¢ se g(v,v) # 0, e se
nel campo K esiste una radice quadrata di g(v,v), € possibile normalizzare il

vettore v dividendolo per y/g(v,v). Infatti, ponendo v = v/4/g(v,v), si ha:

1
WI* = g(v', ") = ——5 g(v,v) = 1.

(Vg(v,v))

Definizione 5.3.20. Sia V uno spazio vettoriale dotato di una forma bilineare
simmetrica g. Una base {v1,vs,...,v,} di V si dice ortonormale se essa &
una base ortogonale e se tutti i vettori vq,...,v, sono normalizzati, cioe se
g(v;,v;) =0 per ¢ # j, mentre g(v;,v;) =1, perognii =1,...,n.

Consideriamo ora piu in dettaglio il problema di definire la norma di un
vettore in uno spazio vettoriale V' dotato di una forma bilineare simmetrica g.
Come gia accennato in precedenza, cio € possibile se, per ogni v € V, esiste
nel campo K una radice quadrata di g(v,v). E quindi naturale imporre delle
condizioni su g che garantiscano l'esistenza di \/g(v,v), per ogni v € V.

Notiamo, ad esempio, che se K & il campo C dei numeri complessi tale
richiesta & soddisfatta per ogni forma bilineare simmetrica g. Cio non vale
invece se K ¢ il campo R dei numeri reali: in tal caso € necessario richiedere che
g(v,v) >0, per ogni v € V.

Diamo quindi la seguente definizione:

Definizione 5.3.21. Sia V uno spazio vettoriale reale. Una forma bilineare
simmetrica g su V e detta:

(i) definita positiva se g(v,v) > 0, per ogni v € V, v # 0;
(ii) definita negativa se g(v,v) < 0, per ogni v € V, v # 0;
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(ii1) semidefinita positiva se g(v,v) > 0, per ogni v € V;
() semidefinita negativa se g(v,v) < 0, per ogni v € V;
(v) indefinita se esistono v, w € V tali che g(v,v) > 0 e g(w,w) < 0.

Nel caso in cui la forma bilineare simmetrica g sia semidefinita positiva € pos-
sibile porre ||v|| = y/g(v,v). Notiamo tuttavia che se si desidera che 'unico
vettore avente norma nulla sia il vettore nullo, & necessario richiedere che g sia
definita positiva. Diamo quindi la seguente definizione:

Definizione 5.3.22. Sia V uno spazio vettoriale reale dotato di una forma
bilineare simmetrica definita positiva g. La norma di un vettore v € V' & definita
ponendo

[oll = Vg(v,v).

La norma cosi definita soddisfa le seguenti proprieta, la cui verifica & immediata:

(4) |lv]] = 0, per ogni v € V, e |[v|| = 0 se e solo se v = 0;

(i) |2l = [Al|lv]l, per ogni A € R e ogni v € V.
Come per l'usuale norma dei vettori in R™, vale poi il seguente risultato:

Proposizione 5.3.23 (DISUGUAGLIANZA DI CAUCHY-SCHWARZ). Sia g una
forma bilineare simmetrica definita positiva su uno spazio vettoriale reale V.
Per ogni coppia di vettori v,w € V, si ha

lg(v, w)| < JJvll|wll. (5.3.1)

Inoltre vale il segno di uguaglianza se e solo se i due vettori sono linearmente
dipendenti.

Dimostrazione. La dimostrazione ¢ esattamente la stessa di quella della Propo-
sizione 5.1.6. Per adattarla al presente contesto e sufficiente definire il “prodotto
scalare” di due vettori v,w € V ponendo v - w = g(v,w). O

Una conseguenza immediata della disuguaglianza di Cauchy—Schwarz ¢ la
disuguaglianza triangolare:

Proposizione 5.3.24 (DISUGUAGLIANZA TRIANGOLARE). Sia V uno spazio
vettoriale reale dotato di una forma bilineare simmetrica definita positiva g.
Per ogni v,w € V, si ha

lo+wlf < o]l + [|w]-

Dimostrazione. La dimostrazione ¢ del tutto analoga a quella della Proposizio-
ne 5.1.8. O

La validita della disuguaglianza di Cauchy—Schwarz ci permette, a sua volta,
di definire I’angolo compreso tra due vettori in modo del tutto analogo a quanto
abbiamo fatto per i vettori di R™:

Definizione 5.3.25. Sia V uno spazio vettoriale reale e sia g una forma bili-
neare simmetrica definita positiva su V. Dati due vettori non nulli v,w € V,
I’angolo (non orientato) tra essi compreso & I'unico ¢ € [0, 7] tale che

g(v, w)

TellTll (5:32)

cos ¢ =
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I risultati descritti finora mostrano come una forma bilineare simmetrica de-
finita positiva su uno spazio vettoriale reale V permetta di definire le lunghezze
dei vettori e gli angoli tra vettori in modo del tutto analogo a quanto accadeva
per lo spazio vettoriale R dotato del prodotto scalare usuale. Per tale ragione,
uno spazio vettoriale reale dotato di una forma bilineare simmetrica definita
positiva viene detto uno spazio vettoriale euclideo.

In uno spazio vettoriale euclideo (V) g) si definisce il prodotto scalare di due
vettori v,w € V ponendo v - w = g(v,w). Con tale definizione nello spazio
vettoriale V valgono, senza alcuna modifica, (quasi)® tutti i risultati sulle aree
e i volumi descritti nella Sezione 5.2.

Prima di affrontare lo studio dettagliato degli spazi vettoriali euclidei ci
occuperemo delle matrici associate alle forme bilineari.

5.4 Forme bilineari e matrici

Sia V' uno spazio vettoriale di dimensione finita su un campo K e sia g una
forma bilineare definita su V. Consideriamo una base v = {v1,...,v,} di V e
poniamo g;; = g(v;,v;), per ogni 4,5 = 1,...,n. Gli scalari g;; formano una
matrice quadrata, di ordine n, a coefficienti in K.

Definizione 5.4.1. Con le notazioni precedenti, la matrice G = (gij) e detta
la matrice della forma bilineare g, rispetto alla base v di V.

La conoscenza della matrice di g permette di calcolare g(v, w) per ogni coppia
di vettori v,w € V. Infatti, esprimendo v e w come combinazioni lineari dei
vettori della base di V,

n n
U= E )\ivia w = § HjVs,
i=1 j=1

grazie alla bilinearita di g, si ha:

g(v,w)

g( Z )\i'l)i, Z /,Lj’l)j)
i=1 j=1

Z Aty g(vi, v5)

i,j=1

Z AibtjGij-

i,j=1

Considerando i vettori (A1, Aa,..., An) € (u1, o, - .-, fin), costituiti dalle com-
ponenti di v e w rispetto alla base fissata di V, & possibile esprimere g(v,w) in
termini di prodotti tra matrici e vettori come segue:

M1
g, w) = (A1,..., )G | ¢
[in

3Pin precisamente, tutti tranne quelli che usano il fatto che la base canonica & una base
ortonormale.



Capitolo 5 Spazi Vettoriali Euclidei 139

Ad ogni forma bilineare g su V' possiamo quindi associare una matrice quadrata
G a coefficienti in K la quale, ovviamente, dipende dalla scelta di una base di
V. E immediato verificare che la forma bilineare g € simmetrica se e solo se
gij = gji, per ogni 4, = 1,...,n, cioc se e solo se G ¢ una matrice simmetrica.
Analogamente, g ¢ antisimmetrica se e solo se g;; = —g;;, perognii,j =1,...,n,
cioe se e solo se G € una matrice antisimmetrica.

Osservazione 5.4.2. Siano U e W due sottospazi vettoriali di uno spazio vetto-
riale V' e sia gy = gu ® gw, ove gy e gw sono delle forme bilineari definite su
U e W rispettivamente. Sia u = {uq,...,u,} una base di U e indichiamo con
Gy la matrice di gy rispetto alla base u. Analogamente, consideriamo una base
w = {wy,...,ws} di W e indichiamo con Gy la matrice di gy rispetto alla base
w. Se indichiamo con G la matrice di gy rispetto alla base v di V costituita
dai vettori uq,...,u,, wy,...,ws, ¢ immediato verificare che la matrice G ha la
seguente forma a blocchi

ove 0, 5 indica la matrice nulla con r righe e s colonne.

Descriviamo ora il nucleo di una forma bilineare simmetrica g in termini
della matrice ad essa associata:

Proposizione 5.4.3. Siano V uno spazio vettoriale su K, g una forma bilineare

simmetrica suV ev = {vy,...,v,} una base di V. Indichiamo con G € M, (K)
la matrice di g rispetto alla base v di V. Il nucleo di g é l'insieme dei vettori v
del tipo v = Av1 + AoV + - - - + A vy, ove la n-upla (A1, ..., \,) € una soluzione

del sistema lineare omogeneo GX = 0.

Dimostrazione. Un vettore v = Ajv1 4+ \o2vs + - - - + A\ v, appartiene al nucleo di
g se e solo se g(w,v) = 0 per ogni w € V. Poiché i vettori vy, va,. .., v, formano
una base di V, cio equivale a richiedere che g(v;,v) =0, peri =1,...,n. Si ha
dunque, per ogni vettore v; della base di V,

9(vi,v) = g(vi, \iv1 + Aava + -+ - 4+ Apvp)
= Mg(vi,v1) + Xag(vi, v2) + - - - + Ang(vi, vn)
=gnA + gi2Aa + -+ GinAp = 0.

Queste sono precisamente le n equazioni del sistema lineare

T, 0
Corollario 5.4.4. Sia V uno spazio vettoriale di dimensione finita su K. Una

forma bilineare simmetrica g definita su V' é non degenere se e solo se la sua

matrice G, rispetto a una qualunque base di V', é non singolare, cioé se e solo
se det G # 0.
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Dimostrazione. Ricordiamo che g ¢ non degenere se e solo se Ker(g) = {0}. In
base alla proposizione precedente, cio equivale a richiedere che il sistema lineare
G X = 0 abbia come unica soluzione il vettore nullo. Per il Teorema di Cramer
questo avviene se e solo se la matrice G € non singolare. O

Proposizione 5.4.5. Siano V uno spazio vettoriale di dimensione n su K e g
una forma bilineare simmetrica non degenere su V. Per ogni sottospazio U di
V, st ha

dimU*+ =n —dimU.

Dimostrazione. Sia U un sottospazio di dimensione r di V' e consideriamo una
base vy, vg, ..., v, di U. Completiamo questa base in modo da ottenere una base
VlyeyUpy Uptl,- .-, Uy di V. Un vettore v = A\jv; + Agve +- - -+ A\, v, appartiene
a Ut se e solo se g(u,v) = 0, per ogni u € U. Poiché i vettori vy, vs,...,v,
sono una base di U, cid equivale a richiedere che g(v;,v) =0 peri =1,...,r.
Si hanno dunque le seguenti equazioni

g(vi,v) = g(vi, Mivr + Aava + -+ - + Apvp)
= A g(vi,v1) + A2g(vi, v2) + - - + Apg(vi, vp) (5.4.1)
= ginA1 + gi2A2 + -+ GinAp =0,

per i = 1,...,7. In questo modo si ottiene un sistema di equazioni lineari
omogenee la cui matrice G’ & precisamente la sottomatrice costituita dalle prime
r righe della matrice G. Poiché, per ipotesi, g € non degenere, la matrice G' € non
singolare, quindi tutte le sue righe sono linearmente indipendenti. Da cio deriva
che la sottomatrice G’ ha rango massimo, pari a r. Dal Teorema di Rouché-
Capelli segue quindi che lo spazio delle soluzioni del sistema lineare (5.4.1) ha
dimensione n—r. Dato che le soluzioni di tale sistema forniscono le componenti,
rispetto alla base vy, ...,v,, dei vettori appartenenti al sottospazio U+ di V, si
conclude che dimU+ =n — 7. O

Corollario 5.4.6. Sia V uno spazio vettoriale di dimensione finita su K e g
una forma bilineare simmetrica non degenere su V. Per ogni sottospazio U di
V, st ha

UHt =u.

Dimostrazione. Se n = dim V', per la proposizione precedente si ha:
dim(U*+)* =n —dimU* =n — (n —dimU) = dim U.

Pertanto U e (U1)+ sono due sottospazi vettoriali della stessa dimensione. Poi-
ché sappiamo che U C (U+)+ (vedi Proposizione 5.3.15), deve necessariamente
essere U = (U4)*. O

Osservazione 5.4.7. Si noti che la dimostrazione del risultato precedente usa in
modo essenziale il fatto che V' abbia dimensione finita. Si potrebbe infatti di-
mostrare che, nel caso di uno spazio V' di dimensione infinita, per un sottospazio
U di V si ha, in generale, solo un’inclusione propria U C (U+)+.

Terminiamo questa sezione dimostrando il seguente risultato:
Proposizione 5.4.8. Siano V uno spazio vettoriale sul campo K e g una forma

bilineare simmetrica non degenere su V. Per ogni W1, Wy sottospazi di V', si
ha:
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(1) (Wh+ Wa)®= = Wit n Wy
(ZZ) (Wl n VVQ)L D) VVlL + I/VQL

Inoltre, se V ha dimensione finita, nella (i) vale l'uguaglianza.

Dimostrazione. (i) Siav € (W1+Wz)t. Siha g(v, w) = 0 per ogni w € Wy +Ws
e dunque anche g(v,w;) =0 e g(v,ws) = 0, per ogni wy € W7 e ogni we € Wa.
Cid dimostra che v € Wit N Wik,

Viceversa, supponiamo che v appartenga a I/Vll ﬂWj, cioe che sia g(v,wy) =
0e g(v,wy) =0, per ogni wy; € Wi e ogni wy € Wy. Ricordando che ogni vettore
w € W1 + Wy si scrive nella forma w = wy 4+ we, con wy € Wy e wy € W, si ha
g(v,w) = g(v,wy) + g(v,ws) = 0, il che dimostra che v € (W + Wa)=*.

(ii) Sia v € Wi- + W3-, Allora si ha v = vy + vg, con v; € Wit e va € W5t.
Per ogni w € Wi N Wa si ha dunque g(v,w) = g(v1,w) + g(va, w) = 0, quindi
v € (Wi N W)L, come volevasi dimostrare.

Infine, se V' ha dimensione finita, poniamo n = dimV, m; = dimWj e
mg = dim W5. Dalla Proposizione 5.4.5 segue che

dim Wi =n —my
dim Wi =n —my
dim(W; N W)t = n — dim(W; N Wy).
Per la formula di Grassmann, si ha
dim(Wit + W) = dim Wit + dim W5 — dim(W;- 0 W3h) (5.42)
=2n —my — mo — dim(W;- N W5H). o
Per il punto () si ha
dim(Wit N Wgh) = dim(W; + W)+
n — dim(Wy + Wa)

e dunque, usando ancora la formula di Grassmann, si trova
dim(Wit N W3) = n —my — mo + dim(W; N Wa).
Sostituendo nella (5.4.2) si trova infine
dim(Wit + W3) = n — dim(Wy N Wa) = dim(W; N Wa)t.
Dall’inclusione (ii) e dall'uguaglianza delle dimensioni dei due sottospazi si
deduce che vale I'uguaglianza (W; N W)+ = Wit + Wit O
5.4.1 Cambiamenti di base

La matrice associata a una forma bilineare g, definita su uno spazio vettoriale
di dimensione finita V', dipende dalla scelta di una base di V. In questa sezione
ci proponiamo di descrivere come cambia la matrice di ¢ in corrispondenza di
un cambiamento della base di V.

Consideriamo quindi uno spazio vettoriale V' di dimensione n su K e una
forma bilineare g su V. Siano v = {vy,...,v,} e v/ = {v],..., v} due basi di V'
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e indichiamo con G' = (g;;) la matrice di g rispetto alla base v e con G' = (g;;)
la matrice di g rispetto alla base v’. Ricordiamo che cio significa che

9i5 = 9(vi,v5), e gi; = g(vj,v)),

perognij=1,...,n.

Indichiamo con ay, : V' = K" lisomorfismo che associa ad ogni vettore
v € V la n-upla (z1,...,2,) delle sue componenti rispetto alla base v e con
ay @V 5 K™ lisomorfismo che associa ad ogni v € V la n-upla (z,...,2,)
delle sue componenti rispetto alla base v’.

Componendo ay- con I'inverso dell’isomorfismo «,, otteniamo un isomorfismo
di K™ in sé, il quale corrisponde alla moltiplicazione per una qualche matrice
P € M, (K). Indicheremo questo isomorfismo con Fp : K™ = K™. Si ottiene
cosi il seguente diagramma commutativo:

K’IL

>

Facciamo notare che la matrice P ¢ invertibile, dato che la corrispondente
applicazione lineare Fp € un isomorfismo.

Vediamo ora di ottenere una descrizione piu esplicita della matrice P. Ri-
cordiamo che le colonne di P sono date dalle immagini, tramite 1’isomorfismo
Fp, dei vettori della base canonica di K". Sia e; = (0,...,0,1,0,...,0) il j-
esimo vettore della base canonica di K™ (tutte le coordinate sono nulle tranne
la j-esima che & uguale a 1). Tramite l'isomorfismo ay, il vettore e; € K"
corrisponde al j-esimo vettore v; della base v di V. Si ha quindi

Fp(ej) = av(ag™ (¢))) = avr (v)),

dove ricordiamo che o/ (v;) € K™ e il vettore costituito dalle componenti del
vettore v; calcolate rispetto alla base v'; questo vettore ¢ la j-esima colonna di
P.

In conclusione, possiamo affermare che le colonne della matrice P non sono
altro che le componenti dei vettori vy, ..., v, della base v di V' calcolate rispetto
alla seconda base v/. Con un analogo ragionamento, scambiando i ruoli delle
due basi, si potrebbe dimostrare che le colonne della matrice inversa P~! sono
precisamente le componenti dei vettori v],...,v), della base v/ di V calcolate
rispetto alla prima base v.

In dettaglio, se X = {21, 22,...,2,) ¢ il vettore costituito dalle componenti
di un vettore v rispetto alla base v e se X' = {zf,z),...,2}) ¢ il vettore
costituito dalle componenti dello stesso vettore v rispetto alla base v/, si ha

n n
o P i /I
v = g Tv5 = g ;0;, X' =PX.
=1 i=1
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Si ha pertanto z = Ej:l pijx;, da cui si ricava

n n
} : _} : i
LUjUj = T;v;

Jj=1 i=1
n n

> ( Pz‘j%‘)vi
3 1

=1 gj=

n
/
E : DijT;jv;

4,j=1

n n

/
E ,'TJ<§ pijvi)
j=1 i=1

da cui si deduce che
n
v; = Dij ;.
i=1

Siamo ora in grado di determinare la relazione esistente tra le due matrici G e
G’ di g. Si ha infatti:

gij = Q(Umvj)

n n
g( D puivi - privi)
h=1 k=1

phipkjg(%, Ufc)
1

PhiFhiPh;-

P‘ 4:'“
ANGERANIE
|

1
Questa uguaglianza puo essere riscritta in termini di matrici come segue:
G ="'PG'P. (5.4.3)

Un metodo alternativo per ricavare quest’ultima formula e il seguente. In-
dichiamo con X = Hxq1,2a,...,2,) ¢ Y = Hy1,y2,...,yn) i vettori costituiti
dalle componenti di v e w rispetto alla base v e con X’ = {(z,z},...,2.) e
Y’ =Yy}, yh,...,y,) 1 vettori costituiti dalle componenti di v e w rispetto alla
base v’. Si ha pertanto:

g(v,w) ="XGY = X'G'Y’, X' = PX, Y’ = PY.
Sostituendo, si ottiene:
XGQY ='X'G'Y =(PX)G'(PY) = X'PG' PY.
Poiché questa uguaglianza vale per ogni v,w € V, cioé per ogni X,Y € K" si

deduce che deve sussistere 'uguaglianza (5.4.3).
Diamo ora la seguente definizione:
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Definizione 5.4.9. Due matrici quadrate G ¢ G’ di ordine n a coefficienti
in K si dicono congruenti se esiste una matrice invertibile P € M, (K) (cioe
P € GL,(K)) tale che

G ="'PG'P.

Da quanto sopra detto si deduce il seguente risultato:

Corollario 5.4.10. Due matrici G,G' € M, (K) rappresentano la stessa forma
bilineare g definita su uno spazio vettoriale V' di dimensione n su K, rispetto a
basi diverse, se e solo se esse sono congruenti.

Osservazione 5.4.11. Si verifica facilmente che la relazione di congruenza & una
relazione di equivalenza sull’insieme M,,(K) delle matrici quadrate di ordine n
a coefficienti in K.

Terminiamo questa sezione estendendo alle matrici la Definizione 5.3.21 data
per le forme bilineari simmetriche:

Definizione 5.4.12. Sia G € M, (R) una matrice simmetrica e sia g : R™ x
R™ — R la corrispondente forma bilineare simmetrica (cioe¢ la forma bilineare
la cui matrice, rispetto alla base canonica di R", ¢ ). La matrice G & detta:

(i

definita positiva se g ¢ definita positiva;

(ii) definita negativa se g & definita negativa,

semidefinita negativa se g € semidefinita negativa;

)
)
(ii1) semidefinita positiva se g & semidefinita positiva,
(iv)
)

(v

indefinita se g € indefinita.

5.4.2 Basi ortogonali e ortonormali

In questa sezione dimostreremo che ogni spazio vettoriale reale V' di dimensio-

ne finita, dotato di una forma bilineare simmetrica definita positiva, ammette

una base ortonormale. Descriveremo inoltre un procedimento che permette di

costruire una base ortonormale partendo da una base qualunque di V.
Iniziamo col dimostrare il seguente risultato:

Proposizione 5.4.13. Sia V wuno spazio vettoriale reale e sia g una forma
bilineare simmetrica definita positiva su' V. Se i vettori vi,va, ..., v, sono a due
a due ortogonali, essi sono anche linearmente indipendenti.

Dimostrazione. Consideriamo una combinazione lineare

)\1’01 +>\2’U2 +"'+>\rvr =0.

Per ognii=1,...,r, si ha
g(vivajUj) = Ajg(vi,v5) = Aig(vi,v:) =0,
j=1 j=1

dato che g(v;,vj) = 0 per ogni i # j. Essendo g definita positiva, & g(v;,v;) >
0, quindi deve essere A\; = 0. Questo dimostra che i vettori vq,...,v, sono
linearmente indipendenti. O
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Possiamo ora dimostrare il seguente risultato:

Teorema 5.4.14. Ogni spazio vettoriale V di dimensione finita sul campo
dei numeri reali, dotato di una forma bilineare simmetrica definita positiva g,
possiede una base ortonormale.

Dimostrazione. Procediamo per induzione sun = dim V. Sen = 1 consideriamo
un vettore non nullo v € V. Poiché g & definita positiva, si ha g(v,v) > 0,
quindi possiamo porre w = v/4/g(v,v). Il vettore w & normalizzato, cioe si ha
g(w,w) = 1, e constituisce pertanto una base ortonormale di V.

Supponiamo quindi che il teorema valga per ogni spazio vettoriale reale di
dimensione n — 1 e proviamo che allora esso vale anche per spazi di dimensio-
ne n. Sia V uno spazio vettoriale di dimensione n, come nell’enunciato, e sia
v € V un vettore non nullo. Consideriamo il sottospazio W = (v)* dotato della
forma bilineare simmetrica definita positiva indotta da g. Per la Proposizio-
ne 5.4.5, si ha dim W = n — 1 pertanto, per l'ipotesi induttiva, W possiede una
base ortonormale w1, ...,w,_1. Poiché, per ipotesi, g ¢ definita positiva, si ha
g(v,v) > 0; possiamo quindi porre w,, = v/+/g(v,v). E ora immediato verificare
che {wy,...,w,_1,w,} & una base ortonormale di V. O

Descriviamo ora in dettaglio un metodo, noto come procedimento di ortonor-
malizzazione di Gram—Schmidt, che permette di costruire una base ortonormale
partendo da una base qualsiasi di V.

Consideriamo quindi uno spazio vettoriale V' di dimensione n sul campo dei
numeri reali, dotato di una forma bilineare simmetrica definita positiva g. Sia
v = {v1,...,v,} una base qualunque di V. Poniamo w; = vy e cerchiamo un
vettore wsy, ortogonale a wy, della forma wy = @ w; +vs (notiamo che, in questo
modo, il sottospazio vettoriale generato da w; e ws coincide con quello generato
da v1 e vy). La condizione di ortogonalita tra w; e we si esprime ponendo
g(wy,ws) = 0. Si ha pertanto

g(wr, w2) = g(wy, ywy + ) = arg(wy, wr) + g(wy,v2) =0,
da cui si ottiene
g(wi,v2)
o = ———-.
g(wr,wr)
Il vettore cercato & quindi

g(wh UQ)

o(wr,w1) (5.4.4)

W = Vg —

Cerchiamo ora un vettore ws, ortogonale al sottospazio generato da w; e wa,
della forma ws = ajw; + asws + v3. Imponendo che ws sia ortogonale a w;
e wy, si ottengono le equazioni g(wi,ws) = 0 e g(wa,ws) = 0. Sviluppando i
calcoli, si trova:
g(wi,w3) = g(wr, crw + azws +v3)
= a1g(w1, w1) + azg(wi, w2) + g(w1, v3)
= a1g(wi,w1) + g(wy,vz) =0,

g(wa,w3) = g(wa, a1wy + asws + v3)

= ang(wa, w1) + azg(wa, wz) + g(ws,vs)
= agg(wa, w2) + g(wa2,v3) =0,
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da cui si ottiene

o g(w1,v3) _ g(w2,v3)
o] = — ) Qg = — .
g(wr,wy) g(w2, ws)
Il vettore cercato ¢ quindi
W,V Wa, U
w3 = V3 — g( ! 3) w1 — g( £ 3) wa. (545)
g(wi,w1) g(wa, wa)
Continuando in questo modo, si ottiene una base ortogonale {wy, wa, ..., wy} di
V. Piu precisamente, supponiamo (per ipotesi induttiva) di aver gid costruito
i vettori wy, ws, ..., w,_1, che sono tra essi a due a due ortogonali. Cerchiamo

allora un vettore w,, della forma

Wy = QW1 + QoWz + -+ - Q1 Wp—1 + Uy,

ortogonale al sottospazio generato da wy, ..., w,_1 (notiamo che, in questo mo-
do, il sottospazio generato dai vettori wi,...,w, coincide con il sottospazio
generato dai vettori vq,...,v,). Per ogni ¢ = 1,...,7 — 1, la condizione di

ortogonalita tra w, e w; fornisce la seguente equazione

r—1

g(wi, wy) = g(wu > ajw;+ Ur)
j=1

r—1

= Z ajg(wia w]) + g<wivv7‘)
=1

- alg(wwwl) + g<wi7v7‘) = 07

da cul si ricava

gl\ws, Ur)
Q= ————=.

g(wi7 wi)

Il vettore w, cercato ¢ quindi dato da:

N g(wi,v,) g(w2, v,) g(w,_1,v;)
Wy =Vp — W) — Wy — +++ — ———— ", _q.
g(wr,wr) g(wa, w2) g(wr—1,wr—1)
Gli n vettori wq,...,w, cosi costruiti sono a due a due ortogonali, quindi so-

no linearmente indipendenti (vedi Proposizione 5.4.13); essi sono pertanto una
base ortogonale di V. Per ottenere una base ortonormale non rimane altro che
normalizzare i vettori trovati. A tal fine & sufficiente porre

/ W;
W, = ————,
g(wi, w;)

per ogni ¢ = 1,...,n (ancora una volta, cio ¢ possibile perché si ¢ supposto
che g sia definita positiva). I vettori wi,...,w, cosi costruiti sono una base
ortonormale di V.

Se indichiamo con G la matrice di g rispetto alla base v = {vy,...,v,} di V
e con G’ la matrice di g rispetto alla base w’ = {w],...,w}}, si ha

G’ ='PGP,
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ove P ¢ la matrice di cambiamento di base, cioe la matrice le cui colonne sono le

componenti dei vettori wf, ..., w], della nuova base, rispetto ai vettori vy, ..., v,
della base originale di V. Dato che w’ = {w/,...,w/,} & una base ortonormale,
si ha
1 sei=3j
/ / / I
L= w,:.,w =
Jig glus, J) {0 se i # 7,

quindi G’ ¢ la matrice identica.

Osservazione 5.4.15. Si noti che ogni vettore w} della base ortonormale w’ si
scrive come combinazione lineare dei vettori vy, vs,...,v; della base v. Cio
significa che, nella matrice di cambiamento di base P, tutti gli elementi sotto la
diagonale principale sono nulli; P & quindi una matrice triangolare superiore.

Possiamo riassumere quanto detto finora nella seguente proposizione:

Proposizione 5.4.16. Sia G € M, (R) una matrice simmetrica definita positi-
va. Esiste una matrice invertibile P € M,,(R) tale che 'PGP = 1. Inoltre, tale
matrice P puo essere scelta triangolare superiore.

Esempio 5.4.17. Applichiamo ora su un esempio concreto il metodo di orto-
normalizzazione di Gram—Schmidt descritto in precedenza. Sia V uno spazio
vettoriale reale di dimensione 4 e sia g la forma bilineare simmetrica su V' di

matrice
4 2 =2 2
2 10 -7 =2
G= -2 -7 6 3
2 -2 3 10

rispetto alla base v = {vy, va,v3,v4} di V. Ci proponiamo di costruire una base
ortonormale di V.
Iniziamo ponendo wy = vy. Si ha

g(w17w1):g(7)1,7}1):47 g(w17v2):g(v1702):2a

quindi, dalla formula (5.4.4), otteniamo

g(wi,v2) 1
W9 =V — —— W1 = Vg — 7 V1.
g(whwl) 2
Ora si ha:
g(wi,v3) = g(v1,v3) = =2,
1 1
g(wa,v3) (Uz - 501,U3> = g(v2,v3) — B g(v1,v3) = —6,
1 1 1
g(wa, ws) g(vz FULV2 T 111) = 9(vz,v2) = g(v2,01) + 7 g(v1,01) = 9.
Dalla formula (5.4.5) si ricava
w1,V Wa, Vs 1
wgzvg—g(l 3)w1—g(2 3)’LU2:'U3+*'U1+*’U2.
g(wi,wr) g(ws2,ws) 6 3
Infine, in modo del tutto analogo, si ha
0 — 0y — g(wy,va) - g(wa, va) wy — 9(ws, vg) ws.

g(wl,w1) ! g(wg,wg) g(w37w3)
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Sviluppando i calcoli, si trova

g(wi,vq) =2 g(wa,vq) = =3
g(wsz,vq) =2 g(wsz,w3) =1,

da culi si ricava
Wy = —V] — Vg — 203 + vy4.

Calcoliamo infine g(wa, w4):

g(wg, wy) = g(—v1 — vy — 205 + vg, —V1 — V2 — 205 + vg) = 4.

Ora non rimane altro che normalizzare i vettori trovati:

w, w1 w1 1U
1 == —= = — V1,
gwi,wy) V42
’ Wo w2 1 1
Wy = =-—=—-u1+ 5V,
g(w27w2) \/g 6 3
wh ws ws v +2v + v
= ===Vt 5 V2 3
° g(ws,wz) V1 6 3 ’
’ Wy Wy 1 1 1
w4 -

——= =—-U1 — V2 — U3+ < V4.
Jwswa) VA A A R

La matrice di cambiamento di base ¢ quindi

S O O =
w

e < = =

O = W o=

= N N

N[ =

che, come si vede, & triangolare superiore. E ora immediato verificare che
‘PGP = 1.

5.5 Classificazione delle forme bilineari simmetriche
reali

In questa sezione ci occuperemo dello studio e della classificazione delle forme
bilineari simmetriche definite su uno spazio vettoriale reale di dimensione finita.

Sia dunque V' uno spazio vettoriale di dimensione n sul campo R dei numeri
reali e sia g una forma bilineare simmetrica definita su V. Per la Proposizio-
ne 5.3.8, esiste un sottospazio vettoriale U di V tale che V' = Ker(g) @ U e
tale che la restrizione di g a U x U sia una forma bilineare non degenere. Cio
significa che ¢ sempre possibile scegliere una base {v1, ..., Vg, Vg1, .-,0,} di
V (ove {v1,...,vx} € una base di Ker(g)) rispetto alla quale la matrice G di g
sia una matrice a blocchi del tipo

O,k ‘ Ok,n—k
G —

0n—k.k ‘ Gu

s
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ove 0, 5 indica la matrice nulla con r righe e s colonne mentre Gy € la matrice
della restrizione di g al sottospazio U generato dai vettori {vgy1,...,v,}. Per
classificare le forme bilineari simmetriche & quindi sufficiente classificare quelle
non degeneri. Descriveremo ora la classificazione reale di tali forme.

Sia dunque g una forma bilineare simmetrica non degenere su uno spazio
vettoriale reale V. Se g e definita positiva il procedimento di Gram—Schmidt
permette di costruire una base ortonormale di V. Rispetto a tale base la matrice
di g e la matrice identica. Se g € definita negativa allora —g ¢ definita positiva.
Da cio si deduce che esiste una base di V' rispetto a cui la matrice di g € 'opposto
della matrice identica. Poiché g & supposta non degenere, rimane dunque solo
da studiare il caso in cui g € indefinita, cioe il caso in cui esistono dei vettori v
tali che g(v,v) > 0 e dei vettori w tali che g(w,w) < 0.

L’idea per trattare tale caso ¢ la seguente: si parte da una base qualsiasi di
V e si usa un metodo simile al procedimento di Gram—Schmidt per costruire una
base ortogonale di V. La matrice di g rispetto ad una tale base sara dunque
diagonale. Ogni elemento diagonale positivo @ > 0 puo essere reso uguale
a 1 dividendo il corrispondente vettore di base per /a, mentre ogni elemento
diagonale negativo 3 < 0 puo essere reso uguale a —1 dividendo il corrispondente
vettore di base per v/—f3; non ci possono essere elementi diagonali nulli perché
la forma g € non degenere. In questo modo si ottiene una base di V rispetto alla
quale la matrice di ¢ ¢ una matrice diagonale, in cui gli elementi sulla diagonale
sono 1 o —1.

Teorema 5.5.1 (TEOREMA DI SYLVESTER). Siano V wuno spazio vettoriale
reale di dimensionen e g : V xV — R una forma bilineare simmetrica non
degenere. Esiste una base di V' rispetto alla quale la matrice di g é una matrice
a blocchi del tipo

over+s=mn e ove l,, indica la matrice identica di ordine r e —15 , € ’opposto
della matrice identica di ordine s. Inoltre i numeri r ed s (i numeri di 1 e —1
sulla diagonale) sono univocamente determinati (dipendono solo da g e non
dalla base scelta). La coppia (r,s) é detta la segnatura della forma g, mentre
la differenza r — s € anche detta ’indice d’inerzia di g.

Dimostrazione. Per quanto detto in precedenza l’enunciato del teorema ¢ ba-
nalmente verificato se g e definita positiva o negativa. Supponiamo quindi che
g sia indefinita. In tal caso esiste un vettore v € V tale che g(v,v) = a > 0. Se
poniamo v; = v/+/a, si ha g(vy,v1) = 1. Sia W = (vy)+; si ha dim W =n — 1.
Se {ws, ..., w,} ¢ una base di W i vettori {vq, wa, ..., w,} sono una base di V,
rispetto alla quale la matrice G di g € una matrice a blocchi del tipo

1 ‘ 011

G =
On-11 ‘ Gw

ove Gy ¢ la matrice della restrizione di g a W (rispetto alla base di W indicata).
Ora basta ripetere il ragionamento appena descritto applicandolo alla restrizione
di g a W (in alternativa, si ragioni per induzione sulla dimensione di V).
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Questo dimostra 'esistenza di una base di V rispetto alla quale la matrice
di g ha la forma voluta. Rimane ora da dimostrare 'unicita dei numeri r e s,
ovvero la loro indipendenza dalla particolare base scelta.

Supponiamo che esistano due basi {v1,...,v,} e {v],...,v}} di V rispetto
alle quali le matrici di g siano

Os,r _]-s s

conr+s=1"+5 =n.
Poniamo W = (v1,...,0.), W™ = (Upi1,...,05), ZT = (v],...,0.), Z~ =
(Vsyqs-ooy0p). SthadimW =7, dim W~ =5, dimZ* =/, dimZ~ = ¢/,

rVn
V=Wtew =ZteZz",
inoltre la restrizione di g a W e ZT & definita positiva, mentre g ristretta a
W~ e Z~ & definita negativa.
Supponiamo, per assurdo, che sia 7 < 7/. Ogni vettore v} (i = 1,...,7") della
base di Z* si puo scrivere (in modo unico) nella forma
vp = u; + w;,

conu; EWtew, € W
Dato che ' > r = dim W™, i vettori u;,...,u,» devono essere linearmente
dipendenti. Si ha quindi

Aug + -+ Apu =0,

con A, ..., A~ non tutti nulli.
Sia z = A\jv] + -+ + Apvl,. Allora z # 0, perché i A\; non sono tutti nulli
e i vettori {v},...,v.} sono una base di Z*, quindi g(z,z) > 0 (perché la

restrizione di g a Z* & definita positiva). Tuttavia si ha
2= MV] 4+ Al

= A(ur +wi) + -+ A (U + wyr)

=\wy +- -+ A\owr €W
quindi g(z,z) < 0, perché la restrizione di g a W~ & definita negativa. Siamo
cosl arrivati ad un assurdo, che nasce dall’aver supposto 7’ > r. Deve quindi
essere 1’ < r.

Ripetendo il ragionamento dopo aver scambiato i ruoli di r e 7/, si conclude

che deve anche essere r < 1/, il che dimostra 'uguaglianza r = 7’ (e quindi
anche s = 5). O

Possiamo riassumere quanto visto finora nel seguente risultato:

Teorema 5.5.2. Sia V uno spazio vettoriale di dimensione n sul campo R dei
numeri reali e sia g : V XV — R una forma bilineare simmetrica. FEsiste una
base di V' rispetto alla quale la matrice di g € una matrice a blocchi del tipo

Ok, % Og.r 0%, s
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ove k = dimKer(g) e k+r+s = n. Gli interi k, r e s sono unicamente
determinati e v + s coincide con il rango della matrice di g rispetto ad una base
qualunque di V.

Dimostrazione. L’unica affermazione che non & stata ancora dimostrata e quella
che identifica r+s con il rango di una matrice di g rispetto a una base qualunque
di V. Cio discende dal fatto che il rango della matrice indicata nell’enuncia-
to ¢ precisamente T + s e che due diverse matrici G e G’ di g sono collegate
dall'uguaglianza G’ = 'PG P, per una qualche matrice invertibile P. Basta ora
osservare che moltiplicare una matrice G a destra oppure a sinistra per una
matrice invertibile non ne modifica il rango. O

Vediamo ora alcuni esempi concreti di applicazione di quanto precedente-
mente descritto.

Esercizio 1. Sia V uno spazio vettoriale reale e sia ¢ la forma bilineare

simmetrica di matrice
2 1

0
G=12 3 -1
1 -1 2

rispetto alla base {vi,v9,v3} di V. Si determini una base di V rispetto alla
quale la matrice di g sia diagonale, con soli elementi 1 e —1 sulla diagonale.

Soluzione. Utilizziamo un analogo del procedimento di Gram—Schmidt. Os-
serviamo tuttavia che il vettore vy ¢ isotropo, pertanto non possiamo prendere
come primo vettore v] della nuova base un suo multiplo. Per ovviare a questo
inconveniente ¢ sufficiente scambiare tra loro i vettori vy e vy della base data ed
applicare il procedimento di ortogonalizzazione partendo dunque da vo. Dato
che g(ve,v) = 3, bisogner?a porre v} = vy/+/3. Si ha cosi g(v},v}) = 1. Conti-
nuando, poniamo v4 = av] + v; ed imponiamo che sia g(vi,v5) = 0. Si trova
allora v = —g(vf,v1) = —2/V/3, e quindi v§ = —2/V3v] +v; = =2 vy + v1.

Dato che si ha g(v),v4) = —3, e dato che /—3 non esiste in R, dovremo porre

vy =Y/ /5 = ? vl = ‘3[1)2 + ‘fvl, ottenendo perd g(vh,vh) = —1.

Per trovare il terzo e ultimo vettore della base, poniamo v§ = av} + Bvh + vs
ed imponiamo che g(v], v§) = 0 e g(vh, v§) = 0. Si ottiene cosi @ = —g(v},v3) =
1/vV3 e = g(vhvs) = 5\[/6 (attenzmne che in questo caso si ha g(vh,v)) =
—1). Si ha dunque v§ = % v+ 5‘(( vh+v3=—3 v2 + 7 v1 + 3. Si ha allora

g(vy,vY) = 15/4 e quindi si deve porre vy = \/% v” = 2W v — \/ﬁvﬁ—\/% vs,

ottenendo cosi g(v§,vs) = 1.
La matrice di g nella base {v,v},v5} & dunque

1 0 0
G=[0 -1 0
0 0 1

Per terminare possiamo osservare che si ha

G' ='PGP,



Capitolo 5 Spazi Vettoriali Euclidei 152

ove la matrice di cambiamente di base P e la matrice le cui colonne sono le
componenti dei vettori v, v} e v4 rispetto alla base {v1,v2,v3}. Si ha dunque

0 ¥ 5 0o V15
2 2v/15 2 6
Pp=|lLr _¥3 __ 1L |=|8 _v8 _Vi5
V3 3 V15 3 3 15
0 0 \/% 0 0 2\1/?

Esercizio 2. Sia V uno spazio vettoriale reale di dimensione 3, e indichiamo
con {vy,v2,v3} una sua base. Si consideri la forma bilineare simmetrica g di

matrice
-3 1 0

G=|1 2 -1],
0 -1 -1

rispetto alla base data.

(i) Si verifichi che g & non degenere e si determini una base ortogonale di V'
relativamente a g.

(#) Si calcoli 'indice d’inerzia i(g).

(éi1) Si dica se esistono vettori isotropi non nulli relativamente a g e, in caso
affermativo, si determini un sottospazio isotropo di dimensione massima.

Soluzione. (i) Si ha

2 -1 1 -1
e

-
quindi g € non degenere.

Procediamo quindi alla determinazione di una base ortogonale. Poniamo
wi = v; si ha g(wy,w;) = —3. Si noti che non & necessario normalizzare i
vettori della nuova base, perché e richiesta solo una base ortogonale.

Osservando la matrice G si nota che il vettore vs & ortogonale a w1, quindi
come secondo vettore della base ortogonale possiamo prendere wy = w3; si ha
quindi g(wsy,we) = —1.

Rimane ora solo da determinare un terzo vettore ws ortogonale ai due prece-
denti. Poniamo ws = A\1v1 +A2v2 4+ A3v3 ed imponiamo a ws di essere ortogonale
a wi e wo. Si ottiene il seguente sistema:

g(wl,wg) =3\ +X=0
g(wa,w3) = =X — A3 = 0,

AL =—3 )3
Ao = — 3.
Ponendo, ad esempio, A3 = 3, si ottiene il vettore ws = —wv; — 3vy + 3wz. Si

trova ora g(ws,ws) = 30, da cui si deduce che la matrice di g rispetto alla base
ortogonale {wy, ws, w3} &

da culi si ricava
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(i) Osservando la matrice appena trovata si scopre che la restrizione di g al
sottospazio (w1, ws), generato da wy e waq, ¢ definita negativa, mentre la restri-
zione di ¢ al sottospazio generato da ws ¢ definita positiva. Si deduce quindi
che l'indice d’inerzia di g & dato da i(g) =1—-2 = —1.

(ii1) Dato che g ¢ indefinita, esistono sicuramente dei vettori isotropi non nulli.
Ad esempio, se consideriamo un vettore w = A\jw; + Asws + Azws, la condizione
che w sia isotropo &

glw,w) = —3X2 — \3 +30)\2 =0,

che ha ovviamente soluzioni reali non nulle.

Sia dunque U un sottospazio isotropo; si ha quindi U C U™, e dimU+ =
3 —dimU. Da cio si deduce che U puo avere al piu dimensione 1. Quindi
per determinare un sottospazio isotropo di dimensione massima & sufficiente
trovare un vettore isotropo non nullo; ad esempio il vettore w = v/30 ws +ws. 11
sottospazio U = (w) & pertanto un sottospazio isotropo di dimensione massima
(ovviamente tale sottospazio non & unico).

Esercizio 3. Sullo spazio vettoriale R* si consideri la forma bilineare simmetrica
g di matrice

G =
rispetto alla base canonica.

(i) Si determini l'indice d’inerzia di g.

(7) Si determini, se esiste, una base di R* rispetto a cui g ha matrice

10 0 0
01 00
0 0 01
0 010

(iii) Si determini, se esiste, una base di R? rispetto a cui g ha matrice

oo = O
SO O
— o O O
o= oo

(iv) Si determini, se esiste, una base di R* rispetto a cui g ha matrice

cor o
co o
I
—
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Soluzione. (i) Per determinare I'indice d’inerzia cerchiamo innanzitutto una ba-
se ortogonale (dato che sara utile anche nel seguito). Indichiamo con {eq,...,e4}
la base canonica di R%. In questo caso tutti e quattro i vettori della base cano-
nica sono isotropi, quindi non possiamo prendere nessuno di questi come primo
vettore di una base ortogonale. Prendiamo allora v; = e; + es; questo vettore
non ¢ isotropo, dato che si ha g(vy,v1) = 2g(e1, e2) = 4.

Come secondo vettore si vede immediatamente che si puo prendere vy =
e1 — eq, dato che esso ¢ ortogonale a vi: g(vi,v2) = 0. Si ha poi g(ve,ve) = —4.

A questo punto possiamo prendere

V3 = )\1’01 + /\2”[12 + es,

ed imporre che g(vy,v3) = g(ve,v3) = 0. Si trova allora A\; = i e Ny = —%. Si

ha quindi

1 3 1
V3= U1 — jU2+e3=—5¢€ +e2+es,

da cui si ottiene g(vs,v3) = 2. Analogamente, ponendo

Vg = AU1 + AUz + A3v3 + ey,

ed imponendo che g(vi,vs) = g(v2,v4) = g(vs,v4) =0, si trova Ay = 2, \g = 2
e A\3 = 2, da cui si ottiene
Vg = %v1+%v2+2v3—|—e4: %61-‘1-2624—263-1-64,
e g(vg,vs) = —8. La matrice di g rispetto alla base {v1,...,v4} & quindi
4 0 0 O
0 -4 0 O
0O 0 2 0
0O 0 0 -8
da cui si deduce che I'indice d’inerzia di g ¢ i(g) =2 —2 = 0.
(it) Dato che, come si verifica immediatamente, la matrice <(1) (1)> ha indice

d’inerzia 0, si deduce che la matrice

10 0 0
0 1 0 0
0 0 0 1
0 01 0

ha indice d’inerzia 2+0 = 2, che ¢ diverso dall’indice d’inerzia di g. Dal teorema
di Sylvester segue allora che non esiste una base di R* rispetto a cui g abbia la
matrice indicata.

(#i) Da quanto detto sopra segue che la matrice

SO = O
SO o=
— o O O
o= OO

ha indice d’inerzia 0 + 0 = 0, che coincide con l'indice d’inerzia di g. 1l teorema
di Sylvester afferma allora che esiste una base di R* rispetto a cui g abbia la
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matrice indicata. Ricordando la matrice di g rispetto alla base {vi,...,v4}
trovata in precedenza, ¢ facile vedere che ponendo, ad esempio, wy = v; + va,
Wy = i (v1 —v2), w3 = vs+ % V4 €Wy = % (vs— % v4), si ottiene una base rispetto

alla quale la matrice di g coincide con la matrice in questione.

(iv) Da quanto visto in precedenza segue che la matrice

01 0 0
10 0 O
0 0 -1 0
0 0 0 -1
ha indice d’inerzia 0 — 2 = —2, che ¢ diverso dall’indice d’inerzia di g. Dal

teorema di Sylvester segue allora che non esiste una base di R?* rispetto a cui g
abbia la matrice indicata.

5.6 Isometrie

Siano (V,g) e (W,h) due spazi vettoriali sul campo K dotati di due forme
bilineari simmetriche

g:VxV—-K, h:WxW — K.

Definizione 5.6.1. Una funzione lineare f : V' — W & compatibile con le forme
bilineari simmetriche g e h se, per ogni v1,vs € V, si ha

h(f(’l)l),f(’l)g)) = g(v1,v2). (5.6.1)

In tal caso diremo anche che f : (V,g) — (W,h) & un omomorfismo di spazi
vettoriali dotati di forme bilineari simmetriche.

La condizione di compatibilita (5.6.1) determina ’esistenza di alcune rela-
zioni tra i nuclei delle funzioni f, g e h. Piu precisamente, si ha:

Lemma 5.6.2. Sia f : (V,g) — (W,h) un omomorfismo di spazi vettoriali
dotati di forme bilineari simmetriche. Valgono le sequenti inclusioni:

Ker f C f~!(Kerh) C Kerg. (5.6.2)

Dimostrazione. La prima inclusione ¢ ovvia: se v € Ker f ¢ f(v) = 0, pertanto
h(f(v),w) = 0 per ogni w € W, quindi f(v) € Ker h.

Dimostriamo ora la seconda inclusione. Per ogni v € f~'(Kerh) e ogni
v €V, siha g(v,v') = h(f(v), f(¢v')) = 0, dato che f(v) € Kerh. Si conclude
pertanto che v € Ker g. O

Da questo risultato discendono alcune interessanti conseguenze:

Corollario 5.6.3. Sia f : (V,g) — (W,h) un omomorfismo di spazi vettoriali
dotati di forme bilineari simmetriche. Allora:

(i) se h ¢ non degenere, Ker f = f~1(Ker h);

(ii) se g é non degenere, si ha Ker f = f~1(Kerh) = {0}. In particolare, f ¢
iniettiva e la restrizione di h a Im(f) x Im(f) ¢ non degenere;
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(iit) se g énon degenere e [ & suriettiva, allora anche h é non degenere. Inoltre,
in tal caso, f ¢ un isomorfismo di spazi vettoriali e f=: (W,h) — (V, g)
e compatibile con le forme bilineari h e g.

Dimostrazione. Per dimostrare la proprieta (i) basta ricordare che h & non
degenere se e solo se Ker h = {0}.

(i) Se g ¢ non degenere, cioe¢ se Ker g = {0}, la (5.6.2) si riduce a Ker f =
S~ (Kerh) = {0}, quindi f ¢ iniettiva. Indicando con h la restrizione di h
a Im(f) x Im(f), per ogni wy,wy € Im(f) si ha h(wy,w2) = g(vi,v2), ove
v1,v2 € V sono tali che w1 = f(v1) e wy = f(vz). Dato che g & non degenere si
conclude quindi che anche h & non degenere.

Dimostriamo infine la proprieta (4ii). Se f & suriettiva, si ha Im f = W
quindi, poiché g & non degenere, dalla (ii) segue che h € non degenere e che f &
iniettiva. La funzione f : V' — W & quindi biiettiva e pertanto € un isomorfismo
di spazi vettoriali. Rimane solo da dimostrare che la sua inversa f~1 : W — V
¢ compatibile con le forme bilineari h e g. Siano dunque vy,v9 € V e poniamo
wy = f(v1) e wy = f(v2). Sihavy = f~H(wy), va = f~H(w2) e quindi

g(f " (wy), fﬁl(wz)) = g(v1,v2) = h(f(v1), f(v2)) = h(wy, wa).

Cio dimostra che anche f~! & un omomorfismo di spazi vettoriali dotati di forme
bilineari simmetriche. O

Notiamo anche che, sotto opportune ipotesi, la condizione di compatibi-
lita (5.6.1) implica la linearita di f.

Proposizione 5.6.4. Siano (V,g) e (W, h) due spazi vettoriali dotati di forme
bilineari simmetriche e sia f : V — W una funzione qualunque (in particolare,
non stiamo supponendo che f sia lineare) che soddisfa l'uguaglianza (5.6.1), per
ogni vi1,v9 € V. Se h é non degenere e f e suriettiva, allora f é lineare.

Dimostrazione. Siano v1,v2 € V e A1, A2 € K. Vogliamo dimostrare che

Fuv1 + Agva) = Ar f(v1) + Ao f(v2).
Per ogni v € V, si ha:

h(f(A1v1 4+ Aava) — AL f(v1) — Ao f (v2), f(v)) =
= h(f(Mv1 + Aav2), f(0)) = Mh(f(v1), f(v)) = Aeh(f(v2), f(v))
= g(A1v1 + Aav2,v) — A1g(v1,v) — Aag(va,v) = 0,
per la bilinearita di h e g. Poiché f e suriettiva e h & non degenere, da cio segue

che
F(Avr + Aov2) — A f(v1) — Ao f(v2) = 0,

il che dimostra la linearita di f. O

Vediamo ora come si esprime in termini di matrici la condizione di compa-
tibilita (5.6.1).

Proposizione 5.6.5. Siano (V,g) e (W,h) due spazi vettoriali dotati di for-
me bilineari simmetriche e sia f : V — W una funzione lineare. Siano v =
{vi,...,on} ew = {wy,...,wn} basi di V e W rispettivamente. Indichiamo
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con A la matrice di f rispetto alle basi v e w, con G la matrice di g rispetto
alla base v e con H la matrice di h rispetto alla base w. Allora f & compatibile
con le forme bilineari g e h se e solo se

G ="AHA. (5.6.3)

Dimostrazione. Dalla definizione di matrice associata a un’applicazione lineare
segue che, per ogni vettore v; della base v, si ha

f(vz) = Zariwr-
r=1

Per ognii,j =1,...,n, la condizione di compatibilita (5.6.1) equivale a:

('Uiv Uj)

g
h(f(vi)a f(vj))
h( ; Ari Wy, ; asjws)

m
Z ariasjh(wr7 ws)

r,s=1

m
= § ariasjhrs-

r,s=1

9ij

Questa uguaglianza, riscritta in termini di matrici, non ¢ altro che la (5.6.3). O
Specializzando questo risultato al caso in cui (W, h) = (V, g), si ottiene:

Corollario 5.6.6. Sia V uno spazio vettoriale sul campo K e sia g una forma
bilineare simmetrica definita su V. Indichiamo con G la matrice di g rispetto a
una base v ={vy,...,v,} di V. Un endomorfismo f di V', di matrice A rispetto

alla base v, & compatibile con la forma bilineare g se e solo se A soddisfa la

sequente uguaglianza:
G ='AGA.

Restringiamo ora la nostra attenzione al caso di spazi vettoriali dotati di forme
bilineari simmetriche non degeneri.

Definizione 5.6.7. Siano (V, g) e (W, h) due spazi vettoriali dotati di forme bi-
lineari simmetriche non degeneri. Una funzione lineare f : V' — W compatibile
con le forme bilineari g e h ¢ detta una isometria di V in W.

Osserviamo che, per il Corollario 5.6.3, f € necessariamente iniettiva, per-
tanto determina un isomorfismo di V' con il sottospazio Im(f) di W.

Definizione 5.6.8. Due spazi vettoriali dotati di forme bilineari simmetriche
non degeneri (V, g) e (W, h) si dicono isometrici se esiste un’isometria di V' su
tutto W, cioe se esiste un isomorfismo f : V= W compatibile con le forme
bilineari g e h.

Osservazione 5.6.9. Se f: (V,g) — (W, h) & un’isometria di V' in W, lo spazio
vettoriale V' & isometrico al sottospazio vettoriale Im(f) di W dotato della forma
bilineare simmetrica non degenere indotta, per restrizione, da h.
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Osservazione 5.6.10. Nel caso degli spazi vettoriali euclidei (cioe degli spazi
vettoriali reali dotati di forme bilineari simmetriche definite positive) le isometrie
preservano le lunghezze dei vettori e gli angoli tra vettori. Consideriamo infatti
due spazi vettoriali euclidei (V, g) e (W, h) e un’isometria f : V' — W. Per ogni

v €V, si ha:
1f @)l = \/h(f(v), f(v)) = Vg(v,v) = ||v]].

Inoltre, se indichiamo con ¢ ’angolo compreso tra due vettori v1,v2 € V e con
¢’ angolo compreso tra le loro immagini f(vy), f(v2) € W, si ha

st = M) F2) _ g(wrve)

~ IF @I @)~ Torllve]

E facile dimostrare che una qualunque funzione lineare f : V' — W che preservi
la norma dei vettori € un’isometria. Infatti, dati vy,ve € V, si ha

o1 + v2||? = g(v1 + v2, vy + v2)
= g(v1,v1) 4 29(v1,v2) + g(v2,v2)
= [|v1]|* + 2g(v1, v2) + [Jva2|*.

Analogamente,

£ (w1 + v |1 = [ f(01) + f(v2)]”
= h(f(v1) + f(va), f(v1) + f(v2))
= h(f(v1), f(v1)) + 20(f(v1), f(v2)) + h(f(v2), f(v2))
= [I£(w)II” + 2k (f(v1), f(v2)) + | f(v2)]*.

Poiché f, per ipotesi, preserva la norma dei vettori, si ha

[f )l = llodll,  Wf )l = ozl [1f (1 +v2)l] = flor + val|-

Da cio segue che si ha anche i (f(v1), f(v2)) = g(v1,v2), quindi f & un’isometria.

Abbiamo gia osservato, nel Corollario 5.6.3, che se un’isometria f: V — W
¢ biiettiva, allora anche la sua inversa f~!' : W — V & un’isometria. Inoltre,
¢ immediato verificare che la composizione di due isometrie & anch’essa un’i-
sometria. Da queste osservazioni segue che l'insieme O(V,g) delle isometrie
f:V — V di uno spazio vettoriale V' dotato di una forma bilineare simmetrica
non degenere g, rispetto alla legge di composizione, ¢ un gruppo. Tale gruppo,
detto il gruppo delle isometrie o gruppo ortogonale di (V,g), € un sottogruppo
del gruppo GL(V) di tutti gli automorfismi di V.

Consideriamo ora uno spazio vettoriale V' dotato di una forma bilineare
simmetrica non degenere g, fissiamo una base v = {vy, ..., v, } di V e indichiamo
con G la matrice di g rispetto alla base v. Come abbiamo visto, un endomorfismo
f:V — V & un’isometria se e solo se la sua matrice A, rispetto alla base v,
soddisfa I'uguaglianza *AGA = G. In termini di matrici, il gruppo delle isometrie
di (V, ¢) ha quindi la seguente espressione:

O(G) = {A € GL(n) | 'AGA = G}.
Dal Teorema di Binet segue che, per ogni A € O(G), si ha
det(G) = det(*AGA) = det(G) det(A).
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Poiché g ¢ non degenere si ha det(G) # 0, quindi deve essere det(A)? = 1,
cioe det(A) = £1. Si verifica facilmente che le isometrie con determinante 1
formano un sottogruppo (di indice 2) del gruppo di tutte le isometrie di (V, g).
Tale gruppo, indicato con SO(V,g), & detto il gruppo delle isometrie dirette,
o anche il gruppo speciale ortogonale, dello spazio vettoriale V' dotato della
forma bilineare simmetrica g. In termini di matrici tale gruppo ha la seguente
descrizione:

SO(G) = {A € GL(n) | 'AGA = G, det(A) = 1}.

Se (V, g) & uno spazio vettoriale euclideo, il Teorema 5.4.14 garantisce 1’esistenza
di una base ortonormale v = {vy,...,v,} di V. Rispetto a tale base la matrice
di g & la matrice identica, pertanto le matrici delle isometrie di (V,g) sono
caratterizzate dalla seguente equazione:

'AA = 1.
Il gruppo costituito da tali matrici ¢ il gruppo ortogonale di ordine n
O(n) = {A € GL(n) |'AA = 1}.

Una matrice A € O(n), cioé una matrice quadrata A, di ordine n, tale che
tAA =1 o, equivalentemente, tale che A = A~1, & detta una matrice ortogonale.

Indicando con Ay, ..., A(,) le colonne di A, 'equazione tAA = 1 equivale a
1 sei=y
Awy - Ay = L
0 sei#j,

il che significa che le colonne di A formano una base ortonormale di R, rispetto
al prodotto scalare usuale.

5.6.1 Isometrie di R?

Studiamo ora in dettaglio la struttura delle isometrie dello spazio vettoriale
euclideo R?, dotato del prodotto scalare usuale. Il gruppo di tali isometrie & il
gruppo ortogonale di ordine 2

0(2) = {A € GL(2)|"AA = 1}.

a b
=0 0);

la condizione *AA = 1 equivale al seguente sistema:

Data una matrice

a+P=1
V+d®=1
ab+ cd = 0.

Dall’equazione a? + c? = 1 si deduce che esiste un angolo « tale che

a = cos «, c=sina.
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Analogamente, da b% 4+ d? = 1 si deduce che esiste un angolo 3 tale che
b = sin 3, d = cos 3.
La terza equazione, ab 4+ cd = 0, diventa allora
cosasinf + sinacos § = sin(a + 5) = 0,

da cui si ottiene oo+ 3 = km, cioe 8 = km — «, con k € Z. Si ottengono cosi due
diversi tipi di isometrie, a seconda che k sia pari o dispari. Piu precisamente,
se k & pari la matrice A ha la forma seguente:

(cosa sina) . (5.6.4)

sinae  cos«

Il determinante di questa matrice ¢ pari a 1; si tratta quindi di una isometria
diretta. In termini geometrici, questa ¢ la matrice di una rotazione del piano
R2, attorno all’origine, di un angolo « in senso antiorario. Le due colonne

Ccos & —sina
Uy = . Uy =
sin a Cos o

della matrice (5.6.4) sono infatti i trasformati dei vettori e; ed ez della ba-
se canonica di R? mediante la suddetta rotazione, come indicato nella figura
seguente:

Se invece k & dispari, si ottengono matrici del tipo seguente:

(cosa sin ) (5.6.5)

sina —cosa

Queste matrici hanno determinante pari a —1 e rappresentano pertanto delle
isometrie inverse. Geometricamente esse corrispondono a una riflessione del pia-
no rispetto all’asse delle ascisse, seguita da una rotazione, attorno all’origine, di
un angolo « in senso antiorario. La situazione e illustrata nella figura seguente:
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Come si vede facilmente da questa figura, i vettori u; e ug, immagini dei vettori
e1 ed ey della base canonica, hanno le seguenti coordinate:

cos « sin o
1 = . u2 =
sin av —Ccos

Essi coincidono quindi con le colonne della matrice (5.6.5).

Esercizi
Esercizio 5.1. Sia V uno spazio vettoriale sul campo complesso C con base
{v1,v2,v3} e sia g la forma bilineare simmetrica di matrice, rispetto alla base data,
2 3 -1
G=|3 4 0
-1 0 1

Si determini una matrice invertibile P tale che ‘PGP = 1.

Esercizio 5.2. Sia V uno spazio vettoriale sul campo dei numeri reali, con base
{v1,v2,v3}, e sia g la forma bilineare simmetrica di matrice, rispetto alla base data,

0 2 1
G=12 3 -1
1 -1 2

Si determini una base di V rispetto alla quale la matrice di g sia diagonale, con soli
elementi 1 e —1 sulla diagonale.

Esercizio 5.3. Sia V uno spazio vettoriale sul campo dei numeri reali, con base
{v1,v2,v3}, e sia g la forma bilineare simmetrica di matrice, rispetto alla base data,

0 2 -1
G=|2 0 3
-1 3 0

Si determini una base di V rispetto alla quale la matrice di g sia diagonale, con soli
elementi 1 e —1 sulla diagonale.

Esercizio 5.4. Sia V uno spazio vettoriale reale di dimensione 3, e sia {v1,v2,v3}
una sua base. Si consideri la forma bilineare simmetrica g di matrice

-3 1 0
G=|1 2 -1,
0 -1 -1
rispetto alla base data.

(1) Si verifichi che g & non-degenere e si determini una base ortogonale di V' relati-
vamente a g.

(2) Si calcoli I'indice d’inerzia i(g).

(3) Si dica se esistono vettori isotropi non nulli relativamente a g e, in caso affer-
mativo, si determini un sottospazio isotropo di dimensione massima.

Esercizio 5.5. Sia V = R* e sia g la forma bilineare simmetrica di matrice
3 -2 1 1
G = ’

rispetto alla base canonica.



Capitolo 5 Spazi Vettoriali Euclidei 162

(1) Si verifichi che g & non-degenere, se ne calcoli I'indice d’inerzia e si determini
una base ortogonale di V relativamente a g.

(2) (R*,g) ¢ isometrico allo spazio R* dotato del prodotto scalare usuale?
Esercizio 5.6. Sia V' uno spazio vettoriale reale di dimensione finitaesiag: VxV —

R una forma bilineare simmetrica definita positiva. Se ¢ : V' — V & una isometria, si

dimostri che si ha
Im(¢ — id) = Ker(¢ — id)*.

Esercizio 5.7. Si consideri C come spazio vettoriale su R e si ponga su di esso
I'applicazione bilineare g : C x C — R definita da

g(z1, 22) = 2R(2122),

ove R(z) indica la parte reale del numero complesso z.

(1) Si dimostri che g & bilineare e non-degenere.
(2) Si determini la matrice di g rispetto alla base {1,3} di C.

(3) Siano z1,z2 € C, linearmente indipendenti su R (cioé z1 e z2 sono una base di
C, visto come R-spazio vettoriale). Si determini la matrice G di g rispetto alla
base {z1, 22} e si dimostri che

2
det G = {det (fl ?)} ,
Z1 z2

ove Z indica il numero complesso coniugato di z € C.

Esercizio 5.8. Sia A una matrice simmetrica ad elementi in R. E vero o falso che
la matrice 1 + A? & invertibile?



Capitolo 6

Geometria Affine

In questo capitolo vedremo come l’algebra lineare possa essere utilizzata per lo
studio di problemi geometrici. Partendo dalla nozione di vettore e di spazio
vettoriale, introdurremo il concetto di spazio affine come ambiente naturale
per lo studio della Geometria Euclidea. Studieremo poi le principali proprieta
geometriche di tali spazi e dei loro sottospazi.

6.1 Spazi affini

Il concetto di spazio vettoriale, che e alla base degli sviluppi dell’algebra li-
neare, si rivela inadeguato a fornire un modello di “spazio” per lo studio della
geometria euclidea.! Come abbiamo visto nel Capitolo 1, i vettori sono stati
originariamente introdotti per rappresentare degli spostamenti; ¢ quindi neces-
sario disporre di uno “spazio” (cioé di un insieme di punti) del quale i vettori
possano rappresentare le traslazioni.

Queste semplici considerazioni ci portano a concludere che un modello di spa-
zio adatto allo studio della geometria dovra consistere di un insieme di punti e di
un insieme di vettori, cioe di uno spazio vettoriale, il quale dovra rappresentare
I’insieme delle traslazioni di tali punti.

Due modi equivalenti di esprimere questo fatto sono i
seguenti: (1) stabilire che una coppia ordinata di punti P e v
@ determina un vettore v (rappresentato graficamente co- /
me un segmento orientato che ha l'origine nel punto P e P
Pestremita della freccia in @), oppure (2) stabilire che un punto P e un vetto-
re v determinano un altro punto @ (che rappresenta l'effetto della traslazione
indicata dal vettore v, applicata al punto P).

°Q

1Un esempio di questa inadeguatezza & dato dal fatto che in ogni spazio vettoriale esiste un
elemento privilegiato, il vettore nullo 0. Al contrario, nello spazio della Geometria Euclidea,
non esiste alcun punto privilegiato O che si possa far corrispondere al vettore nullo.

163
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Da questa seconda interpretazione segue che il nostro spazio dovra essere
dotato di una legge di composizione, che indicheremo con il simbolo +, la quale
associa alla coppia punto-vettore (P, v) il punto @; scriveremo dunque @ = P+wv.

Possiamo ora formalizzare il concetto di spazio affine seguendo 'idea appena
descritta.

Definizione 6.1.1. Uno spazio affine A sul campo K ¢ il dato di un insieme
non vuoto 7, detto I'insieme dei punti di A, di uno spazio vettoriale V su K e
di un’operazione

dp:d XV = o (P,v)— Q=P +uv,
che soddisfa le seguenti proprieta:

(i) (P +av1)+avy =P+ (v1 +v2), per ogni P € &/ e ogni vy,v2 € V;
(ii) P44 0= P, per ogni P € &/,
(ii1) per ogni P,Q € </ esiste un unico vettore v € V tale che Q = P +, v.

Lo spazio vettoriale V' & detto lo spazio vettoriale soggiacente allo spazio affine
A (o lo spazio direttore di A) e la dimensione di V' & detta la dimensione dello
spazio affine A. Uno spazio affine e detto di dimensione finita se lo spazio
vettoriale soggiacente ¢ finitamente generato.

Nel seguito uno spazio affine A = (&7, V, +,4) verra spesso identificato con il
suo insieme di punti 7. Per indicare che P ¢ un punto di A scriveremo dunque
P € A al posto di P € &/. Analogamente, per indicare che v ¢ un vettore
appartenente allo spazio vettoriale V' soggiacente allo spazio affine A, potremo
scrivere v € A. 1l significato di tali espressioni sara sempre chiaro dal contesto.

Osservazione 6.1.2. L’operazione di “somma tra punti e vettori” in uno spazio
affine A = (&7, V,+,) & stata indicata con il simbolo +4 al fine di distinguerla
dall’operazione di somma tra vettori dello spazio vettoriale V', indicata sempli-
cemente con +. Tuttavia, poiché sara sempre chiaro dal contesto di quale delle
due operazioni di somma si tratti, nel seguito indicheremo con il simbolo + sia
P'operazione di somma tra vettori che 'operazione di somma tra un punto e un
vettore.

Osservazione 6.1.3. Per ogni coppia di punti P e (Q di uno spazio affine A,
la proprieta (iii) della Definizione 6.1.1 garantisce lesistenza e I'unicitad di un
vettore v tale che Q = P + v; tale vettore verra indicato con la notazione P—Q)
Ricavando formalmente v dall’espressione () = P + v, scriveremo anche

’U:P—Cj:Q_Pa

in modo da avere l'identita P + (Q — P) = ). Come gia menzionato, il vettore

—
P(Q = @ — P verra rappresentato graficamente come un segmento orientato
avente l'origine in P e l'estremita della freccia nel punto Q.

Osservazione 6.1.4. In uno spazio affine A = (&7, V, +,) il gruppo additivo dello
spazio vettoriale V' agisce sull’insieme .o/ dei punti di A; tale azione e libera e
transitiva. E facile verificare che uno spazio affine puo essere definito, in modo
del tutto equivalente, come un insieme non vuoto dotato di un’azione libera e
transitiva del gruppo additivo di uno spazio vettoriale.



Capitolo 6 Geometria Affine 165

Per ogni punto P di uno spazio affine A = (&, V,+) possiamo definire la
funzione

fpiV -, v fp(v) =P+w.
Una conseguenza immediata della Definizione 6.1.1 ¢ il seguente risultato:

Proposizione 6.1.5. Per ogni punto P di uno spazio affine A, la funzione
fp:V — & é biiettiva.

Dimostrazione. Siano vy,vy € V due vettori tali che fp(v1) = fp(ve). Si ha
dunque P +v; = P + vy da cui, sommando ad ambo i membri il vettore —vs, si
ottiene

(P+’U1)+(*’U2):(P+’l)2)+(7’02):P+(02702):P+0:P.

Poiché (P +v1) + (—vg) = P + (v1 — vy), dall’'uguaglianza P + (v; —vg) = P e
dalle proprieta (ii) e (#4) della definizione di spazio affine, segue che v; —vy = 0
e quindi v; = vg; fp € dunque una funzione iniettiva. La suriettivita di fp &
una conseguenza immediata della proprieta (4ii) della Definizione 6.1.1. O

Osservazione 6.1.6. L’esistenza di una biiezione tra l'insieme dei punti & e lo
spazio vettoriale V' di uno spazio affine A = (&7, V,+) permette di concludere
che & puo essere identificato con V. Si noti tuttavia che non esiste alcuna
biiezione canonica tra V e o/; una tale biiezione dipende infatti dalla scelta di
un punto P di &7. Osserviamo inoltre che nella biiezione fp : V — & il punto
P corrisponde al vettore nullo di V. Possiamo quindi concludere che, in ogni
spazio affine A, I'insieme dei punti puo essere identificato con lo spazio vettoriale
soggiacente solo dopo aver fissato (arbitrariamente) un punto di A.

Osservazione 6.1.7. Dato uno spazio affine A = (&, V,+), per ogni vettore
v € V la funzione
Ty A — P+— P+,

¢ detta la traslazione parallela al vettore v. Se v & il vettore nullo, 79 & I'identita,
mentre per ogni v # 0, la traslazione 7, € una biiezione priva di punti fissi, cioe
To(P) # P, per ogni P € & e ogni v # 0.

Esempio 6.1.8. Mostreremo ora come ogni spazio vettoriale possieda una strut-
tura canonica di spazio affine.

Dato uno spazio vettoriale V' sul campo K, definiamo lo spazio affine V =
(7,V,+v) ad esso associato ponendo ¥ = V. In questo modo l'operazione +vy
coincide con 'operazione di somma tra elementi di V:

+y: ¥V XV =¥, (P,v) — P+yv=P+yo.

E facile verificare che, con queste definizioni, V risulta essere uno spazio affine
sul campo K, avente V' come spazio vettoriale soggiacente. Notiamo che que-
sta struttura di spazio affine dipende esclusivamente dalla struttura di spazio
vettoriale di V: essa e detta pertanto la struttura affine canonica dello spazio
vettoriale V.

Esempio 6.1.9. L’esempio fondamentale di spazio affine & fornito dallo spazio
affine n-dimensionale standard sul campo K, che indicheremo con A%. Si trat-
ta dello spazio affine associato, in modo canonico, allo spazio vettoriale K™,
come descritto nell’esempio precedente. A% & dunque lo spazio affine il cui
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insieme di punti ¢ I'insieme K™ e il cui spazio direttore ¢ lo spazio vettoriale
K™. L’operazione di somma tra punti e vettori ¢ definita come 1'usuale somma
componente per componente di due n-uple di elementi di K; piti precisamente,
se P = (p1,p2,...,pn) & un punto e v = (a1, az,...,a,) & un vettore di A%, si
ha

Q=P+v=(p1+a,p+az,....pn+an).

E immediato verificare che le proprieta (i), (ii) e (i) della Definizione 6.1.1 sono
soddisfatte, quindi A% & uno spazio affine. Si noti inoltre che, dalla definizione
data, segue subito che se P = (p1,p2,...,0n) € @ = (¢1,42,--.,qn) sono due
punti di A%, il vettore v = @ — P & dato da

v = (111*101’(]2*1327---7%*1%)-

Come vedremo in seguito, questo esempio ha un’importanza particolare: infatti
ogni spazio affine di dimensione n sul campo K risulta essere isomorfo? (anche
se non in modo canonico) allo spazio affine standard A% .

Osservazione 6.1.10. Nello spazio affine A%, sia i punti che i vettori sono sempli-
cemente delle n-uple di elementi di K. Osserviamo pero che mentre la somma di
un punto e un vettore, oppure la differenza di due punti, sono operazioni lecite,
la somma di due punti, benché algebricamente possibile, non ¢ un’operazione
lecita. A tale riguardo facciamo notare che per distinguere le n-uple di elementi
di K che rappresentano dei punti da quelle che rappresentano dei vettori & pos-

sibile adottare la seguente convenzione: ad ogni n-upla (aq,as,...,a,) € K"
viene aggiunto un elemento ag € {0,1}, con la convenzione che se ay = 0 la
n-upla (a1, as,...,a,) rappresenta un vettore, mentre se ag = 1 tale n-upla

rappresenta un punto dello spazio affine. In altre parole, i vettori di A} si
scrivono nella forma
v=(0,a1,as,...,an),

mentre i punti si scrivono nella forma
A= (1,a1,a9,...,an).

Si noti che tale convenzione ¢ compatibile con la definizione delle operazioni tra
punti e vettori di uno spazio affine: una combinazione lineare di vettori & ancora
un vettore (la prima componente & 0), la somma di un punto e di un vettore
da come risultato un punto (infatti, se osserviamo la prima componente, si ha
140 = 1) e la differenza tra due punti & un vettore (nella prima componente si ha
1—1=0). La somma di due punti, al contrario, non & un’operazione lecita; cid
¢ evidenziato dal fatto che, sommando due punti, si otterrebbe una (n+ 1)-upla
avente come prima componente ag = 2, che non ¢ un valore permesso.

6.2 Sottospazi affini

Sia A = (&, V,+4) uno spazio affine sul campo K.

Definizione 6.2.1. Un sottospazio affine (o sottovarietd lineare) di A & uno
spazio affine B = (£, W, +5), ove % & un sottoinsieme di o/, W & un sottospazio
vettoriale di V' e loperazione +p : B x W — £ ¢ indotta, per restrizione,
dall’operazione +4 : &/ X V — & definita nello spazio affine A.

2La definizione di isomorfismo tra spazi affini verra data nel Paragrafo 6.6.
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La struttura dei sottospazi affini di uno spazio affine A & ulteriormente
precisata dal seguente risultato:

Proposizione 6.2.2. Sia B = (%, W, +5) un sottospazio affine dello spazio
affine A = (o7, V,+4). Per ogni punto P € A, si ha

@ZP—&—BW:{P—HBIU‘UJEW}.

Dimostrazione. Fissato P € 2, dalla definizione di spazio affine segue che, per
ogni vettore w € W, il punto @ = P +p w appartiene all’insieme %B. Viceversa,
dalla proprieta (4i4) della Definizione 6.1.1, segue che, per ogni Q € 9B, esiste
un unico vettore w € W tale che @ = P +5 w. O

Osservazione 6.2.3. Se A = (<7, V,+4) € uno spazio affine e W & un sottospazio
vettoriale di V, per ogni punto P € & si puo costruire un sottospazio affine
B = (%, W,+g) di A ponendo

B=P+,W={P+pw|weW}

e definendo l'operazione +p come la restrizione dell’operazione di somma tra
punti e vettori definita in A. La verifica che B ¢ uno spazio affine ¢ immediata.
A titolo di esempio verifichiamo che la funzione

g BxW — A

¢ ben definita. Piu precisamente, verifichiamo che, per ogni A € % e ogni
w e W,siha A+gw € A.

Sia dunque A € Z e sia u € W tale che A = P +, u. Allora, per ogni
w € W, si ha:

A4+pw=A4,w=(P4apu)+sw=P+4 (u+w) € B,

dato che u+ w € W, essendo W un sottospazio vettoriale di V.

11 sottospazio affine B cosi definito verra spesso indicato semplicemente con
B = P+ W: esso e detto il sottospazio affine di A passante per il punto P e
parallelo al sottospazio W. 1l sottospazio vettoriale W & anche detto la giacitura
di B.
Osservazione 6.2.4. Un sottospazio affine di A di dimensione 0 & semplicemente
un punto di A. Un sottospazio affine di dimensione 1 € detto una retta, un sot-
tospazio affine di dimensione 2 ¢ detto un piano e, se dim A = n, un sottospazio
affine di A di dimensione n — 1 & detto un iperpiano.

Definizione 6.2.5. Sia . un sottoinsieme non vuoto (dell'insieme dei punti)
di uno spazio affine A. Il piu piccolo sottospazio affine di A contenente . &
detto il sottospazio affine generato da ¥ ed & indicato con (7).

Proposizione 6.2.6. Sia A = (&7, V,+) uno spazio affine e . un sottoinsieme
non vuoto di «/. Fissato arbitrariamente un punto P € . indichiamo con W
il sottospazio vettoriale di V' generato dall’insieme dei vettori vg = Q — P, al

variare del punto Q in . Allora si ha () =P+ W.
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Dimostrazione. Indichiamo con B il sottospazio affine B = P 4+ W di A. Per
ogni @ € &, siha Q@ =P+ (Q—P) =P+uvg € B, il che dimostra che
% C B. Per dimostrare che () = B bisogna quindi dimostrare che B ¢ il piu
piccolo sottospazio affine di A contenente ., cioe che ogni sottospazio affine di
A contenente . contiene anche B. Sia dunque A’ = (&’, V', 4) un sottospazio
affine di A contenente .. Per ogni P,Q € . si ha anche P,Q € A’ e quindi
vg = Q — P € V'. 1l sottospazio vettoriale V' contiene dunque l'insieme dei
vettori vg = Q— P, al variare di ) in ., e pertanto contiene anche il sottospazio
vettoriale W da essi generato. Per ogni vettore w € W si ha quindi P+w € A/,
il che dimostra che B C A. O

Come gia accadeva nel caso degli spazi vettoriali, 'unione di due sottospazi
affini di uno spazio affine A non &, in generale, un sottospazio affine di A.
Definiamo dunque la somma di due sottospazi affini L e M, che indicheremo?®
con L VM, come il sottospazio affine generato dall’unione di I e M, cioe come il
piu piccolo sottospazio affine di A contenente IL e M. Nel caso particolare in cui
i sottospazi affini in questione sono due punti, P e ), con la notazione PV @ si
indica dunque il piti piccolo sottospazio affine contenente i punti P e @, cioe la
retta passante per P e @ (se i punti P e @ sono distinti). Analogamente, dati
tre punti P, @ e R di uno spazio affine A, la notazione PV @ V R indica il piu
piccolo sottospazio affine di A contenente i tre punti dati, cioé il piano passante
per P, @ e R, se i tre punti in questione non sono allineati.

Per la somma di due sottospazi affini vale il seguente risultato:

Proposizione 6.2.7. Siano L = (£, L,+) e M = (4, M,+) due sottospazi
affini di uno spazio affine A. Se L N # @, allora

LvM=P+ (L+M)={P+v|lve L+ M},
per ogni punto P € LU . # . Se invece £ N .M = &, allora
LVM=P+ (L+M+ (u))={P+v|ve L+ M+ (u},
ovePe UM eu=B—A, conAc ¥ eBe . /.

Dimostrazione. Consideriamo dapprima il caso in cui Z N .# # @. Sia A €
L N A e fissiamo un punto P € £ U.#. A meno di scambiare i ruoli di .Z e
A, non & restrittivo supporre che P € .Z. Consideriamo dunque il sottospazio
affine B = P+ (L + M). Per dimostrare che B = . v M dobbiamo dimostrare
che B & il piu piccolo sottospazio affine di A che contiene I e M. Per ogni
punto @ € L il vettore v = Q — P appartiene allo spazio vettoriale L, quindi
Q=P+ve P+ L CB; cio dimostra che . C B. Per dimostrare che anche
M C B, consideriamo un punto R € M e poniamo w = R — A (notiamo che
w € M, dato che anche il punto A appartiene a M). Dato che i punti A e P
appartengono a L, il vettore u = A — P appartiene al sottospazio vettoriale L.
Si ha dunque

R=P+(A-P)+(R-A)=P+u+weP+(L+M),

pertanto R € B. Abbiamo cosi dimostrato che B contiene L e M.

3Un’altra notazione comunemente usata per indicare la somma dei due sottospazi affini L
eMe L+ M.
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Sia ora B’ un sottospazio affine di A contenente I ¢ M. Se indichiamo con
W lo spazio vettoriale soggiacente a B’, si ha W D L e W D M, pertanto
W O L+ M. Poiché anche P € B, siha B = P+ (L+ M) C B, il che dimostra
che B & il piu piccolo sottospazio affine di A contenente L e M, cioe B = LV M.

Consideriamo ora il caso in cui X N.# = @. Siano A € X, B € M e
poniamo u = B— A, fissiamo inoltre un punto P € .ZU.# . Anche in questo caso,
a meno di scambiare i ruoli di .Z e .#, non e restrittivo supporre che P € .Z.
Consideriamo il sottospazio affine B = P + (L + M + (u)). Per dimostrare che
B =L vV M bisogna dimostrare che B ¢ il piu piccolo sottospazio affine di A che
contiene . e M. Come nel caso precedente, per ogni punto @) € L il vettore
v = Q — P appartiene allo spazio vettoriale L, quindi Q = P4+v € P+ L CB;
cio dimostra che I. € B. Per dimostrare che anche M C B, consideriamo un
punto R € M e notiamo che si ha

R=P+(A-P)+(B—-A)+(R-DB).

Ora basta osservare che il vettore A — P appartiene a L, dato che A, P € L., che
R — B € M dato che i punti B e R appartengono a M e che B — A = u, per
concludere che R € P+ (L + M + (u)) = B. Abbiamo cosi dimostrato che B
contiene L e M.

Consideriamo ora un sottospazio affine B’ contenente I ¢ M. Se indichiamo
con W lo spazio vettoriale soggiacente a B’, si ha W D L e W D M. Inoltre,
poiché A, B € B, si ha anche u =B — A € W, quindi W 2 L+ M + (u). Si ha
dunque B = P + (L + M + (u)) C B’. Pertanto B ¢ il pilt piccolo sottospazio
affine di A contenente L e M, cioe B =L VvV M. O

A differenza dell’unione, 'intersezione di due o piu sottospazi affini &, soli-
tamente, un sottospazio affine. Si ha infatti:

Proposizione 6.2.8. Sia B, = (B;,W;,+), i € I, una famiglia di sottospazi
affini di uno spazio affine A = (&, V,+). Se (\,c; $i # D, lintersezione
dei sottospazi affini B; é un sottospazio affine di A, il cui insieme dei punti é
Micr @i e il cui spazio direttore & (\;c; Wi. Si ha cioé

el
ME = (ﬂ@ﬂWJr)
el el el

Dimostrazione. La dimostrazione si riduce alla verifica che per la terna

(m%i,ﬂWid-)

i€l i€l

valgono le proprieta (i), (i) e (i) della definizione di spazio affine, il che & del
tutto ovvio. O

Osservazione 6.2.9. L’unico caso in cui l'intersezione di due o piu sottospazi
affini non & un sottospazio affine si ha quando tale intersezione e I'insieme vuoto.
Risulta pertanto conveniente considerare anche I’'insieme vuoto come uno spazio
affine. Naturalmente, la dimensione di un tale spazio affine non ¢ definita. E
comungque possibile attribuire una dimensione allo spazio affine vuoto ponendo
dim @ = —1 (a tal proposito, si ricordi che uno spazio affine di dimensione zero
non & vuoto, ma & costituito da un solo punto).



Capitolo 6 Geometria Affine 170

Osservazione 6.2.10. Dato un sottoinsieme . di uno spazio affine A, si puo ora
facilmente verificare che il sottospazio affine di A generato da .# coincide con
I'intersezione di tutti i sottospazi affini di A contenenti .%.

Per quanto riguarda le posizioni reciproche di due sottospazi affini, possiamo
dare la seguente definizione:

Definizione 6.2.11. Siano L e M due sottospazi affini di uno spazio affine A,
di sottospazi direttori L e M, rispettivamente.

(i) L e M sono incidenti se LN M # &;
(ii) L e M sono paralleli se L € M oppure M C L;
(#i) L e M sono sghembi se LNM =@ e LNM = {0}.

Dalle Proposizioni 6.2.7 e 6.2.8 discende subito il seguente risultato:

Corollario 6.2.12. Siano L e M due sottospazi affini di A. Se . e M sono
incidenti oppure sghembi, si ha

dim(L v M) = dimL + dim M — dim(L N M),

altrimenti
dim(L VM) < dimL + dim M — dim(L N M).

Dimostrazione. Indichiamo con L e M i sottospazi direttori di L e M, rispetti-
vamente. Se L e M sono incidenti, L N M ¢ un sottospazio affine il cui spazio
direttore € LN M, mentre lo spazio vettoriale soggiacente a ILVM e la somma dei
sottospazi L e M. Dalla formula di Grassmann (Cap. 1, Proposizione 1.3.49)
segue allora che

dim(L v M) = dim(L + M)
=dim L + dim M — dim(L N M)
=dimL + dim M — dim(IL N M).

Se L e M sono sghembi, si ha LNM = @ e LN M = {0}. Avendo posto, per
convenzione, dim @ = —1 (vedi Osservazione 6.2.9), dalla Proposizione 6.2.7 e
dalla formula di Grassmann si deduce che
dim(L v M) = dim(L + M + (u))
=dimL+dimM +1
=dimL 4 dim M — dim(L N M).

Se invece I e Ml non sono incidenti né sghembi, si ha LNM = @ e LN M # {0},
e dunque dim(L N M) > 0. In questo caso si deduce facilmente che

dim(L vV M) = dim(L + M + (u))
=dimL+dimM —dim(LN M) +1
<dimL +dim M + 1
=dimL 4 dim M — dim(L N M). 0
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6.3 Sistemi di riferimento

Un sistema di riferimento in uno spazio affine e ’analogo di una base per uno
spazio vettoriale. Ricordiamo che la scelta di una base di uno spazio vettoriale
n-dimensionale V' permette di associare ad ogni vettore v € V una n-upla di
elementi del campo K. In modo del tutto analogo, la scelta di un sistema di
riferimento in uno spazio affine n-dimensionale A permette di associare a ogni
punto (e a ogni vettore) di A una n-upla di elementi di K.

Definizione 6.3.1. Sia A = (&/,V,+) uno spazio affine n-dimensionale sul
campo K. Un sistema di riferimento % in A ¢ il dato di un punto O € A (detto
origine) e di una base vy, va,...,v, di V.

Equivalentemente, un sistema di riferimento in A & il dato di n + 1 punti,
Py, Py,...,P,, tali cheivettoriv; =P, — Py, vo =P, — Py, ..., v, = P, — Py,
siano una base di V' (in tal caso si pud prendere come origine del sistema di
riferimento il punto O = Fy).

Sia dunque £ = {O, vy, v, ...,v,} un sistema di riferimento in uno spazio
affine A sul campo K. Per ogni punto P € A esiste un vettore v € V tale
che P = O 4+ v. Scrivendo v come combinazione lineare dei vettori di base
V1,V2y...,Un,

v = Av1 + A2 + -+ A Up,

si ottiene
P:O+)\1’Ul+)\2’l)2+"'+)\n1)n.

Gli scalari A1,...,\, sono detti le coordinate del punto P nel sistema di ri-
ferimento dato. Ad ogni punto P € A possiamo quindi associare una n-upla
(A1,---,An) € K™; si noti che al punto O (Porigine del sistema di riferimen-
to) viene associata la m-upla nulla (0,0,...,0). Analogamente, ad ogni vet-
tore v € V risulta associata la n-upla delle sue componenti rispetto alla base
v1,Va,...,U,. La scelta di un sistema di riferimento determina quindi una biie-
zione tra lo spazio affine n-dimensionale A sul campo K e lo spazio affine A%;
tale biiezione e ottenuta associando ad ogni punto P € A le sue coordinate

(A1,...,An) € K™ e ad ogni vettore v € V le sue componenti rispetto alla base
data.

Definizione 6.3.2. Sia # = {O,v1,vs,...,v,} un sistema di riferimento in
uno spazio affine A. Le n rette passanti per O e parallele ai vettori vy, va, ..., v,
sono dette gli assi del sistema di riferimento (o assi coordinati). Gli n iperpiani
m (i = 1,...,n) passanti per O e paralleli ai sottospazi generati dai vettori
V1, -y 04y ..., Uy (la notazione 9; significa che tale vettore va escluso) sono detti

gli iperpiani coordinati.

Definizione 6.3.3. Dati n + 1 punti di uno spazio affine A, diremo che essi
sono affinemente indipendenti (o in posizione generica) se il sottospazio affine
da essi generato ha dimensione n.

Proposizione 6.3.4. Un sistema di riferimento in uno spazio affine A =
(2, V,+) di dimensione n ¢é costituito da n+ 1 punti affinemente indipendenti.

Dimostrazione. Dati n + 1 punti Py, Py,..., P,, poniamo vy = P; — Py, vy =
P,— Py, ..., v, = P, — Py e indichiamo con W il sottospazio vettoriale di V'
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generato dai vettori v;, per i = 1,...,n. Per la Proposizione 6.2.6, il sottospazio
affine generato dai punti Py,..., P, e

(Py,....,P)) = Py+ W.

Da cio segue che i punti Py, ..., P, sono affinemente indipendenti se e solo se
dim W = n, cioe se e solo se i vettori vq,...,v, sono una base di V. Cio
equivale ad affermare che gli n+ 1 punti Py, Py, ..., P, costituiscono un sistema
di riferimento in A. [
Osservazione 6.3.5. Sia Py, Py,..., P, un sistema di riferimento in uno spazio
affine A. Si verifica facilmente che, per ogni permutazione o € G,,11, i punti
Py0), Ps(1)s - - - s Py(n) formano anch’essi un sistema di riferimento in A.

6.4 Equazioni dei sottospazi affini

Come abbiamo visto nel paragrafo precedente, la scelta di un sistema di rife-
rimento in uno spazio affine permette di introdurre un sistema di coordinate.
In questo modo ogni spazio affine di dimensione n sul campo K puo essere
identificato con lo spazio affine standard A%.

In questa sezione mostreremo come i sottospazi affini di uno spazio affine
dotato di un sistema di riferimento possano essere identificati con gli insiemi
delle soluzioni dei sistemi di equazioni lineari.

Indichiamo dunque con A = A’ lo spazio affine n-dimensionale sul campo
K e consideriamo un sottospazio affine B, di dimensione r, di A. Sia W C K™
il sottospazio direttore di B e sia wq, ws, ..., w, una base di W. Dato un punto
P € B, si ha:

B=P+W={P+w|weW}.

Poiché ogni vettore w € W puo essere espresso come combinazione lineare dei
vettori di base wy,ws,...,w,, il generico punto X = (z1,22,...,z,) di B pud
essere dunque espresso nella forma

X =P+ Mwy + Xws + -+ + \w,, (641)

al variare di A1, Ag, ..., A\, € K. In coordinate, I’equazione (6.4.1) si traduce nel
seguente sistema di equazioni:

Ty =p1+ Aai + Aeaiz + -+ Avaar

T = P2 + Aag1 + Aaagz + - - + Arag, (6.4.2)

T = Dn + Man1 + A2Gn2 + -+ Ay

ove P = (p1,p2,.-.,0n) € w; = (a14,a2,...,an;) € K™ per ognii=1,...,r.
Gli scalari A1, A, ..., A, sono anche chiamati parametri e le equazioni precedenti
sono dette le equazioni parametriche del sottospazio affine B.

Nel sistema di equazioni (6.4.2) & possibile eliminare i parametri Ay, ..., A,
ottenendo cosi un sistema di equazioni lineari (non omogenee) nelle indetermi-
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nate x1, To,...T,, del tipo

!/ !/ /
a11T1 + a2 + -+ a1,Tn = b1

ah, 1 + Ahoy + -+ + ah, Ty = bo (6.4.3)

/ / /
@121 + AgoT2 + -+ - + Ay Ty, = by

per opportuni coefficienti a;j e b; in K. Quest’ultime sono dette le equazioni
cartesiane di B.

Viceversa, dato un sistema S di equazioni lineari come in (6.4.3), indichia-
mo con W il sottospazio vettoriale di K™ costituito dalle soluzioni del sistema,
omogeneo Sy ad esso associato (vedi Cap. 2, Proposizione 2.3.2):

! / !/
a11%1 + a2 + -+ ay, T, =0

/ / !/
A1 T1 + Ay + -+ + Ay, Tn, =0

So :

! !/ /!
A1 T1 + Qo2 + - - - + ag, Ty = 0.

Se il sistema S & incompatibile 'insieme ¥ delle soluzioni di S & vuoto: esso puo
quindi essere considerato un sottospazio affine di A (vedi Osservazione 6.2.9). Se
invece S ammette soluzioni ogni tale soluzione puo essere espressa come somma
di una soluzione particolare P = (p1,...,p,) di S con una soluzione w € W
del sistema omogeneo associato (vedi Cap. 2, Proposizione 2.3.3). In tal caso
Iinsieme 3 delle soluzioni di S & dato da ¥ = P+W e dunque X & un sottospazio
affine di A.

Possiamo quindi concludere che i sottospazi affini di A% possono essere de-
scritti come insiemi delle soluzioni di sistemi di equazioni lineari in n incognite.
Si noti tuttavia che tale corrispondenza tra sistemi di equazioni lineari e sot-
tospazi affini non & biunivoca; infatti esistono sistemi diversi aventi lo stesso
insieme di soluzioni.

Vediamo ora alcuni esempi particolarmente significativi.

Esempio 6.4.1 (EQUAZIONE DI UNA RETTA NEL PIANO AFFINE). Sia r una retta
nel piano affine A%. Il sottospazio direttore di r ha dimensione 1 ed & quindi
generato da un vettore (non nullo) v = (aj,a2) € K2 Se P = (p1,p2) ¢ un
punto di r e se indichiamo con X = (x1,x2) un punto generico del piano, si ha

Xer <<= X=P+M, NeéK.

L’equazione vettoriale X = P + Av si traduce nel seguente sistema di equazioni:

1 =p1+ Aag
o = p2 + Aas.

Queste sono dunque le equazioni parametriche di una retta nel piano affine.
Ricavando A da una delle due equazioni precedenti e sostituendo ’espressione
trovata nell’altra, si ottiene un’equazione di primo grado nelle incognite x; e x2,
del tipo
axry +bry +c=0,

ove a,b,c € K. Possiamo quindi concludere che una retta nel piano affine ¢ il
luogo degli zeri di un polinomio di primo grado nelle indeterminate x; e x5.
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Esempio 6.4.2 (EQUAZIONE DI UN PIANO NELLO SPAZIO AFFINE TRIDIMENSIO-
NALE). Sia 7 un piano nello spazio affine A%.. Il sottospazio direttore di m ha
dimensione 2 ed ¢ quindi generato da due vettori (linearmente indipendenti)
vy = (@11,021,a31) € v2 = (a12,0a22,a32). Se P = (p1,p2,p3) ¢ un punto del
piano 7 e se indichiamo con X = (x1,z9,23) un punto generico dello spazio
affine, si ha

Xen < X =P+ v+ Ao, Al,)\QEK.

L’equazione vettoriale X = P 4+ A\jv1 4+ Aqvsy corrisponde al seguente sistema di
equazioni:

T1 = p1 + Ar1a11 + A2arz

To = P2 + Ara21 + Aaazz

T3 = p3 + A1a31 + A2a32.
Queste sono pertanto le equazioni parametriche di un piano nello spazio affine
tridimensionale.

Eliminando i parametri A\; e Ay dalle equazioni precedenti si ottiene un’e-

quazione di primo grado nelle incognite x1, 22 e x3, del tipo

axy + brs + cxs +d =0,

ove a,b,c,d € K. Possiamo quindi concludere che un piano nello spazio affi-
ne tridimensionale e il luogo degli zeri di un polinomio di primo grado nelle
indeterminate x1, s, x3.

Esempio 6.4.3 (EQUAZIONE DI UN IPERPIANO NELLO SPAZIO AFFINE n-DIMEN-
SIONALE). Generalizzando i due esempi precedenti ¢ possibile ricavare ’equa-
zione di un sottospazio affine di dimensione n — 1 dello spazio affine A%;.

Sia dunque 7 un iperpiano in A}%. Il sottospazio direttore di m ha dimen-
sione n — 1 ed & quindi generato da n — 1 vettori (linearmente indipendenti)

v = (au, asy, ..., anl), ey Up—1 = (al,n_l, azn—1;--- ,amn_l) c K™ Se
P = (p1,p2,...,pn) & un punto dell’iperpiano 7 e se indichiamo con X =
(x1,2,...,2,) un punto generico di A%, si ha

Xen <= X=P+Mvi+ -+ 1Vn_1, A,...,\n_1 € K.

L’equazione vettoriale X = P 4+ A\jv; + - -+ + A\—10,—1 si traduce nel seguente
sistema di equazioni:

T1 =p1 + Aair +Asarg + -+ A1 -1

To = P2+ Aa21 + Aoaoa + -+ Ap_1G2.n—1

Tn = Pn + AMOn1 + A2Gpg + -+ )\nflan,nfb

Queste sono dunque le equazioni parametriche di un iperpiano nello spazio affine
n-dimensionale.

Eliminando i parametri A1, Ao, ..., A\,_1 dalle equazioni precedenti si ottiene
un’equazione di primo grado nelle incognite x1, o, ..., T,, del tipo

a121 + a2xa + -+ an®y + apg1 =0,

conai,...,a,+1 € K. Possiamo quindi concludere che un iperpiano nello spazio
affine n-dimensionale ¢ il luogo degli zeri di un polinomio di primo grado nelle
indeterminate x1, o, ..., Tn.
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Esempio 6.4.4 (EQUAZIONE DI UNA RETTA NELLO SPAZIO AFFINE TRIDIMEN-
SIONALE). Sia r una retta nello spazio affine A%.. Il sottospazio direttore di r ha
dimensione 1 ed ¢ quindi generato da un vettore (non nullo) v = (a1, az,az) €
K3. Se P = (p1,p2,p3) & un punto di r e se indichiamo con X = (1,22, 23) un
punto generico dello spazio affine, si ha

Xer < X=P+ XM, NeK.

L’equazione vettoriale X = P + Av fornisce il seguente sistema di equazioni:

1 =p1 + Aay
To = p2 + Aaz
T3 :p3+)\a3.

Queste sono dunque le equazioni parametriche di una retta nello spazio affine
tridimensionale.

Ricavando A da una delle tre equazioni precedenti e sostituendo 1’espressione
trovata nelle altre due, si ottiene un sistema di due equazioni di primo grado
nelle incognite z1, x5 e x3, del tipo

ary +bro +cxs+d=0
ex; + fxa + grs+h =0.

Possiamo quindi concludere che una retta nello spazio affine tridimensionale puo
essere identificata con l'insieme delle soluzioni di un sistema di due equazioni
di primo grado nelle incognite 1, x2, z3. Non vale invece il viceversa, cioé non
e vero che ogni sistema di due equazioni lineari in tre incognite determina una
retta: ad esempio, 'insieme delle soluzioni di un tale sistema potrebbe essere
vuoto.

Osserviamo che questo risultato ha un’ovvia interpretazione geometrica. In-
fatti, come abbiamo visto nell’Esempio 6.4.2, I'insieme delle soluzioni di un’e-
quazione lineare nelle incognite x1, x2, 3 € un piano nello spazio affine tridi-
mensionale. Pertanto l'insieme delle soluzioni di un sistema di due equazioni
lineari corrisponde all’insieme dei punti comuni a due piani. Se tali piani sono
paralleli e distinti, la loro intersezione e 'insieme vuoto; in questo caso il cor-
rispondente sistema di equazioni lineari ¢ incompatibile. Se invece i due piani
non sono paralleli, la loro intersezione & una retta.

Osservazione 6.4.5. Dalle considerazioni precedenti si deduce anche che, se il
sottospazio affine (non vuoto) B = (%4, W, +) dello spazio affine A ¢ dato dalle
soluzioni del sistema di equazioni lineari

S:AX =B,

allora il sottospazio direttore W di B e l’insieme dalle soluzioni del sistema
omogeneo associato

SO :AX =0.
Inoltre, se B non & vuoto, la sua dimensione & data da
dimB = n —rk(A),

ove n e la dimensione dello spazio affine A. In particolare, B & un iperpiano di
A se e solo se tk(A) = 1, cioé se e solo se B puo essere descritto da una sola
equazione non banale.
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Consideriamo ora il problema di determinare l'intersezione di due sottospazi
affini in termini delle loro equazioni cartesiane. Siano dunque L = (&, L, +) e
M = (4, M, +) due sottospazi affini dello spazio affine A = A7 e siano

AX =B e CX=D

i corrispondenti sistemi di equazioni lineari. Le coordinate dei punti apparte-
nenti a IL N M soddisfano sia le equazioni del sistema AX = B che quelle del
sistema C'X = D; esse sono pertanto le soluzioni del sistema lineare ottenuto
considerando tutte le equazioni dei due sistemi precedenti. Se denotiamo con
EX = F tale sistema, la matrice E e il vettore colonna F' sono dati da

(@) - (3)

Dal Teorema di Rouché-Capelli si deduce ora il seguente risultato, che fornisce
un criterio per determinare la posizione reciproca di due sottovarieta lineari di
uno spazio affine.

Proposizione 6.4.6. Siano L = (&£, L,+) e M = (4, M,+) due sottovarieta
lineari dello spazio affine A = A%, rappresentate dai sistemi lineari AX = B e
CX = D, rispettivamente. Allora si ha:

(i) L e M sono incidenti se e solo se

(448) (1)

In tal caso LNM é una sottovarieta lineare di dimensione n —t, ovet é
il valore comune dei due ranghi precedenti.

(it) L e M sono sghembe se e solo se

*(etn) (@) < (@)
w(A2) - (2) ¢ (2) e

allora I contiene una sottovarieta lineare di dimensione n —t parallela a
M.

(iii) Se si ha

Dimostrazione. (i) IL e M sono incidenti se e solo se il sistema

@) (2)

ammette soluzioni. Per il Teorema di Rouché-Capelli questo avviene se e solo
se le matrici completa e incompleta di tale sistema hanno lo stesso rango, cioe

se e solo se A
B A
rk(c D) :rk<c>.
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(ii) Ricordiamo che le due sottovarieta lineari L e M sono sghembe se e solo se
LN# =2z e LNM={0}. Peril Teorema di Rouché-Capelli, la condizione

£ N M = & equivale a
A|B A
rk (04'5> > rk (C) .
rk (A> =n,
C

equivale a richiedere che il sistema omogeneo associato

(-

abbia come unica soluzione il vettore nullo, cio¢ che sia L N M = {0}.

(éi1) La disuguaglianza
A|B A
rk ( C D) > 1k (C’)

implica che il sistema (6.4.4) non ammette soluzioni, cio¢ che .Z N.# = @. La

condizione
(2)
k(=) =t<n
C

implica che I'insieme delle soluzioni del sistema omogeneo associato

(-

forma un sottospazio vettoriale Z di dimensione n —t; si ha dunque Z = LN M.
Scelto arbitrariamente un punto P € L, la sottovarieta lineare ' = P + Z &
contenuta in L, ha dimensione n — t ed & parallela a M. O]

La seconda condizione,

Corollario 6.4.7. Sia . un sottospazio affine di dimensione v di uno spazio
affine n-dimensionale A. Allora I e intersezione di n — r iperpiani di A.

Dimostrazione. Abbiamo gia visto che L puo essere identificato con 'insieme
delle soluzioni di un sistema formato da n — r equazioni lineari. Basta ora
ricordare che ogni tale equazione rappresenta un iperpiano di A. O]

Definizione 6.4.8. Sia LL una sottovarieta lineare di dimensione r di uno spazio
affine n-dimensionale A. L’insieme degli iperpiani di A contenenti L & detto
la stella di iperpiani di centro L (nel caso in cui sia r = n — 2, si parla di
fascio di iperpiani). Piu in generale, dato m con r < m < n, la stella di
sottovarieta lineari m-dimensionali di centro I € I'insieme di tutti i sottospazi
affini di dimensione m di A che contengono L.

Definizione 6.4.9. Sia W un sottospazio vettoriale di dimensione r dello spazio
direttore di uno spazio affine n-dimensionale A. L’insieme degli iperpiani di A
contenenti W nel loro spazio direttore e detto la stella impropria di iperpiani
paralleli a W (se r = n — 2 si parla di fascio improprio di iperpiani). Piu in
generale, dato m con r < m < n, la stella impropria di sottovarieta lineari di
dimensione m parallele a W e I'insieme di tutti i sottospazi affini di dimensione
m di A che contengono W nel loro spazio direttore.
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FEsempio 6.4.10. Nello spazio affine A% sia L la sottovarieta lineare data dalle
soluzioni del seguente sistema:

1121 + a12%2 + -+ a1p®y +b1 =0

a21%1 + A22%2 + -+ + A2 Ty, + b2 =0

Am1%1 + GmaT2 + -+ + QmnTn + bm =0

Allora le equazioni cartesiane degli iperpiani che formano la stella di centro L
sono date da

M(a11x1 + a12z2 + - - + a1 @y + b1)
+ Ao(agix1 + agaa + - - - + a2p Ty + b2)
+---+ )\m(amlxl + amaZo + -+ AmnTn + bm) - 07

per ogni A1, Ag, ..., Ay € K, non tutti nulli.

6.5 Alcuni risultati di geometria affine

Data una sottovarieta lineare I in uno spazio affine A, per ogni punto P € A
esiste un’unica sottovarieta lineare I, con dimL’ = dim L, passante per P e
parallela a IL; tale sottovarieta lineare ¢ infatti data da

L'=P+1L,

ove L & il sottospazio direttore di L. Questo risultato, nel caso in cui L sia
una retta, non ¢ altro che il famoso “Quinto Postulato” di Euclide. B poi
altrettanto immediato verificare che uno spazio affine soddisfa tutti i rimanenti
assiomi che sono alla base della classica Geometria Euclidea. Pertanto, come
gia osservato all’inizio di questo capitolo, uno spazio affine fornisce un modello
di spazio adeguato per lo studio di tale geometria.

In questa sezione presenteremo dunque alcuni classici risultati di geometria
euclidea, che dimostreremo utilizzando il linguaggio e gli strumenti dell’algebra
lineare sviluppati finora. Vedremo come tali tecniche permettano non solo di
ottenere delle dimostrazioni particolarmente semplici, ma anche di estendere
tali risultati al caso di spazi affini di dimensione qualunque.

Teorema 6.5.1 (TEOREMA DI TALETE). Siano w1, mo e s tre iperpiani pa-
ralleli e distinti di uno spazio affine n-dimensionale A sul campo K e siano r,
s due rette di A, non parallele a tali iperpiani. Per ognii=1,2,3, poniamo

Pi:’l"ﬂﬂ'i, QZ:SQ’/Tl

Siano inoltre o, 8 € K tali che

PPy =aP P, Q1Q3 = BQ1Q2.

Allora si ha o = (3.
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Dimostrazione. Innanzitutto osserviamo che il fatto che ciascuna delle rette r e
s intersechi 'iperpiano 7r; in un punto ¢ una conseguenza del Corollario 6.2.12.
La situazione, nel caso in cui dim A = 3, & rappresentata nella seguente figura:

\ |

A

Indichiamo con W il sottospazio direttore degli iperpiani 7y, 7, m3. Dall’'ugua-
glianza

PiQ1+ @Q1Q2 = PP+ PQ2

si ottiene

Q1Q2 — PiPy =P — PLQ1 €W,

quindi
- -
@Q1Q2 = PP +w, (6.5.1)

per qualche w € W. Analogamente, da

PiQ1+Q1Q3 = P P34+ P3Q3

si deduce che

1Qs — PP = P3Q3 — P1Q1 € W.
Ricordando che PiPs = a PPy e Q1Q3 = 5 Q1Q2, si ha dunque

— —_—
BQ1Q2 —aP P, eW
e quindi, dato che e § # 0,
—_— o ——
1Q2 — Bplpz ew.
Da quest’ultima espressione e dalla (6.5.1) si deduce infine che
a\ —
(1 - —)Png W
B
—_—
Se fosse o/ # 1, si avrebbe Py P, € W e dunque la retta r sarebbe parallela agli

iperpiani dati, contro I'ipotesi. Si conclude pertanto che deve essere a = 3. O

Notiamo che, nel caso di uno spazio affine di dimensione due, il risultato
appena dimostrato non e altro che il classico Teorema di Talete della geome-
tria piana. Vale la pena osservare, inoltre, che il Teorema di Talete si puo
ulteriormente generalizzare come segue:
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Teorema 6.5.2. Siano L1, Lo e L3 tre sottovarieta lineari di dimensione r,
parallele e distinte, di uno spazio affine n-dimensionale A sul campo K e siano
H, K due sottovarieta lineari di dimensione n—r di A che intersecano ciascuna
delle sottovarieta L; in un punto. Per ogni i = 1,2,3, poniamo

P, =HnNL;, Q;=KnL,.
Siano inoltre o, B € K tali che

PPy =aP Py, 1Q3 = BQ1Q2.
Allora si ha o = (.

Dimostrazione. La dimostrazione di questo risultato e del tutto analoga a quella
del Teorema 6.5.1. O

Utilizzando il Teorema di Talete possiamo ora dimostrare il seguente risul-
tato di geometria piana:

Teorema 6.5.3 (TEOREMA DI PAPPO). In un piano affine A siano date due
rette distinte v e v'. Siano poi P,Q,R € r, P',Q', R’ € r’, punti distinti tra
loro e distinti anche dall’eventuale punto di intersezione di v e r'. Se la retta
passante per P e Q' ¢ parallela alla retta passante per P’ e Q) e la retta passante
per Q e R' ¢ parallela alla retta passante per Q' e R, allora la retta passante
per P e R’ & parallela alla retta passante per P’ e R.

Dimostrazione. Supponiamo che le rette r e r’ siano incidenti e indichiamo con
O il loro punto di intersezione.

Per il Teorema di Talete, si ha:

— — — —
0@ =aOR OP =30Q

— — € — —
OR = a0Q' 0Q = p0OP,

con a, 3 # 0. Da cio segue che

— —_— — - —

PR' =0OR —OP =a0Q" - 30Q

D AD . AD 1 1 ==

RP'=0P'—OR=-0Q" — - 0Q.

I5] «
— —
Si conclude pertanto che PR’ = a8 RP’ e dunque la retta passante per i punti
P e R’ & parallela a quella passante per P’ e R.
Se invece le rette r e v’ sono parallele, i quadrilateri PQP'Q" ¢ QRQ' R’ sono
— —_—— — —

dei parallelogrammi, quindi si ha PQ = Q'P’ e QR = R'Q’. Da cio si deduce
che

5D DA L AD A D I Dl
PR=PQ+QR=Q P +RQ =RP
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e quindi

— N — —_— — —

PR' = PR+ RR =R'P' + RR = RP'.
Anche in questo caso si conclude dunque che la retta passante per i punti P e
R’ ¢ parallela a quella passante per P’ e R. O

Un’altra conseguenza del Teorema di Talete ¢ il seguente risultato:

Teorema 6.5.4 (TEOREMA DI DESARGUES). In un piano affine A siano dati
due triangoli PQR e P'Q'R’, con vertici a due a due distinti. Se la retta
passante per P e Q ¢ parallela alla retta per P’ e Q', la retta per Q e¢ R ¢
parallela a quella passante per Q' e R’ e la retta per P e R ¢ parallela a quella
per P e R, allora le rette passanti per P e P', per Q ¢ Q' e per R e R’
rispettivamente, sono parallele oppure hanno un punto in comune.

Dimostrazione. Indichiamo con r la retta passante per P e P’, con s quella
passante per @Q e Q' e con t quella per R e R'. Supponiamo che le rette r, s e t
non siano parallele. Allora due di esse, non & restrittivo supporre che siano r e
s, si intersecano in un punto che indichiamo con O.

Per il Teorema di Talete, applicato alle rette parallele passanti per P, () e per
P, Q', tagliate dalle trasversali r e s, si ha

_— — —
OP = aOP, 0Q =a0q’,

per qualche o € K. Consideriamo ora la retta passante per i punti O e R. Se
tale retta ¢ parallela alla retta per P’ e R, essa coincide necessariamente con
la retta per P ¢ R. Da cio si deduce che i punti P, P’, R, R’ e O sono allineati,
quindi le rette r e t coincidono. In questo caso le rette r, s e t passano per il
punto O, come volevasi dimostrare. Supponiamo quindi che le rette passanti
per i punti O, R e per P’, R’ non siano parallele; esse si intersecano dunque
in un punto, che indicheremo con R”. Se applichiamo il Teorema di Talete alle
rette parallele passanti per P, R e per P’, R’, si conclude che

Ped e e
OR=B0OR", OP=p30P,

per qualche # € K. Dal confronto con le espressioni precedenti si deduce che
0 = «, quindi si ha

— —_—

OR=aOR".

Ora consideriamo le rette passanti per O, R e per ', R’. Se esse sono parallele,
la retta passante per i punti O e R coincide necessariamente con quella passante
per Q e R. Da cio si deduce che i punti @, Q’, R, R’ e O sono allineati, quindi
le rette s e t coincidono. Anche in questo caso le rette r, s e t passano per il
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punto O. Supponiamo allora che le rette passanti per i punti O, R e per @',
R’ non siano parallele; esse si intersecano dunque in un punto, che indicheremo
con R". Applicando il Teorema di Talete alle rette parallele passanti per Q, R
e per @', R/, si ottiene

—_— — — —
OR =~OR", 0Q =~0Q',
per qualche v € K. Dal confronto con le espressioni precedenti si deduce che
v = «, quindi si ha
D 1717
OR =aOR".
Da cid segue che i punti R” e R" coincidono, ma, cio ¢ possibile solo se entrambi

coincidono con il punto R’. Si ha pertanto R’ = R” = R'”, il che dimostra che
anche la retta ¢ passa per il punto O. O

Osservazione 6.5.5. 1 teoremi di Pappo e Desargues ammettono altre formu-
lazioni, diverse da quelle che abbiamo presentato. In particolare, essi si pos-
sono riformulare nell’ambito della geometria proiettiva. L’importanza di tali
risultati ¢ dovuta, in modo particolare, alla relazione che essi hanno con la
caratterizzazione degli spazi affini per mezzo di proprieta di natura grafica.

Terminiamo questa sezione con una discussione relativa alla costruzione del
punto medio di un segmento e, piu in generale, del baricentro di un insieme
finito di punti.

Definizione 6.5.6. Sia K un campo ordinato* e sia A uno spazio affine su K.
Dati due punti A, B € A, il segmento di estremi A e B e I'insieme dei punti

X=A+XB-A),
al variare di A € K, con 0 < A < 1.
Definizione 6.5.7. Sia K un campo ordinato e sia A uno spazio affine sul

campo K. Siano A e B due punti di A e poniamo v = B — A. 1l punto

1
M:A+§'U

¢ detto il punto medio del segmento AB.
Si ha infatti M —A=B — M = %v.

B
M
A v/2
Formalmente si puo dunque scrivere
1 A+ B
M=A+5(B-4)= ; .

4Un campo ordinato & un campo K dotato di una relazione d’ordine totale < che soddisfa
le seguenti proprieta:

(i) a<b = a+c<b+c, perognice€Kj;

(it) per ognia,b&€ K cona >0eb>0,sihaab>0.

Due esempi classici di campi ordinati sono dati dal campo Q dei numeri razionali e dal campo
R dei numeri reali, dotati della relazione d’ordine usuale.
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L’ultima espressione va intesa in senso puramente formale dato che, in uno
spazio affine, la somma di due punti non € un’operazione definita. Naturalmente,
in termini di coordinate, le due espressioni

A+ B
2

A+%(BfA) e

forniscono lo stesso risultato. Osserviamo infine che, in coordinate, la scrittura

A+B
2

M =

¢ compatibile con la convenzione descritta nell’Osservazione 6.1.10. Infatti, se
A=(1,a1,...,a,) e B=(1,b1,...,b,), si ha

A+B7(1 a1+b1 (Ln+bn)
D) = y 5 yeey 5

che rappresenta effettivamente un punto dello spazio affine, dato che la prima
coordinata e 1.

Osservazione 6.5.8. Se il campo K non & ordinato non ha piu senso parlare del
“segmento” di estremi A e B. Tuttavia, se la caratteristica di K & diversa da 2,
¢ comunque possibile costruire il punto

A+ B

M = .
2

In tal caso M ¢ detto il baricentro dell’insieme di punti {A, B}.
Prendendo spunto da quanto detto sopra, possiamo dare la seguente defini-

zione:

Definizione 6.5.9. Sia K un campo di caratteristica zero e sia A = A’%.. Dati
7 punti A1, As,..., A, € A, il punto G le cui coordinate sono date da

At Asto A,
T

G

¢ detto il baricentro® dell’insieme di punti {A;, Aa,..., A, }.

Come applicazione delle tecniche finora introdotte, dimostriamo il seguente
risultato di geometria elementare:

Proposizione 6.5.10. Sia K un campo ordinato.® Nello spazio affine A%,
il baricentro di un triangolo & il punto d’incontro delle tre mediane. Inoltre,
ogni mediana viene divisa da tale punto in due parti, delle quali una é doppia
dell’altra.

5La nozione di baricentro di un insieme di punti deriva dalla fisica. Piil in generale, se
Ai,Ag, ..., A, rappresentano dei punti materiali di masse rispettivamente m1,mo, ..., my,, il
loro baricentro € il punto le cui coordinate sono date dalla seguente espressione:
mi1A1 +moAs + - +mrAr
mi1+m2+ -+ my

G=

6In effetti ¢ sufficiente richiedere che K sia un campo di caratteristica # 2, 3.
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Dimostrazione. Consideriamo un triangolo di vertici A, B e C nello spazio af-
fine A%. Indichiamo con M, N, P i punti medi dei segmenti AB, BC e CA,
rispettivamente, e indichiamo con G il baricentro dei tre punti A, B e C.

C

M B

Si ha dunque
A+ B
+ ’ N=B+C, P:AJrC’ G=A+B+C.
2 2 2 3
Le tre mediane del triangolo ABC sono le rette AN, BP e C M, le cui equazioni
parametriche sono:

M =

retta AN: X =A+a(N - A)
retta BP: X = B+ (P — B)
retta CM: X =C+~(M-0C).

E ora immediato verificare che, per « = 8 = v = 2/3, le tre equazioni pre-
cedenti forniscono precisamente le coordinate del baricentro G. Ad esempio,
considerando 'equazione della retta AN, si ha infatti

2 2/B+C A+B+C
A+-(N—-—A)=A+ - A= =
+3( ) +3( 2 ) 3

Cio dimostra che il punto G giace sulle tre mediane. Per dimostrare 1'ultima
asserzione basta osservare che

AC—q_a_AtB+rC , B+C-24
3 3
mentre B+C A+B+C B+C-24
GN=N-G=-1% A+*P+C _DHC=24
2 3 6
— —
quindi AG = 2GN (per le altre due mediane il ragionamento & analogo). O

6.6 Applicazioni affini

In questa sezione studieremo le funzioni tra due spazi affini che “rispettano” la
struttura di spazio affine. Tali funzioni saranno dette applicazioni affini.

Definizione 6.6.1. Siano A = (&7, V,+4) e A’ = (&', V', +4/) due spazi affini
sul campo K. Un’applicazione affine F': A — A’ & il dato di una funzione tra
gli insiemi di punti f : & — &7’ e di una funzione lineare tra gli spazi vettoriali
¢ : V — V' che soddisfano la seguente proprieta:

F(P+av) = f(P) +a é(v),

per ogni P € & e ogni v € V. L’applicazione ¢ ¢ detta I'applicazione lineare
soggiacente all’applicazione affine F'.
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Per ogni spazio affine A = (&, V,+,) ¢ immediato verificare che I'identita
I = (idy,idy) : A — A & un’applicazione affine.

Se A = (&, V,+4), A = (", V', +a) e A = (", V" +4r) sono tre
spazi affini su K ese F = (f,¢) : A - A" e G = (g,¢) : A’ — A” sono due
applicazioni affini, ’applicazione composta

GoF = (gof,ipog): A— A"
¢ anch’essa un’applicazione affine. Si ha infatti

(go f)(P+v)=g (f(P+v))
= g(f(P) + (v))
g(f(P)) +¥(¢(v))
= (go /)(P)+ (¥ o9)(v).

Infine, data un’applicazione affine F' = (f,¢) : A — A’, se le funzioni f e ¢ sono
biiettive & possibile definire applicazione F~! = (f~1,¢71) : A’ — A, inversa
di F'. Questa ¢ un’applicazione affine: infatti, se poniamo Q = f(P) e w = ¢(v),

si ha
FHQR+w) = fHF(P) + ¢(v))
= (f(P+v))
=P+

=7HQ) + ¢ H(w).

Osservazione 6.6.2. Se F' = (f,¢) : A — A’ & un’applicazione affine, le due
funzioni f e ¢ sono strettamente collegate tra loro. Infatti, per ogni coppia di
punti P,Q € <7, postov=Q — P, si ha Q = P+v, quindi f(Q) = f(P)+ ¢(v),
da cui segue che ¢(v) = f(Q) — f(P). La funzione lineare ¢ : V' — V' & dunque
completamente determinata dalla funzione insiemistica f : .o/ — &".

Data una funzione insiemistica f : &/ — <7/ tale che, per ogni P,Q, P, Q' €
of , si abbia

Q-P=Q -P = [f(Q—-f(P)=fQ)—f(P), (6.6.1)
& possibile definire un’applicazione ¢ : V' — V' ponendo, per ogni v € V,
o(v) = f(P+v) = f(P),

per qualche P € &/. La proprieta (6.6.1) garantisce che tale definizione non
dipende dalla scelta del punto P. Se poi f & tale che la funzione ¢ cosi definita
¢ lineare, la coppia (f, ¢) definisce un’applicazione affine F': A — A’.

Mostriamo ora che, dati due spazi affini A = (&, V,+4) e A = (&', V', +4/)
sul campo K, per ogni funzione lineare ¢ : V — V' esiste un’applicazione affine
F = (f,¢) : A — A’ che invia un qualsiasi punto prefissato P € & in un
qualsiasi punto P’ € &’

Proposizione 6.6.3. Siano A = (&, V,+,) e A" = (&', V' +4) due spazi
affini sul campo K e sia ¢ : V — V' una funzione lineare. Per ogni P € o e
ogni P’ € of' esiste un’unica applicazione affine F = (f,¢) : A — A’ tale che
f(P)y="Fp.
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Dimostrazione. Fissato P € 4/, per ogni punto @ € & sia vg = @ — P.
Possiamo definire una funzione f : &/ — &/’ ponendo, per ogni QQ € &,

(@) =P+ ¢(vq).

Dato che vp = P — P = 0, si ha f(P) = P’ + ¢(vp) = P’. La funzione
F=(f,6): A— A’ cosi definita & un’applicazione affine: infatti, dati Q € & e
v € V, ponendo R = Q + v, si ha

f(R) = P+ ¢(vr)
=P +¢(Q+v—P)
=P + ¢p(vg + v)
=P+ ¢(vq) + ¢(v)
= f(Q) + o(v).

Per dimostrare 'unicita di F', supponiamo che G = (g, ¢) : A — A’ sia anch’essa
un’applicazione affine tale che g(P) = P’. Per ogni @ € 7 si ha

9(Q) = g(P +vq) = g(P) + ¢(vq) = P' + ¢(vq) = f(Q)
pertanto f = g e quindi F' = G. O

Le applicazioni affini trasformano sottospazi affini del loro dominio in sotto-
spazi affini del codominio. Piu precisamente, vale il seguente risultato:

Proposizione 6.6.4. Siano A = (&, V,+4) e A" = (&', V' +4/) due spazi
affini sul campo K e sia F'= (f,¢) : A — A’ un’applicazione affine.

(i) Per ogni sottospazio affine B = (B, W,+) di A, ponendo B' = f(B) e
W' = ¢(W), si ottiene un sottospazio affine B’ = (B, W' +) di A’. Tale
sottospazio affine é detto l’immagine tramite F' del sottospazio B, e sara
indicato con F(B).

(ii) Per ogni sottospazio affine B = (%', W', +) di A, ponendo B = f~1(#')
e W = ¢~ Y (W), si ottiene un sottospazio affine B = (B, W,+) di A. Tale
sottospazio affine ¢ detto I’immagine inversa tramite F del sottospazio B,
e sara indicato con F~*(B').

Dimostrazione. (i) Osserviamo innanzitutto che W’ = ¢(W) & un sottospazio
vettoriale di V/. Dimostriamo ora che l'operazione +4/ : &7/ x V' — &/’ induce,
per restrizione, un’operazione

+: B xW - Z#.

Siano dunque P’ € %', w' € W' e poniamo Q' = P’ + w’ € &/’. Dobbiamo
dimostrare che Q' € #’. Siano P € ¢ w € W tali che P’ = f(P) e w' = ¢(w).
Il punto @ = P + w appartiene a %, dato che B & uno spazio affine. Poiché
F & un’applicazione affine, si ha f(Q) = f(P) 4+ ¢(w) = P +w' = @', quindi
Q' € #'. E ora del tutto evidente che la terna B’ = (%', W', +) soddisfa le
proprieta (i) e (i¢) della Definizione 6.1.1. Dimostriamo quindi che vale anche
la proprieta (#4). Dati due punti P’,Q’ € %', esiste un unico vettore w’ € V'
tale che Q' = P’ 4+ w’: dobbiamo solo dimostrare che w’ € W', cio¢ che esiste
un vettore w € W tale che ¢(w) = w’. Siano P,Q € £ tali che f(P) = P’ e
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f(Q) = Q' e poniamo w = @ — P; notiamo che w € W perché B ¢ un sottospazio
affine. Siha dunque @ = P4+w e quindi Q' = f(Q) = f(P)+¢(w) = P+ p(w),
da cui si deduce che ¢(w) = Q' — P/ = w’, come volevasi dimostrare.

(i7) Iniziamo con I'osservare che W = ¢~ 1(W’) & un sottospazio vettoriale di
V. Dimostriamo ora che 'operazione +, : &/ x V — & induce, per restrizione,
un’operazione

+: BxW — A.

Siano dunque P € 4, w € W e poniamo Q = P+w € &«. Dobbiamo dimostrare
che Q € A, cioe che Q' = f(Q) € #'. Ponendo P’ = f(P) e w' = ¢(w), si ha

Q =fQ) =f(P)+¢(w)=P +uw €A,

dato che B’ ¢ un sottospazio affine. E ora del tutto evidente che la terna B =
(B, W, +) soddisfa le proprieta (i) e (ii) della Definizione 6.1.1. Dimostriamo
quindi che vale anche la proprieta (4ii). Dati due punti P,Q € %, esiste un
unico vettore w € V tale che Q = P 4w: dobbiamo solo dimostrare che w € W,
cioe che w' = ¢(w) € W'. Ponendo P’ = f(P) e w' = ¢(w), si ha

Q' = f(Q) = f(P) + ¢(w) = P' +
quindi w’ = Q' — P’ € W', dato che B’ & un sottospazio affine. O

Definizione 6.6.5. Un’applicazione affine F : A — A’ & un isomorfismo di
spazi affini se esiste un’applicazione affine G : A’ — A tale che le applicazioni
composte F o G e G o F siano l'identita. Un’isomorfismo di spazi affini di A in
sé stesso e detto un’affinita di A.

Osservazione 6.6.6. Dato uno spazio affine A, indicheremo con Aff(A) I'insieme
delle affinita di A. Ricordando che la composizione di due affinita ¢ un’affinita
e che l'inversa di un’affinita & un’affinita, ¢ immediato verificare che Aff(A) & un
gruppo per la legge di composizione delle applicazioni.

Notiamo che, per quanto visto in precedenza, un’applicazione affine F' =
(f,¢) : A — A’ & un’isomorfismo se e solo se le funzioni f e ¢ sono biiettive.
In effetti, come ora dimostreremo, per un’applicazione affine F' = (f,¢) : A —
A’ Viniettivita (risp., la suriettivitd) dell’applicazione insiemistica f equivale
all’iniettivita (risp., alla suriettivita) dell’applicazione lineare ¢.

Proposizione 6.6.7. Sia F = (f,¢) : A — A’ un’applicazione affine. Valgono
le sequenti proprieta:

(i) f ¢é iniettiva se e solo se ¢ ¢ iniettiva;

(i) f € suriettiva se e solo se ¢ é suriettiva.

Dimostrazione. (i) Supponiamo che f : & — &/’ sia iniettiva. Siano vi,ve € V
tali che ¢(v1) = ¢(v2). Dato un punto P € <7, si ha:

fP+wv1) = f(P) +é(v1) = f(P) + ¢(v2) = f(P +v2).

Dall’iniettivita di f discende allora che P 4+ vy = P + vo, da cui segue v = vs.
Viceversa, supponiamo che ¢ : V' — V' sia iniettiva. Dati P,Q € & con
f(P) = f(Q), poniamo v = @ — P. Si ha dunque

f(P)=[f(Q) = f(P+v) = f(P)+ ¢(v),
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da cui si deduce che ¢(v) = 0. Dall’iniettivita di ¢ segue che v = 0, quindi
P=0Q.

(i) Supponiamo ora che f : & — &/’ sia suriettiva. Dato v’ € V', scegliamo
un punto P’ € &’ e poniamo Q' = P’ + v'. Poiché f ¢ suriettiva, esistono
due punti P,Q € & tali che f(P) =P’ e f(Q) = Q'. Sia dunque v = Q — P:
vogliamo dimostrare che ¢(v) = v’. Si ha infatti

Q' =f(Q) = f(P+v)=f(P)+¢(v) =P+ ¢(v),

da cui segue che ¢(v) = Q' — P’ = v’, come volevasi dimostrare.

Viceversa, supponiamo che ¢ : V' — V' sia suriettiva. Dato P’ € &’ sce-
gliamo un punto A € &, poniamo A’ = f(A) e v' = P’ — A’. Dato che ¢ &
suriettiva, esiste v € V tale che ¢(v) = v’. Ponendo P = A + v, si ha

f(P)=f(A+v)=f(A) +p(v) = A 4+ =P,
il che dimostra la suriettivita di f. o

Come applicazione di quanto abbiamo visto finora, possiamo dimostrare il
seguente risultato:

Proposizione 6.6.8. Siano A = (&, V,+) e A = (&', V', +) due spazi affini
di dimensione n sul campo K. Dati due sistemi di riferimento

X ={Py,Py,...,P,}, %' ={P},P|,...,P},
in A e A’ rispettivamente, esiste un unico isomorfismo di spazi affini
F=(f,6) A&
tale che f(P;) = P!, per ogni i =0,...,n.
Dimostrazione. Poiché Z ¢ un sistema di riferimento in A, i vettori
vn=P—Pyv=P—-F,...,v, =P, — Py

costituiscono una base dello spazio vettoriale V. In modo del tutto analogo, i
vettori
V=P Pl vy=P,—Fl... J, =P —P

sono una base dello spazio vettoriale V', dato che %’ ¢ un sistema di riferimen-
to in A’. Esiste pertanto un’unica applicazione lineare ¢ : V. — V'’ tale che
¢(v;) = v}, per i = 1,...,n; inoltre tale applicazione lineare ¢ un isomorfismo
di spazi vettoriali. Dalla Proposizione 6.6.3 si deduce che esiste un’unica ap-
plicazione affine F' = (f,¢) : A — A’ tale che f(FPy) = Pj; tale applicazione &
un isomorfismo di spazi affini, visto che ¢ € un isomorfismo di spazi vettoriali.
Notiamo infine che, per ogni i = 1,...,n, si ha P, = Py + v; quindi, poiché F' &
un’applicazione affine, si ha

f(B) = f(Po) + p(vi) = Py + v = Pj.

F soddisfa pertanto le proprieta richieste. O
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Terminiamo questa sezione dimostrando che ogni spazio affine di dimensione
n sul campo K ¢ isomorfo (non in modo canonico) allo spazio affine standard
A%

Sia dunque A = (&, V, +) uno spazio affine di dimensione n sul campo K e
sia Z = {O,v1,...,v,} un sistema di riferimento in A. Ad ogni punto P € &/
¢ possibile associare la n-upla (p1,...,p,) delle sue coordinate nel sistema di
riferimento %; ricordiamo che cio significa che P si scrive nella forma

P=0O4+pvi+ -+ ppv,.
Come gia osservato nel Paragrafo 6.3, risulta cosi definita una biiezione

f=fz:9 — K", P f(P)=(p1,---,Pn)-

Analogamente, associando ad ogni vettore v € V la n-upla (aq,...,a,) delle
sue componenti rispetto alla base vy, ...,v,, si ottiene un isomorfismo di spazi
vettoriali

d=¢gp:V — K"
Possiamo ora dimostrare il seguente risultato:

Proposizione 6.6.9. Con le notazioni precedenti, la coppia (fo,ps) definisce
un isomorfismo di spazi affini g : A — AT

Dimostrazione. Per dimostrare che @5 = (fo, ¢o) & un’applicazione affine con-
sideriamo un punto P € A e un vettore v € V. Poniamo (p1,...,pn) = f2(P)
e (a1,...,an) = ¢g(v): si ha dunque

P=0+pv1+- + ppvn, V= Qiur A+ Q.
Da cio segue che
P+U:O+(p1+a1)vl+"'+(pn+04n)vn

e dunque le coordinate del punto P + v nel sistema di riferimento % sono date
da (p1 + a1,...,pn + ). Si ha pertanto:

f%(P-i-’U) = (pl +a1,...,Pn +an) = fﬂ<P> +¢«%(U)’

il che dimostra che ®5 = (f%,$%) ¢ un’applicazione affine. Dalla biiettivita
delle funzioni fg e ¢4 si deduce che ®4 € un isomorfismo. O

6.6.1 Matrici associate alle applicazioni affini

Siano A = (&, V,+) e B = (%, W,+) due spazi affini sul campo K, di di-
mensioni n e m rispettivamente, e sia F' = (f,¢) : A — B un’applicazione
affine. Indichiamo con #Z = {Oy,v1,...,v,} un sistema di riferimento in A e
con & = {Op,w1,...,w,} un sistema di riferimento in B.

Come abbiamo visto nel Paragrafo 6.3, ogni punto P € A si puo scrivere, in
modo unico, nella forma

P:OA+)\1’01+)\2U2+"'+>\TL’U”,
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ove (A1, A2,...,An) € K™ sono le coordinate di P nel sistema di riferimento %.
Dalla definizione di applicazione affine si deduce allora che

f(P) = f(On) + M1¢(v1) + Xagp(v2) + - -+ + And(v).

Se indichiamo con A = (aij) la matrice dell’applicazione lineare ¢ : V. — W
rispetto alle basi {vy,...,v,} di V e {wy,...,w,} di W, si ha

$(v;) =Y agw,
=1

per ogni j = 1,...,n. Indicando poi con (t1,...,t,) € K™ le coordinate del
punto f(Oy) nel sistema di riferimento ., si ha

f(On) = Op + twy + tows + -+ -+t wp,

e quindi

F(P)y=0s+) tawi+ Y No(v))
i=1 j=1
= O]B + thwl + Z Aj Z aijwi
i=1 =1 i=1
= O]B'thi’wi-i-z ( aij)\j>wi
=1 1

=1 j=
= O]B + z; (ti + Zaij)\j)wi.
i= j=1

L’applicazione affine F' = (f,¢) ¢ dunque completamente determinata dalle
coordinate (t1,...,t,) del punto f(Oa) e dalla matrice A = (aij) dell’applica-
zione lineare ¢. Indicando con (z1,...,z,) le coordinate di un generico pun-
to X € A econ (z),...,2,) le coordinate del punto f(X) € B, la formula
precedente si riscrive come segue:

!
Ty a1l v Qip 1 ty

=1 : N (6.6.2)
.Z’;n Am1  °  OQmn Tn tm

Quest’ultima e dunque ’espressione, in coordinate, di una generica applicazione
affine F' tra due spazi affini A e B, di dimensioni n e m rispettivamente.

Osservazione 6.6.10. Se rappresentiamo le coordinate dei punti X e X' = f(X)
nella forma X = (1,21,...,2,) ¢ X' = (1,24,...,2,) (vedi la convenzione
introdotta nell’Osservazione 6.1.10) e se associamo alla matrice A = (aij) e alla
m-upla (t1,...,t,) la matrice

1 0 0 0
t1  anin a2 G1n

tm am1l  Am2 e Qmn
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possiamo riscrivere la formula (6.6.2) come segue:

1 1 0 S 0 1

x} 1 ann - Gip x
=1 . . . . (6.6.3)

l’;n tm am1 e Amn Tn

E dunque possibile rappresentare un’applicazione affine F' = (f, ¢) tra due spazi
affini A e B, di dimensioni n e m rispettivamente, mediante una matrice (m +

1) x (n+ 1) del tipo
110
t| A

ove t = {t1,...,t,) € K™ sono le coordinate dell'immagine tramite f del-
Porigine del sistema di riferimento fissato in A, A € My, ,(K) ¢ la matrice
dell’applicazione lineare ¢ rispetto alle basi {vy,...,v,} di Ve {wy,...,wy,} di
We0=(0,...,0) € K" ¢ il vettore nullo (scritto in riga).

Osservazione 6.6.11. Prendendo spunto dalla formula (6.6.2) possiamo definire,
per ogni matrice A € M, ,,(K) e ogni m-upla t = {(ty,...,t,) € K™, un’appli-
cazione insiemistica f : K™ — K™ ponendo f(X) = AX + t e un’applicazione
lineare ¢ : K™ — K™ ponendo ¢(v) = Av. Per ogni punto P € A% e ogni
vettore v € K" si ha

f(P+v)=AP4+v)+t=AP+t+ Av = f(P) + ¢(v),
quindi la coppia (f, ¢) definisce un’applicazione affine
F = Fyga) A — AR,

E immediato verificare che Fl¢,4) ¢ un isomorfismo se e solo se la matrice A ¢
invertibile: infatti sappiamo che F(¢ 4y = (f,¢) ¢ un isomorfismo di spazi affini
se e solo se ¢ & un isomorfismo di spazi vettoriali, il che accade precisamente se
e solo se A ¢ invertibile.

Osservazione 6.6.12. Sia F': AT, — A, F(X) = AX +t, un’applicazione affine
e sia L la sottovarieta lineare di A%} costituita dalle soluzioni di un sistema di
equazioni lineari CY = D. Nella Proposizione 6.6.4 abbiamo dimostrato che
I'immagine inversa di L tramite F' ¢ una sottovarieta lineare di A’ :

FHL)={X €A% |F(X) € L}.

Vogliamo determinare il sistema lineare corrispondente alla sottovarieta F~!(L).
A tale scopo basta osservare che, dalle definizioni date, si ha

XeF (L) < FX)eL
— AX+tel
— C(C(AX+t)=D
<~ (CAX =D -Ct.

Si conclude quindi che la sottovarieta lineare F~1(LL) di A% & costituita dalle
soluzioni del sistema di equazioni lineari EX = G, ove E=CAe G =D — Ct.
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Nel caso in cui F' : A, — A% sia un isomorfismo di spazi affini (e quindi m =
n), Papplicazione inversa F~!: AT — A% ¢ data da F~1(Y) = A7'Y — A~ 1¢.
Se L’ & una sottovarieta lineare di A%, costituita dalle soluzioni di un sistema
di equazioni lineari C'X = D', la sua immagine tramite F' & una sottovarieta
lineare dello spazio affine A% e si ha

F(L) = (FH)7HL).

Applicando quanto detto sopra alla funzione inversa di F, si deduce che il siste-
ma di equazioni lineari corrispondente alla sottovarieta F'(L') ¢ E'Y = G’, ove
E'=C'AleG =D +C'A .

Osservazione 6.6.13. Siano A = (&, V,+) e B = (%, W, +) due spazi affini
sul campo K, di dimensioni n e m rispettivamente. Fissiamo un sistema di
riferimento Z = {Op,v1,...,v,} in A e indichiamo con ®z : A = A% Disomor-
fismo di spazi affini definito nella Proposizione 6.6.9. Fissiamo poi un sistema
di riferimento . = {Op, w1, ..., w,} in B e indichiamo con Vo : B = AT
Iisomorfismo di spazi affini corrispondente. Data un’applicazione affine F =
(f,¢) : A — B, indichiamo con t = (t1,...,t,) le coordinate del punto f(Oj)
nel sistema di riferimento . e con A € M,, »,(K) la matrice dell’applicazione
lineare ¢ rispetto alle basi {vi,...,v,} di V e {ws,...,wy} di W. Sia poi
Fig,a) + A — AR DPapplicazione affine definita nell’Osservazione precedente.
Ricordando la formula (6.6.2), & immediato verificare che il seguente diagramma
€ commutativo:

A—E SR

@%\L? Z\L\Py

AL s AT
F
(t,A)

Osservazione 6.6.14. Quanto visto finora permette di affermare che esiste una
corrispondenza biunivoca tra 'insieme delle applicazioni affini di A% in A%} e
linsieme delle coppie (t, A), ove t € K™ e A & una matrice m X n a coefficienti
in K. Vedremo ora come si esprime, in termini di coppie (t, 4), 'operazione di
composizione di due applicazioni affini.

Consideriamo dunque le applicazioni affini

F(t,A) :A?( — A% [§ F(u,B) : % — A%,

corrispondenti alle coppie (t,A) e (u,B), ove A € M, ,(K), B € M, ,,(K),
t € K™ eu e K". Dato che 'applicazione composta

Fu,pyo Fg,a) : A — Al

& un’applicazione affine, essa corrisponderad a una coppia (v,C), per qualche
C e M, ,(K)eve K" Perogni punto X € A’ si ha dunque:

Frv,o)(X) = (Fru,B) © Fig,4))(X)
= F(u7B)(AX +t)
=BAX +t)+u
= (BA)X + (Bt + u).
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D’altra parte, si ha anche
F(v,C)(X) =CX+v

da cui si deduce che C = BA e v = u+ Bt. Concludiamo quindi che, in termini
di coppie, 'operazione di composizione di due applicazioni affini si esprime come
segue:

(u,B)o(t,A) = (u+ Bt,BA).

Osservazione 6.6.15. Per ogni spazio affine A di dimensione n sul campo K, la
scelta di un sistema di riferimento % in A permette di associare ad ogni affinita
F di A una coppia (t, A), ovet € K™ e A € M,,(K) & una matrice invertibile. Si
stabilisce cosi una biiezione (dipendente dalla scelta di %) tra I'insieme Aff(A)
e il prodotto cartesiano K™ x GL,(K). Come abbiamo visto nell’Osservazio-
ne precedente, la legge di gruppo di Aff(A) si traduce nella seguente legge di
composizione di coppie:

(u,B) - (t,A) = (u+ Bt, BA).

L’insieme K™ x GL,(K), con la legge di composizione sopra descritta, ¢ un
gruppo, detto il prodotto semidiretto del gruppo additivo (K™, +) per il grup-
po moltiplicativo (GL,(K),-). Tale gruppo viene indicato con la notazione

seguente:7
K" x GL,(K).

L’elemento identico per tale legge di gruppo & la coppia (0,1) (la quale corri-
sponde all’applicazione affine identica di A in sé) mentre I'inverso di una coppia
(t, A) risulta essere la coppia (—A~t, A=1). Concludiamo quindi che, per ogni
spazio affine A di dimensione n sul campo K, il gruppo Aff(A) delle affinita di
A ¢& isomorfo (non canonicamente) al prodotto semidiretto K™ x GL,,(K).

Osservazione 6.6.16. Come abbiamo visto nell’Osservazione 6.6.10, ad ogni
coppia (t, 4) € K™ x GL,(K) ¢ possibile associare la matrice

( 1 31 ) € GLyi1 (K). (6.6.4)

Vogliamo dimostrare che tale associazione definisce un omomorfismo iniettivo
di gruppi
Jj: K" x GL,(K) — GLp41(K),

il quale permette dunque di identificare il prodotto semidiretto K™ x GL,,(K)
con il sottogruppo di GL,,+1(K) costituito dalle matrici della forma (6.6.4).
A tale scopo basta osservare che si ha

j((u,B)O(t,A)) :j(u—i—Bt,BA): ( u—|—lBt BOA )

e che tale matrice coincide con il prodotto righe per colonne delle matrici j(u, B)
e j(t, A).

"La notazione G = N % H, per indicare il prodotto semidiretto di due gruppi N e H, serve
a ricordare che N & un sottogruppo normale di G, N <{G, mentre H & solo un sottogruppo di
G, H < G.
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6.7 Spazi affini euclidei

In questa sezione studieremo gli spazi affini i cui spazi direttori sono degli spazi
vettoriali euclidei, cioe degli spazi vettoriali reali dotati di un prodotto scalare.
Come vedremo, la presenza di una tale struttura nello spazio vettoriale V' sog-
giacente a uno spazio affine A = (&7, V, +) permettera di introdurre in A nozioni
di natura metrica come distanze, angoli, aree, volumi.

Definizione 6.7.1. Uno spazio affine euclideo & uno spazio affine A, definito sul
campo R dei numeri reali, in cui lo spazio direttore V' & dotato di una struttura
di spazio vettoriale euclideo, cioe di una forma bilineare simmetrica definita
positiva g : V x V — R. Commettendo un abuso di notazione, dati due vettori
v,w € V, nel seguito scriveremo v - w al posto di g(v, w).

Esempio 6.7.2. L’esempio fondamentale di spazio affine euclideo & costituito
dallo spazio affine Ag, in cui lo spazio vettoriale soggiacente R™ e dotato del
prodotto scalare usuale. Tale spazio verra chiamato semplicemente lo spazio
affine euclideo Ag.

Definizione 6.7.3. In uno spazio affine euclideo A (di dimensione finita), un
sistema di riferimento Z = {O, vy, vs, ..., v, } & detto ortogonale (risp., ortonor-
male) se 1 vettori vy, v, ...,v, sono una base ortogonale (risp., ortonormale)
dello spazio vettoriale euclideo V. Un sistema di riferimento ortonormale e
anche detto cartesiano.

Osservazione 6.7.4. Si noti che I'esistenza di sistemi di riferimento ortonormali
in uno spazio affine euclideo & garantita dall’esistenza di basi ortonormali negli
spazi vettoriali euclidei (vedi Cap. 5, Paragrafo 5.4.2). Inoltre, la scelta di
un sistema di riferimento ortonormale &% in uno spazio affine euclideo A di
dimensione n, determina un isomorfismo di spazi affini (vedi Proposizione 6.6.9)

Dy A AL

Mediante tale isomorfismo la forma bilineare g definita sullo spazio vettoriale V'
soggiacente allo spazio affine A viene identificata con il prodotto scalare usuale
di R™.

Dalla Definizione 6.7.1 segue che tutti i risultati ottenuti nel Capitolo 5 per
gli spazi vettoriali euclidei si possono riformulare, in modo del tutto ovvio, nel
contesto degli spazi affini euclidei.

La presenza di un prodotto scalare, definito nello spazio vettoriale V' sog-
giacente a uno spazio affine euclideo A, permette di definire la distanza tra due
punti di A:

Definizione 6.7.5. Siano A uno spazio affine euclideo e P, () due punti di A.
La distanza d(P,Q) tra P e @ ¢ la norma del vettore Q — P:

d(P.Q)=lQ - P| = (Q~P)-(Q— P).

Dalle proprieta della norma di un vettore studiate nel Capitolo 5, si deduce che,
in uno spazio affine euclideo A = (&7, V,+), la funzione distanza

d: o x o — R

gode delle seguenti proprieta:
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(i) d(P,Q) >0, per ogni P,Q € o7, e d(P,Q) =0 se e solo se P = Q;
(i) d(P,Q) = d(Q, P), per ogni P,Q €
(#3) d(P,R) <d(P,Q)+ d(Q, R), per ogni P,Q,R € &
La proprieta (i) ¢ detta disuguaglianza triangolare: essa afferma che, in un
triangolo, ogni lato & minore o uguale della somma degli altri due (vedi Cap. 5,
Proposizioni 5.1.8 e 5.3.24).
Se . e .7 sono due sottoinsiemi non vuoti (dell’insieme dei punti) di uno

spazio affine euclideo A, risulta naturale definire la distanza di . da & come
I’estremo inferiore delle distanze dei punti di . dai punti di 7

A7, 7)=mf{d(P,Q)|P e, Qe T}
Dalla definizione data segue subito che
SNT #+2 = dI,T)=0.

L’osservazione seguente mostra che non vale 'implicazione opposta.

Osservazione 6.7.6. Se . e J sono due sottoinsiemi di uno spazio affine euclideo
A, non ¢ detto che esistano dei punti P € ¥ e Q € J tali che d(P,Q) =
d(.,7). Ad esempio, considerando la retta affine reale A} e ponendo

S ={zeR|z <0}, T ={xeR|z >0},
si ha d(#,7) =0, ma d(P,Q) > 0 per ogni P € . e ogni Q € 7.

Nel caso particolare in cui i sottoinsiemi . e Z sono (gli insiemi dei punti
di) due sottospazi affini L e M dello spazio affine euclideo A, la funzione distanza

d:LxM—R, (P,Q)r d(PQ)
ammette minimo, cioe esistono dei punti Py € L. e Q9 € M tali che
d(L, M) = d(Fo, Qo).

Prima di dimostrare questo risultato enunciamo e dimostriamo il seguente lem-
ma:

Lemma 6.7.7. Siano L = (¥, L,+) e M = (#,M,+) due sottospazi affini
di uno spazio affine euclideo A e siano Py € L e Qo € M due punti tali che il
vettore u = Qg — Py sia ortogonale a I e M. Allora, per ogni P € L e ogni
Q €M, si ha d(Py, Qo) < d(P,Q). Inoltre, se Py € L e Q1 € M sono due punti
tali che d(Py, Q1) = d(Py, Qo), deve necessariamente essere Q1 — Py = Qo — Py.

Dimostrazione. Per ogni P € L eogni Q € M, sihaQ— P = (Q — Qo)+ (Qo —
Py)+ (Py—P),cioe @Q—P=u+v+w,oveu=Qy—Py,v=FPp—P€Le
U):Q—Q()EM.

Qo}ﬂQ ¢

Py m—o/P
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Dato che u € ortogonale a I e M, si ha u-v = u-w = 0. Da cio segue che
1Q = PI? = (v +w) - (utv+w)
= |Jul® + |Jv]|? + Jw|* 4 2v - w
= [lul® + [lo + w]?
> lul,

e quindi d(P, Q) > d(Py, Qo). Specializzando ora il ragionamento precedente al
caso in cui P=P; e Q = @4, si ha

1Q1 = Pu* = [lull® + [lv + w]|* = [|Qo = Poll* + [Jv + w]]*.

Poiché, per ipotesi, si ha d(Py,Q1) = d(Py,Qo), deve essere ||Q; — Pi|* =
|Qo — Po||? e quindi ||v + w||? = 0. Da cio si deduce che v + w = 0 e dunque
w = —v. Si ha pertanto Q1 — P =u+v+w=u+v—v=u=Qy— Py, come
volevasi dimostrare. O

Proposizione 6.7.8. Siano L = (£, L,+) e M = (4, M,+) due sottospazi
affini (non vuoti) di uno spazio affine euclideo A. Allora esistono dei punti
Pyel eQy €M tali che

d(P07QO) < d(P7 Q)a
per ogni P € L e ogni Q € M.

Dimostrazione. Se IL e M sono incidenti, & sufficiente prendere Py = Q¢ € LNM.
Possiamo quindi supporre che i due sottospazi affini . e M non abbiano punti
in comune.

Consideriamo due punti qualsiasi Py € L, ()1 € M e indichiamo con wq
il vettore Q; — P;. Osserviamo che u; non puo appartenere alla somma dei
due sottospazi L e M. Infatti, se fosse u1 = Q1 — P, € L + M, si avrebbe
@1 — P, = v+ w, per qualche v € L, w € M. Da cio seguirebbe che il punto
R =P +v = Q; —w apparterrebbe sia a I che a M, contro l'ipotesi che L e
M siano disgiunti.

Indichiamo con u} la proiezione ortogonale di u; sul sottospazio L + M. Si
ha dunque

uy = uf +uf,

conuy € L+ Meu e (L+M)*=L"NM* (si veda la Proposizione 5.4.8
del Cap. 5). Notiamo che, da quanto detto sopra, segue che u} # 0. Dato che
u}) € L+ M, possiamo scrivere uj = v + w, per qualche v € L e w € M (si
noti che tale decomposizione non ¢, in generale, unica; lo € solo nel caso in cui
LN M = {0}, cioé quando i due sottospazi affini L. e M sono sghembi). Ora
poniamo Py = P +v e Qg = Q1 — w; si ha ovviamente Py € L e Qg € M.
Affermiamo che Py e Qg sono i punti cercati. Infatti, si ha

Qo — Po=(Q1—w) — (P +v)
=(Q1—P1)— (v+w)
=y —u)
=u e LN M*,
quindi il vettore u = uf = Qo — Py & ortogonale ad entrambi i sottospazi affini
L e M. Per il Lemma 6.7.7 si conclude. O
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Il risultato seguente afferma che la distanza tra due sottospazi affini non
incidenti . e M di uno spazio affine euclideo A si misura lungo una direzione
perpendicolare ad entrambi i sottospazi. Inoltre, in base al Lemma 6.7.7, una
tale direzione risulta essere unica.

Proposizione 6.7.9. Siano L = (£, L,+) e M = (4, M,+) due sottospazi
affini (non vuoti) di uno spazio affine euclideo A e siano Py € £ ¢ Qo € M due
punti tali che d(Py, Qo) = d(IL,M). Allora, indicando con u il vettore Qo — Py, st
hau € LN M*L, cioé, per ogni vettore v € L e ogniw € M, é u-v =u-w = 0.

Dimostrazione. Se I e M sono incidenti si ha Py = Qq, quindi u = Qg — Py = 0.
In questo caso la tesi € banalmente verificata.

Supponiamo quindi che LNM = @. Siano dunque Py € £ e @y € 4 tali
che d(Py, Qo) = d(IL,M): si ha pertanto d(Py, Qo) < d(A, B), per ogni A € £
e ogni B € .#. Poniamo u = Qo — Py e supponiamo, per assurdo, che u ¢ M.
Cio significa che esiste un vettore w € M tale che u - w # 0. La situazione &
schematizzata nella figura seguente:

R Qo

r w
M

Indichiamo con 7 la retta passante per )y e parallela al vettore w: tale retta ¢

contenuta in M, dato che Qg € .# e w € M. Sia R il punto della retta r per
—

cui il vettore PyR e ortogonale al vettore w; R ¢ dato da

R:Qo—(u'w>w.

w - w

Il quadrato della distanza di Py da R e:

d(Py, R)* = |R — Py|]?
U-w 2
== ()l
u-w\2
= 2 = (42)"
Il = ()

Poiché abbiamo supposto che sia u - w # 0, si ha

d(Po, R) < [lul = d(Py, Qo),

il che contraddice I'ipotesi che Py e Qg siano i punti di minima distanza di L e
M. L’assurdo deriva dall’aver supposto che il vettore u non sia perpendicolare
al sottospazio M deve pertanto essere u € M. Scambiando i ruoli di L e M si
dimostra, in modo del tutto analogo, che vale anche u € L= . O

Osservazione 6.7.10. Nel caso in cui il sottospazio affine L si riduce a un punto P
i risultati precedenti permettono di concludere che esiste un unico punto @ € M
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tale che d(P,Q) = d(P,M). In tal caso, inoltre, il vettore P.Cj risulta essere
ortogonale a M.

Possiamo dunque affermare che, per ogni punto P e ogni sottovarieta lineare
M di uno spazio affine euclideo A, esiste un unico punto Q € M tale che il
vettore P_Q) sia ortogonale a M; tale punto @ & detto la proiezione ortogonale
di P su M. Risulta cosi definita una funzione

v A — M

che associa ad ogni P € A la sua proiezione ortogonale my(P) = @ sul sottospa-
zio affine M. Lasciamo come esercizio la verifica che my; & un’applicazione affine,
la cui applicazione lineare soggiacente ¢ la funzione mp; : V' — M che associa ad
ogni vettore v € V la sua proiezione ortogonale sul sottospazio M (ove, come di
consueto, abbiamo indicato con V' e M gli spazi vettoriali soggiacenti agli spazi
affini A e M, rispettivamente).

Si noti infine che, per ogni punto P € M, si ha my(P) = P. Da cio segue che
T (WM(P)) = my(P), per ogni P € A. Questa proprieta viene comunemente
espressa con la seguente notazione: 75 = my 0 Ty = M.

I risultati precedenti suggeriscono un metodo per determinare la distanza tra
due sottovarieta lineari I. e M, di dimensioni rispettivamente r e s, di uno spazio
affine euclideo A. Si considerari un punto generico P € L, le cui coordinate di-
penderanno quindi da 7 parametri, e un punto generico ) € M, le cui coordinate
dipenderanno da s parametri. Si calcoli il vettore u = @ — P, le cui componenti
dipenderanno dunque da r + s parametri, e si imponga che u sia ortogonale ai
sottospazi I e M. La condizione di ortogonalita a IL si esprime imponendo che
il prodotto scalare di u con gli r vettori di una base del sottospazio direttore di
L sia nullo (si ottengono cosi r equazioni lineari). Analogamente, la condizione
di ortogonalita a M si esprime imponendo che il prodotto scalare di u con gli s
vettori di una base del sottospazio direttore di M sia nullo (si ottengono cosi s
equazioni lineari). Si ottiene pertanto un sistema di 7 4+ s equazioni lineari in
r + s incognite, la cui soluzione permette di determinare due punti Py € L e
Qo € M tali che il vettore Qo — Py sia ortogonale a I e M. Per quanto visto in
precedenza, la distanza tra Py e Qg coincide con la distanza tra L e M.

Illustriamo ora quanto sopra esposto mediante alcuni esempi.

Esempio 6.7.11 (DISTANZA DI UN PUNTO DA UNA RETTA). Sia A uno spazio
affine euclideo e indichiamo con r la retta passante per un punto A e parallela
a un vettore v. Dato un punto P € A, vogliamo determinare la distanza h di P
dalla retta r.

Un generico punto X della retta r &€ dato da X = A+ Av, al variare del parametro
—_—

A € R. 1 vettore w = PX & quindi dato da v = X — P = (A — P) + \v.

Imponendo che questo vettore sia ortogonale alla retta r (cioe al vettore v), si

ottiene
O=u-v=(A—-P)-v+Av-uv,
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da cul si ricava
(A—P)-v

o]
Se indichiamo con @ il punto di r corrispondente a tale valore del parametro A,
si ha

A=—

A—P)-v
Q = A — 7( 2) v.
o]
\ . . . =2 \
Il punto @ & dunque il punto della retta r per cui il vettore PQ & ortogonale
alla retta r stessa: @ ¢ dunque il piede della perpendicolare tracciata per P alla
retta r. Si ha pertanto

AP =d(P.Q) = |- P|| = |(a-p) - LI

[[0]?

Sviluppando i calcoli, si ottiene

d(P,r)? = ((A_P>_wv) . ((A_p)_wv)

[o]|? o]

(A=P)-v)®  ((A=P)-v)’

= A~ P|]* -2
]2 [[o]?
2
=|A-P|?- M
[[o]]?

da cui si ricava la seguente formula per la distanza di un punto da una retta:

aaw¢mpw“”ﬁ@”)

Il problema della determinazione della distanza di un punto da una retta puo
essere affrontato anche in un altro modo, come ora spiegheremo.

Utilizzando le notazioni precedenti, poniamo B = A+ v, C = P+ v e
consideriamo il parallelogramma ABC P, avente come base il segmento AB e
come altezza la distanza h del punto P dalla retta r.

Poiché I’area di un parallelogramma e il prodotto della sua base per la relativa

altezza, si ha
b Area(ABCP)

AB

Indicando con w il vettore AP e ricordando che AB = v, l’area del parallelo-
gramma ABCP ¢ data dalla seguente formula (vedi Cap. 5, Sezione 5.2)

Area(ABCP) = \/det (U'v v-w>‘
wevo w-w
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Si ottiene pertanto:

Jas (0 0
h = Z\/det<”'” ”'w>.

ol v e wew

Nel caso particolare in cui A ¢ lo spazio affine euclideo A3, I'area di un pa-
rallelogramma di lati v e w coincide con la norma del prodotto vettoriale v x
w:

Area(ABCP) = ||v x w|.

In questo caso la distanza h di P dalla retta r si puo dunque calcolare come
segue:

Nel prossimo esempio ricaveremo un’utile formula per determinare la distanza di
un punto da un iperpiano dello spazio affine euclideo Ay. Prima pero abbiamo
bisogno del seguente risultato:

Proposizione 6.7.12. Nello spazio affine euclideo AR consideriamo un iper-
piano T di equazione

mTia1x1 +asxs+ -+ apxr, +b=0

e indichiamo con u il vettore le cui componenti sono i coefficienti delle incognite
T1,T3,...,T, nell’equazione di T,

u=(a1,as,...,a,).
Allora il vettore u é ortogonale all’iperpiano .
Dimostrazione. Sia P = (p1,pa,...,pn) un punto di m; si ha dunque
aipr + agzpz + -+ + appp + 0 =0.

Per ogni vettore v = (ay, g, ..., a,) appartenente al sottospazio direttore di 7,
il punto @ = P+v = (p1 + a1,p2 + s, ..., pn + ap) appartiene all’iperpiano 7,
quindi si ha

a1(p1 +a1) +as(ps +a2) + -+ an(pn + @) +b=0.
Sottraendo le due uguaglianze precedenti, si ottiene
a1 + asaig + - - + apag, =0,

cioe u-v = 0. Poiché questo vale per ogni vettore v appartenente al sottospazio
direttore di 7, si conclude che il vettore u € ortogonale all’iperpiano . O

Esempio 6.7.13 (DISTANZA DI UN PUNTO DA UN IPERPIANO). Nello spazio affine
euclideo A = Ag indichiamo con 7 I'iperpiano di equazione

T:ia1x1 +asrs + -+ apx, +b=0
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e con P = (p1,ps2,...,psn) un punto di A. Vogliamo determinare la distanza di

P dall'iperpiano 7. Per quanto visto in precedenza, tale distanza coincide con
—

la distanza di P dall’unico punto @) € m per cui il vettore PQ) & ortogonale a 7.

Come abbiamo visto nella Proposizione 6.7.12, il vettore u = (a1, a9, ...,a,) €
ortogonale all’iperpiano m, quindi la retta r passante per il punto P e perpen-
dicolare a 7 ha equazione

r: X =P+ \u.

Il punto @) cercato ¢ dunque il punto di intersezione tra la retta r e 'iperpiano
m
Q=rnNm.

In coordinate, le equazioni parametriche della retta r sono
T1 =p1 + Aaq
To = p2 + Aag
Tp = Pn + Aap.
Sostituendo queste espressioni nell’equazione di 7 si ottiene ’equazione
a1(p1 + Aar) + az(p2 + Aag) + -+ + an(pn + Aa,) + b =0,

la cui soluzione e

_G1P1+G2P2+”'+anpn+b

5\:
af +a3+ - +af

Il punto della retta r corrispondente a tale valore di A & il punto @) cercato:
Q = P+ .
Si ha pertanto
d(P,m) = d(P,Q) = [|Q — P = [|xu] = [Al][u].-

Sviluppando i calcoli, si ottiene cosi

+ + -+ +b
d(P7 71') _ |a1p1 (;2172 _ anp2n |
Vai+a3+-+a2

Generalizzando gli esempi precedenti, vediamo ora come si possa determinare la
distanza di un punto da una sottovarieta lineare qualunque di uno spazio affine
euclideo.
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Esempio 6.7.14 (DISTANZA DI UN PUNTO DA UNA SOTTOVARIETA LINEARE
QUALUNQUE). Sia A uno spazio affine euclideo e sia L = (%, L, +) una sottova-
rieta lineare di dimensione r di A. Dato un punto P € A, vogliamo determinare
la distanza di P da L; tale distanza coincidera con la distanza di P dall’unico
punto @ di L per cui il vettore P—Cj & ortogonale a L.

Sia A un punto qualunque di L. e indichiamo con {v1,va,...,v,} una base
ortonormale® di L. Un generico punto X di L & dato da

X=A+ M Nvi+---+ N\,

al variare dei parametri A1,..., A, € R. Indicando con u il vettore X — P e con
w il vettore A — P, si ha dunque

T
u=w-+ Z/\jvj.
j=1

La richiesta che questo vettore sia ortogonale a IL si esprime imponendo che il
prodotto scalare di uw per i vettori della base di L sia nullo. Ricordando che i

vettori vy, ..., v, formano una base ortonormale di L, per ogni ¢ = 1,...,r, si
ha
T
0=u~vi=w~vi+2)\j1}j~vi=w~vi+)\i,
j=1
da cui si ricava
)\i = —W - V;.
Il punto @ cercato & quindi dato da
Q=A—(w-v)vy — - — (w-v)v.
Si ha pertanto
d(P,L) =d(P,Q) = |Q = P = [[w = (w - vi)vy — -+ = (w - vy )o .

Sviluppando i calcoli si trova

d(P,L)* = [[w|* = (w-v1)* =+ = (w-v,)?,

da cui si ottiene infine la seguente formula per la distanza di P da L:

d(P,L) = [wl]? = (w-v1)? =+ = (w-v,)2.

Esempio 6.7.15 (DISTANZA TRA DUE RETTE). Indichiamo con r e s due rette
in uno spazio affine euclideo A. Per determinare la distanza di r da s cerchiamo
due punti P € r e ) € s tali che il vettore P—Cj sia ortogonale alle rette r e s.

Sia v un vettore direttore di r e scegliamo arbitrariamente un punto A € r:
un generico punto X di r ¢ quindi dato da

X =A+ .

8L’ipotesi che la base {v1,v2,...,v,} sia ortonormale non & indispensabile, ma permette
di semplificare i calcoli.
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Analogamente, indicando con w un vettore direttore di s e fissando un punto
B € s, un generico punto Y della retta s e dato da:

Y = B+ pw.
—
Se indichiamo con w il vettore XY, si ha
u=(B—A)— v+ pw.

La richiesta che questo vettore sia ortogonale alle rette r e s si esprime impo-
nendo che i prodotti scalari di v con v e w siano nulli:

u-v=(B—-A) - v—A-v+pw-v=0
w=(B-—A) - w— - -w+ pw-w=0.

Se i vettori v ¢ w sono linearmente indipendenti (cio¢ se le rette r e s non
sono parallele) il determinante della matrice dei coefficienti di questo sistema &
diverso da zero, quindi il sistema ammette un’unica soluzione A\ = X e pu = fi.
Sostituendo tali valori nelle espressioni di X e Y si ottengono i punti P e @
cercati. Se invece le rette r e s sono parallele, il determinante della matrice dei
coefficienti del sistema precedente ¢ nullo. In questo caso esso ammette infinite
soluzioni (dipendenti da un parametro). Una qualunque di queste soluzioni
fornisce una coppia di punti P e @ tali che d(r,s) = d(P, Q).

6.7.1 Angoli

Parliamo ora del concetto di angolo in uno spazio affine euclideo. Come gia
osservato nel Capitolo 5, la presenza di una forma bilineare simmetrica definita
positiva su uno spazio vettoriale reale V' permette di definire la nozione di angolo
compreso tra due vettori non nulli di V. Le stesse considerazioni si applicano
quindi al caso di uno spazio affine euclideo. Utilizzando la nozione di angolo
compreso tra due vettori e poi possibile definire I’angolo compreso tra due rette
incidenti.

Siano dunque 7 e s due rette incidenti in uno spazio
affine euclideo A e indichiamo con v, e vy rispettivamente
due generatori dei sottospazi direttori di r e s.

Si noti che i vettori v, e vs sono determinati a me-
no della moltiplicazione per uno scalare non nullo. Ri-
cordiamo ora che il coseno dell’angolo a compreso tra v, e vs, € dato dal
rapporto

U * Vs
[[or [ l|vs]]
Sostituendo v, e vg con i vettori v, e pvg, con A\, € R, A\, # 0, il rapporto
precedente diventa

(6.7.1)

AUy - U Vp - Vg
[ Alllo 1l [los [[or [ ]|vs]]
ove il segno dipende dal segno del prodotto Ap. In altri termini, cio significa
che, date due rette r e s, il rapporto (6.7.1) € ben definito solo a meno del segno.
Cio corrisponde al fatto che, se indichiamo con « I'angolo compreso tra i vettori
v, € Vg, allora 'angolo compreso tra v, e —v,, oppure tra —v, e vg € =7 — @,
come illustrato nella figura precedente.
Fatte queste premesse, possiamo dare la seguente definizione:
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Definizione 6.7.16. Con le notazioni precedenti, chiameremo angolo compreso
tra le due rette incidenti r e s quello, tra i due angoli a e § = m — «, che risulta
compreso nell’'intervallo [0, 7/2].

La definizione appena data puo essere generalizzata al caso dell’angolo com-
preso tra una retta r e una sottovarieta lineare L, di dimensione > 1, ad essa
incidente.

Sia dunque L una sottovarieta lineare di dimensione > 1 di uno spazio affine
euclideo A e indichiamo con 7, : A — L la proiezione ortogonale su L. Data una
retta r incidente a L, indichiamo con " = . (r) la sua proiezione ortogonale®
su L. Se la retta r ¢ ortogonale a L, 7/ ¢ un punto, il quale ¢ precisamente il
punto di intersezione tra r e L; in caso contrario r’ & una retta.

Definizione 6.7.17. Con le notazioni precedenti, chiameremo angolo compreso
tra la retta v e la sottovarieta lineare L ad essa incidente ’angolo o compreso
tra 7 e la sua proiezione ortogonale 7’ su L, con la convenzione che, se ' ¢ un
punto, a € un angolo retto.

Nel caso in cui la sottovarieta lineare I € un iperpiano di A, il sottospazio
L+, ortogonale del sottospazio direttore di L, ha dimensione 1. Indicando con
P il punto di intersezione tra la retta r e Uiperpiano L, la retta s = P+ L+ ¢
la retta perpendicolare a I passante per il punto P. Se r non e ortogonale a
L, indicata con 7’ la proiezione ortogonale di r sull’'iperpiano L, le tre rette s, r
e r’ sono complanari e, inoltre, s e r’ sono tra loro ortogonali. La situazione &

illustrata nella figura seguente:

Di conseguenza, se indichiamo con « ’angolo compreso tra la retta r e 'iperpiano
L (cioe I'angolo tra r e ') e con 8 'angolo compreso tra le rette r e s, si ha

™

Questa osservazione fornisce un metodo alternativo per calcolare 1'angolo «
compreso tra la retta r e 'iperpiano L: basta infatti determinare la retta s

9Per determinare la proiezione ortogonale della retta r sulla sottovarieta lineare I & suffi-
ciente considerare due punti P,Q € r e determinare le loro proiezioni ortogonali P’ = 7, (P)
e Q =m.(Q) sul. Se P! # @Q’, la retta passante per P’ e Q’ ¢ la retta r’ cercata, se invece
P’ = Q' la retta r risulta essere ortogonale a L e pertanto la sua proiezione ortogonale su LL
si riduce a un punto.
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perpendicolare a L, calcolare I'angolo 3 tra r e s e ricordare che a + (8 € un
angolo retto.

Per terminare, osserviamo che le considerazioni precedenti ci permettono
di definire la nozione di angolo compreso tra due iperpiani incidenti o, piu in
generale, tra un iperpiano e una sottovarieta lineare di dimensione > 1 ad esso
incidente.

Definizione 6.7.18. Siano L. e M due iperpiani incidenti in uno spazio affine
euclideo A. Sia P € L N M e indichiamo con r e s rispettivamente le rette
passanti per il punto P e perpendicolari agli iperpiani I. e Ml. Definiamo I’angolo
«, compreso tra gli iperpiani . e M, come 1’angolo compreso tra le rette r e s
(nel caso in cui dim A = 3 la situazione ¢ illustrata nella figura seguente).

Definizione 6.7.19. Sia LL un iperpiano in uno spazio affine euclideo A e sia M
una sottovarieta lineare di A, di dimensione > 1, incidente a .. Sia P € LNM e
indichiamo con 7 la retta perpendicolare a IL passante per il punto P. L’angolo
a compreso tra L e M & definito ponendo o« = w/2— 3, ove ( & 'angolo compreso
tra la retta r e la sottovarieta lineare M.

Osservazione 6.7.20. Come gia accennato in precedenza, le nozioni di distanza
e angolo permettono poi di introdurre anche i concetti di area e volume. La
trattazione delle aree e dei volumi negli spazi affini euclidei & del tutto analoga
¢ quella svolta nel caso degli spazi vettoriali euclidei, a cui rimandiamo (vedi
Cap. 5, Sezione 5.2).

6.8 Isometrie degli spazi affini euclidei

In questo paragrafo studieremo le applicazioni tra due spazi affini euclidei A e B
che rispettano la struttura di spazio affine euclideo, cioe le applicazioni affini che
sono compatibili con i prodotti scalari definiti negli spazi vettoriali soggiacenti
agli spazi affini A e B.

Siano dunque A = (&,V,4), B = (%A, W,+) due spazi affini euclidei e
indichiamo con g e h i prodotti scalari definiti sugli spazi vettoriali V' e W,
rispettivamente.

Definizione 6.8.1. Un’applicazione affine F' = (f,¢) : A — B & detta un’iso-
metria (di spazi affini euclidei) se la funzione lineare ¢ : V.— W & un’isometria
di spazi vettoriali euclidei, cioe se, per ogni vi,vs € V, si ha

h(p(v1), p(v2)) = g(v1,v2).
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Tutti i risultati riguardanti le isometrie degli spazi vettoriali euclidei, ottenuti
nel Capitolo 5, si estendono in modo ovvio al contesto degli spazi affini euclidei.
Il seguente risultato, ad esempio, & una conseguenza diretta del Corollario 5.6.3:

Proposizione 6.8.2. Siano A = (&, V,+) e B = (%, W,+) due spazi affini
euclidei e sia F' = (f,¢) : A — B un’applicazione affine. Se F ¢ un’isometria
allora essa é iniettiva.

Dimostrazione. Se F' & un’isometria di spazi affini euclidei, 'applicazione linea-
re ¢ : V — W & un’isometria di spazi vettoriali euclidei e pertanto & iniet-
tiva. Come abbiamo visto nella Proposizione 6.6.7, U'iniettivita di ¢ equivale
all’iniettivita di F. O

Le isometrie degli spazi affini euclidei preservano le distanze tra i punti. Se
A, B sono due spazi affini euclidei e F' = (f, ¢) : A — B & un’isometria, per ogni
coppia di punti P, @ € A si ha infatti

d(P,Q) =1Q - P|| = [|o(Q — P)| = [ f(Q) = f(P)| = d(f(P), f(Q)).
E facile verificare che questa proprieta caratterizza le isometrie:

Proposizione 6.8.3. Siano A e B due spazi affini euclidei e sia F = (f,¢) :
A — B un’applicazione affine tale che d(P, Q) = d(f(P), f(Q)), per ogni P, Q €

A. Allora F ¢ un’isometria.

Dimostrazione. Dati P € A e v € V, poniamo ) = P+ v. Si ha dunque ¢(v) =
F(Q)—f(P) e quindi |[v]| = d(P,Q) = d(f(P), f(Q)) = | F(Q)—F(P)] = ¢(v)].
Si deduce pertanto che ¢ : V. — W & un’applicazione lineare che preserva le
norme dei vettori e quindi & un’isometria (vedi Cap. 5, Osservazione 5.6.10). O

Come nel caso delle applicazioni affini, & del tutto evidente che I'applicazione
identica di uno spazio affine euclideo in sé & un’isometria e che la composizione
di due isometrie € ancora un’isometria. Inoltre se un’isometria ¢ biiettiva, anche
la sua inversa ¢ un’isometria. Pertanto le isometrie di uno spazio affine euclideo
A formano un sottogruppo del gruppo delle affinita di A; tale sottogruppo &
indicato con Isom(A).

Esempio 6.8.4. Dato uno spazio affine euclideo A = (&7, V,+), le traslazioni
costituiscono degli esempi di isometrie di A (vedi Osservazione 6.1.7). Per ogni
v € V, la funzione 7, : A — A definita ponendo 7,(P) = P + v, per ogni P € A,
¢ un’isometria di A; infatti 'applicazione lineare ¢ : V' — V soggiacente a 7,
e l'applicazione identica. Si noti che, se v # 0, la traslazione 7, € un’isometria
priva di punti fissi.

L’insieme delle traslazioni ¢ un sottogruppo del gruppo delle isometrie di A,
isomorfo al gruppo additivo dello spazio vettoriale V.

Esempio 6.8.5. Sia A = (&, V,+) uno spazio affine euclideo e sia ¢ : V — V
un’isometria. Per ogni punto Py € &, definiamo una funzione f : & — &
ponendo f(P) = Py+¢(P—P,). Siottiene cosi un’isometria F' = (f, ¢) : A — A
per la quale Py € un punto fisso.

Se A e B sono due spazi affini euclidei, la scelta di due sistemi di riferimento
X ={Op,v1,...,0p}inAe.” ={0p,wr,...,w,} inB permette di associare a
ogni applicazione affine F' = (f, ¢) : A — B una coppia formata da un elemento
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t = (t1,...,tn) € R™ e una matrice A € M,, ,,(R), la quale non & altro che
la matrice dell’applicazione lineare ¢ : V' — W, rispetto alle basi {v1,...,v,}
di Ve {ws,...,wn} di W. Da quanto detto si deduce che F' & un’isometria di
spazi affini euclidei se e solo se A & la matrice di un’isometria di spazi vettoriali
euclidei (vedi Cap. 5, Paragrafo 5.6). Se inoltre i sistemi di riferimento % e .
sono ortonormali, e quindi le matrici associate alle forme bilineari simmetriche
g e h sono le matrici identiche, F' & un’isometria se e solo se A & una matrice
ortogonale, cioe se e solo se AA = 1.

Osservazione 6.8.6. Come abbiamo gia notato in precedenza, dato uno spazio
affine A di dimensione n sul campo K, la scelta di un sistema di riferimento
Z in A permette di identificare il gruppo delle affinita di A con il prodotto
semidiretto K™ x GLy,(K). Nel caso in cui A sia uno spazio affine euclideo,
dalle considerazioni precedenti si deduce che la scelta di un sistema di riferimento
ortonormale in A permette di identificare il gruppo delle isometrie di A con il
prodotto semidiretto R™ x O, (R).

Esercizi
Esercizio 6.1. Nello spazio affine A3 sia r la retta di equazioni

20 —3y+1=0
20 —2y+2—1=0.

Si determini la retta s passante per l'origine e parallela ad r, ed il piano del fascio di
asse r passante per l'origine.

Esercizio 6.2. Siano r1 e 72 rispettivamente le rette passanti per P = (0,1,2) e
P, = (2,—1,0) e parallele ai vettori v1 = (2,1,1) e v2 = (—2,3,0). Siano %1 e >
rispettivamente i fasci di piani di asse r1 e r2. Si determinino i piani w1 di %1 e w2
di %> passanti per il punto P = (1,1,1), e le intersezioni della retta r = w1 N 72 con
i piani coordinati. Si determini infine il triangolo individuato dalle intersezioni delle
rette 7, 71 e r2 con il piano di equazione z = 0.

Esercizio 6.3. Determinare ’equazione del piano contenente le rette r e s di
equazioni
y+1=0 2r -3y +22—-1=0
"1 2¢+22-3=0 “lz—2y+z=0.

Esercizio 6.4. Siar laretta passante per i punti P = (1,0,—2) e Q = (0,—1,3), e sia
s la retta passante per il punto R = (—1,1,0) e parallela al vettore v = (1,—1,—1/2).
Si determinino il piano 71, passante per i punti P, @ e R, il piano w2 contenente la
retta s e passante per il punto medio del segmento PQ), ed infine un vettore u parallelo
alla retta m; N mo.

Esercizio 6.5. Si determini la distanza del punto P = (2,0,—1) dalla retta r di
equazioni parametriche

r=t+1
y=2
z=t—1.

Esercizio 6.6. Si determinino le rette passanti per il punto @ = (0,1, —1), distanti
1 dal punto P = (1, 1,0) e contenute nel piano 7 di equazione y + z = 0.
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Esercizio 6.7. Si determini ’equazione del luogo dei punti dello spazio affine euclideo
A} appartenenti alle rette passanti per il punto P = (2,1,1) che formano un angolo

jus

& con il piano 7 di equazione 2z +y — 2z = 0.

pari a
Esercizio 6.8. Si determini I’equazione del luogo dei punti dello spazio affine A3
appartenenti alle rette passanti per il punto P = (3,3,3) che intersecano la curva C
di equazione

m2+2y2+3z2:4
r+2z=0.

Esercizio 6.9. Si determinino le rette del piano m di equazione x —y + 2z = 0
parallele al vettore v = (1,3,1) e distanti v/6 dal punto P = (1,0,0).

Esercizio 6.10. Nello spazio affine euclideo reale tridimensionale, si determini
l’equazione del luogo dei punti appartenenti alle rette distanti 1 dal punto P = (1,1, 2)

i

e formanti un angolo pari a § conipianim :z+y=0em:z—2=0.

Esercizio 6.11. Nello spazio affine euclideo AJ sia 7 il piano contenente la retta r di
equazioni 1(z —1) =y +1= %z ed il punto P = (0,1,1). Si determinino le rette del
piano 7 passanti per P e distanti v/3 dal punto Q = (1,1, -1). Si determinino inoltre
la proiezione ortogonale Qo di @) su 7 e le rette di m passanti per Qo e ortogonali alle

rette trovate in precedenza.

Esercizio 6.12. Nello spazio affine euclideo A3 si determinino le equazioni delle
rette passanti per P = (1,0,0), incidenti la retta r di equazioni

y+2z—1=0
T
r=0

e formanti con quest’ultima un angolo pari a .

Esercizio 6.13. Nel piano affine euclideo A2 siano r1 e rp le rette di equazioni
r—2y+1=0e3x—y+ 2 =0, rispettivamente. Si determinino le equazioni delle
rette s1 e so bisettrici degli angoli formati da r1 e r2.
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